IBM 6x86MX™ MICROPROCESSOR

Enhanced Sixth-generation CPU
Compatible with MMX" Technology

)
Programming Interface —I

2. PROGRAMMING 2.1 Processor Initialization
INTERFACE

..'I

The IBM 6x86MX CPU is initialized when the
In this chapter, the internal operations of the RESET signal is asserted. The processor is
IBM 6x86MX CPU are described mainly from placed in real mode and the registers listed in
an application programmer’s point of view. Table 2-1 (Page 2-2) are set to their initialized
Included in this chapter are descriptions of prasalues. RESET invalidates and disables the
cessor initialization, the register set, memory cache and turns off paging. When RESET is
addressing, various types of interrupts and theasserted, the IBM 6x86MX CPU terminates all
shutdown and halt process. An overview of |ocal bus activity and all internal execution.
real, virtual 8086, and protected operating During the entire time that RESET is asserted,
modes is also included in this chapter. The FPthe internal pipelines are flushed and no instruc-
operations are described separately at the endtfn execution or bus activity occurs.

the chapter.
Approximately 150 to 250 external clock cycles

This manual does not -and is not intended to- after RESET is negated, the processor begins

describe the IBM 6x86MX microprocessor or executing instructions at the top of physical

its operations at the circuit level. memory (address location FFFF FFFOh). Typi-
cally, an intersegment JUMP is placed at FFFF
FFFOh. This instruction will force the processor
to begin execution in the lowest 1 MByte of
address space.

Note: The actual time depends on the clock scal-
ing in use. Also an additionaf2clock cycles
are needed if self-test is requested.

Note: x = Undefined value

2-2

ed.

=
Table 2-1. |Initialized Register Controls
REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS
EAX Accumulator XXXX XXXxh 0000 0000h indicates self-test passg
EBX Base XXXX XXxxh
ECX Count XXXX XXXxh
EDX Data 06 + Device ID Device ID = 51h or 59h (2X clock)
Device ID = 55h or 5Ah (2.5X clock
Device ID = 53h or 5Bh (3X clock)
Device ID = 54h or 5Ch (3.5X clock
EBP Base Pointer XXXX XXxXh
ESI Source Index XXXX XXxxh
EDI Destination Index XXXX XXxXh
ESP Stack Pointer XXXX XXxXh
EFLAGS Flag Word 0000 0002h
EIP Instruction Pointer 0000 FFFOh
ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
Cs Code Segment F00O0h Base address set to FFFF 0000h|.
Limit set to FFFFh.
SS Stack Segment 0000h Base address set to 0000 0000h
Limit set to FFFFh.
DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
IDTR Interrupt Descriptor Table Reg-Base = 0, Limit = 3FFh
ister
GDTR Global Descriptor Table XXXX XxXxxh, xxxxh
Register
LDTR Local Descriptor Table XXXX XXxxh, xxxxh
Register
TR Task Register xxxxh
CRO Machine Status Word 6000 0010h
CR2 Control Register 2 XXXX XXxXh
CR3 Control Register 3 XXXX XXXXh
CR4 Control Register 4 0000 0000h
CCR (0-6) | Configuration Control (0-6) 00h CCR(0-3, 5-6)
80h CCR4
ARR (0-7) | Address Region Registers (0-7) 00h
RCR (0-7) | Region Control Registers (0-1) 00h
DR7 Debug Register 7 0000 0400h

Instruction Set Overvie 2

22 Instruction Set Overview an operand can be overridden by placing one or
more instruction prefixes in front of the opcode.
The IBM 6x86MX CPU instruction set performBor example, by using prefixes, a 32-bit operand

ten types of general operations: can be used with 16-bit code, or a 16-bit operand
can be used with 32-bit code.

* Arithmetic « High-Level Language Support

« Bit Manipulation « Operating System Support ~ Chapter 6 of this manual lists each instruction in

« Control Transfer « Shift/Rotate the IBM 6x86MX CPU instruction set along

« Data Transfer « String Manipulation with the associated opcodes, execution clock

« Floating Point « MMX Instructions counts, and effects on the FLAGS register.

All IBM 6x86MX CPU instructions operate on2.2.1 Lock Prefix

as few as zero operands and as many as three

operands. An NOP instruction (no operation) 1€ LOCK prefix may be placed before certain
an example of a zero operand instruction. Twstructions that read, modify, then write back to
operand instructions allow the specification omemory. The prefix asserts the LOCK# signal
an explicit source and destination pair as part@fndicate to the external hardware that the CPU
the instruction. These two operand instructiolsn the process of running multiple indivisible
can be divided into eight groups according tomemory accesses. The LOCK prefix can be

operand types: used with the following instructions:
« Register to Register « Register to /O Bit Test Instructions (BTS, BTR, BTC)
« Register to Memory « 1/O to Register Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and Logical Instructions
(DEC, INC, NEG, NOT)
An operand can be held in the instruction itself Two-operand Arithmetic and Logical Instruc-
(as in the case of an immediate operand), in one tions (ADC, ADD, AND, OR, SBB, SUB,
of the processor’s registers or I/O ports, or in XOR).

memory. An immediate operand is prefetch% invalid opcode exception is generated if the
as part of the opcode for the instruction. LOCK prefix is used with any other instruction,

Operand lengths of 8, 16, or 32 bits are sup-©" With_ the above instructions_ when no W!rite_
ported as well as 64-or 80-bit associated wittherat'(?n to memory occurs (i.e., the destination
floating point instructions. Operand lengths of%2 register). The LOCK# signal can be negated
or 32 bits are generally used when executing!® &llow weak-locking for all of memory or on a
code written for 386- or 486-class (32-bit codE§gional basis. Refer to the descriptions of the
processors. Operand lengths of 8 or 16 bits Nf@-LOCK bit (within CCR1) and the WL bit
generally used when executing existing 8086thin RCRX) later in this chapter.

80286 code (16-bit code). The default length of

* Memory to Register ¢ Immediate Data to Register
* Memory to Memory e« Immediate Data to Memory

2-3

..'I

Register Sets

2.3 Register Sets 2.3.1 Application Register Set

From the programmer’s point of view there areThe application register set, (Figure 2-1, Page
58 accessible registers in the IBM 6x86MX 2-5) consists of the registers most often used by
CPU. These registers are grouped into two the applications programmer. These registers
sets. The application register set contains theare generally accessible and are not protected
registers frequently used by application pro- from read or write access.

grammers, and the system register set contains .

the registers typically reserved for use by oper] "€ General Purpose Registecontents are

ating system programmers. frequently modified by assembly language
instructions and typically contain arithmetic

The application register set is made up of genand logical instruction operands.

eral purpose registers, segment registers, aflag { Redisters | mod tain th
register, and an instruction pointer register. b;gg]:g dreiglfso?rgcrﬁ as ergr?me?]tc Olnnap;?oteited

The system register set is made up of the mode the segment registers contain segment
remaining registers which include control reg-selectors. The segment selectors provide
isters, system address registers, debug regis-indexing for tables (located in memory) that
ters, configuration registers, and test registerscontain the base address and limit for each seg-

. o _ __ment, as well as access control information.
Each of the registers is discussed in detail in the

following sections. TheFlag Registercontains control bits used to
reflect the status of previously executed
instructions. This register also contains control
bits that affect the operation of some instructions.

Thelnstruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by
the processor as execution progresses.

2-4

Register Sets 2

31 0

EAX (Accumulator)
EBX (Base)

ECX (Count)

| EDX (Data)

\ ESI (Source Index)
EDI (Destination Index)
EBP (Base Pointer)
ESP (Stack Painter)

General Purpose Ragisters
15 0

CS (Code Segment Selector)

SS (Stack Segment Selector)
DS (Data Segement Selector)
ES (Extra Segement Selector)
FS (Extra Segement F Selector)
GS (Extra Segement G Selector)

Segment Registers

31 16 15 0

| | P [EIP (Instruction Pointer)
Instruction Pointer Register

31 16 15 0

| | FLAGS |EFLAGS (Flag Register)

1700405

Flag Register

Figure 2-1. Application Register Set

2.3.2 General Purpose Registers An “E” prefix identifies the complete 32-bit
register. An “X” suffix without the “E” prefix

The general purpose registers are divided intlentifies the lower 16 bits of the register.
four data registers, two pointer registers, and two

index registers as shown in Figure 2-2 (Page 2-8)he lower two bytes of a data register can be
addressed with an “H” suffix (identifies the

TheData Registersare used by the applica- upper byte) or an “L” suffix (identifies the lower
tions programmer to manipulate data struc- byte). The L and _H portions of a data regis-
tures and to hold the results of logical and ters act as independent registers. For example,
arithmetic operations. Different portions of if the AH register is written to by an instruc-

the general data registers can be addressed fiyn, the AL register bits remain unchanged.
using different names.

2-5

..'I

Register Sets

31 16 15 87 0
AH A|>< AL EAX (Accumulator)
B EBX (Base)
CH < |>< L ECX (Count)
DH ot DL EDX (Data)
Sl ESI (Source Index)
DI EDI (Destination Index)
BP EBP (Base Pointer)
SP ESP (Stack Pointer)

Figure 2-2. General Purpose Registers

ThePointer and Index Registersare listed The IBM 6x86MX CPU processor implements
below. a stack using the ESP register. This stack is
accessed during the PUSH and POP
g'l g'; 'ég'l gg:tgrﬁgtilggel;](dex instructions, procedure calls, procedure
SP or ESP Stack Pointer returns, interrupts, exceptions, and

BP or EBP Base Pointer mterrupt/exceptlon returns.

The microprocessor automatically adjusts the
value of the ESP during operation of these
instructions.The EBP register may be used to
reference data passed on the stack during
procedure calls. Local data may also be placed
on the stack and referenced relative to BP. This
register provides a mechanism to access stack
data in high-level languages.

These registers can be addressed as 16- or
32-bit registers, with the “E” prefix indicating
32 bits. The pointer and index registers can be
used as general purpose registers, however,
some instructions use a fixed assignment of
these registers. For example, repeated string
operations always use ESI as the source
pointer, EDI as the destination pointer, and
ECX as the counter. The instructions using
fixed registers include multiply and divide, I/O
access, string operations, translate, loop, vari-
able shift and rotate, and stack operations.

2-6

Register Sets 2

2.3.3 Segment Registers and address is also the physical address. In virtual
Selectors 8086 mode with paging enabled, the linear

address is translated to the physical address

Segmentation provides a means of defining dafging the current page tables. Paging is

structures inside the memory space of the mickescribed in Section 2.12.4 (Page 2-52).

processor. There are three basic types of seg-

ments: code, data, and stack. Segments are useprotected mode a segment register holds a

automatically by the processor to determine tfgegment Selectocontaining a 13-bit index, a

location in memory of code, data, and stack rdfable Indicator (T1) bit, and a two-bit
erences. Requested Privilege Level (RPL) field as
shown in Figure 2-3.
There are six 16-bit segment registers:
Thelndex points into a descriptor table in

CS Code Segment memory and selects one of 81929Xegment

DS Data Segment descriptors contained in the descriptor table.

ES Extra Segment

SS Stack Segment A segment descriptor is an eight-byte value

FS Additional Data Segment used to describe a memory segment by defining
GS Additional Data Segment. the segment base, the segment limit, and access

In real and virtual 8086 operating modes, a Seco_ntrol information. To address data within a

ment register holds a 16-bit segment base. Thed "Nt @ 16-bit or 32-bit offset is added to the

16-bit segment is multiplied by 16 and a 16_bi?egments base address. Once a segment selec-

or 32-bit offset is then added to it to create a lily. has been loaded into a segment register, an

ear address. The offset size is dependent on m%ti;ligtr'%?g?ﬁszggz to specify the segment
current address size. In real mode and in virtd&9 :
8086 mode with paging disabled, the linear

< Segment Selector >
15 321 0
INDEX T | RPL
8191
Limit
Segment
—> Descriptor > 9 Base
0
Descriptor Table
Mdain Memory

Figure 2-3. Segment Selector in Protected Mode

2-7

..'I

Register Sets

The Table Indicator (TI) bit of the selector ~ When a segment register is loaded with a seg-
defines which descriptor table the index pointgient selector, the segment base, segment limit
into. If TI=0, the index references the Global and access rights are loaded from the descriptor
Descriptor Table (GDT). If TI=1, the index reftable entry into a user-invisible or hidden por-
erences the Local Descriptor Table (LDT). Th#on of the segment register (i.e., cached _
GDT and LDT are described in more detail inon-chip). The CPU does not access the descrip-
Section 2.4.2 (Page 2-16). Protected mode tor table entry again until another segment reg-
addressing is discussed further in Sections 2.8s2er load occurs. If the descriptor tables are
(Page 2-52). modified in memory, the segment registers

must be reloaded with the new selector values
TheRequested Privilege Leve(RPL) field in py the software.

a segment selector is used to determine the
Effective Privilege Level of an instruction ~ The processor automatically selects an implied
(where RPL=0 indicates the most privileged (default) segment register for memory refer-
level, and RPL=3 indicates the least privilegeénces. Table 2-2 describes the selection rules.
level). In general, data references use the selector con-
tained in the DS register, stack references use
If the level requested by RPL is less than thethe SS register and instruction fetches use the
Current Program Level (CPL), the RPL leveligs register. While some of these selections
accepted and the Effective Privilege Level is may be overridden, instruction fetches, stack
changed to the RPL value. If the level operations, and the destination write of string
requested by RPL is greater than CPL, the CRjperations cannot be overridden. Special seg-
overrides the requested RPL and Effective Prifrent override instruction prefixes allow the use
ilege Level remains unchanged. of alternate segment registers including the use
of the ES, FS, and GS segment registers.

Table 2-2. Segment Register Selection Rules

IMPLIED (DEFAULT SEGMENT OVERRIDE PRE
TYPE OF MEMORY REFERENCE SEG(MENT) FIx
Code Fetch CS None
Destination of PUSH, PUSHF, INT, SS None
CALL,
PUSHA instructions
Source of POP, POPA, POPF, IRET, SS None
RET instructions
Destination of STOS, MOVS, REP STOS ES None
REP MOVS instructions
Other data references with effective
address using base registers of:
EAX, EBX, ECX, DS CS, ES, FS, GS, SS
EDX, ESI, EDI
EBP, ESP SS CS, DS, ES, FS, GS

2-8

Register Sets 2

2.3.4 Instruction Pointer Register 2.3.5 Flags Register

Thelnstruction Pointer (EIP) register contains The Flags Registey EFLAGS, contains status
the offset into the current code segment of thénformation and controls certain operations on
next instruction to be executed. The register is ntre IBM 6x86MX CPU microprocessor. The lower
mally incremented with each instruction execut6 bits of this register are referred to as the

tion unless implicitly modified through an FLAGS register that is used when executing 8086 or
interrupt, exception or an instruction that 80286 code. The flag bits are shown in Figure
changes the sequential execution flow 2-4 and defined in Table 2-3 (Page 2-10).

(e.g., IMP, CALL).

Flags

A
\

3 22 2 1111111111
1 45 T 98765432109 8766543210
| | AIVIR[gIN[IO [O[D[L|T[s|z[g|Alg|P]]C
0000000000 0O D CIMIFIOT | PL [FIFIFIFIFIFIOIFIOFITIF
\

Identification — S
Alignment Check — §
Virtual 8086 Mode — S
Resume Flag —D
Nested Task Flag — S
I/O Privilege Level — S

Overflow — A
Direction Flag —C
Interrupt Enable — S
Trap Flag —D
Sign Flag — A
Zero Flag — A
Auxiliary Carry — A
Parity Flag — A
Carry Flag — A

A = Arithmefic Flag, D = Debug Flag, S = System Flag, C = Conirol Flag
0 or 1 Indicates Reserved

Figure 2-4. EFLAGS Register

2-9

- — e Register Sets
Table 2-3. EFLAGS Bit Definitions
BIT
POSITION NAME FUNCTION
0 CF Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.
2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of pnes;
cleared otherwise.
4 AF Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction)|bit
position 3 of the result occurs; cleared otherwise.
6 ZF Zero Flag: Set if result is zero; cleared otherwise.
7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).
8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction
completes execution. TF is cleared by the single-step interrupt.
9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.
10 DF Direction Flag: If DF=0, string instructions aummzrement (default) the appropriate index

registers (ESI and/or EDI). If DF=1, string instructions atgorement the appropriate
index registers.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the
result but did not result in a carry or borrow out of the high-order bit. Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not result in g carry
or borrow into the sign bit of the result.

12,13 IOPL | I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum

current privilege level (CPL) permitted to execute I/O instructions without generating an
exception 13 fault or consulting the I/O permission bit map. IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the
EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.
16 RF Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at

instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual
8086 operation handling segment loads as the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bhit can be set by the IRET instruction (if current
privilege level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CRO, the AC flag dete

mines whether or not misaligned accesses to memory cause a fault. If AC is set, alignment
faults are enabled.

21 ID Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction
is supported. The ID can be modified only if the CPUID bit in CCR4 is set.

2-10

System Register S¢ 2

2.4 System Register Set TheConfiguration Registersare used to con-
figure the IBM 6x86MX CPU on-chip cache
The system register set, shown in Figure 2-5 gperation, power management features and
(Page 2-12), consists of registers not generallysystem Management Mode. The configuration
used by application programmers. These regisegisters also provide information on the CPU

ters are typically employed by system level device type and revision.
programmers who generate operating systems

and memory management programs. TheDebug Registergprovide debugging facil-

. . ities to enable the use of data access break-
The Control Registerscontrol certain aspects points and code execution breakpoints.

of the IBM 6x86MX microprocessor such as

paging, coprocessor functions, and segment prd-he Test Registersprovide a mechanism to
tection. When a paging exception occurs whildest the contents of both the on-chip 16 KByte
paging is enabled, some control registers retairtache and the Translation Lookaside Buffer
the linear address of the access that caused thé€TLB). In the following sections, the system
exception. register set is described in greater detail.

TheDescriptor Table Registersand theTask
Registercan also be referred to as system
address or memory management registers.
These registers consist of two 48-bit and two
16-bit registers. These registers specify the
location of the data structures that control the
segmentation used by the IBM 6x86MX micro-
processor. Segmentation is one available
method of memory management.

2-11

- e System Register Set
| N . I T .
1 16 15 0 o
CRO
Page Fault Linear Address Register CR2 Control
Page Directory Base Register CR3 Registers
CR4 __|
47 16 15 _
Base Limit GDTR .
criptor
Base Limit IDTR Pa?l:ﬁe P
Selector LDTR __| Registers
Selector TR Task Register
1 R
Linear Breakpoint Address 0 DRO
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2 Debua
Linear Breakpoint Address 3 DR3 Registers
Breakpoint Status DR6
Breakpoint Control DR7 |
7 0 —
CCR = Configuration Control Register CCRO CCRO

CCR1 CCR1
CCR2 CCR2
CCR3 CCR3

RCR = Region Control Register CCR4 CCR4
ARR = Address Region Register CCR5 CCR5
7 0 23 | ccr6 | ccre
RCRO Address Region Register 0 ARRO i .
. - Configuration
RCR1 Address Region Register 1 ARR1 Registers
RCR2 Address Region Register 2 ARR2
RCR3 Address Region Register 3 ARR3
RCR4 Address Region Register 4 ARR4
RCR5 Address Region Register 5 ARR5
RCR6 Address Region Register 6 ARR6
RCR7 Address Region Register 7 ARR7
31 —
Cache Test TR3
Cache Test TR4
Test
Cache Test TR5 Registers
TLB Test Control TR6
TLB Test Status TR7

1728200

Figure 2-5. System Register Set

2-12

System Register S¢ 2

2.4.1 Control Registers page directory must always be aligned to a
4-KByte page boundary, therefore, the lower 12

The Control Registers (CRO, CR2, CR3 and pijts of CR3 are not required to specify the base
CR4), are shown in Figure 2-6. (These registeggidress.

should not be confused with the CCRn registers.)

The CRO register contains system control bitsCR3 contains the Page Cache Disable (PCD)
which configure operating modes and indicateand Page Write Through (PWT) bits. During
the general state of the CPU. The lower 16 bi#!s cycles that are not paged, the state of the
of CRO are referred to as the Machine Status PCD bit is reflected on the PCD pin and the
Word (MSW). The CRO bit definitions are ~ PWT bit is driven on the PWT pin. These bus
described in Table 2-4 and Table 2-5 (Page cyclesinclude interrupt acknowledge cycles and
2-14). The reserved bits in CRO should not beall bus cycles, when paging is not enabled. The
modified. PCD pin should be used to control caching in an

external cache. The PWT pin should be used to

When paging is enabled and a page fault is gesntrol write policy in an external cache.
erated, the CR2 register retains the 32-bit linear

address of the address that caused the fault. Control register CR4 (Table 2-6, Page 2-15)
When a double page fault occurs, CR2 contaigntrols usage of the Time Stamp Counter
the address for the second fault. Register CRBstruction, Debugging Extensions, Page Glo-
contains the 20 most significant bits of the phyBal Enable and the RDPMC instruction.

ical base address of the page directory. The

31 1211
CR4
P
PAGE DIRECTORY BASE REGISTER (PDBR) RESERVED 8 CR3
PAGE FAULT LINEAR ADDRESS CR2

RIS RESERVED RESERVED N1 SIEIMIE|l cro
18 16\

31 30 29 54321 0f

V
MSW 1749500

Figure 2-6. Control Registers

2-13

- e System Register Set
Table 2-4. CRO Bit Definitions
BIT
PoSITION | NVAME FUNCTION
0 PE | Protected Mode Enable: Enables the segment based protection mechanism. If PE=1, protected

mode is enabled. If PE=0, the CPU operates in real mode and addresses are formed as in an
8086-style CPU.
1 MP | Monitor Processor Extension: If MP=1 and TS=1, a WAIT instruction causes Device Nqt
Available (DNA) fault 7. The TS bit is set to 1 on task switches by the CPU. Floating paint

instructions are not affected by the state of the MP bit. The MP bit should be set to one|during
normal operations.

2 EM | Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault 7.

3 TS | Task Switched: Set whenever a task switch operation is performed. Execution of a floating
point instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction also
causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 NE | Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16. NE=O if

FPU exceptions are to be handled by external interrupts.

16 WP | Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a read-only
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM | Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and allpwed
to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.
29 NW | Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In write-thfough

mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip

cache operates in write-back mode. In write-back mode, writes are issued to the external bus
only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry
cycle.

30 CD | Cache Disable: If CD=1, no further cache line fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. Writes continue to update
the cache and cache invalidations due to inquiry cycles occur normally. The cache must also be
invalidated to completely disable any cache activity.
31 PG | Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled.| After
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP,
CALL) to have the change take effect.

Table 2-5. Effects of Various Combinations of EM, TS, and MP Bits

CRO BIT INSTRUCTION TYPE
EM TS MP WAIT ESC
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Execute Fault 7
0 1 1 Fault 7 Fault 7
1 0 0 Execute Fault 7
1 0 1 Execute Fault 7
1 1 0 Execute Fault 7
1 1 1 Fault 7 Fault 7

2-14

System Register S¢ 2

Table 2-6. CR4 Bit Definitions

BIT
posITIoN | VAME FUNCTION
2 TSD | Time Stamp Counter Instruction

If = 1 RDTSC instruction enabled for CPL=0 only; Reset State
If = 0 RDTSC instruction enabled for all CPL states

3 DE | Debugging Extensions
If = 1 enables I/O breakpoints and R/W bits for each debug register are defined as:
00 -Break on instruction execution only.

01 -Break on data writes only.

10 -Break on I/O reads or writes.

11 -Break on data reads or writes but not instruction fetches.

If = 0 1/0O breakpoints and R/W bits for each debug register are not enabled.

7 PGE | Page Global Enable

If = 1 global page feature is enabled.

If = 0 global page feature is disabled.

Global pages are not flushed from TLB on a task switch or write to CR3

8 PCE | Performance Monitoring Counter Enable
If = 1 enables execution of RDPMC instruction at any protection level.
If = 0 RDPMC instruction can only be executed at protection level 0.

2-15

System Register Set

|||||| |
N
It
|
..'I
L

2.4. Descriptor Table grammer by using a SGDT instruction. The first
Registers and Descriptors descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the “null descrip-
Descriptor Table Registers tor". The GDTR is initialized using a LGDT
instruction.

The Global, Interrupt, and Local Descriptor

Table Registers (GDTR, IDTR and LDTR), Thelnterrupt Descriptor Table Register

shown in Figure 2-7, are used to specify the (IDTR) holds a 32-bit linear base address and
location of the data structures that control segt6-bit limit for the Interrupt Descriptor Table
mented memory management. The GDTR, (IDT). The IDT is an array of 256 interrupt
IDTR and LDTR are loaded using the LGDT, descriptors, each of which is used to point to an
LIDT and LLDT instructions, respectively. Thejnterrupt service routine. Every interrupt that
values of these registers are stored using the Gay occur in the system must have an associ-
responding store instructions. The GDTR andted entry in the IDT. The contents of the IDTR
IDTR load instructions are privileged instruc- are Comp|ete|y visible to the programmer by

tions when operating in protected mode. Theysing a SIDT instruction. The IDTR is initialized
LDTR can only be accessed in protected mode. ysing the LIDT instruction.

TheGlobal Descriptor Table Registef(GDTR) TheLocal Descriptor Table Register(LDTR)
holds a 32-bit linear base address and 16-bit holds a 16-bit selector for the Local Descriptor
limit for the Global Descriptor Table (GDT) Table (LDT) The LDT is an array of up to 8192
The GDT is an array of up to 8192 8-byte g-pyte descriptors. When the LDTR is loaded,
descriptors. When a segment register is load@ék LDTR selector indexes an LDT descriptor
from memory, the Tl bit in the segment selectahat resides in the Global Descriptor Table
chooses either the GDT or the Local DescriptqtsDT). The base address and limit are loaded

Table (LDT) to locate a deSCFiptor. IfTI= 0, th%utomatica”y and cached from the LDT
index portion of the selector is used to locate thgsscriptor within the GDT.

descriptor within the GDT table. The contents
of the GDTR are completely visible to the pro-

47 16 15 0
BASE ADDRESS LIMIT GDTR
BASE ADDRESS LIMIT IDTR
|
SELECTOR LDTR

Figure 2-7. Descriptor Table Registers

2-16

System Register S¢ 2

Subsequent access to entries in the LDT use thescriptors
hidden LDTR cache to obtain linear addresses. .
If the LDT descriptor is modified in the GDT, There are three types of descriptors:

the LDTR must be reloaded to update the hidden)

portion of the LDTR.

When a segment register is loaded from mem-"
ory, the Tl bit in the segment selector chooses
either the GDT or the LDT to locate a segment,
descriptor. If TI = 1, the index portion of the

selector is used to locate a given descriptor
within the LDT. Each task in the system may h&pplication Segment Descriptors can be

given its own LDT, managed by the operatingocated in either the LDT or GDT. System Seg-
system. The LDTs provide a method of isolatment Descriptors can only be located in the

ing a given task’s segments from other tasks ®DT. Dependent on the gate type, gate descrip-

the system.

Application Segment Descriptors that define
code, data and stack segments.

System Segment Descriptors that define an
LDT segment or a Task State Segment (TSS)
table described later in this text.

Gate Descriptors that define task gates, inter-
rupt gates, trap gates and call gates.

tors may be located in either the GDT, LDT or
IDT. Figure 2-8illustrates the descriptor format

The LDTR can be read or written by the LLDq hoth Application Segment Descriptors and

and SLDT instructions.

System Segment Descriptors. Table 2-7 (Page
2-18) lists the corresponding bit definitions.

Table 2-8. (Page 2-18) and Table 2-9. (Page
2-19) defines the DT field within the segment
descriptor.

31 24 23 22 21 2019 161514 131211 87 0
A
BASE 31-24 G DO \(LMIT19-16| P | DPL TD TYPE BASE23-16 |+4
BASE 15-0 LIMIT 15-0 +0

Figure 2-8. Application and System Segment Descriptors

2-17

— e— i —— System Register Set

Table 2-7. Segment Descriptor Bit Definitions

BIT MEMORY
POSITION | OFFseT | NAME DESCRIPTION
31-24 +4 BASE | Segment base address.
7-0 +4 32-bit linear address that points to the beginning of the segment.
31-16 +0
19-16 +4 LIMIT [Segment limit.
15-0 +0
23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.
22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-hit.
20 +4 AVL |Segment available.
15 +4 P Segment present.
14-13 +4 DPL | Descriptor privilege level.
12 +4 DT | Descriptor type:
0 = system, 1 = application.
11-8 +4 TYPE | Segment type. See Tables 2-7 and 2-8.
Table 2-8. TYPE Field Definitions with DT =0
TYPE
(BITS 11-8) DESCRIPTION
0001 TSS-16 descriptor, task not busy.
0010 LDT descriptor.
0011 TSS-16 descriptor, task busy.
1001 TSS-32 descriptor, task not busy
1011 TSS-32 descriptor, task busy.

2-18

System Register S¢ 2

Table 2-9. TYPE Field Definitions with DT = 1

TYPE

CID

2

APPLICATION DECRIPTOR INFORMATION

data, expand up, limit is upper bound of segment

data, expand down, limit is lower bound of segment

executable, non-conforming

executable, conforming (runs at privilege level of calling procedure

data, non-writable

data, writable

executable, non-readable

executable, readable

not-accessed

X|X|FP|IPRPOIO|RrIFLIOlOm

X|X[X[X|X|[X|r|lO|rR|O

X | X|[PRP|O|lR|O|X|X|X]|Xx

RPIO[X|X|X|X|X|[X|X|X]|>

accessed

2-19

Gate Descriptorsprovide protection for exe- Interrupt Gate Descriptors are used to enter a
cutable segments operating at different privi- hardware interrupt service routine. Trap Gate
lege levels. Figure 2-9 illustrates the format folPescriptors are used to enter exceptions or soft-
Gate Descriptors and Table 2-10 lists the correvare interrupt service routines. Trap Gate and
sponding bit definitions. Interrupt Gate Descriptors can only be located

in the IDT.
Task Gate Descriptors are used to switch the

CPU'’s context during a task switch. The sele€all Gate Descriptors are used to enter a proce-

tor portion of the task gate descriptor locates dure (subroutine) that executes at the same or a

Task State Segment. These descriptors can lmeore privileged level. A Call Gate Descriptor

located in the GDT, LDT or IDT tables. primarily defines the procedure entry point and
the procedure’s privilege level.

31 161614 13121 87 0

OFFSET 31-16 P | DPL 0 TYPE 0| 0| 0| PARAMETERS |+4

SELECTOR 15-0 OFFSET 15-0 +0

Figure 2-9. Gate Descriptor

Table 2-10. Gate Descriptor Bit Definitions

POE:LON MOEF“gFEQI NAME DESCRIPTION
31-16 +4 OFFSET | Offset used during a call gate to calculate the branch target.
15-0 +0
31-16 +0 SELECTOR| Segment selector used during a call gate to calculate the branch target.
15 +4 P Segment present.
14-13 +4 DPL Descriptor privilege level.
11-8 +4 TYPE Segment type:

0100 = 16-bit call gate
0101 = task gate

0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-hit trap gate.

4-0 +4 PARAME- |Number of 32-bit parameters to copy from the caller’s stack to the called
TERS procedure’s stack (valid for calls).

2-20

W

2.4.3 Task Register Global Descriptor Table (GDT). The contents of

the selected descriptor are cached on-chip in the
TheTask Register(TR) holds a 16-bit selector higden portion of the TR.

for the current Task State Segment (TSS) table

as shown in Figure 2-10. The TR is loaded ar@uring task switching, the processor saves the cur-

stored via the LTR and STR instructions, rent CPU state in the TSS before starting a new

respectively. The TR can only be accessed dtgisk. The TR points to the current TSS. The TSS

ing protected mode and can only be loaded can be either a 386/486-style 32-bit TSS

when the privilege level is 0 (most privileged). (Figure 2-11, Page 2-22) or a 286-style 16-bit TSS type

When the TR is loaded, the TR selector field (Figure 2-12, Page 2-23). An I/O permission bit

indexes a TSS descriptor that must reside in tiap is referenced in the 32-bit TSS by the I/O
Map Base Address.

15 0

SELECTOR

Figure 2-10. Task Register

2-21

31 16 15 0
/O MAP BASE ADDRESS 000000000000000 | T | +64n
0000000000000000 SELECTOR FOR TASK'S LDT +60h
0000000000000000 GS +5Ch
0000000000000000 FS +58h
0000000000000000 DS +54h
0000000000000000 sS +50h
0000000000000000 Cs +4Ch
0000000000000000 ES +48h
EDI +44h
ESI +40h
EBP +3Ch
ESP +38h
EBX +34h
EDX +30h
ECX +2Ch
EAX +28h
EFLAGS +24h
EIP +20h
CR3 +1Ch
0000000000000000 | SS for CPL = 2 +18h
ESP for CPL = 2 +14h
0000000000000000 | SS for CPL = 1 +10h
ESP for CPL = 1 +Ch
0000000000000000 | SS for CPL = 0 +8h
ESPforCPL =0 +4h
0000000000000000 | BACK LINK (OLD TSS SELECTOR) +0h
0 = RESERVED.

Figure 2-11. 32-Bit Task State Segment (TSS) Table

2-22

W

SELECTOR FOR TASK'S LDT

DS

SS

CS

ES

DI

S

BP

SP

BX

DX

CX

AX

FLAGS

IP

SS FOR PRIVILEGE LEVEL 2

SP FOR PRIVILEGE LEVEL 2

SS FOR PRIVILEGE LEVEL 1

SP FOR PRIVILEGE LEVEL 1

SS FOR PRIVILEGE LEVEL O

SP FOR PRIVILEGE LEVEL O

BACK LINK (OLD TSS SELECTOR)

+2Ah

+28h

+26h

+24h

+22h

+20h

+1Eh

+16h

+TAh

+18h

+16h

+14h

+12h

+10h

+Eh

+Ch

+Ah

+8h

+6h

+4h

+2h

+0h

Figure 2-12. 16-Bit Task State Segment (TSS) Table

2-23

2.4.4 IBM 6x86MX CPU If MAPENJ3-0] = 1h, any access to indexes in

Configuration Registers the range 00-FFh will natreate external 1/0

bus cycles. Registers with indexes C0O-CFh,

The IBM 6x86MX CPU configuration registers=C- FFh are accessible regardless of the state of
are used to enable features in the IBM 6x86MKIAPEN[3-0]. If the register index number is
CPU. These registers assign non-cached mem@iisside the CO-CFh or FC-FFh ranges, and
areas, set up SMM, provide CPU identificationMAPEN[3-0] are set to Oh, external I/O bus
information and control various features such ggcles occur. Table 2-11 (Page 2-25) lists the
cache write policy, and bus locking control. MAPEN[3-0] values required to access each
There are four groups of registers within the IBMsM 6x86MX CPU configuration register. All

6x86MX CPU configuration register set: bits in the configuration registers are initialized
_ _ _ to zero following reset unless specified other-
e 7 Configuration Control Registers (CCRx) wise.
* 8 Address Region Registers (ARRX)
* 8 Region Control Registers (RCRx) 2.4.4.1 Configuration Control

Access to the configuration registers is achieved Registers

by writing the register index number for the CO'(bCRO - CCRS6) control several functions

figuration register to I/O port 22h. I/ port 23nncluding non-cacheable memory, write-back
is then used for data transfer. regions, and SMM features. A list of the con-

Each I/O port 23h data transfer must be precei@é"ation regis’gers is_listed i.n Table 2-11 (nge
by a valid I/O port 22h register index selection: 5). The conflguratlon reg|§ters are described
Otherwise, the current 22h, and the second alfygreater detail in the following pages.

later 1/0O port 23h operations communicate

through the 1/0O port to produce external 1/0

cycles. All reads from I/O port 22h produce

external 1/0 cycles. Accesses that hit within the

on-chip configuration registers do not generate

external 1/O cycles.

After reset, configuration registers with indexes
CO-CFh and FC-FFh are accessible. To prevent
potential conflicts with other devices which may
use ports 22 and 23h to access their registers, the
remaining registers (indexes DO-FBh) are acces-
sible only if the MAPEN(3-0) bits in CCR3 are

set to 1h. See Figure 2-16 (Page 2-29) for more
information on the MAPEN(3-0) bit locations.

2-24

W

Table 2-11. IBM 6x86MX CPU Configuration Registers

MAPEN VALUE

REGISTER WIDTH
REGISTER NAME ACRONYM INDEX (Bits) NEAECDCEE%gOR
Configuration Control O CCRO COh 8 X
Configuration Control 1 CCR1 Clh 8 X
Configuration Control 2 CCR2 C2h 8 X
Configuration Control 3 CCR3 C3h 8 X
Configuration Control 4 CCR4 E8h 8 1
Configuration Control 5 CCR5 E9h 8 1
Configuration Control 6 CCR6 EAh 8 1
Address Region 0 ARRO C4h - C6h 24 X
Address Region 1 ARR1 C7h - C9h 24 X
Address Region 2 ARR2 CAh - CCH 24 X
Address Region 3 ARR3 CDh - CFH 24 X
Address Region 4 ARR4 DOh - D2h 24 1
Address Region 5 ARR5 D3h - D5h 24 1
Address Region 6 ARRG6 D6h - D8h 24 1
Address Region 7 ARR7 D9h - DBH 24 1
Region Control O RCRO DCh 8 1
Region Control 1 RCR1 DDh 8 1
Region Control 2 RCR2 DEh 8 1
Region Control 3 RCR3 DFh 8 1
Region Control 4 RCR4 EOh 8 1
Region Control 5 RCR5 Elh 8 1
Region Control 6 RCR6 E2h 8 1
Region Control 7 RCR7 E3h 8 1

Note: x = Don't Care

2-25

7 6 5 4 3 2 1 0
Reserved | Reserved Reserved Reserved | Reserved | Reserved NC1 Reserved
Figure 2-13. IBM 6x86MX CPU Configuration Control Register 0 (CCRO0)
Table 2-12. CCRO Bit Definitions
BIT
POSITION NAME DESCRIPTION
1 NC1 No Cache 640 KByte - 1 MByte

If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.

2-26

6

5

4

3

2

1

0

SM3

Reserved

Reserved

NO_LOCK

Reserved

SMAC

USE_SMI

Reserved

Figure 2-14. IBM 6x86MX CPU Configuration Control Register 1 (CCR1)

Table 2-13. CCR1 Bit Definitions

BIT
POSITION

NAME

DESCRIPTION

7

SM3

SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

4

NO_LOCK

Negate LOCK#

If = 1: All bus cycles are issued with LOCK# pin negated except page table acces
interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as loch
cycles even though LOCK# is negated. With NO_LOCK set, previously noncach
locked cycles are executed as unlocked cycles and therefore, may be cached. T
results in higher performance. Refer to Region Control Registers for information
eliminating locked CPU bus cycles only in specific address regions.

ses and
ed
pable
nis

on

SMAC

System Management Memory Access

If = 1: Any access to addresses within the SMM address space, access system njanage-

ment memory instead of main memory. SMI# input is ignored. Used when initializ
testing SMM memory.
If = 0: No effect on access.

ng or

USE_SMI

Enable SMM and SMIACT# Pins
If = 1: SMI# and SMIACT# pins are enabled.

If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

Note: Bits 0, 3, 5 and 6 are reserved.

2-27

7 6 5 4 3 2 1 0
USE_SUSP| Reserved | Reserved WPR1 SUSP_HLT| LOCK_NW SADS | Reserved
Figure 2-15. IBM 6x86MX CPU Configuration Control Register 2 (CCR2)
Table 2-14. CCR2 Bit Definitions
BIT
POSITION NAME DESCRIPTION

7 USE_SUSP Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

4 WPR1 Write-Protect Region 1
If = 1. Designates any cacheable accesses in 640 KByte to 1 MByte address
region are write protected.

3 SUSP_HLT Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power|sus-
pend mode.

2 LOCK_NW Lock NW
If = 1: NW bit in CRO becomes read only and the CPU ignores any writes tp the
NW bit.
If = 0: NW bit in CRO can be modified.

1 SADS If = 1: CPU inserts an idle cycle following sampling of BRDY# and inserts an
idle cycle prior to asserting ADS#

Note: Bits 0, 5 and 6 are reserved.

2-28

an

7 6 5 4 3 2 1 0
MAPEN3 MAPEN2 MAPEN1 MAPENO | Reserved| LINBRST NMI_EN SMI_LOCK
Figure 2-16. IBM 6x86MX CPU Configuration Control Register 3 (CCR3)
Table 2-15. CCR3 Bit Definitions
BIT
POSITION NAME DESCRIPTION
7-4 MAPEN(3-0) MAP Enable
If = 1h: All configuration registers are accessible.
If = Oh: Only configuration registers with indexes CO-CFh, FEh and FFh
are accessible.
2 LINBRST If = 1: Use linear address sequence during burst cycles.
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address
sequence is compatible with Pentium’s burst address sequence.
1 NMI_EN NMI Enable
If = 1: NMl interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only while in SMM, after the appropriate SMI interfupt
service routine has been setup.
0 SMI_LOCK SMI Lock
If = 1: The following SMM configuration bits can only be modified while in
SMI service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3: NMI_EN
CCR6: N, SMM_MODE
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the
RESET pin is asserted.

Note: Bit 3 is reserved.

2-2

9

f the

n of

7 6 5 4 3 2 1 0
CPUID Reserved | Reserved | Reserved | Reserved IORT2 IORT1 IORT
Figure 2-17. IBM 6x86MX CPU Configuration Control Register 4 (CCR4)
Table 2-16. CCR4 Bit Definitions
BIT
POSITION NAME DESCRIPTION
7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution o
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bhit in the EFLAGS register can not be modified and executiq
the CPUID instruction causes an invalid opcode exception.
2-0 IORT(2-0) I/0 Recovery Time

Specifies the minimum number of bus clocks between 1/0O accesses:
Oh =1 clock delay

1h = 2 clock delay

2h = 4 clock delay

3h = 8 clock delay

4h = 16 clock delay

5h = 32 clock delay (default value after RESET)

6h = 64 clock delay

7h = no delay

Note: Bits 3 - 6 are reserved.

2-30

7 6 5 4 3 2 1 0
Reserved | Reserved | ARREN Reserved | Reserved| Reserved Reserved WT_ALLOC
Figure 2-18. IBM 6x86MX CPU Configuration Control Register 5 (CCR5)
Table 2-17. CCRS5 Bit Definitions
BIT
POSITION NAME DESCRIPTION
5 ARREN Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled regardgless
of the setting of ARREN.
0 WT_ALLOC Write-Through Allocate

If = 1: New cache lines are allocated for read and write misses.
If = 0: New cache lines are allocated only for read misses.

Note: Bits 1 - 3 and 6 - 7 are reserved.

2-31

7 6 5 4 3 2 1 0
Reserved N Reserved | Reserved | Reserved| Reserved | WP_ARR3| SMM_MODE
Figure 2-19. IBM 6x86MX CPU Configuration Control Register 6 (CCR6)
Table 2-18. CCRG6 Bit Definitions
BIT
BOSITION NAME DESCRIPTION
6 N Nested SMI Enable bit: If operating in Cyrix enhanced SMM mode and:
If = 1: Enables nesting of SMI’s
If = 0: Disable nesting of SMI’s.
This bit is automatically CLEARED upon entry to every SMM routine and is
SET upon every RSM. Therefore enabling/disabling of nested SMI can only be
done while operating in SMM mode.
1 WP_ARR3 If = 1. Memory region defined by ARR3 is write protected when operating out-
side of SMM mode.
If = 0: Disable write protection for memory region defined by ARR3.
Reset State = 0.
0 SMM_MODE | If = 1: Enables Cyrix Enhanced SMM mode.
If = 0: Disables Cyrix Enhanced SMM mode.

Note: Bit 1 is reserved.

2-32

W

2.4.4.2 Address Region Registers cached. The RCRs take precedence in this case.

The Address Region Registers (ARRO - ARR7A register index, shown in Table 2-19 (Page
(Figure 2-20) are used to specify the location 2-34) is used to select one of three bytes in each
and size for the eight address regions. ARR.

Attributes for each address region are specifiekhe starting address of the ARR address region,

inthe Region Control Registers (RCRO-RCR7)selected by the START ADDRESS field, must

ARR7 and RCR7 are used to define system be on a block size boundary. For example, a

main memory and differ from ARRO-6 and 128 KByte block is allowed to have a starting

RCRO0-6. address of 0 KBytes, 128 KBytes, 256 KBytes,
and so on.

With non-cacheable regions defined on-chip,

the IBM 6x86MX CPU delivers optimum per- The SIZE field bit definition is listed in (Page

formance by using advanced techniques to 2-34). If the SIZE field is zero, the address

eliminate data dependencies and resource cargion is of zero size and thus disabled.

flicts in its execution pipelines. If KEN# is

active for accesses to regions defined as

non-cacheable by the RCRs, the region is not

31 12 3
START ADDRESS SIZE
Memory Address Memory Address Memory Size Bits
Bits A31-A24 Bits A23-A16 Address Bits 3-0
A15-A12
7 07 07 43

Figure 2-20. Address Region Registers (ARRO - ARR7)

2-33

Table 2-19. ARRO - ARR7 Register Index Assignments
ARR Memory Address Memory Address Memory Address Address Region
Register (A31 - A24) (A23 - Al16) (A15 - Al12) Size (3-0)
ARRO C4h C5h C6h C6h
ARR1 C7h C8h C%h C9h
ARR2 CAh CBh CCh CCh
ARR3 CDh CEh CFh CFh
ARR4 DOh D1h D2h D2h
ARRS5 D3h D4h D5h D5h
ARRG6 Déh D7h D8h D8h
ARRY D9h DAh DBh DBh
Table 2-20. Bit Definitions for SIZE Field
SIZE (3.0) BLOCK SIZE BLOCK SIZE SIZE (3.0) BLOCK SIZE BLOCK SIZE
ARRO0-6 ARR7 ARRO0-6 ARR7
Oh Disabled Disabled 8h 512 KByte 32 MByteg
1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes
2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes$
3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes
4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes
5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes
6h 128 KBytes | 8 MBytes Eh 32 MBytes 2 GBytes
7h 256 KBytes | 16 MBytes Fh 4 GBytes 4 GBytes

2-34

W

2.4.4.3 Region Control Overlapping Conditions Defined If two
Registers regions specified by ARRX registers overlap

. . and conflicting attributes are specified, the fol-
The Region Control Registers (RCRO - RCR7)lowing attributes take precedence:

specify the attributes associated with the ARRx
address regions. The bit definitions for the
region control registers are shown in Figure
2-21 (Page 2-36) and in Table 2-21 (Page 2-36).
Cacheability, weak locking, write gathering,
and cache write through policies can be acti-
vated or deactivated using the attribute bits.

Write-back is disabled

Writes are not gathered

Strong locking takes place

The overlapping regions are non-cacheable.

If an address is accessed that is not in a memory
region defined by the ARRX registers, the fol-
lowing conditions will apply:

¢ If the memory address is cached, write-back
is enabled if WB/WT# is returned high.

* Writes are not gathered

e Strong locking takes place

* The memory access is cached, if KEN# is
returned asserted.

2-35

7 6 5 4 3 2 1 0
Reserved INV_RGN Reserved WT WG WL Reserved CD

*Note: RCD is defined for RCR0O-RCR6. RCE is defined for RCR7.

Figure 2-21. Region Control Registers (RCR0-RCR?7)

Table 2-21. RCRO0O-RCRY7 Bit Definitions

BIT
POSITION

NAME

DESCRIPTION

6

INV_RGN

Applicable to RCR(0-6) only. If set, apply controls specified in RCRx to all
ory addresses outside the region specified in corresponding ARR.

4

WT

Write-through- If set, defines the address region as write through instead o
back. This bit works in conjunction with the CRO_NW and PWT bits and th
WB/WT# pin to determine write-through or write-back cacheability. See the
Cache document for a complete description of how these various bits work
combination to affect cache write policy.

WG

Write Gathering - If set, enables write gathering for the associated address
With WG enabled, multiple byte, word or dword writes to sequential addres
that would normally occur as individual cycles on the bus are collapsed, or
ered” within the processor and then completed as a single write cycle. WG
improves bus utilization and should be used on memory regions that are n
sitive to gathering.

WL

Weak Locking - If set, enables weak locking for that address region. With V]
enabled, all bus cycles are issued with the LOCK# pin negated except for
table accesses. Interrupt acknowledge cycles are executed as locked cyclé
though LOCK# is negated. With WL=1, previously non-cacheable locked ¢
are executed as unlocked cycles and therefore, may be cached, resulting in
CPU performance. Note that the NO_LOCK bit globally performs the same
tion that the WL bit performs on a single address region.

nem-

f write

a)

Data
in

region.
ses
“gath-

Dt sen-

VL

hage

2S even

ycles
higher
func-

CD

Cache Disable - If set, defines the address region as non-cacheable. This
works in conjunction with the CR0O_CD and PCD bits and the KEN# pin to ¢
mine line cacheability. Whenever possible, the ARR/RCR combination shol
used to define non-cacheable regions rather than using external address d

bit
leter-
ild be
ecoding

and driving the KEN# pin as the IBM 6x86MX CPU can better utilize its
advanced techniques for eliminating data dependencies and resource con
with non-cacheable regions defined on-chip.

licts

Note: Bits 1, 5 and 7 are reserved.

2-36

W

Region Cache Disabl¢RCD). Setting RCD to Write Gathering (WG). Setting WG=1

a one defines the address region as non-cachemnables write gathering for the associated

able. Whenever possible, the RCRs should b&ddress region. Write gathering allows multiple

used to define non-cacheable regions rather thiayte, word, or dword sequential address writes

using external address decoding and driving thie accumulate in the on-chip write buffer. (As

KEN# pin. instructions are executed, the results are placed
in a series of output buffers. These buffers are

Region Cache Enabl¢RCE). Setting RCE to gathered into the final output buffer).

a one defines the address region as cacheable.

RCE is used to define the system main memoWhen access is made to a non-sequential mem-

as cacheable memory. Itisimplied that memonyry location or when the 8-byte buffer becomes

outside the region is non-cacheable. full, the contents of the buffer are written on the
external 64-bit data bus. Performance is

Weak Locking (WL). Setting WL=1 enables enhanced by avoiding as many as seven mem-

weak locking for that address region. With Wlgry write cycles.

enabled, all bus cycles are issued with the

LOCK# pin negated except for page table WG should nobe used on memory regions that

accesses and interrupt acknowledge cycles. are sensitive to write cycle gathering. WG can

Interrupt acknowledge cycles are executed ae enabled for both cacheable and

locked cycles even though LOCK# is negatednon-cacheable regions.

With WL=1, previously non-cacheable locked

cycles are executed as unlocked cycles and Write Through (WT). Setting WT=1 defines

therefore, may be cached, resulting in higher the address region as write-through instead of

performance. The NO_LOCK bit of CCR1 write-back, assuming the region is cacheable.

enables weak locking for the entire address Regions where system ROM are loaded (shad-

space. The WL bit allows weak locking only foewed or not) should be defined as

specific address regions. WL is independent #frite-through.

the cacheability of the address region.

2-37

2.5

The IBM 6x86MX CPU contains four model

Model Specific Registers

Model Specific Registers

specific registers (MSRO - MSR3). These
64-bit registers are listed in Table 2-22.

Table 2-22. Machine Specific Register

REGISTER MSR

DESCRIPTION ADDRESS REGISTER
Time Stamp Counter 10h MSR10
(TSC)
Counter Event Selection 11h MSR11
and Control Register
Performance Counter #0 12h MSR12
Performance Counter #1 13h MSR13

The MSR registers can be read using the _ _ .
RDMSR instruction, opcode 0F32h. During anWhenthe TSD flag is 0, the RDTSC instruction

MSR register read, the contents of the . . :
particular MSR register, specified by the ECX the TSD flag is 1, the RDTSC instruction can
register, is loaded into the EDX:EAX registers. Only be executed at privilege level 0.

The MSR registers can be written using the 2.7
WRMSR instruction, opcode 0F30h. During a
MSR register write the contents of EDX:EAX
are loaded into the MSR register specified in

the ECX register.

The RDMSR and WRMSR instructions are
privileged instructions.

2-38

2.6 Time Stamp Counter

The Time Stamp Counter (TSC) Register
(MSR10) is a 64-bit counter that counts the in-
ternal CPU clock cycles since the last reset. The
TSC uses a continuous CPU core clock and will
continue to count clock cycles even when the
IBM 6x86MX CPU is suspend mode or shut-
down.

The TSC can be accessed using the RDMSR
and WRMSR instructions. In addition, the TSC
can be read using the RDTSC instruction, op-
code OF31h. The RDTSC instruction loads the
contents of the TSC into EDX:EAX. The use
of the RDTSC instruction is restricted by the
Time Stamp Disable, (TSD) flag in CR4.

can be executed at any privilege level. When

Performance
Monitoring

Performance monitoring allows counting of
over a hundred different event occurrences and
durations. Two 48-bit counters are used: Per-
formance Monitor Counter 0 and Performance
Monitor Counter 1. These two performance
monitor counters are controlled by the Counter
Event Control Register (MSR11). The perfor-
mance monitor counters use a continuous CPU
core clock and will continue to count clock cy-
cles even when the IBM 6x86MX CPU is in
suspend mode or shutdown.

Performance Monitoring Counters 1 anc

2.8 Performance Monitoring 2.8.1.1 PM Pin Control

Counters 1 and 2
The Counter Event Control register (MSR11)

The 48-bit Performance Monitoring Counters contains PM control fields that define the PMO
(PMC) Registers (MSR12, MSR13) count and PM1 pins as counter overflow indicators or
events as specified by the counter event contrmunter event indicators. When defined as
register. event counters, the PM pins indicate that one or
more events occurred during a particular clock

The PMCs can be accessed by the RDMSR aggkle and do not count the actual events.
WRMSR instructions. In addition, the PMCs

can be read by the RDPMC instruction, opcod&/hen defined as overflow indicators, the event
0F33h. The RDPMC instruction loads the comounters can be preset with a value less the
tents of the PMC register specified in the ECX*1 and allowed to increment as events occur.
register into EDX:EAX. The use of RDPMC When the counter overflows the PM pin be-
instructions is restricted by the Performance comes asserted.

Monitoring Counter Enable, (PCE) flag in C4.
2.8.1.2 Counter Type Control

When the PCE flag is set to 1, the RDPMC in- _ _
struction can be executed at any privilege levellhe Counter Type bit determines whether the

When the PCE flag is 0, the RDPMC instructiogounter will count clocks or events. When
can only be executed at privilege level 0. counting clocks the counter operates as a timer.

2.8.1 Counter Event Control Register 2.8.1.3 CPL Control

Register MSR 11h controls the two internal The Current Privilege Level (CPL) can be used
counters, #0 and #1. The events to be countel® determine if the counters are enabled. The
have been chosen based on the micro-architéeP02 bit in the MSR 11 register enables count-
ture of the IBM 6x86MX processor. The controing when the CPL is less than three, and the
register for the two event counters is describeédP03 bit enables counting when CPL is equal to

in Figure 2-21 (Page 2-36) and Table 2-23 (Padferee. If both bits are set, counting is not depen-
2-40). dent on the CPL level; if neither bit is set, count-

ing is disabled.

2-39

—— Performance Monitoring Counters 1 and 2

2 2 2 2 2

6 5 4 3 2 21 16 15 10 9 8 7 6 5
T|IP|C|C|C T|P|C|C|C
CIMT|P|P cCIM|T|P|P
101111 TC1* RESERVED olo|o]o]o0 TCO*
* 3|2 N 3|2

*Note: Split Fields

Figure 2-22. Counter Event Control Register

Table 2-23. Counter Event Control Register Bit Definitions

BIT
EOSITION NAME DESCRIPTION
25 PM1 Define External PM1 Pin
If = 1: PM1 pin indicates counter overflows
If = 0: PM1 pin indicates counter events
24 CT1 Counter #1 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).
23 CP13 Counter #1 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)
22 CP12 Counter #1 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)
26,21-16 | TC1(5-0) | Counter #1 Event Type
Reset state = 0
9 PMO Define External PMO Pin
If = 1: PMO pin indicates counter overflows
If = 0: PMO pin indicates counter events
8 CT0 Counter #0 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).
7 CPO3 Counter #0 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)
6 CPO2 Counter #0 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)
10,5-0 TCO(5-0) | Counter #0 Event Type
Reset state = 0

Note: Bits 10 - 15 are reserved.

2-40

Performance Monitoring Counters 1 anc

2.8.2 Event Type and Description

The events that can be counted by the performance monitoring counters are listed in Table 2-24.
Each of the 127 event types is assigned an event number.

A particular event number to be counted is placed in one of the MSR 11 Event Type fields. There
is a separate field for counter #0 and #1.

The events are divided into two groups. The occurrence type events and duration type events.
The occurrence type events, such as hardware interrupts, are counted as single events. The du-
ration type events such as “clock while bus cycles are in progress” count the number of clock
cycles that occur during the event.

During occurrence type events, the PM pins are configured to indicate the counter has increment-
ed The PM pins will then assert every time the counter increments in regards to an occurrence
event. Under the same PM control, for a duration event the PM pin will stay asserted for the du-
ration of the event.

Table 2-24. Event Type Register

NUMBER COUNTER O | COUNTER 1 DESCRIPTION TYPE
00h yes yes Data Reads Occurrence
01h yes yes Data Writes Occurrence
02h yes yes Data TLB Misses Occurrenge
03h yes yes Cache Misses: Data Reads Occurrence
04h yes yes Cache Misses: Data Writes Occurrence
05h yes yes Data Writes that hit on Modified or Exclusive Liens Occurence
06h yes yes Data Cache Lines Written Back Occurrence
07h yes yes External Inquiries Occurrenge
08h yes yes External Inquires that hit Occurrenge
09h yes yes Memory Accesses in both pipes Occurrence
0Ah yes yes Cache Bank conflicts Occurrenge
0Bh yes yes Misaligned data references Occurrence
0Ch yes yes Instruction Fetch Requests Occurrence
0Dh yes yes L2 TLB Code Misses Occurrenge
OEh yes yes Cache Misses: Instruction Fetch Occurrence
OFh yes yes Any Segment Register Load Occurrence
10h yes yes Reserved Occurrenge
11h yes yes Reserved Occurrenge
12h yes yes Any Branch Occurrence

2-41

fE=SE
Table 2-24. Event Type Register (Continued)

NUMBER COUNTER 0| COUNTER 1 DESCRIPTION TYPE |
13h yes yes BTB hits Occurrence
14h yes yes Taken Branches or BTB hits Occurrence
15h yes yes Pipeline Flushes Occurrence
16h yes yes Instructions executed in both pipes Occurrence
17h yes yes Instructions executed in Y pipe Occurrence
18h yes yes Clocks while bus cycles are in progress Duration
19h yes yes Pipe Stalled by full write buffers Duration
1Ah yes yes Pipe Stalled by waiting on data memory reads Duration
1Bh yes yes Pipe Stalled by writes to not-Modified or not-ExclusiveéDuration

cache lines.
1Ch yes yes Locked Bus Cycles Occurrence
1Dh yes yes I/0 Cycles Occurrence
1Eh yes yes Non-cacheable Memory Requests Occurrgnce
1Fh yes yes Pipe Stalled by Address Generation Interlock Duration
20h yes yes Reserved
21h yes yes Reserved
22h yes yes Floating Point Operations Occurrence
23h yes yes Breakpoint Matches on DRO register Occurrence
24h yes yes Breakpoint Matches on DR1 register Occurrence
25h yes yes Breakpoint Matches on DR2 register Occurrenpce
26h yes yes Breakpoint Matches on DR3 register Occurrence
27h yes yes Hardware Interrupts Occurrenge
28h yes yes Data Reads or Data Writes Occurrence
29h yes yes Data Read Misses or Data Write Misses Occurrence
2Bh yes no MMX Instruction Executed in X pipe Occurrenge
2Bh no yes MMX Instruction Executed in Y pipe Occurrenge
2Dh yes no EMMS Instruction Executed Occurrenge
2Dh no yes Transition Between MMX Instruction and FP Instructions Occurrence
2Eh no yes Reserved
2Fh yes no Saturating MMX Instructions Executed Occurrence
2Fh no yes Saturations Performed Occurrence
30h yes no Reserved
31h yes no MMX Instruction Data Reads Occurrence
32h yes no Reserved
32h no yes Taken Branches Occurrence
33h no yes Reserved
34h yes no Reserved
34h no yes Reserved
35h yes no Reserved

2-42

Performance Monitoring Counters 1 anc

Table 2-24. Event Type Register (Continued)

NUMBER COUNTER 0| COUNTER 1 DESCRIPTION TYPE
35h no yes Reserved
36h yes no Reserved
36h no yes Reserved
37h yes no Returns Predicted Incorrectly Occurrence
37h no yes Return Predicted (Correctly and Incorrectly) Occurrepce
38h yes no MMX Instruction Multiply Unit Interlock Duration
38h no yes MODV/MOVQ Store Stall Due to Previous Operation Duration
39h yes no Returns Occurrence
39h no yes RSB Overflows Occurrence
3A yes no BTB False Entries Occurrence
3A no yes BTB Miss Prediction on a Not-Taken Back Occurrence
3B yes no Number of Clock Stalled Due to Full Write Buffers WhjlBuration

Executing

3B no yes Stall on MMX Instruction Write to E or M Line Duration

3C - 3Fh yes yes Reserved Duration
40h yes yes L2 TLB Misses (Code or Data) Occurrence
41h yes yes L1 TLB Data Miss Occurrencg
42h yes yes L1 TLB Code Miss Occurrence
43h yes yes L1 TLB Miss (Code or Data) Occurrence
44h yes yes TLB Flushes Occurrence
45h yes yes TLB Page Invalidates Occurrence
46h yes yes TLB Page Invalidates that hit Occurrence
47h yes yes Reserved
48h yes yes Instructions Decoded Occurrenge
49h yes yes Reserved

2-43

— Debug Registers

2.9 Debug Registers The Debug Address Registers (DR0-DR3)
each contain the linear address for one of four
Six debug registers (DRO-DR3, DR6 and possible breakpoints. Each breakpoint is fur-
DR7), shown in Figure 2-23, support debug- ther specified by bits in the Debug Control
ging on the IBM 6x86MX CPU. The bit defi- Register (DR7). For each breakpointaddressin
nitions for the debug registers are listed in DR0-DR3, there are corresponding fields L,
Table 2-25 (Page 2-45). R/W, and LEN in DR7 that specify the type of

. ~ memory access associated with the breakpoint.
Memory addresses loaded in the debug regis-

ters, referred to as “breakpoints”, generate a The R/W field can be used to specify instruc-
debug exception when a memory access of thon execution as well as data access break-
specified type occurs to the specified addresspoints. Instruction execution breakpoints are
A data breakpoint can be specified for a particalways taken before execution of the instruc-
ular kind of memory access such as a read or fion that matches the breakpoint.
write. Code breakpoints can also be set allow-
ing debug exceptions to occur whenever a The Debug Status Register (DR6) reflects con-
given code access (execution) occurs. ditions that were in effect at the time the debug
exception occurred. The contents of the DR6
The size of the debug target can be set to 1, Zegister are not automatically cleared by the
or 4 bytes. The debug registers are accessedprocessor after a debug exception occurs and,
via MOV instructions which can be executed therefore, should be cleared by software at the

only at privilege level 0. appropriate time.

132132222 29201300 1 hreresasars

s [[[[[[e o ogloo[e] g3 e[5]t [go]ow

ooooooooooo0o0o0o0o00 BBlglgr i BIBIBIBInR
BREAKPOINT 3 LINEAR ADDRESS DR3
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 1 LINEAR ADDRESS DRI
BREAKPOINT O LINEAR ADDRESS DRO

ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED.

Figure 2-23. Debug Registers

2-44

Test Registers 2

Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. Additionally, the single-step feature may be enabled
by setting the TF flag in the EFLAGS register. This causes the processor to perform a debug excep-
tion after the execution of every instruction.

Table 2-25. DR6 and DR7 Debug Register Field Definitions

REGISTER | FIELD | # OF BITS DESCRIPTION

DR6 Bi 1 Bi is set by the processor if the conditions described by DRI, R/Wi, and LENi
occurred when the debug exception occurred, even if the breakpoint is not
enabled via the Gi or Li bits.

BT 1 BT is set by the processor before entering the debug handler if a task swiich has
occurred to a task with the T bit in the TSS set.
BS 1 BS is set by the processor if the debug exception was triggered by the single-step
execution mode (TF flag in EFLAGS set).
DR7 R/Wi 2 Specifies type of break for the linear address in DRO, DR1, DR3, DR4:

00 - Break on instruction execution only
01 - Break on data writes only

10 - Not used

11 - Break on data reads or writes.

LENi 2 Specifies length of the linear address in DRO, DR1, DR3, DR4:
00 - One byte length

01 - Two byte length

10 - Not used

11 - Four byte length.

Gi 1 If setto a 1, breakpoint in DRI is globally enabled for all tasks and is not cleared
by the processor as the result of a task switch.

Li 1 If setto a 1, breakpoint in DRI is locally enabled for the current task and ig
cleared by the processor as the result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared whenever a debug
exception occurs.

2.10 Test Registers
The test registers can be used to test the on-chip unified cache and to test the main TLB.

Test registers TR3, TR4, and TR5 are used to test the unified cache. Use of these registers is
described with the memory caches later in this chapter in section 2.13.1.1 on page 2-58.

Test registers TR6 and TR7 are used to test the TLB. Use of these test registers is described in
section 2.12.4.1 on page 2-54.

2-45

Address Space

2.11 Address Space

The IBM 6x86MX CPU can directly address 64 KBytes of 1/0 space and 4 GBytes of physical
memory (Figure 2-24).

Memory Address Space. Access can be made to memory addresses between 0000 0000h
and FFFF FFFFh. This 4 GByte memoryas® can be accessed using byte, word (16 bits), or
doubleword (32 bits) format. Words and doublewords are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The physical address of a word or double-

word is the byte address of the low-order byte.

Physical
Memory Space
I/O Address Space
FFFF FFFFh FFFF FFFFh
Physical Memory " NOt'bl
4 GBytes ccessible
M2
0000 FFFFh Configuration
Register 1/0
64 KBytes Space
< 0000 0023h
0000 0000h 0000 0000h 0000 0022h

1750200

Figure 2-24 . Memory and 1/O Address Spaces

2-46

Memory Addressing Method:s 2

I/O Address SpaceThe IBM 6x86MX 1/O
address space is accessed using IN and OUT
instructions to addresses referred to as “ports”.
The accessible 1/0 address space size is 64
KBytes and can be accessed through 8-bit,
16-bit or 32-bit ports. The execution of any IN
or OUT instruction causes the M/IO# pin to be
driven low, thereby selecting the 1/O space
instead of memory space.

The accessible I/O address space ranges
between locations 0000 0000h and

0000 FFFFh (64 KBytes). The I/O locations
(ports) 22h and 23h can be used to access the
IBM 6x86MX configuration registers.

2.12 Memory Addressing
Methods

With the IBM 6x86MX CPU, memory can be
addressed using nine different addressing
modes (Table 2-26, Page 2-49). These
addressing modes are used to calculate an offset
address often referred to as an effective address.
Depending on the operating mode of the CPU,
the offset is then combined using memory
management mechanisms to create a physical
address that actually addresses the physical
memory devices.

Memory management mechanisms on the IBM
6x86MX CPU consist of segmentation and
paging. Segmentation allows each program to
use several independent, protected address
spaces. Paging supports a memory subsystem
that simulates a large address space using a
small amount of RAM and disk storage for
physical memory. Either or both of these
mechanisms can be used for management of the
IBM 6x86MX CPU memory address space.

2-47

Memory Addressing Methods

2.1 Offset Mechanism

N

The offset mechanism computes an offset

(effective) address by adding together one or
more of three values: a base, an index and a Index
displacement. When present, the base is the
value of one of the eight 32-bit general regis- —
ters. The index if present, like the base, is a Base Displacement

value that is in one of the eight 32-bit genera

purpose registers (not including the ESP .
register). The index differs from the base in X],S)(%?l)'(ﬂ?xg
that the index is first multiplied by a scale

factor of 1, 2, 4 or 8 before the summation is I+ <

made. The third component added to the
memory address calculation is the displace-

ment. The displacement is a value of up to [Egggﬁ:‘,éﬂggf’esss)
32-bits in length supplied as part of the instruc-
tion. Figure 2-25 illustrates the calculation of
the offset address.

Figure 2-25. Offset Address Calculation

Nine valid combinations of the base, index,
scale factor and displacement can be used with
the IBM 6x86MX CPU instruction set. These
combinations are listed in Table 2-26. The
base and index both refer to contents of a
register as indicated by [Base] and [Index].

Table 2-26. Memory Addressing Modes

ADDNITOEDSSING aasE | INDEX Fifﬁ;))ER D|spngcPE)MENT OFFCSZEITC’TJDLi?':ESI\? (OA)
Direct X OA =DP
Register Indirect X OA = [BASE]
Based X X OA = [BASE] + DP
Index X X OA = [INDEX] + DP
Scaled Index X X X OA = ([INDEX] * SF) + DP
Based Index X X OA = [BASE] + [INDEX]
Based Scaled Index X X X OA = [BASE] + ([INDEX] * SF)
Based Index with X X X OA = [BASE] + [INDEX] + DP
Displacement
Based Scaled Index with x X X X OA = [BASE] + ([INDEX] * SF) + DP
Displacement

2-48

Memory Addressing Method:s 2

2.12.2 Memory Addressing Protected Mode Memory Addressing

Real Mode Memory Addressing In protected mode three mechanisms calculate a
physical memory address (Figure 2-27, Page 2-51).

In real mode operation, the IBM 6x86MX CPU

only addresses the lowest 1 MByte of memory. ® Offset Mechanismthat produces the offset or

To calculate a physical memory address, the effective address as in real mode.

16-bit segment base address located in the Selector Mechanismthat produces the base

selected segment register is multiplied by 16 address. .

and then the 16-bit offset address is added. Optional Paging Mechanismthat translates a

The resulting 20-bit address is then extended. linear address to the physical memory address.

Three hexadecimal zeros are added as upperthe offset and base address are added together
address bits to create the 32-bit physical addresg, produce the linear address. If paging is not
Figure 2-26 illustrates the real mode address gnapled, the linear address is used as the phys-
calculation. ical memory address. If paging is enabled, the

The addition of the base address and the oﬁsg?ging mechanism is used to translate the
address mav result in a carrv. Therefore. the Tear address into the physical address. The
. y Y. L Rﬁset mechanism is described earlier in this
resulting address may actually contain up to 21 ™)
o . Section and applies to both real and protected
significant address bits that can address mode. The selector and paging mechanisms

memory in the first 64 KBytes above 1 Ileyteare described in the following paragraphs.

00Ch
) Offset Address 16 12
Offset Mechanism i
20 32 Linear Address
/ (Physical Address)
Selected Segment 16 20 4T
Register X186

Figure 2-26. Real Mode Address Calculation

2-49

Memory Addressing Methods

oA
Offset Mechanism 22 fess
Linear —
32 Address Ovtional 32 ysica
— P Memo
gggénem@ Paging Mechanism o Addreg
32
Selector Mechanism HM
Figure 2-27. Protected Mode Address Calculation
2.12.3 Selector Mechanism the base address, limit, and attributes of the

selected segment and is cached on the IBM
Using segmentation, memory is divided into agxgeMX CPU as a result of loading the
arbitrary number of segmepts, each containingelector. The cached descriptor contents are
usually much less than thé%byte (4 GByte) ot visible to the programmer. When a
maximum. memory reference occurs in protected mode,

. : e linear address is generated by adding the
The six segment registers (CS, DS, SS, ES, I__L%gment base address in the hidden portion of

323 deﬁgeenafﬁecr%nﬁiltgﬂslﬁj'ggesgltgﬁgcr;[]ea;lsthe segment register to the offset address. If
g paging is not enabled, this linear address is

segment descriptor in either the global used as the physical memory address. Figure
descriptor table (GDT) or the local descriptor 2-28 illustrates the operation of the selector

table (LDT). The segment descriptor defines

mechanism.
SELECTOR LOAD INSTRUCTION SEGMENT REGISTER
SELECTED BY DECODED
Selector 15 0 INSTRUCTION
In Segment | INDEX [T [RPL]
Register
Segment
Register
Identification
_| Segment
» Descriptor
TI=0 Segment
Global Descriptor o o E%g:ﬂ]eé _, Segment
Table { Descriptor Base Address
Ti=1 Cache
.| Segment
”| Descriptor [

Local Descriptor
Table

Figure 2-28. Selector Mechanism

2-50

Memory Addressing Method:s 2

212.4 Paging Mechanism Translation Lookaside Buffer (TLB) is made

up of two caches (Figure 2-29, Page 2-53).
The paging mechanism translates linear _
addresses to their corresponding physical * the L1TLB caches page tables entries
addresses. The page size is always 4 KBytes. * the L2 TLB stores PTEs that have been
Paging is activated when the PG and the PE evicted from the L1 TLB

bits within the CRO register are set. The L1 TLB is a 16-entry direct-mapped dual

The paging mechanism translates the 20 mos@orted cache. The L2 TLB is a 384 entry,
significant bits of a linear address to a physicaf-way, dual ported cache.

address. The linear address is divided into

three fields DTI, PTI, PFO (Figure 2-29, Page

2-53). These fields respectively select:

e an entry in the directory table,

e an entry in the page table selected by the
directory table

* the offset in the physical page selected by the
page table

The directory table and all the page tables can
be considered as pages as they are 4-KBytes in
size and are aligned on 4-KByte boundaries.
Each entry in these tables is 32 bits in length.
The fields within the entries are detailed in
Figure 2-30 (Page 2-53) and Table 2-27 (Page
2-54).

A single page directory table can address up to
4 GBytes of virtual memory (1,024 page
tables—each table can select 1,024 pages and
each page contains 4 KBytes).

2-51

Memory Addressing Methods

Linear

Address
31 L 22 21 L 12 11 ¢ 0

Directory Table Index Page Table Index Page Frame Offset
(DTI) (PTI) (PFO)

Main L1 TLB
—> 16 Entry
Direct Mapped

i

L2 TLB

] 384 Entry
6-Way Associative

4 Gb

4 Kb

4 Kb

CR3 [—»
Directory Table
Control
Register 0
0 0
Page Table Memory
External Memory or Cache 1747200
Figure 2-29. Paging Mechanism
31 12 11 10 9 6 5 4 3 2 1 O
PIPlU W
BASE ADDRESS AVAILABLE |RESERVED| D | A 8 W é é P
Note: In DTE format, bit 6 is reserved 1708503

Figure 2-30. Directory and Page Table Entry (DTE and PTE) Format

2-52

Memory Addressing Method:s 2

Table 2-27. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION
31-12 BASE Specifies the base address of the page or page table.
ADDRESS
11-9 -- Undefined and available to the programmer.
8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE
only, undefined in DTE).

5 A Accessed Flag. If set, indicates that a read access or write access has qccurred
to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not cachegble in
the on-chip cache.

3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page
tables that hit in the on-chip cache must update both the cache and extefnal
memory.

2 u/s User/Supervisor Attribute. If set (user), page is accessible at privilege level 3.
If clear (supervisor), page is accessible only when €RL

1 W/R Write/Read Attribute. If set (write), page is writable. If clear (read), page is
read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits. If clear, indicates that the page is|not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to?-124.1 Translation Lookaside
external directory and page tables. Buffer Testing

The L1 TLB is a small cache optimized for ~ The L1 and L2 Translation Lookaside Buffers
speed whereas the L2 TLB is a much larger (TLBS) can be tested by writing, then reading
cache optimized for capacity. The L2 TLB is &rom the same TLB location. The operation to be
proper superset of the L1 TLB. performed is determined by the command

(CMD) field (Table 2-28, Page 2-54) in the TR6
The TLB must be flushed by the software whepgister.

entries in the page tables are changed. Both the

L1 and L2 TLBs are flushed whenever the CR3 Table 2-28. CMD Field

register is loaded. A particular page can be oMD OPERATION LINEAR

flushed from the TLBs by using the INVLPG : ADDRESS BITS

instruction. x00 Wr!te toLl 15-12
x01 Write to L2 17 -12
010 Read from L1 X port 15-12
011 Read from L2 X port 17 -12
110 Read from L1 Y port 15-12
110 Read from L2 Y port 17 -12

2-53

Memory Addressing Methods

TLB Write and A fields of TR6 and the physical address,
_ PCD and PWT fields of TR7 are loaded from
To perform a write to the IBM 6x86MX TLBs, the specified L1 entry. The H1 bit of TR7 will

the TRY7 register (Figure 2-31) is loaded with jndicate if the specified linear address hit in the
the desired physical address as well as the PCD 1 TLB.

and PWT bits. For a write to the L2 TLB, the

SET field of TR7 must be also specified. The For a L2 TLB read, the TR7 register is loaded
H1, H2, and HSET fields of TR7 are not used. with the desired SET. The TR6 register is then
The TR6 register is then loaded with the linear loaded with the linear address and the appropri-
address, V, D, U, W and A fields and the appro-ate CMD. The L2 TLB entry selected by bits
priate CMD. For a L1 TLB write, the TLB 17-12 of the linear address and the SET field in
entry is selected by bits 15-12 of the linear TR7 will then be accessed. The linear address,
address. For a L2 TLB write, the TLB entry is V,D, PG, V, W, and A fields of TR6 and the
selected by bits 17-12 of the linear address andphysical address, PCD and PWT fields of TR7

the SET field of TR7. are loaded from the specified L2 entry. The H2
bit of TR7 will indicate if the specified linear
TLB Read address hit in the L2 TLB. If there was an L2

hit, the HSET field of TR7 will indicate which

Fora L1 LTB read, the TR6 register is loaded SET hit.

with the linear address and the appropriate

CMD. The L1 TLB entry selected by bits The TLB test register fields are defined in
15-12 of the linear address will then be Table 2-29. (Page 2-56).

accessed. The linear address, V, D, PG, U, W

ADR7 (PHYSICAL ADDRESS) PCDPWT| SET l H1| H2 l HSET |TRY
31 121110 9 8 7 6 5 4 3 2 1 0
ADRG (LINEAR ADDRESS) V|D|PG| U A l CMD TR6
31 211 10 9 8 7 6 5 4 3 2 1 O
B =Reserved 1729100

Figure 2-31. TLB Test Registers

2-54

Memory Addressing Method:s 2

Table 2-29. TLB Test Register Bit Definitions

REGISTER

ask.

If
the
LB

5S.

NAME NAME RANGE DESCRIPTION
TRY7 ADR7 31-12 | Physical address or variable page size mechanism m
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.
PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.
PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.
SET 9-7 L2 TLB Set Selection (Oh - 5h)
H1 5 Hitin L1 TLB
H2 4 Hitin L2 TLB
HSET 2-0 L2 Set Selection when L2 TLB hit occurred (0Oh - 5h)
TR6 ADR6 31-12 | Linear Address.
TLB lookup: The TLB is interrogated per this address
one and only one match occurs in the TLB, the rest of
fields in TR6 and TR7 are updated per the matching T
entry.
TLB write: A TLB entry is allocated to this linear addreg
Y 11 PTE Valid.
TLB write: If set, indicates that the TLB entry containg
valid data. If clear, target entry is invalidated.
D 10 Dirty Attribute Bit
PG 9 Page Global
U 8 User/Supervisor Attribute Bit
w 6 Write Protect bit.
CMD 2-0 Array Command Select.

Determines TLB array command.

Refer to Table 2-28, Page 2-54.

2-55

Memory Caches

2.13 Memory Caches 2.13.1 Unified Cache MESI States

The IBM 6x86MX CPU contains two memory The unified cache lines are assigned one of four
caches as described in Chapter 1. The UnifiedMESI states as determined by MESI bits stored
Cache acts as the primary data cache, and in tag memory. Each 32-byte cache line is
secondary instruction cache. The Instruction divided into two 16-byte sectors. Each sector
Line Cache is the primary instruction cache and@ontains its own MESI bits. The four MESI
provides a high speed instruction stream for th&tates are described below:

Integer Unit. Modified MESI cache lines are those that have

The unified cache is dual-ported allowing been updated by the CPU, but the corre-
simultaneous access to any two unique bankssponding main memory location has not yet
Two different banks may be accessed at the been updated by an external write cycle. Modi-
same time permitting any two of the following fied cache lines are referred to as dirty cache

operations to occur in parallel: lines.
e Code fetch ExclusiveMESI lines are lines that are exclu-
e Data read (X pipe, Y pipe or FPU) sive to the IBM 6x86MX CPU and are not
e Data write (X pipe, Y pipe or FPU). duplicated within another caching agent’s

cache within the same system. A write to this
cache line may be performed without issuing an
external write cycle.

SharedMES lines may be present in another
caching agent’s cache within the same system.
A write to this cache line forces a corresponding
external write cycle.

Invalid MESI lines are cache lines that do not
contain any valid data.

2-56

Memory Caches 2

2.13.1.1 Unified Cache Testing line tag. The remaining address bits are used
to identify the specific 32-byte cache line

The TR3, TR4, and TR5 on-chip test registers(A13-A5), and the specific 4-byte entry within
provide information so the unified cache can the cache line (A4-A2).

be tested. This information determines what o . o
particular area will be tested. Fields within ~ Test Initiation. A test register operation Is
these test registers identify which area of the initiated by writing to the TRS5 register shown

cache will be selected for testing. in Figure 2-33 (Page 2-59) using a special
o - MOV instruction. The TR5 CTL field,
Cache Organization.The unified cache detailed in Table 2-30 (Page 2-59), determines

(Figure 2-32) is divided into 32-bytes lines. the function to be performed. For cache
This cache is divided into four sets. Since a sejvrites, the registers TR4 and TR3 must be
(as well as the cache) is smaller than main initialized before a write is made to TR5. Eight

memory, each line in the set corresponds to 4-pyte accesses are required to access a
more than one line in main memory. When a complete cache line.

cache line is allocated, bits A31-A14 of the
main memory address are stored in the cache

. | 32 Bytes of Data >
A
SETO 512 Lines
SET 1
2048 Lines
SET 2
SET 3
v
Typical
Single
ENT ‘ ENT ‘ ENT ‘ ENT ENT ‘ ENT ‘ ENT ‘ ENT Line
ENT = 4-byte entry 1747500

Figure 2-32. Unified Cache

2-57

- e —— Memory Caches
31 24 23 22 20 19 18 16 15 12 11 87 65 432 0
S
M V| MESI MRU SET CTL | TR5
[
31 21 0
ADDRESS TR4
31 0
DATA TR3
Figure 2-33. Cache Test Registers
Table 2-30. Cache Test Register Bit Definitions
REGISTER FIELD
NAME NAME RANGE DESCRIPTION
TR5 SMI 23 SMI Address Bit. Selects separate/cacheable SMI code/data
space
V, MESI 19 -16 | Valid, MESI Bits*
If = 1000, Modified
If = 1001, Shared
If = 1010, Exclusive
If = 0011, Invalid
If = 1100, Locked Valid
If = 0111, Locked Invalid
Else = Undefined
MRU 11-8 Used to determine the Least Recently Used (LRU) line.
SET 5-4 Cache Set. Selects one of four cache sets to perform opera-
tion on.
CTL 1-0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification
TR4 ADDRES 31-2 Physical Address
S
TR3 DATA 31-0 Data written or read during a cache test.

*Note: All 32 bytes should contain valid data before a line is marked as valid.

2-58

Memory Caches 2

Write Operations. During a write, the TR3
DATA (32-bits) and TAG field information is
written to the address selected by the
ADDRESS field in TR4 and the SET field in
TRS5.

Read Operations.During a read, the cache
address selected by the ADDRESS field in TR4
and the SET field in TR5. The TVB, MESI and
MRU fields in TR5 are updated with the infor-
mation from the selected line. TR3 holds the
selected read data.

Cache Flushing.A cache flush occurs during

a TR5 write if the CTL field is set to zero.
During flushing, the CPU’s cache controller
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting
the shared MESI bit. Clean lines are left in
their original state.

2-59

Memory Caches

213.2 Scratch Pad RAM Locking When locking physical addresses into the cache
(Table 2-31), the programmer should be aware

A Scratch Pad Ram is a private area of memoof several issues:

that can be assigned within the IBM 6x86MX .

unified cache. The Scratch Pad RAM is 1) Locking all sets of the cache should not be

read/writable and is NOT kept coherent with done. It is required that one set always be avail-
the rest of the system. able for general purpose caching. 2) Care must

be taken by the programmer not to create
Scratch Pad RAM may be implemented differsynonyms. This is done by first checking to see
ently on different processors. Onthe IBM if a particular address is locked before

6x86MX, the Scratch Pad RAM may be attempting to lock the address. If synonyms are
assigned on a cache line granularity. created, IBM 6x86MX operation will be unde-
fined.

RDMSR and WRMSR instructions with

indices 03h to 05h are used to assign scratch When ever possible, it is recommended to
pad memory. These instructions access the flush the cache before assigning locked

cache test registers. See section 2.13.1.1 (Pagemory areas. Locked areas of the cache are
2-58) for detailed description of cache test cleared on reset, and are unaffected by warm
register operation. The cache line is assignedreset and FLUSH#, or the INVD and WBINVD
into Scratch Pad RAM by setting its MESI staténstructions.

to “locked valid.”

Table 2-31. Cache Locking Operations

Read/Write ECX EDX EAX Operation
Read/Write 03h Data to be read of Loads or stores data to/from TRS3.
written from/to the
cache.
Write 04h 32 bits of address Address in EAX is loaded into TR4.

This address is the cache line address
that will be locked.

Read 04h 32 bits of address| Stores the contents of TR4 in EA

Write 05h Data to be written | Performs operation specified in CTL
into TR5 field of TR5.

Read 05h ---- Data in TR5 regist Reads data in TR5 and stores in EAX.

ter

2-60

Interrupts and Exception 2

2.14 Interrupts and Exceptions 2.14.1 Interrupts

The processing of an interrupt or an exceptioiexternal events can interrupt normal program
changes the normal sequential flow of a execution by using one of the three interrupt
program by transferring program control to a pins on the IBM 6x86MX CPU.

selected service routine. Except for SMM inter-
rupts, the location of the selected service
routine is determined by one of the interrupt .
vectors stored in the interrupt descriptor table.

| For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
execution returns to the original program, it begins
immediately following the last completed instruc-
tion.

Non-maskable Interrupt (NMI pin)
Maskable Interrupt (INTR pin)
SMM Interrupt (SMI# pin).

Hardware interrupts are generated by signa
sources external to the CPU. All exceptions
(including so-called software interrupts) are
produced internally by the CPU.

With the exception of string operations, inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows
between memory moves that allow interrupts

to be acknowledged.

TheNMI interrupt cannot be masked by soft-
ware and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector is fixed and is supplied internally, no
interrupt acknowledge bus cycles are
performed. This interrupt is normally reserved
for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no addi-
tional NMls are processed until an IRET
instruction is executed, typically at the end of
the NMI service routine. If NMI is re-asserted
prior to execution of the IRET instruction, one

2-61

Interrupts and Exceptions

and only one NMI rising edge is stored and 2.14.2 Exceptions

processed after execution of the next IRET.

During the NMI service routine, maskable ~ Exceptions are generated by an interrupt
interrupts may be enabled (unmasked). If an instruction or a program error. Exceptions are

unmasked INTR occurs during the NMI classified as traps, faults or aborts depending
service routine, the INTR is serviced and on the mechanism used to report them and the

execution returns to the NMI service routine restartability of the instruction that first caused
following the next IRET. If a HALT instruc- the exception.

tion is executed within the NMI service L. . .

routine, the IBM 6x86MX CPU restarts execu-~ Trap Exceptionis reported immediately

tion only in response to RESET, an unmasked following the instruction that generated the
INTR or an SMM interrupt. NMI does not trap exception. Trap exceptions are generated

restart CPU execution under this condition. PY €xecution of a software interrupt instruction
(INTO, INT 3, INT n, BOUND), by a

TheINTR interrupt is unmasked when the single-step operation or by a data breakpoint.
Interrupt Enable Flag (IF) in the EFLAGS))

register is set to 1. When an INTR interrupt Software interrupts can be used to simulate
occurs, the CPU performs two locked interrupthardware interrupts. For example, an INT n
cycle, the CPU reads an 8-bit vector that is interrupt service routine pointed to by the nth
Supp"ed by an external interrupt controller. vector in the interrupt table. Execution of the
This vector selects one of the 256 possible interrupt service routine occurs regardless of
interrupt handlers which will be executed in the state of the IF flag in the EFLAGS register.

response to the interrupt.

The one byte INT 3, or breakpoint interrupt

TheSMM interrupt has higher priority than ~ (vector 3), is a particular case of the INT n
either INTR or NMI. After SMI# is asserted, instruction. By inserting this one byte instruc-
program execution is passed to an SMI servicgon in a program, the user can set breakpoints
routine that runs in SMM address space in the code that can be used during debug.

reserved for this purpose. The remainder of . ,
this section does not apply to the SMM inter- Single-step operation is enabled by setting the

rupts. SMM interrupts are described in greated [itin the EFLAGS register. When TF is
detail later in this chapter. set, the CPU generates a debug exception

(vector 1) after the execution of every instruc-
tion. Data breakpoints also generate a debug
exception and are specified by loading the
debug registers (DR0-DR7) with the appro-
priate values.

2-62

Interrupts and Exception 2

A Fault Exception is reported prior to comple- 2-14.3 Interrupt Vectors

tion of the instruction that generated the excep- hen th . .
tion. By reporting the fault prior to instruction When the CPU services an Interrupt or excep-

completion, the CPU is left in a state that tion, the cur(rjept pfogfam’s '.:LAGS’ COdE;] d
allows the instruction to be restarted and the segm(ra]nt an kmstrl:lctlon pomter. are fpus ©
effects of the faulting instruction to be nulli- onto the stack to allow resumption of execu-

fied. Fault exceptions include divide-by-zero tion of the interrupted program. In protected

errors, invalid opcodes, page faults and copro-mOde’ the processor also saves an error code

cessor errors. Instruction breakpoints (vectorfor some exceptions. Program control is then

1) are also handled as faults. After executiontransferred to the interrupt handler (also called

of the fault service routine, the instruction the Interrupt service routlne). Upon execution

pointer points to the instruction that caused thePf an IRET at thg end of the service r.out|ne,
fault program execution resumes by popping from

the stack, the instruction pointer, code segment,
An Abort Exception is a type of fault exception and FLAGS.
that is severe enough that the CPU cannot restart .
the program at the faulting instruction. The Interrupt Vector Assignments

QOubIe fault (vector 8) is the only abort excep-g4.h, interrupt (except SMI¥) and exception is

tion that occurs on the IBM 6x86MX CPU. 5qqigned one of 256 interrupt vector numbers
Table 2-32, (Page 2-65). The first 32 interrupt
vector assignments are defined or reserved.
INT instructions acting as software interrupts
may use any of the interrupt vectors, 0 through
255.

2-63

T=s
Table 2-32. Interrupt Vector Assignments
INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT
1 Debug exception TRAP/FAULT*
2 NMI interrupt
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Reserved
10 Invalid TSS FAULT
11 Segment not present FAULT
12 Stack fault FAULT
13 General protection fault TRAP/FAULT
14 Page fault FAULT
15 Reserved
16 FPU error FAULT
17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

2-64

Interrupts and Exception 2

In response to a maskable hardware interrupt2.14.4 Interrupt and Exception

(INTR), the IBM 6x86MX CPU issues inter- Priorities

rupt acknowledge bus cycles to read the vector

number from external hardware. These vector8s the IBM 6x86MX CPU executes instruc-
should be in the range 32 - 255 as vectors 0 - §@ns, it follows a consistent policy for priori-

are reserved. tizing exceptions and hardware interrupts. The
_ priorities for competing interrupts and excep-
Interrupt Descriptor Table tions are listed in Table 2-33 (Page 2-67).

ebug traps for the previous instruction and the

ext instructions always take precedence.

MM interrupts are the next priority. When
NMI and maskable INTR interrupts are both

The interrupt vector number is used by the IB
6x86MX CPU to locate an entry in the interrup
descriptor table (IDT). In real mode, each ID

entry consists of a four-byte far pointer to the detected at the same instruction boundary, the

begmnmg OT the corresponding interrupt IBM 6x86MX microprocessor services the NMI
service routine. In protected mode, each IDT interrupt first

entry is an eight-byte descriptor. The Interrupt
Descriptor Table Register (IDTR) specifies therhe IBM 6x86MX CPU checks for exceptions

beginning address and limit of the IDT. in parallel with instruction decoding and execu-
Following reset, the IDTR contains a base tion. Several exceptions can result from a
address of Oh with a limit of 3FFh. single instruction. However, only one excep-

tion is generated upon each attempt to execute
the instruction. Each exception service routine
should make the appropriate corrections to the

instruction and then restart the instruction. In

descriptors: interrupt gates, trap 9"?“65 _and ta?ﬁis way, exceptions can be serviced until the
gates. Interrupt gates are used primarily to instructi(’)n executes properly

enter a hardware interrupt handler. Trap gates
are generally used to enter an exception handtgtie IBM 6x86MX CPU supports instruction
or software interrupt handler. If aninterrupt restart after all faults, except when an instruc-
gate is used, the Interrupt Enable Flag (IF) in tion causes a task switch to a task whose task
the EFLAGS register is cleared before the intestate segment (TSS) is partially not present. A
rupt handler is entered. Task gates are used 16S can be partially not present if the TSS is
make the transition to a new task. not page aligned and one of the pages where
the TSS resides is not currently in memory.

The IDT can be located anywhere in physical
memory as determined by the IDTR register.
The IDT may contain different types of

2-65

ints

ts

erted

tec-

]1

aption

and

- e —— Interrupts and Exceptions
Table 2-33. Interrupt and Exception Priorities
PRIORITY DESCRIPTION NOTES
0 Warm Reset Caused by the assertion of WM_RST.
1 Debug traps and faults from preyincludes single-step trap and data breakpo
ous instruction. specified in the debug registers.
2 Debug traps for next instruction.| Includes instruction execution breakpoir
specified in the debug registers.
3 Hardware Cache Flush Caused by the assertion of FLUSH#.
4 SMM hardware interrupt. SMM interrupts are caused by SMI# ass
and always have highest priority.
5 Non-maskable hardware interrupt. Caused by NMI asserted.
6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.
7 Faults resulting from fetching the Includes segment not present, general pro
next instruction. tion fault and page fault.
8 Faults resulting from instruction | Includes illegal opcode, instruction too long
decoding. or privilege violation.
9 WAIT instruction and TS = 1 and Device not available exception generated.
MP = 1.
10 ESC instruction and EM =1 or |Device not available exception generated.
TS =1.
11 Floating point error exception. Caused by unmasked floating point exce
with NE = 1.
12 Segmentation faults (for each |Includes segment not present, stack fault,
memory reference required by thgeneral protection fault.
instruction) that prevent transfer-
ring the entire memory operand.
13 Page Faults that prevent transfef-
ring the entire memory operand.
14 Alignment check fault.

2-66

Interrupts and Exception 2

2.14.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-33 (Page 2-67) are not applicable in real mode.
Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions have slightly different
meanings in real mode as listed in Table 2-34.

Table 2-34. Exception Changes in Real Mode

VECTOR PROTECTED MODE REAL MODE FUNCTION
NUMBER FUNCTION
8 Double fault. Interrupt table limit overrun.
10 Invalid TSS. X
11 Segment not present. X
12 Stack fault. SS segment limit overrun.
13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.
14 Page fault. X

Note: x = does not occur

2-67

Interrupts and Exceptions

2.14.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

Double Fault Invalid TSS
Alignment Check Segment Not Present
Page Fault Stack Fault

General Protection Fault

The error code is pushed onto the stack prior to entering the exception handler. The error code
format is shown in Figure 2-34 and the error code bit definitions are listed in Table 2-35. Bits
15-3 (selector index) are not meaningful if the error code was generated as the result of a page
fault. The error code is always zero for double faults and alignment check exceptions.

15 3 2 1 0

Selector Index S2 S1 SO

Figure 2-34. Error Code Format

Table 2-35. Error Code Bit Definitions

FAULT SELECTOR s2 s1 S0
TYPE (BITS 15-3) (BIT 2) (BIT 1) (BIT0)
Double Fault or
Alignment Check 0 0 0 0
Page Fault Reserved. Fault caused by: | Fault occurred Fault occurred during;
0 = not present page during: 0 = supervisor access|
1 = page-level 0 = read access | 1 = user access.
protection violation.| 1 = \yrite access.
IDT Fault Index of faulty Reserved. 1 If = 1, exception
IDT selector. occurred while trying
to invoke exception or|
hardware interrupt
handler.
Segment Index of faulty TI bit of faulty 0 If =1, exception
Fault selector. selector. occurred while trying
to invoke exception or|
hardware interrupt
handler.

2-68

System Management Mod 2

2.15 System Management Mode Execution of a SMM routine starts at the base
address in SMM memory address space. Since

System Management Mode (SMM) is a distinghe SMM routines reside in SMM memory

CPU mode that differs from normal CPU x86 space, SMM routines can be made totally trans-

operating modes (real mode, V86 mode, and parent to all software, including protected-

protected mode) and is most often used to mode operating systems.

perform power management.

The IBM 6x86MX is backward compatible with
the SL-compatible SMM found on previous

IBM and Cyrix microprocessors. On the IBM s I\S/I'I\I/\'l'ﬁ if;’t‘:li‘z‘i :Et)i(‘éecst"ed

6x86MX SMM has been enhanced to optimized

software emulation of multimedia and 1/0O *

peripherals. CPU State Stored in SMM
.) Address Space Header

The Cyrix Enhanced SMM provides new

features: ¢

Program Flow Transfers

¢ Cacheability of SMM memory to SMM Address Space

¢ Support for nesting of multiple SMIs
¢ Improved SMM entry and exit time. +

CPU Enters Real Mode

The overall operation of a SMM operation is +
shown in (Figure 2-35). SMM is entered using Execution Begins at SMM

. Address Space Base Address
the System Management Interrupt (SMI) pin.
SMI interrupts have higher priority than any ¢
other interrupt, including NMI interrupts. SMM
can also be entered using software by using an
SMINT instruction.

Overall Operation

RSM Instruction Restores CPU
State Using Header Information

v
Upon entering SMM mode, portions of the CPU
state are automatically saved in the SMM Normal Execution Resumes
address memory space header. The CPU enters
real mode and begins executing the SMI service

routine in SMM address space. Figure 2-35. SMI Execution Flow Diagram

2-69

System Management Mode

2.15.1 SMM Memory Space KByte SMM memory space must be located on
a 32 KByte address boundary. The memory

SMM memory must reside within the bounds space size can range from 4 KBytes to 4 GBytes

of physical memory and not overlap with SMM accesses ignore the state of the A20M#

system memory. SMM memory space (Figurénput pin and drive the A20 address bit to the
2-36) is defined by setting the SM3 bit in unmasked value.

CCR1 and specifying the base address and size
of the SMM memory space in the ARR3 SMM memory space can be accessed while in
register. normal mode by setting the SMAC bit in the

CCRL1 register. This feature may be used to
The base address must be a multiple of the jnitialize SMM memory space.

SMM memory space size. For example, a 32

Physical Potential
Memory Space SMM Addl’eSS
Space
FFFF FFFFh FFFF FFFFh
AKB ‘ Defined
: esto
Physical Memory 4 G)B/[y[es < Sl > SMIACT# Active
4 GBytes Address
Space
0000 0000h 0000 0000h
Non-SMM Mode
SMIACT# Negated SMM Mode 1747600

Figure 2-36. System Management Memory Space

2-70

System Management Mod 2

2.15.2 SMM Memory Space Header

The SMM Memory Space Header (Figure 2-37) is used to store the CPU state prior to starting an
SMM routine. The fields in this header are described in Table 2-36 (Page 2-73). After the SMM
routine has completed, the header information is used to restore the original CPU state. The
location of the SMM header is determined by the SMM Header Address Register (SMHR).

31 s
! ~ SMHR
DR7 Register
T T T _4h
EFLAGS
T T T _8h
CRO
T T T _Ch
Current IP
T T T _10h
Next IP
31 16 15 : 0 14h
Reserved CS Selector
-18h
CS Descriptor (Bits 63-32)
' ' ' -1Ch
CS Descriptor (Bits 31-0)
2] 22 21 15 13 43 210
-20h
Reserved CPL N[IS HISIP 1|Q
T T _
16|15 24h
1/O Write Data Size 1/O Write Address
' I -28h
1/O Write Data
' ' -2Ch
ESI or EDI
_30h 1747700

Figure 2-37. SMM Memory Space Header

2-71

T=5
Table 2-36. SMM Memaory Space Header
NAME DESCRIPTION SIZE
DR7 The contents of Debug Register 7. 4 Bytes
EFLAGS The contents of Extended Flags Register. 4 Bytes
CRO The contents of Control Register 0. 4 Bytes
Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes
Next IP The address of the next instruction that will be executed after exiting SMM made. 4\Bytes
CS Selector Code segment register selector for the current code segment. 2 Bytes
CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes
CPL Current privilege level for current code segment. 2 Bits
N Nested SMI Indicator 1 Bit

If N = 1: current SMM is being serviced from within SMM mode.
If N = 0: current SMM is not being serviced from within SMM mode.

IS Internal SMI Indicator 1 Bit
If IS =1: current SMM is the result of an internal SMI event.
If IS =0: current SMM is the result of an external SMI event.

H SMI during CPU HALT state indicator 1 Bit
If H = 1. the processor was in a halt or shutdown prior to servicing the SMM
interrupt.

S Software SMM Entry Indicator. 1 Bit

If S = 1: current SMM is the result of an SMINT instruction.
If S = 0: current SMM is not the result of an SMINT instruction.

P REP INSx/OUTSx Indicator 1 Bit
If P = 1: current instruction has a REP prefix.
If P = 0: current instruction does not have a REP prefix.

I IN, INSx, OUT, or OUTSx Indicator 1 Bit
If | = 1: if current instruction performed is an I/O WRITE.
If | = 0: if current instruction performed is an /O READ.

C Code Segment writable Indicator 1 Bit
If C = 1. the current code segment is writable.
If C = 0: the current code segment is not writable.

110 Indicates size of data for the trapped 1/O write: 2 Bytes
01h = byte
03h = word
OFh = dword

I/0 Write Address | 1/0O Write Address 2 Bytes
Processor port used for the trapped I/0O write.

I/0 Write Data 1/0 Write Data 4 Bytes
Data associated with the trapped 1/O write.

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSRyies
REP INSx instruction when one of the 1/0 cycles caused an SMI# trap.

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

2-72

System Management Mod 2

Current and Next IP Pointers SMM Header Address Pointer

Included in the header information are the =~ The SMM Header Address Pointer Register
Current and Next IP pointers. The Current IP (SMHR) (Figure 2-38) contains the 32-bit
points to the instruction executing when the SMM Header pointer. The SMHR address is
SMI was detected and the Next IP points to thdword aligned, so the two least significant bits
instruction that will be executed after exiting are ignored.

SMM. o :
The SMHR valid bit (bit 0) is cleared with every

Normally after an SMM routine is completed, write to ARR3 and during a hardware RESET.
the instruction flow begins at the Next IP Upon entry to SMM, the SMHR valid bit is
address. However, if an 1/O trap has occurredexamined before the CPU state is saved into the
instruction flow should return to the Current IPSMM memory space header. When the valid bit
to complete the 1/O instruction. is reset, the SMM header pointer will be calcu-
lated (ARR3 base field + ARR3 size field) and

If SMM has been entered due to an I/O trap foyaded into the SMHR and the valid bit will be
a REP INSx or REP OUTSx instruction, the

Current IP and Next IP fields contain the same

address. If the desired SMM header location is different
) than the top of SMM memory space, as may be

If an entry into SMM mode was caused by an the case when nesting SMI's, then the SMHR

/O trap, the port address, data size and data yegister must be loaded with a new value and

value associated with that I/O operation are valid bit from within the SMI routine before
stored in the SMM header. Note that these pegting is enabled.

values are only valid for I/O operations. The I/O
data is not restored within the CPU when The SMM memory space header can be relo-
executing a RSM instruction. cated using the new RDSHR and WRSHR

.) instructions.
Under these circumstances the | and P bits, as

well as ESI/EDI field, contain valid informa-

tion. Figure 2-38. SMHR Register

Also saved are the contents of debug register 31 2 1 0
(DRY7), the extended flags register (EFLAGS), SMHR |ReS| V. ‘
and control register 0 (CRO).

Table 2-37. SMHR Register Bits

If the S bit in the SMM header is set, the SM T
H H SCRPTION
entry resulted from an SMINT instruction. POSITION DE
31-2 SMHR header pointer address.
1 Reserved
0 Valid Bit

2-73

System Management Mode

2.15.3 SMM Instructions saved or forces the CPU to power down, the
complete CPU state information must be saved.

After entering the SMI service routine, the Since the CPU is a static device, its internal state

MOV, SVDC, SVLDT and SVTS instructions s retained when the input clock is stopped.

(Table 2-38) can be used to save the completgherefore, an entire CPU state save is not neces-

CPU state information. If the SMI service sary prior to stopping the input clock.

routine modifies more than what is automatically

Table 2-38. SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION
SvDC OF 78 [mod sreg3 r/m] SVDC mem80, sreg®ave Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.
RSDC OF 79 [mod sreg3 r/m] RSDC sreg3, mem8Restore Segment Register and Descriptor

Restores reg (DS, ES, FS, GS, or SS) from mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an excep-
tion.

SVLDT OF 7A [mod 000 r/m] | SVLDT mem80 Save LDTR and Descripto
Saves Local Descriptor Table (LDTR) to mem80

RSLDT OF 7B [mod 000 r/m]| RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from

mem80.
SVTS OF 7C [mod 000 r/m]| SVTS mem80 Save TSR and Descriptor

Saves Task State Register (TSR) to mema80.
RSTS OF 7D [mod 000 r/m]| RSTS mem80 Restore TSR and Descriptor

Restores Task State Register (TSR) from mem8p.
SMINT OF 7E SMINT Software SMM Entry

CPU enters SMM mode. CPU state information|is
saved in SMM memory space header and execution
begins at SMM base address.

RSM OF AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using
the SMM memory space header and execution
resumes at interrupted point.

RDSHR OF 36 RDSHR ereg/mem32Read SMM Header Pointer Register
Saves SMM header pointer to extended register|or
memory.

WRSHR OF 37 WRSHR ereg/mem32Nrite SMM Header Pointer Register

Load SMM header pointer register from extended
register or memory.

Note: mem32 = 32-bit memory location
mem80 = 80-bit memory location

2-74

System Management Mod 2

The SMM instructions listed in Table 2-38, 2.15.4 SMM Operation

(except the SMINT instruction) can be executed
only if: This section details the SMM operations.

1) ARR3Size >0 Entering SMM

2) Current Privilege Level =0 . . .
3) SMAC bitis set or the CPU is executing anENtering SMM requires the assertion of the

SMI service routine. SMI# pin or execution of an SMINT instruction.
4) USE_SMI (CCR1-bit1)=1 SMI interrupts have higher priority than any
5) SM3(CCR1l-bit7)=1 interrupt including NMI interrupts.

If the above conditions are not met and an For the SMI# or SMINT instruction to be recog-
attempt is made to execute an SVDC, RSDC, nized, the following configuration register bits
SVLDT, RSLDT, SVTS, RSTS, SMINT, RSM, must be set as shown in Table 2-39.

RDSHR, or WDSHR instruction, an invalid

opcode exception is generated. These instruc_Table 2-39. Requirements for Recognizing SMI# and

tions can be executed outside of defined SMM SMINT

space provided the abovendlitions are met. REGISTER (Bit) SMi# SMINT
SMI CCR1 (1) 1 1

The SMINT instruction allows software entry |SMAC |CCR1 (2) 0 1

into SMM. The SVDC, RSDC, SVLDT, ARR3 | SIZE (3-0) >0 >0

RSLDT, SVTS and RSTS instructions save or| SM3 CCR1 (7) 1 1

restore 80 bits of data, allowing the saved values

to include the hidden portion of the register ~Upon entry into SMM, after the SMM header
contents. has been saved, the CRO, EFLAGS, and DR7

registers are set to their reset values. The Code
The WRSHR instruction loads the contents of Segment (CS) register is loaded with the base,
either a 32-bit memory operand or a 32-bit as defined by the ARR3 register, and a limit of
register operand into the SMHR pointer registest GBytes. The SMI service routine then begins
based on the value of the mod r/m instruction execution at the SMM base address in real mode.
byte. Likewise the RDSHR instruction stores
the contents of the SMHR pointer register to
either a 32 bit memory operand or a 32 bit
register operand based on the value of the mod
r/m instruction byte.

2-75

System Management Mode

Saving the CPU State Exiting SMM

The programmer must save the value of any To exit the SMI service routine, a Resume
registers that may be changed by the SMI servid®SM) instruction, rather than an IRET, is
routine. For data accesses immediately after executed. The RSM instruction causes the
entering the SMI service routine, the programmdBM 6x86MX processor to restore the CPU
must use CS as a segment override. 1/0O port state using the SMM header information and
access is possible during the routine but care mussume execution at the interrupted point. If
be taken to save registers modified by the /O the full CPU state was saved by the
instructions. Before using a segment register, therogrammer, the stored values should be
register and the register’s descriptor cache conteradoaded prior to executing the RSM instruc-
should be saved using the SVDC instruction. tion using the MOV, RSDC, RSLDT and RSTS
While executing in the SMM space, execution instructions.

flow can transfer to normal memory locations. _ o
When the RSM instruction is executed at the

Program Execution end of the SMI handler, the EIP instruction
pointer is automatically read from the NEXT IP

Hardware interrupts, (INTRs and NMIs), May 5014 in the SMM header

be serviced during a SMI service routine. If

interrupts are to be serviced while executing izvhen restarting 1/O instructions, the value of
the SMM memory space, the SMM memory NEXT IP may need modification. Before
space must be within the 0 to 1 MByte addressxecuting the RSM instruction, use a MOV
range to guarantee proper return to the SMI instruction to move the CURRENT IP value to
service routine after handling the interrupt. the NEXT IP location as the CURRENT IP

INTRs are automatically disabled when enterin glueis valid if_an /O instruction was exec.utin.g
SMM since the IF flag is set to its reset value. hen the SMI interrupt occurred. Execution is

Once in SMM, the INTR can be enabled by then returned to the I/O instruction, rather than

setting the IF flag. NMI is also automatically to the instruction after the I/O instruction.

disable when entering SMM. Once in SMM, A et H bit in the SMM header indicates that a
NMI can be enabled by setting NMI_ENin 1 T jnstruction was being executed when the
CCR3. If NMlis not enabled, the CPU latcheg occurred. To resume execution of the HLT
one NMI event and services the interrupt aftel’nstruction, the NEXT IP field in the SMM

NMI has been enabled or after exiting SMM header should be decremented by one before
through the RSM instruction. executing RSM instruction.

Within the SMI service routine, protgcted mode2 155 SL and Cyrix SMM
may be entered and exited as required, and real Operating Modes
or protected mode device drivers may be

called. There are two SMM modes, SL-compatible

mode (default) and Cyrix SMM mode.

2-76

System Management Mod 2

2.15.5.1 SL-Compatible SMM Mode = When the RSM instruction is executed, the CPU
negates the SMIACT# pin after the last bus

While in SL-compatible mode, SMM memory cycle to SMM memory. While executing the

space accesses can only occur during an SMEMM service routine, one additional SMI# can

service routine. While executing an SMI servicge latched for service after resuming from the
routine SMIACT# remains asserted regardlesgrst SMI.

of the address being accessed. Thisincludes the

time when the SMI service routine accesses During RESET, the USE_SMI bit in CCR1 is
memory outside the defined SMM memory cleared. While USE_SMI is zero, SMACT# is

space. always negated. SMIACT# does not float

during bus hold states.
SMM memory caching is not supported in

SL-compatible SMM mode. If a cache inquiry2.15.5.2 Cyrix Enhanced SMM Mode
cycle occurs while SMIACT# is active, any) . o
resulting write-back cycle is issued with The Cyrix SMM Mode is enabled when bit O in

SMIACT# asserted. This occurs even thoughthe CCR6 (SMM_MODE) is set. Only in Cyrix
the write-back cycle is intended for normal €nhanced SMM mode can:

memory rathfer. than SMM memory. To qvoid « SMM memory be cached

this problem it is reco.mmended.that the internal, gy interrupts be nested

caches be flushed prior to servicing an SMI

event. Of course in write-back mode this coul®in Interface

add an indeterminate delay to servicing of SMI. _ _
The SMI# and SMIACT# pins behave differ-

An interrupt on the SMI# input pin has higher ently in Cyrix Enhanced SMM mode.
priority than the NMI input. The SMI# input pin

is falling edge sensitive and is sampled on evely Cyrix Enhanced SMM mode SMI# is level
rising edge of the processor input clock. sensitive. As a level sensitive signal software

can process SMI interrupts until all sources in
Asserting SMI# forces the processor to save thige chipset have been cleared.
CPU state to memory defined by SMHR
register and to begin execution of the SMI While operating in this mode, SMIACT# output
service routine at the beginning of the definedS not used to indicate that the CPU is operating
SMM memory space. After the processor intef? SMM mode. This is left to the SMM driver.
nally acknowledges the SMI# interrupt, the
SMIACT# output is driven low for the duration
of the interrupt service routine.

2-77

System Management Mode

In Cyrix enhanced SMM, SMIACT# is assertedre-enables them (sets the N bit) when exiting
for every SMM memory bus cycle and is SMM mode (i.e., RSM). The SMI handler can
de-asserted for every non-SMM bus cycle. In optionally enable nesting to allow higher

this mode the SMIACT# pin meets the timing ofpriority SMI interrupts to occur while handling
D/C# and W/R#. the current SMI event.

During RESET, the USE_SMI bitin CCR1is The SMI handler is responsible for managing
cleared. While USE_SMI is zero, SMIACT# is the SMHR pointer register when processing
always negated. SMIACT# does float during busiested SMI interrupts. Before nested SMI’s can
hold states. be serviced the current SMM handler must save
the contents of the SMHR pointer register and
then load a new value into the SMHR register
for use by a subsequent nested SMI event.

Cacheability of SMM Space

In SL-compatible SMM mode, caching is not
available, butin Cyrix SMM mode, both code pyigr tg execution of a RSM instruction the

and data caching is supported. In order to cachgontents of the old SMHR pointer register must
SMM data and avoid coherency issues the g restored for proper operation to continue.
processor assumes no overlap of main memonpyior 1o restoring the contents of old SMHR
with SMM memory. This implies that a section pginter register one should disable additional

of main memory must be dedicated for SMM. gp1's. This should be done so that the CPU will

The on-chip cache sets a special ID bit in the not inadvertently receive and service an SMi
cache tag block for each line that contains SMNF Y after the old SMHR contents have been
code data. This ID bit is then used by the bus restored but before the RSM instruction is
controller to regulate assertion of the smiacT#executed

pin for write-back of any SMM data. 215.6 Maintaining the FPU

Nested SMI and MMX States

Only in the Cyrix enhanced SMM mode is If power will be removed from the CPU or if the
nesting of SMI interrupts supported. Thisis ~ SMM routine will execute MMX or FPU
important to allow high priority events such as instructions, then the MMX or FPU state should
audio emulation to interrupt lower priority SMI be maintained for the application running befqre
code. In the case of nesting, it is up to the SMMPMM was entered. If the MMX or FPU state is

driver to determine which SMM event is being 0 be saved and restored from within SMM,

serviced, which to prioritize, and perform all there are certain guidelines that must be
SMM interrupt control functions. followed to make SMM completely transparent

to the application program.

Software enables and disables SMI interrupts
while in SMM mode by setting and clearing the The complete state of the FPU can be saved and

nest-enable bit (N bit, bit 6 of CCR6). By defaultestored with the FNSAVE and FNRSTOR

the CPU automatically disables SMI interrupts instructions. FNSAVE is used instead of the
(clears the N bit) on entry to SMM mode, and FSAVE because FSAVE will wait for the FPU

to check for existing error conditions before

2-78

Shutdown and Hal 2

storing the FPU state. If there is a unmasked 2.16 Shutdown and Halt

FPU exception condition pending, the FSAVE

instruction will wait until the exception condi- TheHalt Instruction (HLT) stops program ex-
tion is serviced. To maintain transparency forecution and prevents the processor from using
the application program, the SMM routine the local bus until restarted. The IBM 6x86MX
should not service this exception. If the FPU CPU then issues a special Stop Grant bus cycle
state is restored with the FNRSTOR instructio@nd enters a low-power suspend mode if the
before returning to normal mode, the applica-SUSP_HLT bit in CCR2 is set. SMI, NMI,

tion program can correctly service the excep-INTR with interrupts enabled (IF bit in

tion. FPU instructions can be executed withinEFLAGS=1), WM_RST or RESET forces the

SMM once the FPU state has been saved. CPU out of the halt state. If interrupted, the
_ _ . saved code segment and instruction pointer
The information saved with the FSAVE specify the instruction following the HLT.

instruction varies depending on the operating
mode of the CPU. To save and restore all FPU

information, the 32-bit protected mode versio hutd h i< detected
of the FPU save and restore instruction shouﬁ Utdown occurs When a Severe erroris detecte

be used. at prevents further processing. An NMI input
can bring the processor out of shutdown if the

CPU States Related to SMM and Suspend DT limitis large enough to contain the NMI

Mode interrupt vector and the stack has enough room
to contain the vector and flag information.

The state diagram shown in Figure 2-39 (Pagetherwise, shutdown can only be exited by a
2-81) illustrates the various CPU states assogirocessor reset.

ated with SMM and suspend mode. While in
the SMI service routine, the 6x86MX CPU can
enter suspend mode either by (1) executing a
halt (HLT) instruction or (2) by asserting the
SUSP# input.

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of
SMI#, NMI, or INTR is latched. (In order for
INTR to be latched, the IF flag must be set.)
The INTR or NMI is serviced after exiting
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application
software, the reception of an SMI# interrupt
causes the CPU to exit suspend mode and enter
SMM.

2-79

Shutdown and Halt

Suspend Mode NM I or INTR ~(Interrupt Service
(SUSPA# = 0) [Routine
HLT*
NM | or INTR
T SUSP#=0
O S/Application “"1 Suspend Mode
SUSP#=1 =
> Software < (SUSPA# = 0)
A (INTR, NM I and S M | latched)
SMI# =0
SMI#=0 S MINT* R S M*
Non-SMM Operations
N SMM Operations
Y
SMI Service
Routine
(SMI#=0) HLT*
A
Suspend Mode
(SUSPA# = 0)
IRET*
INTRorNMI
SUSP#=0 SUSP#=1 INTRand N M|
. \
Interrupt Service Interrupt Service
Routine Suspend Mode Routine
(SUSPA# = 0)
* |nstructions (INTR and N M | latched)

Figure 2-39. SMM and Suspend Mode State Diagram

2-80

I 2

2.17 Protection 2.17.1 Privilege Levels

Segment protection and page protection are The values for privilege levels range
safeguards built into the IBM 6x86MX CPU between 0 and 3. Level 0 is the highest privi-
protected mode architecture which deny unautege level (most privileged), and level 3 is the
thorized or incorrect access to selected lowest privilege level (least privileged). The
memory addresses. These safeguards allow privilege level in real mode is effectively 0.
multitasking programs to be isolated from each . o .

other and from the operating system. Page The_Descrlptor Pr|IV|Iege Level (DPL) is the
protection is discussed earlier in this chapter. Privilege level defined for a segment in the

This section concentrates on segment protec-S€gment descriptor. The DPL field specifies
tion. the minimum privilege level needed to access

the memory segment pointed to by the
Selectors and descriptors are the key elementgescriptor.
in the segment protection mechanism. The o . .
segment base address, size, and privilege levdineCurrent Privilege Level (CPL) is defined
are established by a segment descriptor. Priv@s the current task’s privilege level. The CPL
|ege |eve|s Contro| the use of priv”eged of an executing taSk iS Stored in the h|dden
instructions, 1/O instructions and access to Portion of the code segment register and essen-
segments and segment descriptors. Selectordially is the DPL for the current code segment.

are used to locate segment descriptors. TheRequested Privilege Leve{RPL) speci-

Segment accesses are divided into two basic fies a selector’s privilege level and is used to
types, those involving code segments (e.g., distinguish between the privilege level of a

control transfers) and those involving data foutine actually accessing memory (the CPL),
accesses. The ability of a task to access a and the privilege level of the original requestor

segment depends on the: (the RPL) of the memory access. The lesser of
the RPL and CPL is called the effective privilege
* segmenttype level (EPL). Therefore, if RPL=0ina
* instruction requesting access segment selector, the effective privilege level
* type of descriptor used to define the segmentjg always determined by the CPL. If RPL = 3,

associated privilege levels (described below)ie effective privilege level is always 3 regard-

Data stored in a segment can be accessed onll?/SS of the CPL.

by code executing at the same or a more privicor a memory access to succeed, the effective
leged level. A code segment or procedure capyiilege level (EPL) must be at least as privi-
only be called by a task executing at the sameged as the descriptor privilege level (EPL
or a less privileged level. DPL). If the EPL is less privileged than the
DPL (EPL > DPL), a general protection fault
is generated. For example, if a segment has a
DPL = 2, an instruction accessing the segment
only succeeds if executed with an ERPR.

2-81

2.17.2 I/O Privilege Levels 2.17.3 Privilege Level Transfers

The I/O Privilege Level (IOPL) allows the A task’s CPL can be changed only through
operating system executing at CPL=0 to definentersegment control transfers using gates or
the least privileged level at which IOPL-sensi-task switches to a code segment with a different
tive instructions can unconditionally be used. privilege level. Control transfers result from
The IOPL-sensitive instructions include CLI, exception and interrupt servicing and from

IN, OUT, INS, OUTS, REP INS, REP OUTS, execution of the CALL, JMP, INT, IRET and
and STI. Modification of the IF bit in the RET instructions.

EFLAGS register is also sensitive to the 1/0

privilege level. The IOPL is stored in the There are five types of control transfers that

EFLAGS register. are summarized in Table 2-40 (Page 2-84).
Control transfers can be made only when the
An 1/O permission bit map is available as operation causing the control transfer references

defined by the 32-bit Task State Segment the correct descriptor type. Any violation of
(TSS). Since each task can have its own TSShese descriptor usage rules causes a general
access to individual processor 1/0O ports can bgrotection fault.

granted through separate I/O permission bit

maps. Any control transfer that changes the CPL

within a task results in a change of stack. The
If CPL <IOPL, IOPL-sensitive operations can initial values for the stack segment (SS) and
be performed. If CPL > IOPL, a general stack pointer (ESP) for privilege levels 0, 1,
protection fault is generated if the current taskand 2 are stored in the TSS. During a CALL
is associated with a 16-bit TSS. If the currentcontrol transfer, the SS and ESP are loaded
task is associated with a 32-bit TSS and CPL with the new stack pointer and the previous
IOPL, the CPU consults the I/O permission stack pointer is saved on the new stack. When
bitmap in the TSS to determine on a port-by-portreturning to the original privilege level, the
basis whether or not I/O instructions (IN, RET or IRET instruction restores the less-priv-
OUT, INS, OUTS, REP INS, REP OUTS) are ileged stack
permitted, and the remaining IOPL-sensitive
operations generate a general protection fault.

2-82

I 2

Table 2-40. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER opfﬁf‘géo'\' FIQDEEFSé:F?I;ZECI)ERD DE?ﬁg'LFéTOR
Intersegment within the same privilege level JMP, CALL, RET, |Code Segment GDT or LDT
IRET*
Intersegment to the same or a more privilegeGALL Gate Call GDT or LDT
level. o Interrupt Instruction, | Trap or Interrupt Gate| IDT
Interrupt within task (could change CPL levelEyception, External
Interrupt
Intersegment to a less privileged level (changRET, IRET* Code Segment GDT or LDT|
task CPL).
Task Switch via TSS CALL, JMP Task State Segment GDT
Task Switch via Task Gate CALL, JMP Task Gate GDT or LOT
IRET**, Interrupt Task Gate IDT
Instruction, Exception,
External Interrupt

* NT (Nested Task bitin EFLAGS) =0
** NT (Nested Task bitin EFLAGS) =1

Gates 2.17.4 Initialization and Transition to

.) . . Protected Mode
Gate descriptors provide protection for privi-

lege transfers among executable segments. The IBM 6x86MX microprocessor switches to
Gates are used to transition to routines of the real mode immediately after RESET. While
same or a more privileged level. Call gates, operating in real mode, the system tables and
interrupt gates and trap gates are used for privi-registers should be initialized. The GDTR and
lege transfers within a task. Task gates are USEOTR must point to a valid GDT and IDT, respec-

to transfer between tasks. tively. The GDT must contain descriptors which

.. describe the initial code and data segments.
Gates conform to the standard rules of privi- g

lege. In other words, gates can be accessed bhe processor can be placed in protected mode
a task if the effective privilege level (EPL) is by setting the PE bit in the CRO register. After
the same or more privileged than the gate enabling protected mode, the CS register should
descriptor’s privilege level (DPL). be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should
be initialized with appropriate selector values.

2-83

Virtual 8086 Mode

Virtual 8086 Mode 2.18.2 V86 Protection

o [l
]
)
T
d'll
I

2.

Both real mode and virtual 8086 (V86) mode All V86 tasks operate with the least amount of
are supported by the IBM 6x86MX CPU allowing privilege (level 3) and are subject to all of the
execution of 8086 application programs 886 IBM 6x86MX CPU protected mode protection
operating systems. V86 mode allows the checks. As a result, any attempt to execute a
execution of 8086-type applications, yet still privileged instruction within a V86 task results
permits use of the IBM 6x86MX CPU paging in a general protection fault.

mechanism. V86 tasks run at privilege level 3.

When loaded, all segment limits are set to In V86 mode, a slightly different set of instruc-

FFFFh (64K) as in real mode. tions are sensitive to the 1/O privilege level
(IOPL) than in protected mode. These instruc-

2.18.1 V86 Memory Addressing tions are: CLI, INT n, IRET, POPF, PUSHF, and

STI. The INT3, INTO and BOUND variations

While in V86 mode, segment registers are use@f the INT instruction are not IOPL sensitive.
in an identical fashion to real mode. The

contents of the segment register are multiplied2.18.3 V86 Interrupt Handling
by 16 and added to the offset to form the .
segment base linear address. The IBM To fully support the emulation of an 8086-type

6x86MX CPU permits the operating system to Machine, interrupts in V86 mode are handled as
select which programs use the V86 address follows. When an interrupt or exception is

mechanism and which programs use protectedserviced in V86 mode, program execution trans-
mode addressing for each task. fers to the interrupt service routine at privilege

level O (i.e., transition from V86 to protected
The IBM 6x86MX CPU also permits the use of mode occurs) and the VM bit in the EFLAGS
paging when operating in V86 mode. Using register is cleared. The protected mode interrupt
paging, the 1-MByte memory space of the V86service routine then determines if the interrupt
task can be mapped to anywhere in the 4-GByteame from a protected mode or V86 application
linear memory space of the IBM 6x86MX by examining the VM bit in the EFLAGS image
CPU. stored on the stack. The interrupt service routine

, _ may then choose to allow the 8086 operating
The paging hardware allows multiple V86 taSkSsystem to handle the interrupt or may emulate

to run concurrently, and provides protection andne fynction of the interrupt handler. Following
operating system isolation. The paging hard- .ompletion of the interrupt service routine, an

ware must be enabled to run multiple V86 task§RET instruction restores the EFLAGS register

or to relocate the address space of a V86 task t(?estores VM=1) and segment selectors and
physical address space greater than 1 MBYte. ¢,nrq| returns to the interrupted V86 task.

2-84

Floating Point Unit Operations 2

2.18.4 Entering and

Leaving V86 Mode

FPU Tag Word Register.The IBM 6x86MX
CPU maintains a tag word register (Figure
2-40 (Page 2-87)) comprised of two bits for

V86 mode is entered from protected mode by each physical data register. Tag Word fields

either executing an IRET instruction at CPL =

assume one of four values depending on the

0 or by task switching. Ifan IRET is used, the contents of their associated data registers, Val-

stack must contain an EFLAGS image with

id (00), Zero (01), Special (10), and Empty

contain an EFLAGS image containing a 1 in
the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the

and unsupported formats are tagged as “Spe-
cial”. Tag values are maintained transparently
by the IBM 6x86MX CPU and are only avail-

state of the VM bit is not affected. V86 mode gple to the programmer indirectly through the
can only be exited as the result of an interrupt ESTENV and FSAVE instructions.

or exception. The transition out must use a
32-bit trap or interrupt gate which must point

FPU Control and Status Registers.The

to a non-conforming privilege level 0 segment FPU circuitry communicates information
(DPL = 0), or a 32-bit TSS. These restrictions about its status and the results of operations to
are required to permit the trap handler to IRET the programmer via the status register. The

back to the V86 program.

2.19 Floating Point Unit Operations

The 6x86MX CPU includes an on-chip FPU

FPU status register is comprised of bit fields
that reflect exception status, operation execu-
tion status, register status, operand class, and
comparison results. The FPU status register
bit definitions are shown in Figure 2-41

that provides the user access to a complete S€(page 2-87) and Table 2-41 (Page 2-87)

of floating point instructions (see Chapter 6).
Information is passed to and from the FPU
using eight data registers accessed in a
stack-like manner, a control register, and a
status register. The IBM 6x86MX CPU also
provides a data register tag word which
improves context switching and performance
by maintaining empty/non-empty status for
each of the eight data registers. In addition,

The FPU Mode Control Register (MCR) is
used by the CPU to specify the operating mode
of the FPU. The MCR contains bit fields
which specify the rounding mode to be used,
the precision by which to calculate results, and
the exception conditions which should be re-
ported to the CPU via traps. The user controls
precision, rounding, and exception reporting

registers in the CPU contain pointers to (a) theby setting or clearing appropriate bits in the

memory location containing the current
instruction word and (b) the memory location
containing the operand associated with the
current instruction word (if any).

MCR. The FPU mode control register bit def-
initions are shown in Figure 2-42 (Page 2-88)
and Table 2-42 (Page 2-88).

2-85

- e —— Floating Point Unit Operations
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
| Tag(7) | Tag(6) | Tag(5) | Tag(4) | Tag(3) | Tag(2) | Tag(1)| Tag(0}
Figure 2-40. FPU Tag Word Register
15 12 11 8 7 4 3 0
B C3 S § s C2CL d0 ES SF A O zZz D |
U
Figure 2-41. FPU Status Register
Table 2-41. FPU Status Register Bit Definitions
BIT
POSITION NAME DESCRIPTION
15 B Copy of the ES bit. (ES is bit 7 in this table.)
14,10-8 C3-CO0 Condition code bits.
13-11 SSS Top of stack register number which points to the current TOS.
ES Error indicator. Set to 1 if an unmasked exception is detected.
SF Stack Fault or invalid register operation bit.

P Precision error exception bit.
U Underflow error exception bit.
(0] Overflow error exception bit.
z

D

I

Divide by zero exception bit.
Denormalized operand error exception bit.
Invalid operation exception bit.

O|lFR,IN WA OOWO|N

2-86

Floating Point Unit Operations 2

15 12 11 8 7 4 3 0
RCRC PC - - PJuU O Z D| I
Figure 2-42. FPU Mode Control Register
Table 2-42. FPU Mode Control Register Bit Definitions
BIT
EOSITION NAME DESCRIPTION
11-10 RC Rounding Control bits:
00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate
9-8 PC Precision Control bits:
00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa
5 P Precision error exception bit mask.
4 U Underflow error exception bit mask.
3 (0] Overflow error exception bit mask.
2 Z Divide by zero exception bit mask.
1 D Denormalized operand error exception bit mask.
0 I Invalid operation exception bit mask.

2-87

MMX Operations

2.20 MMX Operations 2.20.4 Instruction Group Overview

The IBM 6x86MX CPU provides user access tdhe 57 MMX instructions are grouped into
the MMX instruction set. MMX data is config- seven categories:

ured in one of four MMX data formats. During
operations eight 64-bit MMX registers are
utilized.

Arithmetic Instructions

Comparison Instructions

Conversion Instructions

Logical Instructions

Shift Instructions

Data Transfer Instructions

Empty MMX State (EMMS) Instruction

2.20.1 MMX Data Formats

The MMX instructions operate on 64-bit data
groups called “packed data.” A single packed

data group can be interpreted as a: 2.20.5 Saturation Arithmetic

Packed byte (8 bytes)

Packed word (4 words)

Packed doubleword (2 doublewords)
Quadword (1 quadword)

For saturating MMX instructions, a ceiling is
placed on an overflow and a floor is placed on
an underflow. When the result of an operation
exceeds the range of the data-type it saturates
The packed data types supported are signed dadhe maximum value of the range.

unsigned integer. Conversely, when a result that is less than the
. range of a data type, the result saturates to the
2.20.2 MMX Registers minimum value of the range.

The MMX instruction set operates on eight The saturation limits are shown in Table 2-43.
64-bit, general-purpose registers (MMO-MM7).

These registers are overlayed with the floating/MX instructions do not indicate overflow or
point register stack, so no new architectural underflow occurrence by generating excep-
state is defined by the MMX instruction set. tions or setting flags.

Existing mechanisms for saving and restoring

floating point state automatically work for

saving and restoring MMX state.

2.20.3 MMX Instruction Set

The MMX instructions operate on all the
elements of a signed or unsigned packed data
group. All data elements (bytes, words, double-
words or a quadword) are operated on sepa-
rately in parallel. For example, eight bytes in
one packed data group can be added to another
packed data group, such that eight independent
byte additions are performed in parallel.

2-88

MMX Operations 2

Table 2-43. Saturation Limits

LOWER UPPER
DATA TYPE LIMIT LIMIT
Signed 80h -128 7Fh 127
Byte
Signed 8000h | -32,768 7FFFh 32,767
Word
Unsigned |00h 0 FFh 256
Byte
Unsigned [0000h | O FFFFh 65,535
Word

2.20.6 EMMS Instruction

The EMMS Instruction clears the TOS pointer
and sets the entire FPU tag word as empty. An
EMMS instruction should be executed at the
end of each MMX routine.

2-89

