
Internal Cache Architecture of

X86 Processors

By: K. Goodnow, Ph.D.

Introduction

This paper is intended as a reference for the common-

alities and differences in internal cache structures in

X86 style processors. The Intel® 486DX and IBM

Blue Lightning processors are studied and compared to

highlight the various strategies in cache design. The

basic structure of these caches and particular instances

are discussed.

All of these processors contain an area of the die dedi-

cated to a static cache memory. This memory is con-

nected directly to the internal processing blocks which

allows extremely fast access to their contents. This is

especially important in double and triple clocked inter-

nal processors where the processing blocks are running

two and three times the speed of the external bus.

Cache Architecture

All of the processors studied utilize a unified 4 way set

associative cache organization. The unified aspect re-

fers to storing both data and instruction information in

the same memory. The four-way set associative aspect

refers to a cache organization that is divided into four

blocks or ways of memory (see figure 1). Each block is

then divided into individual lines or sets (see figure 2).

Each line is associated with the similar lines in the

other three blocks of memory. Each line can store a

certain number of bytes of information (in the case of

these processors 16 bytes). The total size of the cache is

determined by the number of bytes on a line or set, the

number of sets, and the number of blocks or ways.

Given the specifications for a cache the number of lines

can be found. For example, in an 8K cache which is

four-way set associative, with a line size of 16 bytes, the

number of lines or sets is:

8K bytes

4 Way
= 2K bytes/way

Now using the number of bytes in a line we find:

2K bytes/way

16bytes/line
= 128 lines/way

Therefore each block of memory in the cache would

contain 128 lines.

The physical address of the data in memory is used as

an index into the cache (see figure 3). Address bits

A3-A0 (or A3-A2 and BE3-BE0) defines a particular

byte out of the 16 bytes in a line. The next 7-8 bits de-

code to a particular line or set of the memory block.

The top bits are then stored as a tag in the tag memory

Page 1 of 6 May 23, 1995 Fax # 40010

1

2
.
.

n

0

Tag
Memory

2K - 4K Bytes

Cache line 0

Cache line 1
Cache line 2

Cache Memory

DW1 DW2 DW3 DW4

128
or
256
lines

16 bytes or 4 doublewords

Figure 2: "Way" Organization

.

Tag

Memory
"Blocks" or "Ways"

1

2

.

.

n

0 Cache line 0

Cache line 1
Cache line 2

Cache line n

2K - 4K Bytes

.

.

2K - 4K Bytes

.

.

2K - 4K Bytes

.

2K - 4K Bytes

Figure 1. 4-Way Associative Cache
Figure 3: Physical Address Mapping

A10 . . . A04 A03, A02. BE3 . . . BE0

Tag

Tag

Tag

Tag

R
e
ta
in
e
d
 a
s
T
A
G
 d
a
ta

D
e
c
o
d
e
s
 t
o
 a
 p
a
r
ti
c
u
la
r
 l
in
e

Cache line

Cache line

Cache line

DW0 DW1 DW2 DW3

Decodes to a particular byte

A31 A11

20 -30 bits 128 bits

®

for that line. Each memory block has a 128 or 256 tag

line memory associated with it. When checking to see

if a particular information byte is stored in the cache,

the line addresses (A11-A4) are decoded to determine

the tag line memory location to extract the stored ad-

dress tag and then this tag is compared with the needed

physical address upper bits. If there is a match, the

lower address bits are decoded to find the right bytes or

double word.

The 7-8 address bits that are the index to the line or set

of a way are repeated every 2048 or 4096 bytes through-

out memory. Every repeat of these 7-8 bits can only be

stored in that particular line of one of the four "ways."

This is the main limitation of the four way set associa-

tive cache memory architecture. If the processor asks

for five bytes which are each 2048 or 4096 address

locations away from each other, only four can be held in

cache memory, even if the rest of cache memory is

empty.

The line tag and byte addresses are common across all

four of the blocks in the cache, thus the associative na-

ture. A particular piece of information could be in any

one of the blocks at that particular line. The tag infor-

mation is the piece that must be checked to ascertain if

the data is present and in which particular block.

This cache architecture is common across all of the

processors, the differences are present in the size of the

cache, the method of reading and writing to the cache

from the external bus, the invalidation and flushing of

the cache, and the method of cache coherency during

power down mode. These areas will be covered in the

following sections. Table 1 shows a comparison of the

different cache architectures available in these

processors.

Cache Size Differences

The IBM 486DX2 and the Intel 486DX2 each contain

an 8K cache. This means a line or set size of 128. The

IBM Blue Lightning 486SX2 and 486SX3 and the Intel

486DX4 each contain a 16K cache. This 16K cache

has a line or set size of 256.

Cache Line Fill

When the cache is enabled and the processor requests

data or instruction information that is not present in the

cache, a line fill read is generated. If the line is cache-

able the bytes currently requested are fetched from the

system along with the rest of the bytes on that line. One

of the first places we see a difference in the processors

is in the algorithm used to determine the next set of

bytes to request. The Intel 486DX2 and 486DX4 use an

Page 2 of 6 May 23, 1995 Fax # 40010

CATEGORY BLSX2/SX3 486DX2 IDX2 IDX4

SIZE 16K 8K 8K 16K

PARITY YES NO NO NO

TYPE UNIFIED

4-WAY

SET

ASSOCIATIVE

UNIFIED

4-WAY

SET

ASSOCIATIVE

UNIFIED

4-WAY

SET

ASSOCIATIVE

UNIFIED

4-WAY

SET

ASSOCIATIVE

WRITE THROUGH YES YES YES YES

WRITE BACK NO YES NO NO

WRITE LEVELS 2 8 4 4

LINE SIZE 16 BYTES 16 BYTES 16 BYTES 16 BYTES

FLUSH TYPES FULL SNOOP

ADS FLUSH

HOLD FLUSH

SOFTWARE

FULL SNOOP

FLUSH PIN

SOFTWARE

FULL SNOOP

FLUSH PIN

SOFTWARE

FULL SNOOP

FLUSH PIN

SOFTWARE

POWER UP STATUS OFF OFF OFF OFF

FLUSH ON CLOCK STOP YES NO YES YES

FULL SNOOP ON CLOCK STOP YES NO YES YES

CACHE TESTING NO YES YES YES

Table 1: Cache Architecture Comparison

Intel specific algorithm that maximizes the double bank

memory accessing of most motherboards. These se-

quences are shown in table 2.

Table 2: Cache Line Fill Order

The IBM Blue Lightning 486SX2 and 486SX3 use an

algorithm that maximizes the hit rate for an access to

the next op-code in it's determination of which set of

bytes to request next. These sequences are shown in ta-

ble 3.

Table 3: IBM Blue Lightning 486SX2 and 486SX3

Cache Line Fill Order

The cacheability of a particular line of information is

determined by several methods. The KEN pin is avail-

able on all of the processors and allows a direct control

of the cacheability of the line. When set, this pin sig-

nals to the processor that the current address is cache-

able. If any byte in a line is un-cacheable, the entire

line is considered un-cacheable.

This "KEN" pin on the Blue Lightning 486SX2 and

486SX3 is shared with a dynamic frequency shifting

function and care must be taken in the system design to

insure that this pin is used as intended for that particu-

lar system.

The cacheability of a line can also be determined

through software. All of the processors support page ta-

ble cache control. This is a table of the physical ad-

dresses and their mapping. One bit of this table, the

PCD bit, indicates if this particular page is cacheable.

The PCD bit can be set or reset by the software of the

system. Care must be taken when using the PCD bit

that a cache coherency problem does not arise. As

stated in the IBM Blue Lightning manual, "If the PCD

bit is changed dynamically, the cache needs to be

flushed to ensure that the processor will go out to main

storage for the data." Most of the time this page table

will be under operating system control.

The IBM Blue Lightning 486SX2 and 486SX3 also

support the use of a microprocessor specific register

(MSR) that controls the cacheability of main memory in

64K regions below 1MB and an upper cacheability limit

for memory above 1MB. This allows a coarser control

of the caching of memory separate from the other meth-

ods. This method is suitable for many DOS type

applications.

Cache Line Replacement

If a cache line fill request is valid, the processor at-

tempts to place the data in one of the four "ways" at that

particular line. If all four of the "ways" have that line

occupied a least-recently-used (LRU) algorithm is used

to determine which "way" will be overwritten by the

new data. The LRU algorithm uses several bits of

memory that are contained in the tag line memory.

These bits are changed when there is a memory access

on that line on one of the four "ways." The processor

will overwrite a line in the cache if it is the least re-

cently used among the four "ways."

The IBM 486DX2 processor has three external pins,

RPLVAL#, RPLSET1 and RPLSET0 which indicate

the particular "way" that is being invalidated on a new

cache line fill. If the pin RPLVAL# is set valid it indi-

cates that the values on pins RPLSET1 and RPLSET0

indicate the particular "way" that is being overwritten.

These pins along with the current external address al-

low an external hardware system to duplicate the inter-

nal cache memory data in real time.

Cache Flushing

The ability to maintain cache coherency with different

"Bus Masters" writing to memory is handled by invali-

dating or flushing the internal cache memory. This can

be accomplished in two ways, invalidating a particular

line of a single "way" or by invalidating the entire cache

memory. The first approach of invalidating a single

line is accomplished by checking each valid write ad-

dress that appears on the bus while another bus master

controls the bus. Since the entire address needs to be

used, this method is called full snooping. This method

has the least impact on system performance since only

the particular line of that address cycle is invalidated.

The second method invalidates the entire cache mem-

ory. This can be accomplished in hardware or software

in all of the processors. The software method relies on

1st 2nd 3rd 4th

0 4 8 C

4 0 C 8

8 C 0 4

C 8 4 0

1st 2nd 3rd 4th

0 4 8 C

4 8 C 0

8 C 0 4

C 0 4 8

Page 3 of 6 May 23, 1995 Fax # 40010

the use of the invalidate command in a software pro-

gram. The hardware method uses an external signal to

tell the processor to flush the cache. On the IBM

486DX2, Intel 486DX2 and Intel 486DX4 this external

signal is driven on the FLUSH pin.

On the IBM Blue Lightning 486SX2 and 486SX3 a full

cache flush is accomplished as either an ADS# or

HOLD flush. The type of flush is set as bits in the

MSR1000 register. If the full snoop bits are set the

processor will accomplish single line invalidates on a

hold. With the bits set for a HOLD flush, the assertion

of HOLD and HLDA will flush the cache. With ADS#

flush set, the processor will flush on HOLD, HLDA,

and ADS# being active. This allows a differentiation

between bus master and memory refresh cycles.

The CD bit in the control register of the IBM 486DX2,

Intel 486DX2, and Intel 486DX4 as well as the CE bit

in the MSR1000 registers of the IBM Blue Lightning

486SX2 and 486SX3 enable and disable the cache.

Disabling the cache causes new non-cached reads to not

enter the cache. If the cache was previously used and

contains information and if the current address is in the

cache, the information will be read out of the cache not

system memory. To disable and not use the cache, the

CE or CD bit must be cleared and then the entire cache

flushed. This flushing can be accomplished through ei-

ther the software or hardware methods discussed.

Write Operations

The second type of memory operation is a write into

cache from the processing blocks and a write out to sys-

tem memory from the processor. There are two write

modes used in these X86 processors; Write-Through

and Write-Back. Write-through operation updates the

cache memory (if cacheable) and also writes the data

out to system memory at the same time. A write-back

operation updates the cache (if cacheable) and does not

update the system memory until the modified line is to

be overwritten, the entire cache flushed, or an external

bus master requires access. This second method means

that writes to a cacheable region stay within the proces-

sor. This reduces the bus activity and subsequently in-

creases the processor performance.

The IBM Blue Lightning 486SX2 and 486SX3, Intel

486DX2, and Intel 486DX4 processors utilize the write-

through mode. The IBM 486DX2 can be set into ei-

ther write-through or write-back mode. The write-

through mode will be discussed first since it is common

across all five processors.

Write-Through Mode

This method of writing from the processor blocks is the

least complicated in regards to cache coherency. The

internal cache and the external system memory are up-

dated at the same time. This method suffers from de-

creased performance since an external bus cycle

(usually much slower than the internal cycle time) must

be generated for every write. If the processor were to

wait until the external write operation completed before

continuing, then a write would effectively halt the op-

eration of the processor. In order to avoid this bottle-

neck, write buffers are added to the architecture of the

processor, see figure 4. These write buffers hold the

data, address, and status bits required for the memory

cycle. Once the internal processing block passes this

information to the write buffer, it can continue process-

ing. The only time it would have to wait is if the write

buffers were full. For this reason the addition of write

buffers to the architecture becomes a trade-off between

performance and silicon area. The IBM Blue Lightning

486SX2 and 486SX3 have two write buffers while the

Intel processors have four write buffers apiece. The

IBM 486DX2 contains eight write buffers.

Internally, a write from the processing block is handled

as a line modify operation if that physical address is

currently stored in the cache. If the data is cacheable

and is not currently in the cache, the data is written out

to system memory. On the Blue Lightning SX2 and

SX3 a line fill request for that physical address is then

made. This approach, known as write-allocate, causes

Page 4 of 6 May 23, 1995 Fax # 40010

PROCESSING

BLOCKS

CACHE

WRITE

BUFFERS

EXTERNAL

INTERFACE

the system memory to be updated first and then that line

to be read into the cache.

Although complicated internally, the write-through

mode does not normally require any system design con-

siderations since the effect is that of a non-cached write

operation.

Write-Back Mode

The write-back mode of operation creates a higher per-

forming processor. Writes to cached memory are at the

speed of the internal processing blocks and are not de-

pendent on the external memory cycle time or the num-

ber of write buffers. The IBM 486DX2 is placed in

this mode by setting the CD bit equal to 0 and the NW

bit to 1 in the CR0 register after reset.

The main problem with the write-back mode is cache

coherency. The data in the internal cache could be

more current then the system memory. If a bus master

requires that particular information, the data must be

taken out of the internal cache and written to system

memory before allowing the bus master access to that

data. If the cache is to be invalidated or flushed, all of

the modified data must first be written to system mem-

ory before invalidating the cache.

When the data is modified on a line in cache memory,

if only some of the data is modified it is marked as par-

tially modified. This is done on four byte boundaries.

Thus, there are four areas to a line or four double-words

that can be identified as modified. This means that

when the data needs to be written out to system memory

only those particular double-words that were modified

need be accessed.

Three methods are available in the IBM 486DX2 proc-

essor for cache coherency with the write-back mode.

The first two methods require that all modified memory

locations be written to system memory before releasing

the bus to another bus master. The first method accom-

plishes this by asserting the FLUSH# pin before assert-

ing HOLD to the processor. The processor will write

all previously modified data out of the cache before as-

serting HLDA. The cache will be retained intact, un-

less the INVAL pin is asserted when FLUSH# is

sampled by the processor in which case the entire cache

is invalidated. Otherwise the cache continues to be

used as if nothing occurred.

The second method uses the BARB bit in the CCR2

register. If this bit is set all modified cache locations

are written out to system memory when a HOLD is

asserted. All of the writes will complete before assert-

ing HLDA. The cache is retained as it was before the

start of the operation.

One problem of using either of the first two methods for

cache coherency is if some bus HOLD cycles are not

memory data cycles. If refresh cycles are considered a

bus master access, then the modified writes will be

purged from the cache at a fairly high rate (every

15µsec). This may result in little performance gain

over the write-through mode.

The third method of cache coherency checks each

physical address on the bus during other bus master cy-

cles. If a match is found to a cache location that has

been previously modified the processor will write just

that line back to system memory. This is accomplished

by issuing cache inquiry cycles to the IBM 486DX2.

The EADS# and INVAL pins are used to issue a cache

inquiry to the processor. If the cache contains the

physical address currently on the bus and some of the

bytes have been modified, the processor will assert

HITM# to signal that the line needs to be written to sys-

tem memory. The processor then waits for HOLD to be

de-asserted at which time it will write out the modified

bytes to system memory. This method has the least im-

pact on performance since only those data bytes that are

needed are written to system memory. This method

does require the ability of the bus master to de-assert

HOLD before receiving the information requested and

then re-generate the read request.

 Bus Master Write to a Modified Location

If a full-snoop cache invalidation is being used, and a

bus master writes information to a data location that is

currently cached and has been marked as modified, the

processor can simply mark the line as invalid and ac-

complish a cache line fill if the location is needed

again. The modified data would have been over-written

by the bus master in any case.

Power Down Mode Cache Coherency

All of these processors can utilize some type of power

management mode. The processor is shut down to

some extent in order to save energy. The question

arises, how does the processor maintain cache coher-

ency if a bus master accesses memory during the power

down. Each of the processors handles this in a different

manner.

Page 5 of 6 May 23, 1995 Fax # 40010

The IBM Blue Lightning 486SX2 and 486SX3 are able

to snoop on the bus and flush the cache in both of their

power down modes. The IBM 486DX2 does not sup-

port snooping or flush during power down mode. The

Intel 486DX2 and 486DX4 processors support both

snooping and flushing during power down.

Cache Test Registers

The internal cache test registers TR3, TR4, and TR5

are present in all of the processors except the IBM Blue

Lightning 486SX2 and 486SX3. These registers are

used to check the viability of the cache. Testing of the

cache should be accomplished with the cache turned

off.

Conclusion

This paper has shown the architectural decisions made

on a variety of issues. The real answer as to the correct-

ness of these decisions is in the performance of the

processor and ultimately the marketplace. For more in-

formation regarding a particular feature, please consult

the appropriate databook.

References

1. 486DX2 Databook, IBM Microelectronics, 1994.

2. Blue Lightning Microprocessor Data Sheet, IBM

Microelectronics, 11/1993.

3. Cache Tutorial, Intel Corporation, 1991.

4. IntelDX4 Processor Data Book, Intel Corportation,

2/1994.

5. Microprocessors, Vol. 2, Intel Corporation, 1994.

Page 6 of 6 May 23, 1995 Fax # 40010

IBM Corporation 1995. All rights reserved.

IBM and the IBM logo are registered trademarks of International Business Machines Corporation. IBM Microelectronics is a trademark of the

IBM Corp.

All other product and company names are trademarks/registered trademarks of their respective holders. 1995 IBM Corp.

This document may contain preliminary information and is subject to change by IBM without notice. IBM assumes no responsibility of liability

for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the in-

tellectual property rights of IBM or third parties.

The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may

result in physical harm or injury to persons.

NO WARRANTIES OF ANY KIND, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE ARE OFFERED IN THIS DOCUMENT.

