
The
8086Family
Users Manual
October1979

© Intel Corporation 1978, 1979

9800722-03/ $7.50

The
8086 Family
Users Manual
October 1979

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Imile Megachassis RMX
Intel Micromap UPI
Intelevision Multibus I-IScope
Imellee

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

ii

Table of Contents

CHAPTERl
INTRODUCTION PAGE
Manual Organization " I-I
8086 Family Architecture. I-I

Functional Distribution. I-I
Microprocessors. .. 1-2
Interrupt Controller 1-3
Bus Interface Components. 1-3

Multiprocessing.. 1-3
Bus Organization. .. 1-4

Local Bus 1-4
System Bus , " " 1-5

. Processing Modules. .. 1-6
Bus Implementation Examples. 1-6

Development Aids. 1-12

CHAPTER 2
THE 8086 AND 8088 CENTRAL
PROCESSING UNITS
Processor Overview. .. 2-1
Processor Architecture. .. 2-3

Execution Unit. .. 2-5
Bus Interface Unit. .. 2-5
General Registers. 2-6
Segment Registers " 2-7
Instruction Pointer 2-7
Flags 2-7
8080/8085 Register and Flag Correspondence. .. 2-8
Mode Selection , '" 2-8

Memory ; " 2-8
Storage Organization 2-8
Segmentation .. 2-10
Physical Address Generation. 2-11
DynamicallyRelocatable Code 2-13
Stack Implementation 2-14
Dedicated and Reserved Memory Locations 2-14
8086/8088 Memory Access Differences 2-15

Input/Output 2-15
Input/Output Space 2-16
Restricted 110 Locations 2-16
8086/8088 Memory Access Differences .. , 2-16
Memory-Mapped I/O 2-16
Direct Memory Access. .. 2-17
8089 Input/Output Processor (lOP) 2-17

Multiprocessing Features. 2-17
Bus Lock 2-17
WAIT and TEST • 2-18
Escape 2-19
Request/Grant Lines. . . . • 2-20

. Multibus™ Architecture 2-21

iii

PAGE
8289 Bus Arbiter 2-22

Processor Control and Monitoring 2-22
Interrupts. .. 2-22

External Interrupts 2-22
Internal Interrupts. .. 2-24
Interrupt Pointer Table. 2-25
Interrupt Procedures. 2-26
Single-Step (Trap) Interrupt. 2-28
Breakpoint Interrupt. 2-28

System Reset. .. 2-29
Instruction Queue Status. 2-29
Processor Halt. .. 2-29
Status Lines " 2-30

Instruction Set 2-30
Data Transfer Instructions. 2-31

General Purpose Data Transfers " 2-31
Address Object Transfers. 2-32
Flag Transfers 2-32·

Arithmetic Instructions. 2-33
Arithmetic Data Formats. 2-33
Arithmetic Instructions and Flags 2-34
Addition. .. 2-35
Subtraction. .. 2-36
Multiplication. .. 2-36
Division '" . " 2-37

Bit Manipulation Instructions 2-38
Logical 2-38
Shifts. .. 2-39
Rotates " 2-39

String Instructions. .. 2-40
Program Transfer Instructions. 2-43

Unconditional Transfers. 2-43
Conditional Transfers. 2-45
Iteration Control. .. 2-45
Interrupt Instructions. 2-46

Processor Control Instructions 2-47
Flag Operations 2-47
External Synchronization. 2-48
No Operation. .. 2-48

Instruction Set Reference Information. 2-48
Addressing Modes. .. 2-68

Register and Immediate Operands. 2-68
Memory Addressing Modes " 2-68

The Effective Address. 2-68
Direct Addressing 2-69
Register Indirect Addressing " 2-69
Based Addressing. .. 2-70
Indexed Addressing. .. 2-70

PAGE
Based Indexed Addressing 2-71
String Addressing. .. 2-72

110 Port Addressing 2-72
Programming Facilities 2-72

Software Development Overview 2-73
PL/M-86 2-75

Statements and Comments 2-75
Data Definition " 2-75
Assignment Statement. 2-77
Program Flow Statements 2-79
Procedures. .. 2-81

ASM-86 2-83
Statements 2-83
Constants .. 2-84
Defining Data 2-85
Records ;. 2-85
Structures 2-87
Addressing Modes ,. 2-87
Segment Control 2-88
Procedures. .. 2-90

LINK-86 .. 2-90
LOC-86 2-90
LIB-86. .. 2-91
OH-86 2-91
CONV-86 2-92
Sample Programs " 2-92

Programming Guidelines and Examples. 2-96
Programming Guidelines 2-96

Segments and Segment Registers 2-96
Self-Modifying Code " 2-96
Input/Output. .. 2-97
Operating Systems. .. 2-97
Interrupt Service Procedures 2-99
Stack-Based Parameters 2-100
Flag Images 2-100

Programming Examples 2-100
Procedures 2-100
Jumps and Calls 2-105
Records , 2-110
Dynamic Code Relocation 2-113
Memory-Mapped 110 2-115
Breakpoints 2-117
Interrupt Procedures 2-119
String Operations 2-125

CHAPTER 3
THE 8089 INPUT/OUTPUT
PROCESSOR
Processor Overview , 3-1

Evolution 3-1
Principles of Operation , 3-2

CPU/lOP Communications 3-2
Channels , 3-4
Channel Programs (Task Blocks) 3-4

iv

PAGE
DMA Transfers. .. 3-5
Bus Configurations. .. 3-5
A Sample Transaction. 3-10

Applications , 3-12

Processor Architecture 3-13
Common Control Unit (CCU) 3-13
Arithmetic/Logic Unit (ALU) 3-13
Assembly/Disassembly Registers , 3-14
Instruction Fetch Unit 3-14
Bus Interface Unit (BIU) 3-16
Channels. .. 3-16

110 Control 3-16
Registers , 3-17
Program Status Word 3-18
Tag Bits. .. 3-19
Concurrent Channel Operation. 3-20

Memory. .. 3-21
Storage Organization. .. 3-22
Dedicated and Reserved Memory Locations. . .. 3-23
Dynamic Relocation 3-23
Memory Access 3-24

Input/Output. .. 3-25
Programmed 110 ; .. , 3-25

110 Instructions. .. 3-25
Device Addressing , 3-26
110 Bus Transfers. .. 3-26

DMA Transfers .. 3-27
Preparing the Device Controller. 3-27
Preparing the Channel. 3-27
Beginning the Transfer 3-31
DMA Transfer Cycle. 3-32
Following the Transfer. 3-33

Multiprocessing Features. 3-34
Bus Arbitration , 3-34

Request/Grant Line , 3-35
8289 Bus Arbiter 3-36
Bus Arbitration for lOP Configurations , 3-36

Bus Load Limit 3-36
Bus Lock. .. 3-37

Processor Control and Monitoring , 3-37
Initialization. .. 3-37
Channel Commands , 3-40
DRQ (DMA Request) 3-43
EXT (External Terminate) 3-43
Interrupts .. 3-43
Status Lines 3-43

Instruction Set " .. 3-44
Data Transfer Instructions. 3-44
Arithmetic Instructions. 3-45
Logical and Bit Manipulatioll Instructions. 3-46
Program Transfer Instructions. 3-48
Processor Control Instructions 3-49
Instruction Set Reference Information. 3-51

PAGE
Addressing Modes. .. 3-59

Register and Immediate Operands. 3-59
Memory Addressing Modes. 3-59

The Effective Address. 3-60
Based Addressing 3-60
Offset Addressing. .. 3-60
Indexed Addressing. .. 3 -60
Indexed Auto-Increment Addressing 3-61

Programming Facilities 3-63
ASM-89. .. 3-63

Statements 3-63
Constants .. 3-66
Defining Data , 3-66
Structures. .. 3-67
Addressing Modes. .. 3-68
Program Transfer Targets 3-68
Procedures. .. 3-69
Segment Control 3-69
Intermodule Communication 3-70
Sample Program 3-73

Linking and Locating ASM-89 Modules. 3-76
Programming Guidelines and Examples. 3-79

Programming Guidelines 3-79
Segments. .. 3-79
Self -Modifying Code. 3-79
110 System Design 3-79

Programming Examples 3-81
Initialization and Dispatch. 3-81
Memory-to-Memory Transfer. 3-85
Saving and Restoring Registers 3-85

CHAPTER 4
HARDWARE REFERENCE
INFORM A TION
Introduction .. 4-1
8086 cnd 8088 CPUs 4-1

CPU Architecture 4-1
Bus Operation 4-5
Clock Circuit , ... 4-10
Minimum/Maximum Mode 4-10

Minimum Mode 4-11
Maximum Mode 4-11

External Memory Addressing 4-14
110 Interfacing 4-15
Interrupts 4-16
Machine Instruction Encoding and Decoding .. 4-18
8086 Instruction Sequence 4-37

8089 I/O Processor , 4-38
System Configuration 4-39

Local Mode 4-39
Remote Mode 4-40

Bus Operation 4-41
Initialization 4-44
I/O Dispatching 4-46

v

PAGE
DMA Transfers. .. 4-47
DMA Termination 4-50
Peripheral Interfacing. .. 4-50
Instruction Encoding. .. 4-52

APPENDIX A
APPLICATION NOTES
AP-67 8086 System Design A-3
AP-61 Multitasking for the 8086 A-67
AP-50 Debugging Strategies and

Considerations for 8089 Systems A-85
AP-51 Designing 8086,8088,8089

Multiprocessing Systems with the 8289
Bus Arbiter A-Ill

AP-59 Using the 8259A Programmable
Interrupt Controller A-135

AP-28A Intel®Multibus TM Interfacing. A-175
AP-43 Using the iSBC-957™ Execution

Vehicle for Executing 8086
Program Code A-209

APPENDIXB
DEVICE SPECIFICATIONS
8086 Family

8086/8086-2/8086-4 16-Bit HMOS
Microprocessor B-1

M8086 16-Bit HMOS Microprocessor B-22
18086 16-Bit HMOS Microprocessor " B-23
8088 8-Bit HMOS Microprocessor. B-24
8089 8/16-Bit HMOS 110 Processor. " B-46
8282/8283 Octal Latch. B-59
8284 Clock Generator and Driver for

8086, 8088, 8089 Processors. B-63
M8284 Clock Generator and Driver for

8086, 8088, 8089 Processors " B-69
18284 Clock Generator and Driver for

8086,8088,8089 Processors B-70
8286/8287 Octal Bus Transceiver B-71
8288 Bus Controller for 8086, 8088,

8089 Processors. B-7 5
8289 Bus Arbiter " B-81
8237/8237-2 High Performance Programmable

DMA Controller. B-92
8259A/8259A-2/8289A-8 Programmable

Interrupt Controller B- I 06
8085 Peripherals

8155/8156/8155-2/8156-22048 Bit Static
MOS RAM with 110 Ports and Timer ... B-124

8185/8185-2 1024 x 8-Bit Static
RAM for MCS-85™ B-125

8355/8355-2 16,384-Bit ROM with 110 B-126
8755A18755A-2 16,384-Bit EPROM

with I/O B-127

PAGE

Standard Peripherals
8041A/8741A Universal Peripheral Interface

8-Bit Microcomputer B-128
8202 Dynamic RAM Controller B-129
8205 High Speed lOut of 8 Binary Decoder .. B-130
8251A Programmable Communication

Interface. .. B-131
8253/8253-5 Programmable Interval Timer. .. B-132
8255A/8255A-5 Programmable Peripheral

Interface. .. B-133
8271/8271-6/8271-8 Programmable Floppy

Disk Controller B-134
8273 Programmable HDLC/SDLC Protocol

Controller. •.. B-135
8275 Programmable CRT Controller B-136
8279/8279-5 Programmable Keyboard/Display

Interface ' B-137
8291 GPIB Talker/Listener•....... B-138
8292 GPIB Controller•....... B-139
8293 GPIB Transceiver. B-140
8294 Data Encryption Unit B-141
8295 Dot Matrix Printer Controller B-142

RAM Memories
2114A 1024 x 4 Bit Static RAM. • . .. B-143
21421024 x 4 Bit Static RAM. 8-144

'vi

PAGE

21481024 x 4 Bit Static RAM .. " B-145
EPROM Memories

271616K (2K x 8) UV Erasable PROM B-146
2732 32K (4K x 8) UV Erasable PROM B-147
2758 8K (l K x 8) UV Erasable Low

Power PROM B-148
Development Tools

Model 230 Intellec® Series II
Microcomputer Development System B-149

8086/8088 Software
Development Package B-153

8089 Assembler Support Package. B-163
ICE-86™ 8086 In-Circuit Emulator; B-165
iSBC 86/ 12A TM Single Board Computer , B-I71
iSBC 957™ Intellec®-iSBC 86/12ATM Interface

and Execution Package B-179
iSBC 300/340™ iSBC 300™ 32K-Byte RAM

Expansion Module iSBC 340™ 16K-Byte
EPROM/ROM Expansion Module B-184

SDK-86 MCS-86™ Sys.tem Design Kit B-188
SDK-C86 MCS-86™ System Design Kit.: ... 8-194

Chapter 1
Introduction

CHAPTER 1
INTRODUCTION

This publication describes the Intel® 8086 family
of microcomputing components, concentrating
on the 8086, 8088 and 8089 microprocessors. It is
written for hardware and software engineers and
technicians who understand microcomputer
operating principles. The manual is intended to
introduce the product line and to serve as a refer­
ence during system design and implementation.

Recognizing that successful microcomputer-based
. products are judicious blends of hardware and
software, the User's Manual addresses both sub­
jects, although at different levels of detail. This
publication is the definitive source for informa­
tion describing the 8086 family components. Soft­
ware topics, such as programming languages,
utilities and examples, are given moderately
detailed, but by no means complete, coverage.
Additional references, available from Intel's
Literature Department, are cited in the program­
ming sections.

1.1 Manual Organization

The manual contains four chapters and three
appendices. The remainder of this chapter
describes the architecture of the 8086 family, and
subsequent chapters cover the individual com­
ponents in detail.

Chapter 2, describes the 8086 and 8088 Central
Processing Units, and Chapter 3 covers the 8089
Input/Output Processor. These two chapters are
identically organized and focus on providing a
functional description of the 8086, 8088 and
8089, plus related Intel hardware and software
products. Hardware reference information­
electrical characteristics, timing .. and physical
interfacing considerations-for ail three pro­
cessors is concentrated in Chapter 4.

Appendix A is a collection of 8086 family applica­
tion notes; these provide design and debugging
examples. Appendix B contains complete data
sheets for all the 8086 family components and
system development aids; summary data sheets
covering compatible components from other Intel
product lines are also reproduced in Appendix B.

1-1

1.2 8086 Family Architecture

Considered individually, the 8086, 8088 and 8089
are advanced third-generation microprocessors.
Moreover, these processors are elements of a
larger design, that of the 8086 family. This
systems architecture specifies how the processors
and other components relate to each other, and is
the key to the exceptional versatility of these
products.

The components in the 8086 family have been
designed to operate together in diverse combina­
tions within the systematic framework of the
overall family architecture. In this way a single
family of components can be used to solve a wide
array of microcomputing problems. A compo­
nent mix can be tailored to fit the performance
needs of an application precisely, without having
to pay for unneeded capabilities that may be
bundled into more monolithic, CPU-centered
architectures. Using the same family of com­
ponents across multiple systems limits the learn­
ing curve problem and builds on past experience.
Finally, the modular structure of the family
architecture provides an orderly way for systems
to grow and change.

The 8086 family architecture is characterized by
three major principles:

1. System functions are distributed among
specialized components.

2. Multiprocessing capabilities are inherent in
the hardware.

3. A hierarchical bus organization provides for
the complex data flows required by high­
performance systems without burdening
simpler systems with unneeded capabilities.

Functional Distribution

Table 1-1 lists the components that constitute the
8086 microprocessor family. All components are
contained in standard dual in-line packages and
require single +5V power sources.

INTRODUCTION

Table 1-1. 8086 Component Family

Microprocessor Technology Pins Description

8086 Central Processing Unit (CPU) HMOS 40 8/16 bit general-purpose micro-
processor; 16-bitexternal data path.

8088 Central Processing Unit (CPU) HMOS 40 8/16 bit general-purpose micro-
processor; 8-bit external data path.

8089 Input/Output Processor (lOP) HMOS 40 8/16 bit microprocessor optimized for
high-speed I/O operations; 8-bit and
16-bit external data paths.

Support Component Technology Pins Function

8259A Programmable Interrupt Controller (PIC) NMOS 28 Identifies h ig hest-priority interrupt
request.

8282 Octal Latch Bipolar 20 Demultiplexes and increases drive of
8283 Octal Latch (Inverting) address bus.

8284 Clock Generator and Driver Bipolar 18 Provides time base.

8286 Octal Bus Transceiver Bipolar 20 Increases drive on data bus.
8287 Octal Bus Transceiver (Inverting)

8288 Bus Controller

8289 Bus Arbiter

Microprocessors
At the core of the product line are three
microprocessors that share these characteristics:

• Standard operating speed is 5 MHz (200 ns
cycle time); a selected 8 MHz version of the
8086 CPU is also available.

• Chips are housed in reliable 40-pin packages.
• Processors operate on both 8- and 16-bit data

types; internal data paths are at least 16 bits
wide.

• Up to 1 megabyte of memory can be
addressed, along with a separate 64k byte
110 space.

• The address/data and status interfaces of the
processors are compatible (the address and
data buses are time-multiplexed at the pro­
cessor, i.e., an address transmission is
followed by a data transmission over a subset
of the same physical lines).

Bipolar 20 Generates bus command signals.

Bipolar 20 Controls access of microprocessors

1-2

to multimaster system bus.

The 8086 and 8088 are third-generation central
processing units (CPUs) that differ primarily in
their external data paths. The 8088 transfers data
between itself and other system components 8 bits
at a time. The 8086 can transfer either 8 or 16 bits
in one bus cycle and is therefore capable of
greater throughput. Both processors have two
operating modes, selectable by a strapping pin. In
minimum mode, the CPUsemit the bus control
signals needed by memory and 110 peripheral
components. In maximum mode, an 8288' Bus
Controller assumes responsibility for controlling
devices attached to the system bus. CPU pins no
longer needed for bus control are then redefined
to provide signals that support multiprocessing
systems.

The 8089 Input/Output Processor (lOP) is an
independent microprocessor whose design has
been optimized for transferring data. The 8089

INTRODUCTION

typically runs under the direction of a CPU, but it
executes a separate instruction stream and can
operate in parallel with other system processors.
The lOP contains two independent I/O channels
that combine attributes of both CPUs and
advanced DMA (direct memory access) con­
trollers. The channels can execute programs and
perform programmed I/O operations similar to
CPUs. They may also transfer data by DMA, at
rates up to 1.25 megabytes per second (5 MHz
version). The channels can support mixes of 8-
and 16-bit I/O devices and memory. Combining
speed with programmable intelligence, the 8089
can assume the bulk of I/O processing overhead
and thereby free a CPU to perform other tasks.

Interrupt Controller

The 8259A Programmable Interrupt Controller
(PIC) is a new, 8086 family-compatible version
of the familiar 8259 that has been enhanced to
operate with the advanced interrupt facilities of
the 8086 and 8088 CPUs. The 8259A accepts
interrupt requests from up to eight sources; up
to 64 sources may be accommodated by
"cascading" additional 8259As. Each interrupt
sOlirce is assigned a priority number that typi­
cally reflects its "criticality" in the system. The
8259A has several built-in, priority-resolving
mechanisms that are selectable by software com­
mands from the CPU. These modes operate
somewhat differently, but in general the 8259A
continuously identifies the highest-priority active
interrupt request and generates an interrupt
request to the CPU if this request has higher
priority than the request currently being pro­
cessed. When the CPU recognizes the interrupt
request, the 8259A transfers a code to the CPU
that identifies the interrupt source.

Bus Interface Components

Components may be selected from this modular
group to implement different system bus con­
figurations. Except for the 8284, all components
are optional; their inclusion in a system is based
on the needs of the application. All of the bus
interface components are implemented using
bipolar technology to provide high-quality, high­
drive signals and very fast inttrnal switching.

The 8284 Clock Generator and Driver provides
the time base for the 8086 family micro­
processors. It divides the frequency signal from

1-3

an external crystal or TTL signal by three and
outputs the 5 MHz or 8 MHz processor clock
signal. It also provides the microprocessors with
reset and ready signals.

8282 or 8283 Octal Latches may be added to a
system to demultiplex the combined address/data
bus generated by the 8086 family micro­
processors. A demultiplexed bus provides
separate stable address and data lines required by
many peripheral components. Two latches
demultiplex 16 bits of the bus to provide an
address space of up to 64k bytes, while three
latches generate the fu1l20-bit (megabyte) address
space. The latches also provide the high drive on
the address lines needed in larger systems.

8286 and 8287 Octal Bus Transceivers are used to
provide more drive on data lines than the pro­
cessors themselves are capable of providing. One
or two transceivers may be used depending on the
width of the data bus (8 or 16 bits).

The 8288 Bus Controller decodes status signals
output by an 8089, or a maximum mode 8086 or
8088. When these signals indicate that the pro­
cessor is to run a bus cycle, the 8288 issues a bus
command that identifies the bus cycle as memory
read, memory write, I/O read, I/O write, etc. It
also provides a signal that strobes the address into
8282183 latches. The 8288 provides the drive
levels needed for the bus control lines in medium
to large systems.

The 8289 Bus Arbiter controls the access of a pro­
cessor to a multimaster system bus. A multi­
master bus is a path to system resources (typically
memory) that is shared by two or more
microprocessors (masters). Arbiters for each
master may use one of several priority-resolving
techniques to ensure that only one master drives
the shared bus.

Multiprocessing

Employing mUltiple processors in medium to
large systems offers several significant advantages
over the centralized approach that relies on a
single CPU and extremely fast memory:

• system tasks may be allocated to
special-purpose processors whose designs are
optimized to perform certain types of tasks
simply and efficiently;

INTRODUCTION

• very high levels of performance can be
attained when multiple processors can
execute simultaneously (parallel processing);

• robustness can be improved by isolating
system functions so that a failure or error in
one part of the system has a limited effect on
the rest of the system;

• the natural partitioning of the system
promotes parallel development of sub­
systems, breaks the application into smaller,
more manageable tasks, and helps isolate the
effects of system modifications.

The 8086 family architecture is explicitly designed
to simplify the development of multiple processor
systems by providing facilities for coordinating
the interaction of the processors.

The architecture supports two types of pro­
cessors: independent processors and
coprocessors. An independent processor is one
that executes its own instruction stream. The
8086, 8088 and 8089 are examples of independent
processors. An 8086 or 8088 typically executes a
program in response to an interrupt. The 8089
starts its channels in response to an interrupt-like
signal called a channel attention; this signal is
typically issued by a CPU.

The 8086 architecture also supports a second type
of processor, called a coprocessor. Coprocessor
"hooks" have been designed into the 8086 and
8088 so that this type of processor can be
accommodated in the future. A coprocessor dif­
fers from an independent processor in that it
obtains its instructions from another processor,
called a host. The coprocessor monitors instruc­
tions fetched by the host and recognizes certain of
these as its own and executes them. A
coprocessor, in effect, extends the instruction set
of its host processor.

The 8086 family architecture provides built-in
solutions to two classic mUltiprocessing coordina­
tion problems: bus arbitration and mutual exclu­
sion. Bus arbitration may be performed by the
bus request/grant logic contained in each of the
processors, by 8289 Bus Arbiters, or by a com­
bination of the two when processors have access
to multiple shared buses. In all cases, the arbitra­
tion mechanism operates invisibly to software.

1-4

For mutual exclusion,. each processor has a
LOCK (bus lock) signal which a program may
activate to prevent other processors from obtain­
ing a shared system bus. The 8089 may lock the
bus during a DMA transfer to ensure that both
the transfer completes in the shortest possible
time and that another processor does not access
the target of the transfer (e.g., a buffer) while it is
being updated. Each of the processors has an
instruction that examines and updates a memory
byte with the bus locked. This instruction can be
used to implement a semaphore mechanism for
controlling the access of multiple processors to
sha:red resources. (A semaphore is a variable that
indicates whether a resource, such as a buffer or a
pointer, is "available" or "in use"; section 2.5
discusses semaphores in more detail).

Bus Organization

Figure 1-1 summarizes the 8086 family bus struc­
ture. There are two different types of buses:
system and local. Both buses may be shared by
multiple processors,. i.e., both are multimaster
buses. Microprocessors are always connected to a
local bus, and memory and 110 components
usually reside on a system bus. The 8086 family
bus interface components link a local bus to a
system bus.

Local Bus

The local bus is optimized for use by the 8086
family microprocessors. Since standard memory
and 110 components are not attached to the local
bus, information can be multiplexed and encoded
to make very efficient use of processor pins (cer­
tain MCS-85™ peripheral components can be
directly connected to the local bus). This allows
several pins to be dedicated to coordinating the
activity of multiple processors sharing the local
bus. Multiple processors connected to the same
local bus are said to be local to each other; pro­
cessors on different local buses are said to be
remote to each other, or configured remotely.
Both independent processors and coprocessors
may share a local bus; on-chip arbitration logic
determines which processor drives the bus.
Because the processors on the local bus share the
same bus interface components, the local con­
figuration of multiple processors provides a com­
pact and inexpensive multiprocessing system.

INTRODUCTION

,----------------------,
r---,
1 1
1 PRIVATE 1 1
I MEMORY I"''''
1 1 w~1 r---1
L. - - - 1D1"' ... 1 BUS 1

~~".,IINTERFACE 1
r - - _, II: ~ GROUP

1 I "'~I 1 1

PROCESSOR
BUS

INTERFACE
GROUP

1 PRIVATE I U L. - .. - ..

1 1/0 I'" .,.. -~~~~~!PI--.
1 'I LOCAL BUS

L ___ .I r-Y -, r-Y'-,

PROCESSING
MODULE

I I I 1

:PROCESSOR: : PROCESSOR:

I I I I
L ___ .J L ___ .J

r-----'
1 I

..... PROCESSING 1
~ MODULE

I 1
L _____ ..J

PUBLIC
MEMORY

PUBLIC
1/0

r-----'
~ 1

• .,. PR~2Bt~~NG 1
I I
L _____ -l

Figure 1-1. Generalized 8086 Family Bus Structure

System Bus The system bus design is modular and subsets
may be implemented according to the needs of the
application. For example, the arbitration lines are
not needed in single-processor systems or in
multiple-processor systems that perform arbitra­
tion at the local-bus level.

A full implementation of an 8086 system bus con­
sists of the following five sets of signals:

1. address bus,

2. data bus,

3. control lines,

4. interrupt lines, and

5. arbitration lines.

These signals are designed to meet the needs of
standard memory and I/O devices; the address
and data buses are demultiplexed and traditional
control signals (memory read/write, I/O
read/write, etc.) are provided on the system bus.

1-5

A group of bus interface components transforms
the signals of a local bus into a system bus. The
number of bus interface components required to
generate a system bus depends on the size and
complexity of the system; reduced application
needs translate directly into reduced component
counts. These main variables determine the con­
figuration of a bus interface group: address space
size (number of latches), data bus Width (number
of transceivers), and arbitration needs (presence
of a bus arbiter).

INTRODUCTION

The 8086 family system bus is functionally and
electrically compatible with the Multibus ™
multimaster system bus used in Intel's iSBC™
line of single board computing products. This
compatability gives system designers access to a
wide variety of computer, memory, communica­
tions and other modules that may be incorporated
into products, used for evaluation or for test
vehicles.

Processing Modules

The processor(s) and bus interface group(s) that
are connected by a local bus constitute a process­
ing module. A simple processing module could
consist of a single CPU and one bus interface
group. A more complex module would contain
multiple processors, such as two lOPs, or a CPU
and one or two lOPs. One bus interface group
typically links the processors in the module to a
public system bus. If there are multiple processing
modules in the system, all memory or 110 con­
nected to the public bus is accessible to all pro­
cessing modules on the public bus. 8289 Bus
Arbiters in each processing module control the
access of the modules to the public bus and hence
to the public memory and 110.

A second bus interface group may be connected
to a processing module's local bus, generating a
second bus. This bus can provide the processing
module with a private address space that is not
accessible to other processing modules. Distri­
buting memory and 110 resources in this manner
can improve system robustness by isolating the
effects of failures. It can also increase system
throughput dramatically. If processor programs
and local data are placed in private memory, con-

8284 8088 CLOCK CPU GENERATOR

tention for use of the public system bus can be
held to a minimum to ensure that shared
resources are quickly available when they are
needed. In addition, processors in separate
modules can simultaneously fetch instructions
from private memory spaces to allow multiple
system tasks to proceed in parallel.

Bus Implementation Examples

This section summarizes the 8086 family bus
organization by showing how components from
the family can be combined to implement diverse
bus configurations. The first two examples
illustrate special cases that extend the applicabil­
ity of the 8086 family to smaller systems. The
remaining examples add and recombine the same
basic components to form progressively more
complex bus configurations. Note that these
examples are intended to be illustrative rather
than exhaustive; many different combinations of
components can be tailored to fit the needs of
individual applications.

In its minimum mode configuration, the 8088
time-multiplexes its 8-bit data bus with the lower
eight bits of its 20-bit address bus (figure 1-2).
This multiplexed address/data bus, and the bus
control signals emitted by the 8088, are directly
compatible with the multiplexed bus components
of Intel's 8085 family. These peripherals contain
on-chip logic that demultiplexes a combined
address/data bus. In addition, many of these
devices are multifunctional,combining, for
example, RAM, 110 ports and a timer on a single
chip. By using these components, it is possible to
build small (as few as four chips) economical
systems that are nonetheless capable of perform­
ing significant computing tasks.

CONTROL LINES Ji. ,
ADDRESSI
DATA LINES II.. ,

}
8088 MULTIPLEXED

BUS

Figure 1-2. 8088 Multiplexed Bus

1-6

INTRODUCTION

Combining 8282/83 latches with a minimum
mode 8086 or 8088 produces a minimum mode
system bus (figure 1-3). Two latches provide an
address space of up to 64k bytes; adding a third
latch provides access to the full megabyte of
memory. An 8288 Bus Controller is not required
for this implementation as the CPUs themselves
emit the bus control signals when they are con­
figured in the minimum mode. This demulti­
plexed bus structure is compatible with the wide
array of memory and 110 components that have

8284 8086/
CLOCK 8088

GENERATOR CPU
"" LOCAL BUS 110.

"II ,.
8282/83

been developed for the industry-standard 8080A
CPU. Eight-bit peripherals may be connected to
both the upper and lower halves of the 8086's
16-bit data bus. 8286/87 transceivers may be
added to provide additional drive on the data
lines, where required. Including an 8259A gives
the CPU the ability to respond to multiple inter­
rupt sources without polling. The minimum mode
system bus configuration is well-suited to a
variety of systems whose computational require­
ments can be met by a single 8086 or 8088 CPU.

.-----,
I PR It?TE~~~p~LE I REQUEST I CONTROLLER I LINES

"·rf
110.

I 0 ~259A A I ~ INTERRUPT

CONTROL LINES

I
,.

~

MINIMUM
MODE
SYSTEM
BUS

LATCHES ,.

r---,

"""'"'" 1
I I

..... : ~~s:~~~ I~ I CEIVERS I DATA LINES • I I L. ___ .J

Figure 1-3. Minimum Mode System Bus

1-7

INTRODUCTION

When an 8086 or 8088 is configured in maximum
mode and an 8288 is added to control the system
bus, one or two 8089s may be directly connected
to the CPU (figure 1-4). The processors all share
the same latches, transceivers, clock and bus con­
troller, via the local bus. Arbitration logic built
into the 8086, 8088 and 8089 coordinates use of
the local bus, and thus of the system bus. This bus
configuration enables the powerful 1/0 handling
capabilities of the 8089 to be incorporated into
systems of moderate size and cost.

The 8289 enables high-performance systems to be
designed as a series of independent processing
modules whose activities are coordinated via a
shared system bus. Figure 1-5 shows the multi-

master system bus interface; this bus structure is
electrically compatible with the Multibus™
architecture used in Intel iSBCTM single-board
computing systems.

Several different combinations of processors may
be attached to the local bus of a multimaster com­
puting module:

• a single 8086 or 8088

• a single 8089

• two 8089s

• an 8086 or 8088 and one 8089

• an 8086 or 8088 and two 8089s

r----'
1 8259A 1

_________________ --1 PROGRAMMABLE 1 .. 4 ... INiiTiiERiiiR.UP.T .. LiiiIN.ES ...
r- INTERRUPT ...

8284
CLOCK

GENERATOR

r----'
I 1
1 8089 I r -I lOP I"

I 1 1

1 L--r-J
I

8086/
8088
CPU

•

t
I:lfi
LJ

r:+ :::>

"' -'
<C

" 0
-'
a!
W
l-
V>
<C
:;;
;::
-' :::>

F+

~

I CONTROLLER I
L ____ ..J

...

'TT 8288
BUS

CONTROLLER

8282/83
LATCHES

8286/87 '"
... ,..

TRANSCEIVERS ...

Figure 1-4. Muitimaster Local Bus

1-8

CONTROL LINES

ADDRESS LINES

DATA LINES

a..
r

...
r

a..
r

SYSTEM
BUS

8284
CLOCK

GENERATOR

INTRODUCTION

INTERRUPT LINES

,.--+--.,
IPROGRAMMABLEI~d~ ___ ~::::::::~ ___ ,
: 8259A .. ::---------.... 1
I INTERRUPT 1l1li I
I CONTROLLER I

~ - - - - - ..I 8289 ARBITRATION
BUS

I I
...-1
I I

8086/
8088
CPU

I
I I I
I L-- 1 --.J
I I ... __ J __ .,
I I I

I I
L_.-I 8089 I

I lOP

I
I I L _____ .J

ARBITER LINES

8288
BUS

CONTROLLER

8282/83
LATCt+ES

CONTROL LINES

ADDRESS LINES

8286/87 I ____ DA.T.A .. LI_N_ES ____ ~ .. ~
TRANSCEIVERS I~ ,.

Figure 1-5. Basic Multimaster Processing Module

MULTIMASTER
SYSTEM BUS

All of the processors on the local bus obtain
access to the system bus through a single set of
interface components.

may be connected to the private I/O bus. Taking
this approach can greatly reduce the 8089's use of
the system bus as most memory and I/O accesses
can be made to the private address space. The
system bus is thus made available for use by other
processors, and the 8089 can execute in parallel
with other processors for extended periods. A
limited private I/O bus may be implemented
using the 8-bit multiplexed peripherals of the 8085
family, eliminating the latches and transceivers
shown in figure 1-6.

One or two 8089s in a multimaster processing
module may be configured with a private I/O bus
as shown in figure 1-6. In this configuration,
memory access commands are directed to the
public multimaster system bus, while I/O com­
mands use the private I/O.bus. Memory, contain­
ing the 8089's programs, as well as I/O devices,

1-9

INTRODUCTION

8284
CLOCK

GENERATOR

1"-
I
I

8089
lOP

,. 8289
BUS

ARBITER

INTERRUPT LINES

~ ARBITRATION LINES.

--" ~2J: CONTROL LINES ~ "'-~,.tl CONTROLLER 1-________ ,,. MUL TIMASTER
SYSTEM BUS

CONTROL LINES

.. ADDRESS LINES 8282/83 .. II.. 8282/83 ADDRESS LINES II..
"II LATCHES 'I "

LATCHES ,.
PRIVATE
I/O BUS a:

w ...
'" '" :IE

r----' is
:::>
:IE

1 1

•
DATA LINES I 8286/87 I +-+ 8286/87

•
DATA LINES

• I TRANSCEIVERS 1 TRANSCEIVERS

1 I L ____ J

Figure 1-6. Private I/O Bus

Adding a second 8288 to the local bus allows an
8086 or 8088 in a processing module to divide its
address space into system and resident sections
(figure 1-7). A PROM or decoder is used to direct
an address reference to the system bus or to the
resident bus. The resident bus allows the CPU to
run out of its own address space to minimize its

1-10

use of the system bus. Since no other processors
can access the private memory on the CPU's resi­
dent bus, operating system code and data in this
space is protected from errors in other processor
programs. If a second 8289 is added to a resident
bus module, the resident bus becomes a second
multimaster system bus.

INTRODUCTION

RESIDENT
BUS

....

'"

....

'"

4

1 '.<II

1 8259A '"
IPROGRAMMABLEI
I INTERRUPT
I CONTROLLER i '"
I ~

L--r--.J"

8284 8086/ .<II CLOCK 8088
GENERATOR CPU "

CONTROL LINES 8288 BUS
CONTROLLER

'"

PROMO. t
DECODER

.... ADDRESS LINES 8282/83
LATCHES

'"

r-----'
1 1

DATA LINES .1 8286/87 ! ""-
I TRANSCEIVERS i '"
1 1
1 I
L _____ J

INTERRUPT

REQUEST
LINES

It.
r

It. .<II
r "

.....

.....

-It. I.L
r ,"II

It.

"

It.
r

It.
r

-.i..

"

8289 BUS
ARBITER I'"

8288
BUS

CONTROLLER

+

8282/83
LATCHES

8266/87
TRANSCEIVERS '"

ARBITRATION It.
LINES "

CONTROL LINES -.i..
r

ADDRESS LINES 3r.
r

DATA LINES It.

"

MULTIMASTER
SYSTEM BUS

Figure 1-7. Resident Bus

As an alternative to the resident bus, a private
read-only memory space can be implemented
using the RD (read) signal provided by the CPUs
in lieu of an 8288 Bus Controller.

Multiprocessing systems of widely varying com­
plexity can be constructed from multimaster pro­
cessing modules. Each module can be designed
and implemented separately and can be optimized
to perform a given task. The modules can com­
municate with each other by means of interrupts
and messages placed in system memory. Addi­
tional functions can be added to a system by
incorporating the new functions into modules and
connecting the modules to the system bus.

Figure 1-8 illustrates a hypothetical system in
which nine processors are distributed among five

1-11

multimaster processing modules. (For clarity, bus
interface components are not shown in figure
1-8.) A supervisor module controls the system,
primarily responding to interrupts and dis­
patching other modules to perform tasks. The
supervisor CPU, like the other processors in the
system, executes code from private memory that
is inaccessible to other modules. System memory,
which is accessible to all the processors, is used
only for messages, common buffers, etc. This
helps to "protect" the processors from each other
and to keep system bus contention at a minimum.
The database module is responsible for maintain­
ing all system files. Each of the three graphics
modules supports a graphics CRT terminal. An
8089 in each module performs data transfers and
CRT refresh and calls upon an 8088 for intensive
computational routines.

INTRODUCTION

DATABASE
MODULE

SUPERVISOR {
MODULE

GRAPHICS
MODULE

PRIVATE
MEMORY

PRIVATE
1/0

PRIVATE
MEMORY

PRIVATE
MEMORY

PRIVATE
1/0

... It. ... It.

"I " "I " g
w
'" > II) a: :>
CL .,

..III I. ..III I.
"I " "I "

..III RESIDENT
BUS I.

"I "

..III It. ..III I.

" g " "
w
2: II)
0: :>
CL .,

..III I. ..III I.
."1

" "I "

8089 .. .-j

lOP

I ..
8089 .. lOP

8086 ..III I.
CPU " " 0:

w
II) ..
:;
;::
-' :> .. :;

8089
lOP

f ..
~ ~

8088
CPU

~ .. 8089
lOP

~ l

.. 8088
CPU

1..111 I. SYSTEM

" " MEMORY

II)
:> .,
:;
w
II)
>
II)

~ 8089
lOP

~ f

~ ... 8088
CPU

... It. I ...
"I g 1"1

w
> II) a: :>
CL .,

..III I. 1..111

"I " "

..III It. ...

" g "I
w
2: II)
0: :>

..III ~ ~
,"I

" "I

It.

"

I.

"

I.

"

I.

"

PRIVATE
MEMORY

PRIVATE
1/0

PRIVATE
MEMORY

PRIVATE
1/0

GRAPHICS
MODULE

GRAPHICS
MODULE

Figure 1-8. Multimaster Design Example

1.3 Development Aids

Intel provides the sophisticated tools needed for
timely and economical development of products
based on the 8086 family. The 8086 family system
development environment is focused on the
Intellec® Series II Microcomputer Development
System (figure 1-9). The Intellec system is a
multiple-microprocessor system that runs
ISIS-II, a disk-based operating system that has
been proven in thousands of installations. The
Intellec has built-in interfaces for a printer,
a PROM programmer and a paper tape
reader/punch. This same hardware and operating

1-12

system may be used to develop systems based on
other Intel microprocessor families such as the
8085 and the 8048.

Three language translators support 8086 family
programming. PL/M-86 is a high-level language
for the 8086 and 8088 that supports structured
programming techniques. It is upward­
compatible with PLlM-80, the most widely used
high-level microprocessor language. ASM-86 may
be used to write assembly language programs for
the 8086 and the 8088 CPUsand gives the pro­
grammer access to the full power of these CPUs.
8089 programs are written in ASM-89, the 8089
assembly language.

INTRODUCTION

The language translators produce compatible out­
puts that can be manipulated by the software
development utilities. LINK-86, for example, can
combine programs written in ASM-86 with
PL/M-86 programs. LIB-86 allows related pro­
grams to be stored in libraries to simplify storage
and retrival. LOC-86 assigns absolute memory
addresses to programs. OH-86 changes the for­
mat of an executable program for PROM pro­
gramming or for loading into the RAM of a test
vehicle.

The UPP-301 Universal PROM Programmer can
burn programs into any of Intel's PROM
memories; the UPP plugs into the Intellec®
system and allows program data to be
manipulated from the console before it is pro­
grammed into the PROM.

The SDK-86 is an (minimum mode) 8086-based
prototyping and evaluation kit. It includes the
CPU, RAM, I/O ports and a breadboard area for
interfacing customer circuits. A ROM-based
monitor program is supplied with the kit.
Monitor commands may be entered from an on­
board keypad or from a terminal; the monitor
returns results to the SDK-86's on-board LED
display or to a terminal. Monitor commands
allow programs to be entered, run, stopped, and
single-stepped; memory contents can be altered as
well as displayed. The SDK-C86 Software and
Cable Interface connects an SDK-86 to an
Intellec® system. The software supplied with the
cable enables programs to be transferred between
the development system and the SDK-86 to allow
users to develop programs using the text editor,
translators and utilities of the Intellec system and
then download the program to the SDK-86 for
execution.

1-13

The iSBC 86/12™ board is a high-performance
single board computer based on a maximum
mode 8086 CPU. The board contains 32k of dual­
port RAM that is accessible to the CPU via the
on-board bus and to other processors via the
built-in Multibus™ interface. The board also has
an asynchronous serial port, parallel ports with
sockets for drivers and terminators, two timers
and sockets for 16k of ROM.

An iSBC 86/12TM can be linked to an Intellec®
system using the iSBC 957™ Intellec-iSBC 86/12
Interface and Execution Package. The package
includes a ROM-based monitor for the iSBC
86/12 board, software for the Intellec system and
cabling to connect the two. The package supports
data transfers between Intellec diskettes and iSBC
86/12 memory, full speed execution of customer
programs on the iSBC 86/12 board, breakpoints,
single-stepping, and data moves, replacements,
searches and compares. All commands are
entered from the Intellec console.

The ICE-86™ module is an in-circuit emulator
for the 8086 microprocessor. A 40-pin probe
replaces the 8086 in the system under test. This
probe is connected to ICE-86 circuit boards that
in turn plug into the Intellec® chassis. The ICE-86
module emulates the 8086 in the system under test
in response to commands entered through the
Intellec console. These commands allow the user
to debug the system by setting breakpoints, trac­
ing the flow of execution, single-stepping,
examining and altering memory and 110, etc. All
references to program variables and labels are
symbolic (i.e., their PLlM-86 or ASM-86 names).
Software testing can also map "system under
test" memory into the Intellec memory to permit
software testing to begin before prototype hard­
ware has been developed.

LANGUAGE TRANSLATORS

INTELLEC® SERIES II MICROCOMPUTER
DEVELOPMENT SYSTEM

SDK-86 SYSTEM DESIGN KIT

SKD-C86 SOFTWARE
AND CABLE INTERFACE

INTRODUCTION

SOFTWARE DEVELOPMENT UTILITIES

UPP
UNIVERSAL

PROM
PROGRAMMER

ICE-86™ IN-CIRCUIT EMULATOR

iSBC 86/12ATM
SINGLE BOARD COMPUTER

iSBC 957™ INTELLEC®
iSBC 86/12ATM INTERFACE

AND EXECUTION PACKAGE

Figure 1-9. 8086 Family Development Aids

1-14

Chapter 2
The 8086 and 8088
Central Processing Units

CHAPTER 2
THE 8086 AND 8088

CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086
microprocessor family: the 8086 and 8088 central
processing units (CPUs). The material is divided
into ten sections and generally proceeds from
hardware to software topics as follows:

1. Processor Overview

2. Processor Architecture

3. Memory

4. Input/Output

5. Multiprocessing Features

6. Processor Control and Monitoring

7. Instruction Set

8. Addressing Modes

9. Programming Facilities

10. Programming Guidelines and Examples

The chapter describes the internal operation of
the CPUs in detail. The interaction of the pro­
cessors with other devices is discussed in func­
tional terms; electrical characteristics, timing, and
other information needed to actually interface
other devices with the 8086 and 8088 are provided
in Chapter 4.

2.1 Processor Overview

The 8086 and 8088 are closely related third­
generation microprocessors. The 8088 is designed
with an 8-bit external data path to memory and
110, while the 8086 can transfer 16 bits at a time.
In almost every other respect the processors are
identical; software written for one CPU will
execute on the other without alteration. The chips
are contained in standard 40-pin dual in-line
packages (figure 2-1) and operate from a single
+5V power source.

The 8086 and 8088 are suitable for an exception­
ally wide spectrum of microcomputer applica­
tions,and this flexibility is one of their most
outstanding characteristics. Systems can range
from uniprocessor minimal-memory designs
implemented with a handful of chips (figure 2-2),
to multiprocessor systems with up to a megabyte
of memory (figure 2-3).

2-1

GNO

AD14

AD13

AD12

AD11

AD10

AD.

A08

A07

AD.

ADS

AD.

A03

A02

A01

ADO

NMI

INTR

ClK

GNO

Vcc

AD15

A1B/S3

A17/54

A18/55

A19/56

B"HE/S7

MN/MX

Rii

HOLD (RQ/GTO)

HLOA (RO/GT1)

w;; (lOCK)

M/iO (52)

OTtR (~)

DEN (So)

ALE (050)

INTA (051)

TEST

READY

RESET

A1'

A16/S3

A17/54

A18/55

A19/56

550 (HIGH)

MN/MX

Rii

HOLD (RO/GTo)

HLDA tRQ/W)

w;; (lOCK)

(52)

Dr/A" (Si)

DEN (So)

ALE (050)

INTA (051)

TEST

RESET

MAXIMUM MODE PIN FUNCTIONS (e.g., l'OC'K)
ARE SHOWN IN PARENTHESES.

Figure 2-1.8086 and 8088 Central Processing
Units

8086 AND 8088 CENTRAL PROCESSING UNITS

'" '"' '"'
~

""- PORTA _1t..
~

~ PORTB

I~ 110.
8155 : RAM

I'll ,. I/O PORTe
TIMER

"I ,.

-}CLOCK
--... TIMER

ADDRESS

~
PORTA

~ B088 4ADDRESS/DATA
~

CPU ,. 4 8755A
EPROM

I/O

4 PORTS

~ CONTROL 110. 110.

~ ,.
..

,.....-
~

4 ~
8185

828.
1KX8

CLOCK
RAM

GEN.

""--- .. ,..

Figure 2-2. Small8088-Based System

Figure 2-3. 8086/8088/8089 Multiprocessing System

2-2

8086 AND 8088 CENTRAL PROCESSING UNITS

The large application domain of the 8086 and
8088 is made possible primarily by the processors'
dual operating modes (minimum and maximum
mode) and built-in multiprocessing features.
Several of the 40 CPU pins have dual functions
that are selected by a strapping pin. Configured
in minimum mode, these pins transfer control
signals directly to memory and input/output
devices. In maximum mode these same pins take
on different functions that are helpful in medium
to large ystems, especially systems with mUltiple
processors. The control functions assigned to
these pins in minimum mode are assumed by a
support chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 8089
Input/Output Processor (lOP) and other pro­
cessors in multiprocessing and distributed pro­
cessing systems. When used in conjunction with
one or more 8089s, the 8086 and 8088 expand
the applicability of microprocessors into 1/0-
intensive data processing systems. Built-in coor­
dinating signals and instructions, and electrical
compatibility with Intel's Multibus ™ shared bus
architecture, simplify and reduce the cost of
developing multiple-processor designs.

Both CPUs are substantially more powerful than
any microprocessor previously offered by Intel.
Actual performance, of course, varies from
application to application, but comparisons to the
industry standard 2-MHz 8080A are instructive.
The 8088 is from four to six times more powerful
than the 8080A; the 8086 provides seven to ten
times the 8080A's performance (see figure 2-4).

w
o
z ..
:I<
0:
o ...

100

ffi 10 ..
w
~

5
w
0:

YEAR INTRODUCED

~
T@

Figure 2-4. Relative Performance of the
8086 and 8088

2-3

The 8086's advantage over the 8088 is attributable
to its 16-bit external data bus. In applications that
manipulate 8-bit quantities extensively, or that
are execution-bound, the 8088 can approach to
within 10070 of the 8086's processing throughput.

The high performance of the 8086 and 8088 is
realized by combining a 16-bit internal data path
with a pipelined architecture that allows instruc­
tions to be pre fetched during spare bus cycles.
Also contributing to performance is a compact
instruction format that enables more instructions
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088
systems need not be written in assembly language.
The CPUs are designed to provide direct hard­
ware support for programs written in high-level
languages such as Intel's PLlM-86. Most high­
level languages store variables in memory; the
8086/8088 symmetrical instruction set supports
direct operation on memory operands, including
operands on the stack. The hardware addressing
modes provide efficient, straightforward
implementations of based variables, arrays, ar­
rays of structures and other high-level language
data constructs. A powerful set of memory-to­
memory string operations is available for efficient
character data manipulation. Finally, routines
with critical performance requirements that can­
not be met with PL/M-86 may be written in
ASM-86 (the 8086/8088 assembly language) and
linked with PLlM-86 code.

While the 8086 and 8088 are totally new designs,
they make the most of users' existing investments
in systems designed around the 8080/8085
microprocessors. Many of the standard Intel
memory, peripheral control and communication
chips are compatible with the 8086 and the 8088.
Software is developed in the familiar Intellec®
Microcomputer Development System environ­
ment, and most existing programs, whether writ­
ten in ASM-80 or PL/M-80, can be directly con­
verted to run on the 8086 and 8088 .

2.2 Processor Architecture
Microprocessors generally execute a program by
repeatedly cycling through the steps shown below
(this description is somewhat simplified):

1. Fetch the next instruction from memory.

2. Read an operand (if required by the
instruction).

8086 AND 8088 CENTRAL PROCESSING UNITS

3. Execute the instruction.

4. Write the result (if required by the
instruction) .

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them to two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions, reads operands and writes results.

The two units can operate independently of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe­
cution. The result is that, in most cases, the time
normally required to fetch instructions "dis­
appears" because the EU executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
~raditional microprocessor operation. In the
example, overlapping reduces the elapsed time
required to execute three instructions, and allows
two additional instructions to be prefetched as
well.

!------------ELASPEDTIME------------i

"'0'0 { C,", t!t~E]
GENERATION

MICROPROCESSOR
BUS:

8086/8088
MICROPROCESSOR

~il1

a
Wz!£~ ~f~g!1 II:f!~~ff:~111 l1B
a ~ ~

INSTRUCTION STREAM

1st INSTRUCTION (ALREADY FETCHED):
EXECUTE AND WRITE RESULT

2nd INSTRUCTION:
EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
(UNDEFINED)

5th INSTRUCTION:
(UNDEFINED)

Figure 2-5. Overlapped Instruction Fetch and Execution

2-4

IlffW!~~:~!~~11

8086 AND 8088 CENTRAL PROCESSING UNITS

Execution Unit

The execution units of the 8086 and 8088 are iden­
tical (figure 2-6). A 16-bit arithmetic/logic unit
(ALU) in the EU maintains the CPU status and
control flags, and manipulates the general
registers and instruction operands. All registers
and data paths in the EU are 16 bits wide for fast
internal transfers.

The EU has no connection to the system bus, the
"outside world." It obtains instructions from a
queue maintained by the BIU. Likewise, when an
instruction requires access to memory or to a
peripheral device, the EU requests the BIU to
obtain or store the data. All addresses
manipulated by the EU are 16 bits wide. The BIU,
however, performs an address relocation that
gives the EU access to the full megabyte of
memory space (see section 2.3).

..... ~

I

EXECUTION UNIT (EU)

GENERAL
REGISTERS

I I
t t

OPERANDS

t t
I

D ALU

t
FLAGS

I

I
I
I
I
I

Bus Interface Unit

The BIUs of the 8086 and 8088 are functionally
identical, but are implemented differently to
match the structure and performance
characteristics of their respective buses.

The BIU performs all bus operations for the EU.
Data is transferred between the CPU and memory
or 110 devices upon demand from the EU. Sec­
tions 2.3 and 2.4 describe the interaction of the
BIU with memory and 110 devices.

In addition, during periods when the EU is busy
executing instructions, the BIU "looks ahead"
and fetches more instructions from memory. The
instructions are stored in an internal RAM array
called the instruction stream queue. The 8088
instruction queue holds up to four bytes of the
instruction stream, while the 8086 queue can store

BUS INTERFACE UNIT (BIU)

SEGMENT
REGISTERS

INSTRUCTION
POINTER

t
ADDRESS

GENERATION
AND BUS
CONTROL

""II ,..
INSTRUCTION

QUEUE

I

MULTIPLEXED BUS

Figure 2-6. Execution and Bus Interface Units (EU and BIU)

2-5

8086 AND 8088 CENTRAL PROCESSING UNITS

up to six instruction bytes. These queue sizes
allow the BIU to keep the EU supplied with pre­
fetched instructions under most conditions
without monopolizing the system bus. The 8088
BIU fetches another instruction byte whenever
one byte in its queue is empty and there is no
active request for bus access from the EU. The
8086 BIU operates similarly except that it does
not initiate a fetch until there are two empty bytes
in its queue. The 8086 BIU normally obtains two
instruction bytes per fetch; if a program transfer
forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd
address and then resumes fetching two-byte
words from the subsequent even addresses.

Under most circumstances the queues contain at
least one byte of the instruction stream and the
EU does not have to wait for instructions to be
fetched. The instructions in the queue are those
stored in the memory locations immediately adja­
cent to and higher than the instruction currently
being executed. That is, they are the next logical
instructions so long as execution proceeds seri­
ally. If the EU executes an instruction that
transfers control to another location, the BIU
resets the queue, fetches the instruction from the
new address, passes it immediately to the EU, and
then begins refilling the queue from the new loca­
tion. In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or
I/O read or write (except that a fetch already in
progress is completed before executing the EU's
bus request).

General Registers

Both CPUs have the same complement of eight
16-bit general registers (figure 2-7). The general
registers are subdivided into two sets of four
registers each: the data registers (sometimes called
the H & L group for "high" and "low"), and the
pointer and index registers (sometimes called the
P & I group).

The data registers are unique in that their upper
(high) and lower halves are separately
addressable. This means that each data register
can be used interchangeably as a 16-bit register,
or as two 8-bit registers. The other CPU registers
always are accessed as 16-bit units only. The data
registers can be used without constraint in most
arithmetic and logic operations. In addition,

2-6

I
H I L

15 8 7 0

{

AX r- - - - -.-- - - - ACCUMULATOR AH AL
BX r- - - - -.- - - - - BASE

DATA BH BL
GROUP CX

I- - CH - -.- - CL - - COUNT

I- - DH - ~ - DL - - DATA

15 0

POINTER { AND
INDEX

GROUP

SP

BP

SI

01

STACK
POINTER

BASE
POINTER

SOURCE
INDEX

DESTINATION
NDEX I

Figure 2-7. General Registers

some instructions use certain registers implicitly
(see table 2-1) thus allowing compact yet powerful
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

OX Word Multiply, Word Divide,
Indirect 1/0

SP Stack Operations

SI String Operations

01 String Operations

The pointer and index registers can also par­
ticipate in most arithmetic and logic operations.
In fact, all eight general registers fit the definition
of "accumulator" as used in first and second
generation microprocessors. The P & I registers
(except for BP) also are used implicitly in some
instructions as shown in table 2-1.

8086 AND 8088 CENTRAL PROCESSING UNITS

Segment Registers

The megabyte of 8086 and 8088 memory space is
divided into logical segments of up to 64k bytes
each. (Memory segmentation is described in sec­
tion 2.3.) The CPU has direct access to four
segments at a time; their base addresses (starting
locations) are contained in the segment registers
(see figure 2-S), The CS register points to the cur­
rent code segment; instructions are fetched from
this segment. The SS register points to the current
stack segment; stack operations are performed on
locations in this segment. The DS register points
to the current data segment; it generally contains
program variables. The ES register points to the
current extra segment, which also is typically used
for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
Good programming practice and consideration of
compatibility with future Intel hardware and soft­
ware products dictate that the segment registers
be used in a disciplined fashion. Section 2.10 pro­
vides guidelines for segment register use.

15

CS CODE
SEGMENT

OS DATA
SEGMENT

SS
STACK
SEGMENT

ES EXTRA
SEGMENT

Figure 2-8. Segment Registers

Instruction Pointer

The 16-bit instruction pointer (IP) is analogous to
the program counter (PC) in the 8080/S0S5
CPUs. The instruction pointer is updated by the
BIU so that it contains the offset (distance in
bytes) of the next instruction from the beginning
of the current code segment; i.e., IP points to the
next instruction. During normal execution, IP
contains the offset of the next instruction to be
fetched by the BIU; whenever IP is saved on the
stack, however, it first is automatically adjusted
to point to the next instruction to be executed.
Programs do not have direct access to the instruc­
tion pointer, but instructions cause it to change
and to be saved on and restored from the stack.

2-7

Flags

The SOS6 and SOSS have six I-bit status flags
(figure 2-9) that the EU posts to reflect certain
properties of the result of an arithmetic or logic

STATUS
FLAGS .

~CARRY LmFmF~Fr:l
PARITY

AUXILIARY CARRY

ZERO
L-------SIGN

L---------avERFLOW

L----------INTERRUPT-ENABLE

'-------------DIRECTION

L-------------TRAP

Figure 2-9. Flags

operation. A group of instructions is available
that allows a program to alter its execution
depending on the state of these flags, that is, on
the result of a prior operation. Different instruc­
tions affect the status flags differently; in general,
however, the flags reflect the following
conditions:

I. If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble into
the high nibble or a borrow from the high
nibble into the low nibble of an S-bit quantity
(low-order byte of a 16-bit quantity). This
flag is used by decimal arithmetic
instructions.

2. If CF (the carry flag) is set, there has been a
carry out of, or a borrow into, the high-order
bit of the result (S- or 16-bit). The flag is used
by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3. If OF (the overflow flag) is set, an arithmetic
overflow has occurred; that is, a significant
digit has been lost because the size of the
result exceeded the capacity of its destination
location. An Interrupt On Overflow instruc­
tion is available that will generate an inter­
rupt in this situation.

8086 AND 8088 CENTRAL PROCESSING UNITS

4. If SF (the sign flag) is set, the high-order bit
of the result is a 1. Since negative binary
numbers are represented in the SOS6 and SOSS
in standard two's complement notation, SF
indicates the sign of the result (0 = positive,
1 = negative).

5. If PF (the parity flag) is set, the result has
even parity, an even number of I-bits. This
flag can be used to check for data transmis­
sion errors.

6. If ZF (the zero flag) is set, the result of the
operation is O.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:

1. Setting DF (the direction flag) causes string
instructions to auto-decrement; that is, to
process strings from high addresses to low
addresses, or from "right to left." Clearing
DF causes string instructions to auto­
increment, or to process strings from "left to
right."

2. Setting IF (the interrupt-enable flag) allows
the CPU to recognize external (maskable)
interrupt requests. Clearing IF disables these
interrupts. IF has no affect on either non­
maskable external or internally generated
interrupts.

3. Setting TF (the trap flag) puts the processor
into single-step mode for debugging. In this
mode, the CPU automatically generates an
internal .interrupt after each instruction,
allowing a program to be inspected as it exe­
cutes instruction by instruction. Section 2.10
contains an example showing the use of TF in
a single-step and breakpoint routine.

8080/8085 Registers and Flag
Correspondence

The registers, flags and program counter in the
SOSO/SOS5 CPUs all have counterparts in the SOS6
and 808S (see figure 2-10). The A register (ac­
cumulator) in the 8080/80S5 corresponds to the
AL register in the 8086 and 8088. The 8080/8085
H & L, B & C, and D & E registers correspond to
registers BH, BL, CH, CL, DH and DL, respec­
tively, in the 80S6 and S088. The 8080/8085 SP
(stack pointer) and PC (program counter) have
their counterparts in the 8086/8088 SP and IP.

2-8

The AF, CF, PF, SF, and ZF flags are the same in
both CPU families. The remaining flags and
registers are unique to the 8086 and 8088. This
8080/8085 to 8086 mapping allows most existing
80S0/8085 program code to be directly translated
into 8086/8088 code.

Mode Selection

Both processors have a strap pin (MN/MX) that
defines the function of eight CPU pins in the S086
and nine pins in the S088. Connecting MN/MX to
+5V places the CPU in minimum mode. In this
configuration, which is designed for small
systems (roughly one or two boards), the CPU
itself provides the bus control signals needed by
memory and peripherals. When MN/MX is
strapped to ground, the CPU is configured in
maximum mode. In this configuration the CPU
encodes control signals on three lines. An 8288
Bus Controller is added to decode the signals
from the CPU and to provide an expanded set of
control signals to the rest of the system. The CPU
uses the remaining free lines for a new set of
signals designed to help coordinate the activities
of other processors in the system. Sections 2.5
and 2.6 describe the functions of these signals.

2.3 Memory

The 8086 and 8088 can accommodate up to
1,048,576 bytes of memory in both minimum and
maximum mode. This section describes how
memory is functionally organized and used.
There are substantial differences in the way
memory components are actually accessed by the
two processors; these differences, which are in­
visible to programs, are covered in section 4.2,
External Memory Addressing.

Storage Organization

From a storage point of view, the 8086 and 80SS
memory spaces are organized as identical arrays
of 8-bit bytes (see figure 2-11). Instructions, byte
data and word data may be freely stored at any
byte address without regard for alignment thereby
saving memory spac'e by allowing code to be
densely packed in memory (see figure 2-12). Odd­
addressed (unaligl1ed) word variables, however,

8086 AND 8088 CENTRAL PROCESSING UNITS

BP BASE
POINTER

SI SOURCE
INDEX

01 DESTINATION
INDEX

CS CODE
SEGMENT

OS DATA
SEGMENT

SS STACK
SEGMENT

ES EXTRA
SEGMENT

Figure 2-10.8080/8085 Register Subset (Shaded)

LOW MEMORY HIGH MEMORY

OOOOOH 00001H 00002H 5 §FFFFEH FFFFFH

L I II "II" I IIIII "" "5 §LI"" I" I"" I
7 07 07 07 '0

I_ 1 MEGABYTE -I

Figure 2-11. Storage Organization Figure 2-12. Instruction and Variable Storage

2-9

8086 AN08088 CENTRAL PROCESSING UNITS

do not take advantage of the 8086's ability to
transfer 16-bits at a time. Instruction alignment
does not materially affect the performance of
either processor.

Following Intel convention, word data always is
stored with the most-significant byte in the higher
memory location (see figure 2-13). Most of the
time this storage convention is ,"invisible" to
anyone working with the processors; exceptions
may occur when monitoring the system bus or
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called
pointers and are used to address data and code
that are outside the currently-addressable
segments. The lower-addressed word of a pointer
contains an offset value, and the higher-addressed
word contains a segment base address. Each word
is stored conventionally with the higher-addressed
byte containing the most-significant eight bits of
the word (see figure 2-14).

724H 725H

VALUE OF WORD STORED AT 724H: 5502H

Figure 2-13. Storage of Word Variables

Segmentation

8086 and 8088 programs "view" the megabyte of
memory space as a group of segments that are
defined by the application. A segment is a logical
unit of memory that may be up to 64k bytes long.
Each segment is made up of contiguous memory
locations and is an independent, separately­
addressable unit. Every segment is assigned (by
software) a base address, which is its starting
location in the memory space. All segments begin
on 16-byte memory boundaries. There are no
other restrictions on segment locations; segments
may be adjacent, disjoint, partially overlapped,
or fully overlapped (see figure 2-15). A physical
memory location may be mapped into (contained
in) one or more logical segments.

The segment registers point to (contain the base
address values of) the four currently addressable
segments (see figure 2-16). Programs obtain
access to code and data in other segments by
changing the segment registers to point to the
desired segments.

Every application will define and use segments
differently. The currently addressable segments
provide a generous work space: 64k bytes for
code, a 64k byte stack and 128k bytes of data
storage. Many applications can be written to
simply initialize the segment registers and then
forget them. Larger applications should be
designed with careful consideration given to seg­
ment definition.

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3B4CH
OFFSET: 65H

Figure 2-14. Storage of Pointer Variables

2-10

DATA: OS: B

CODE: CS: E

STACK: SS: H

EXTRA: ES:

8086 AND 8088 CENTRAL PROCESSING UNITS

FULLY

OVERLAPP~D I SEGMENT 0
PARTLY
OVERLAP~I

CONTIGUOUS~ ~ -I SEGMENTC

I SEGMENT A I SEGMENT B I
I I

LOGICAL
SEGMENTS

~1 ___ -+1 ___ -+1 ___ -+1 ___ ~17 }~1~S6W
t t t t
OH 10000H 20000H 30000H

Figure 2-15. Segment Locations in Physical Memory

FFFFFH

l---
1--,
1---, I

I
h I I

I I

I I
I L
I
L_

OH

o

-: [J

The segmented structure of the 8086/8088
memory space supports modular software design
by discouraging huge, monolithic programs. The
segments also can be used to advantage in many
programming situations. Take, for example, the
case of an editor for several on-line terminals. A
64k text buffer (probably an extra segment) could
be assigned to each terminal. A single program
could maintain all the buffers by simply changing
register ES to point to the buffer of the terminal
requiring service.

Physical Address Generation

It is useful to think of every memory location as
having two kinds of addresses, physical and
logical. A physical address is the 20-bit value that
uniquely identifies each byte location in the
megabyte memory space. Physical addresses may
range from OH through FFFFFH. All exchanges
between the CPU and memory components use
this physical address.

Figure 2-16. Currently Addressable Segments

Programs deal with logical, rather than physical
addresses and allow code to be developed without
prior knowledge of where the code is to be located
in memory and facilitate dynamic management of
memory resources. A logical address consists of a
segment base value and an offset value. For any
given memory location, the segment base value

2-11

8086 AND 8088 CENTRAL PROCESSING UNITS

locates the first byte of the containing segment
and the offset value is the distance, in bytes, of
the target location from the beginning of the
segment. Segment base and offset values are
unsigned 16-bit quantities; the lowest-addressed
byte in a segment has an offset of o. Many dif­
ferent logical addresses can map to the same
physical location as shown in figure 2-17. In
figure 2-17, physical memory location 2C3H is
contained in two different overlapping segments,
one beginning at 2BOH and the other at 2COH.

Whenever the BIU accesses memory-to fetch an
instruction or to obtain or store a variable-it
generates a physical address from a logical
address. This is done by shifting the segment base
value four bit positions and adding the offset as
illustrated in figure 2-18. Note that this addition
process provides for modulo 64k addressing
(addresses wrap around from the end of a seg­
ment to the beginning of the same segment).

The BIU obtains the logical address of a memory
location from different sources depending on the
type of reference that is being made (see table

PHYSICAL
ADDRESS

LOGICAL
ADDRESSES --<

;-

SEGMENT
BASE

.... SEGMENT
BASE

t

2-2). Instructions always are fetched from the cur­
rent code segment; IP contains the offset of the
target instruction from the beginning of the seg­
ment. Stack instructions always operate on the
current stack segment; SP contains the offset of
the top of the stack. Most variables (memory
operands) are assumed to reside in the current
data segment, although a program can instruct
the BIU to access a variable in one of the other
currently addressable segments. The offset of a
memory variable is calculated by the EU. This
calculation is based on the addressing mode
specified in the instruction; the result is called the
operand's effective address (EA). Section 2.8
covers addressing modes and effective address
calculation in detail.

Strings are addressed differently than other
variables. The source operand of a string instruc­
tion is assumed to lie in the current data segment,
but another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of
a string instruction always resides in the current

r 'r'

2

2

OFFSET 2

C4H

C3H

C2H

C1H
COH

BFH
BEH

BDH

BCH

BBH

BAH

B9H
BaH
B7H

B6H
B5H

B4H

B3H

B2H

B1H

BOH

(3H) 2

• I 2

2

2

2

2

2

OFFSET 2
(13H) 2

2

2

2

2

2

2

2

2

2

" "

Figure 2-17. Logical and Physical Addresses

2-12

8086 AND 8088 CENTRAL PROCESSING UNITS

rIFTLEFT4 BITS I 1 2 3 4 n~~~ENT}
r ---.....:.-,...., 15 0 LOGICAL I 1 2 3 4 i 0 I ----_ ADDRESS
"';9~--""t-"'" -!O I 0 0 2 2 IOFFSET

r--~-~ 15 0 I 0 0 2 2 I -------J +

15 t 0

I 1 2 3 6 2 I PHYSICAL ADDRESS

~19~--"+--~O
TO MEMORY

Figure 2-18. Physical Address Generation

Table 2-2. Logical Address Sources

DEFAULT
TYPE OF MEMORY REFERENCE SEGMENT

BASE

Instruction Fetch CS
Stack Operation SS
Variable (except following) DS
String Source DS
String Destination ES
BP Used As Base Register SS

extra segment; its offset is taken from DI, the
destination index register. The string instructions
automatically adjust SI and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in an instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way to address data on the stack; BP can be used,
however, to access data in any of the other cur­
rently addressable segments.

In most cases, the BIU's segment assumptions are
a convenience to programmers. It is possible,
however, for a programmer to explicitly direct the
BIU to access a variable in any of the currently
addressable segments (the only exception is the
destination operand of a string instruction which
must be in the extra segment). This is done by
preceding an instruction with a segment override
prefix. This one-byte machine instruction tells the
BIU which segment register to use to access a
variable referenced in the following instruction.

2-13

ALTERNATE
SEGMENT OFFSET

BASE

NONE IP
NONE SP

CS,ES,SS Effective Address
CS,ES,SS SI

NONE DI
CS,DS,ES Effective Address

Dynamically Relocatable Code

The segmented memory structure of the 8086 and
8088 makes it possible to write programs that are
position-independent, or dynamically relocatable.
Dynamic relocation allows a multiprogramming
or multitasking system to make particularly effec­
tive use of available memory. Inactive programs
can be written to disk and the space they occupied
allocated to other programs. If a disk-resident
program is needed later, it can be read back into
any available memory location and restarted.
Similarly, if a program needs a large contiguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program
segments can be compacted to free up a con­
tinuous space. This process is shown graphically
in figure 2-19.

In order to be dynamically relocatable, a program
must not load or alter its segment registers and
must not transfer directly to a location outside the
current code segment. In other words, all offsets
in the program must be relative to fixed values

8086 AND 8088 CENTRAL PROCESSING UNITS

BEFORE RELOCATION AFTER RELOCATION

CODE
SEGMENT

I
CS CS

I
SS

STACK .---- OS
SEGMENT

SS

OS r---
- ES ES f-

DATA CODE
SEGMENT SEGMENT

STACK
SEGMENT

DATA
SEGMENT

EXTRA EXTRA
SEGEMENT SEGMENT

C]FREESPACE

Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the
program to be moved anywhere in memory as
long as the segment registers are updated to point
to the new base addresses. Section 2.10 contains
an example that illustrates dynamic code
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in
memory and are located by the stack segment
register (SS) and the stack pointer register (SP). A
system may have an unlimited number of stacks,
and a stack may be up to 64k bytes long, the max­
imum length of a segment. (An attempt to expand
a stack beyond 64k bytes overwrites the beginning
of the stack.) One stack is directly addressable at
a time; this is the current stack, often referred to
simply as "the" stack. SS contains the base
address of the current stack and SP points to the
top of the stack (TOS). In other words, SP con­
tains the offset of the top of the stack from the

2-14

stack segment's base address. Note, however, that
the stack's base address (contained in SS) is not
the "bottom" of the stack.

8086 and 8088 stacks are 16 bits wide; instructions
that operate on a stack add and remove stack
items one word at a time. An item is pushed onto
the stack (see figure 2-20) by decrementing SP by
2 and writing the item at the new TOS. An item is
popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the
stack grows down in memory toward its base
address. Stack operations never move items on
the stack, nor do they erase them. The top of the
stack changes only as a result of updating the
stack pointer.

Dedicated and Reserved Memory
Locations

Two areas in extreme low and high memory are
dedicated to specific processor functions or are
reserved by Intel Corporation for use by Intel

8086 AND 8088 CENTRAL PROCESSING UNITS

POPAX
POPBX

PUSHAX
AX ['t2]"'34]- l

EXISTING
STACK

t
AxI12 1341-1

r r
Bx[B![AAl-l :

TOS

1062

1060

105E

105B

105A

1058

00

22

44

66

88

AA

01

11

33

55

77

99

BB
>-

23

45 67 1054 m~
UJUl

89 AB 1052 a:W
c..J:

TOS

1062

1060

105E

105B

105A

1058

1056

1054

1052

00

22

44

66

88

AA

34

45

89

11

33

55

77

99

BB

12 ..-
67

AB

I
I
I
I
J

TOS

1062

1060

105E

105C

105A

105B

1056

1054

00

22

44

66

88

AA

34

45

89

11

33

55

77

99

BB

12

67

AB

I I
I I
I I

I :
JI
-~

CD EF

1056 } ~13

[1050:: ~~
10 50 I SS

CD EF r 1050: :

10 50 Iss

1052

r1050~

~SS

00 08 SP 00 06 SP 00 OA SP

STACK OPERATION FOR CODE SEQUENCE

PUSH AX
POPAX
POPBX

Figure 2-20. Stack Operation

hardware and software products. As shown in
figure 2-21, the location are: OH throgh 7FH (128
bytes) and FFFFOH through FFFFFH (16 bytes).
These areas are used for interrupt and system
reset processing 8086 and 8088 application
systems should not use these areas for any other
purpose. Doing so may make these systems
incompatible with future Intel products.

8086/8088 Memory Access
Differences

The 8086 can access either 8 or 16 bits of memory
at a time. If an instruction refers to a word
variable and that variable is located at an even­
numbered address, the 8086 accesses the complete
word in one bus cycle. If the word is located at an
odd-numbered address, the 8086 accesses the
word one byte at a time in two consecutive bus
cycles.

To maximize throughput in 8086-based systems,
16-bit data should be stored at even addresses
(should be word-aligned). This is particularly true
of stacks. Unaligned stacks can slow a system's
response to interrupts. Nevertheless, except for
the performance penalty, word alignment is

2-15

totally transparent to software. This allows max­
imum data packing where memory space is
constrained.

The 8086 always fetches the instruction stream in
words from even addresses except that the first
fetch after a program transfer to an odd address
obtains a byte. The instruction stream is
disassembled inside the processor and instruction
alignment will not materially affect the per­
formance of most systems.

The 8088 always accesses memory in bytes. Word
operands are accessed in two bus cycles regardless
of their alignment. Instructions also are fetched
one byte at a time. Although alignment of word
operands does not affect the performance of the
8088, locating 16-bit data on even addresses will
insure maximum throughput if the system is ever
transferred to an 8086.

2.4 Input/Output

The 8086 and 8088 have a versatile set of in­
put/output facilities. Both processors provide a
large lIO space that is separate from the memory

Mnemonics © Intel. 1978

SOS6 ANOSOSS CENTRAL PROCESSING UNITS

FFFFFH

RESERVED

FFFFCH
FFFFBH

DEDICATED

FFFFOH
FFFEFH

OPEN I
OPEN

BOH
7FH

RESERVED

14H
13H

DEDICATED OPEN

OH "'-____ OH

MEMORY liD

Figure 2-21. Reserved and Dedicated Memory
and I/O Locations

space, and instructions that transfer data between
the CPU and devices located in the I/O space.
I/O devices also may be placed in the memory
space to bring the power of the full instruction set
and addressing modes to input/output pro­
cessing. For high-speed transfers, the CPUs may
be used with traditional direct memory access
controllers or the 8089 Input/Output Processor.

InputlOutput Space

The 808618088 I/O space can accommodate up to
64k 8-bit ports or up to 32k 16-bit ports. The IN
and OUT (input and output) instructions transfer
data between the accumulator (AL for byte
transfers, AX for word transfers) and ports
located in the I/O space.

The I/O space is not segmented; to access a port,
the BIU simply places the port address (O-64k) on
the lower 16 lines of the address bus. Different
forms of the I/O instructions allow the address to
be specified as a fixed value in the instruction or
as a variable taken from register DX.

Mnemonics © Intel, 1978 2-16

Restricted 1/0 Locations

Locations F8H through FFH (eight of the 64k
locations) in the 1/0 space are reserved by Intel
Corporation for use by future Intel hardware and
software products. Using these locations for any
other purpose may inhibit compatibility with
future Intel products.

SOS6/S0SS 1/0 Access Differences

The 8086 can transfer either 8 or 16 bits at a time
to a device located in the I/O space. A 16-bit
device should be located at an even address so
that the word will be transferred in a single bus
cycle. An 8-bit device may be located at either an
even or odd address; however, the internal
registers in a given device must be assigned all­
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a
16-bit device is used in the 8088 I/O space, it must
be capable of transferring words in the same
fashion, i.e., eight bits at a time in two bus cycles.
(The 8089 Input/Output Processor can provide a
straightforward interface between the 8088 and a
16-bit I/O device.) An 8-bit device may be located
at odd or even addresses in the 8088 I/O space
and internal registers maybe assigned consecutive
addresses (e.g., IH, 2H, 3H). Assigning all-odd
or all-even addresses to these registers, however,
will simplify transferring the system to an 8086
CPU.

Memory-Mapped 1/0

I/O devices also may be placed in the 8086/8088
memory space. As long as the devices respond like
memory components, the CPU does not know the
dif f erence.

Memory-mapped I/O provides additional pro­
gramming flexibility. Any instruction that
references memory may be used to access an I/O
port located in the memory space. For example,
the MOV (move) instruction can transfer data
between any 8086/8088 register and a port, or the
AND, OR and TEST instructions may be used to
manipulate bits in I/O device registers. In addi­
tion, memory-mapped I/O can take advantage of
the 8086/8088 memory addressing modes. A
group of terminals, for example, could be treated
as an array in memory with an index register

8086 AND 8088 CENTRAL PROCESSING UNITS

selecting a terminal in the array. Section 2.10 pro­
vides examples of using the instruction set and
addressing modes with memory-mapped liD.

Of course, a price must be paid for the added pro­
gramming flexibility that memory-mapped liD
provides. Dedicating part of the memory space to
liD devices reduces the number of addresses
available for memory, although with a megabyte
of memory space this should rarely be a con­
straint. Memory reference instructions also take
longer to execute and are somewhat tess compact
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086
and 8088 provide HOLD (hold) and HLDA (hold
acknowledge) signals that are compatible with
traditional DMA controllers such as the 8257 and
8237. A DMA controller can request Use of the
bus for direct transfer of data between an liD
device and memory by activating HOLD. The
CPU will complete the.current bus cycle, if one is
in progress, and then issue HLDA, granting the
bus to the DMA controller. The CPU will not
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically
organized in two separate banks, one containing
even-addressed bytes and one containing odd-ad­
dressed bytes. An8-bit DMA controller must
alternately select these banks to access logically
adjacent bytes in memory. The 8089 provides a
simple way to interface a high-speed 8-bit device
to an 8086-based system (see Chapter 3).

8089 Input/Output Processor (lOP)

The 8086 and 8088 are designed to be used with
the 8089 in high-performance 110 applications.
The 8089 conceptually resembles a
microprocessor with two DMA channels and an
instruction set specifically tailored for liD opera­
tions. Unlike simple DMA controllers, the 8089
can service liD devices directly, removing this
task from the CPU. In addition, it can transfer
data on its own bus or on the system bus, can
match 8- or 16-bit peripherals to 8- or 16-bit
buses, and can transfer data from memory to
memory and from, 110 device to 110 device.
Chapter 3 describes the 8089 in detail.

2-17

2.5 Multiprocessing Features

As microprocessor prices have declined,
multiprocessing (using two or more coordinated
processors in a system) has become an increas­
ingly attractive design alternative. Performance
can be substantially improved by distributing
system tasks among separate, concurrently exe­
cuting processors. In addition, multiprocessing
encourages a modular approach to design, usually
resulting in systems that are more easily main­
tained and enhanced. For example, figure 2-22
shows a multiprocessor system in which liD
activities have been delegated to an 8089 lOP.
Should an 110 device in the system be changed
(e.g., a hard disk substituted for a floppy), the
impact of the modification is confined to the 110
subsystem and is transparent to the CPU and to
the application software.

The 8086 and 8088 are designed for the
multiprocessing environment. They have built-in
features that help solve the coordination prob­
lems that have discouraged multiprocessing
system development in the past.

Bus Lock

When configured in maximum mode, the 8086
and 8088 provide the LOCK (bus lock) signal.
The BIU activates LOCK when the EU executes
the one-byte LOCK prefix instruction. The
LOCK signal remains active throughout execu­
tion of the instruction that follows the LOCK
prefix. Interrupts are not affected by the LOCK
prefix. If another processor requests use of the
bus (via the request! grant lines, which are
discussed shortly), the CPU records the request,
but does not honor it until execution of the locked
instruction has been completed.

Note that the L5"CK signal remains active .for the
duration of a single instruction. If two con­
secutive instructions are each preceded by a
LOCK prefix, there will still be an unlocked
period between these instructions. In the case of a
locked repeated string instruction, LOCK does
remain active for the duration of the block
operation.

When the 8086 or 8088 is configured in minimum
mode, the LOCK signal is not available. The
LOCK prefix can be used, however, to delay the

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

I----~~~-I-----~~~--~

I APPLICATION I I/O PROGRAMS
PROGRAMS I

lID BUFFERS I DATA I

I tit 18086 18 I OR I.~_"""""' __ .' 81008p9 .4 ~~ ~ .. ~ I ~o~~ ~ SYSTEM BUS I' ~ ,
I I
I II lID 110 I I DEVICES DEVICES

L __ ~A.!!'!....SYSTE~ __ --1 __ '- ~O~B~TEM ___ J

Figure 2-22. Multiprocessing System

generation of an HLDA response to a HOLD
request until execution of the locked instruction is
completed.

The LOCK signal provides information only. It is
the responsibility of other processors on the
shared bus to not attempt to obtain the bus while
LOCK is active. If the system uses 8289 Bus
Arbiters to control access to the shared bus, the
8289's accept LOCK as an input and do not relin­
quish the bus while this signal is active.

LOCK may be used in multiprocessing systems to
coordinate access to a common resource, such as
a buffer or a pointer. If access to the resource is
not controlled, one processor can read an
erroneous value from the resource when another
processor is updating it (see figure 2-23).

Access can be controlled (see figure 2-24) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with memory) instruction. The
basis for controlling access to a given resource is a
semaphore, a software-settable flag or switch that
indicates whether the resource is "available"
(semaphore=O) or "busy" (semaphore= 1). Pro­
cessors that share the bus agree by convention not
to use the resource unless the semaphore indicates

Mnemonics CS Intel, 1978 2-18

that it is available. They likewise agree to set the
semaphore when they are using the resource and
to clear it when they are finished.

The XCHG instruction can obtain the current
value of the semaphore and set it to "busy" in a
single instruction. The instruction, however,
requires two bus cycles to swap 8-bit values. It is
possible for another processor to obtain the bus
between these two cycles and to gain access to the
partially-updated semaphore. This can be
prevented by preceding the XCHG instruction
with a LOCK prefix, as illustrated in figure 2-25.
The bus lock establishes control over access to the
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 8088 (in either maximum or
minimum mode) can be synchronized to an exter­
nal event with the WAIT (wait for TEST) instruc­
tion and the TEST input signal. When the EU
executes aWAIT instruction, the result depends
on the state of the TEST input line. If TEST is
inactive, the processor enters an idle state and
repeatedly retests the TEST line at five-clock
intervals. If TEST is active, execution continues
with the instruction following the WAIT.

BUS CYCLE

0

2

8086 AND 8088 CENTRAL PROCESSING UNITS

SHARED POINTER
IN MEMORY

1 05 I 2214C I 1 B 1
1 C2 1 5914C 11 B 1
1 C2 1 5914C 11 B 1

1 C2 1 59 1 31 I 05 1

PROCESSOR ACTIVITIES

"A" UPDATES 1 WORD

"B" READS PARTIALLY
UPDATED VALUE

"A" COMPLETES UPDATE

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or
a memory operand from an 8086/8088 program.
When used in conjunction with WAIT and TEST,
ESC can initiate a "subroutine" that executes
concurrently in another processor (see figure
2-26).

Six bits in the ESC instruction may be specified by
the programmer when the instruction is written.
By monitoring the 8086/8088 bus and control
lines, another processor can capture the ESC
instruction when it is fetched by the BIU. The six
bits may then direct the external processor to per­
form some predefined activity.

Figure 2-23. Uncontrolled Access to Shared
Resource

If the 8086/8088 is configured in maximum
mode, the external processor, having determined
that an ESC has been fetched, can monitor QSO

SHARED POINTER
BUSCYCLE SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES

0 0 105 122 4C 11B

105 I 22 4C I 1B "A" OBTAINS EXCLUSIVE
USE

2 IC2 159 4C 11B "A" UPDATES 1 WORD

IC2 159 4C,1B "B" TESTS SEMAPHORE
AND WAITS

4 IC2 159 31 ,05 "A" COMPLETES UPDATE

IC2 159 31 ,05
"B" TESTS SEMAPHORE
AND WAITS

0 IC2 159 31 ,05 "A" RELEASES RESOURCE

7 IC2 159 31 ,05
"B" OBTAINS
EXCLUSIVE USE

8 IC2 159 31 105
"B" READS
UPDATED VALUE

0 IC2 159 31 ,05 "B" RELEASES RESOURCE

Figure 2-24. Controlled Access to Shared Resource

2-19 Mnemonics © Intel, 1978

BUSY(l)

GETSEMA·
PHORE &

SET "BUSY"

r:;;--,
L...:ESOURC:..J

T
SET

SEMAPHORE
"AVAILABLE"

(EXIT)

8086 AN08088 CENTRAL PROCESSING UNITS

MOV AL,l

WAIT: LOCK XCHG AL, SEMAPHORE

TEST AL,AL
JNZ WAIT

MOV SEMAPHORE,O

and QSl (the queue status lines, discussed in sec­
tion 2,6) and determine when the ESC instruction
is executed. If the instruction references memory
the external processor can then monitor the bus
and capture the operand's physical address
and/or the operand itself.

Note that fetching an ESC instruction is not tan­
tamount to executing it. The ESC may be pre­
ceded by a jump that causes the queue to be
reinitialized. This event also can be determined
from the queue status lines,

Request/Grant Lines

When the 8086 or 8088 is configured in maximum
mode, the HOLD and HLDA lines evolve into
two more sophisticated signals called RQ/GTO
and RQ/GTl. These are bidirectional lines that
can be used to share a local bus between an 8086
or 8088 and two other processors via a handshake
sequence.

Figure 2-25. Using XCHG and LOCK

The request/grant sequence is a three-phase cycle:
request, grant and release. First, the processor
desiring the bus pulses a request/grant line. The
CPU returns a pulse on the same line indicating
that it is entering the "hold acknowledge" state
and is relinquishing the bus. The BIU is logically
disconnected from the bus during this period. The

PROCESSOR
"A"

Figure 2-26. Using ESC with WAIT and TEST

Mnemonics © Intel, 1978 2-20

8086 AND 8088 CENTRAL PROCESSING UNITS

EU, however, will continue to execute instruc­
tions until an instruction requires bus access or
the queue is emptied, whichever occurs first.
When the other processor has finished with the
bus, it sends a final pulse to the 8086/8088 in­
dicating that the request has ended and that the
CPU may reclaim the bus.

RQ/GTO has higher priority than RQ/GTl. If
requests arrive simultaneously on both lines, the
~nt~es to the processor on RQ/GTO and
RQ/GTl is acknowledged after the bus has been
returned to the CPU. If, however, a request
arrives on RQ/GTO while the CPU is processing a
prior request on RQ/GTl, the second r~est is
not honored until the processor on RQ/GTI
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose
multiprocessing bus called the Multibus. This is
the standard design used in iSBCTM single-board
microcomputer products. Many other manufac­
turers offer products that are compatible with the
Multibus architecture as well. When the 8086 and
8088 are configured in maximum mode, the 8288
Bus Controller outputs signals that are electrically
compatible with the Multibus protocol. Designers
of multiprocessing systems may want to consider
using the Multibus architecture in the design of
their products to reduce development cost and

MASTER

MASTER
WITH

BUS·ACCESSIBLE
MEMORY

time, and to obtain compatibility with the wide
variety of boards available in the iSBC product
line.

The Multibus architecture provides a versatile
communications channel that can be used to coor­
dinate a wide variety of computing modules (see
figure 2-27). Modules in a Multibus system are
designated as masters or slaves. Masters may
obtain use of the bus and initiate data transfers on
it. Slaves are the objects of data transfers only.
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi­
tion to 16 data lines, the bus design provides 20
address lines, eight multilevel interrupt lines, and
control and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own
clock, independent of the clocks of the modules it
links together. This allows different speed masters
to share the bus and allows masters to operate
asynchronously with respect to each other. The
arbitration logic of the bus permit slow-speed
masters to compete equably for use of the bus.
Once a module has obtained the bus, however,
transfer speeds are dependent only on the
capabilities of the transmitting and receiving
modules. Finally, the Multibus standard defines
the form factors and physical requirements of
modules that communicate on this bus. For a
complete description of the Multibus architec-

MEMORY SLAVE 1/0 SLAVE

.1 ,[[{ fie :I{
...oj

'f "I
...oj

'f "" .1 U) Ii:
U) .. z ::>
w I- .. a:

~ !;(~ ~ a: .. " a:
0 o "

w coo w 0 0 I-
.. 0 U) .. 0 ~

::>

'"
MULTIBUSTM INTERFACE

Figure 2-27. Multibus™-Based System

2-21

8086 AND 8088 CENTRAL PROCESSINGUNtTS

ture, refer to the Intel Multibus Specification
(document number 9800683) and Application
Note 28A, "Intel Multibus Interfacing."

8289 Bus Arbiter

Multiprocessor systems require a means of coor­
dinating the processors' use of the shared bus.
The 8289 Bus Arbiter works in conjunction with
the 8288 Bus Controller to provide this control
for 8086- and 8088-based systems. It is compati­
ble with the Multibus architecture and can be used
in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus
contention and matches processors operating
asynchronously with respect to each other. Each
processor on the bus is assigned a different pri­
ority. When simultaneous requests for the bus
arrive, the 8289 resolves the contention and grants
the bus to the processor with the highest priority;
three different prioritizing techniques may be
used. Chapter 4 discusses the 8289 in more detail.

2.6 Processor Control and
Monitoring

Interrupts

The 8086 and 8088 have a simple and versatile
interrupt system. Every interrupt is assigned a
type code that identifies it to the CPU. The 8086

I NON·MASKABLE
INTERRUPT
REQUEST I

and 8088 can handle up to 256 different interrupt
types. Interrupts may be initiated by devices
external to the CPU; in addition, they also may be
triggered by software interrupt instructions and,
under certain conditions, by the CPU itself (see
figure 2-28). Figure 2-29 illustrates the basic
response of the 8086 and 8088 to an interrupt.
The next sections elaborate on the information
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external
devices may use to signal interrupts (lNTR and
NMI). The INTR (Interrupt Request) line is
usually driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn con­
nected to the devices that need interrupt services.
The 8259A is a very flexible circuit that is con­
trolled by software commands from the 8086 or
8088 (the PIC appears as a set of liD ports to the
software). Its main job is to accept interrupt
requests from the devices attached to it, deter­
mine which requesting device has the highest
priority, and then activate the 8086/8088 INTR
line if the selected device has higher priority than
the device currently being serviced (if there is
one).

When INTR is active, the CPU takes different
action depending on the state of the interrupt­
enable flag (IF). No action takes place, however,
until the currently-executing instruction has been

-
r--------t~-------, --II I INTERRUPTI I IINTR

LOGIC
I I

: I • t t· I :

8259A

II INT n INTO DIVIDE SINGLE· II
STEP

I INSTR. INSTR. ERROR (TF=1) I

I

I 8086/8088 CPU I L _________________ ~

Figure 2-28. Interrupt Sources

2-22

MASKABLE
INTERRUPT
REQUESTS

8086 AND 8088 CENTRAL PROCESSING UNITS

Figure 2-29. Interrupt Processing Sequence

2-23

8086 AND 8088 CENTRAL PROCESSING UNITS

completed. * Then, if IF is clear (meaning that
interrupts signaled on INTR are masked or dis­
abled), the CPU ignores the interrupt request and
processes the next instruction. The INTR signal is
not latched by the CPU, so it must be held active
until a response is received or the request is
withdrawn. If interrupts on INTR are enabled (if
IF is set), then the CPU recognizes the interrupt
request and processes it. Interrupt requests arriv­
ing on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and dis­
abled by executing a CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled) by
writing commands to the 8259A. It should be
noted that in order to reduce the likelihood of
excessive stack buildup, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request by
executing two consecutive interrupt acknowledge
(INTA) bus cycles. If a bus hold request arrives
(via the HOLD or request/grant lines) during the
INT A cycles, it is not honored until the cycles
have been completed. In addition, if the CPU is
configured in maximum mode, it activates the
LOCK signal during these cycles to indicate to
other processors that they should not attempt to
obtain the bus. The first cycle signals the 8259A
that the request has been honored. During the
second INT A cycle, the 8259A responds by plac­
ing a byte on the data bus that contains the inter­
rupt type (0-255) associated with the device
requesting service. (The type assignment is made
when the 8259A is initialized by software in the
8086 or 8088.) The CPU reads this type code and
uses it to call the corresponding interrupt
procedure.

An external interrupt request also may arrive on
another CPU line, NMI (non-maskable inter­
rupt). This line is edge-triggered (lNTR is level­
triggered) and is generally used to signal the CPU
of a "catastrophic" event, such as the imminent
loss of power, memory error detection or bus
parity error. Interrupt requests arriving on NMI
cannot be disabled, are latched by the CPU, and
have higher priority than an interrupt request on
INTR. If an interrupt request arrives on both
lines during the execution of an instruction, NMI
will be recognized first. Non-maskable interrupts
are predefined as type 2; the processor does not
need to be supplied with a type code to call the
NMI procedure, and it does not run the INT A bus
cycles in response to a request on NMI.

The time required for the CPU to recognize an
external interrupt request (interrupt latency)
depends on how many clock periods remain in the
execution of the current instruction. On the
average, the longest latency occurs when a
multiplication, division or variable-bit shift or
rotate instruction is executing when the interrupt
request arrives (see section 2.7 for detailed
instruction timing data). As mentioned pre­
viously, in a few cases, worst-case latency will
span two instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction generates an inter­
rupt immediately upon completion of its execu­
tion. The interrupt type coded into the instruction
supplies the CPU with the type code needed to
call the procedure to process the interrupt. Since
any type code may be specified, software inter­
rupts may be used to test interrupt procedures
written to service external devices.

"There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK
and segment override prefixes are considered "part of" the instructions they prefix; no interrupt is recognized between
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory.
It follows from this that whenever a segment register and another value must be updated together, the segment register
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases,
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these
cases, interrupts are accepted after any completed primitive operation or wait test cycle.

Mnemonics © Intel, 1978 2-24

8086 AND 8088 CENTRAL PROCESSING UNITS

If the overflow flag (OF) is set,an INTO (inter­
rupt on overflow) instruction generates a type 4
interrupt immediately upon completion of its
execution.

The CPU itself generates a type 0 interrupt
immediately following execution of a DIY or
IDlY (divide, integer divide) instruction if the
calculated quotient is larger than the specified
destination.

If the trap flag (TF) is set, the CPU automatically
generates a type 1 interrupt following every
instruction. This is called single-step execution
and is a powerful debugging tool that is discussed
in more detail shortly.

All internal interrupts (INT, INTO, divide error,
and single-step) share these characteristics:

1. The interrupt type code is either contained in
the instruction or is predefined.

2. No INT A bus cycles are run.

3. Internal interrupts cannot be disabled, except
for single-step.

4. Any internal interrupt (except single-step)
has higher priority than any external inter­
rupt (see table 2-3). If interrupt requests
arrive on NMI and/or INTR during execu­
tion of an instruction that causes an internal
interrupt (e.g., divide error), the internal
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
(figure 2-30) is the link between an interrupt type
code and the procedure that has been designated
to service interrupts associated with that code.
The interrupt pointer table occupies up to the first
lk bytes of low memory. There may be up to 256
entries in the table, one for each interrupt type

3FFH r--------"I
~ TY~~J~i:A~I~;)ER -

3FCH~ ______________ ~

AVAILABLE
INTERRUPT
POINTERS
(224) - TYPE 33 POINTER: -(AVAILABLE)

OS4H

TYPE 32 POINTER: - (AVAILABLE) -
OSOH
07FH

TYPE 31 POINTER: - (RESERVED) -
RESERVED
INTERRUPT
POINTERS
(271 r

TYPE 5 POINTER: -
014H

(RESERVED) -
TYPE 4 POINTER: - OVERFLOW -

010H

1.BY~mf rN~I~:J~+ION
DEDICATED

OOCH

INTERRUPT
POINTERS - TYPE 2 POINTER: -NON·MASKABLE
(5) OOSH

~
TYPE 1 POINTER: -SINGLE·STEP

004H

OOOH
~

TYPE 0 POINTER: -DIVIDE ERROR
CS BASE ADDRESS

IP OFFSET

1_16 BITS_I

Figure 2-30. Interrupt Pointer Table

2-25 Mnemonics Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

that can occur in the system. Each entry in the
table is a doubleword pointer containing the
address of the procedure that is to service inter­
rupts of that type. The higher-addressed word of
the pointer contains the base address of the seg­
ment containing the procedure. The lower-ad­
dressed word contains the procedure's offset
from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the
location of the correct entry for a given interrupt
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY

Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

Space at the high end of the table that would be
occupied by entries for interrupt types that cannot
occur in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
7FH), however, should not be used for any other
purpose to insure proper system operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086 or
8088 activates an interrupt procedure by exe­
cuting the equivalent of an intersegment indirect
CALL instruction. The target of the "CALL" is
the address contained in the interrupt pointer
table element located at (type*4). The CPU saves
the address of the next instruction by pushing CS
and IP onto the stack. These are then replaced by
the second and first words of the table element,
thus transferring control to the procedure.

If multiple interrupt requests arrive simulta­
neously, the processor activates the interrupt pro­
cedures in priority order. Figure 2-31 shows how
procedures would be activated in an extreme case.
The processor is running in single-step mode with
external interrupts enabled. During execution of a
divide instruction, INTR is activated. Further­
more the instruction generates a divide error
interrupt. Figure 2-31 shows that the interrupts

Mnemonics © Intel, 1978
2-26

are recognized in turn, in the order of their
priorities except for INTR. INTR is not recog­
nized until after the following instruction because
recognition of the earlier interrupts cleared IF. Of
couse interrupts could be reenabled in any of the
interrupt response routines if earlier response to
INTR is desired.

As figure 2-31 shows, all main-line code is exe­
cuted in single-step mode. Also, because of the
order of interrupt processing, the opportunity
exists in each occurrence of the single-step routine
to select whether pending interrupt routines
(divide error and INTR routines in this example)
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered,
the flags, CS, and IP are pushed onto the stack
and TF and IF are cleared. The procedure may
reenable external interrupts with the STI (set
interrupt-enable flag) instruction, thus allowing
itself to be interrupted by a request on INTR.
(Note, however, that interrupts are not actually
enabled until the instruction following STI has
executed.) An interrupt procedure always may be
interrupted by a request arriving on NMI.
Software- or processor-initiated interrupts
occurring within the procedure also will interrupt
the procedure. Care must be taken in interrupt
procedures that the type of interrupt being ser­
viced by the procedure does not itself inadver­
tently occur within the procedure. For example,
an attempt to divide by 0 in the divide error (type
0) interrupt procedure may result in the procedure
being reentered endlessly. Enough stack space
must be available to accommodate the maximum
depth of interrupt nesting that can occur in the
system.

Like all procedures, interrupt procedures should
save any registers they use before updating them,
and restore them before terminating. It is good
practice for an interrupt procedure to enable
external interrupts for all but "critical sections"
of code (those sections that cannot be interrupted
without risking erroneous results). If external
interrupts are disabled for too long in a pro­
cedure, interrupt requests on INTR can poten­
tially be lost.

8086 AND 8088 CENTRAL PROCESSING UNITS

~
~

DIVIDE
INSTRUCTION • INTR

DIVIDE ERROR RECOGNIZED

~
PUSH FLAGS
PUSH CS & IP
CLEAR IF & TF

EXECUTE NEXT
INSTRUCTION I SINGLE STEP RECOGNIZED

~
~ PUSH FLAGS

PUSH CS & IP
CLEAR IF &TF

DIVIDE ERROR
PROCEDURE I

I SINGLE STEP
PROCEDURE'

POP CS & IP
POP FLAGS I

TF=1,IF=1 I POP CS & IP
POP FLAGS

INTR RECOGNIZED

~ TF=O,IF=O I
PUSH FLAGS
PUSH CS & IP
CLEAR IF & TF

EXECUTE NEXT
INSTRUCTION I SINGLE STEP RECOGNIZED

I

~ I
I

~ I PUSH FLAGS
I PUSH CS & IP

I CLEAR IF & TF

I
INTR

PROCEDURE I I
I

I I
SINGLE STEP
PROCEDURE'

POP CS & IP
POP FLAGS I

TF= 1,IF= 1 I POPCS & IP

, TF CAN BE SET IN THE
POP FLAGS

SINGLE STEP PROCEDURE
IF SINGLE STEPPING OF

I THE DIVIDE ERROR OR INTR ,.
PROCEDURE IS DESIRED. TF=O,IF=O

Figure 2-31. Processing Simultaneous Interrupts

2-27 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

All interrupt procedures should be terminated
with an IRET (interrupt return) instruction. The
IRET instruction assumes that the stack is in the
same condition as it was when the procedure was
entered. It pops the top three stack words into IP,
CS and the flags, thus returning to the instruction
that was about to be executed when the interrupt
procedure was activated.

The actual processing done by the procedure is
dependent upon the application. If the procedure
is servicing an external device, it should output a
command to the device instructing it to remove its
interrupt request. It might then read status
information from the device, determine the cause
of the interrupt and then take action accordingly.
Section 2.10 contains three typical interrupt pro­
cedure examples.

Software-initiated interrupt procedures may be
used as service routines ("supervisor calls") for
other programs in the system. In this case, the
interrupt procedure is activated when a program,
rather than an external device, needs attention.
(The "attention" might be to search a file for a
record, send a message to another program,
request an allocation of free memory, etc.) Soft­
ware interrupt procedures can be advantageous in
systems that dynamically relocate programs dur­
ing execution. Since the interrupt pointer table is
at a fixed storage location, procedures may
"call" each other through the table by issuing
software interrupt instructions. This provides a
stable communication "exchange" that is
independent of procedure addresses. The inter­
rupt procedures may themselves be moved so long
as the interrupt pointer table always is updated to
provide the linkage from the "calling" program
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086 or 8088 is
said to be in single-step mode. In this mode, the
processor automatically generates a type 1 inter­
rupt after each instruction. Recall that as part of
its interrupt processing, the CPU automatically
pushes the flags onto the stack and then clears TF
and IF. Thus the processor is not in single-step
mode when the single-step interrupt procedure is
entered; it runs normally. When the single-step
procedure terminates, the old flag image is
restored from the stack, placing the CPU back ",
into single-step mode.

Mnemonics @ Intel, 1978 2-28

Single-stepping is a valuable debugging tool. It
allows the single-step procedure to act as a "win­
dow" into the system through which operation
can be observed instruction-by-instruction. A
single-step interrupt procedure, for example, can
print or display register contents, the value of the
instruction pointer (it is on the stack), key
memory variables, etc., as they change after each
instruction. In this way the exact flow of a pro­
gram can be traced in detail, and the point at
which discrepancies occur can be determined.
Other possible services that could be provided by
a single-step routine include:

• Writing a message when a specified memory
location or 110 port changes value (or equals
a specified value).

• Providing diagnostics selectively (only for
certain instruction addresses for instance).

• Letting a routine execute a number of times
before providing diagnostics.

The 8086 and 8088 do not have instructions for
setting or clearing TF directly. Rather, TF can be
changed by modifying the flag-image on the
stack. The PUSHF and POPF instructions are
available for pushing and popping the flags
directly (TF can be set by ORing the flag-image
with OIOOH and cleared by ANDing it with
FEFFH). After TF is set in this manner, the first
single-step interrupt occurs after the first
instruction following the IRET from the single­
step procedure.

If the processor is single-stepping, it processes an
interrupt (either internal or external) as follows.
Control is passed normally (flags, CS and IP are
pushed) to the procedure designated to handle the
type of interrupt that has occurred. However,
before the first instruction of that procedure is
executed, the single-step interrupt is "recog­
nized" and control is passed normally (flags, CS
and IP are pushed) to the type 1 interrupt pro­
cedure. When single-step procedure terminates,
control returns to the previous interrupt pro­
cedure.Figure 2-31 illustrates this process in a
case where two interrupts occur when the pro­
cessor is in single-step mode.

Breakpoint Interrupt

A type 3 interrupt is dedicated to the breakpoint
interrupt. A breakpoint is generally any place in a
program where normal execution is arrested so

8086 AND 8088 CENTRAL PROCESSING UNITS

that some sort of special processing may be per­
formed. Breakpoints typically are inserted into
programs during debugging as a way of display­
ing registers, memory locations, etc., at crucial
points in the program.

The INT 3 (breakpoint) instruction is one byte
long. This makes it easy to "plant" a breakpoint
anywhere in a program. Section 2.10 contains an
example that shows how a breakpoint may be set
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
"patch" a program (insert new instructions)
without recompiling or reassembling it. This may
be done by saving an instruction byte, and replac­
ing it with an INT 3 (CCH) machine instruction.
The breakpoint procedure would contain the new
machine instructions, plus code to restore the
saved instruction byte and decrement IP on the
stack before returning, so that the displaced
instruction would be executed after the patch
instructions. The breakpoint example in section
2.10 illustrates these principles.

Note that patching a program requires machine­
instruction programming and should be under­
taken with considerable caution; it is easy to add
new bugs to a program in an attempt to correct
existing ones. Note also that a patch is only a tem­
porary measure to be used in exceptional condi­
tions. The affected code should be updated and
retranslated as soon as possible.

System Reset

The 8086/8088 RESET line provides an orderly
way to start or restart an executing system. When
the processor detects the positive-going edge of a
pulse on RESET, it terminates all activities until
the signal goes low, at which time it initializes the
system as shown in table 2-4.

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the pro­
cessor executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an
inter segment direct JMP instruction whose target
is the actual beginning of the system program.
The LOC-86 utility supplies this JMP instruction
from information in the program that identifies
its first instruction. As external (maskable) inter-

2-29

rupts are disabled by system reset, the system
software should reenable interrupts as soon as the
system is initialized to the point where they can be
processed.

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT

Flags Clear
Instruction Pointer OOOOH
CS Register FFFFH
DS Register OOOOH
SS Register OOOOH
ES Register OOOOH
Queue Empty

Instruction Queue Status

When configured in maximum mode, the 8086
and 8088 provide information about instruction
queue operations on lines QSO and QS 1. Table 2-5
interprets the four states that these lines can
represent.

The queue status lines are provided for external
processors that receive instructions and/or
operands via the 8086/8088 ESC (escape) instruc­
tion (see sections 2.5 and 2.8). Such a processor
may monitor the bus to see when an ESC instruc­
tion is fetched and then track the instruction
through the queue to determine when (and if) the
instruction is executed.

QSo

0

0

1

1

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QS1
QUEUE OPERATION IN LAST

CLKCYCLE

0 No operation; default value

1 First byte of an instruction was
taken from the queue

0 Queue was reinitialized

1 Subsequent byte of an instruction
was taken from the queue

Processor Halt

When the HL T (halt) instruction (see section 2.7)
is executed, the 8086 or 8088 enters the halt state.
This condition may be interpreted as "stop all

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

operations until an external interrupt occurs or
the system is reset." No signals are floated during
the halt state, a'nd the content of the address and
data buses is undefined. A bus hold request
arriving on the HOLD line (minimum mode) or
either request/grant line (maximum mode) is
acknowledged normally while the processor is
halted.

The halt state can be used when an event prevents
the system from functioning correctly. An exam­
ple might be a power-fail interrupt. After
recognizing that loss of power is imminent, the
CPU could use the remaining time to move
registers, flags and vital variables to (for example)
a battery-powered CMOS RAM area and then
halt until the return of power was signaled by an
interrupt or system reset.

Status Lines

When configured in maximum mode, the 8086
and 8088 emit eight status signals that can be used
by external devices. Lines SO, S1 and 51 identify
the type of bus cycle that the CPU is starting to
execute (table 2-6). These lines are typically
decoded by the 8288 Bus Controller. S3 and S4
indicate which segment register was used to con­
struct the physical address being used in this bus
cycle (see table 2-7). Line S5 reflects the state of
the interrupt-enable flag. S6 is always O. S7 is a
spare line whose content is undefined.

Table 2-6. Bus Cycle Status Signals

S2 S1 So TYPES OF BUS CYCLE

0 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 HALT
1 0 0 Instruction Fetch
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive; no bus cycle

Table 2-7. Segment Register Status Lines

S4 S3 SEGMENT REGISTER

0 0 ES
0 1 SS
1 0 CS or none (1/0 or Interrupt Vector)
1 1 OS

Mnemonics © Intel, 1978

2.7 Instruction Set

The 8086 and 8088 execute exactly the same
instructions. This instruction set includes
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations include:

• multiplication and division of signed and
unsigned binary numbers as well as unpacked
decimal numbers,

• move, scan and compare operations for
strings up to 64k bytes in length,

• non-destructive bit testing,

• byte translation from one code to another,

• software-generated interrupts, and

• a group of instructions that can help
coordinate the activities of multiprocessor
systems.

These instructions treat different types of
operands uniformly. Nearly every instruction can
operate on either byte or word data. Register,
memory and immediate operands may be
specified interchangeably in most instructions (ex­
cept, of course, that immediate values may only
serve as "source" and not "destination"
operands). In particular, memory variables can be
added to, subtracted from, shifted, compared,
and so on, in place, without moving them in and
out of registers. This saves instructions, registers,
and execution time in assembly language pro­
grams. In high-level languages, where most
variables are memory based, compilers, such as
PL/M-86, can produce faster and shorter object
programs.

The 8086/8088 instruction set can be viewed as
existing at two levels: the assembly level and the
machine level. To the assembly language pro­
grammer, the 8086 and 8088 appear to have a
repertoire of about 100 instructions. One MOV
(move) instruction, for example, transfers a byte
or a word from a register or a memory location or
an immediate value to either a register or a
memory location. The 8086 and 8088 CPUs,
however, recognize 28 different MOV machine
instructions ("move byte register to memory,"
"move word immediate to register," etc.). The
ASM-86 assembler translates the assembly-level
instructions written by a programmer into the

2-30

8086 AND 8088 CENTRAL PROCESSING UNITS

machine-level instructions that are actually exe­
cuted by the 8086 or 8088. Compilers such as
PLlM-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two
different requirements: efficiency and simplicity.
The numerous-there are about 300 in all-forms
of machine-level instructions allow these instruc­
tions to make very efficient use of storage. For
example, the machine instruction that increments
a memory operand is three or four bytes long
because the address of the operand must be
encoded in the instruction. To increment a
register, however, does not require as much
information, so the instruction can be shorter. In
fact, the 8086 and 8088 have eight different
machine-level instructions that increment a dif­
ferent 16-bit register; these instructions are only
one byte long.

If a programmer had to write one instruction to
increment a register, another to increment a
memory variable, etc., the benefit of compact
instructions would be offset by the difficulty of
programming. The assembly-level instructions
simplify the programmer's view of the instruction
set. The programmer writes one form of the INC
(increment) instruction and the ASM-86
assembler examines the operand to determine
which machine-level instruction to generate.

This section presents the 8086/8088 instruction
set from two perspectives. First, the assembly­
level instructions are described in functional
terms. The assembly-level instructions are then
presented in a reference table that breaks out all
permissible operand combinations with execution
times and machine instruction length, plus the
effect that the instruction has on the CPU flags.
Machine-level instruction encoding and decoding
are covered in section 4.2.

Data Transfer Instructions

The 14 data transfer instructions (table 2-8) move
single bytes and words between memory and
registers as well as between register AL or AX and
I/O ports. The stack manipulation instructions
are included in this group as are instructions for
transferring flag contents and for loading seg­
ment registers.

2-31

Table 2-8. Data Transfer Instructions

GENERAL PURPOSE

MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte

INPUT/OUTPUT

IN Input byte or word
OUT Output byte or word

ADDRESS OBJECT

LEA Load effective address
LOS Load pointer using OS
LES Load pointer using ES

FLAG TRANSFER

LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transfers

MOV destination, source

MOY transfers a byte or a word from the source
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two
and then transfers a word from the source
operand to the top of stack now pointed to by SP.
PUSH often is used to place parameters on the
stack before calling a procedure; more generally,
it is the basic means of storing temporary data on
the stack.

POP destination

POP transfers the word at the current top of stack
(pointed to by SP) to the destination operand,
and then increments SP by two to point to the
new top of stack. POP can be used to move tem­
porary variables from the stack to registers or
memory.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

XCHG destination, source

XCHG (exchange) switches the contents of the
source and destination (byte or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access to a resource shared by multiple processors
(see section 2.5).

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-coded
translation table. Register BX is assumed to point
to the beginning of the table. The byte in AL is
used as an index into the table and is replaced by
the byte at the offset in the table corresponding to
AL's binary value. The first byte in the table has
an offset of O. For example, if AL contains 5H,
and the sixth element of the translation table con­
tains 33H, then AL will contain 33H following
the instruction. XLAT is useful for translating
characters from one code to another, the classic
example being ASCII to EBCDIC or the reverse.

IN accumulator,port

IN transfers a byte or a word from an input port
to the AL register or the AX register, respectively.
The port number may be specified either with an
immediate byte constant, allowing access to ports
numbered 0 through 255, or with a number
previously placed in the DX register, allowing
variable access (by changing the value in DX) to
ports numbered from 0 through 65,535.

OUT port, accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an out­
put port. The port number may be specified either
with an immediate byte constant; allowing access
to ports numbered 0 through 255, or with a
number previously placed in register DX, allow­
ing variable access (by changing the value in DX)
to ports numbered from 0 through 65,535.

Address Object Transfers

These instructions manipulate the addresses of
variables rather than the contents or values of
variables. They are most useful for list process­
ing, based variables, and string operations.

Mnemonics © Intel, 1978 2-32

LEA destination,source

LEA (load effective address) transfers the offset
of the source operand (rather than its value) to the
destination operand. The source operand must be
a memory operand, and the destination operand
must be a 16-bit general register. LEA does not
affect any flags. The XLA T and string instruc­
tions assume that certain registers point to
operands; LEA can be used to load these registers
(e.g., 10'lding BX with the address of the translate
table used by the XLA T instruction).

LOS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register DS. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg­
ment word of the pointer is transferred to register
DS. Specifying SI as the destination operand is a
convenient way to prepare to process a source
string that is not in the current data segment
(string instructions assume that the source string
is located in the current data segment and that SI
contains the offset of the string).

LES destination, source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register ES. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg­
ment word of the pointer is transferred to register
ES. Specifying DI as the destination operand is a
convenient way to prepare to process a destina­
tion string that is not in the current extra segment.
(The destination string must be located in the
extra segment, and DI must contain the offset of
the string.)

Flag Transfers

LAHF

LAHF (load register AH from flags) copies SF,
ZF, AF, PF and CF (the 8080/8085 flags) into
bits 7, 6, 4, 2 and 0, respectively, of register AH

8086 AND 8088 CENTRAL PROCESSING UNITS

(see figure 2-32). The content of bits 5, 3 and 1 is
undefined; the flags themselves are not affected.
LAHF is provided primarily for converting
8080/8085 assembly language programs to run on
an 8086 or 8088.

SAHF

SAHF (store register AH into flags) transfers bits
7,6,4,2 and 0 from register AH into SF, ZF, AF,
PF and CF, respectively, replacing whatever
values these flags previously had. OF, DF, IF and
TF are not affected. This instruction is provided
for 8080/8085 compatibility.

PUSHF

PUSHF decrements SP (the stack pointer) by two
and then transfers all flags to the word at the top
of stack pointed to by SP (see figure 2-32). The
flags themselves are not affected.

POPF

POPF transfers specific bits from the word at the
current top of stack (pointed to by register SP)
into the 8086/8088 flags, replacing whatever
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to
the new top of stack. PUSHF and POPF allow a
procedure to save and restore a calling program's
flags. They also allow a program to change the

LAHF, I I SAHF S , Z , U I A , U I P , U ,c
17 6 5 4 3 2 1 01
1_8080/8085 FLAGS_I

I I
I I

~g~~ F, I u , U I U , U I 0 I 0, I , T , S I Z I U , A , U , P I U ,c I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE
o = OVERFLOW FLAG
D = DIRECTION FLAG
I = INTERRUPT ENABLE FLAG
T = TRAP FLAG
S = SIGN FLAG
Z = ZERO FLAG
A = AUXILIARY CARRY FLAG
P = PARITY FLAG
C = CARRY FLAG

Figure 2-32. Flag Storage Formats

2-33

setting of TF (there is no instruction for updating
this flag directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory­
image and then popping the flags.

Arithmetic Instructions

Arithmetic Data Formats

8086 and 8088 arithmetic operations (table 2-9)
may be performed on four types of numbers:
unsigned binary, signed binary (integers),
unsigned packed decimal and unsigned unpacked
decimal (see table 2-10). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in
bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The pro­
cessor always assumes that the operands specified
in arithmetic instructions contain data that repre­
sent valid numbers for the type of instruction
being performed. Invalid data may produce
unpredictable results.

Table 2-9. Arithmetic Instructions

ADDITION

ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition

SUBTRACTION

SUB Subtract byte or word
SBB Subtract byte or word with

borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction

MULTIPLICATION

MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply

DIVISION

DIV Divide byte or word unsigned
IDIV Intege~<:Iivide byte or word
AAD ASCII adjust for division
CBW Convert byte to word
CWO Convert word to doubleword

MnemoniCS © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

HEX BIT PATTERN
UNSIGNED

BINARY

07 00000111 7

89 1 0001001 137

C5 1 1000101 197

Unsigned binary numbers may be either 8 or 16
bits long; all bits are considered in determining a
number's magnitude. The value range of an 8-bit
unsigned binary number is 0-255; 16 bits can
represent values from 0 through 65,535. Addi­
tion, subtraction, multiplication and division
operations are available for unsigned binary
numbers.

Signed binary numbers (integers) may be either 8
or 16 bits long. The high-order (leftmost) bit is
interpreted as the number's sign: 0 = positive and
1 = negative. Negative numbers are represented
in standard two's complement notation. Since
the high-order bit is used for a sign, the range of
an 8-bit integer is -128 through +127; 16-bit
integers may range from -32,768 through
+32,767. The value zero has a positive sign.
Multiplication and division operations are pro­
vided for signed binary numbers. Addition and
subtraction are performed with the unsigned
binary instructions. Conditional jump instruc­
tions, as well as an "interrupt on overflow"
instruction, can be used following an unsigned
operation on an integer to detect overflow into
the sign bit.

Packed decimal numbers are stored as unsigned
byte quantities. The byte is treated as having one
decimal digit in each half-byte (nibble); the digit
in the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half­
byte, and the range of a packed decimal number is
0-99. Addition and subtraction are performed in
two steps. First an unsigned binary instruction is
used to produce an intermediate result in register
AL. Then an adjustment operation is performed
which changes the intermediate value in AL to a
final correct packed decimal result. Multiplica­
tion and division adjustments are not available
for packed decimal numbers.

Mnemonics © Intel. 1978 2-34

SIGNED UNPACKED PACKED
BINARY DECIMAL DECIMAL

+7 7 7

-119 invalid 89

-59 invalid invalid

Unpacked decimal numbers are stored as un­
signed byte quantities. The magnitude of the
number is determined from the low-order half­
byte; hexadecimal values 0-9 are valid and are
interpreted as decimal numbers. The high-order
half-byte must be zero for multiplication and divi­
sion; it may contain any value for addition and
subtraction. Arithmetic on unpacked decimal
numbers is performed in two steps. The unsigned
binary addition, subtraction and multiplication
operations are used to produce an intermediate
result in register AL. An adjustment instruction
then changes the value in AL to a final correct
unpacked decimal number. Division is performed
similarly, except that the adjustment is carried out
on the numerator operand in register AL first,
then a following unsigned binary division instruc­
tion produces a correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits 0-9.
Note, however, that the high-order half-byte of
an ASCII numeral is always 3H. Unpacked
decimal arithmetic may be performed on ASCII
numeric characters under the following
conditions:

• the high-order half-byte of an ASCII
numeral must be set to OH prior to
multiplication or division.

• unpacked decimal arithmetic leaves the
high-order half-byte set to OH; it must be set
to 3H to produce a valid ASCII numeral.

Arithmetic Instructions and Flags

The 8086/8088 arithmetic instructions post cer­
tain characteristics of the result of the operation
to six flags. Most of these flags can be tested by
following the arithmetic instruction with a condi­
tional jump instruction; the INTO (interrupt on
overflow) instruction also may be used. The

8086 AND 8088 CENTRAL PROCESSING UNITS

various instructions affect the flags differently, as
explained in the instruction descriptions.
However, they follow these general rules:

• CF (carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high­
order bit of the result, then CF is set; other­
wise CF is cleared. Note that a signed carry is
indicated by CF *" OF. CF can be used to
detect an unsigned overflow. Two instruc­
tions, ADC (add with carry) and SBB (sub­
tract with borrow), incorporate the carry flag
in their operations and can be used to per­
form multibyte (e.g., 32-bit, 64-bit) addition
and subtraction.

• AF (auxiliary carry flag): If an addition
results in a carry out of the low-order half­
byte of the result, then AF is set; otherwise
AF is cleared. If a subtraction results in a
borrow into the low-order half-byte of the
result, then AF is set; otherwise AF is
cleared. The auxiliary carry flag is provided
for the decimal adjust instructions and
ordinarily is not used for any other purpose.

• SF (sign flag): Arithmetic and logical
instructions set the sign flag equal to the
high-order bit (bit 7 or 15) of the result. For
signed binary numbers, the sign flag will be a
for positive results and 1 for negative results
(so long as overflow does not occur). A con­
ditional jump instruction can be used follow­
ing addition or subtraction to alter the flow
of the program depending on the sign of the
result. Programs performing unsigned opera­
tions typically ignore SF since the high-order
bit of the result is interpreted as a digit rather
than a sign.

• ZF (zero flag): If the result of an arithmetic
or logical operation is zero, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used to alter the flow of
the program if the result is or is not zero.

• PF (parity flag): If the low-order eight bits of
an arithmetic or logical result contain an
even number of I-bits, then the parity flag is
set; otherwise it is cleared. PF is provided for
8080/8085 compatibility; it also can be used
to check ASCII characters for correct parity.

2-35

• OF (overflow flag): If the result of an
operation is too large a positive number, or
too small a negative number to fit in the
destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared. OF
thus indicates signed arithmetic overflow; it
can be tested with a conditional jump or the
INTO (interrupt on overflow) instruction.
OF may be ignored when performing
unsigned arithmetic.

Addition

ADD destination,source

The sum of the two operands, which may be bytes
or words, replaces the destination operand. Both
operands may be signed or unsigned binary
numbers (see AAA and DAA). ADD updates AF,
CF, OF, PF, SF and ZF.

ADC destination, source

ADC (Add with Carry) sums the operands, which
may be bytes or words, adds one if CF is set and
replaces the destination operand with the result.
Both operands may be signed or unsigned binary
numbers (see AAA and DAA). ADC updates AF,
CF, OF, PF, SF and ZF. Since ADC incorporates
a carry from a previous operation, it can be used
to write routines to add numbers longer than 16
bits.

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number (see
AAA and DAA). INC updates AF, OF, PF, SF
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the
contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content of
OF, PF, SF and ZF is undefined following execu­
tion of AAA.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

DAA

DAA (Decimal Adjust for Addition) corrects the
result of previously adding two valid packed
decimal operands (the destination operand must
have been register AL). DAA changes the content
of AL to a pair of valid packed decimal digits. It
updates AF, CF, PF, SF and ZF; the content of
OF is undefined following execution of DAA.

Subtraction

SUB destination,source

The source operand is ~ubtracted from the
destination operand, and the result replaces the
destination operand. The operands may be bytes
or words. Both operands may be signed or
unsigned binary numbers (see AAS and DAS).
SUB updates AF, CF, OF, PF, SF and ZF.

SBB destination, source

SBB (Subtract with Borrow) subtracts the source
from the destination, subtracts one if CF is set,
and returns the result to the destination operand.
Both operands may be bytes or words. Both
operands may be signed or unsigned binary
numbers (see AAS and DAS). SBB updates AF,
CF, OF, PF, SF and ZF. Since it incorporates a
borrow from a previous operation, SBB may be
used to write routines that subtract numbers
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina­
tion, which may be a byte or a word. DEC
updates AF, OF, PF, SF, and ZF; it does not
affect CF.

NEG destination

NEG (Negate) subtracts the destination operand,
which may be a byte or a word, from 0 and
returns the result to the destination. This forms
the two's complement of the number, effectively
reversing the sign of an integer. If the operand is
zero, its sign is not changed. Attempting to negate
a byte containing -128 or a word containing

Mnemonics © Intel, 1978 2-36

-32,768 causes no change to the operand and sets
OF. NEG updates AF, CF, OF, PF, SF and ZF.
CF is always set except when the operand is zero,
in which case it is cleared.

CMP destination, source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can be
tested by a subsequent conditional jump instruc­
tion. CMP updates AF, CF, OF, PF, SF and ZF.
The comparison reflected in the flags is that of the
destination to the source. If a CMP instruction is
followed by a 1G (jump if greater) instruction, for
example, the jump is taken if the destination
operand is greater than the source operand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the
result of a previous subtraction of two valid
unpacked decimal operands (the destination
operand must have been specified as register AL).
AAS changes the content of AL to a valid
unpacked decimal number; the high-order half­
byte is zeroed. AAS updates AF and CF; the con­
tent of OF, PF, SF and ZF is undefined following
execution of AAS.

DAS

DAS (Decimal Adjust for Subtraction) corrects
the result of a previous subtraction of two valid
packed decimal operands (the destination
operand must have been specified as register AL).
DAS changes the content of AL to a pair of valid
packed decimal digits. DAS updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAS.

Multiplication

MULsource

MUL (Multiply) performs an unsigned multi­
plication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length

8086 AND 8088 CENTRAL PROCESSING UNITS

result is returned in AH and AL. If the source
operand is a word, then it is multiplied by register
AX, and the double-length result is returned in
registers DX and AX. The operands are treated as
unsigned binary numbers (see AAM). If the upper
half of the result (AH for byte source, DX for
word source) is nonzero, CF and OF are set;
otherwise they are cleared. When CF and OF are
set, they indicate that AH or DX contains signifi­
cant digits of the result. The content of AF, PF,
SF and ZF is undefined following execution of
MUL.

IMULsource

IMUL (Integer Multiply) performs a signed
mUltiplication of the source operand and the
accumulator. If the source is a byte, then it is
mUltiplied by register AL, and the double-length
result is returned in AH and AL. If the source is a
word, then it is multiplied by register AX, and the
double-length result is returned in registers DX
and AX. If the upper half of the result (AH for
byte source, DX for word source) is not the sign
extension of the lower half of the result, CF and
OF are set; otherwise they are cleared. When CF
and OF are set, they indicate that AH or DX con­
tains significant digits of the result. The content
of AF, PF, SF and ZF is undefined following
execution of IMUL.

AAM

AAM (ASCII Adjust for Multiply) corrects the
result of a previous multiplication of two valid
unpacked decimal operands. A valid 2-digit
unpacked decimal number is derived from the
content of AH and AL and is returned to AH and
AL. The high-order half-bytes of the multiplied
operands must have been OH for AAM to pro­
duce a correct result. AAM updates PF, SF and
ZF; the content of AF, CF and OF is undefined
following execution of AAM.

Division

DIV source

DIV (divide) performs an unsigned division of the
accumulator (and its extension) by the source
operand. If the source operand is a byte, it is

2-37

divided into the double-length dividend assumed
to be in registers AL and AH. The single-length
quotient is returned in AL, and the single-length
remainder is returned in AH. If the source
operand is a word, it is divided into the double­
length dividend in registers AX and DX. The
single-length quotient is returned in AX, and the
single-length remainder is returned in DX. If the
quotient exceeds the capacity of its destination
register (FFH for byte source, FFFFFH for word
source), as when division by zero is attempted, a
type 0 interrupt is generated, and the quotient and
remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execu­
tion of DIV.

IDIV source

IDIV (Integer Divide) performs a signed division
of the accumulator (and its extension) by the
source operand. If the source operand is a byte, it
is divided into the double-length dividend
assumed to be in registers AL and AH; the single­
length quotient is returned in AL, and the single­
length remainder is returned in AH. For byte in­
teger division, the maximum positive quotient is
+127 (7FH) and the minimum negative quotient is
-127 (SIH). If the source operand is a word, it is
divided into the double-length dividend in
registers AX and DX; the single-length quotient is
returned in AX, and the single-length remainder
is returned in DX. For word integer division, the
maximum positive quotient is +32,767 (7FFFH)
and the minimum negative quotient is -32,767
(SOOIH). If the quotient is positive and exceeds
the maximum, or is negative and is less than the
minimum, the quotient and remainder are
undefined, and a type 0 interrupt is generated. In
particular, this occurs if division by 0 is
attempted. Nonintegral quotients are truncated
(toward 0) to integers, and the remainder has the
same sign as the dividend. The content of AF,
CF, OF, PF, SF and ZF is undefined following
IDIV.

AAD

AAD (ASCII Adjust for Division) modifies the
numerator in AL before dividing two valid
unpacked decimal operands so that the quotient
produced by the division will be a valid unpacked
decimal number. AH must be zero for the subse-

Mnemonics Intel,1978

8086 AND 8088 CENTRAL PROCESSING UNITS

quent DIV to produce the correct result. The quo­
tient is returned in AL, and the remainder is
returned in AH; both high-order half-bytes are
zeroed. AAD updates PF, SF and ZF; the content
of AF, CF and OF is undefined following execu­
tion of AAD.

CBW

CBW (Convert Byte to Word) extends the sign of
the byte in register AL throughout register AH.
CBW does not affect any flags. CBW can be used
to produce a double-length (word) dividend from
a byte prior to performing byte division.

cwo

CWD (Convert Word to Doubleword) extends the
sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to per­
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of
instructions (table 2-11) for manipulating bits
within both bytes and words: logical, shifts and
rotates.

Table 2-11 . Bit Manipulation Instructions

LOGICALS
NOT "Not" byte or word
AND "And" byte or word
OR "Inclusive or" byte or word
XOR "Exclusive or" byte or word
TEST "Test" byte or word

SHIFTS
SHLISAL Shift logical/arithmetic left

byte orword
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or

word
ROTATES

ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte

or word
RCR Rotate through carry right byte

orword

Mnemonics © Intel, 1978 2-38

Logical

The logical instructions include the boolean
operators "not," "and," "inclusive or," and
"exclusive or," plus a TEST instruction that sets
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as
follows: The overflow (OF) and carry (CF) flags
are always cleared by logical instructions, and the
content of the auxiliary carry (A F) flag is always
undefined following execution of a logical
instruction. The sign (SF), zero (ZF) and parity
(PF) flags are always posted to reflect the result of
the operation and can be tested by conditional
jump instructions. The interpretation of these
flags is the same as for arithmetic instructions. SF
is set if the result is negative (high-order bit is I),
and is cleared if the result is positive (high-order
bit is 0). ZF is set if the result is zero, cleared
otherwise. PF is set if the result contains an even
number of I-bits (has even parity) and is cleared if
the number of I-bits is odd (the result has odd
parity). Note that NOT has no effect on the flags.

NOT destination

NOT inverts the bits (forms the one's comple­
ment) of the byte or word operand.

AND destination,source

AND performs the logical "and" of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
both corresponding bits of the original operands
are set; otherwise the bit is cleared.

OR destination,source

OR performs the logical "inclusive or" of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original
operands are set; otherwise the result bit is
cleared.

XOR destination, source

XOR (Exclusive Or) performs the logical "exclu­
sive or" of the two operands and returns the
result to the destination operand. A bit in the

8086 AND 8088 CENTRAL PROCESSING UNITS

result is set if the corresponding bits of the
original operands contain opposite values (one is
set, the other is cleared); otherwise the result bit is
cleared.

TEST destination, source

TEST performs the logical "and" of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand is
changed. If a TEST instruction is followed by a
JNZ (jump if not zero) instruction, the jump will
be taken if there are any corresponding I-bits in
both operands.

Shifts

T'he bits in bytes and words may be shifted
arithmetically or logically. Up to 255 shifts may
be performed, according to the value of the count
operand coded in the instruction. The count may
be specified as the constant I, or as register CL,
allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used
to multiply and divide binary numbers by powers
of two (see note in description of SAR). Logical
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is
always undefined following a shift operation. PF,
SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the
last bit shifted out of the destination operand.
The content of OF is always undefined following
a multibit shift. In a single-bit shift, OF is set if
the value of the high-order (sign) bit was changed
by the operation; if the sign bit retains its original
value, OF is cleared.

SHL/SAL destination, count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation and
are physically the same instruction. The destina­
tion byte or word is shifted left by the number of
bits specified in the count operand. Zeros are
shifted in on the right. If the sign bit retains its
original value, then OF is cleared.

SHR destination, source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right by

2-39

the number of bits specified in the count operand.
Zeros are shifted in on the left. If the sign bit
retains its original value, then OF is cleared.

SAR destination, count

SAR (Shift Arithmetic Right) shifts the bits in the
destination operand (byte or word) to the right by
the number of bits specified in the count operand.
Bits equal to the original high-order (sign) bit are
shifted in on the left, preserving the sign of the
original value. Note that SAR does not produce
the same result as the dividend of an
"equivalent" IDIV instruction if the destination
operand is negative and I-bits are shifted out. For
example, shifting -5 right by one bit yields -3,
while integer division of -5 by 2 yields -2. The
difference in the instructions is that IDIV trun­
cates all numbers toward zero, while SAR trun­
cates positive numbers toward zero and negative
numbers toward negative infinity.

Rotates

Bits in bytes and words also may be rotated. Bits
rotated out of an operand are not lost as in a
shift, but are "circled" back into the other "end"
of the operand. As in the shift instructions, the
number of bits to be rotated is taken from the
count operand, which may specify either a con­
stant of I, or the CL register. The carry flag may
act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated in
CF and then tested by a JC (jump if carry) or JNC
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags.
CF always contains the value of the last bit
rotated out. On multibit rotates, the value of OF
is always undefined. In single-bit rotates, OF is
set if the operation changes the high-order (sign)
bit of the destination operand. If the sign bit
retains its original value, OF is cleared.

ROL destination, count

ROL (Rotate Left) rotates the destination byte or
word left by the number of bits specified in the
count operand.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ROR destination, count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or word
are rotated right instead of left.

RCL destination, count

RCL (Rotate through Carry Left) rotates the bits
in the byte or word destination operand to the left
by the number of bits specified in the count
operand. The carry flag (CF) is treated as "part
of" the destination operand; that is, its value is
rotated into the low-order bit of the destination,
and itself is replaced by the high-order bit of the
destination.

RCR destination, count

RCR (Rotate through Carry Right) operates
exactly like RCL except that the bits are rotated
right instead of left.

String Instructions

Five basic string operations, called prImitIves,
allow strings of bytes or words to be operated on,
one element (byte or word) at a time. Strings of
up to 64k bytes may be manipulated with these
instructions. Instructions are available to move,
compare and scan for a value, as well as for mov­
ing string elements to and from the accumulator
(see table 2-12). These basic operations may be
preceded by a special one-byte prefix that causes
the instruction to be repeated by the hardware,
allowing long strings to be processed much faster
than would be possible with a software loop. The
repetitions can be terminated by a variety of con­
ditions, and a repeated operation may be inter­
rupted and resumed.

The string instructions operate quite similarly in
many respects; the common characteristics are
covered here and in table 2-13 and figure 2-33
rather than in the descriptions of the individual
instructions. A string instruction may have a
source operand, a destination operand, or both.
The hardware assumes that a source string resides
in the current data segment; a segment prefix byte
may be used to override this assumption. A
destination string must be in the current extra seg­
ment. The assembler checks the attributes of the

Mnemonics © Intel, 1978 2-40

operands to determine if the elements of the
strings are bytes or words. The assembler does
not, however, use the operand names to address
the strings. Rather, the content of register Sf
(source index) is used as an offset to address the
current element of the source string, and the con­
tent of register DI (destination index) is taken as
the offset of the current destination string ele­
ment. These registers must be initialized to point
to the source/destination strings before executing
the string instruction; the LDS, LES and LEA
instructions are useful in this regard.

Table 2-12. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

Table 2-13. String Instruction Register and

SI

01

CX

ALiAX

OF

ZF

Flag Use .

Index (offset) for source string

Index (offset) for destination
string

Repetition counter

Scan value
Destination for LODS
Source for STOS

0= auto-increment SI, 01
1 = auto-decrement SI, 01

Scan/compare terminator

8086 AND 8088 CENTRAL PROCESSING UNITS

PRESENT

{
SI/DI,CX
AND DFWOULD
TYPICALLY BE
INITIALIZED HERE

STRING DF DELTA

,-----1
I INST~ij~r,.ION I
L_~ ___ J

BYTE
BYTE

WORD
WORD

0
1
0
1

PREFIX

REPE
REPZ

REPNE
REPNZ

Figure 2-33. String Operation Flow

1
-1
2
-2

Z

1
1
0
0

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF (the direction
flag) determines whether the index registers are
auto-incremented (DF = 0) or auto-decremented
(DF = 1). If byte strings are being processed, SI
and/ or DI is adjusted byl; the adjustment is 2 for
word strings.

If a Repeat prefix has been coded, then register
CX (count register) is decremented by 1 after each
repetition of the string instruction; therefore, CX
must be initialized to the number of repetitions
desired before the string instruction is executed. If
CX is 0, the string instruction is not executed, and
control goes to the following instruction.

Section 2.10 contains examples that illustrate the
use of all the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal and Repeat While Not
Zero are five mnemonics for two forms of the
prefix byte that controls repetition of a subse­
quent string instruction. The different mnemonics
are provided to improve program clarity. The
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOYS
(Move String) and STOS (Store String) instruc­
tions and is interpreted as "repeat while not end­
of-string" (CX not 0). REPE and REPZ operate
identically and are physically the same prefix byte
as REP. These instructions are used with the
CMPS (Compare String) and SCAS (Scan String)
instructions and require ZF (posted by these
instructions) to be set before initiating the next
repetition. REPNE and REPNZ are two
mnemonics for the same prefix byte. These
instructions function the same as REPE and
REPZ except that the zero flag must be cleared or
the repetition is terminated. Note that ZF does
not need to be initialized before executing the
repeated string instruction.

Repeated string sequences are interruptable; the
processor will recognize the interrupt before pro­
cessing the next string element. System interrupt
processing is not affected in any way. Upon
return from the interrupt, the repeated operation
is resumed from the point of interruption. Note,
however, that execution does not resume properly

Mnemonics © Intel, 1978 2-42

if a second or third prefix (i.e., segrnent override
or LOCK) has been specified in addition to any of
the repeat prefixes. The processor "remembers"
only one prefix in effect at the time of the inter­
rupt, the prefix that immediately precedes the
string instruction. After returning from the inter­
rupt, processing resumes at this point, but any
additional prefixes specified are not in effect. If
more than one prefix must be used with a string
instruction, interrupts may be disabled for the
duration of the repeated execution. However, this
will not prevent a non-maskable interrupt from
being recognized. Also, the time that the system is
unable to respond to interrupts may be unaccept­
able if long strings are being processed.

MOVS destination-string, source-string

MOYS (Move String) transfers a byte or a word
from the source string (addressed by SI) to the
destination string (addressed by DI) and updates
SI and DI to point to the next string element.
When used in conjunction with REP, MOYS per­
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move
string instruction. These mnemonics are coded
without operands; they explicitly tell the
assembler that a byte string (MOYSB) or a word
string. (MOYSW) is to be moved (when MOYS is
coded, the assembler determines the string type
from the attributes of the operands). These
mnemonics are useful when the assembler cannot
determine the attributes of a string, e.g., a section
of code is being moved.

CMPS destination-string, source-string

CMPS(Compare String) subtracts the destination
byte or word (addressed by DI) from the source
byte or word (addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and
updates AF, CF, OF, PF, SF and ZF to reflect the
relationship of the destination element to the
source element. For example, if a JG (Jump if
Greater) instruction follows CMPS, the jump is
taken if the destination element is greater than the
source element. If CMPS is prefixed with REPE

8086 AND 8088 CENTRAL PROCESSING UNITS

or REPZ, the operation is interpreted as "com­
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1)." If CMPS is preceded
by REPNE or REPNZ, the operation is inter­
preted as "compare while not end-of-string (CX
not zero) and strings are not equal (ZF = 0)."
Thus, CMPS can be used to find matching or dif­
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX (word
string) and updates the flags, but does not alter
the destination string or the accumulator. SCAS
also updates DI to point to the next string element
and AF, CF, OF, PF, SF and ZF to reflect the
relationship of the scan value in ALI AX to the
string element. If SCAS is prefixed with REPE or
REPZ, the operation is interpreted as "scan while
not end-of-string (CX not 0) and string-element =
scan-value (ZF = 1)." This form may be used to
scan for departure from a given value. If SCAS is
prefixed with REPNE or REPNZ, the operation
is interpreted as "scan while not end-of-string
(CX not 0) and string-element is not equal to
scan-value (ZF = 0)." This form may be used to
locate a value in a string.

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL or
AX, and updates SI to point to the next element
in the string. This instruction is not ordinarily
repeated since the accumulator would be over­
written by each repetition, and only the last ele­
ment would be retained. However, LODS is very
useful in software loops as part of a more com­
plex string function built up from string
primitives and other instructions.

STOS destination-string

STOS (Store String) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI to point to the next location
in the string. As a repeated operation, STOS pro­
vides a convenient way to initialize a string to a
constant value (e.g., to blank out a print line).

2-43

Program Transfer Instructions

The sequence of execution of instructions in an
8086/8088 program is determined by the content
of the code segment register (CS) and the instruc­
tion pointer (IP). The CS register contains the
base address of the current code segment, the 64k
portion of memory from which instructions are
presently being fetched. The IP is used as an off­
set from the beginning of the code segment; the
combination of CS and IP points to the memory
location from which the next instruction is to be
fetched. (Recall that under most operating condi­
tions, the next instruction to be executed has
already been fetched from memory and is waiting
in the CPU instruction queue.) The program
transfer instructions operate on the instruction
pointer and on the CS register; changing the con­
tent of these causes normal sequential execution
to be altered. When a program transfer occurs,
the queue no longer contains the correct instruc­
tion, and the BIU obtains the next instruction
from memory using the new IP and CS values,
passes the instruction directly to the EU, and then
begins refilling the queue from the new location.

Four groups of program transfers are available in
the 8086/8088 (see table 2-14): unconditional
transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.
Only the interrupt-related instructions affect any
CPU flags. As will be seen, however, the execu­
tion of many of the program transfer instructions
is affected by the states of the flags.

Unconditional Transfers

The unconditional transfer instructions may
transfer control to a target instruction within the
current code segment (intrasegment transfer) or
to a different code segment (intersegment
transfer). (The ASM-86 assembler terms an
intrasegment target NEAR and an intersegment
target FAR.) The transfer is made uncondition­
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving
information on the stack to permit a RET (return)
instruction in the procedure to transfer control
back to the instruction following the CALL. The

Mnemonics Intel. 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-14. Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Call procedure
RET Return from procedure
JMP Jump

CONDITIONAL TRANSFERS

JA/JNBE Jump if above/ not below
nor equal

JAE/JNB Jump if above or
equal/not below

JB/JNAE Jump if below / not above
nor equal

JBE/JNA Jump if below or
equal/ not above

JC Jump if carry
JE/JZ Jump if equal/zero
JG/JNLE Jump if greater/not less

nor equal
JGE/JNL Jump if greater or

equal/not less
JLlJNGE Jump if less/not greater

nor equal
JLE/JNG Jump if less or equal/not

greater
JNC Jump if not carry
JNE/JNZ Jump if not equal/not

zero
JNO Jump if not overflow
JNP/JPO J u m p if not parity / parity

odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/parity

even
JS Jump if sign

ITERATION CONTROLS

LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ Loop if not equal/not

zero
JCXZ Jump if register CX = 0

INTERRUPTS

INT Interrupt
INTO Interrupt ifoverflow
IRET Interrupt return

Mn"monics © Intel, 1978 2-44

assembler generates a different type of CALL
instruction depending on whether the program­
mer has defined the procedure name as NEAR or
FAR. For control to return properly, the type of
CALL instruction must match the type of RET
instruction that exits from the procedure. (The
potential for a mismatch exists if the procedure
and the CALL are contained in separately
assembled programs.) Different forms of the
CALL instruction allow the address of the target
procedure to be obtained from the instruction
itself (direct CALL) or from a memory location
or register referenced by the instruction (indirect
CALL). In the following descriptions, bear in
mind that the processor automatically adjusts IP
to point to the next instruction to be executed,
before saving it on the stack.

For an intrasegment direct CALL, SP (the stack
pointer) is decremented by two and IP is pushed
onto the stack. The relative displacement (up to
±32k) of the target procedure from the CALL
instruction is then added to the instruction
pointer. This form of the CALL instruction is
"self-relative" and is appropriate for position- in­
dependent (dynamically relocatable) routines in
which the CALL and its target are in the same
segment and are moved together.

An intrasegment indirect CALL may be made
through memory or through a register. SP is
decremented by two and IP is pushed onto the
stack. The offset of the target procedure is
obtained from the memory word or 16-bit general
register referenced in the instruction and replaces
IP.

For an intersegment direct CALL, SP is
decremented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con­
tained in the instruction. SP again is decremented
by two. IP is pushed onto the stack and is
replaced by the offset word contained in the
instruction.

For an intersegment indirect CALL (which only
may be made through memory), SP is
decremented by two, and CS is pushed onto the
stack. CS is then replaced by the content of the
second word oithe doubleword memory pointer
referenced by the instruction. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the content of the first
word of the doubleword pointer referenced by the
instruction.

8086 AND 8088 CENTRAL PROCESSING UNITS

RET optional-pop-value

RET (Return) transfers control from a procedure
back to the instruction following the CALL that
activated the procedure. The assembler generates
an intrasegment RET if the programmer has
defined the procedure NEAR, or an intersegment
RET if the procedure has been defined as FAR.
RET pops the word at the top of the stack
(pointed to by register SP) into the instruction
pointer and increments SP by two. If RET is
intersegment, the word at the new top of stack is
popped into the CS register, and SP is again
incremented by two. If an optional pop value has
been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction, JMP
does not save any information on the stack, and
no return to the instruction following the JMP is
expected. Like CALL, the address of the target
operand may be obtained from the instruction
itself (direct JMP) or from memory or a register
referenced by the instruction (indirect JMP).

An intrasegment direct JMP changes the instruc­
tion pointer by adding the relative displacement
of the target from the JMP instruction. If the
assembler can determine that the target is within
127 bytes of the JMP, it automatically generates a
two-byte form of this instruction called a SHORT
JMP; otherwise, it generates a NEAR JMP that
can address a target within ±32k. Intrasegment
direct JMPS are self-relative and are appropriate
in position-independent (dynamically relocatable)
routines in which the JMP and its target are in the
same segment and are moved together.

An intrasegment indirect JMP may be made
either through memory or through a 16-bit
general register. In the first case, the content of
the word referenced by the instruction replaces
the instruction pointer. In the second case, the
new IP value is taken from the register named in
the instruction.

An intersegment direct JMP replaces IP and CS
with values contained in the instruction.

2-45

An intersegment indirect JMP may be made only
through memory. The first word of the
doubleword pointer referenced by the instruction
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps
that mayor may not transfer control depending
on the state of the CPU flags at the time the
instruction is executed. These 18 instructions (see
table 2-15) each test a different combination of
flags for a condition. If the condition is "true,"
then control is transferred to the target specified
in the instruction. If the condition is "false,"
then control passes to the instruction that follows
the conditional jump. All conditional jumps are
SHORT, that is, the target must be in the current
code segment and within -128 to +127 bytes of
the first byte of the next instruction (JMP OOH
jumps to the first byte of the next instruction).
Since the jump is made by adding the relative
displacement of the target to the instruction
pointer, all conditional jumps are self-relative and
are appropriate for position-independent
routines.

Iteration Control

The iteration control instructions can be used to
regulate the repetition of software loops. These
instructions use the CX register as a counter. Like
the conditional transfers, the iteration control
instructions are self-relative and may only
transfer to targets that are within -128 to +127
bytes of themselves, i.e., they are SHORT
transfers.

LOOP short-label

LOOP decrements CX by 1 and transfers control
to the target operand if CX is not 0; otherwise the
instruction following LOOP is executed.

LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and
Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-15. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED "JUMP IF ... "

JA/JNBE (CF OR ZF)=O above/not below nor equal
JAE/JNB CF=O above or equal/ not below
JB/JNAE CF=1 below / not above nor equal
JBE/JNA (CF OR ZF)=1 below or equal/ not above
JC CF=1 carry
JE/JZ ZF=1 equal/zero
JG/JNLE ((SF XOR OF) OR ZF)=O greater / not less nor equal
JGE/JNL (SF XOR OF)=O greater or equal/not less
JLlJNGE (SF XOR OF)=1 less/not greater nor equal
JLE/JNG ((SF XOR OF) OR ZF)=1 less or equal/ not greater
JNC CF=O not carry
JNE/JNZ ZF=O not equal/ not zero
JNO OF=O not overflow
JNP/JPO PF=O not parity / parity odd
JNS SF=O not sign
JO OF=1 overflow
JP/JPE PF=1 parity / parity equal
JS SF=1 sign

Note: "above" and "below" refer to the relationship of two unsigned values;
"greater" and "less" refer to the relationship of two signed values.

REPZ repeat prefixes). CX is decremented by 1,
and control is transferred to the target operand if
ex is not 0 and if ZF is set; otherwise the instruc­
tion following LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not Equal
and Loop While Not Zero) are also synonyms for
the same instruction. CX is decremented by 1,
and control is transferred to the target operand if
ex is not 0 and if ZF is clear; otherwise the next
sequential instruction is executed.

JCXZ short-label

JeXZ (Jump If CX Zero) transfers control to the
target operand if CX is O. This instruction is
useful at the beginning of a loop to bypass the
loop if ex has a zero value, i.e., to execute the
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by

Mnemonics © Intel, 1978 2-46

external hardware devices. The effect of software
interrupts is similar to hardware-initiated inter­
rupts. However, the processor does not execute
an interrupt acknowledge bus cycle if the inter­
rupt originates in software or with an NMI. The
effect of the interrupt instructions on the flags is
covered in the description of each instruction.

INT interrupt-type

INT (Interrupt) activates the interrupt procedure
specified by the interrupt-type operand. INT
decrements the stack pointer by two, pushes the
flags onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable single-step
and maskable interrupts. The flags are stored in
the format used by the PUSHF instruction. SP is
decremented again by two, and the es register is
pushed onto the stack. The address of the inter­
rupt pointer is calculated by multiplying
interrupt-type by four; the second word of the in­
terrupt pointer replaces CS. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the first word of the inter­
rupt pointer. If interrupt-type = 3, the assembler
generates a short (1 byte) form of the instruction,
known as the breakpoint interrupt.

8086 AND 8088 CENTRAL PROCESSING UNITS

Software interrupts can be used as "supervisor
calls," i.e., requests for service from an operating
system. A different interrupt-type can be used for
each type of service that the operating system
could supply for an application program. Soft­
ware interrupts also may be used to check out
interrupt service procedures written for hardware­
initiated interrupts.

INTO

INTO (Interrupt on Overflow) generates a soft­
ware interrupt if the overflow flag (OF) is set;
otherwise control proceeds to the following
instruction without activating an interrupt pro­
cedure. INTO addresses the target interrupt pro­
cedure (its type is 4) through the interrupt pointer
at location IOH; it clears the TF and IF flags and
otherwise operates like INT. INTO may be writ­
ten following an arithmetic or logical operation to
activate an interrupt procedure if overflow
occurs.

IRET

IRET (Interrupt Return) transfers control back to
the point of interruption by popping IP, CS and
the flags from the stack. IRET thus affects all
flags by restoring them to previously saved
values. IRET is used to exit any interrupt
procedure, whether activated by hardware or
software.

Processor Control Instructions

These instructions (see table 2-16) allow programs
to control various CPU functions. One group of
instructions updates flags, and another group is
used primarily for synchronizing the 8086 or 8088
with external events. A final instruction causes
the CPU to do nothing. Except for the flag opera.'
tions, none of the processor control instructions
affect the flags.

Flag Operations

CLC

CLC (Clear Carry flag) zeroes the carry flag (CF)
and affects no other flags. It (and CMC and STC)
is useful in conjunction with the RCL and RCR
instructions.

2-47

Table 2-16. Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STO Set direction flag
CLO Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next

instruction

NO OPERATION

NOP No operation

CMC

CMC (Complement Carry flag) "toggles" CF to
its opposite state and affects no other flags.

STC

STC (Set Carry flag) sets CF to 1 and affects no
other flags.

CLO

CLD (Clear Direction flag) zeroes DF causing the
string instructions to auto-increment the SI
and/or DI index registers. CLD does not affect
any other flags.

STO

STD (Set Direction flag) sets DF to 1 causing the
string instructions to auto-decrement the SI
and/or DI index registers. STD does not affect
any other flags.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CLI

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external inter­
rupt request that appears on the INTR line; in
other words maskable interrupts are disabled. A
non-maskable interrupt appearing on the NMI
line, however, is honored, as is a software inter­
rupt. CLI does not affect any other flags.

STI

STI (Set Interrupt-enable flag) sets IF to 1, en­
abling processor recognition of maskable inter­
rupt requests appearing on the INTR line. Note
however, that a pending interrupt will not actu­
ally be recognized until the instruction following
STI has executed. STI does not affect any other
flags.

External Synchronization

HLT

HL T (Halt) causes the 8086/8088 to enter the halt
state. The processor leaves the halt state upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI, or, if
interrupts are enabled, upon receipt of a
maskable interrupt request on INTR. HL T does
not affect any flags. It may be used as an alter­
native to an endless software loop in situations
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does not
affect any flags. This instruction is described
more completely in section 2.5.

ESC externa/-opcode, source

ESC (Escape) provides a means for an external
processor. to obtain an opcode and possibly a
memory operand from the 8086 or 8088. The
external opcode is a 6-bit immediate constant that
the assembler encodes in the machine instruction

Mnemonics © Intel, 1978 2-48

it builds (see table 2-26). An external processor
may monitor the system bus and capture this
opcode when the ESC is fetched. If the source
operand is a register, the processor does nothing.
If the source operand isa memory variable, the
processor obtains the operand from memory and
discards it. An external processor may capture the
memory operand when the processor reads it
from memory.

LOCK

LOCK is a one-byte prefix that causes the
8086/8088 (configured in maximum mode) to
assert its bus LOCK signal while the following
instruction executes. LOCK does not affect any
flags. See section 2.5 for more information on
LOCK.

No Operation

NOP

Nap (No Operation) causes the CPU to do
nothing. Nap does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa­
tion for the 8086/8088 instruction set. The
information is presented from the point of view
of utility to the assembly language programmer.
Tables 2-17, 2-18 and 2-19 explain the symbols
used in table 2-21. Machine language instruction
encoding and decoding information is given in
Chapter 4.

Instruction timings are presented as the number
of clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of the instruction. If a system is running with
a 5 MHz maximum clock, the maximum clock
period is 200 ns; at 8 MHz, the clock period is 125
ns. Where memory operands are used, "+EA"
denotes a variable number of additional clock
periods needed to calculate the operand's effec­
tive address (discussed in section 2.8). Table 2-20
lists all effective address calculation times.

IDENTIFIER

destination

source

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupHype

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-17. Key to Instruction Coding Formats

USED IN

data transfer,
bit manipulation

data transfer,
arithmetic,
bit manipulation

XLAT

JMP,CALL

condo transfer,
iteration control

IN,OUT

IN,OUT

string ops.

string ops.

shifts, rotates

INT

EXPLANATION

A register or memory location that may contain data
operated on by the instruction, and which receives (is
replaced by) the result of the operation.

A register, memory location or immediate value that is
used in the operation, but is not altered by the instruc­
tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transferred directly, or a
register or memory location whose content is the
address of the location to which control is to be transfer­
red indirectly.

A label to which control is to be conditionally
transferred; must lie within -128 to +127 bytes of the first
byte of the next instruction.

Register AX for word transfers, AL for bytes.

An I/O port number; specified as an immediate value of
0-255, or register OX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by register
SI; used only to identify string as byte or word and
specify segment override, if any. This string is used in
the operation, but is not altered.

Name of string in memory that is addressed by register
01; used only to identify string as byte or word. This
string receives (is replaced by) the result of the opera­
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pOinter
number.

optional-pop-value RET Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

external-opcode ESC Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

2-49 Mnemonics © Intel. 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-18. Key to Flag Effects

IDENTIFIER EXPLANATION

(blank) not altered

0 cleared toO

1 set to 1

X set or cleared according
to result

U undefined-contains no
reliable value

R restored from previouSly-
saved value

For control transfer instructions, the timings
given include any additional clocks required to
reinitialize the instruction queue as well as the
time required to fetch the target instruction. For
instructions executing on an 8086, four docks
should be added for each instruction refer.en,ce to
a word operand located at an odd memory
address to reflect any additional operand bus
cycles required. Similarly for instructions exe­
cuting on an 8088, four clocks should be added to
each instruction reference to a 16-bit memory
operand; this includes all stack operations. The
required number of data references is listed in
table 2-21 for each instruction to aid in this
calculation.

Several additional factors can increase actual
execution time over the figures shown in table
2-21. The time provided assumes that the instruc­
tion has already been prefetched and that it is
waiting in the instruction queue, an assumption
that is valid under most, but not all, operating
conditions. A series of fast executing (fewer than
two clocks per opcode byte) instructions can drain
the queue and increase execution time. Execution
time also is slightly impacted by the interaction of
the EU and BIU when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one clock if
the BIU has already started an instruction fetch
bus cycle. (The EU can detect the need for a
memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cycle). Of course
the EU does not have to wait if the queue is full,
because the BIU is idle. (This discussion assumes

Mnemonics © Intel, 1978 2-50

Table 2-19. Key to Operand Types

IDENTIFIER EXPLANAT,ION

(no operands) No operands are written

register An 8- or 16-bit general register

reg 16 A 16-bit general register

seg-reg A segment register

accumulator Register AX or AL
immediate A constant in the range

O-FFFFH

immed8 A constant in the range O-FFH

memory

mem8
mem16
source-table

An 8- or f6-bit' memory
10cation(1)
An 8-bit memory 10cation(1)
A 16-bit memory 10cation(1)

Name of 256-byte translate
table

source-string Name of string addressed by
registerSI

dest-string

ox
short-label

near-label

far-label

near-proc

far-proc

memptr16

memptr32

regptr16

repeat

Name of string addressed by
register 01

Register OX

A label within -128 to +127
bytes of the end of the instruc­
tion
A label in current code
segment
A label in another code
segment
A procedure in current code
segment
A proceQure in another code
segment
A word containing the offset of
the location in the current code
segment to which control is to
be transferred(l)

A doubleword containing the
offset and the segment base
address of the location in
another code segment to which
control is to be transferred(l)i
A 16-bit general register
containing the offset of the
location In the current code
segment to which control is to
be transferred
A string instru\?tion repeat
prefix

(l)Any addressing mode-direct, register in­
direct, based, indexed, or based
indexed-may be used (see section 2.8).

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation
Time

that the BIU can obtain the bus on demand, i.e.,
that no other processors are competing for the
bus.)

EA COMPONENTS CLOCKS·

Displacement Only 6 With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-100/0 of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructions, however, is always
repeatable, assuming comparable external condi­
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle such as the
SDK-86 or the iSBC 86/12TM board .

Base or Index Only (BX,BP,SI,DI) 5
Displacement

+ 9
Base or Index (BX,BP ,SI,DI)
Base BP+DI, BX+SI 7

+
Index BP+SI, BX+DI 8
Displacement BP+DI+DISP

11
+ BX+SI+DISP

Base
+ BP+SI+DISP

12
Index BX+DI+DISP

• Add 2 clocks for segment override

Table 2-21. Instruction Set Reference Data

AAA I AAA (no operands) Flags
ODITSZAPC

ASCII adjust for addition U UU X U X

Operands Clocks Transfers· Bytes Coding Example

, (no operands) 4 - 1 AAA

AAD J AAD (no operands) Flags
ODITSZAPC

ASCII adjust for division U XXUXU

Operands Clocks Transfers· Bytes Coding Example

(no operands) 60 - 2 AAD

AAM IAAM (no operands) Flags
ODITSZAPC

ASCII adjust for multiply U X X UX U

Operands Clocks Transfers· Bytes Coding Example

(no operands) 83 - 1 AAM

AAS I AAS (no operands)
ASCII adjust for subtraction

FI ODITSZAPC
ags U UU X U X

Operands Clocks Transfers· Bytes Coding Example

(no operands) 4 - 1 AAS

·For the 8086, add four clocks for each 16·blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer.

2-51 Mnemonics © Intel,1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

ADC IADC destination,source Flags
ODITSZAPC

Add with carry X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 ADC AX,SI
register, memory 9+EA 1 2-4 ADC DX,BETA[SI]
memory, register 16+EA 2 2-4 ADC ALPHA [BX] [SI], 01
register, immediate 4 - 3-4 ADC BX,256
memory, immediate 17+EA 2 3-6 ADC GAMMA,30H
accumulator, immediate 4 - 2-3 ADC AL,5

ADD IADD destination, source Flags
ODITSZAPC

Addition X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 ADD CX, OX
register, memory 9+EA 1 2-4 ADD 01, [BX].ALPHA
memory, register 16+EA 2 2-4 ADD TEMP, CL
register, immediate 4 - 3-4 ADD CL,2
memory, immediate 17+EA 2 3-6 ADD ALPHA,2
accumulator, immediate 4 - 2-3 ADD AX, 200

AND lAND destination,source Flags
ODITSZAPC

Logical and 0 XX U X 0

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD
memory, register 16+ EA 2 2-4 AND ASCII [DI],AL
register, immediate 4 - 3-4 AND CX,OFOH
memory, immediate 17+EA 2 3-6 AND BETA,01H
accumulator, immediate 4 - 2-3 AND AX,01010000B

CALL I~ALL target Flags
ODITSZAPC

Call a procedure

Operands Clocks Transfers· Bytes Coding Examples

near-proc 19 1 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR_PROC
memptr16 21 +EA 2 2-4 CALL PROC_TABLE [SI]
regptr 16 16 1 2 CALL AX
memptr32 37+EA 4 2-4 CALL [BX].TASK [SI]

CBW I~BW (no operands) Flags
ODITSZAPC

Convert byte to word

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 CBW

'For the 8086, add .four clocks for each 16-blt word transfer With an odd address. For the 8088, add four clocks for each 1,6-blt word transfer.

Mnemonics © Intel, 1978
2-52

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

CLC I CLC (no operands) Flags
ODITSZAPC

Clear carry flag 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 CLC

CLD I CLD (no operands) Flags
ODITSZAPC

Clear direction flag 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 CLD

CLI I CLI (no operands) Flags
ODITSZAPC

Clear interrupt flag 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 CLI

CMC I CMC (no operands) Flags
ODITSZAPC

Complement carry flag X

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 CMC

CMP I CMP destination,source Flags
ODITSZAPC

Compare destination to source X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 CMP BX, CX
register, memory 9+EA 1 2-4 CMP DH, ALPHA
memory, register 9+EA 1 2-4 CMP [BP + 2], SI
register, immediate 4 - 3-4 CMP BL,02H
memory, immediate 10+EA 1 3-6 CMP [BX].RADAR [DI], 3420H
accumulator, immediate 4 - 2-3 CMP AL,00010000B

CMPS I CMPS dest-string,source-string Flags
ODITSZAPC

Compare string X X X X X X

Operands Clocks Transfers· Bytes Coding Example

dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS 10, KEY

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-53 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

CWD I CWO (no operands) Flags
ODITSZAPC

Convert word to doubleword

Operands Clocks Transfers· Bytes Coding Example

(no operands) 5 - 1 CWO

DAA I DAA (no operands) Flags
ODITSZAPC

Decimal adjust for addition X XXXXX

Operands Clocks Transfers· Bytes Coding Example

(no operands) 4 - 1 DAA

DAS I DAS (no operands) Flags
ODITSZAPC

Decimal adjust for subtraction U XXXXX

Operands Clocks Transfers· Bytes Coding Example

(no operands) 4 - 1 DAS

DEC I DEC destination Flags
ODITSZAPC

Decrement by 1 X . X X X X
Operands Clocks Transfers· Bytes Codlng Example

reg16 2 - 1 DEC AX
reg8 3 - 2 DEC AL
memory 15+EA 2 2-4 DEC ARRAY [SI]

DIV I DIV source Flags
ODITSZAPC

Division, unsigned U U U UU U

Operands Clocks Transfers· Bytes Coding Example

reg8 80-90 - 2 DIV CL
reg16 144-162 - 2 DIV BX
mem8 (86-96) 1 2-4 DIV ALPHA

+EA
mem16 (150-168) 1 2-4 DIV TABLE [SI]

+EA

ESC ESC external-opcode,sourc.e Flags 0 D ITS ZAP C
Escape

Operands Clocks Transfers· Bytes Coding Example

immediate, memory 8+EA 1 2·4 ESC 6,ARRAY [SI]
immediate, register 2 - 2 ESC 20,AL

-For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8086, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978 2-54

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

HLT I HL T (no operands) Flags
ODITSZAPC

Halt

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 HLT

IDIV IIDIV source Flags
ODITSZAPC

Integer division U U U U U U

Operands Clocks Transfers· Bytes Coding Example

reg8 101-112 - 2 IDIV BL
reg16 165-184 - 2 IDIV CX
mem8 (107-118) 1 2-4 IDIV DIVISOR_BYTE [SI]

+EA
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD

+EA

IMUL IIMUL source Flags
ODITSZAPC

Integer multiplication X UUUUX

Operands Clocks Transfers· Bytes Coding Example

reg8 80-98 - 2 IMUL CL
. reg16 128·154 - 2 IMUL BX
mem8 (86-104) 1 2-4 IMUL RATE_BYTE

+EA
mem16 (134-160) 1 2-4 IMUL RATE_WORD [BP] [DI]

+EA

IN IN accumulator,port
Flags

ODITSZAPC
Input byte or word

Operands Clocks Transfers· Bytes Coding Example

accumulator, immed8 10 1 2 IN AL, OFFEAH
accumulator, DX 8 1 1 IN AX, OX

INC IINC destination Flags
ODITSZAPC

Increment by 1 X X X X X

Operands Clocks Transfers· Bytes Coding Example

reg16 2 - 1 INC CX
reg8 3 - 2 INC BL
memory 15+EA 2 2-4 INC ALPHA [01] [BX]

'For the 8086, add four clocks for each 16·blt word transfer wIth an odd address. For the 8088, add four clocks for each 16-blt word transfer.

2-55 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

INT liNT interrupt-type Flags
ODITSZAPC

Interrupt o 0

Operands Clocks Transfers· Bytes Coding Example

immed8 (type = 3) 52 5 1 INT 3
immed8 (type"* 3) 51 5 2 INT 67

INTRt INTR (external maskable interrupt)
Flags

ODITSZAPC
Interruptif INTR and IF=1 o 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 61 7 N/A N/A

INTO IINTO (no operands) Flags
o 0 I. T S ZAP C

Interrupt if overflow o 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 53 or 4 5 1 INTO

IRET IIRET (no operands) Flags
ODITSZAPC

Interrupt Return RRRRRRRRR

Operands Clocks Transfers· Bytes Coding Example

(no operands) 24 3 1 IRET

JA/JNBE I JA/JNBE short-label Flags
ODITSZAPC

Jump if above/Jump if not below nor equal

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JA ABOVE

JAE/JNB I JAE/JNB short-label Flags
ODITSZAPC

Jump if above or equal/Jump.if not below

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JAE ABOVE_EQUAL

...

JB/JNAE I JB/JNAE short-label Flags
ODITSZAPC

Jump if below/Jump if not above nor equal

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JB BELOW

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

tlNTR is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978
2-56

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

JBE/JNA I JBE/JNA short-label Flags
ODITSZAPC

Jump if below or equal/ Jump if not above

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNA NOT_ABOVE

JC I JC short-label Flags
ODITSZAPC

Jump if carry

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JC CARRY _SET

JCXZ I JCXZ short-label Flags
ODITSZAPC

Jump if CX is zero

Operands Clocks Transfers· Bytes Coding Example

short-label 18 or 6 - 2 JCXZ COUNT_DONE

JE/JZ I JEI JZ short-label Flags
ODITSZAPC

Jump if equal/Jump if zero

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JZ ZERO

JG/JNLE IJG/JNLE short-label Flags
ODITSZAPC

Jump if greater/ Jump if not less nor equal

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JG GREATER

JGE/JNL I JGE/JNL short-label Flags
ODITSZAPC

Jump if greater or equal/Jump if not less

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JGE GREATER_EQUAL

JL/JNGE I JL/JNGE short-label Flags
ODITSZAPC

Jump if less/ Jump if not greater nor equal

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JL LESS

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-57 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

JLE/JNG I JLE/JNG short-label Flags
ODITSZAPC

Jump if less or equal/Jump if not greater

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNG NOT_GREATER

JMP I JMP target Flags
ODITSZAPC

Jump

Operands Clocks Transfers· Bytes Coding Example

short-label 15 - 2 JMP SHORT
near-label 15 - 3 JMP WITHIN_SEGMENT
far-label 15 - 5 JMP FAR_LABEL
memptr16 18+EA 1 2-4 JMP [BX].TARGET
regptr16 11 - 2 JMP CX
memptr32 24+EA 2 2-4 JMP OTHER.SEG [SI]

JNC I JNC short-label Flags
ODITSZAPC

Jump if not carry

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNC NOT_CARRY

JNE/JNZ I JNE/JNZ short-label Flags
ODITSZAPC

Jump if not equal/Jump if not zero

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNE NOT _EQUAL

JNO I JNO short-label Flags
ODITSZAPC

Jump if not overflow

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNO NO_OVERFLOW

JNP/JPO I JNP/JPO short-label Flags
ODITSZAPC

Jump if not parity/Jump if parity odd

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JPO ODD_PARITY

JNS I JNS short-label Flags
ODITSZAPC

Jump if not sign

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNS POSITIVE

'For the 8086, add four clocks for each 16-blt word transfer with an odd addrtlss. For the 8088, add four clocks for each 16-blt word transfer.

Mnemonics © Intel, 1978 2-58

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

JO I JO short-label Flags
OOITSZAPC

Jump if overflow

Operands Clocks Transfers· Bytes Coding Example

short-label 160r4 - 2 JO SIGNEO_OVRFLW

JP/JPE I JP/JPE short-label Flags
OOITSZAPC

Jump if parity I Jump if parity even

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JPE EVEN_PARITY

JS I JS short-label Flags
OOITSZAPC

Jump if sign

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JS NEGATIVE

LAHF I LAHF (no operands) Flags
OOITSZAPC

Load AH from flags

Operands Clocks Transfers· Bytes Coding Example

(no operands) . 4 - 1 LAHF

LOS I LOS destination,source Flags
OOITSZAPC

Load pOinter using OS

Operands Clocks Transfers Bytes Coding Example

reg16, mem32 16+EA 2 2-4 LOS SI,OATA.SEG [01]

LEA I LEA destination,source Flags
OOITSZAPC

Load effective address

Operands Clocks Transfers· Bytes Coding Example

reg16, mem16 2+EA - 2-4 LEA BX, [BP] [01]

LES I LES destination,source Flags
OOITSZAPC

Load pointer using ES

Operands Clocks Transfers· Bytes Coding Example

reg16, mem32 16+EA 2 2-4 LES 01, [BX].TEXT_BUFF

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8086, add four clocks for each 16-bit word transfer.

2-59 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

LOCK I LOCK (no operands) Flags
ODITSZAPC

Lock bus

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 LOCK XCHG FLAG,AL

LODS I LODS source-string Flags
ODITSZAPC

Load string

Operands Clocks Transfers' Bytes Coding Example

source-string 12 1 1 LODS CUSTOMER_NAME
(repeat) source-string 9+13/rep 1/rep 1 REP LODS NAME

LOOP I LOOP short-label Flags
ODITSZAPC

Loop

Operands Clocks Transfers' Bytes Coding Example

short-label 17/5 - 2 LOOP AGAIN

LOOPE/LOOPZ I LOOPE/LOOPZ short-label Flags
ODITSZAPC

Loop if equal/Loop if zero

Operands Clocks Transfers' Bytes Coding Example

short-label 18 or 6 - 2 LOOPE AGAIN

LOOPNE/LOOPNZ I LOO~NE/LOOPNZ sho.rt-Iabel Flags
ODITSZAPC

Loop If not equal I Loop If not zero

Operands Clocks Transfers' Bytes Coding Example

short-label 19 or 5 - 2 LOOPNE AGAIN

NMlt I NMI (external nonmaskable interrupt) Flags
OSITSZAPC

Interrupt if NMI = 1 o 0

Operands Clocks Transfers' Bytes Coding Example

(no operands) 50' 5 N/A N/A

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

tNMI is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978
2-60

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

MOV I MOV destination,source Flags
ODITSZAPC

Move

Operands Clocks Transfers· Bytes Coding Example

memory, accumulator 10 1 3 MOV ARRAY [SI], Al
accumulator, memory 10 1 3 MOV AX, TEMP _RESULT
register, register 2 - 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK_TOP
memory, register 9+EA 1 2-4 MOV COUNT [01], CX
register, immediate 4 - 2-3 MOV Cl,2
memory, immediate 10+EA 1 3-6 MOV MASK [BX] [SI], 2CH
seg-reg, reg16 2 - 2 MOV ES, CX
seg-reg, mem16 8+EA 1 2-4 MOV OS, SEGMENT_BASE
reg16, seg-reg 2 - 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG_SAVE, CS

MOVS I MOVS dest-string,source-string Flags
ODITSZAPC

Move string

Operands Clocks Transfers· Bytes Coding Example

dest-string, source-string 18 2 1 MOVS LINE EDIT_DATA
(repeat) dest-string, source-string 9 + 17/rep 2/rep 1 REP MOVS SCREEN, BUFFER

MOVSB/MOVSW I MOVSB/MOVSW (no operands) Flags
ODITSZAPC

Move string (byte/word)

Operands Clocks Transfers· Bytes Coding Example

(no op,erands) 18 2 1 MOVSB
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW

MUL I MUl source Flags
ODITSZAPC

Multiplication, unsigned X U U U U X

Operands Clocks Transfers· Bytes Coding Example

reg8 70-77 - 2 MUl Bl
reg16 118-133 - 2 MUl CX
mem8 (76-83) 1 2-4 MUl MONTH [SI]

+EA
mem16 (124-139) 1 2-4 MUl BAUD_RATE

+EA

"For the 8086, add four clocks for each 16-bit word transfer with an odd address. For Ihe 8088, add four clocks for each 16-bit word transfer.

2-61
Mnemonics © Inlel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (<Cont'd.)

NEG I NEG destination
Flags

ODITSZAPC
Negate X X X X X1*

Operands Clocks Transfers' Bytes Coding Example

register 3 - 2 NEG AL
memory 16+EA 2 2-4 NEG MULTIPLIER

*0 if destination == 0

NOP I NOP (no operands) Flags
ODITSZAPC

No Operation

Operands Clocks Transfers' Bytes Coding Example

(no operands) 3 - 1 NOP

NOT I NOT destination Flags
ODITSZAPC

Logical not

Operands Clocks Transfers' Bytes Coding Example

register 3 - 2 NOT AX
memory 16+ EA 2 2-4 NOT CHARACTER

OR lOR destination,source Flags ODITSZAPC
Logical inclusive or 0 X X U X 0

Operands Clocks Transfers' Bytes Coding Example

register, register 3 - 2 OR AL, BL
register, memory 9+EA 1 2-4 OR DX, PORT_ID [DI]
memory, register 16+EA 2 2-4 OR FLAG_BYTE, CL
accumulator, immediate 4 - 2-3 OR AL,01101100B
register, immediate 4 - 3-4 OR CX,01H
memory, immediate 17+EA 2 3-6 OR [BX].CMD_WORD,OCFH

OUT lOUT port,accumulator Flags
ODITSZAPC

Output byte or word

Operands Clocks Transfers' Bytes Coding Example

immed8, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL

POP I POP destination Flags
ODITSZAPC

Pop word off stack

Operands Clocks Transfers' Bytes Coding Example

register 8 1 1 POP DX
seg-reg (CS illegal) 8 1 1 POP DS
memory 17+EA 2 2-4 POP PARAMETER

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for· each 16-b!t word transfer.

Mnemonics © Intel, 1978 2-62

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

POPF I POPF (no operands) Flags
ODITSZAPC

Pop flags off stack R RR R R R R R R

Operands Clocks Transfers' Bytes Coding Example

(no operands) B 1 1 POPF

PUSH I PUSH source Flags ODITSZAPC
Push word onto stack

Operands Clocks Transfers' Bytes Coding Example

register 11 1 1 PUSH SI
seg-reg (CS legal) 10 1 1 PUSH ES
memory 16+EA 2 2-4 PUSH RETURN_CODE [SI]

PUSHF I PUSHF (no operands) Flags ODITSZAPC
Push flags onto stack

Operands Clocks Transfers' Bytes Coding Example

(no operands) 10 1 1 PUSHF

RCL ~ RCL destination,count Flags
ODITSZAPC

Rotate left through carry X X

Operands Clocks Transfers' Bytes Coding Example

register, 1 2 - 2 RCL CX,1
register, CL B+4/bit - 2 RCL AL, CL
memory, 1 15+EA 2 2-4 RCL ALPHA,1
memory, CL 20+EA+ 2 2-4 RCL [BP].PARM, CL

4/bit

RCR IRCR designation,count Flags
ODITSZAPC

Rotate right through carry X X

Operands Clocks Transfers' Bytes Coding Example

register, 1 2 - 2 RCR BX,1
register, CL B+4/bit - 2 RCR BL, CL
memory, 1 15+EA 2 2-4 RCR [BX].STATUS,1
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL

4/bit

REP I REP (no operands) Flags
ODITSZAPC

Repeat string operation

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 REP MOVS DEST, SRCE

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-63 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

REPE/REPZ IREPE/REPZ (no operands) Flags
ODITSZAPC

Repeat string operation while equal/while zero

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 REPE CMPS DATA, KEY

REPNE/REPNZ I REPNE/REPNZ (no operands) Flags
ODITSZAPC

Repeat string operation while not equal/not zero

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 REPNE SCAS INPUT_LINE

RET I RET optional-pop-value Flags
ODITSZAPC

Return from procedure

Operands Clocks Transfers' Bytes Coding Example

(intra-segment, no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2

ROL I ROL destination,count Flags
ODITSZAPC

Rotate left X X

Operands Clocks Transfers Bytes Coding Examples

register, 1 2 - 2 ROL BX,1
register,CL 8+4/bit - 2 ROL DI, CL
memory, 1 15+EA 2 2-4 ROL FLAG_BYTE [DI],1
memory, CL 20+EA+ 2 2-4 ROL ALPHA, CL

4/bit

ROR I ROR destination, count Flags
ODITSZAPC

Rotate right X X

Operand Clocks Transfers' Bytes Coding Example

register, 1 2 - 2 ROR AL,1
register, CL 8+4/bit - 2 ROR BX, CL
memory, 1 15+EA 2 2-4 ROR PORT _ST ATUS, 1
memory, CL 20+EA+ 2 2-4 ROR CMD_WORD, CL

4/bit

SAHF I SAH F (no operands) Flags
ODITSZAPC

Store AH into flags R R R R R

Operands Clocks Transfers' Bytes Coding Example

(no operands) 4 - 1 SAHF

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. Forthe 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978 2-64

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

SAL/SHL I SAL/SHL destination,count Flags
OOITSZAPC

Shift arithmetic left/Shift logical left X X

Operands Clocks Transfers· Bytes Coding Examples

register,1 2 - 2 SAL AL,1
register, CL 8+4/bit - 2 SHL 01, CL
memory,1 15+EA 2 2-4 SHL [BXj.OVERORAW,1
memory, CL 20+EA+ 2 2-4 SAL STORE_COUNT, CL

4/bit

SAR I SAR destination,source Flags
OOITSZAPC

Shift arithmetic right X X X U X X

Operands Clocks Transfers· Bytes Coding Example

register, 1 2 - 2 SAR OX,1
register, CL 8+4/bit - 2 SAR 01, CL
memory, 1 15+EA 2 2-4 SAR N_BLOCKS,1
memory, CL 20+EA+ 2 2-4 SAR N_BLOCKS, CL

4/bit

see I SBB destination,source Flags
OOITSZAPC

Subtract with borrow X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 SBB BX, CX
register, memory 9+EA 1 2-4 SBB 01, [BXj.PAYMENT
memory, register 16+EA 2 2-4 SBB I;lALANCE, AX
accumulator, immediate 4 - 2-3 SBB AX,2
register, immediate 4 - 3-4 SBB CL,1
memory, immediate 17+EA 2 3-6 SBB COUNT [SI], 10

seAS I SCAS dest-string Flags
OOITSZAPC

Scan string X XXXXX

Operands Clocks Transfers· Bytes Coding Example

dest-string 15 1 1 SCAS INPUT_LINE
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER

SEGMENTt I SEGMENT override prefix Flags
OOITSZAPC

Override to specified segment

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 MOV SS:PARAMETER, AX

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

tASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table

2-21 only for timing information.

Mnemonics © Intel, 1978

2-65

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

SHR I SHR destination,count Flags
ODITSZAPC

Shift logical right X X

Operands Clocks Transfers* Bytes Coding Example

register, 1 2 - 2 SHR SI,1
register, CL 8+4/bit - 2 SHR SI, CL
memory, 1 15+EA 2 2-4 SHR ID_BYTE [SI] [BXJ, 1
memory, CL 20+EA+ 2 2-4 SHR INPUT_WORD, CL

4/bit

SINGLE STEPt I SINGLE STEP (Trap flag interrupt) Flags ODITSZAPC
Interrupt if TF = 1 o 0

Operands Clocks Transfers* Bytes Coding Example

(no operands) 50 5 N/A N/A

STC I STC (no operands) Flags
ODITSZAPC

Set carry flag 1

Operands Clocks . Transfers* Bytes Coding Example

(no operands) 2 - 1 STC

STO I STD (no operands) Flags ODITSZAPC
Set direction flag 1

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 - 1 STD

STI I S1I (no operands) Flags
ODITSZAPC

Set interrupt enable flag 1

Operands Clocks Transfers* Bytes Coding Example

(no operands) 2 - 1 STI

STOS I STOS dest-string Flags ODITSZAPC
Store byte or word string

Operands Clocks Transfers* Bytes Coding Example

dest-string 11 1 1 STOS PRINT_LINE
(repeat) dest-string 9+10/rep 1/rep 1 REP STOS DISPLAY

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8066, add four clocks for each 16-bit word transfer.

tSINGLE STEP is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978 2-66

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

SUB I SUB destination,source Flags
ODITSZAPC

Subtraction X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 SUB CX, BX
register, memory 9+EA 1 2-4 SUB DX, MATH_TOTAL [SI]
memory, register 16+EA 2 2-4 SUB [BP+2], CL
accumulator, immediate 4 - 2-3 SUB AL,.10
register, immediate 4 - 3-4 SUB SI,5280
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE,1000

TEST I TEST destination,source Flags
ODITSZAPC

Test or non-destructive logical and 0 XXUXO

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST SI, END_COUNT
accumulator, immediate 4 - 2-3 TEST AL,00100000B
register, immediate 5 - 3-4 TEST BX, OCC4H
memory, immediate 11 +EA - 3-6 TEST RETURN_CODE, 01 H

WAIT IWAIT (no operands) Flags
ODITSZAPC

Wait while TEST pin not asserted

Operands Clocks Transfers· Bytes Coding Example

(no operands) 3 + 5n - 1 WAIT

XCHG IXCHG destination,source Flags
ODITSZAPC

Exchange

Operands Clocks Transfers· Bytes Coding Example

accumulator, reg16 3 - 1 XCHG AX, BX
memory, register 17+EA 2 2-4 XCHG SEMAPHORE, AX
register, register 4 - 2 XCHG AL, BL

XLAT IXLAT source-table Flags
ODITSZAPC

Translate

Operands Clocks Transfers· Bytes Coding Example

source-table 11 1 1 XLAT ASCII_TAB

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-67 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont'd.)

XOR I XOR destination,source Flags
ODITSZAPC

Logical exclusive or 0 X X U X 0

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 XOR CX, BX
register, memory 9+EA 1 2-4 XOR CL, MASK_BYTE
memory, register 16+EA 2 2-4 XOR ALPHA [51], OX
accumulator, immediate 4 - 2-3 XOR AL,01000010B
register, immediate 4 - 3-4 XOR SI,00C2H
memory, immediate 17+EA 2 3-6 XOR RETURN_CODE,OD2H

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2.8 Addressing Modes

The 8086 and 8088 provide many different ways
to access instruction operands. Operands may be
contained in registers, within the instruction
itself, in memory or in 110 ports. In addition, the
addresses of memory and 110 port operands can
be calculated in several different ways. These
addressing modes greatly extend the flexibility
and convenience of the instruction set. This sec­
tion briefly describes register and immediate
operands and then covers the 8086/8088 memory
and 110 addressing modes in detail.

Register and Immediate Operands

Instructions that specify only register operands
are generally the most compact and fastest
executing of all instruction forms. This is because
the register "addresses" are encoded in instruc­
tions in just a few bits, and because these opera­
tions are performed entirely within the CPU (no
bus cycles are run). Registers may serve as source
operands, destination operands, or both.

Immediate operands are constant data contained
in an instruction. The data may be either 8 or 16
bits in length. Immediate operands can be
accessed quickly because they are available
directly from the instruction queue; like a register
operand, no bus cycles need to be rUn to obtain an
immediate operand. The limitations of immediate
operands are that they may only serve as source
operands and that they are constant values.

Mnemonics © Intel, 1978 2-68

Memory Addressing Modes

Whereas the EU has direct access to register and
immediate operands, memory operands must be
transferred to or from the CPU over the bus.
When the EU needs to read or write a memory
operand, it must pass an offset value to the BIU.
The BIU adds the offset to the (shifted) content of
a segment register producing a 20-bit physical
address and then executes the bus cycle(s) needed
to access the operand.

The Effective Address

The offset that the EU calculates for a memory
operand is called the operand's effective address
or EA. It is an unsigned 16-bit number that
expresses the operand's distance in bytes from the
beginning of the segment in which it resides. The
EU can calculate the effective address in several
different ways. Information encoded in the
second byte of the instruction tells the EU how to
calculate the effective address of each memory
operand. A compiler or assembler derives this
information from the statement or instruction
written by the programmer. Assembly language
programmers have access to all addressing modes.

Figure 2-34 shows that the execution unit
calculates the EA by summing a displacement, the
content of a base register and the content of an
index register. The fact that any combination of
these three components may be present in a given
instruction gives rise to the variety of 8086/8088
memory addressing modes.

8086 AND 8088 CENTRAL PROCESSING UNITS

ENCODED
INTHE
INSTRUCTION

SINGLE INDEX DOUBLE INDEX

OR

EU

EXPLICIT {
INTHE
INSTRUCTION

i EFFECTIVE
r- - / ADDRESS

+ ~1~LA;CEMENTr- +

ASSUMED
UNLESS
OVERRIDDEN
BY PREFIX

l
BIU

Figure 2-34. Memory Address Computation

The displacement element is an 8- or 16-bit
number that is contained in the instruction. The
displacement generally is derived from the posi­
tion of the operand name (a variable or label) in
the program. It also is possible for a programmer
to modify this value or to specify the displace­
ment explicitly.

A programmer may specify that either BX or BP
is to serve as a base register whose content is to be
used in the EA computation. Similarly, either SI
or DI may be specified as an index register.
Whereas the displacement value is a constant, the
contents of the base and index registers may
change during execution. This makes it possible
for one instruction to access different memory
locations as determined by the current values in
the base and/or index registers.

It takes time for the EU to calculate a memory
operand's effective address. In general, the more
elements in the calculation, the longer it takes.

2-69

Table 2-20 shows how much time is required to
compute an effective address for any combination
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest
memory addressing mode. No registers are in­
volved; the EA is taken directly from the displace­
ment field of the instruction. Direct addressing
typically is used to access simple variables
(scalars).

Register Indirect Addressing

The effective address of a memory operand may
be taken directly from one of the base or index
registers as shown in figure 2-36. One instruction
can operate on many different memory locations
if the value in the base or index register is updated

8086 AND 8088 CENTRAL PROCESSING UNITS

appropriately. The LEA (load effective address)
and arithmetic instructions might be used to
change the register value.

Note that any 16-bit general register may be used
for register indirect addressing with the JMP or
CALL instructions.

OISPLA CEM~N~ J
EA

Figure 2-35. Direct Addressing

BX
OR

~.t---OR EA BP---~~I:::2~:::J 51
OR
01

Figure 2-36. Register Indirect Addressing

Based Addressing

In based addressing (figure 2-37), the effective
address is the sum of a displacement value and the
content of register BX or register BP. Recall that
specifying BP as a base register directs the BIU to
obtain the operand from the current stack seg-

Figure 2-37. Based Addressing

Mnemonics © Intel, 1978 2-70

ment (unless a segment override prefix is present).
This makes based addressing with BP a very con­
venient way to access stack data (see section 2.10
for examples).

Based addressing also provides a straightforward
way to address structures which may be located at
different places in memory (see figure 2-38). A
base register can be pointed at the base of the
structure and elements of the structure addressed
by their displacements from the base. Different
copies of the same structure can be accessed by
simply changing the base register.

HIGH ADDRESS

DISPLACEMENT

I (RATE) I AGE ISTATUS

+
r- RATE

VAC I SICK

DEPT I DIV

~ BASE REGISTER I i EMPLOYEE

t
I EA t- I

VAC SICK

DEPT DIV

EMPLOYEE

LOW ADDRESS

Figure 2-38. Accessing a Structure With Based
Addressing

Indexed Addressing

In indexed addressing, the effective address is
calculated from the sum of a displacement plus
the content of an index register (SI or DI) as
shown in figure 2-39. Indexed addressing often is

Figure 2-39. Indexed Addressing

8086 AND 8088 CENTRAL PROCESSING UNITS

used to access elements in an array (see figure
2-40). The displacement locates the beginning of
the array, and the value of the index register
selects one element (the first element is selected if
the index register contains 0). Since all array
elements are the same length, simple arithmetic
on the index register will select any element.

Based Indexed Addressing

Based indexed addressing generates an effective
address that is the sum of a base register, an
index . register and a displacement (see figure
2-41). Based indexed addressing is a very flexible
mode because two address components can be
varied at execution time.

r
I
I
1
I
I
L

~ DISPLACEMENT r-

IND.EX!QISTER

I 14 I ,
I EA I--------

HIGH ADDRESS

ARRAY (8)

.ARRAY(7)

ARRAY(S)

ARRAY(S)

ARRAY (4)

ARRAY (3)

ARRAY (2)

ARRAY (1)

ARRAY (0)

... 1 WORD
LOW ADDRESS

--t EA II _---------1
,

.. Figure 2-40. Accessing an Array With Indexed
Addressing

Based indexed addressing provides a convenient
way for a procedure to address an array allocated
on a stack (see figure 2-42). Register BP can con­
tain the offset of a reference point on the stack,
typically the top of the stack after the procedure
has saved registers and allocated local storage.
The offset of the beginning of the array from the
reference point can be expressed by a displace­
ment value, and an index register can be used to
access individual array elements.

Arrays contained in structures and matrices (two­
dimension arrays) also could be accessed with
based indexed addressing.

Ei7+r
I EA

Figure 2-41. Based Indexed Addressing

HIGH ADDRESS

DISPLACEMENT

r- L...--ii-........

OLD._BP

OLD_BX 1
I OLD .. _AX I
I ARRAY(S) I
I ARRAY(S) I
I ARRAY (4) I
I I
I I
I I

: '--~'::"::":":'.:..:.:.....t+ :
I-j--------I 1-------,---'

L ______ l 1 ______ ~

... 1WORo.....

LOWER ADDRESS

Figure 2-42. Accessing a Stack Array With Based Indexed Addressing

2-71

8086 AN08088CENTRAL PROCESSING UNITS

String Addressing

String instructions do not use the normal memory
addressing modes to access their operands.
Instead, the index registers are used implicitly as
shown in figure 2-43. When a string instruction is
executed, SI is assumed to point to the first byte
or word of the source string, and DI is assumed to
point to the first byte or word of the destination
string. In a repeated string operation, the CPUs
automatically adjust SI and DI to obtain subse­
quent bytes or words.

I/O Port Addressing

If an I/O port is memory mapped, any of the
memory operand addressing modes may be used
to access the port. For example, a group of ter­
minals can be accessed as an "array." String
instructions also can be used to transfer data to
memory-mapped ports with an appropriate hard­
ware interface. Section 2.10 contains examples of
addressing memory-mapped I/O ports.
Two different addressing modes can be used to
access ports located in the I/O space; these are
illustrated in figure 2-44. In direct port address­
ing, the port number is an 8-bit immediate

IOPCODE I

SI J--.I SOURCE EA

___ D_I __ ... J--.I DESTINATION EA I

Figure 2-43. String Operand Addressing

2-72

operand. This allows fixed access to ports
numbered 0-255. Indirect port addressing is
similar to register indirect addressing of memory
operands. The port number is taken from register
DX and can range from 0 to 65,535. By pre­
viously adjusting. the content of register DX, one
instruction can access any port in the I/O space.
A group of adjacent ports can be accessed using a
simple software loop that adjusts the value in DX.

2.9 Programming Facilities

A comprehensive integrated set of tools supports
8086/8088 software development. These tools are
programs that run on Intellec® 800 or Series II
Microcomputer Development Systems under the
ISIS-II operating system, the same hardware and
operating system used to develop software for the
8080 and the 8085. Since the 8086 and 8088 are
software-compatible with one another, the same
tools are used for both processors to provide
programmers with a uniform development
environment.

DIRECT PORT ADDRESSING

~
~rl P-O-R-T-AD-D-R-E-Ss"l

INDIRECT PORT ADDRESSING

Figure 2-44. I/O Port Addressing

8086 AND 8088 CENTRAL PROCESSING UNITS

Software Development Overview

A program that will ultimately execute on an
SOS6- or SOSS-based system is developed in steps
(see figure 2-45). The overall program is com­
posed of functional units called modules. For
purposes of this discussion, a module is a section
of code that is separately created, edited, and
compiled or assembled. A very small program
might consist of a single module; a large program
could be comprised of 100 or more modules. The
SOS6/S0SS LlNK-S6 utility binds modules
together into a single program. (The module
structure of a program is critical to its successful
development and maintenance; see section 2.10
for guidelines.)

SOS6 and SOSS modules can be written in either
PLlM-S6 or ASM-S6 (see table 2-22). PLlM-S6 is
a high-level language suitable for most
microprocessor applications. It is easy to use,
even by programmers who have little experience
with microprocessors. Because it reduces software
development time, PLlM-S6 is ideal for most of
the programming in any application, especially
applications that must get to market quickly.

ASM-S6 is the SOS6/S0SS assembly language.
ASM-S6 provides the programmer who is familiar
with the CPU architecture, access to all processor
features. For critical code segments within pro­
grams that make sophisticated use of the hard­
ware, have extremely demanding performance or
memory constraints, ASM-S6 is the best choice.

LOAD
AND

EXECUTE

(m'6Wl~~)

Figure 2-45. Software Development Process

2-73

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2·22. PLlM·861 ASM·86 Characteristics

PL/M-86

• Fast Development

• Less Programmer Training

• Detailed Hardware Knowledge Not Required

The languages are completely compatible, and a
judicious combination of the two often makes
good sense. Prototype software can be developed
rapidly with PLlM·86. When the system is
operating correctly, it can be analyzed to see
which sections can best profit from being written
in ASM·86. Since the logic of these sections
already has been debugged, selective rewriting can
be done quickly and with low risk.

Each PLlM·86 or ASM-86 module (called a
source moduel) is keyed into the Intellec® system
using the ISIS-II text editor and is stored as a
diskette file. This source file is then input to the
appropriate language translator (ASM-86
assembler or PL/M-86 compiler). The language
translator creates a diskette file from the source
file, which is called a relocatable object module.
The translator also lists the program and flags any
errors detected during the translation. The
relocatable object module contains the 8086/8088
machine instructions that the translator created
from the statements in the source module. The
term "relocatable" refers to the fact that all
references to memory locations in the module are
relative, rather than being absolute memory
addresses. The module generally is not executable
until the relative references are changed to the
actual memory locations where the module will
reside in the execution system's memory. The pro­
cess of changing the relative references to
absolute memory locations is called locating.

There are very good reasons for not locating
modules when they are translated. First, the exe­
cution system's physical memory configuration
(where RAM and ROM/PROM segments are
actually located in the megabyte memory space)
may not be known at the time the modules are
written. Second, it is desirable to be able to use a
common module (e.g., a square root routine) in
more than one system. If absolute addresses were
assigned at translation time, the common module
would either have to occupy the same physical

2-74

ASM-86

• Fastest ExecutionSpeed

• Smallest Memory Requirements

• Access To All Processor Facilities

addresses in every system, or separate versions
with different addresses would have to be main·
tained for each system. When locating is deferred;
a single version of a common routine can be used
by any number of systems. Finally, the locations
of modules typically change as a system is
developed, maintained and enhanced. Separating
the location process from the translation process
means that as modifications are made, unchanged
modules only need to be relocated, not
retranslated.

Relocatable object modules may be placed into
special files called libraries, using the LIB-86
library manager program. Libraries provide a
convenient means of collecting groups of related
modules so that they can be accessed automati­
cally by the LINK-86 program.

When enough relocatable object modules have
been created to test the system, or part of it, the
modules are linked and located. Linking com­
bines all the separate· modules into a single pro­
gram. Locating changes the relative memory
references in the program to the actual memory
locations where the program will be loaded in the
execution system. The link and locate process also
is referred to as R & L, for relocation and linkage.

Two other programs round out the software
development tools available for the 8086 and
8088. OH-86 converts an absolute object file into
a hexadecimal format used by some PROM pro­
grammers and system loaders (for example, the
SDK-86 and iSBC 957™ loaders). CONV-86 can
do most of the conversion work required to
translate 8080/8085 assembly language source
modules into ASM-86 source modules.

The 8086/8088 software development facilities
are covered in more detail in the remainder of this
section. However, these are only introductions to

8086 AND 8088 CENTRAL PROCESSING UNITS

the use of these tools. Complete documentation is
available in the following publications available
from Intel's Literature Department:

ISIS-II:

ISIS-II System User's Guide, Order No. 9800306

ASM-86:

MCS-86 Assembly Language Reference Manual,
Order No. 9800640

MCS-86 Assembler Operating Instructions for
ISIS-II Users, Order No. 9800641

PLlM-86:

PLIM-86 Programming Manual, Order No.
9800466

ISIS-II PLIM-86 Compiler Operator's Manual,
Order No. 9800478

LINK-86, LOC-86, LIB-86, OH-86:

MCS-86 Software Development Utilities
Operating Instructions for ISIS-II Users, Order
No. 9800639

CONV-86:

MCS-86 Assembly Language Converter
Operating Instructions for ISIS-II Users, Order
No. 9800642

PLlM-86

PLlM-86 is a general-purpose, high-level
language for programming the 80S6 and SOSS
microprocessors. It is an extension of PL/M-80,
the most widely-used, high-level programming
language for microprocessors. (PL/M-SO source
programs can be processed by the PL/M-86 com­
piler; the resulting object program is generally
reduced by 15-30% in size.) PLlM-S6 is suitable
for all types of microprocessor software from
operating systems to application programs.

PLlM-S6's purpose is simple: to reduce the time
and cost of developing and maintaining software
for the S086 and 80SS. It accomplishes this by
creating a programming environment that, for the
most part, is distinct from the architecture of the
CPUs. Registers, segments, addressing modes,
stacks, etc., are effectively "invisible" to the

2-75

PL/M-86 programmer. Instead, the processors
appear to respond to simple commands and
familiar algebraic expressions. The responsibility
for translating these source statements into the
machine instructions ultimately required to exe­
cute on the SOS6/S0SS is assumed by the PLlM-S6
compiler. By "hiding" the details of the machine
architecture, PL/M-86 encourages programmers
to concentrate on solving the problem at hand.
Furthermore, because PL/M-S6 is closer to
natural· language, it is easier to "think in
PLlM-S6" than it is to "think in assembly
language." This speeds up the expression of a
program solution, and, equally important, makes
that solution easier for someone other than the
original programmer to understand. PLlM-S6
also contains all the constructs necessary for
structured programming.

Statements and Comments

A programmer builds a PLlM-S6 program by
writing statements and comments (see figure
2-46). There are several different types of
statements in PL/M-S6; they always end with a
semicolon. Blanks can be used freely before,
within, and after statements to improve read­
ability. A statement also may span more than one
line. .

The characters "1*" start a comment, and the
characters "*1" end it; any characters may be
used in between. Comments do not affect the exe­
cution of a PLlM-S6 program, but all good pro­
grams are thoughtfully commented. Comments
are notes that document and clarify the program's
operation; they may be written virtually anywhere
in a PLlM-86 program.

Data Definition

Most PLlM-S6 programs begin by defining the
data items (variables) with which they are going to
work. An individual PLlM-S6 data element is
called a scalar. Every scalar variable has a
programmer-supplied name up to 31 characters
long, and a type. PLlM-S6 supports five types of
scalars: byte, word, integer , real, and pointer.
Table 2-23 lists the characteristics of these
PL/M-86 data types.

8086 AND 8088 CENTRAL PROCESSING UNITS

I*TRAFFIC DATA RECORDER CONTROL PROGRAM*
*VERSION 2.2, RELEASE 5, 23APR79. *
THIS RELEASE FIXES THREE BUGS
*DOCUMENTED IN PROBLEM REPORT #16. * I

I*COMPUTE TOTAL PAYMENT DUE* I
TOTAL = PRINCIPAL + INTEREST;

IF TERMINAL$READY
THEN CALL FILL$BUFFER;
ELSE CALL WAIT (50); I*WAIT 50 MS FOR RESPONSE* 1

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

TYPE BYTES RANGE USAGE

BYTE 1 o to 255 Unsigned Integer, Character

WORD 2 o to 65,535 Unsigned Integer

INTEGER 2
-32,768 to

Signed Integer
+32,767

REAL 4
1 x 10-38 to

Floating Point 3.37 x 10+38

POINTER 2/4 NIA

Variables are defined by writing a DECLARE
statement of this form:

DECLARE scalar-name type;

Options of the DECLARE statement can be used
to specify an initial value for the scalar and to
define a series of items in a shorthand form.

Besides scalar variables, scalar constants may be
used in PL/M-86 programs (see figure 2-47).
Constants may be written "as is" or may be given
names to improve program clarity.

Scalars'can be aggregated into named collections
of data such as arrays and structures. An array is
a collection of scalars of the same type (all
integer, all real, etc.). Arrays are useful for
representing data that has a repetitive nature. For

2-76

Address Manipulation

example, monthly rainfall samples could be
represented as an array of 12 elements, one for
each month:

DECLARE RAINFALL (12) REAL;

Each element in an array is accessible by a
number called a subscript which is the element's
relative location in the array. In PLlM-86, the
first element in an array has a subscript of 0; it is
considered the "Oth".eIement. Thus, RAINFALL
(11) refers to December's sample. The subscript
need not be a constant; variables and expressions
also may be used as subscripts.

Strings of character data are typically defined as
byte arrays. Characters can be accessed with
subscripts or with powerful string-handling func­
tions built into PLlM-86.

8086 AND 8088 CENTRAL PROCESSING UNITS

10 "DECIMAL NUMBER"
OAH "HEXADECIMAL NUMBER"
12Q "OCTAL NUMBER"

00001010B "BINARY NUMBER"
10.0 "FLOATING POINT NUMBER"

1.0E1 "FLOATING POINT NUMBER"
'A' "CHARACTER"

"CONSTANTS MAY BE GIVEN NAMES"
DECLARE STATUS$PORT LITERALLY 'OFFEH';
DECLARE THRESHOLD LITERALLY '98.6';

Figure 2-47. PL/M-86 Constants

A structure is a collection of related data elements
that do not necessarily have the same type. The
elements are related by virtue of "belonging" to
the entity represented by the structure. Here is a
simple structure declaration:

DECLARE BRIDGE STRUCTURE

(SPAN

YR$BUILT

WORD,

BYTE,

AVG$TRAFFIC REAL);

The year the bridge was built could be accessed by
writing BRIDGE. YR$BUIL T; the structure ele­
ment name is "qualified" by the dot and the
structure name. This allows structures with the
same element names to be distinguished from
each other (e.g., HIGHWAY.YR$BUILT).

Arrays and structures can be combined into more
complex data aggregates:

• array elements may be structures rather than
scalars,

• a structure element may be an array,

• structures in arrays may themselves contain
arrays.

Figure 2-48 provides sample PLlM-86 data
declarations.

Assignment Statement

Data that has been defined can be operated on
with PLlM-86 executable statements. The fun­
damental executable statement is the assignment
statement, written in this form:

variable-name = expression;

This means "evaluate the expression and assign
(move) the result to the variable."

There are three basic classes of expressions in
PLlM-86; arithmetic, relational and logical (see
table 2-24 and figure 2-49). All expressions are
combinations of operands and operators,
although an expression can consist of a single
operand. Operands are variables and constants;
operators vary according to the type of expres­
sion. Evaluation of an expression always yields a
single result; different classes of expressions yield
different types of results.

Table 2-24. Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT

ARITHMETIC +, -;', /, MOD NUMBER

RELATIONAL >,<, "',>=, <= "TRUE" - FFH
"FALSE"-OH

LOGICAL AND, OR, XOR, NOT 8'16-BIT STRING

2-77

8086 AND 8088 CENTRAL PROCESSING UNITS

BYTE;
I****SCALARS**** I

DECLARE SWITCH
DECLARE COU NT

INDEX
DECLARE (NET, GROSS,

WORD,
INTEGER;
TOTAL) REAL;

I****ARRAYS**** I
DECLARE MONTH (12) BYTE;
DECLARE TERMINAL_LINE (80)

I****STRUCTURE**** I
DECLARE EMPLOYEE STRUCTURE

(lD_NUMBER
DEPARTMENT
RATE

BYTE;

WORD,
BYTE
REAL);

1**** ARRAY OF STRUCTURES**** I

1*1 SCALAR* I
1*1 SCALAR*I
1*3 SCALARS* I

DECLARE INVENTORY_ITEM (100) STRUCTURE
(PART_NUMBER WORD,
ON_HAND WORD,
RE_ORDER BYTE);

1**** ARRAY WITHINSTRUCTURE****I
DECLARE COUNTY_DATA STRUCTURE

(NAME (20) BYTE,
TEN_ YR_RAINFALL(10) BYTE,
PER CAPITA_INCOME REAL);

Figure 2-48. PL/M-86 Data Declarations

I*ARITHMETIC* I
A = 2; B = 3;
B = B+ 1;
C = (A*B) -2;
C = ((A*B) + 3) MOD 3;

I*RELATIONAL * I
A=2; B=3
C= B>A;
C= B<>A;
C= B = (A+1);

I*LOGICAL'I
A = 0011 $0001 B;
B = 1 000$0001 B;
C= NOT B;
C= AAND B;
C=AOR B;
C= BXORA;
C = (A AND B) OR OFOH;

I*B CONTAINS 4* I
I *C CONTAINS 6* I
I *C CONTAINS 2* I

I*C CONTAINS OFFH* I
I*C CONTAINS OFFH* I
I*C CONTAINS OFFH* I

I*$IS FOR READABILlTY* I

I*C CONTAINS 0111$1110B* I
I*C CONTAINS 0000$0001 B* I
I*C CONTAINS 1011$0001 B* I
I*C CONTAINS 1011$0000B* I
I*C CONTAINS 1111$0001 B* I

Figure 2-49. Expressions in PL/M-86 Assignment Statements

2-78

8086 AND 8088 CENTRAL PROCESSING UNITS

Program Flow Statements

Simple PL/M-86 programs can be written with
just DECLARE and assignment statements. Such
programs, however, execute exactly the same
sequence of statements every time they are run
and would not prove very useful. PL/M-86 pro­
vides statements that change the flow of control
through a program. These statements allow sec­
tions of the program to be executed selectively,
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the
other of two statements 'for execution depending
on the result of a relational expression. The IF
statement is written:

IF relational-expression

THEN statement1;

ELSE statement2;

Statementl is executed if the expression is "true";
statement2 hfnot executed'lil this case. If the rela­
tion is "false," statementl is skipped and state­
ment2 is executed. In determining the "truth" of
an expression, the IF statement only examines the
low-order bit of the result (1="true"). Therefore,
arithmetic and logical expressions also may' be
used in an IF statement.

A=3; B=5;
IFA<B

THEN MINIMUM =1;
ELSE MINIMUM = 2;

MORE_DATA = OFFH;
IF NOT MORE_DATA

THEN DONE=1;
ELSE DONE = 0;

'" EXECUTED" ,
'"SKIPPED" ,

'"SKIPPED"'
'"EXECUTED"'

'"NESTED IF STATEMENTS"'
CLOCK_ON =1; HOUR=24; ALARM=OFF;
IF CLOCK_ON

THEN IF HOUR = 24
THEN IF ALARM = OFF

THEN HOUR = 0; '"EXECUTED"'

Figure 2-50. PL/M-~6IF Statem~nts

2-79

A DOblock begins with a DO statement and ends
with an END statement. All intervening
statements are part of the block. A DO block can
appear anywhere in a program that an executable
statement can appear. There are four kinds of DO
statements in PLlM-86: simple DO, DO CASE,
interative DO, and DO WHILE.

A simple DO statement (figure 2-51) causes all the
statements in the block to be treated as though
they were a single statement. Simple DOs enable a
single IF statement to cause multiple statements
to be executed (the alternative would be to repeat
the IF statement for every statement, to be
executed).

'·SIMPLE DO·'
A=5; B=9;
IF(A+2)< BTHEN DO;

X=X-1;
Y(X)=O;
END;

ELSE DO;

'·00 CASE·'
A=2;'

X=X+1'
Y(X)=1;
END;

'·EXECUTED·'
''''EXECUTED"'

'·SKIPPED·'
'"SKIPPED'''

DO CASE (A);
X=X+1;
X=X+2;
X=X+3;
X='~+4;
END;

'·SKIPPED"'
'·SKIPPED"I
'''EXECUTED"'
''''SKIPPEO·'

Figure 2-51:, 'PLlM-86 Simple DO
and DO CASE

DO CASE (figure 2-51) causes one statement in
the DO block to be selected and executed depend­
ing on the result of the expression (usually
arithmetic) wri~ten immediately following DO
CASE:

DO CASE'arithmetic-expression;

If the expression yieids 0, the first statement in the
DO block is executed; if the expression yields 1,
the second statement is executed, etc. A statement
in the DO block 'xIuiy be null (consist of only a
semicolon}to cause no action for selected cases.
DO CASE provides a rapid and easily-understood

way to respond to dataJike "transaction codes"

8086.AND 8(Jea CENTRAL PROCESSING UN.ITS

where a different action is required for each of
many values a code might assume (An alternative
would be an. IF stateme,nt for every value the ,code
could assume).

An iterative DO block (figures 2-52 anct 2-53)is
executed from 0 to an' infinite number of times
based on the relationship of an index variable to
an expression, that termin,ates execution. The
general farmis: .

DO Index = start-expr TO stop-expr BY step-expr;

The "BY step-expr" is optional, and the step is
assumed to be 1 if not supplied (the typical case).
When control first reaches the DO statement,
start-expr is evaluated and is assigned to index.
Then index is compared to stop-expr; if index
exceeds stop-expr, control goes to the statement
following the DO bloc\c; otperwise the block is
executed. At the end of. the 'block, the result of
step-exprisadded to index" an.d it is compared to

"ITERATIVE DO"
DOI=OT05;

ARRAY (J)"" I;
TOTAL = TOTAL +1;
END; ,

'·:1= 6 ATTHIS.POINT·'

"DO WHILE"
M()RE = 0; SPACE_OK =1;

stop-expr again, etc. (The iterative, DO is quite
flexible-this is a simplified explanation.)
Iterative DOs are handy for "stepping through"
an array. For example, an array of 10 elements
could be zeroed by:

DO I =OT09;

ARRAY(I) == 0;

END;

In a DO WHILE (figures 2-$2 and 2-54), the
statements are executed repeatedly as long as the
expression following WHILE evaluates to
"true." DO WHILE often can be applied in
situations where an interative DO will not work,
or is clumsy, such as where repetition must be
controlled by a non-integer value. Like an
iterative DO, DO WHILE may be executed from
o times to an infinite number of times.

'"EXECUTED 6 TIMES"'
'"EXECUTED 6 TIMES"'

DO WHILE (MORE AND SPACE_OK);
ITEMS = ITEMS + 1; '"SKIPPED"'
N' TRACKS=
N TRACKS + 10; '"SKIPPED"'
IFN~TRACKS>=999 '"SKIPPED"'

THEN SPACE_OK';' 0;
END;

/"PO WHILE"'
CODE = 'A';
DO WHH-E (CODE c= • A');

TEMP ~ TEMP" STEP; '"EXECUTION STOPS"'
IFTEMP>98.6 '"AFTER TEMP"'

THEN CbOE = 'B'; '"EXCEEDS 98.6"'
N~STEPS= N~STEPS + 1;

END; ,

FigO're2-S2. PL/M-86 Iterative DO and DO WHILE '0

2-80

8086 AND 8088 CENTRAL PROCESSING UNITS

INDEX-START

EXECUTE
BLOCK

INDEX-INDEX+STEP

OUTOF
RANGE

Figure 2-53. PLlM-86 Iterative DO Flowchart

A GOTO written in the form

GOTO target;

causes an unconditional transfer (branch) to
another statement in the program. The statement
receiving control would be written

target: statement;

where "target" is a label identifying the
statement.

A CALL statement written in the form

CALL proc-name (parm-list);

EXECUTE
BLOCK

FALSE

Figure 2-54. PLlM-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro­
gram. The variables listed in "parm-list" are
passed to the procedure, the procedure is
executed, and then control returns to the state­
ment following the CAbL. Thus, unlike a GOTO,
a CALL. brings control back to the point of
departure.

Procedures

Procedures are "subprograms" that make it
possible to simplify the design of complex pro­
grams and to share a single copy of a routine
among prggrams. A procedure usually is designed
to perform'one function;'Le., to solve one part of
the total problem with which the program is deal­
ing. For example, a program to calculate
paychecks could be broken down into separate
procedures for calculating gross pay, income tax,
Social Security and net pay. The organization of
the "main" program then could be understood at
a glance:

"CALLGROSS~PAY;
CALL INCOME_TAX;
CALL SOCIAL_SECURITY;
CALL NET_PAY;

'8086 AHo8088'CENTRAt"PROCESSfNG UN.ITS

Furthermore, the .income tax procedure could be
divided into separate procedures for calCulating
state and federal taxes. Procedures, then, provide
a mechanism by whicli'il large, complex problem
can be attacked with a "divide and conquer"
strategy.

A procedure usually is defined early in a program,
but it is only executed when.' it is referred to by
name in a later PLlM-86 statement. A procedure
can accept a list of variables, called parameters,
that it will use in performing its function. These
parameters may assume different values each time
the procedure is executed.

PL/M-86 provides two classes 'of procedures,
typed and untyped. A typed procedure n:turns a
value to the statement that activates it and, in
addition, may accept parameters from that state­
ment. A typed procedure is ~ctivated whenever its
name appears in a statement; tqe value it returns
effectively takes the place:ofthe procedure name
in the statement. Typed procedures can be used in
all kinds of PLlM,86 expressions. Untyped pro­
cedures may accept parameters, but do'not return

a value. Untyped procedllres are activated by
CALL statements:: Figure 2-55 shows how simple
typed and untyped procedures may be declared
and then activated.

The statements forming the body of a procedure
need not exist within the module that activates the
procedure. The activating module can declare the
procedure EXTERNAL, and the LINK-86 utility
will connect the two modules.

PLlM-86 procedures can be written to handle
interrupts. Procedures also may be declared
REENTRANT, making them concurrently usable
by different tasks in' a multitasking system.
PLlM-86 also has about 50 procedures built into
the language, including facilities for:

• converting variables fr,om one type to another

• shifting and rotating bits

• performing input and output

• manipulating strings

• activating the 'CPU LOCK signal.

!·DECLARATION OF A TYPED PROCEDURE THAT
ACCEPTS TWO REAL PARAMETERS AND RETURNS AREAL VALUE"!
AVG: PROCEDURE (X,Y) REAL;

DECLARE (X,Y) REAL.:;·
RETURN (X+Y)!2.0;
ENDAVG;

!·ACTIVATING A TYPED PROCEDURE·!
LOW=2.Q;
HIGH ;"3.0;, , ,
:rOTAL = TOT~L + AVG (LOW,'HIGH); !·2.5IS ADDED TO TOTAL *!

!*QECLAFIATION OF AN UNTYPED PROCEDURE
.THAT ACCEPTS ONE PARAMETER*!

TEST: PROCEDUFIE (X); ,
DECLARE X BYTE;
IFX = OH THEN'

COONT= COUNT +1;
END TEST;

!*ACTIVATING AN UNTYPED PROCEDURE"!
CALL TEST (ALPHA); .I"COUNT IS INCREMENTED

.' IF ALPHA = 0* ! , ,

.• If '.

Figu~e 2-55. PL/M-86 Procedures

2-82

8086 AND 8088 CENTRAL PROCESSING UNITS

ASM-86

Programmers who are familiar with the CPU
architecture can obtain complete access to all pro­
cessor facilities with ASM-86. Since the execution
unit on both the 8086 and the 8088 is identical,
both processors use the same assembly language.
Examples of processor features not accessible
through PLlM-86 that can be utilized in ASM-86
programs include: software interrupts, the WAIT
and ESC instructions and explicit control of the
segment registers.

An ASM-86 program often can be written to
execute faster andlor to use less memory than the
same program written in PLlM-86. This is
because the compiler has a limited "knowledge"
of the entire program and must generate a
generalized set of machine instructions that will
work in all situations, but may not be optimal in a
particular situation. For example, assume that the
elements of an array are to be summed and the
result placed in a variable in memory. The
machine instructions generated by the PL/M-86
compiler would move the next array element to a
register and then add the register to the sum
variable in memory. An ASM-86 programmer,
knowing that a register will be "safe" while the
array is summed, could instead add all the array
elements to a register and then move the register
to the sum variable, saving one instruction execu~
tion per array element.

It is easier to write assembly language programs in
ASM-86 than it is in many assembly languages.
ASM-86 contains powerful data structuring
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program­
mer's "view" of the 8086/8088 machine instruc­
tion set. For example, although there are 28 dif­
ferent types of MOV machine instructions, the
programmer always writes a single form of the
instruction:

MOV destination-operand, source-operand

The assembler generates the correct machine­
instruction form based on the attributes of the
source and destination operands (attributes are
covered later in this section). Finally, the ASM-86
assembler performs extensive checks on the con­
sistency of operand definition versus operand use
in instructions, catching many common types of
clerical errors.

Statements

Compared to many assemblers, ASM-86 accepts a
relaxed statement format (see figure 2-56). This
helps to, reduce clerical errors and allows pro­
grammers to format their programs for better
readability. Variable and label names may be up
to 31 characters long and are not restricted to
alphabetic and numeric characters. In particular,
the underscore (_) may be used to improve the
readability oflong names. Blanks may be inserted
freely between identifiers (there are no "column"
requirements), and statements also may span
multiple lines.

All ASM-86 statements are classified as instruc­
tions or directives. A clear distinction must be
made here between AS'M-86 instructions and

; TH IS ST ATEM ENT CONTAINS A COM M ENT ON L Y

MOV AX, [BX + 3)
MOV AX, [BX + 3)

; TYPICAL ASM-86 INSTRUCTION
; BLANKS NOT SIGNIFICANT

MOV AX,
& [BX+3) ; CONTINUED STATEMENTS

ZERO EQU 0 ; SIMPLE ASM-86 DIRECTIVE
CUR_PROJ eQU PROJECT [BX} [SI) ; MORE COMPLEX DIRECTIVE
THE_STACLSTARTS_HERE SEGMENT; LONG IDENTIFIER
TIGHT_LOOP: JMPTIGHT_LOOP ; LABELLED STATEMENT
MOV ES: DATA_STRING [SI), AL ; SEGMENT OVERRIDE PREFIX
WAIT: LOCK XCHG AX,SEMAPHORE ; LABEL & LOCK PREFIX

Figure 2-56. ASM-86 Statements

2-83 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAt PROCESSING UNITS

8086/8088 machine instructions. The assembler
generates machine instructions from ASM-86
instructions written by a programmer. Each
ASM-86 instruction produces one machine
instruction, but the form of the generated
machine instruction will vary according to the
operands written in the ASM-86 instruction. For
example, writing·

MOV BL,1

produces a byte-immediate-to-register MOV,
while writing

MOVTERMINAL_NO,BX

produces a word-register-to-memory MOV. To
the programmer, though, there is simply a MOV
source-to-destination instruction.

ASM-86 instructions are written in the form:

(label:) (prefix) mnemonic (operand(s)) (;comment)

where parentheses denote optional fields (the
parentheses are not actually written by program­
mers). The label field names the storage location
containing the machine instruction so that it can
be referred to symbolically as the target of a JMP
instruction elsewhere in the program. Writing a
prefix causes ASM-86 to generate one of the
special prefix bytes (segment override, bus lock or
repeat) immediately . preceding the machine
instruction. The mnemonic identifies the type of
instruction (MOV for move, ADD for add, etc.)
that is to be generated. Zero, one or two operands
may be written next, separated by commas,
according to the requirements of the instruction.
Finally, writing a semicolon signifies that what
follows is a comment. Comments do not affect
the execution of a program, but they can greatly

improve its clarity; all good ASM-86 programs
are thoughtfully commented.

Writing a directive gives ASM·86 information ,10

use in generating instructions, but do.es not itself
produce .a machine instruction. About 20 dif­
ferent directives are available in ASM-86. Direc­
tives are written like this:

(name) mnemonic (operand(s)) (;comment)

Some directives require a name to be present,
while others prohibit a name. ASM-86 recognizes
the directive from the mnemonic keyword written
in the next field. Any operands required by the
directive are written next, separated by commas.
A comment may be written as the last field of a
directive.

Some. of the more commonly used directives
define procedures (PROC), allocate storage for
variables (DB, DW, DD) give a descriptive name
to a number or an expression (EQU), define the
bounds of segments (SEGMENT and ENDS),
and force instructions and data to be aligned at
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric
constants (see figure 2-57) may be written in
ASM-86 statements; the assembler can perform
basic arithmetic operations on these as well. All
numbers must, however, be integers and must be
representable in 16 bits including a sign bit.
Negative numbers are a~sembled in standard
two's complement notation.

Character constants are enclosed in single quotes
and may be up to 255 characters long when used

MOV STRING [SI), 'A'
STRING [SI), 41 H
AX,OC4H

; CHARACTER
MOV
ADD
OCTAL_8
OCTAL'-:9
ALL_ONES
MINUS_5
MINUS_6

Mnemonics © Intel, 197&

EQU 100
EQU 10Q
EQU 11111111'B
EQU -5
EqU -60

; EQUIVALENT IN HEX
; HEX CONSTANT MUST START WITH NUMERAL
; OCTAL
; OCTAL ALTERNATE
; BINARY·.
; DECIMAL
; DECIMAL ALTERNATE

Figure 2-57. ASM-86 Constants

8086 AND 8088 CENTRAL PROCESSING UNITS

to initialize storage. When used as immediate
operands, character constants may be one or two
bytes long to match the length of the destination
operand.

Defining Data

Most ASM-86 programs begin by defining the
variables with which they will work. Three direc­
tives, DB, DW and DD, are used to allocate and
name data storage locations in ASM-86 (see
figure 2-58). The directives are used to define
storage in three different units: DB means
"define byte," DW means "define word," and
DD means "define doubleword." The operands
of these directives tell the assembler how many
storage units to allocate and what initial values, if
any, with which to fill the locations.

A_SEG
ALPHA
BETA
GAMMA
DELTA
EPSILON
A_SEG

B_SEG
IOTA
KAPPA
LAMBDA
MU
B_SEG

VARIABLE

ALPHA
BETA
GAMMA
DELTA
EPSILON
IOTA
KAPPA
LAMBDA
MU

SEGMENT
DB ?
DW ?
DD ?
DB ?
DW 5
ENDS

; NOT INITIALIZED
; NOT INITIALIZED
; NOT INITIALIZED
; NOT INITIALIZED
; CONTAINS 05H'

SEGMENT AT 55H ; SPECIFYING BASE ADDRESS
DB 'H£LLO' ; CONTAINS 48454C 4C4F H
DW 'AB' ; CONTAINS 42 41 H
DD B_SEG ; CONTAINS 0000 5500 H
DB 100 DUP 0 ; CONTAINS (100 Xl OOH
ENDS

ATTRIBUTES OPERATORS

SEGMENT OFFSET TY.PE LENGTH SIZE

A_SEG 0 1 1 1
A_SEG 1 2 1 2
ILSEG 3 4 1 4
A_SEG 7 1 1 1
A_SEG 8 2 1 2
B_SEG 0 1 5 5
B_SEG 5 2 1. 2
B_SEG 7 4 1 4
B_SEG 11 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the
assembler keeps track of three attributes: seg­
ment, offset and type. Segment identifies the seg­
ment that contains the variable (segment control
is covered shortly). Offset is the distance in bytes
of the variable from the beginning of its contain-

2-85

ing segment. Type identifies the variable's alloca­
tion unit (1 = byte, 2 = word, 4 = doubleword).
When a variable is referenced in an instruction,
ASM-86 uses these attributes to determine what
form of the instruction to generate. If the
variable's attributes conflict with its usage in an
instruction, ASM-86 produces an error message.
For example, attempting to add a variable defined
as a word to a byte register is an error. There are
cases where the assembler must be explicitly told
an operand's type. For example, writing MOVE
[BX],5 will produce an error message because the
assembler does not know if [BX] refers to a byte,
a word or a doubleword. The following operators
can be used to provide this information: BYTE
PTR, WORD PTR and DWORD PTR. In the
previous example, a word could be moved to the
location referenced by [BX] by writing MOVE
WORD PTR [BX],5.

ASM-86 also provides two built-in operators,
LENGTH and SIZE, that can be written in
ASM-86 instructions along with attribute
information. LENGTH causes the assembler to
return the number of storage units (bytes, words
or doublewords) occupied by an array. SIZE
causes ASM-86 to return the total number of
bytes occupied by a variable or an array. These
oPerators and attributes make it possible to write
generalized instruction sequences that need not be
changed (only reassembled) if the attributes of the
variables change (e.g., a byte array is changed to a
word array). See figure 2-59 for an example of
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin­
ing individual bits and strings of bits within a byte
or a word. Such a definition is called a record,
and each named bit string (which may consist of a
single bit) in a record is called a field. Records
promote efficient use of storage while ilt the same
time improving the readability of the program
and reducing the likelihood of clerical errors.
Defining a record does not· allocate storage;
rather, a record is a template that tells the
assembler the name and location of each bit field
within the byte or word. When a field Ilame is
written later in an instruction, ASM-86 uses the
record to generate an immediate mask for instruc­
tions like TEST, AND, OR, etc., or an immediate
count for shifts and rotates. See figure 2-60 for an

,example of using a record.

8086 ANO·8088CENTRAL,PROCESSING UNITS

; SUM THE CONTENlS OF TABLE INTO AX
TABLE DW 50 DUP(?)
; NOTE SAME INSTRUCTIONS WOULD WORK FOR
; TABLE DB 25 DUP(?)
; TABLE DW 118 DUP(?), ETC.

SUB
MOV
MOV

AX,AX ; CLEAR SUM
CX, LENGTH TABLE; LOOP TERMINATOR
SI, SIZE TABLE ,jPOINT SUBSCRIPT

; TO ENDOFTABLE.
ADD_NEXT: SUB SI, TYPE TABLE. ; BACK UP ONE ELEMENT

; ADD ELEMENT ADD AX, TABLE [SI]
LOOP ADD_NEXT ; UNTlLCX=O
; AX CONTAINS SU M

Figure 2-59. Using ASM-86,Attributes and Attribute Operators

EMP _BYTE DB ? ; 1I3YTE, UNINITIALIZED
; BIT DEFINITIONS: .

7-2 : YEARS EMPLOYED
1 : SEX (1 = FEMALE)
0: STATUS (1 = EXEMPT)

EMP _BITSAECORD iRECORDDEFINED HERE
& YRS_EMP : 6, .
& SEX:1,
& STATUS: 1

; SELECT NONEXEMPT FEMALES EMPLOYED10+YEARS

MOV AL, EMP _BYTE ; KEEP ORIGINAL INTACT
TEST AL,MASKSEX ; FEMALE? •
JZ REJECT; NO, QUITE
TEST AL, MASK STATUS .; NbNEX~MPT?
JNZ REJECT' ';NO, QUIT,
SHR AL, CL ' ; ISOLATE YEARS
CMP AL,11 ; >=10 YEARS?
JL REJECT ; NO, QUIT
; PROCESS SELECTED EMPLOYEE

REJECT: ; PROCESS REJECTED EMPLOYEE

Mnemonics © Intel, 1978

MOV
; RECORD USED HERE
; GET SHIFT COUNT

Figure 2-60. USirigan ASM-86 RECORD Defirtition

2-86

8086 AND 8088 CENTRAL PROCESSING UNITS

Structures

An ASM-86 structure is a map, or template, that
gives names and attributes (length, type, etc.) to a
collection of fields. Each field in a structure is
defined using DB, DW and DD directives;
however, no storage is allocated to the structure.
Instead, the structure becomes associated with a
particular area of memory when a field name is
referenced in an instruction along with a base
value. The base value "locates" the structure; it
may be a variable name or a base register (BX or
BP). The structure may be associated with
another area of memory by specifying a different
base value. Figure 2-61 shows how a simple struc­
ture may be defined and used. Note that a struc­
ture field may itself be a structure, allowing much
more complex· organizations to be laid out.

Structures are particularly useful in situations
where the same storage format is at multiple loca­
tions, ,where the location of a collection of
variables is not known at assembly-time, and
where the location of a collection of variables
changes during execution. Applications include
multiple buffers for a single file, list processing
and stack addressing.

EMPLOYEE STRUC
SSN DB 9
RATE DB 1
DEPT DW 1
YR_HIRED DB 1
EMPLOYEE ENDS

MASTER DB 12
TXN DB 12

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for
each of the 8086/8088 addressing modes. The
assembler interprets a bracketed reference to BX,
BP, SI or DI as a base or index register to be used
to construct the effective address of a memory
operand. An unbracketed reference means the
register itself is the operand.

The following cases illustrate typical ASM-86
coding for accessing arrays and structures, and
show which addressing mode the assembler
specifies in the machine instruction it generates:

• If ALPHA is an array, then ALPHA [SI] is
the element· indexed by SI, and ALPHA
[SI + 1] is the following byte (indexed).

• If ALPHA is the base address of a structure
and BET A is a field in the structure, then
ALPHA. BETA selects the BETA field
(direct).

• If register BX contajns the base address of a
structure and BET A is a field in the struc­
ture, then [BX].BETA refers to the BETA
field (based).

DUP(?)
DUP(?)
DUP(?)
DUP(?)

DUP(?)
DUP(?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
MOV AL, TXN.RATE
MOV MASTER-,RATE, AL

; ASSUME BX POINTS TO AN AREA CONTAINING
DATA IN THE SAME FORMAT AS THE EMPLOYEE
STRUCTURE. ZERO THE SECOND DIGIT

. OF SSN
MOV SI,1; INDEXVALUE OF 2ND DIGIT
MOV [BX].SSN[SI],O

Figure 2-61. Using an ASM-86 Structure

2-87 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ADO
ADO
ADD
ADD
AD,D
ADO
ADD
ADD
ADD
ADD
ADD
ADD
IN
OUT

AX,BX
AL,5
CX,ALPHA
ALPHA,6

·ALPHA,DX
·BL, [BX]
[SI], BH

; REGISTER +- REGISTER
; REGISTER -IMMEDIATE
; REGISTER +- MEMORY (DIRECT)
; MEMORY (DIRECT) -IMMEDIATE
; MEMORY (DIRECT)- REGISTER
; REGISTER"" MEMORY (REGISTER INDIRECT)

[PP].AlPHA, AH
CX, ALPHA [SI]
ALPHA [DI+2], 10
[BX].ALPHA [SI], AL
SI, [BP+4] [DI]
AL,30

; MEMORY (REGISTER INDIRECT) -IMMEDIATE
; MEMORY (BASED) - REGISTER
; REGISTER - MEMORY (INDEXED)
; MEMORY (INDEXED) -IMMEDIATE
; MEMORY (BASED INDEXED) - REGISTER
; REGISTER +- MEMORY (BASED INDEXED)
; DIRECT PORT

DX,AX ; INDIRECT PORT

. Figure 2-62. ASM -86 Addressing Mode Examples

• If register BX. contains the:a,ddress of an
array, then [BX) [Sil refers to the element
indel(ed by SI (based indexed).

• If register BX points to a structure whose
ALPHA .field is an array, then [BX)
.ALPtIA lSI) selects the element indexed by
SI (based indexed).

• If register BX points to a structure whose
ALPHA field is itself a structure, then
[BX).ALPHA.BETA refers to the BETA
field of the ALPHA substructure (based).

• If register BX points to a structure and the
ALPHA field of the structure is an array and
each element of ALPHA is a structure, then
[BX).ALPHA[SI + 3).BETA refers to the
field BET A in the element of ALPHA
indexed by lSI + 3) (based indexed).

Note that DI may be used in place of SI in these
cases and 'that BP may be substituted for BX.
Without a segment override prefix, expressions
containing BP refer to the current stack segment,
and expressions containing BX refer to the cur-
rent data segment. . .

Segment Control

An ASM-8.6 prpgram is organized into a series of
named segments. These are "logical" ,segments;
they are eventually mapped into 8086/8088

. memory segments, but this usually is .. not done
until the program is located~ A SEGMENT direc­
tivestarts a segment, and an ENDS directive ends
the segment (see figure 2-63). All data and

Mllemonics © Intel. 1978 . 2~88

instructions written between SEGMENT and
ENDS are· part of the named segment. In small
programs, variables often are defined in one or
two segment(s), stack space is allocated in another
segment, and instructions are written in a third or
fourth segment. It is perfectly possible, however,
to write a complete program in one segment; if
this is done, all the segment registers will contain
the same base address; that is, the memory
segments will completely overlap.. Large pro­
grams may be divided into dozens of segmentS.

The Jirst instructions in a program usually
establish the correspondence between segment
names and segment registers, and then load each
segment register with the base address of its cor­
responding segment. The ASSUME .directive tells
the assembler what addresses will be in the seg­
ment registers at execution time. The assembler
checks each memory instruction operand, deter­
mines which segment it is in and which segment
register contains the address of that. segment. If
the assumed register is the register expected by the
hardw~re for that instruction type, then the
assembler generates the machine instruction nor­
mally. If, however, the hardware expects one seg~
ment register to be used, and the operand is not in
the segment pointed to by that register, then the
assembler automatically precedes the machine
instruction with a segment override prefix byte.
(If the segment can riot be . overridden, the
assembler produces an error message.) An exam­
ple may clarify this. If register BP is used in an
instruction, the 8086 and 8088 CPUs expect, as a
default, that the memory operand will be located
in the segment pointed to by SS-in the current

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA_SEG SEGMENT
; DATA DEFIN ITIONS GO HERE

DATA_SEG ENDS

STACK_SEG SEGMENT
; ALLOCATE 100 WORDS FOR A STACK AND

LABEL THE INITIAL TOS FOR LOADING SP.
OW 100 DUP(?)

STACK TOP LABEL WORD
STACK_SEG ENDS

CODE_SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT
; CORRESPONDENCE. NOTE THAT IN THIS
; PROGRAM THE EXTRA SEGMENT INITIALLY
; OVERLAPS THE DATA SEGMENT ENTIRELY.

ASSUME CS: CODE_SEG,
& OS: DATA_SEG,
& ES: DATA_SEG,
& SS: ST ACK_SEG

START: ; THIS IS THE BEGINNING OFTHE PROGRAM.
; LOC-S6 WILL PLACE A JMP TO THIS
; LOCATION AT ADDRESS FFFFOH.

; LOAD THE SEGMENT REGISTERS. CS DOES NOT
HAVE TO BE LOADED BECAUSE SYSTEM
RESET SETS IT TO FFFFH, AND THE
LONG JMP INSTRUCTION AT THAT ADDRESS
UPDATES IT TO THE ADDRESS OF CODE_SEG.
SEGMENT REGISTERS ARE LOADED FROM AX
BECAUSE THERE IS NO IMMEDIATE-TO­
SEGMENT _REGISTER FORM OF THE MOV
INSTRUCTION.

MOV AX, DATA_SEG
MOV DS,AX
MOV ES, AX
MOV AX, STACK_SEG
MOV SS, AX

; SET STACK POINTER TO INITIAL TOS.
MOV SP,OFFSET STACK_TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE_SEG ENDS

; NEXT STATEMENT ENDS ASSEMBLY ANDTELLS
LOC-S6 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments

2-89 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

stack segment. A programmer may, however,
choose to use BP to address a variable in the cur­
rent data segment-the segment pointed to by
DS. The ASSUME directive enables the assembler
to detect this situation and to automatically
generate the needed override prefix.

It also is possible for a programmer to explicitly
code segment override prefixes rather than relying
on the assembler. This may result in a somewhat
better-documented program since attention is
called to the override. The disadvantage of
explicit segment overrides is that the assembler
does not check whether the operand is in fact
addressable through the overriding segment
register.

ASM-86, in conjunction with the relocation and
linkage facilities, provides much more
sophisticated segment handling capabilities than
have been described in this introduction. For
example, different logical segments may be com­
bined into the same physical segment, and
segments may be assigned the same physicalloca­
tions (allowing a "common" area to be accessed
by different programs using different variable
and label names).

Procedures

Procedures may be written in ASM-86 as well as
in PLlM-86. In fact, procedures written in one
language are callable from the other, provided
that a few simple conventions are observed in the
ASM-86 program. The purpose of ASM-86 pro­
cedures is the same as in PLlM-86: to simplify the
design of complex programs and to make a single
copy of a commonly-used routine accessible from
anywhere in the program.

An ASM-86 program activates a procedure with a
CALL instruction. The procedure terminates with
a RET instruction, which transfers control to the
instruction following the CALL. Parameters may
be passed in registers or pushed onto the stack
before calling the procedure. The RET instruction
can discard stack parameters before returning to
the caller.

Unlike PLlM-86 procedures, ASM-86 procedures
are executable where they are coded, as well as by
a CALL instruction. Therefore, ASM-86 pro­
cedures often are defined following the main pro­
gram logic, rather than preceding it as in

Mnemonips © Intel, 1978 2-90

PLlM-86. Figure 2-64 shows how procedures
may be defined.and called in ASM-86. Section
2-10 contains examples of procedures that accept
parameters on the stack.

LlNK-86

Fundamentally, LINK-86 combines separate
relocatable object modules into a single program.
This process consists primarily of combining
(logical) segments of the same name into single
segments, adjusting relative addresses when
segments are combined, and resolving external
references.

A programmer can use a procedure that is actual­
ly contained in another module by naming the
procedure in an ASM-86 EXTRN directive, or
declaring the procedure to be EXTERNAL in
PLlM-86. The procedure is defined or declared
PUBLIC in the module where it actually resides,
meaning that it can be used by other modules.
When LINK-86 encounters such an external
reference, it searches through the other modules
in its input, trying to find the matching PUBLIC
declaration. If it finds the referenced object, it
links it to the reference, "satisfying" the external
reference. If it· cannot satisfy the reference,
LINK-86 prints a diagnostic message. LINK-86
also checks PLlM-86 procedure calls and func­
tion references to insure that the parameters
passed to a procedure are the type expected by the
procedure.

LINK-86 gives the programmer, particularly the
ASM-86 programmer, great control over
segments (segments may be combined end to end,
renamed, assigned the same locations, etc.).
LINK-86 also produces a map that summarizes
the link process and lists any unusual conditions
encountered. While the output of LINK-86 is
generally input to LOC-86, it also may again be
input to LINK-86 to permit modules to be linked
in incremental groups.

LOC-86

LOC-86 accepts the single relocatable object
module produced by LINK-86 and binds the
memory references in the module to actual
memory addresses. Its output is an absolute
object module ready for loading into the memory
of an execution vehicle. LOC-86 also inserts a

8086 AND 8088 CENTRAL PROCESSING UNITS

FREQUENCY DB 256 DUP (0)

USART_DATA EQU OFFOH ; DATA PORT ADDRESS
USART_STAT EQU OFF2H ; STATUS PORT ADDRESS

NEXT: CALL CHAR_IN
CALL COUNT_IT
JMP NEXT

CHAR_IN PROC
; THIS PROCEDURE DOES NOT TAKE PARAMETERS.

rrSAMPLESTHE USARTSTATUS PORT
UNTIL A CHARACTER IS READY, AND
THEN READS THE CHARACTER INTO AL

MOV DX, USART_STAT
AGAIN: IN AL, DX ; READ STATUS

AND AL,2 ; CHARACTER PRESENT?
JZ AGAIN ; NO, TRY AGAIN
MOV DX, USART_DATA
IN AL, DX ; YES, READ CHARACTER
RET

CHAR_IN ENDP

COUNT_IT PROC
; THIS PROCEDURE EXPECTS A CHARACTER IN AL.

IT INCREMENTS A COUNTER IN A FREQUENCY
TABLE BASED ON THE BINARY VALUE OF
THE CHARACTER.

XOR
MOV
INC
RET
ENDP

AH, AH ; CLEAR HIGH BYTE
SI, AL ; INDEX INTO TABLE
FREQUENCY [S); BUMP THE COUNTER

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at location
FFFFOH. The target of the JMP instruction is the
logical beginning of the program. When the 8086
or 8088 is reset, this instruction is automatically
executed to restart the system. LOC-86 produces
a memory map of the absolute object module and
a table showing the address of every symbol
defined in the program.

are a convenient way to make collections of
modules available to LINK-86. When a module
being linked refers to "external" data or instruc­
tions, LINK-86 can automatically search a series
of libraries, find the referenced module, and
include it in the program being created.

LlB-86

LIB-86 is a valuable adjunct to the R & L pro­
grams. It is used to maintain relocatable object
modules in special files called libraries. Libraries

2-91

OH-86

OH-86 converts an absolute object module into
Intel's standard hexadecimal format. This format
is used by some PROM programmers and system
loaders, such as the iSBC 957™ and SDK-86
loaders.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CONV-86

Users who have developed substantial, fully­
tested assembly language programs for the
SOSO/SOS5 microprocessors may want to use
CON V -S6 to automatically convert large amounts
of this code into ASM-S6 source code (see figure
2-65). CONV-S6 accepts an ASM-SO source pro­
gram as input and produces an ASM-S6 source
program as output, plus a print file that
documents the conversion and lists any diagnostic
messages.

Some programs cannot be completely converted
by CONV-S6. Exceptions include:

• self-modifying code,

• software timing loops,

• SOS5 RIM and SIM instructions,

• interrupt code, and

• macros.

By using the diagnostic messages produced by
CONV-S6, the converted ASM-S6 source file can
be manually edited to clean up any sections not
converted. A converted program is typically
10-20070 larger than the ASM-SO version and does
not take full advantage of the SOS6/S0SS architec­
ture. However, the development time saved by
using CONY -S6 can make it an attractive alter­
native to rewriting working programs from
scratch.

Sample Programs

Figures 2-66 and 2-67 show how a simple program
might be written in PLlM-S6 and ASM-S6. The
program simulates a pair of rolling dice and
executes on an Intel SDK-S6 System Design Kit.
The SDK-S6 is an SOS6-based computer with
memory, parallel and serial 110 ports, a keypad
and a display. The SDK-S6 is implemented on a
single PC board which includes a large prototype
area for system expansion and experimentation.
A ROM-based monitor program provides a user
interface to the system; commands are entered
through the keypad and monitor responses are
written on the display. With the addition of a
cable and software interface (called SDK-CS6),
theSDK-S6 may be connected to an Intellec®
Microcomputer Development System. In this
mode, the user enters monitor commands from
the Intellec keyboard and receives replies on the
Intellec CRT display.

Mnemonics © Intel, 1978 2-92

CONV-86

,-,
- - ___ (EDIT)

I '-1.J
I /EDiTEii 7 1------~ ASM-86 I

-, SOURCE

~~~~ 

Figure 2-65. ASM-80/ ASM-86 Conversion 

The dice program runs on an SDK-86 that is con­
nected to an Intellec® Microcomputer Develop­
ment System. The program displays two con­
tinuously changing digits in the upper left corner 
of the InteIlec display. The digits are random 
numbers in the range 1-6. A roll is started by 
entering a monitor GO command. Pressing the 
INTR key on the SDK-S6 keypad stops the roll. 

There are two procedures in the PL/M-S6 version 
of the dice program. The first is called CO for 
console output. This is an untyped PUBLIC pro­
cedure that is supplied on an SDK-CS6 diskette. 
CO is written in PLlMcS6 and outputs one 
character to the Intellec console. It is declared 
EXTERNAL in the dice program because it exists 
in another module. LINK-S6 searches' the 
SDK"C86 library for CO and includes it in the 
single relocatable object module it builds. 

RANDOM is an internal typed procedure; it is 
contained in the dice module and returns a word 
value that is a random number between 1 and 6. 
RANDOM does not use any parameters and is 
activated in the parameter list passed to CO. 
When CO is called like this, first RANDOM is ac­
tivated,. then 30 is added to the number it returns 
and the sum is passed to CO. 



8086 ANO,s088 CENTRAL PROCESSING UNITS 

PL/M-86 COMPILER DICE 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICE.OBJ 
COMPILER INVOKED BY: PLM86 :Fl:DICE.P86 XREF 

2 
3 
4 
5 
6 

8 1 
9 2 

10 2 

11 1 
12 2 
13 2 
14 2 

15 2 
16 2 
17 2 

18 
19 

20 

21 2 
22 2 
23 2 

24 2 
25 2 
26 2 

27 

DICE: DO; 
/* THIS PROGRAM SIMULATES THE HOLL OF A PAIR OF DICE */ 

/* GIVE NAMES TO CONSTANTS */ 
DECLARE CLEAR$CRTl LITERALLY 'OlBH'; 
DECLARE CLEAR$CRT2 LITERALLY '045H'; 
DECLARE HOME$CURSORl LITERALLY 'OlBH'; 
DECLARE HOME$CURSOR2 LITERALLY '048H'; 
DECLARE SPACE LITERALLY'020H'; 

/* PROGRAM VARIABLES */ 
DECLARE (RANDOM$NUMBER,SAVE) WORD; 

/* CONSOLE OUTPUT PROCEDURE */ 
CO: PROCEDURE(X) EXTERNAL; 

DECLARE X BYTE; 
END CO; 

/* INTELLEC */ 
/* CRT */ 
/* CONTROL */ 
/* CODES */ 
/"ASCII BLANK*/ 

/* RANDOM NUMBER GENERATOR PROCEDURE "/ 
/* ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: */ 
/* "A GUIDE TO PL/M PROGRAMMING FOR "/ 
/" MICROCOMPUTER APPLICATIONS," */ 
/* DANIEL D. MCCRACKEN, */ 
/* ADDISON-WESLEY, 1978 "/ 
RANDOM: PROCEDURE WORD; 

RANDOM$NUMBER = SAVE; /*START WITH OLD NUMBER"/ 
RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849; 
SAVE = RANDOM$NUMBER; /"SAVE FOR NEXT TIME"/ 
/"FORCE 16-BIT NUMBER INTO RANGE 1-6*/ 
RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1; 
RETURN RANDOM$NUMBER; 
END RANDOM; 

/* MAIN ROUTINE */ 
/* CLEAR THE SCREEN*/ 
CALL CO(CLEAR$CRT1); 
CALL CO(CLEAR$CRT2); 

1* ROLL THE DICE ·UNTIL INTERRUPTED "/ 
DO WHlhE 1; /*"DO FOREVER"*/ 

/*NOTE THAT ADDING 30 TO THE DIE VALUE */ 
*/ 

/"lST DIE*/ 
/"BLANK*/ 
/*2ND DIE"/ 

/" CONVERTS IT TO ASCII. 
CALL CO(RANDOM + 030H); 
CALL CO(SPACE); 
CALL CO(RANDOM + 030H); 
/* HOME THE CURSOR */ 
CALL CO(HOME$CURSOR1); 
CALL CO(HOME$CURSOR2); 
END; 

END DICE; 

CROSS-REFERENCE LISTING 

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES 
---~--------------------~-------

2 CLEARCRTl LITERALLY 
18 

CLEARCRT2 LITERALLY 
19 

8 OOOOH CO PROCEDURE EXTERNAL(O) STACK=OOOOH 
18 19 21 22 23 24 25 

0002H 71 DICE PROCEDURE STACK=0004H 

4 HOMECURSORl LITERALLY 
24 

5 HOMECURSOR2 LITERALLY 
25 

11 0049H 44 RANDOM PROCEDURE WORD STACK=0002H 
21 23 

Figure 2-66. Sample PL/M-86 Program 

2-93 



8086 AND 8:088CE",TRAL PROCESSING UNITS 

OOOOH 2 RANDOMNUMBER 

7 0002H 2 SAVE 

SPACE 

OOOOH X 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
51 LINES REJlD 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0075H 
OOOOH 
0004H 
0004H 

117D 
OD 
4D 
4D 

WORD 
12 13 14 

WORD 
12 14 

LITERALLY 
22 

BYTE PARAMETER 
'9 

15 

Figure 2-66. Sample PL/M-86 Program (Cont'd.) 

16 

MCS-86 MACRO ASSEMBLER DICE 

ISIS-II MCS~86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICE.OBJ 
A'SSEMBLER INVOKED BY: ASM86 :Fl :DICE .. A86 XREF 

LOC OBJ 

0000 lBOO 
0002 4500 
0004 lBOO 
0006 4800 
0008 ?OOO 
OOOA ???? 

0000' (20 
??1? 

0028 

0000 
0000 A 10AOO 

,Mnemonll'S © Intel, 1978 

R 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

SOURCE 

THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE 

CONSOLE OUTPUT PROCEDURE 
EXTRN CO: NEAR 

; SEGMENT GROUP DEFINITIONS NEEDED FOR PL/M-86 C.OMPATIBILITY 
CGROUP GROUP CODE 
DGROUP GROUP DATA,STACK 

INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS. 
ASSUME, CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING 

; ALLOCATE DATA 
DATA SEGMENT PUBLIC 'DATA' 

NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86 
PROCEDURE 'CO'. BY CONVENTION, A BYTE PARAMETER IS PASSED IN 
THE LOW-ORDER 8-BITS OF A WORD ON THE STACK. HENCE, THESE ARE 

bLE:~~F~m AS Wo~e VALUE~i'i3~HOUGH i~nL~~gupy 1 BYTE ONLY. 
CLEAR-CRT2 DW 045H CRT' 

·HOME GURSOR 1 DW 01 BH CONTROL 
HOME-CURSOR2 DW 048H CODES 
SPACE DW 020H ASCII BLANK 
SAVE DW HOLDS LAST 16-BIT RANDOM NUMBER 
DATA ENDS 

; ALLOCATE STACK SPACE 
STACK SEGMENT STACK 'STACK' 

DW 20 DUP (?) . 

; LABEL INITIAL TOS: FOR LATER USE. 
STACK TOP LABEL WORD 
STACK- ENDS 

; PROGRAM CODE 
CODE SEGMENT PUBLIC 'CODE' 

RANDOM NUMBER GENERATOR PROCEDURE 
ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: 

"A GUIDE TO PL/M PROGRAMMING FOR 
MICROCOMPUTER APPLICATIONS," 
DANIEL D. MCCRACKEN 

; ADDISON-WESLEY, 1978 
'RANDOM PROC 

MOV AX, SAVE ; NEW NUMBER 

Figur~ 2-67. ASM-86 Sample Program 



8086 AND 8088 CENTRAL PROCESSING UNITS 

MCS-86 ~ACRO ASSEMBLER DICE 

LOC OBJ LINE SOURCE 

0003 B90508 ~8 MOV CX,2053 OLD NUMBER • 2053 
0006 F7El 49 MUL CX + 13849 
0008 051936 50 ADD AX,13849 
OOOB A30AOO 51 MOV SAVE,AX SAVE FOR NEXT TIME 

52 ; FORCE 16-BIT NUMBER INTO RANGE 1 - 6 
53 

SUB 
BY MODULO 6 DIVISION + 1 

OOOE 2BD2 54 DX,DX CLEAR-UPPER DIVIDEND 
0010 B90600 55 MOV CX,6 SET DIVISOR 
0013 F7Fl 56 DIV CX DIVIDE BY 6 
0015 8BC2 57 MOV AX,DX REMAINDER TO AX 
0017 40 58 INC AX ADD 1 
0018 C3 59 RET RESULT IN AX 

60 RANDOM ENDP 
61 
62 
63 MAIN PROGRAM 
64 
65 LOAD SEGMENT REGISTERS 
66 NOTE PROGRAM DOES NOT USE ES; CS IS INITIALIZED BY HARDWARE RESET; 
67 DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE 
68 MEMORY SEGMENT POINTED TO BY BOTH DS & SS. 

0019 B8---- 69 START: MOV AX,DGROUP 
001C 8ED8 70 MOV DS,AX 
001E 8EDO 71 MOV SS,AX 

72 

Bc2800 
73 INITIALIZE STACK POINTER 

0020 74 MOV SP,OFFSET DGROUP:STACK TOP 
75 
76 CLEAR THE SCREEN 

0023 FF360000 77 PUSH CLEAR _CRT 1 
0027 E80000 78 CALL CO 
002A FF360200 79 PUSH CLEAR_CRT2 
002E E80000 80 CALL CO 

81 
82 ; ROLL THE DICE UNTIL INTERRUPTE 

0031 E8CCFF 83 ROLL: CALL RANDOM GET 1ST DIE IN AL' 
003~ 0430 84 ADD AL,030H CONVERT TO ASCII 
0036 50 85 PUSH AX PASS IT 1'0 
0037 E80000 E 86 CALL CO CONSOLE ,OUTPUT 
003A FF360800 R 87 PUSH SPACE OUTPUT 
003E E80000 E 88 CALL CO A BLANK 
0041 E8BCH 89 CALL RANDOM GET 2ND DIE IN AL 
00~4 0430 90 ADD AL,030H CONVERT TO ASCII 
0046 50 91 PUSH AX PASS IT TO 
0047 E80000 92 CALL CO CONSOLE OUTPUT 

93 HOME THE CURSOR 
004A FF360400 R 94 PUSH HOME CURSORl 
OO~E E80000 E 95 CALL CO 
0051 FF360600 R 96 PUSH HOME_ CURSOR2 
0055 E80000 E 97 CALL CO 

98 CONTINUE FOREVER 
0058 EBD7 99 JMP ROLL 

100 CODE ENDS 
101 

XREF SYMBOL TABLE LISTING 
----- -------

NAME TYPE VALUE ATTRIBUTES, XREFS 

??SEG SEGMENT SIZE=OOOOH PARA PUBLIC 
CGROUP. GROUP CODE 711 11 
CLEAR CRT 1. V WORD OOOOH DATA 1911 77 
CLEAR:::CRT2. V WORD 0002H DATA 2011 79 
CO. L NEAR OOOOH EXTRN 411 78 80 86 88 92 95 97 
CODE. SEGMENT SIZE=005AH PARA PUBLIC 'CODE' 711 37 100 
DATA. SEGMENT SIZE=OOOCH PARA PUBLIC 'DATA' 811 14 25 
VGROUP. GROUP DATA STACK 811 11 11 69 74 
flOME CURSOR 1. V WORD 0004H DATA 2111 94 
HOMCCURSOR2. V WORD 0006H DATA 2211 96 
RANDOM. L NEAR OOOOH CODE 4611 60 83 89 
ROLL. L NEAR 0031H CODE 8311 99 
SAVE. V WORD OOOAH DATA 2411 ~7 51 
SPACE V WORD 0008H DATA 2311 87 
STACK • SEGMENT SIZE=002,8H PARA STACK 'STACK' 
STACK TOP V WORD 0028H STACK :'211 7~ 
START-. L NEAR 0019H CODE 6911 104 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

Figure 2-67. ASM-86 Sample Program (Cont'd.) 

2-95 Mnemonics © Intel. 1978 



SqS6 AND. 8088 CENTRAL PROCESSING UNITS 

The ASM-86 version of the dice program operates 
like the PLlM-86 version. Since the program uses 
the PLlM-86 CO procedure for writing data to 
the Intellec console, it adheres to certain conven­
tions established by the PLlM-86 compiler. The 
program's logical segments (called CODE, 
DATA and STACK-the program does not use 
an extra segment) are organized into two groups 
called CGROUP and DGROUP. All the members 
of a group of logical segments are located in the 
same 64k byte physical memory segment. 
Physically, the program's DATA and STACK 
segments can be viewed as "subsegments" of 
DGROUP. 

PLlM-86 procedures expect parameters to be 
passed on the stack, so the program pushes each 
character before calling CO. Note that the stack 
will be "cleaned up" by the PLlM-86 procedure 
before returning (i.e., the parameter will be 
removed from the stack by CO). 

2.10 Programming Guidelines 
and Examples 

This section addresses 8086/8088 programming 
from two different perspectives. A series of 
general guidelines is presented first. These 
guidelines apply to all types of systems and are 
intended to make software easier to write, and 
particularly, easier to maintain and enhance. The 
second part contains a number of specific pro­
gramming examples. Written primarily in 
ASM-86, these examples illustrate how the 
instruction set and addressing modes may be uti­
lized in various, commonly encountered program­
ming situations. 

Programming Guidelines 

These guidelines encourage the development of 
8086/8088 software that is adaptable to change. 
Some of the guidelines refer to specific processor 
features and others suggest approaches to general 
software design issues. PL/M-86 programmers 
need not be concerned with the discussions that 
deal with specific hardware topics; they should, 
however, give careful attention to. the system 
design subjects. Systems that are designed in 
accordance with these recommendations 
should be less costly to modify or extend. In 
addition, they should be better-positioned to 

2-96 

take advantage of new hardware and software 
products that are constantly being introduced 
by Intel. 

Segments and Segment Registers 

Segments should be considered as independent 
logical units whose physical locations in memory 
happen to be defined by the contents of the seg­
ment registers. Programs should be independent 
of the actual contents of the segment registers and 
of the physical locations of segments in memory. 
For example, a program should not take 
advantage of the "knowledge" that two segments 
are physically adjacent to each other in memory. 
The single exception to this fully-independent 
treatment of segments is that a program may set 
up more than one segment register to point tothe 
same segment in memory, thereby obtaining 
addressability through more than one segment 
register. For example, if both DS and ES point to 
the.same segment,a string located in thatsegment 
may be used as a source operand in one string 
instruction and as a destination string in another 
instruction. (recall that a destination string must 
be located in the extra segment). 

Any data aggregate or construct such as an array, 
a structure, a string or a stack should be restricted 
to 64k bytes in length and should be wholly con­
tained in one segment (i.e., should not cross a seg­
ment boundary). 

Segment registers should only contain values sup­
plied by the relocation and linkage facilities. Seg­
ment register values may be moved to and from 
memory, pushed onto the stack and popped from 
the stack. Segment registers should never be used 
to hold temporary variables nor should they be 
altered in any other way. 

As an additional guideline, code should not be 
written within six bytes of the end of physical 
memory (or the end of the code segment if this 
segment is dynamically relocatable). Failure to 
observe this guideline could result in an attempted 
opcode prefetch from non-existent memory, 
hangingthe CPU if READY is not returned. 

Self-Modifying Code . 

It is possible to write a program that deliberately 
changes some of its own machine instructions 



8086 AND 8088 CENTRAL PROCESSING UNITS 

during execution. While this technique may save a 
few bytes or machine cycles, it does so at the 
expense of program clarity. This is particularly 
true if the program is being examined at the 
machine instruction level; the machine instruc­
tions shown in the assembly listing may not match 
those found in memory or monitored from the 
bus. It also precludes executing the code from 
ROM. Also, because of the pre fetch queue within 
the 8086 and 8088, code that is self-modified 
within six bytes of the current point of execution 
cannot be guaranteed to execute as intended. 
(This code may already have been fetched.) Fin­
ally, a self-modifying program may prove 
incompatible with future Intel products that 
assume that the content of a code segment 
remains constant during execution; 

A corrollary to this requirement is that variable 
data should not be placed in a code segment. Con­
stant data may be written in a code segment, but 
this is not recommended for two reasons. First, 
programs are simpler to understand if they' are 
uniformly subdivided into segments of code, data 
and stack. Second, placing data in a code segment 
can restrict the segment's position independen~e. 
This is because, in general, the segment base 
address of a data item may be changed, but the 
offset (displacement) of the data item may not. 
This means that the entire segment must be 
moved as a unit to avoid changing the offset of 
the constant data. If the constant data were 
located in a data segment or an extra segment, 
individual procedures within the code segment 
could be moved independently. 

Input/Output 

Since 110 devices vary so widely in their 
capabilities and their interface designs, I/O soft­
ware is inevitably device dependent. Substituting 
a hard disk for a floppy disk, for example,. 
necessitates software changes even though the 
disks are functionally identical. I/O software \.(~n, 
however, be designed to minimize the effect of 
device changes on programs. 

Figure 2-68 illustrates a design concept that struc­
tures an I/O system into a hierarchy of separately 
compiled/assembled modules. This approa~h 
isolates application modules that. use the 
input! output devices from all physical 
characteristics of. the hardware with which they 
ultimately communicate. An application module 

2-97 

that reads a disk file, fQr example, should have no 
knowledge of where the file is located on the disk, 
what size the disk sectors ani, etc. This allows 
these characteristics to change without affecting 
the application module. To an application 
module, the 110 system appears to be a series of 
file-oriented commands (e.g., Open, Close, Read, 
Write). An application module would typically 
issue a command by calling a file system 
procedure. 

The file system processes 110 command requests, 
perhaps checking for gross errors, and calls a pro­
cedure in theIlO supervisor. The I/O supervisor 
is a bridge between the functional 110 request of 
the application module and the physical 110 per­
formed by the lowest-level modules in the hier­
archy. There shouHl be separate modules in the 
supervisor for different types of devices and some 
device-dependent code may be unavoidable at this 
level. The 110 supervisor would typically perform 
overhead activities such' as maintaining disk 
directories. 

The modules that actually c;qmmunicate with the 
I/O devices"(or their controllers) are at the lowest 
level in the hierarchy. These module$ contain the 
bulk of the system's device-dependent code that 
will have to be modified in the event that a device 
is changed. 

The 8089 Input/Output Processor is specifically 
designed to encourage' the' development of 
modular, hierarchical 110 systems. The 8089 
allows knowledge of device c;haracteristics to be 
"hidden" from not only .application programs, 
but also from the operating system that controls 
the CPU. The CPU's 110 supervisor can simply 
prepare a message in memory that describes the 
nature of the operation to be performed, and then 
activate tht; '8089. The 8089 independently per­
forms all physical I/O and notifies the CPU when 
the operation has been completed. 

Operating Systems 

Operating systems also shoitld he organized in a 
hierarchy similar to the c'oncept· illustrated in 
figure 2-69. Application modules should "see" 
only the uppedevel of the operating system. This 
level might provide services like sendihgmessages 
between application modules, 'providing time 
delays, etc. An intermediate level might consist of 
housekeeping routines that dispatch tasks, alter 
t~. , "'. . 



I 

8086 AND 8088 CENTRAL PROCESSING UNITS 

I APPLICATION ___ -.,. __ .... MODULES 

.... -..,...-..,...--,.--,....-.,..-...,...-..., 1/0 SUPERVISOR 

................ 1""-....... _ ..... ___ '--.,....""'-.,... ... ,...,...,.... MODULES 

I PHYSICAL 1/0 
-,... ...... .,.. .... ...,.. ...... ....,. ...... -r-""-.,.. ....... ..,... .... ...,.......I-,r--I. MODULES 

II. DEVICE CONTROL 
THARDWARE 

Q 1/0 DEVICES 

Figure 2·68. I/O System Hierarchy Concept 

APPLICATION MODULES 

1..-..._ ..... 1 1...1 ___ 

OPERATING SYSTEM 

I I I 1 

--~---. -. -,;;;,;;,;;;;'-. ---;Y;;M-;R~~--------l 

I I I I I I 1 1 I· II ·.1· I 1 . 

1/0 SUPERVISOR HOUSEKEEPING INVISIBLE TO 

I I I I APPLICATION MODULES 

I PHYSICAL 1/0 PRIMITIVE OPERATIONS 

I: I I I I I 

Figure 2·69. Operating System Hierarchy 

2-98 



8086 AND 8088 CENTRAL PROCESSING UNITS 

priorities, manage memory, etc. At the lowest 
level would be the modules that implement 
primitive operations such as adding and removing 
tasks or messages from lists, servicing timer inter­
rupts, etc. 

Interrupt Service Procedures 

Procedures that service external interrupts should 
be considered differently than those that service 
internal interrupts. A service procedure that is 
activated by an internal interrupt, may, and often 
should, be made reentrant. External interrupt 
procedures, on the other hand, should be viewed 
as temporary tasks. In this sense, a task is a single 
sequential thread of execution; it should not be 
reentered. The processor's response to an external 
interrupt may be viewed as the following sequence 
of events: 

• the running (active) task is suspended, 

• a new task, the interrupt service procedure, is 
created and becomes the running task, 

• 
• 

the interrupt task ends, and is deleted, 

.the suspended task is reactived 
becomes the running task from the 
where it was suspended. 

and 
point 

An external interrupt procedure should only be 
interruptable by a request that activates a dif-

MULTIPLE INTERRUPT SOURCES' 

~ 

ferent interrupt procedure. When the number of 
interrupt sources is not too large, this can be 
accomplished by ~.ssigning a different type code 
and corresponding service procedure to each 
source. In systems where a large number of 
similar sources can generate closely spaced inter­
rupts (e.g., 500 communication lines), an 
approach similar to that illustrated in figure 2-70, 
may be used to insure that the interrupt service 
procedure is not reentered, and yet; interrupts 
arriving in bursts are not missed. The basic 
technique is to divide the code required to service 
an interrupt into two parts. The interrupt service 
procedure itself is kept as short as possible; it per­
forms the absolute minimum amount of process­
ing necessary to service the device. It then builds a 
mcssage that contains enough information to per­
mit another task, the interrupt message processor, 
to complete the interrupt service. It adds the 
message to a queue (which might be implemented 
as a linked list), and terminates so that it is 
available to service the next interrupt. The inter­
rupt message processor, which is not reentrant, 
obtains a message from the queue, finishes pro­
cessing the interrupt associated with that message, 
obtains the next message (if there is one). etc. 
When a burst of interrupts occurs, the queue will 
lengthen, but interrupts will not be missed so long 
as there is time for the interrupt service procedure 
to be activated and run between requests. 

INTERRUPT 
SERVICE' 

PROCEDURE 

ADD MESSAGE TO QUEUE 

,_1_--, 
r----l 
r- - - - -l g~~~fJ~WJh 
r- - - - -l ~~~~I;~ES 
r-----l L--r_--l OBTAIN NEXT MESSAGE 

FROM QUEUE 

INTERRUPT 
MESSAGE 

PROCESSOR 

Figure 2-70. Interrupt Message Processor 

2-99 



. 8086 AND g088 CENTRAL'PROCESSING UNITS 

Stack-Based Parameters 
. . , 

Parameters are frequently passed to. prQcedures 
Qn a stack. Results prQduced by the prQcedure, 
hQwever, shQuld be returned in Qther memQry 
IQcatiQns~r in registers. In QtherwQrds, the called 
prQcedure . should "clean up" the stack by dis­
carding the parameters befQre returning. The, 
RET instruction can perfQrm this functiQn. 
PL/M-S6 prQcedures always fQIIQW this 
cQnventiQn. 

Flag-Images 

PrQgrams shQuld make no. assumptiQns abQut the 
CQntents Qf the undefined bits in the flag-images 
stQred in memQry by the PUSHF and SAHF 
instructiQns. These bits always shQuld be masked 
QU,t Qf any cQmparisQns Qr tests that use these 
flag-images. The undefined bits Qfthe wQrd flag­
image can be cleared by ANDing the wQrd with 
FD5H. The undefined bits Qf the byte flag-image 
can be cleared by ANDing the byte with D5H. 

Programming Examples 

These examples demQnstrate the SOS6/S0SS 
instructiQn set and addressing mQdes in CQmmQn 
prQgramming situatiQns. The fQIIQwing tQPics are 
addressed: . 

• 
• 

• 

• 
• 
• 
• 

prQcedures (parameters, reentrancy) 

variQus fQrms Qf JMP and CALL 
instructiQns 

bit manipulatiQn with the ASM-S6 RECORD 
facility 

dynamic cQde relQcatiQn 

memQry mapped 1/0 

breakpQints 

interrupt handling 

• string QperatiQns 

These examples are written primarily in ASM-S6 
and will be Qf mQst interest to. assembly language 
prQgrammers. The PL/M-S6 cQmpiler generates 
cQde that handles many Qf these situations 
autQmatically fQr PL/M-86 prQgrams. FQr exam" 
pIe, the cQmpiler takes care Qf the 'stack in 
PL/M-S6 prQcedures, allQwing the.,prQgrammer 
to. co.ncentrate Qn sQlving the applicatiQn prQb­
lem. PL/M-S6 prQgrammers, hQwever, may want 

Mnemonics © Inlel,1978 2-100 

to. examine the memQry mapped 110 and 
interrupt handling examples, since the cQncepts 
illustrated are generally applicable; Qne o.f the 
interrupt prQcedures is. written in PL/M-S6. 

The examples are intended to. sho.w Qne way to. use 
the instructiQn set, addressing mQdes and features 
Qf ASM-S6. They do. nQt demQnstrate the "best" 
way to. sQlve any particular problem. The flexibil­
ity of the SOS6 and SOSS, applicatiQn differences 
plus variatiQns in prQgramming style usually add 
up to. a number Qf ways to. implement a prQgram­
ming so.lutiQn. 

Procedures 

The cQde in figure 2-71 illustrates several tech­
niques that are typically used in writing ASM-S6 
prQcedures. In this example a calling program 
invQkes a prQcedure (called EXAMPLE) twice, 
passing it a different byte array each time. Two. 
parameters are passed o.n the stack; the first CQn­
tains the number Qf elements in the array, and the 
secQnd cQntains the address (Qffset in 
DAT A_SEG) Qf the first array element. This 
same technique can be used to. pass a variable­
length parameter list to. a prQcedure (the "array" 
CQuid be any series Qf parameters. or parameter 
addresses). Thus, althQugh the prQcedure always 
receives two. parameters, these can be used to. 
indirectly access any number Qf variables in 
memQry. 

Any results returned by a prQcedure shQuld be 
placed in registers Qr in memQry, but nQt Qn the 
stack. AX o.r AL is o.ften used to. ho.ld a single 
wQrd Qr byte result. Alternatively, the calling prQ­
gram can pass the address(Qr addresses) Qf a 
result area to. the procedure as a parameter. It is 
gQQd practice for ASM-S6 prQgrams to. fQIIQW the 
calling cQnveritio.ns used by PLlM-S6; these are 
dQcumented" in MCS-86 Assembler Operating 
Instructions For ISIS-II Users, Order No.. 
9S00641. 

EXAMPLE is defined as a FAR procedure, 
meaning it is in a different segment than the call­
ingprQgram. The calling prQgram must use an 
intersegment CALL to. activate the prQcedure. 
NQte that this type Qf CALL saves CS and IP Qn 
the stack. If EXAMPLE were defined as NEAR 
(in the same segment as the caller) then an intra­
segment CALL WQuid be used, and Qnly IP WQuid 
be saved Qn the stack. It is the resPQnsibility Qf 
the calling program to. knQw hQW the procedure is 
defi,ned and to. issue the CQrrect type Qf CALL. 



8086 AND 8088 CENTRAL PROCESSING UNITS 

STACK_SEG SEGMENT 
OW 20 DUP (?) ; ALLOCATE 20-WORD STACK 

STACK_TOP LABEL WORD ; LABEL INITIAL TOS 
STACK_SEG ENDS 

DATLSEG SEGMENT 
ARRAY_1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY 

ARRAY_2 DB 5 DUP (?) ;~ELEMENTBYTEARRAY 

DATLSEG ENDS 

PROC_SEG SEGMENT 
ASSUME CS:PROC_SEG,DS:DATA_SEG,SS:STACK_SEG,ES:NOTHING 

EXAMPLE PROC 

; PROCEDURE PROLOG 
PUSH 
MOV 
PUSH 
PUSH 
PUSHF 

FAR 

BP 
BP,SP 
CX 
BX 

SUB SP,6 
; END OF PROLOG 

; PROCEDURE BODY 

; MUST BE ACTIVATED BY 
INTERSEGMENT CALL 

; SAVE BP 
; ESTABLISH BASE POINTER 
; SAVE CALLER'S 

REGISTERS 
; AND FLAGS 
; ALLOCATE 3 WORDS LOCAL STORAGE 

MOV CX, [BP+8] ; GET ELEMENT COUNT 
MOV BX, [BP+6] ; GET OFFSET OF 1ST ELEMENT 
; PROCEDURE CODE GOES HERE 
; FIRST PARAMETER CAN BE ADDRESSED: 
; [BX] 
; LOCAL STORAGE CAN BE ADDRESSED: 
; [BP-8], [BP-10], [BP-12] 
; ENDOF PROCEDURE BODY 

; PROCEDURE EPILOG 
ADD 
POPF 

SP,6 ; DE-ALLOCATE LOCAL STORAGE 
; RESTORE CALLER'S 

POP BX 
POP CX 
POP BP 
; END OF EPILOG 

; PROCEDURE. RETURN 
RET 4 

EXAMPLE, ENDP 

REGISTERS 
AND 
FLAGS 

; DISCARD 2 PARAMETERS 

; END OF PROCEDURE "EXAMPLE" 

Figure 2-71. Procedure Example 1 

2-101 Mnemonics@ Intel, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

CALLER_SEG SEGMENT 
; GIVE ASSEM BLER SEGMENT I REGISTER CORRESPONDENCE 
ASSUME CS:CALLER_SEG, 
& DS:DATA_SEG, 
& SS:STACK_SEG, 
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM 

; INITIALIZE SEGMENT REGISTERS 
START: MOV AX,DATA_SEG 

MOV DS,AX 
MOV AX,STACK_SEG 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP ; POINT SP TO TOS 

; ASSUME ARRAY _1 IS INITIALIZED 
, 
; CALL "EXAMPLE", PASSING ARRAY_1, THAT IS, THE NUMBER OF ELEMENTS 

IN THE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT. 
MOV AX,SIZE ARRAY_1 
PUSH AX 
MOV AX,OFFSET ARRAY_1' 
PUSH AX 
CALL EXAM PLE 

; ASSUME ARRAY _21S INITIALIZED 
, 
; CALL "EXAMPLE" AGAIN WITH DIFFERENT SIZE ARRAY. 

MOV 
PUSH 
MOV 
PUSH 
CALL 

AX,SIZE ARRAY_2 
AX 
AX,OFFSET ARRAY_2 
AX 
EXAMPLE 
ENDS 

END START 

Figure 2-71. Procedure Example 1 (Cont'd.) 

Figure 2-72 shows the stack before the caller 
pushes the parameters onto it. Figure 2-73 shows 
the stack as the procedure receives it after the 
CALL has been executed. 

EXAMPLE is divided into four sections. The 
"prolog" sets up register BP so it can be used to 
address data on the stack (recall that specifying 
BP as a base register in an instruction auto­
matically refers to the stack segment unless a seg­
ment override prefix is coded). The next step in 
the prolog is to save the "state of the machine" as 

MnemoniCS © Intel, 1978 
2-102 

it existed when the procedure was activated. This 
is done by pushing any registers used by the pro­
cedure (only CX and BP in this case) onto the 
stack. If the procedure changes the flags, and the 
caller expects the flags to be unchanged following 
execution of the procedure, they also may be 
saved on the stack. The last instruction in the pro­
log allocates three words on the stack for. the pro­
cedure to use as local temporary storage. Figure 
2-74 shows the stack at the end of the prolog. 
Note that PL/M-86 procedures assume that all 
registers except SP and BP can be used without 
saving and restoring. 



8086 AND 8088 CENTRAL PROCESSING UNITS 

I--------~- SP (TOS) 

Figure 2-72. Stack Before Pushing Parameters 

HIGH ADDRESSES 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLD IP _SP(TOS) 

LOW ADDRESSES 

Figure 2-73. Stack at Procedure Entry 

2-103 

BP-8_ 

BP-10_ 

BP-12_ 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLD IP 

OLD BP 

OLDCX 

OLD BX 

OLD FLAGS 

LOCAL 1 

LOCAL2 

LOCAL3 

HIGH ADDRESSES 

_BP 

_SP(TOS) 

LOW ADDRESSES 

Figure 2-74. Stack Following Procedure Prolog 

The procedure "body" does the actual processing 
(none in the example). The parameters on the 
stack are addressed relative to BP. Note that if 
EXAMPLE were a NEAR procedure, CS would 
not be on the stack and the parameters would be 
two bytes "closer" to BP. BP also is used to 
address the local variables on the stack. Local 
constants are best stored in a data or extra 
segment. 

The procedure "epilog" reverses the activities of 
the prolog, leaving the stack as it was when the 
procedure was entered (see figure 2-75). 

HIGHER ADDRESSES 
r 'P 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLD BP ___ BP & SP (TOS) 

" '" LOWER ADDRESSES 

Figure 2-75. Stack Following Procedure Epilog 



So.S6 ANDSOSS CENTRAL PROCESSING UNITS 

The procedure "return" restores CS and IP from 
the stack and discards the parameters. As figure 
2-76 shows, when the calling program is resumed, 
the stack is in the same state as it was before any 
parameters were pushed onto it. 

HIGH ADDRESSES ... 

1----------1-SP (TOS) 

LOW ADDRESSES 

Figure 2-76. Stack Following Procedure Return 

Figure 2-77 shows a simple proc:eg,ure that uses an 
ASM-S6 structure to address the stack. Register 
BP is pointed to the base of the structure, which is 
the top of the.stac:k since the stack grows toward 
lower addresses (see figure 2-7S). Any structure 
element canthen be addressed by specifying BP.as 
a base register: 

[BP) .structure--,-element. 

Mnem.onics © Intel, 1978 2-104 

Figure 2-79 shows a different approach to using 
an ASM-S6 structure to define the stack layout. 
As shown in figure 2-S0, register BP is pointed at 
the middle of the structure (at OLD_BP) rather 
than at the base of the structure. Parameters and 
the return address are thus located at positive 
displacements (high addresses) from BP, while 
local variables are at negative displacements 
(lower addresses) from BP. This means that the 
local variables will be "closer" to the beginning 
of the stack segment and increases the likelihood 
that the assembler will be able to produce shorter 
instructions to access these variables, i.e., their 
offsets from SS may be 255 bytes or less and can 
be expressed as a I-byte value rather than a 2-byte 
value. Exit from the subroutine also is slightly 
faster because a MOV instruction can be used to 
deallocate the local storage instead of an ADD 
(compare figure 2-71). 

It is possible for a procedure to be activated a sec­
ond time before it has returned from its first 
activation. For example, procedure A may call 
procedure B, and an interrupt may occur while 
procedure B is executing. If the interrupt service 
procedure calls B, then procedure B is reentered 
and must be written to handle this situation cor­
rectly, i.e., the procedure must be made 
reentrant. 

In PLlM-S6 this can be done by simply writing: 

B: PROCEDURE (PARM1, PARM2) REENTRANT; 

An ASM-S6 procedure will be reentrant if it uses 
the stack for storing all local variables. When the 
procedure is reentered, a new "generation" of 
variables will be allocated on the stack. The stack 
will grow, but the sets of variables (and the 
parameters and return addresses as well) will 
automatically be kept straight. The stack must be 
large enough to accommodate the maximum 
"depth" of procedure activation that can occur 
under actual running conditions. In addition, any 
procedure called by a reentrant procedure: must 
itself be reentrant. 

A related situation that also requires reentrant 
procedures is recursion. The following are 
examples of recursion: 

• A calls A (direct recursion), 

• A calls B, B calls A (indirect recursion), 

• A calls B, B calls C, C calls A (indirect 
recursion). 



r 

" 

8086 AND 8088 CENTRAL PROCESSING UNITS 

CODE SEGMENT 
ASSUME CS:CODE 

MAX PROC 
; THIS PROCEDURE IS CALLED BY THE FOLLOWING 

SEQUENCE: 
PUSH PARM1 
PUSH PARM2 
CALL MAX 

; IT RETURNS THE MAXIMUM OF THE TWO WORD 
PARAMETERS IN AX. 

; DEFINE THE STACK LAYOUT AS A STRUCTURE. 
STACK~LAYOUT STRUC 
OLD~BP DW? 
RETURN_ADDR DW? 
PARM_2 DW? 
PARM_1 DW? 
STACK_LAYOUT ENDS 

; PROLOG 

; BODY 

PUSH 
MOV 

MOV 
CMP 
JG 
MOV 

; EPILOG 
FIRST_IS_MAX: POP 
; RETURN 

MAX 

CODE 

RET 
ENDP 

ENDS 
END 

; SAVED BPVALUE-BASEOFSTRUCTURE 
; RETURN ADDRESS 
; SECOND PARAMETER 
; FIRST PARAMETER 

BP 
BP, SP 

AX, [BP).PARM_1 
AX, [BP).PARM_2 
FIRST_IS_MAX 
AX, [BP).PARM_2 

BP 

4 

; SAVE IN OLD_BP 
; POINT TO OLD_BP 

; IF FIRST 
; >SECOND 
; THEN RETURN FIRST 
; ELSE RETURN SECOND 

; RESTORE BP (& SP) 

; DISCARD PARAMETERS 

Figure 2-77. Procedure Example 2 

HIGHER ADDRESSES , Jumps and Calls 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLDBP _BP&SP(TOS) 

h 

LOWER ADDRESSES 

Figure 2-78. Procedure Example 2 Stack Layout 

The 8086/8088 instruction set contains many dif­
ferent types of JMP and CALL instructions (e.g., 
direct, indirect. through register, indirect through 
memory, etc.). These varying types of transfer 
provide efficient use of space and execution time 
in different programming situations. Figure 2-81 
illustrates typical use of the different forms of 
these instructions. Note that the ASM-86 
assembler uses the terms "NEAR" and "FAR" 
to denote intrasegment and intersegment trans­
fers, respectively. 

2-105 Mnemonics © Intel, 1978 



8086 AN08088 CENTRAL PROCESSING UNITS 

EXTRA SEGMENT 
; CONTAINS STRUCTURE TEMPLATE THAT ','NEARPROC" 
; USES TO ADDRESS AN ARRAY PASSED BV ADDRESS. 
DUMMY STRUC 
PARM_ARRAY DB 256 DUP? 
DUMMY ENDS 
EXTRA ENDS 

CODE SEGMENT 
ASSUME CS:COQE,ES:EXTRA 

NEARPROC PROC " " .. 
; LAY OUTTHE STACK (THE l;)yNAMICSTORAGE AREA OR DSA). 
DSASTRUC STRUC' 
I OW ? 

10 DUP (?) . 
; LOCAL VARIABLES FIRST 

LOC_ARRA Y DW , 
OLD_BP OW ?: ; ORIG INAL BP V ALU E 

; RETURN ADDRESS RETADDR DW ? 
POINTER DD ? 

? 
; 2ND PARM-POINTERTO "PARM_ARRAY" 
; 1ST PARM-A BYTE OCCUPIES COUNT DB 

DSASTRUC 
DB. 
ENDS 

? A WORD ON THE STACK 

; USE AN EQU TO DEFINE THE BASEtADDRESS OF THE 
DSA. CANNOT SIMPLY USE BP BECA!)SI:IT WILL 
BE POINTING TO ~'OLD~BP~'.IN HIE MIDDLE OF 

; THE DSA: 
DSA EQU[BP -OFFSET OLD_BP] 

; PROCEDURE ENTRY 
PUSH 
MOV 
SUB 

BP ; SAVE BP 
BP, SP ; POI NT BP AT OLD_BP 
SP, OFFSETOLD_BP; ALLOCATE LOC_ARRAY & I 

; PROCEDURE BODY 
; ACCESS LOCAL VARIABLE I 
MOV' . ~X,DSA.I 

; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT . 
MOV SI,6 ; WORD ARRAY-INDEX IS 3*2 
MOV AX,DSA.LOC_ARRAY [SI] 

; LOAD POINTERTOARRAY PASSED BY ADDRESS 
LES 'BX,DSA.POINTER 

; ES:BX NOW POIN:rS TO PARM_ARRAY (0) 
; ACCESS SI'TH ELEMENT OF PARM_ARRAY 
MOV AL,ES:[BX].PARM_ARRAY [51] 

; ACCESS THE BYTE PARAMETER 
MOV AL,DSA.COUNT 

Figure 2"79. Procedure Example 3 

Mnemonics © Int~l, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; PROCEDURE EXIT 
MOV SP,BP ; DE-ALLOCATE LOCALS 
POP BP ; RESTORE BP 
; STACK NOW AS RECEIVED FROM CALLER 
RET 6 ; DISCARD PARAMETERS 

NEARPROC 
CODE 

ENDP 
ENDS 
END 

Figure 2-79. Procedure Example 3 (Cont'd.) 

, HIGHER ADDRESSES , 

I COUNT 

-POINTER 

RETADDR 

OLD_BP _BP 

LOC_ARRAY (9) 

LOC_ARRAY (8) 

LOC_ARRAY (7) 

LOC_ARRAY (6) 

LOC_ARRAY (5) 

LOC_ARRAY (4) 

LOC_ARRAY (3) 

LOC_ARRAY (2) 

LOC~ARRAY (1) 

LOC_ARRAY (0) 

I _SP 

" " LOWER ADDRESSES 

Figure 2-80. Procedure Example 
3 Stack Layout 

. The procedure in figure 2-81 illustrates how a 
PLlM-86 DO CASE construction may be 
implemented in ASM-86. It also shows: 

2-107 

• an indirect CALL through memory to a 
procedure located in another segment, 

• 

• 

• 

• 

a direct JMP to a label in another segment, 

an indirect JMP though memory to a label in 
the same segment, 

an indirect JMP through a register to a label 
in the same segment, 

a direct CALL to a procedure in another 
segment, 

• a direct CALL to a procedure in the same 
segment, 

• direct JMPs to labels in the same segment, 
within -128 to +127 bytes ("SHORT") and 
farther than -128 to +127 bytes ("NEAR"). 

Mnemonics @ Intel, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

DATA SEGMENT 
; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE 

"DO_CASE." THE OFFSET OF EACH LABEL WILL 
; BE PLACED IN THE TABLE BY THE ASSEMBLER. 
CASE_TABLE OW ACTIO NO, ACTION1 , ACTION2, 
& ACTION3, ACTION4, ACTION5 
DATA ENDS 

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS 
ASSEMBLY BUT SUPPLIED BY R & L FACILITY) 
PROCEDURES. ONE IS IN THIS CODE SEGMENT 
(NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR). 

EXTRN NEAR_PROC: NEAR, FAR_PRoe: FAR 

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT 
IS IN ANOTHER SEGMENT. 

EXTRN ERR_EXIT: FAR 

CODE SEGMENT 
ASSUME CS: CODE, OS: DATA 

; ASSUME DS HAS BEEN SETUP 
BY CALLER TO POINTTO "DATA" SEGMENT. 

DO_CASE PROC NEAR 
; THIS EXAMPLE PROCEDURE RECEIVES TWO 

PARAMETERS ON THE STACK. THE FIRST 
PARAMETER IS THE "CASE NUMBER" OF 
A ROUTINE TO BE EXECUTED (0-5). THE SECOND 
PARAMETER IS A POINTER TO AN ERROR 
PROCEDURE THAT IS EXECUTED IF AN INVALID 
CASE NUMBER (>5) IS RECEIVED. 

; LAY OUT THE STACK. 
STACK_LAYOUT STRUC 
OLD_BP DW? 
RETADDR DW? 
ERR_PROC_ADDR DD ? 
CASE_NO DB? 

DB ? 
STACK_LAYOUT ENDS 

; SET UP PARAMETER ADDRESSING 
PUSH BP 
MOV BP,SP 

; CODE TO SAVE CALLER'S REGISTERS COULD GO HERE. 

; CHECK THE CASE NUMBER 
MOV 
MOV 
CMP 
JLE 

BH,O 
BL, [BPj.CASE_NO 
BX, LENGTH CASE_TABLE 
OK ; ALL CONDITIONAL JUMPS 

; ARE SHORT DIRECT 

Figure 2-81. JMP and CALL Examples 

Mnemonics © Intel, 1978 2-108 



8086ANO 8088 CENTRAL PROCESSING UNITS 

; CALL THE ERROR ROUTINE WITH A FAR 
INDIRECT CALL. AFAR INDIRECT CALL 
IS INDICATED SINCE THE OPERAND HAS 
TYPE "DOUBLEWORD." 

CALL. [BP].ERR_PROC_ADDR 

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT. 

OK: 

A FAR DIRECTJUMP IS INDICATED SINCE 
THE OPERAND HAS TYPE "FAR." 

JMP ERR_EXIT 

; MULTIPLY CASE NUMBEfi BY 2 TO Ge;T OFFSET 
INTO CASE_TABLE (EACH ENTRY IS 2 BYTES).· 

SHL BX,1 
; NEAR INDIRECT JUMP THROUGH SELECTED 

ELEMENT OF CASE_TABLE. A NEAR 
INDIRECT JUMP IS INDICATED SINCE THE 
OPERAND HAS TYPE ~IWORD." 

JMP CASE_TABLE [BX] 

ACTIONO:' ; EXECUTED IF CASE_NO = 0 
; CODE TO PROCESS THE ZERO CASE GOES HERE. 
; FOR ILLUSTRATION PURPOSES, USE A 

NEAR INDIRECT JUMP THROUGH A 
REGISTER TO BRANCH. TO THE POINT 
WHERE ALL CASES CONVERGE. 
A DIRECT JUMP (JMP ENDCASE) IS 
ACTUALLY MORE APPROPRIATE HERE. 

MOV AX, OFFSET ENDCASE 
JMP AX 

ACTION1: ; EXECUTED IF CASE_NO = 1 
; CALL A FAR EXTERNAL PROCEDURE. A FAR 

DIRECT CALL IS INDICATED SINCE OPERAND 
HAS TYPE "FAR." 

CALL. FAR_PROC 
; CALL A NEAR EXTERNAL PROCEDURE. 

CALL NEAR_PROC 
; BRANCH TO CONVER~ENCE POINT USiNG NEAR 

.' DIRECT JUMP. NOTE THAT "ENDCASE" 
IS MORE THAN127 BYTES AWAY 
SO A NEAR DIRECT JUMP WILL BE USED. 

JMP ENDCASE 

ACTION2: ; EXECUTED IF CASE_NO = 2 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JUMP 

Figure 2-&1. JMP and CALL Examples (Cont'd.) 

2-109 Mnemonics © Inlel,1978 



Records 

15086 AND 8088 CENTRALPROCESSLNrGUNIIS . 

ACTION3: ; EXECUTED IF CASE_NO = 3 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JMP 

; ARTIFICIALLY FORCE "ENDCASE" FURTHER AWAy ... ~ 
SO THAT ABOVE JUMPSGANNQ'r BE'!SHORT.'?· 

ORG 500 

ACTION4: ; EXECUTED IF CASE_NO = 4 
; CODE GOES HERE 

JMP ENDCAsE; NEARl::ilRECT JUMP 

ACTION5: ; EXECUTED IFCASE_NO = 5 
; CODE GOES HERE. 
; BRANCH TO CONVERGENCE POINT USING 

SHORT DIRECNUMP SINCE TARGET IS 
WITHIN 127 BYTES. MACHINE INSTRUCTION 
HAS 1-BYTE DISPLACEMENT RATHER THAN 
2-BYTE DISPLACEMENT REQUIRED FoA 
NEAR DIRECT JUMPS. "SHORT" IS 
WRITTEN BECAUSE "ENDCASE" ISA FORWAR't> 
REFERENCE, WHICH ASS'EMBLER ASSUMESTS 
"NEAR." IF "ENOCASF'APPEARED PRIOR 
TO THE JUMP, THE ASSEMBLER WOULD 
AUTOMATICALLY DETERMINE IF ITWERE REACHABLE 
WITH A SHORT JUMP. 

JMP SHORTENDCASE 

ENDCASE: ;ALLCASESCONVERGEHER~ 

; POP CALLER'S REGISTERS HERE. 
; RESTORE BP & SP, DISCARD pARAMETERS 

AND RETURN TO CALLER. 
MOV SP, BP 
POP BP 
RET 6 

i 

'ENDP 
ENDS 
END ; OF ASSEMBLY 

Figure 2~81. JMPand CALL Examples (C?Dt'd.) 

Figure 2-82 shows how the ASM-86 RECORD 
facility may be used to manipulate bit data. The 
example shows how to: • assign a constant known at assembly time, 

• right-justify a bit field, • assign a variable, 

,- test for a value, • set or clear. a bit:field. 

MnEl1T1onics © Intel. 1978 2-110 



8086 AND 8088 CENTRAL PROCESSING UNITS 

DATA SEGMENT 
; DEFIN E A WORD ARRAY 
XREF DW 3000 DUP (?) 
; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS: 

A 2-BIT TYPE CODE, 
A 1-BIT FLAG, 
A 13-BIT NUMBER. 

; DEFINE A RECORD TO LAY OUT THIS ORGANIZATION. 
L1NE_REC RECORD LINE_TYPE: 2, 
& VISIBLE: 1, 
& L1NE_NUM: 13 
DATA ENDS 

CODE SEGMENT 
ASSUME CS: CODE, DS: DATA 

; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY 
AND THAT SIINDEXES AN ELEMENT OF XREF. 

; A RECORD FIELD-NAME USED BY ITSELF RETURNS 
THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY 

; THE FIELD. ISOLATE "LINE_TYPE" IN THIS 
; MANNER. 

MOV AL, XREF [SI] 
MOV CL, LINE_TYPE 
SHR AX,CL 

; THE "MASK" OPERATOR APPLIED TO A RECORD 
FIELD-NAME RETURNS THE BIT MASK 
REQUIRED TO ISOLATE THE FIELD WITHIN 
THE RECORD. CLEAR ALL BITS EXCEPT 
"L1NE_NUM. " 

MOV DX, XREF[SI] 
AND DX, MASK L1NE_NUM 

; DETERMINE THE VALUE OF THE "VISIBLE" FIELD 
TEST XREF[SI], MASK VISIBLE 
JZ NOT_VISIBLE 

; NO JUMP IF VISIBLE = 1 
NOT_VISIBLE: ; JUMP HERE IF VISIBLE = 0 

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME 
TO A FIELD, BY FIRST CLEARING THE BITS 
AND THEN OR'ING IN THE VALUE. IN 
THIS CASE "LINE_TYPE" IS SET TO 2 (10B). 

AND XREF[SI], NOT MASK LINE_TYpE 
OR XREF[SI],2 SHL LINE_TYPE 

; THE ASSEMBLER DOES THE MASKING AND SHIFTING. 
; THE RESULT IS THE SAME AS: 

AND XREF[SI],3FFFH 
OR XREF[SIJ, 8000H 

BUT IS MORE READABLE AND LESS SUBJECT 
TO CLERICAL ERROR.. 

Figure 2-82. RECORD Example 

2-111 Mnemonics © 'Intel, 11178 ' 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; ASSIGN A VARIABLE (THE CONTENT OF AX) 
TO LINE_TYPE. 

MOV 
SHL 
AND 
OR 

CL, LINE_TYPE ; SHIFT COUNT 
AX, CL ; SHIFTTO "LINE UP" BITS 
XREF[SIJ, NOT MASK LINE_TYPE ; CLEAR BITS 
XREF[SIJ, AX ; OR IN NEW VALUE 

; NO SHIFT IS REQUIRED TO ASSIGN TO THE 
RIGHT-MOST FIELD. ASSUMING AX CONTAINS 
A VALID NUMBER (HIGH 3 BITS ARE 0), 
ASSIGN AX TO "LlNE_NUM." 

AND XREF[SIJ, NOT MASK LlNE_NUM 
OR XREF[SIJ, AX 

; A FIELD MAY BE SET OR CLEARED WITH 
ONE INSTRUCTION. CLEAR THE "VISIBLE" 
FLAG AND THEN SET IT. 

AND 
OR 

XREF[SIJ, NOT MASK VISIBLE 
XREF[SIJ, MASK VISIBLE 

CODE ENDS 
END ; OF ASSEMBLY 

Figure 2-82. RECORD Example (Cont'd.) 

The following considerations apply to position­
independent code sequences: 

• A label that is referenced by a direct FAR 
(inter segment) transfer is not moveable. 

• A label that is referenced by an indirect 
transfer (either NEAR or FAR) is moveable 
so long as the register or memory pointer to 
the label contains the label's current address. 

• A label that is referenced by a SHORT (e.g., 
conditional jump) or a direct NEAR (in­
trasegment) transfer is moveable so long as 
the referencing instruction is moved with the 
label as a unit. These transfers are self­
relative; that is they require only that the 
label maintain the same distance from the 
referencing instruction, and actual addresses 
are immaterial. 

• Data is segment-independent, but not offset­
independent. That is, a data item may be 
moved to a different segment, but it must 
maintain the same offset from the beginning 
of the segment. Placing constants in a unit 
of code also effectively makes the code 
offset-dependent, and therefore is not 
recommended. 

• A procedure should not be moved while it is 
active or while any procedure it has called is 
active. 

Mnemonics © Intel, 1978 . 2-112 

• A section of code that has been interrupted 
should not be moved. 

The segment that is receiving a section of code 
must have "room" for the code. If the MOVS (or 
MOVSB or MOVSW) instruction attempts to 
auto-increment DI past 64k, it wraps around to 0 
and causes the beginning of the segment to be 
overwritten. If a segment override is needed for 
the source operand, code similar to the following 
can be used to properly resume the instruction if it 
is interrupted: 

RESUME: REP MOVS DESTINATION, ES:SOURCE 

;IF CXNOT ~ 0 THEN INTERRUPT HAS OCCURRED 

AND CX,CX ; CX~O? 

JNZ RESUME ;NO, FINISH EXECUTION 

;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED. 

If the MOVS is interrupted, the CPU 
"remembers" the segment override, but 
"forgets" the presence of the REP prefix when 
execution resumes. Testing CX indicates whether 
the instruction is completed or not. Jumping back 
to the instruction resumes it where it left off. Note 
that a segment override cannot be specified with 
MOVSB or MOVSW. 



8086 AND 8088 CENTRAL PROCESSING UNITS 

Dynamic Code Relocation 

Figure 2-83 illustrates one approach to moving 
programs in memory at execution time. A "super­
visor" program (which is not moved) keeps 
a pointer variable that contains the current loca­
tion (offset and segment base) of a position­
independent procedure. The supervisor always 

calls the procedure through this pointer. The 
supervisor also has access to the procedure's 
length in bytes. The procedure is moved with the 
MOVSB instruction. After the procedure is 
moved, its pointer is updated with the new loca­
tion. The ASM-86 WORD PTR operator is writ­
ten to inform the assembler that one word of the 
doubleword pointer is being updated at a time. 

MAIN_DATA SEGMENT 
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE 

AND FREE SPACE. 
PIP _PTR DO EXAMPLE 
FREE_PTR DO TARGET_SEG 
; SET UP SIZE OF PROCEDURE IN BYTES 
PIP_SIZE OW EXAMPLE_LEN 
MAIN_DATA ENDS 

STACK SEGMENT 

STACK_TOP 
STACK 

OW 20 DUP (?) 

LABEL WORD 

; 20 WORDS FOR STACK 

; TOS BEGINS HERE 
ENDS 

SOURCE_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT. 
; OTHER CODE MAY PRECEDE IT, I.E., ITS OFFSET NEED NOT BE ZERO. 
ASSUME CS:SOURCE_SEG 
EXAMPLE PROC FAR 

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL 
; BIT 3 OF THE VALUE READ IS FOUND SET. IT 
; THEN READS ANOTHER PORT. IF THE VALUE READ 
; IS GREATER THAN 10H IT WRITES THE VALUE TO 
; A THIRD PORT AND RETURNS; OTHERWISE IT STARTS 
; OVER. 

STATUS_PORT EQU 
PORT_READY EQU 
INPUT_PORT EQU 
THRESHOLD EQU 
OUTPUT_PORT EQU 
CHECK_AGAIN: IN 

TEST 
JNE 
IN 
CMP 
JLE 
OUT 

ODOH 
008H 
OD2H 
010H 
OD4H 
AL,STATUS_PORT 
AL,PORT _READY 
CHECK_AGAIN 
AL,INPUT _PORT 
AL,THRESHOLD 
CHECK_AGAIN 
OUTPUT_PORT ,AL 

; GET STATUS 
; DATA READY? 
; NO, TRY AGAIN 
; YES, GET DATA 
; > 10H? 
; NO, TRY AGAIN 
; YES, WRITE IT 

Figure 2-83. Dynamic Code Relocation Example 

2-113 Mnemonics © Intel, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

RET ; RETURN TO CALLER 
;GETPROCEDURELENGTH 
EXAMPLE_LEN EQU (OFFSET THIS BYTE)-(OFFSETCHECK_AGAIN) 

ENDP EXAMPLE ENDP 
SOURCE_SEG ENDS 

TARGET_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE 

IS MOVED TO THIS SEGMENT, WHICH IS 
; INITIALLY "EMPTY." 
; IN TYPICAL SYSTEMS, A "FREE SPACE MANAGER" WOULD 
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE 
; FOR ILLUSTRATION PURPOSES, ALLOCATE ENOUGH 

SPACE TO HOLD IT 
DB EXAMPLE_LEN DUP (?) 

TARGET_SEG ENDS 

MAIN_CODE SEGMENT 
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE 
; AT ITS INITIAL LOCATION, MOVES IT, AND 
; CALLS IT AGAIN ATTHE NEW LOCATION. 

ASSUME 
& 

CS:MAIN_CODE,SS:STACK, 
DS:MAIN_DATA,ES:NOTHING 

; INITIALIZE SEGMENT REGISTERS & STACK POINTER. 
START: MOV AX,MAIN_DATA 

MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP 

; CALL EXAMPLE AT INITIAL LOCATION. 
CALL PIP_PTA 

; SET UP CX WITH COUNT OF BYTES TO MOV 
MOV CX,PIP _SIZE 

; SAVE DS, SET UP DS/SI AND ES/DI TO 
POINT TO THE SOU RCE AN D DESTINATION 
ADDRESSES. 

PUSH 
LES 
LDS 

; MOVE THE PROCEDURE. 
CLD 
REP MOVSB 

DS 
DI,FREE_PTR 
SI,PIP_PTR 

; RESTORE OLD ADDRESSABILITY. 

; AUTO INCREMENT 

MOV AX,DS ; HOLD TEMPORARILY 
POP DS 

; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE 
MOV WORD PTR PIP _PTR+2,ES 
SUB DI,PIP _SIZE ; PRODUCES OFFSET 
MOV WORD PTR PIP _PTR,DI 

Figure 2-83. Dynamic Code Relocation Example (Cont'd.) 

Mnemonics © Intel, 1978 2-114 



80.86 AND 8088 CENTRAL.PROCESSINGUNITS 

; UPDATE POINTER TO FREESPACE 
MOV . WORD PTR FREE_PTR+2,AX 
SUB SI,PIP _SIZE ; PRODUCES OFFSET 
,MOV WORD PTR FREE_PTR,SI 

; CALL POSITION-INDEPENDENT PROCEDURE AT 
NEW LOCATION AND STOP 

CALL PIP _PTR 
MAIN_CODE ENDS 

END START 

Figure 2-83. Dynamic Code Relocation Example (Cont'd.) 

Memory-Mapped I/O 

Figure 2-84 shows how memory-mapped 110 can 
be used to address a group of communication 
lines as an "array." In the example, indexed 
addressing is used to poll the array of status ports, 
one port at a time. Any of the other 8086/8088 
memory addressing modes may be used in con­
junction with memory-mapped 1/0 devices as 
well. 

In figur\: 2-85 a MOVS instruction is used to per­
form a high-speed transfer to.a memory-mapped 
line printer. Using this technique requires the 
hardware to be set up as follows. Since the MOVS 

COM_LINES SEGMENT AT 800H 

instruction transfers characters to successive 
memory addresses, the decoding logic must select 
the line printer if any of these locations is written. 
One way of accomplishing this is to have the chip 
select logic decode only the upper 12 lines of the 
address bus (AI9-A8), ignoring the contents of 
the lower eight lines (A7-AO). When data is writ­
ten to any address in this 256-byte block, the 
upper 12 lines will not change, so the printer will 
be selected. 

If an 8086 is being used with an 8-oit printer, the 
8086's 16-bit data bus must be mapped into 8-bits 
by external hardware. Using an 8088 provides a 
more direct interface. 

; THE FOLLOWING IS A MEMORY MAPPED "ARRAY" 
OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS 
(E.G.,8251 USARTS). PORTS HAVE ALL-ODD 
OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE 
IS SKIPPED) FOR 8086-COMPATIBILITY. 

COM_DATA DB ? 
DB ? ; SKIP THIS ADDRESS 

COM_STATUS DB ? 
DB ? ; SKIP THIS ADDRESS 
DB 28 DUP(?) ; REST OF "ARRAY'.' 

COM_LINES ENDS 

CODE SEGMENT 
; ASSUME STACK IS SET UP, AS ARE SEGMENT 

REGISTERS (DS POINTING TO COM_LINES). 
FOLLOWING CODE POLLS THE LINES. ' 

CHAR_RDY EaU 
START_POLL: MOV 

SUB 

00000010B 
CX,8 
SI,SI 

; CHARACTER PRESENT 
; POLL 8 LINES ZERO 
; ARRAY INDEX 

Figure 2-84. Memory Mapped 1/0 "Array" 

2-115 Mnemonics © Intel, 1978 



808SANO 8088 CENTRAL PROCESSING UNITS 

POLL_NEXT: TEST 
JE 
ADD 
LOOP 

JMP 

READ_CHAR: MOV 
; ETC. 
CODE ENDS 

END 

COM_STATUS [SI], CHAR_RDY 
READ_CHAR; READ IF PRESENT 
SI,.4 ; ELSE BUMP TO NEXT LINE 
POLL_NEXT ; CONTINUE POLLING UNTIL 

; ALL 8 HAVE BEEN CHECKED 
START_POLL; STARTOVER 

AL,COM_DATA [SI] ;GETTHE DATA 

Figure 2-84. Memory Mapped I/O "Array" (Cont'd.) 

PRINTER SEGMENT 
; THIS SEGMENT CONTAINS A "STRING" THAT 

IS ACTUALLY A MEMORY-MAPPED LINE PRINTER. 
THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED) 
TO A BLOCK OF THE ADDRESS SPACE SUCH 
THATWRITING TO ANY ADDRESS IN THE 
BLOCK SELECTS THE PRINTER. 

PRINT_SELECT DB 133 DUP (?) 
DB123 DUP(?) 

PRINTER ENDS 

DATA SEGMENT 
PRINT _BUF DB 133 DUP (?) 
PRINT_COUNT DB1 ? 
; OTHER PROGRAM DATA 
DATA ENDS 

CODE SEGMENT 
; ASSUME STACK AND SEGMENT REGISTERS HAVE 

BEEN SET UP (DS POINTS TO DATA SEGMENT). 
FOLLOWING CODE TRANSFERS A LINE TO 
THE PRINTER. 

ES: PRINTER 

; "STRING" REPRESENTING PRINTER 
; REST OF 256-BYTE BLOCK 

; LINE TO BE PRINTED 
; LINE LENGTH 

ASSUME 
MOV 
MOV 
SUB 
SUB 
MOV 
CLD 
MOVS 

AX, PRINTER ; PREVENT SEGMENT OVERRIDE 

REP 

CODE 

Mnemonics © Intel, 1978 

; ETC. 
ENDS 
END 

ES,AX 
DI, DI ; CLEAR SOURCE AND 
SI, SI DESTINATION POINTERS 
CX, PRINT_COUNT 
; AUTO-INCREMENT 
PRINT_SELECT, PRINT_BUF 

Figure 2-85. Memory Mapped Block Transfer Example 



8086 AND 8088 CENTRAL PROCESSING UNITS 

Breakpoints 

Figure 2-86 illustrates how a program may set a 
breakpoint. In the example, the breakpoint 
routine puts the processor into single-step mode, 
but the same general approach could be used for 
other purposes as well. A program passes the 
address where the break is to occur to a procedure 

that saves the byte located at that address and 
replaces it with an INT 3 (breakpoint) instruction. 
When the CPU encounters the breakpoint 
instruction, it calls the type 3 interrupt procedure. 
In the example, this procedure places the pro­
cessor into single-step mode starting with the 
instruction where the breakpoint was placed. 

INT_PTR_TAB SEGMENT 
; INTERRUPT POINTER TABLE-LOCATE ATOH 
TYPE_O DO ? 
TYPE_1 DO SINGLE_STEP 
TYPE_2 DO ? 

; NOT DEFINED IN EXAMPLE 

; NOT DEFINED IN EXAMPLE 
TYPE_3 DO BREAKPOINT 
INT_PTR_TAB ENDS 

SEGMENT SAVE_SEG 
SAVE_INSTR DB 1 DUP (?) ; INSTRUCTION REPLACED 

; BY BREAKPOINT 
SAVE_SEG ENDS 

MAIN_CODE SEGMENT 
; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP. 

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT 
LABEL "NEXT" BY PASSING SEGMENT AND 
OFFSET OF "NEXT" TO "SET_BREAK" PROCEDURE 

PUSH CS 
LEA AX,CS:NEXT 
PUSH AX 
CALL FAR SET_BREAK 

; ETC. 

NEXT: IN AL,OFFFH ; BREAKPOINT SET HERE 
; ETC. 

ENDS 

BREAK SEGMENT 
SET_BREAK PROC FAR 
; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE 

ADDRESS IS PASSED BY THE CALLER) AND WRITES 
AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION 
AT THE TARGET ADDRESS. 

TARGET EQU DWORD PTR [BP + 6] 

Figure 2-86. Breakpoint Example 

2-117 
Mnemonics © Intel, 1978 



8086 AND 8.088 CENTRAL PROCESSING UNITS 

; S~T UP BP FOR PARM ADDRESSING & SAVE REGISTERS 
PUSH BP 
MOV BP,SP 
PUSH DS 
PUSH ES 
PUSH AX 
PUSH BX 

; POINT DS/BX TO THE TARGET INSTRUCTION 
LDS BX,TARGET 

; POINT ES TO THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; SWAP THE TARGET INSTRUCTION FOR INT 3 (OCCH) 
MOV AL,OCCH 
XCHG AL, DS: [BX) 

; SAVE THE TARGET INSTRUCTION 
MOV ES: SAVE_INSTR, AL 

; RESTORE AND RETURN 
POP BX 
POP AX 
POP ES 
POP DS 
POP BP 
RET 4 

SET_BREAK ENDP 

BREAKPOINT PROC FAR ..... . 
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT 

EXECUTES THE INT 3 INSTRUCTION SET BY THE 
SET_BREAK PROCEDURE. tHIS PROCEDURE 
RESTORES THE SAVED INSTRUCTION BYTE TO ITS 
ORIGINAL LOCATION AND BACKS UP THE 
INSTRUCTION POINTER IMAGE ON THE STACK 
SO THAT EXECUTION WILL RESUME WITH 
THE RESTORED INSTRUCTION. IT THEN SETS 
TF (THE TRAP FLAG) IN THE FLAG-IMAGE 
ON THE STACK. THIS PUTS THE PROCESSOR 
IN SINGLE-STEP MODE WHEN EXECUTION 
RESUMES. 

FLAG_IMAGE EQU WORD PTR [BP+6) 
IP _IMAGE EQU WORD PTR [BP + 2) 

NEXT_INSTR EQU DWORD PTR [BP+2) 
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS 

PUSH BP 
MOV BP, SP 
PUSH DS 
PUSH ES 
PUSH AX 
PUSH BX 

; POINT ES AT THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; GET THE SAVED BYTE 
MOV AL, ES: SAVE_INSTR 

Figure 2-86. Breakpoint Example (Cont'd.) 

Mnemonics © Intel, 1978 2-118 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; GET THE ADDRESS OF THE TARGET + 1 
(INSTRUCTION FOLLOWING THE BREAKPOINT) 

LDS BX, NEXT_INSTR 
; BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK 

DEC BX 
MOV IP _IMAGE, BX 

; RESTORE THE SAVED INSTRUCTION 
MOV DS: [BX], AL 

; SET TF ON STACK 
AND FLAG_IMAGE,0100H 

; RESTORE EVERYTHING AND EXIT 
POP BX 
POP AX 
POP ES 
POP DS 
POP BP 
IRET 

BREAKPOINT ENDP 

SINGLE STEP PROC FAR 
; ONCE SINGLE-STEP MODE HAS BEEN ENTERED, 

THE CPU "TRAPS" TO THIS PROCEDURE 
AFTER EVERY INSTRUCTION THAT IS NOT IN 
AN INTERRUPT PROCEDURE. IN THE CASE 
OF THIS EXAMPLE, THIS PROCEDURE WILL 
BE ExeCUTED IMMEDIATELY FOLLOWING THE 
"IN AL, OFFFH" INSTRUCTION (WHERE THE 
BREAKPOINT WAS SET) AND AFTER EVERY 
SUBSEQUENT INSTRUCTION. THE PROCEDURE 
COULD "TURN ITSELF OFF" BY CLEARING 
TF ON THE STACK. 

; SINGLE-STEP CODE GOES HERE. 
; SINGLE_STEP ENDP 

BREAK ENDS 

END 

Figure 2-86. Breakpoint Example (Cont'd.) 

Interrupt Procedures 

Figure 2-87· is a block diagram of Ii hypothetical 
system that is used to illustrate three different 
examples of interrupt handling: an external 
(maskable) interrupt, an external non-mask able 
interrupt and a software interrupt. 

In this· hypothetical system, an 8253· Program­
mable Interval Timer is used to generate ·.a time 
base. One of the three timers on the 825Hs pro­
grammed to repeatedly generate . interrupt 
requests at 50 millisecond intervals. The output 
from this timer is tied to one of the eight interrupt 
request lines of an 8259A Programmable lnter­
rupt Controller. The 8259A, in turn, is connected 
to the INTR line of an 8086 or 8088. 

2-119 Mnemonics © Intel, 1978 



8086AN08088 CENTRAL PROCESSING UNITS 

+5V BATTERY 

START-1 ~ 
BATTERY POWERED 

RAM COLD T r-r ~ POWER DOWN 

IE1 J--

~ 
NMI 

8086/8085 

ADDRESS 

DATA 

CONTROL 

BUS 

BUS 

BUS 

I 

I DECODER 

I I I 
! I 

I 

-
CS 

RESET 

PF1 

(PULSE) 

INTR 
IR3 

8259A 

I I 
! ! I 

I I I 
1 I I T 

EPROM I 

CIRCUITS 

MPRO I' DECODER 

t PFSR 

PFS 

I 
EO E2 

CTR1 
8253 PORTS 

I I I I I 
! I ! ! I ! I S 

I I I I 

l- 1.11 
I CS 

DECODER' RAM 

Figure 2-87. InterruptExample Block Diagram 

A power-down circuit is used in the system to 
illustrate one application of the 8086/8088 NMI 
(non-mask able interrupt) line. If the ac line 
voltage drops below a certain threshold, the 
power supply activates ACLO. The power-down 
circuit then sends a power-fail interrupt (PFI) 
pulse to the CPU's NMI input. After 5 
milliseconds, the power-down circuit activates 
MPRO (memory protect) to disable reading 
from and writing to the system's battery-powered 
RAM. This protects the RAM from fluctuations 
that may occur when. power is actually lost 7.5 
milliseconds :.after the power failure is detected. 
The system software must save all vital informa­
tion in the batiery-poweredRAM segment within 
5 milliseconds oHhe activatiol}:;of NMI. . 

When power returns, the power-down circ.uit 
activates the system RESET line. Pressing the 
'''coldstart'' '. switch alsop.roduces a system 
RESET. The PFS.(powerfail status) line;whictJ: is 

connected to the low-order bit of port EO, iden­
tifies the source of the RESET. If the bit is set, the 
software executes a "warm start" to restore the 
information saved by the power-fail routine. If 
the PFS bit is cleared, the software executes a 
"cold start" from the beginning of the program. 
In either case, the software writes a "one" to the 
low-order bit of port E2. This line is connected to 
the power-down circuit's PFSR (power fail status 
reset) signal and is used to enable the battery­
powered RAM segment. 

A software interrupt is used to update a simple 
real-time clock. This procedure is written in 
PLlM-86, while the rest of the system is written in 
ASM-86 to demonstrate the interrupt handling 
capability of bOth languages. The system's main 
program simply initializes, .the system following 
teceipt of a RESET and then waits for an 
interrupt. An example of this interrupt procedure 
is given in figure 2-88 .. 

2-f20 



8086 AND 8088 CENTRAL PROCESSING UNITS 

INT_POINTERS SEGMENT 
; INTERRUPT POINTER TABLE, LOCATE AT OH, ROM-BASED 
TYPE_O DD ? 
TYPE_1 DD ? 
TYPE_2 DD POWER_FAIL 

; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE. 
; SINGLE-STEP NOT SUPPLIED IN EXAMPLE. 
; NON-MASKABLE INTERRUPT 

TYPE_3 DD ? 
TYPE_4 DD ? 

; BREAKPOINT NOT SUPPLIED IN EXAMPLE. 
; OVERFLOW NOT SUPPLIED IN EXAMPLE. 

; SKIP RESERVED PART OF EXAMPLE 

TYPE_32 
TYPE_33 
TYPE_34 
TYPE_35 
TYPE_36 
TYPE_37 
TYPE_38 
TYPE_39 
, 

ORG 32'4 
DD ? 
DD ? 
DD ? 
DD TIMER_PULSE 
DD ? 
DD ? 
DD ? 
DD ? 

; POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER 

INT _POINTERS ENDS 

BATTERY SEGMENT 

; 8259A IRa - AVAILABLE 
; 8259A IR1 - AVAILABLE 
; 8259A IR2 - AVAILABLE 
; 8259A IR3 
; 8259A IR4 - AVAILABLE 
; 8259A IR5 - AVAILABLE 
; 8259A IR6 - AVAILABLE 
; 8259A IR7 - AVAILABLE 

; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA 
; THAT MUST BE MAINTAINED DURING POWER OUTAGES. 
STACK_PTR DW? ; SP SAVE AREA 
STACK_SEG DW? ; SS SAVE AREA 
;SPACEFOROTHERVAR~BLESCOULDBEDEANEDHERE. 
BATTERY ENDS 

DATA SEGMENT 
; RAM SEGMENTTHAT IS NOT BACKED UP BY BATTERY 
N_PULSES DB 1 DUP (0) ; #TIMER PULSES 

; ETC. 
DATA ENDS 

STACK SEGMENT 
; LOCATED IN BATTERY-POWERED RAM 

STACK_TOP 
STACK 

DW 100 DUP (?) 

LABEL WORD 
ENDS 

; THIS IS AN ARBITRARY STACKSIZE 

; LABEL THE INITIAL TOS 

INTERRUPT_HANDLERS SEGMENT 
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PLI M-86) 

ASSUME: CS:INTERRUPT_HANDLERS,DS:DATA,SS:STACK,ES:BATTERY 

POWER_FAIL PROC ; TYPE 2 INTERRUPT 
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS 

ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN 
RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SO THAT IT 
CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS 

Figure 2-88. Interrupt Procedures Example 

2-121 
Mnemonics © Intel, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; IP, CS, AND FLAGS ARE ALREADY ON THE STACK. 
SAVE THE OTHER REGISTERS. 

PUSH AX 
PUSH BX 
PUSH CX 
PUSH DX 
PUSH SI 
PUSH DI 
PUSH BP 
PUSH DS 
PUSH ES 

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK ATTHIS 
POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE "BATTERY" 
SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER 
IS LOST. 

; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE. 
MOV AX,BATTERY 
MOV ES,AX 
MOV ES:STACK_PTR,SP 
MOV ES:STACK_SEG,SS 

; STOP GRACEFULLY 
HLT 

ENDP 

TIMER_PULSE PROC ; TYPE 35 INTERRUPT 
; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253. 

, 

IT COUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT 
PROCEDURE ONCE PER SECOND. 

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT 
, 
; THE 8253 IS RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT 

REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT,THE CODE MIGHTGO HERE. 
, 
; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI). 

INC N_PULSES 
; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING 

STI 
CMP N_PULSES,200; 1 SECOND PASSED? 
JBE DONE ; NO, GO ON. 
MOV N_PULSES,O ; YES, RESET COUNT. 
INT 40 ; UPDATE CLOCK 

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL 
; OR LOWER PRIORITY INTERRUPTS. 
DONE: MOV AL,020H ; EOI COMMAND 

OUT OCOH ,AL ; 8259A PORT 
IRET 

TIMER_PULSE ENDP 

INTERRUPT_HANDLERS ENDS 

CODE SEGMENT 
; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 

Mnemonics © Intel, 1978 2-122 



8086 AND 8088 CENTRAL PROCESSING UNITS 

INIT PROC NEAR 
; THIS PROCEDURE IS CALLED fOR BOTH WARM AND COLD STARTS TO INITIALIZE 

THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR 
EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM STA.RT. 
INTERRUPTS ARE DISABLED BY VIRTUE Of THE SYSTEM RESET. 

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED. 
; CLK INPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ. 

L050MS 
HI50MS 
CONTROL 
COUNT_1 
MODE2 

EQU 
EQU 
EQU 
EQU 
EQU 

OOOH 
OfOH 
OD6H 
OD2H 
01110100B 

; COUNT VALUE IS 
; 61440 DECIMAL. 
; CONTROL PORT ADDRESS 
; COUNTER 1 ADDRESS 
; MODE 2, BINARY 

MOV DX,CONTROL ; LOAD CONTROL BYTE 
MOV AL,MODE2 
OUT DX,AL 
MOV DX,COUNT_1 ; LOAD 50MS DOWNCOUNT 
MOV AL,L050MS 
OUT DX,AL 
MOV AL,HI50MS 
OUT DX,AL 
; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED. 

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED, 
; INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU fOR INTERRUPT 
; REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-Of-INTERRUPT. 
; MASK Off UNUSED INTERRUPT REQUEST LINES. 

ICW1 
ICW2 
ICW4 
OCW1 
PORT_A 
PORT_B 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

00010011 B 
00100000B 
00000001 B 
11110111B 
OCOH 
OC2H 

; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED. 
; TYPE 20H, 32 - 40D 
; 8086 MODE, NORMAL EOI 
; MASK ALL BUT IR3 
; ICW1 WRITTEN HERE 
; OTHER ICW'S WRITTEN HERE 

MOV DX,PORT_A ; WRITE 1ST ICW 
MOV AL,ICW1 
OUT DX,AL 
MOV DX,PORT_B ; WRITE 2ND ICW 
MOV AL,ICW2 
OUT DX,AL 
MOV AL,ICW4 ; WRITE 4TH ICW 
OUT DX,AL 
MOV AL,OCW1 ; MASK UNUSED IR'S 
OUT DX,AL 

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED 
RET 

INIT ENDP 

USER_PGM: 
; "REAL" CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP 

UNTIL AN INTERRUPT OCCURS. 
JMP USER_PGM 

; EXECUTION STARTS HERE WHEN CPU IS RESET. 
POWER_fAIL_STATUS EQU OEOH 
ENABLE_RAM EQU OE2H 

; PORT ADDRESS 
; PORT ADDRESS 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 

2-123 Mnemonics © Intel, 1978 



8086 AND 8088 CENTAALPROCESSINGUNITS 

; ENABLE BATTERY-POWERED RAM SEGMENT 
START: MOV AL,001H 

OUT ENABLE_RAM,AL 

; DETERMINE WARM OR COLD START 
IN AL,POWER_FAIL._STATUS 
RCR AL,1 ; ISOLATE LOW BIT 
JC WARM_START 

COLD_START: 
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 
; RESET TAKES CARE OFCS AND IP. 
MOV AX,DATA 
MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP 

; INitiALIZE 8253 AND 8259A. 
CALL INIT 

; ENABLE INTERRUPTS 
STI 

; START MAIN PROCESSING 
JMP 

WARM_START: 
; INITIALIZE 8253 AND 8259A. 

CALL INIT 

; RESTORE SYSTEM to STATE AT THE TIME POWER FAILED 

CODE 

Mnemonics © Intel, 1978 

; MAKE BATTERY SEGMENT ADDRESSABLE 
MOV AX,BATTERY 
MOV DX,AX 

; VARIABLES SAVED IN THE "BATTERY" SEGMENT WOULD BE MOVED 
BACK TO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND 
"ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN 
ADDRESSABILITY. 

; RESTORE THE OLD STACK 
MOV SS,DS:STACK_SEG 
MOV SP,DS:STACK_PTR 

; RESTORE THE OTHER REGISTERS 
POP ES. 
POP OS 
POP BP 
POP 01 
POP SI 
POP OX 
POP CX 
POP BX 
POP AX 

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED. 
I.E., POP CS, IP, & FLAGS, EFFECTIVELY "RETURNING" FROM THE 
NMI PROCEDURE. 

IRET 
ENDS 

; TERMINATE ASSEMBLY AND MARK BEGINNING OFTHE PROGRAM. 
END START 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 

2-124 



8086 AND 8088 CENTRAL PROCESSING UNITS 

TYPE$40: DO; 
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC; 
UPDATE$TOD: PROCEDURE INTERRUPT 40; 

"THE PROCESSOR ACTIVATES THIS PROCEDURE 
'TO HANDLE THE SOFTWARE INTERRUPT 
'GENERATED EVERY SECOND BY THE TYPE 35 
'EXTERNAL INTERRUPT PROCEDURE. THIS 
'PROCEDURE UPDATES A REAL-TIME CLOCK. 
'IT DOES NOT PRETEND TO BE "REALISTIC" 
'AS THERE IS NO WAYTO SET THE CLOCK." 

SEC=SEC+1; 
IF SEC = 60 THEN DO; 

SEC= 0; 
MIN = MIN + 1; 
IF MIN = 60 THEN DO; 

MIN =0; 
HOUR=HOUR+1; 
IF HOUR = 24 THEN DO; 

HOUR= 0; 
END; 

END; 
END; 

END UPDATE$TOD; 
END; 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 

String Operations 

Figure 2-89 illustrates typical use of string instruc­
tions and repeat prefixes. The XLAT instruction 
also is demonstrated. The first example simply 
moves 80 words of a string using MOVS. Then 
two byte strings are compared to find the 
alphabetically lower string, as might be done in a 
sort. Next a string is scanned from right to left 

(the index register is auto-decremented) to find 
the last period (".") in the string. Finally a byte 
string of EBCDIC characters is translated to 
ASCII. The translation is stopped at the end of 
the string or when a carriage return character is 
encountered, whichever occurs first. This is an 
example of using the string primitives in combina­
tion with other instructions to build up more com­
plex string processing operations. 

ALPHA SEGMENT 
; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE 
OUTPUT DW 100 DUP (?) 
INPUT DW 100 DUP (?) 
NAME_1 DB 'JONES, JON A' 
NAME_2 DB 'JONES, JOHN' 
SENTENCE DB 80 DUP (?) 
EBCDIC_CHARS DB 80 DUP (?) 
ASCII_CHARS DB 80 DU P (?) 
CONY _TAB DB 64 DU P(OH) ; EBCDIC TO ASCII 

Figure 2-89. String Examples 

2-125 Mnemonics © Intel, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; ASCII NULLS ARE SUBSTITUTED FOR "UNPRINTABLE" CHARS 
DB 1 20H 
DB 9 DUP (OH) 
DB? 'Q:',',','<','(','+',OH,'&' 
DB 9 DUP (OH) 
DBB '!','$','*',')',';',' ','-','/' 
DB 8 DUP (OH) 
DB6 ' ',',',1%', '_', I>', '?' 
DB 9 DUP (OH) 
D817 ",':','#','@','''','=',''1', 

OH, 'a', 'b', Ie', 'd', Ie', If', 'g,', 'h', 'i' 
DB 7 DUP (OH) 
DB9 Ij', 'k', 'I', 'm', In', '0', 'p', 'q', 'r' 
DB 7 DUP (OH) 
DB9 '~', '5', '1', lU', 'v', 'w', 'x', 'y', 'z' 
DB 22 DUP (OH) 
0810 ' ','A', '8', 'G', 'D', 'E', IF', 'G', 'l-'i', 'I' 
DB 6 DUP (OH) 
0810 ' ','J', 'K','L', 'M', 'N', '0', 'P', 'Q', lR' 
DB 6 DUP (OH) 
DB10 ",OH,'S','T','U','V','W','X','Y','Z' 
DB 6 DUP (OH) 
0810 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 
DB 6 DUP (OH) 

ALPHA ENDS 

STACK SEGMENT 
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE 

; FOR ILLUSTRATION ONLY. 
STACK_BASE LABEL WORD ; INITIAL TOS 
STACK ENDS 

CODE 
BEGIN: 

& 

SEGMENT 
; SET UP SEGMENT REGISTERS. NOTICE THAT 
; ES & DS POINT TO THE SAME SEGMENT, MEANING 
; THAT THE CURRENT EXTRA & DATA 
; SEGMENTS FULLY OVERLAP. THIS ALLOWS 
; ANY STRJNG IN "ALPHA" TO BE USED 
; AS A SOURCE OR A DESTINATION. 
ASSUME CS: CODE, SS: STACK, 

DS:ALPHA,ES:ALPHA 
MOV AX, STACK 
MOV SS, AX 
MOV SP, OFFSET STACK_BASE; INITIAL TOS 
MOV AX, ALPHA 
MOV DS, AX 
MOV ES, AX 

; MOVE THE FIRST 80 WORDS OF "INPUT" TO 
THE LAST 80 WORDS OF "OUTPUT". 

LEA SI, INPUT ; INITIALIZE 
LEA DI, OUTPUT +20 ; INDEX REGISTERS 

Figure 2-89. String Examples (Cont'd.) 

Mnemonics © Intel, 1978 2-126 



8086 AND 8088 CENTRAL PROCESSING UNITS 

MOV 
CLD 

CX,SO ; REPETITION COUNT 
; AUTO-INCREMENT 

REP MOVS OUTPUT, INPUT 

; FIND THE ALPHABETICALLY LOWER OF 2 NAMES. 
MOV SI, OFFSET NAME_1 
MOV 01, OFFSET NAME_2 
MOV CX, SIZE NAME_2 
CLD 

; ALTERNATIVE 
; TO LEA 
; CHAR. COUNT 

REPE CMPS NAME_2, NAME_1 
NAME_2_LOW 

; AUTO-INCREMENT 
"WHILE EQUAL" 

JB 
NAME_1_LOW: 
NAME_2_LOW: 

; NOT IN THIS EXAMPLE 
; CONTROL COMES HERE IN THIS EXAMPLE. 
; 01 POINTS TO BYTE ('H') THAT 
; COMPARED UNEQUAL. 

; FIND THE LAST PERIOD (' .') IN A TEXT STRING. 
MOV 01, OFFSET SENTENCE + 

& LENGTH SENTENCE ; START AT END 
MOV CX, SIZE SENTENCE 
STD ; AUTO-DECREMENT 
MOV AL, '.' ; SEARCH ARGUMENT 

REPNE SCAS SENTENCE ; "WHILE NOT =" 
JCXZ NO_PERIOD ; IF CX=O, NO PERIOD FOUND 

PERIOD: ; IF CONTROL COMES HERE THEN 
; 01 POINTS TO LAST PERIOD IN SENTENCE. 

NO_PERIOD: ; ETC. 

; TRANSLATE A STRING OF EBCDIC CHARACTERS 
TO ASCII, STOPPING IF A CARRIAGE RETURN 
(ODH ASCII) IS ENCOUNTERED. 

MOV BX,OFFSETCONV __ TAB; POINTTO TRANSLATE TABLE 
MOV SI, OFFSET EBCDIC_CHARS ; INITIALIZE 
MOV 01, OFFSET ASCILCHARS INDEX REGISTERS 
MOV CX, SIZE ASCII_CHARS ; AND COUNTER 
CLD ; AUTO-INCREMENT 

NEXT: LODS EBCDIC_CHARS ; NEXT EBCDIC CHAR IN AL 

CODE 

XLAT CONV_ TAB ; TRANSLATE TO ASCII 
STOS ASCII_CHARS ; STORE FROM AL 
TEST AL,ODH ; IS IT CARRIAGE RETU RN? 
LOOPNE NEXT ; NO, CONTINUE WHILE CX NOT 0 
JE CR_FOUND ; YES, JUMP 
; CONTROL COMES HERE IF ALL CHARACTERS 

HAVE BEEN TRANSLATED BUT NO 
; CARRIAGE RETURN IS PRESENT. 
; ETC. 

; 01-1 POINTS TO THE CARRIAGE RETURN 
IN ASCII_CHARS. 

ENDS 
END 

Figure 2-89. String Examples (Cont'd.) 

2-12712-128 Mnemonics © Intel, 1978 





Chapter 3 
The 8089 
Input/Output Processor 



CHAPTER 3 
THE 8089 INPUT/OUTPUT PROCESSOR 

This chapter describes the 8089 Input/Output 
Processor (lOP). Its organization parallels 
Chapter 2; that is, sections generally proceed 
from hardware to software topics as follows: 

1. Processor Overview 

2. Processor Architecture 

3. Memory 

4. Input/Output 

5. Multiprocessing Features 

6. Processor Control and Monitoring 

7. Instruction Set 

8. Addressing Modes 

9. Programming Facilities 

10. Programming Guidelines and Examples 

As in Chapter 2, the discussion is confined to 
covering the hardware in functional terms; tim­
ing, electrical characteristics and other physical 
interfacing data are provided in Chapter 4. 

3.1 Processor Overview 

The 8089 Input/Output Processor is a high­
performance, general-purpose I/O system 
implemented on a single chip. Within the 8089 are 
two independent I/O channels, each of which 
combines attributes of a CPU with those of a very 
flexible DMA (direct memory access) controller. 
For example, channels can execute programs like 
CPUs; the lOP instruction set has about 50 dif­
ferent types of instructions specifically designed 
for efficient input/output processing. Each chan­
nel also can perform high-speed DMA transfers; a 
variety of optional operations allow the data to be 
manipulated (e.g., translated or searched) as it is 
transferred. The 8089 is contained in a 40-pin 
dual in-line package (figure 3-1) and operates 
from a single + 5V power source. An integral 
member of the 8086 family, the lOP is directly 
compatible with both the 8086 and 8088 when 
these processors are configured in maximum 
mode. The lOP also may be used in any system 
that incorporates Intel's Multibus™ shared bus 
architecture, or a superset of the Multibus™ 
design. 

3-1 

Vss Vee 

A14/D14 A1S/D1S 

Al31D13 Al6fS3 

A12/D12 Al1/S4 

Al1fDll A18/SS 

A1U/D1U A19/S8 

A9/D9 BHE 

A6fD8 EXT 1 

A7/D7 EXT 2 

A6fD8 DRQl 

AS/DS DRQ2 

A4/D4 lOCK 

A3/D3 52 
A2fD2 51 
A1fDl SO 
AU/DU RQ/GT 

SINTR·l SEl 

SINTR·2 CA 

ClK READY 

Vss RESET 

Figure 3-1. 8089 Input/Output Processor 
Pin Diagram 

Evolution 

Figure 3-2 depicts the general trend in CPU and 
I/O device relationships in the first three genera­
tions of microprocessors. First generation CPUs 
were forced to deal directly with substantial 
numbers of TTL components, often performing 
transfers at the bit level. Only a very limited 
number of relatively slow devices could be 
supported. 

Single-chip interface controllers were introduced 
in the second generation. These devices removed 
the lowest level of device control from the CPU 
and let the CPU transfer whole bytes at once. 
With the introduction of DMA controllers, high­
speed devices could be added to a system, and 
whole blocks of data could be transferred without 
CPU intervention. Compared to the previous 
generation, I/O device and DMA controllers 
allowed microprocessors to be applied to prob­
lems that required moderate levels of I/O, both in 
terms of the numbers of devices that could be sup­
ported and the transfer speeds of those devices. 



8089 INPUT /OUTPUT PROCESSOR 

The controllers themselves, however, still 
required a considerable amount of attention from 
the CPU, and in many cases the CPU had to 
respond to an interrupt with every byte read or 
written. The CPU also had to stop while DMA 
transfers were performed. 

The 8089 introduces the third generation of 
input/output processing. It continues the trend of 
simplifying the CPU's "view" of I/O devices by 
removing another level of control from the CPU. 
The CPU performs an I/O operation by building 
a message in memory that describes the function 
to be performed; the lOP reads the message, car­
ries out the operation and notifies the CPU when 
it has finished. All I/O devices appear to the CPU 
as transmitting and receiving whole blocks of 
data; the lOP can make both byte- and word-level 
transfers invisible to the CPU. The lOP assumes 
all device controller overhead, performs both pro­
grammed and DMA transfers, and can recover 
from "soft" I/O errors without CPU interven­
tion; all of these activities may be performed 
while the CPU is attending to other tasks. 

DATA LINK 

HOLe/SOLe 
PROTOCOL 

CONTROLLER 

Principles of Operation 

Since the 8089 is a new concept in microprocessor 
components, this section surveys the basic opera­
tion of the lOP as background to the detailed 
descriptions provided in the rest of the chapter. 
This summary deliberately omits some operating 
details in order to provide an integrated overview 
of basic concepts. 

CPU/lOP Communications 

A CPU communicates with an lOP in two distinct 
modes: initialization and command. The 
initialization sequence is typically performed 
when the system is powered-up or reset. The CPU 
initializes the lOP by preparing a series of linked 
message blocks in memory. On a signal from the 
CPU, the lOP reads these blocks and determines 
from them how the data buses are configured and 
how access to the buses is to be controlled. 

(FUTURE CONTROLLER) 

... , r~~;,;, 
( ? r - -I 110 I 

/A... '" L ~E:C:.J 
,/ /' FLOPPY DISK 

CONTROLLER 

Figure 3-2. lOP Evolution 

3-2 



80891NPUT/OUTPUT PROCESSOR 

Following initialization, the CPU directs all com­
munications to either of the lOP's two channels; 
indeed, during normal operation the lOP appears 
to be two separate devices-channel 1 and chan­
nel2. All CPU-to-channel communications center 
on the channel control block (CB) illustrated in 
figure 3-3. The CB is located in the CPU's 
memory space, and its address is passed to the 
lOP during initialization. Half of the block is 
dedicated to each channel. The channel maintains 
the BUSY flag that indicates whether it is in the 
midst of an operation or is available for a new 
command. The CPU sets the CCW (channel com­
mand word) to indicate what kind of operation 
the lOP is to perform. Six different commands 
allow the CPU to start and stop programs, 
remove interrupt requests, etc. 

If the CPU is dispatching a channel to run a pro­
gram, it directs the channel to a parameter block 
(PB) and a task block (TB); these are also shown 
in figure 3-3. The parameter block is analogous to 
a parameter list passed by a program to a 
subroutine; it contains variable data that the 
channel program is to use in carrying out its 
assignment. The parameter block also may con-

tain space for variables (results) that the channel 
is to return to the CPU~ Except for the first two 
words, the format and size of a parameter block 
are completely open; the PB may be set up to 
exchange any kind of information between the 
CPU and the channel program. 

A task block is a channel program-a sequence of 
8089 instructions that will perform an operation. 
A typical channel program might use parameter 
block data to set up the lOP and a device con­
troller for a transfer, perform the transfer, return 
the results, and then halt. However, there are no 
restrictions on what a channel program can do; its 
function may be simple or elaborate to suit the 
needs of the application. 

Before the CPU starts a channel program, it links 
the program (TB) to the parameter block and the 
parameter block to the CB as shown in figure 3-3. 
The links .are standard 8086/8088 doubleword 
pointer variables; the lower-addressed word con­
tains an offset, and the higher-addressed word 
contains a segment base value. A system may 
have many different parameter and task blocks; 
however, only one of each is ever linked to a 
channel aniny given time. 

CHANNEL CONTROL BLOCK (CB) 

(RESERVED) 1 

-i -p(~~~r:.rN\R B~LS~C&K J~~~~fr- ~ ~ } CHANNEL. 

~ } CHANNEL 1 

BUSY ccw 
(RESERVED) 

-{ -p~~~':ti1VB~'s~C&K 6~~~~f)R-
BUSY l ccw 

15 87 

~--------l 

CHANNEL 2 PARAMETER BLOCK (P8) I 

1 CHANNEL PROGRAM PARAMETERS 1 III 
(APPLICATION·DEFINED) 

~ ________________ ~4 I 

r{ TASK BLOCK POINTER o' ~ 

1 

(SEGMENT BASE,. OFFSET) ~ 

CHANNEl2TASK BLOCK (TB) 
(CH~'NNEl PROGRAM) 

8089 
INSTRUCTIONS 
(APPLICATION­

DEFINED) 

1 
: " 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHANNEL 1 TASK BLOCK (TB) 
(CHANNEL PROGRAM) 

8089 
INSTRUCTIONS 
(APPLICATION. 

DEFINED) 

L_~ _______ ---i 

Figure 3-3. Command Communication Blocks 

3-3 



, 8089JN'PUT /OUTPUT'PROCESSOR 

After· the CPU. has filled in the CCW and has 
linked the CB to a parameter block and a task 
block, if appropriate, it issues a channel attention 
(CA). This is done by activating the 10P's- CA 
(channel attention) and SEL (channel select) pins. 
The state of SEL at the falling edge of CA directs 
the channel attention to channell or channel 2. If 
the lOP is located in the CPU's 1/0 spa~e, it 
appears to the CPU as two consecutive 1/0 'ports 
(one for each channel), and an OUT instruction 
to the port functions as a CA. lithe lOP is 
memory-mapped, the channels appear as two 
consecutive memory locations, and any memory 
reference instruction (e.g., MOV) to these loca­
tions causes a channel attention. 

An lOP channel attention is functionally similar 
to a CPU interrupt. When the channel recognizes 
the CA, it stops what it is doing (it will typically 
be idle) and examines the command in the CCW. 
If it is to start a program, the channei loads the 
addresses of the parameter and task blocks jnto 
internal registers, sets its BUSY flag and' starts 
executing the channel program. After it has issued 
the,CA, the CPU is free to perform other process­
ing; the channel can perform. its function,in 
parallel, subject to limitations imposed by bus 
configurations (discussed shortly). 

When the channel has completed its program, it· 
notifies the CPU by clearing its BUSY flag in the 
CB. Optionally, irmay issue an interrupt request 
to the CPU. 

The CPUIIOP communication structure is sum­
marized in figure 3-4. Most communication:takes 
place via "message areas" shared in common 
memory. The only direct hardware communica­
tions between the devices .are channel attentions 
and interrupt requests. 

Channels 

Each of the two . lOP channels operates 
iridependentiy,;a:ndeach has its own register set. 
channelaitention, interrupt request and DMA 
control signals. At a given point in time,.6 chan­
nel may be idle, executing a program', performing 
a DMAtransfer, or responding to a channel 
attention. Although only one channel actually 
runs at a time, the channels can be active eoncur·) 
rentiy, alternating their operations (e.g;, channel 
1 may execute instructions in the periods between 
successive DMA transfer cycles run by channel 2). 
A built-in priority system allows high-priority 
activities on one channel to preempt less critical 
operations on the other channel. The CPU is able 
to further adjust priorities to handle special cases. 
The CPU starts the channel and can halt it, sus­
pend it, or cause it to resume a suspended opera:­
tion by placing different values in theCCW. 

Channel Programs (Task Blocks) 

Channel programs are written in ASM-89,the 
8089 assembly language. About 50 basic instruc­
tions are available. These instructions operate on 

- bit, byte, word and doubleword (pointer) variable 
types; a 20-bit physical address variable type (not 
used by the 8086/8088) can also be manipulated. 
Data may be taken from registers, immediate con­
stants and memory. Four memory addressing 
modes allow flexible access to both memory 
variables and 110 devices located anywhere in 
either the CPU's megabyte memory space or in 
the 8089's 64k 110 space. . 

The lOP instruction set contains general purpose 
instructions similar to those found in CPUs as 
well as instructions specifically tailored for 110 

CHANNEL ATTENTION 
, 

MESSAGES 
CPU IN 

MEMORY 
lOP 

.- . 

INTERRUPT 

FiBUre 3-4. CPUIIOP Commpnication. 

3-4 



8089 INPUT IOUTPUT PROCESSOR 

operations. Data transfer, simple arithmetic, 
logical and address manipulation operations are 
available. Unconditional jump and call instruc­
tions also are provided so that channel programs 
can link to each other. An individual bit may be 
set or cleared with a single instruction. Condi­
tional jumps .can test a bit and jump if it is set (or 
cleared), or can test a value and jump if it is zero 
(or non-zero). Other instructions initiate DMA 
transfers, perform a locked test-and-set 
semaphore operation, and issue an interrupt 
request to the CPU. 

DMA Transfers 

The 8089 XFER (transfer) instruction prepares 
the channel for a DMA transfer. It executes one 
additional instruction, then suspends program 
execution and enters the DMA transfer mode. 
The transfer is governed by channel registers 
setup by the program prior to executing the 
XFER instruction. 

Data is transferred from a source toa destination. 
The source and destination may be any locations 
in the CPU's memory space or in the lOP's 110 
space; the lOP makes no distinction between 
memory components and 110 devices. Thus 
transfers may be made from 110 device to 
memory, memory to I/O device, memory to . 
memory and I/O device to.l/O device. The lOP 
automatically matches 8- and 16-bit components 
to each other. 

Individual transfer cycles (Le., the movement of a 
byte or a word) may be synchronized by a signal 
(DMA request) from the source or from the 
destination. In the synchronized mode, the chan­
nel waits for the synchronizing signal before start­
ing the next transfer cycle. The transfer also may 
be unsynchronized, in which case the channel 
begins the next transfer cycle immediately upon 
completion of the previous cycle. 

A transfer cycle is performed in two steps: fetch­
ing a byte or word from the source into the lOP 
and then storing it from the lOP into the destina­
tion. The lOP automatically optimizes the 
transfer to make best use of the available data bus 
widths. For example, if data is being transferred 
from an 8-bit device to memory that resides on a 
16-bit bus (e.g., 8086 memory), the lOP will nor­
mally run two one-byte fetch cycles and then store 
the full word in a single cycle. 

3-5 

Between the fetch and store cycles, the lOP can 
operate on the data. A byte may be translated to 
another code (e.g., EBCDIC to ASCII), or com­
pared to a search value, or both, if desired. 

A transfer can be terminated by several 
programmer-specified conditions. The channel 
can stop the transfer when a specified number (up 
to 64k) of bytes has been transferred. An external 
device may stop a transfer by signaling on the 
channel's external terminate pin. The channel can 
stop the transfer when a byte (possibly translated) 
compares equal, or unequal, to a search value. 
Single-cycle termination, which stops uncondi­
tionally after one byte or word has been stored, is 
also available. 

When the transfer terminates, the channel 
automatically resumes program execution. The 
channel program can determine the cause of the 
termination in situations where multiple termina­
tions are possible (e.g., terminating when 80 bytes 
are transferred or a carriage return character is 
encountered, whichever occurs first). As an exam­
ple of post-transfer processing, the channel pro­
gram could read a result register from the I/O 
device controller to determine if the transfer was 
performed successfully. If not (e.g., a CRC error 
was detected by the controller), the channel pro­
gram could retry the operation without CPU 
intervention. 

A channel program typically ends by posting the 
result of the operation to a field supplied in the 
parameter block, optionally interrupting the 
CPU, and then halting. When the channel halts, 
its BUSY flag in the channel control block is 
cleared to indicate its availability for another 
operation. As an alternative to being interrupted 
by the channel, the CPU can poll this flag to 
determine when the operation has been 
completed. 

Bus Configurations 

As shown in figure 3-5, the lOP can access 
memory or ports (I/O devices) located in a 
I-megabyte system space and memory or ports 
located in a 64-kilobyte 110 space. Although the 
lOP only has one physical data bus, it is useful to 
think of the lOP as accessing the system space'via 
a system data bus and the 110 space over an I/O 
data bus. The distinction between the "two" 
buses is based on the type-of-cycle signals output 

Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

by the 8288 Bus Controller. Components in the 
system space respond to the memory read and 
memory write signals, whether they are memory 
or 110 devices. Components in the 1/0 space 
respond to the 110 read and 110 write signals. 
Thus 110 devices located in the system space are 
memory-mapped and memory in the 110 space is 
1I0-mapped. The two basic configuration op­
tions differ in the degree to which the lOP shares 
these buses with the CPU. Both configurations re­
quire an 8086/8088 CPU to be strapped in max­
imummode. 

In the local configuration, shown in figure 3-6, 
the lOP (or lOPs if two are used) shares both 
buses with the CPU. The system bus and the 110 
bus are the same width (8 bits if the CPU is an 

MEMORY 

SYSTEM SPACE (1 MBYTE) 

SYSTEM 
DATA 
BUS 

lOP 

8088 or 16 bits if the CPU is an 8086). The lOP 
system space corresponds to the CPU memory 
space, and the lOP 110 space corresponds to the 
CPU 110 space. Channel programs are located in 
the system space; 110 devices may be located in 
either space. The lOP requests use of the bus for 
channel program instruction fetches as well as for 
DMA and programmed transfers. In the local 
configuration, either the lOP or the CPU may use 
the buses, but not both simultaneously. The 
advantage of the local configuration is that 
intelligent DMA may be added to a system with 
no additional components beyond the lOP. The 
disadvantage is that parallel operation of the pro­
cessors is limited to cases in which the CPU has 
instruction in its queue that can be executed 
without using the bus. 

MEMORY 

1/0 SPACE (64 KBYTES) 

1/0 
DATA 
BUS 

Figure 3-5. lOP Data Buses 

3-6 



8089 INPUT IOUTPUT PROCESSOR 

8089 lOP 

.... -

B 
SYSTEM SPACE 

Figure 3-6. Local Configuration 

In the remote configuration (figure 3-7), the lOP 
(or lOPs) shares a common system blls with the 
CPU. Access to this bus is controlled by 8289 Bus 
Arbiters. The lOP's 110 bus, however, is 
physically separated from the CPU in the remote 
configuration. Two lOPs can share the local 110 
bus. Any number of remote lOPs may be con­
tained in a system, configured in remote clusters 
of one or two. The local 1/0 bus need not be the 
same physical width as the shared system bus, 
allowing an lOP, for example, to interface 8-bit 
peripherals to an 8086. In the remote configura­
tion, the lOP can access local 1/0 devices and 
memory without using the shared system bus, 
thereby reducing bus contention with the CPU. 
Contention can further be reduced by locating the 
lOP's channel programs in the local 110 space. 
The lOP can then also fetch instructions without 

3-7 

accessing the system bus. Parameter, channel 
control and other CPUIIOP communication 
blocks must be located in system memory, 
however, so that both processors can access them. 
The remote configuration thus increases the 
degree to which an lOP and a CPU can operate in 
parallel and thereby increases a . system's 
throughput potential. The price paid for this is 
that additional hardware must be added to 
arbitrate use of the shared bus, and to separate 
the shared and local buses (see Chapter '4 for 
details). 

It is also possible to configure an lOP remote to 
one CPU, and local to another CPU (see figure 
3-8). The local CPU could be used to perform 
heavy computational routines for the lOP. 



8089 INPUT /OUTPUT PROCESSOR 

r-----------, 
I ~--, '--7 1 
I (1/0 DEVICE) (1/0 DEVICEI !+-
1 , __ ~ '- __ l. 1 
L _ ~!!.O~U;O.£.A,!;.I/.2.S~~ _ .J 

NOT ACCESSIBLE TO lOPs 

B 
II) 
::> 
ro 
0 
:::: 
..J « 
0 
0 
..J 

1/0 SPACE 

NOT ACCESSIBLE TO CPU 

80861 
8088 
CPU 

SYSTEM SPACE 

8089 
lOP 

LOCAL BUS 
I ARBITRATION 

OPTIONAL 
8089 
lOP 

\ r--, _----------, +.1 1+ • 8089 ., 

8289 
BUS 

ARBITER 

8289 
BUS 

ARBITER 

I ~ - - ,I r I lOP 1 
I r- - -, ( 1/0 I 1 • II) • r - - , I I I· DEVICE 1 I~ L _._..J I I I 

: I MEMORY 1 ;'::; :+- -I~ IALR~7NA~ygNI_ +. AR~VJER !+-
: L __ J I D~~~E I : :~ .. i-'-}.. : L __ J 
1 '---~ I L.~ 8089 ... 
~~~C!. _______ -I 7i lOP 

L __

Figure 3-7. Remote Configuration

3-8

8089 INPUT/OUTPUT PROCESSOR

EJ
1/0 SPACE

NOT ACCESSIBLE TO SYSTEM CPU

III
::I
a:I

o
~ .. :;

«
t)
o

80861
8088
CPU

SYSTEM SPACE

8089
lOP

80861
8088
CPU

8289
BUS

ARBITER

8289
BUS

ARBITER

Figure 3-8. Remote lOP Configured With Local 8086/8088

3-9

8089 INPUT /OUTPUT PROCESSOR

A Sample Transaction

Figure 3-9 shows how a CPU and an lOP might
work together to read a record (sector) from a
floppy disk. This example is not illustrati-:e of t~e
lOP's full capabilities, but it does review Its basIc
operation and its interaction with a CPU.

The CPU must first obtain exclusive use of a
channel. This can be done by performing a "test
and set lock" operation on the selected channel's
BUSY flag. Assuming the CPU wants to use
channel 1, this could be accomplished in
PLlM-86 by coding similar to the following:

DO WHILE LOCKSET (@CH1.BUSY,OFFH);
END;

In ASM-86 a loop containing the XCHG instruc­
tion prefixed by LOCK .would accomplish the
same thing, namely testing the BUSY flag until it
is clear (OH), and immediately setting it to FFH
(busy) to prevent another task or processor from
obtaining use of the channel.

Having obtained the channel, the CPU fills in a
parameter block (see figure 3-10). In this case, the
CPU passes the following parameters to tile chan-

. ne!: the address of the floppy disk controller, the
address of the buffer where the data is to be
placed, and the drive, track and sector to be read.
It also supplies space for· the lOP to return the
result of the operation. Note that this is quite a
"low-level" parameter block in that it implies
that the CPU has detailed knowledge of the I/O
system. For a "real" system, a higher-level
parameter block would isolate the CPY from I/~
device characteristics. Such a block might contam
more general parameters such as file name and
record key.

After setting up the parameter block, the CPU
writes a "start channel program" command in
channell' s CCW. Then the CPU places the
address of the desired channel program in the
parameter block and writes the parameter block
address in the CB. Notice that in this simple
example, the CPU "knows" the address of the
channel program for reading from the disk, and
presumably also "knows" the address of anot~er
program for writing, etc. A more general solutIOn
would be to place a function code (read, write,

Mnemonics © Intel, 1979 3-10

delete, etc.) in the parameter block and let a single
channel program execute different routines
depending on which function is requested.

After the communication blocks have been setup,
the CPU dispatches the channel by issuing a chan­
nel attention, typically by an OUT instruction for
an I/O-mapped 8089, or a MOV or other memory
reference instruction for a memory-mapped 8089.

The channel begins executing the channel pro­
gram (task block) whose address has been placed
in the parameter block by the CPU. In this case
the program initializes the 8271 Floppy Disk Con­
troller by sending it a ".read data" command
followed by a parameter indicating the track to be
read. The program initializes the channel registers
that define and control the DMA transfer.

Having prepared the 8271 and the channel itself,
the channel program executes a XFER instruction
and sends a final parameter (the sector to be read)
to the 8271. (The 8271 enters DMA transfer mode
immediately upon receiving the last of a series of
parameters; sending the last parameter after the
XFER instruction gives the channel time to setup
for the transfer.) The DMA transfer begins when
the 8271 issues a DMA request to the channel.
The transfer continues until the 8271 issues an
interrupt request, indicating that the data has
been transferred or that an error has occurred.
The 8271 's interrupt request line is tied to the
lOP's EXTl (external terminate on channell) pin
so that the channel interprets an interrupt request
as an external terminate condition. Upon ter­
mination of the transfer, the channel resumes
executing instructions and reads the 8271 result
register to determine if the data was read suc­
cessfully. If a soft (correctable) error is indicated,
the lOP retries the transfer. If a hard (uncorrect­
able) error is detected, or if the transfer has been
successful, the lOP posts the content of the result
register to the parameter block result field, thus
passing the result back to the CPU. The channel
then interrupts the CPU (to inform the CPU that
the request has been processed) and halts.

When the CPU recognizes the interrupt, it
inspects the result field in the parameter block to
see if the content of the buffer is valid. If so, it
uses the data; otherwise it typically executes an
error routine.

8089 INPUT /OUTPUT PROCESSOR

----8

----[J

----8
----[J

----[]

I
I

IF laPIS CONFIGURED REMOTELY
CPU CAN CONTINUE WITH OTHER
PROCESSING. OTHERWISE IT WAITS
UNTIL CHANNEL CLEARS BUSY FLAG
ORISSUESINTEARUPTAEQUEST

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[J--

[]--

[J----

: _____ .!!:I~R~U.!:T _____ _

I
I

~----G

ICHANNELISIDLEI

----6---- '~~ii'
r------------
I INI/OSPACE

____ ~ '~~;El6AJL~~~STEM SPACE

f AR~O= NO
I

'-------------

----8----
-',.c--G~---- FLOPPY

DISK

~----B---- FLOPPY
DISK

I
I
I

BUSY FLAG IS CLEARED,
CHANNEL IS IDLE

I

DATA
BUFFER

I
I
I

Figure 3-9. Sample CPUIIOP Transaction

3-11

8089 INPUT/OUTPUT PROCESSOR

POINTER TO

- CHANNEL PROGRAM ___

(OFFSET & SEGMENT)

DEVICE ADDRESS

POINTER TO BUFFER
--- ---

(OFFSET & SEGMENT)

TRACK DRIVE

RESULT SECTOR

o

2

4

6

8

10

12

Figure 3-10. Sample Parameter Block

Applications

Combining the raw speed and responsiveness of a
traditional DMA controller, an I/O-oriented
instruction set, and a flexible bus organization,
the 8089 lOP is a very versatile I/O system.
Applications with demanding I/O requirements,
previously beyond the abilities of microcomputer
systems, can be undertaken with the lOP. These
kinds of I/O-intensive applications include:

• systems that employ high-bandwidth, low­
latency devices such as hard disks and
graphics terminals;

• systems with many devices requiring
asynchronous service; and

• systems with high-overhead peripherals such
as intelligent CRTs and graphics terminals.

In addition, virtually every application that per­
forms a moderate amount of I/O can benefit
from the design philosophy embodied in the lOP:
system functions should be distributed among
special-purpose processors. An lOP channel pro­
gram is likely to be both faster and smaller than
an equivalent program implemented with a CPU.
Programming also is more straightforward with
the lOP's specialized instruction set.

Removing I/O from the CPU and assigning it to
one or more lOPs simplifies and structures a
system's design. The main interface to the I/O

. system can be limited to the parameter blocks.
Once these are defined, the I/O system can be
designed and implemented in parallel with the rest

3-12

of the system. I/O specialists can work on the I/O
system without detailed knowledge of the applica­
tion; conversely, the operating system and
application teams do not need to be expert in the
operation of I/O devices. Standard high-level I/O
systems can be used in multiple application
systems. Because the application and I/O systems
are almost independent, application system
changes can be introduced without affecting the
I/O system. New peripherals can similarly be
incorporated into a system without impacting
applications or operating system software. The
lOP's simple CPU interface also is designed to be
compatible with future Intel CPUs.

Keeping in mind the true general-purpose nature
of the lOP, some of the situations where it can be
used to advantage are:

• Bus matching - The lOP can transfer data
between virtually any combination of8- and
16-bit memory and 110 components. For
example, it can interface a 16-bit peripheral
to an 8-bit CPU bus, such as the 8088 bus.
The lOP also provides a straightforward
means of performing DMA between an 8-bit
peripheral and 8086 memory that is split
into odd- and even-addressed banks. The
8089 can access both 8- and 16-bit
peripherals connected to a 16-bit bus.

• String processing - The 8089 can perform a
memory move, translate,· scan-for-match or
scan-for-nonmatch operation much faster
than the equivalent instructions in an 8086 or
8088. Translate and scan operations can be
setup so that the source and destination refer
to the same addresses to permit the string to
be operated on in place.

• Spooling - Data from low-speed devices such
as terminals and paper tape readers can be
read by the 8089 and placed in memory or on
disk until the transmission is complete. The
lOP can then transfer the data at high speed
when it is needed by an application program.
Conversely, output data ultimately destined
for a low-speed device such as a printer, can
be temporarily spooled to disk and then
printed later. This permits batches of data to
be gathered or distributed by low-priority
programs that run in the background, essen­
tially using up "spare" CPU and lOP cycles.
Application programs that use or produce
the data can execute faster because they are
not bound by the low-speed devices.

8089 INPUT/OUTPUT PROCESSOR

• Multitasking operating systems A
multitasking operating system can dispatch
110 tasks to channels with an absolute
minimum of overhead. Because a remote
channel can run in parallel with the CPU, the
operating system's capacity for servicing
application tasks can increase dramatically,
as can its ability to handle more, and faster,
I/O devices. If both channels of an lOP are
active concurrently, the lOP automatically
gives preference to the higher-priority activ­
ity (e.g., DMA normally preempts channel
program execution). The operating system
can adjust the priority mechanism and also
can halt or suspend a channel to take care of
a critical asynchronous event.

• Disk systems - The lOP can meet the speed
and latency requirements of hard disks. It
can be used to implement high-level, file­
oriented systems that appear to application
programs as simple commands: OPEN,
READ, WRITE, etc. The lOP can search
and update disk directories and maintain free
space maps. "Hierarchical memory" systems
that automatically transfer data among
memory, high-speed disks and low-speed
disks, based on frequency of use, can be built
around lOPs. Complex database searches
(reading data directly or following pointer
chains) can appear to programs as simple
commands and can execute in parallel with
application programs if an lOP is configured
remotely.

• Display terminals - The 8089 is well suited to
handling the DMA requirements of CRT
controllers. The lOP's transfer bandwidth is
high enough to support both alphanumeric
and graphic displays. The 8089 can assume
responsibility for refreshing the display from
memory data; in the remote configuration,
the refresh overhead can be removed from
the system bus entirely. Linked-list display
algorithms may be programmed to perform
sophisticated modes of display.

Each time it performs a refresh operation,
the lOP can scan a keyboard for input and
translate the key's row-and-column format
into an ASCII or EBCDIC character. The
8089 can buffer the characters, scanning the
stream until an end-of-message character
(e.g., carriage return) is detected, and then
interrupt the CPU.

3-13

A single lOP can concurrently support an
alphanumeric CRT and keyboard on one
channel and a floppy disk on the other chan­
nel. This configuration makes use of approx­
imately 30 percent of the available bus band­
width. Performance can be increased within
the available bus bandwidth by adding an
8086 or 8088 CPU to a remote lOP con­
figuration. This configuration can provide
scaling, rotation or other sophisticated
display transformations.

3.2 Processor Architecture

The 8089 is internally divided into the functional
units depicted schematically in figure 3-11. The
units are connected by a 20-bit data path to obtain
maximum internal transfer rates.

Common Control Unit (CCU)

All lOP operations (instructions, DMA transfer
cycles, channel attention responses, etc.) are com­
posed of sequences of more basic processes called
internal cycles. A bus cycle takes one internal
cycle; the execution of an instruction may require
several internal cycles. There are 23 different
types of internal cycles each of which takes from
two to eight clocks to execute, not including
possible wait states and bus arbitration times.

The common control unit (CCU) coordinates the
activities of the lOP primarily by allocating inter­
nal cycles to the various processor units; i.e., it
determines which unit will execute the next inter­
nal cycle. For example, when both channels are
active, the CCU determines which channel has
priority and lets that channel run; if the channels
have equal priority, the CCU "interleaves" their
execution (this is discussed more fully later in this
section). The CCU also initializes the processor.

Arithmetic/Logic Unit (ALU)

The ALU can perform unsigned binary arithmetic
on 8- and 16-bit binary numbers. Arithmetic
results may be up to 20 bits in length; Available
arithmetic instructions include addition, incre­
ment and decrement. Logical operations ("and,"
"or" and "not") may be performed on either 8-
or 16-bit quantities.

80891NPUT/OUTPUT PROCESSOR

TASK POINTER

1/0 CONTROL

1-----1ul
TASK POINTER ;J

~
1/0 CONTROL U

t t t t
ORO 1 EXT 1 SINTR-1 ORO 2 EXT 2 SINTR-2

BHE

Figure 3-11. 8089 Block Diagram

Assembly IDisassembly Registers

All data entering the chip flows through these
registers. When data is being transferred between
different width buses, the 8089 uses the
assembly/disassembly registers to effect the
transfer in the fewest possible bus cycles. In a
DMA transfer from an 8-bit peripheral to 16-bit
memory, for example, the lOP runs two bus
cycles, picking up eight bits in each cycle,
assembles a 16-bit word, and then transfers the
word to memory in a single bus cycle. (The first
and last cycles of a transfer may be performed
differently to accommodate odd-addressed
words; the lOP automatically adjusts for this
condition.)

Instruction Fetch Unit

This unit controls instruction fetching for the
executing channel (one channel actually runs at a
time). If the bus over which the instructions are
being fetched is eight bits wide, then the instruc­
tions are obtained one byte at a time, and each
fetch requires one bus cycle. If the instructions
are being fetched over a 16-bit bus, then the
instruction fetch unit automatically employs a 1-
byte queue to reduce the number of bus cycles.
Each channel has its own queue, and the activity
of one channel does not affect the other's queue.

3-14

During sequential execution, instructions are
fetched one word at a time from even addresses;
each fetch requires one bus cycle. This process is
shown graphically in figure 3-12. When the last
byte of an instruction falls on an even address, the
odd-addressed byte (the first byte of the following
instruction) of the fetched word is saved in the
queue. When the channel begins execution of the
next instruction, it fetches the first byte from the
queue rather than from memory. The queue,
then, keeps the processor fetching words, rather
than bytes, thereby reducing its use of the bus and
increasing throughput.

The processor fetches bytes rather than words in
two cases. If a program transfer instruction (e.g.,
JMP or CALL) directs the processor to an
instruction . located at an odd address, the first
byte of the instruction is fetched by itself as
shown ·in figure 3-13. This is because the program
transfer invalidates the content of the queue by
changing the serial flow of execution.

The second case arises when an LPDI instruction
is located at an odd address. In this situation, the
six-byte LPDI instruction is fetched: byte, word,
byte, byte, byte, and the queue is not used. The
first byte of the following instruction is fetched in
one bus cycle as if it had been the target of a pro­
gram transfer. Word fetching resumes with this
instruct jon's second byte.

8089 INPUT/OUTPUT PROCESSOR

INSTRUCTION "X" INSTRUCTION lOy"
,__--A --....... \

___ ."A __ --.\

I I EVEN 1 000 I EVEN, ODD I EVEN, ODD I I
, , , I , ,

2 I 4
I

0 QUEUE

3

FETCH INSTRUCTION BYTES

1 FIRST TWO BYTES OF "X"

2 THIRD BYTE OF "X" PLUS
FIRST BYTE OF "Y", WHICH IS
SAVED IN QUEUE

3 FIRST BYTE OF "Y" FROM
QUEUE-NO BUS CYCLE

4 LAST TWO BYTES OF "Y"

Figure 3-12. Sequential Instruction Fetching (16-Bit Bus)

INSTRUCTION "X" INSTRUCTION "Y"
r..---,.,A_-........ r,..--,.,A_-........ ,

I ODD I EVEN I ODD I EVEN I ODD I EVEN I ODD I J
'----' ' ___ -', ,,"-___ ..J, ,'--__ ~,

3 4 I 2
I

Da"E"E LTRANSFER TARGET

FETCH INSTRUCTION BYTES

1 FIRST ~ODD-ADDRESSED) BYTE OF "X"
(8-BIT US CYCLE)

2 SECOND AND THIRD BYTES OF "X"

3 FIRST AND SECOND BYTES OF "Y".

4 THIRD BYTE OF "Y"
PLUS FIRST BYTE OF NEXT INSTRUCTION,
WHICH IS SAVED IN QUEUE

Figure 3-13. Instruction Fetching Following a Program Transfer to an Odd Address (16-Bit Bus)

3-15

80891NPUT/OUTPUT PROCESSOR

Bus Interface Unit (BIU)

The BIU runs all bus cycles, transferring instruc­
tions and data between the lOP and external
memory or peripherals. Every bus access is
associated with a register tag bit that indicates to
the BIU whether the system or I/O space is to be
addressed. The BIU outputs the type of bus cycle
(instruction fetch from I/O space, data store into
system space, etc.) on status lines SO, SI, and S2.
An 8288 Bus Controller decodes these lines and
provides signals that selectively enable one bus or
the other (see Chapter 4 for details).

The BIU further distinguishes between the
physical and logical widths of the system and I/O
buses. The physical widths of the buses are fixed
and are communicated to the BIU during
initialization. In the local configuration, both
buses must be the same width, either 8 or 16 bits
(matching the width of the hoscCPU bus). In the
remote configuration, the lOP system bus must
be the same physical width as the bus it shares
with the CPU. The width of the lOP's I/O bus,
which is local to the 8089, may be selected
independently. If any 16-bit peripherals are
located in the I/O space, then a 16-bit I/O bus
must be used. If only 8-bit devices reside on the
I/O bus, then either an 8- or a 16-bit I/O bus may
be selected. A 16-bit I/O bus has the advantage of
easy accommodation of future 16-bit devices and
fewer instruction fetches if channel programs are
placed in the I/O space.

For a given DMA transfer, a channel program
specifies the logical width of the system and the
I/O buses; each channel specifies logical bus
widths independently. The logical width of an
8-bit physical bus can only be eight bits. A 16-bit
physical bus, however, can be used as either an 8-
or 16-bit logical bus. This allows both 8- and
16-bit devices to be accessed over a single 16-bit
physical bus. Table 3-1 lists the permissible
physical and logical bus widths for both locally
and remotely configured lOPs. Logical bus width
pertains to DMA transfers only. Instructions are
fetched and operands are read and written in
bytes or words depending on physical bus width.

In addition to performing transfers, the BIU is
responsible for local bus arbitration. In the local
configuration, the BIU uses the RQ/GT
(request/grant) line to obtain the bus from the
CPU and to return it after a transfer has been per­
formed. In the remote configuration, the BIU

3-16

uses RQ/GT to coordinate use of the local I/O
bus with another lOP or a local CPU, if present.
System bus arbitration in the remote configura­
tion is performed by an 8289 Bus Arbiter that
operates invisibly to the lOP. The BIU
automatically asserts the LOCK (bus lock) signal
during execution of a TSL (test and set lock)
instruction and, if specified by the channel pro­
gram, can assert the LOCK signal for the dura­
tion of a DMA transfer. Section 3.5 contains a
complete discussion of bus arbitration.

Table 3-1. Physical/Logical Bus Combinations

Configuration
System Bus I/O Bus

Physical:Logical Physical:Logical

Local
8:8 8:8

16:8/16 16:8/16

8:8 8:8

Remote
16:8/16 16:8/16
16:8/16 8:8
8:8 16:8/16

Channels

Although the 8089 is a single processor, under
most circumstances it is useful to think of it as
two independent channels. A channel may per­
form DMA transfers and may execute channel
programs; it also may be idle. This section
describes the hardware features that support these
operations.

I/O Control

Each channel contains its own I/O control section
that governs the operation of the channel during
DMA transfers. If the transfer is synchronized,
the channel waits for a signal on its DRQ (DMA
request) line before performing the next fetch"
store sequence in the transfer. If the transfer is. to
be terminated by an external signal, the channel
monitors its EXT (external terminate) line and
stops the transfer when this line goes active.
Between the fetch and store cycles (when the data
is in the lOP) the channel optionally counts,

8089 INPUT/OUTPUT PROCESSOR

translates, and scans the data, and may terminate
the transfer based on the results of these opera­
tions. Each channel also has a SINTR (system
interrupt) line that can be activated by software to
issue an interrupt request to the CPU.

Registers

Figure 3-14 illustrates the channel register set, and
table 3-2 summarizes the uses of each register.
Each channel has an independent set of registers;
they are not accessible to the other channel. Most
of the registers play different roles during channel
program execution than in DMA transfers. Chan­
nel programs must be careful to save these
registers in memory prior to a DMA transfer if
their values are needed following the transfer.

General Purpose A (GA). A channel program
may use GA for a general register or a base
register. A general register can be an operand of
most lOP instructions; a base register is used to
address memory operands (see section 3.8).
Before initiating a DMA transfer, the channel
program points GA to either the source or
destination address of the transfer.

General Purpose B (G B). GB is functionally
interchangeable with GA. If GA points to the
source of a DMA transfer, then GB points to the
destination, and vice versa.

TAG
BIT

r,
I--i
~-I
1--1
L...J

19 15 7 o

GENERAL PURPOSE A

GENERAL PURPOSE B

GENERAL PURPOSE C

TASK POINTER

PARAMETER BLOCK POINTER

INDEX

BYTE COUNT

MASK/COMPARE

CHANNEL CONTROL

Figure 3-14. Channel Register Set

GA

GB

GC

TP

PP

IX

BC

MC

CC

General Purpose C (GC). GC may be used as a
general register or a base register during channel
program execution. If data is to be translated dur­
ing a DMA transfer, then the channel program
loads GC with the address of the first byte of a
translation table before initiating the transfer. GC
is not altered by a transfer operation.

Task Pointer (TP). The CCU loads TP from the
parameter block when it starts or resumes a chan­
nel program. During program execution, the
channel automatically updates TP to point to the

Table 3-2. Channel Register Summary

Program
System

Register Size
Access

or 1/0 Use by Channel Programs Use in DMA Transfers
Pointer

GA 20 Update Either General, base Source/destination pointer

GB 20 Update Either General, base Sourcejdestination pointer

GC 20 Update Either General, base Translate table pointer

TP 20 Update Either Procedure return, Adjusted to reflect cause of
instruction pointer termination

PP 20 Reference ,System Base N/A

IX 16 Update N/A General, auto-increment N/A

BC 16 Update N/A General Byte counter

MC 16 Update N/A General, masked compare Masked compare

CC 16 Update N/A Restricted use recommended Defines transfer options

3-17

8089 INPUT/OUTPUT PROCESSOR

next instruction to be executed; i.e., TP is used as
an instruction pointer or program counter. Pro­
gram transfer instructions (JMP, CALL, etc.)
update TP to cause nonsequential execution. A
procedure (subroutine) returns to the calling pro­
gram by loading TP with an address previously
saved by the CALL instruction. The task pointer
is fully accessible to channel programs; it can be
used as a general register or as a base register.
Such use is not recommended, however, as it can
make programs very difficult to understand.

Parameter Block Pointer (PP). The CCU
loads this register with the address of the
parameter block before it starts a channel pro­
gram. The register cannot be altered by a channel
program, but is very useful as a base register for
accessing data in the parameter block. PP is not
used during DMA transfers.

Index (IX). IX may be used as a general register
during channel program execution. It also may be
used as an index register to address memory
operands (the address of the operand is computed
by adding the content of IX to the content of a
base register). When specified as an index
register, IX may be optionally auto-incremented
as the last step in the instruction to provide a con­
venient means of "stepping" through arrays or
strings. IX is not used in DMA transfers.

Byte Count (BC). BC may be used as a general
register during channel program execution. If
DMA is to be terminated when a specific number
of bytes has been transferred, BC should be
loaded with the desired byte count before
initiating the transfer. During DMA, BC is
decremented for each byte transferred, whether
byte count termination has been selected or not.
If BC reaches zero, the transfer is stopped only if
byte count termination has been specified. If byte
count termination has not been selected, BC
"wraps around" from OH to FFFFH and con­
tinues to be decremented.

Mask/Compare (MC). A channel program may
use MC for a general register. This register also
may be used in either a channel program or in a
DMA transfer to perform a masked compare of a
byte value. To use MCin this way, the program
loads a compare value in the low-order eight bits
of the register and a mask value in the upper eight
bits (see figure 3-15). A "1" in a mask bit selects
the bit in the corresponding position in the com­
pare value; a "0" in a mask bit masks the cor-

3-18

responding bit in the compare value. In figure
3-15, a value compared with MC will be con­
sidered equal if its low-order five bits contain the
value 00100; the upper three bits may contain any
value since they are masked out of the
comparison.

15 8 7

o 0 0 1 1 1 1 1 I 1 0100100

MASK COMPARE
VALUE VALUE

'---: t-~ ----'
XXX00100

MASKED
COMPARE

VALUE

(X = IGNORE VALUE OF CORRESPONOING BIT)

Figure 3-15. Mask/Compare Register

Channel Control (CC). The content of the
channel control register governs a DMA transfer
(see figure 3-16). A channel program loads this
register with appropriate values before beginning
the transfer operation; section 3.4 covers the
encoding of each field in detail. Bit 8 (the chain
bit) of CC pertains to channel program execution
rather than to a DMA transfer. When this bit is
zero, the channel program runs at normal prior­
ity; when it is one, the priority of the program is
raised to the same level as DMA (priorities are
covered later in this section). Although a channel
program may use CC as a general register, such
use is not recommended because of the side
effects on the chain bit and thus on the priority of
the channel program. Channel programs should
restrict their use of CC to loading control values
in preparation for a DMA transfer, setting and
clearing the chain bit, and storing the register.

Program Status Word (PSW)

Each channel maintains its own program status
word (PSW) as shown in figure 3-17. Channel
programs do not have access to the PSW. The
PSW records the state of the the channel so that
channel operation may be suspended and then
resumed later. When the CPU issues a "suspend"
command, the channel saves the PSW, task
pointer, and task pointer tag bit in the first four
bytes of the channel's parameter block as shown
in figure 3-18. Upon receipt of a subsequent

8089 INPUT /OUTPUT PROCESSOR

15 7 0

I F ITRI SYN I S I L I C ITSI TX I TBC I TMC I
I I I I I I
-~ -,-- TT L TERMINATE ON MASKED COMPARE

TERMINATE ON BYTE COUNT

TERMINATE ON EXTERNAL SIGNAL

TERMINATE AFTER SINGLE TRANSFER

CHAINED CHANNEL PROGRAM
EXECUTION
LOCK BUS DURING TRANSFER

SOURCE/DESTINATION

SYNCHRONIZATION

TRANSLATE

FUNCTION (PORT TO PORT,
PORT TO MEMORY, ETC.)

Figure 3-16. Channel Control Register

"resume" command, the psw, TP, and. TP tag
bit are restored from the parameter block save
area and execution resumes.

Two conditions override the normal channel
priority mechanism. If one channel is performing
DMA (priority 1) and the channel receives a chan­
nel attention (priority 2), the channel attention is
serviced at the end of the current DMA transfer
cycle. This override prevents a synchronized
DMA transfers from "shutting out" a channel
attention. DMA terminations and chained chan­
nel programs postpone recognition of a CA on
the other channel; the CA is latched, however,
and is serviced as soon as priorities permit.

The lOP's LOCK (bus lock) signal also
supersedes channel switching. A running channel
will not relinquish control of the processor while
LOCK is active, regardless of the priorities of the
activities on the two channels. This is consistent
with the purpose of the LOCK signal: to
guarantee exclusive access to a shared resource in
a multiprocessing system. Refer to sections 3.5
and 3.7 for futher information on the LOCK
signal and the TSL instruction.

Tag Bits

Registers GA, GB, GC, and TP are called pointer
registers because they may be used to access, or

3-19

7 0

1 +·I·I,·I,cl781 +1

~~~
I L D.STlNAT'ONBUSLOG'CALW'DTH(O'8,1''') 

L SOURCE BUS LOGICAL WIDTH (0" 8, 1 " 18) 

TASK BLOCK (CHANNEL PROGRAM) IN PROGRESS 

INTERRUPT CONTROL (0 = DISABLED, 1 "ENABLED) 

INTERRUPT SERVICE (0 = SINTRN INACTIVE 1 " SINTAN ACTIVE) 

BUS LOAD LIMIT 

TRANSFER IN PROGRESS 

PRIORITY liT 

Figure 3-17. Program Status Word 

15 8 7 

TP 15-8 I TP7·0 _PP 

psw I TP 19-1sl TAG I 0 0 0 - PP + 2 

REMAINDER OF PARAMETER BLOCK 

I I 
L _______ ----------~ 

Figure 3-18. Channel State Save Area 



8089 INPUT/OUTPUT PROCESSOR 

point to, addresses in either the system space or 
the 110 space. The pointer registers may address 
either memory or 110 devices (lOP instructions 
do not distinguish between memory and 110 
devices since the latter are memory-mapped). The 
tag bit associated with each register (figure 3-14) 
determines whether the register points to an 
address in the system space (tag=O) or the 110 
space (tag= 1) . 

The CCU sets or clears TP's tag bit depending on 
whether the command it receives from the CPU is 
"start channel program in system space," or 
"start channel program in 110 space." Channel 
programs alter the tag bits of GA, GB, GC, and 
TP by using different instructions for loading the 
registers. Briefly, a "load pointer" instruction 
clears a tag bit, a "move" instruction sets a tag 
bit, and a "move pointer" instruction moves a 
memory value (either 0 or 1) to a tag bit. Section 
3.9 covers these instructions in detail. 

If a register points to the system space, .all 20 bits 
are placed on the address lines to allow the full 
megabyte to be directly addressed. If a register 
points to the I/O space, the upper four bits of the 
address lines are undefined; the lower 16 bits are 
sufficient to access any location in the 64k byte 
110 space. 

Concurrent Channel Operation 

Both channels may be active concurrently, but 
only one can actually run at a time. At the end of 

each internal cycle, the CCU lets one channel or 
the other execute the next internal cycle. No extra 
overhead is incurred by this channel switching. 
The basis for making the determination is a 
priority mechanism built i.nto the lOP. This 
mechanism recognizes that some kinds of 
activities (e.g., DMA) are more important than 
others. Each activity that a channel can perform 
has a priority that reflects its relative importance 
(see table 3-3). 

Two new activities are introduced in table 3-3. 
When a DMA transfer terminates, the channel 
executes a short internal channel program. This 
DMA termination program adjusts TP so that the 
user's program resumes at the instruction 
specified when the transfer was setup (this is 
discussed in detail in section 3.4). Similarly, when 
a channel attention is recognized, the channel 
executes an internal program that examines the 
CCW and carries out its command. Both cif these 
programs consist of standard 8089 instructions 
that are fetched from internal ROM. Intel 
Application Note AP-50, Debugging Strategies 
and Considerations for 8089 Systems, lists the 
instructions in these programs. Users monitoring 
the bus during debugging may see operands read 
or written by the termination or channel attention 
programs. The instructions themselves, however, 
wlll not appear on the bus as they are resident in 
the chip. 

Notice also that, according to table 3-3, a channel 
program may run at priority 3 or at priority 1. 

Table 3-3. Channel Priorities and Interleave Boundaries 

Channel Activity 

DMA transfer 

DMA termination sequence 

Channel program (chained) 

Channel attention sequence 

Channel program (not chained) 

Idle 

!DMA is not interleaved while Lc5Ci< is active. 
2Except TSL instruction; see section 3.7. 

Priority 
(1 = highest) 

1 

1 

1 

2 

3 

4 

3-20 

Interleave. Boundary 
ByOMA By Instruction 

Bus cycle! Bus cycle! 

Internal cycle None 

Internal cycle2 Instruction 

Internal cycle None 

Internal cycle2 Instruction 

Two clocks Two clocks 



8089 INPUT/OUTPUT PROCESSOR 

Channel program priority is determined by the 
chain bit in the channel control register. If this bit 
is cleared, the program runs at normal priority 
(3); if it is set, the program is said to be chained, 
and it runs at the same priority as DMA. Thus, 
the chain bit provides a way to raise the priority 
of a critical channel program. 

The CCU lets the channel with the highest priority 
run. If both channels are running activities with 
the same priority, the CCU examines the priority 
bits in the PSWs. If the priority bits are unequal, 
the channel with the higher value (1) runs. Thus, 
the priority bit serves as a "tie breaker" when the 
channels are otherwise at the same priority level. 
The value of the priority bit in the PSW is loaded 
from a corresponding bit in the CCW; therefore, 
the CPU can control which channel will run when 
the channels are at the same priority level. The 
priority bit has no effect when the channel 
priorities are different. If both channels are at the 
same priority level and if both priority bits are 
equal, the channels run alternately without any 
additional overhead. 

The CCU switches channels only at certain points 
called interleave boundaries; these vary according 
to the type of activity running in each channel and 
are shown in table 3-3. In table 3-3 and in the 
following .discussion, the terms "channel A" and 
"channel B" are used to identify two active chan­
nels that are bidding for control of an lOP. 
"Channel A" is the channel that last ran and will 
run again unless the CCU switches to "channel 
B." Where the CCU switches from one channel 
(channel A) to another (channel B) depends on 
whether channel B is performing DMA or is 
executing instructions. For this determination, 
instructions in the internal ROM are considered 
the same as instructions executed in user-written 
channel programs (chained or not chained). Table 
3-3 shows that a switch from channel A to chan­
nel B will occur sooner if channel B is running 
DMA. DMA, then, interleaves instruction execu­
tion at internal cycle boundaries. Since instruc­
tions are often composed of several internal 
cycles, instruction execution on channel A can be 
suspended by DMA on channel B (when channel 
A next runs, the instruction is resumed from the 
point of suspension). DMA on channel A is 
interleaved by DMA on channel B after any bus 
cycle (when channel A runs again, the DMA 
transfer sequence is resumed from the point of 
suspension). If both channels are executing pro­
grams, the interleave boundaries are extended to 

3-21 

instruction boundaries: a program on channel B 
will not run until channel A reaches the end of an 
instruction. Note that a DMA termination 
sequence or channel attention sequence on chan­
nel A cannot be interleaved by instructions on 
channel B, regardless of channel B's priority. 
These internal programs are short, however, and 
will not delay channel B for long (see Chapter 4 
for timing information). 

Table 3-4 summarizes the channel switching 
mechanism with several examples. It is important 
to remember that channel switching occurs only 
when both channels are ready to run. In typical 
applications, one of the channels will be idle 
much of the time, either because it is waiting to be 
dispatched by the CPU or because it is waiting for 
a DMA request in a synchronized transfer. (Dur­
ing a synchronized transfer, the channel is idle 
between DMA requests; for many peripherals, the 
channel will spend much more time idling than 
executing DMA cycles.) The real potential for one 
channel "shutting out" a priority 1 activity on the 
other channel is largely limited to un synchronized 
DMA transfers and locked transfers (synchro­
nized or unsynchronized). Long, chained channel 
programs and high-speed synchronized DMA will 
slow a priority I activity on the other channel, but 
will not shut it out because the channels will alter­
nate (assuming their priority bits are equal). A 
chained channel program will shut out any lower 
priority activity on the other channel, including a 
channel attention. (The channel attention is 
latched by the lOP, however, so it will execute 
when the other channel drops to a lower priority.) 
Chained channel programs should therefore be 
used with discretion and should be made as short 
as possible. 

3.3 Memory 

The 8089 can access memory components located 
in two different address spaces. The system space, 
which coincides with the CPU's memory space, 
may contain up to 1,048,576 bytes. The 1/0 
space, which may either coincide with the CPU's 
lIO space or be local (private) to the lOP, may 
contain up to 65,536 bytes. Memory components 
in the system space should respond to the memory 
read and write commands issued by the 8288 Bus 
Controller. Memory components in the 1/0 space 
must respond to 8288 lIO read and write com­
mands. Memory in either space may be 



8089 INPUT /OUTPUT PROCESSOR 

Table 3-4. Channel Switching Examples 

ChannelA (Ran Last) ChannelB 
Result 

Activity 
Chain Priority 

LOCK Activity 
Chain Priority 

Bit Bit Bit Bit 

DMA transfer X X Inactive Idle X X A runs. 
DMA transfer X X Inactive Channel attention X X A runs until end of current 

transfer cycle; then Bruns. 
Channel program X 0 Inactive Channel program X 1 Bruns. 
Channel program X 0 Inactive Channel program X 0 A and B alternate by 

instruction. 
Channel program 1 X Inactive Channel program 0 X A runs. 
DMA transfer X 1 Inactive Channel program 1 1 B runs one bus or internal 

cycle following each bus cycle 
run by A.' 

Channel attention X X Inactive Channel program 1 X A runs if it has started the 
sequence; otherwise Bruns. 

DMA transfer X X Active Channel attention X X A runs until DMA terminates. 
Channel program 0 X Active DMA transfer X X A completes TSL instruction, 

(TSL instruction) LOCK goes inactive and B 
runs. 

'If transfer is synchronized, B also runs when A goes idle between transfer cycles. 

implemented like 8086 memory (l6-bit words split 
into even- and odd-addressed 8-bit banks) or 8088 
memory (a single 8-bit bank). See Chapter 4 for 
physical implementation considerations. 

Storage Organization 

From a software point of view, both 8089 
memory spaces are organized as unsegmented 
arrays of individually addressable 8-bit bytes 
(figure 3-19). Instructions and data may be stored 
at any address without regard for alignment 
(figure 3-20). 

The lOP views the system space differently from 
the 8086 or 8088 with which it typically shares the 
space. The 8086 and 8088 differentiate between a 
location's logical (segment and offset) address 
and its physical (20-bit) address. 

The 8089 does not "see" the logically segmented 
structure of the memory space; it uses its 20-bit 
pointer registers to access all locations in the 
system space by their physical addresses. Memory 
in the 8089 110 space is treated similarly except 
that only 16 bits are needed to address any 
location. 

3-22 

SYSTEM 
SPACE 

I/O 
SPACE 

LOW MEMORY HIGH MEMORY 

OOOOOH 00001H 00002H § SFFFFEH FFFFFH 

I. 111111111111111111111 § 51' 11111", IIIII 
7 07 07 07 0 

I.. 1 MEGABYTE -I 

LOW MEMORY HIGH MEMORY 

OOOOH ,0001H 0002H § fFFFEH FFFFH. 

I. 1111 J 11111111111111 § SklllllllllIl' II 
7 07 07 07 0 

I.. 64K BYTES -I 

Figure 3-19. Storage Organization 

lAH lBH lCH lDH lEH lFH 20H 21H 

Figure 3-20. Instruction and Variable Storage 



8089 INPUT /OUTPUT PROCESSOR 

Following Intel convention, word data is stored 
with the most-significant byte in the higher 
address (see figure 3-21). The 8089 recognizes the 
doubleword pointer variable used by the 8086 and 
8088 (figure 3-22). The lower-addressed word of 
the pointer contains an offset value, and the 
higher-addressed word contains a segment base 
address. Each word is stored conventionally, with 
the higher-addressed byte containing the most­
significant eight bits of the word. The 8089 can 
convert a doubleword pointer into a 20-bit 
physical address when it is loaded into a pointer 
register to address system memory. A special 3-
byte variable, called a physical address pointer 
(figure 3-23), is used to save and restore pointer 
registers and their associated tag bits. 

Dedicated and Reserved Memory 
Locations 

The extreme low and high addresses of the system 
space are dedicated to specific processor func­
tions or are reserved for use by other Intel hard-

VALUE OF WORD STORED AT 724H: 5502H 

Figure 3-21. Storage of Word Variables 

ware and software products; the locations are OH 
through 7FH (128 bytes) and FFFFOH through 
FFFFFH (16 bytes), as shown in figure 3-24. The 
low addresses are used for part of the 8086/8088 
interrupt pointer table. Locations FFFFOH­
FFFFBH are used for 8086, 8088 and 8089 startup 
sequences; the remaining locations are reserved 
by Intel. 

If an lOP is configured locally, its 1/0 space coin­
cides with the CPU's 110 space, and it must 
respect the reserved addresses F8H-FFH. The 
entire 1/0 space of a remotely-configured lOP 
may be used without restriction. 

Using any dedicated or reserved addresses may 
inhibit the compatibility of a system with current 
or future Intel hardware and software products. 

Dynamic Relocation 

The 8089 is very well-suited to environments in 
which programs do not occupy static memory 
locations, but are moved about during execution. 
Dynamic code relocation allows systems to make 
efficient use of limited memory resources by 
transferring programs between external storage 
and memory, and by combining scattered free 
areas of memory into larger, more useful, con­
tinuous spaces. 

lOP channel programs are inherently position­
independent, the only restriction being that chan­
nel programs that transfer to each other or 
share data must be moved as a unit. Since the lOP 

VALUE OF DOUBLEWORD POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET:65H 

Figure 3-22. Storage of Doubleword Pointer Variables 

3-23 



8089 INPUT IOUTPUT PROCESSOR 

POINTER 
REGISTER 

MEMORY 

19 

101H 102H 

HEX 

BINARY 

VALUE OF PHYSICAL ADDRESS POINTER AT 100H: 
ADDRESS: 265F3H 
TAG: 0 

Figure 3-23. Storage of Physical Address 
Pointer Variables 

receives the address of a channel program and its 
associated parameter block when it is dispatched 
by the CPU, the location of these blocks is 
immaterial and can change from one dispatch to 
the next. (Note, however, that the channel control 
block cannot be moved without reinitializing the 
lOP.) Typically, then, the CPU would direct the 
movement of lOP channel programs and 
parameter blocks. These blocks, of course, can­
not be moved while they are in use. 

While the CPU may be in charge of relocation, 
the lOP is an excellent vehicle for performing the 
actual transfer of channel programs, parameter 
blocks, and CPU programs as well. A very simple 
channel program can transfer code between 
memory locations by DMA much faster than the 
equivalent CPU instructions, and transfers 
between disk and memory also can be performed 
more efficiently. 

Memory Access 

Memory accesses are always performed using a 
pointer register and its associated tag bit. The tag 
bit indicates whether the access is to the system 
space (tag=O) or the I/O space (tag=I). The 
pointer register contains the base address of the 
location; i.e., the pointer register is used as a base 
register. Only the low-order 16 bits of the pointer 

3-24 

FFFFFH 

RESERVED 

FFFFCH 
FFFFBH 

DEDICATED 

FFFFOH 
FFFEFH 

" OPEN I r' r 
r OPEN 

80H 
7FH 

RESERVED 100H 

14H RESERVED FFH 

13H F8H 
F7H 

DEDICATED OPEN 

OH OH 

I/O SPACE SYSTEM SPACE 
(LOCAL CONFIGURATION ONLY) 

Figure 3-24. Reserved Memory Locations 

register are used for I/O space locations; all 20 
bits are used for system space addresses. Different 
types of memory accesses use base registers as 
shown in table 3-5. The 8089 addressing modes 
allow the base address of a memory operand to be 
modified by other registers and constant values to 
yield the effective address of the operand (see sec­
tion 3.8). 

Notice that table 3-5 indicates that memory 
operands may be addressed using register PP in 
addition to GA, GB, and GC. PP is maintained 
by the lOP and can neither be read nor written by 
a channel program; it can be used, however, to 
access data in the parameter block. PP has no 
associated tag bit; a reference to it implies the 
system space, where a parameter block always 
resides. 

Table 3-5. Base Register Use in Memory Access 

Memory Access Base Register 

Instruction Fetch TP 
DMASource GAorGBI 
DMA Destination GAorGBI 
DMA Translate Table GC 
Memory Operand GA or GB or GC or PP' 

lAs specified in CC register 
'As specified in instruction 



8089 INPUT /OUTPUT PROCESSOR 

The lOP is told the physical widths of the system 
and 110 buses when it is initialized. If a bus is 
eight bits wide, the lOP accesses memory on this 
bus like an 8088. Instruction fetches and operand 
reads and writes are performed one byte at a time; 
one bus cycle is run for each memory access. 
Word operands are accessed in two cycles, com­
pletely transparent to software. Instruction 
fetches are made as needed, and the instruction 
stream is not queued. 

The lOP accesses memory on a 16-bit bus like an 
8086. As mentioned in the previous section, the 
instruction stream is generally fetched in words 
from even addresses with the second byte held in 
the one-byte queue. If a word operand is aligned 
(i.e., located at an even address), the 8089 will 
access it in a single 16-bit bus cycle. If a word 
operand is unaligned (i.e., located at an odd 
address), the word will be accessed in two con­
secutive 8-bit bus cycles. Byte operands are 
always accessed in 8-bit bus cycles. 

For memory on 16-bit buses, performance is 
improved and bus contention is reduced if word 
operands are stored at even addresses. The 
instruction queue tends to reduce the effect of 
alignment on instructions fetched on a 16-bit bus, 
In tight loops, performance can be increased by 
word-aligning transfer targets. 

Notice that the correct operation of a program is 
completely independent of memory bus width. A 
channel program written for one system that uses 
an 8-bit memory bus will execute without 
modification if the bus is increased to 16 bits. It is 
good practice, though, to write all programs as 
though they are to run on 16-bit systems;).e., to 
align word operands. Such programs will then 
make optimal use of the bus in whatever system 
they are run. 

3.4 Input/Output 

The 8089 combines the programmed I/O 
capabilities of a CPU with the high-speed block 
transfer facility of a DMA controller. It also pro­
vides additional features (e.g.; compare and 
translate during DMA) and is more flexible than a 
typical CPU or DMA controller. The 8089 
transfers data from a source address to a destina­
tion address. Whether the component mapped 

3-25 

into a given address is actually memory or I/O is 
immaterial. All addresses in both the system and 
I/O spaces are equally accessible, and transfers 
may be made between the two spaces as well as 
within either address space. 

Programmed I/O 

A channel program performs 110 similar to the 
way a CPU communicates with memory-mapped 
I/O devices. Memory reference instructions per­
form the transfer rather than "dedicated" 110 
instructions, such as the 8086/8088 IN and OUT 
instructions. Programmed I/O is typically used to 
prepare a device controller for a DMA transfer 
and to obtain status/result information from the 
controller following termination of the transfer. 
It may be used, however, with any device whose 
transfer rate does not require DMA. 

I/O Instructions 

Since the 8089 does not distinguish between 
memory components and 110 devices, any 
instruction that accepts a byte or word memory 
operand can be used to access an I/O device. 
Most memory reference instructions take a source 
operand or a destination operand, or both. The 
instructions generally obtain data from the source 
operand, operate on the data, and then place the 
result of the operation in the destination operand. 
Therefore, when a source operand refers to an 
address where an 110 device is located, data is 
input from the device. Similarly, when a destina­
tion operand refers to an I/O device address, data 
is output to the device. 

Most I/O device controllers have one or more 
internal registers that accept commands and 
supply status or result information. Working with 
these registers typically involves: 

• reading or writing the entire register; 
• setting or clearing some bits in a register while 

leaving others alone; or 
• testing a single bit in a register. 

Table 3-6 shows some of the 8089 instructions 
that are useful for performing these kinds of 
operations. Sectien 3.7 covers the 8089 instruc­
tion set in detail. 



8089 INPUT/OUTPUT PROCESSOR 

Table 3-6. Memory Reference Instructions 
Used for I/O 

Instruction Effect on I/O Device 

MOV/MOVB Read or write word / byte 

AND/ANDB Clear multiple bits in word/byte 

OR/ORB Set multiple bits in word/byte 

CLR Clear' single bit (in byte) 

SET Set single bit (in byte) 

JBT Read (byte) and jump if 
single bit =1 

JNBT Read (byte) and jump if 
single bit =0 

Device Addressing 

Since memory reference instructions are used to 
perform programmed I/O, device addressing. is 
very similar to memory addressing. An operand 
that refers to an I/O device always specifies one 
of the pointer registers GA, GB, or GC (PP is 
legal, but an 110 device would not normally be 
mapped into a parameter block). The base 
address of the device is taken from the specified 
pointer register. Any of the memory addressing 
modes (see section 3.8) may be used to modify the 
base address to produce the effective (actual) 
address of the device. The pointer register's tag 
bit locates the device in the system space (tag=O) 
or in the 110 space (tag=I). If the device is in 
the I/O space, only the low-order 16 bits of the 
pointer register are used for the base address; all 
20 bits are used for a system space address. The 
lOP's system and I/O spaces are fully compatible 

with the corresponding address spaces of the 
other 8086 family processors. 

I/O Bus Transfers 

Table 3-7 shows the number of bus cycles the lOP 
runs for all combinations of bus size, transfer size 
(byte or word), and transfer address (even or 
odd). Bus width refers to the physical bus 
implementation; the instr.uction mnemonic deter­
mines whether a byte or a word is transferred. 

Both 8- and 16-bit devices may reside on a 16-bit 
bus. All 16-bit devices should be located at even 
addresses so that transfers will be performed in 
one bus cycle. The 8-bit devices on a 16-bit bus 
may be located at odd or even addresses. The 
internal registers in an 8-bit device on a 16-bit bus 
must be assigned all-odd or all-even addresses 
that are two bytes apart (e.g., IH, 3H, 5H, or 2H, 
4H, 6H). All 8-bit peripherals should be refer­
enced with byte instructions, and 16-bit devices 
should be referenced with word instructions. 
Odd-addressed 8-bit devices must be able to 
transfer data on the upper eight bits of the 16-bit 
physical data bus. 

Only 8-bit devices should be connected to an 8-bit 
bus, and these should only be referenced with 
byte instructions. An 8-bit device on an 8-bit bus 
may be located at an odd or even address, and its 
internal registers may be assigned consecutive 
addresses (e.g., IH, 2H, 3H). Assigning all-odd 
or all-even addresses, however, will simplify con­
version to a 16-bit bus at a later date. 

Table 3-7. Programmed I/O Bus Transfers 

Bus Width: 8 16 

Instruction: byte word' byte word 

Device Address: even odd even odd even odd even odd' 

Bus Cycles: 1 1 2 2 1. 1 1 2 

, not normally used 

Mnemonics © Intel, 1979 3-26 



8089 INPUT/OUTPUT PROCESSOR 

DMA Transfers 

In addition to byte- and word-oriented pro­
grammed 110, the 8089 can transfer blocks of 
data by direct memory access. A block may be 
transferred between any two addresses; memory­
to-memory transfers are performed as easily as 
memory-to-port, port-to-memory or port-to-port 
exchanges. There is no limitation on the size of 
the block that can be transferred except that the 
block cannot exceed 64k bytes if byte count ter­
mination is used. A channel program typically 
prepares for a DMA transfer by writing com­
mands to a device controller and initializing chan­
nel registers that are used during the transfer. No 
instructions are executed during the transfer, 
however, and very high throughput speeds can be 
achieved. 

Preparing the Device Controller 

Most controllers that can peform DMA transfers 
are quite flexible in that they can perform several 
different types of operations. For example, an 
8271 Floppy Disk Controller can read a sector, 
write a sector, seek to track 0, etc. The controller 
typically has one or more internal registers that 
are "programmed" to perform a given operation. 
Often, certain registers will contain status 
information that can be read to determine if the 
controller is busy, if it has detected an error, etc. 

An 8089 channel program views these device 
registers as a series of memory locations. The 
channel program typically places the device's base 
address in a pointer register and uses programmed 
lIO to communicate with the registers. 

Some controllers start a DMA transfer 
immediately upon receiving the last of a series of 

parameters. If this type of controller is being 
used, the chanpel program instruction that sepds 
the last parameter should follow the 8089 XFER 
instruction. (The XFER instruction places the 
channel in DMA mode after the next instruction; 
this is explained in more detail later in this 
section.) 

Preparing the Channel 

For a channel to perform a DMA transfer, it must 
be provided with information that describes the 
operation. The channel program provides this 
information by loading values into channel 
registers and, in one case, by executing a special 
instruction (see table 3-8). 

Source and Destination Pointers. One 
register is loaded to point to the transfer source; 
the other points to the destination. A bit in the 
channel control register is set to indicate which 
register is the source pointer. If a register is 
pointed at a memory location, it should contain 
the address where the transfer is to begin - i.e., 
the lowest address in the buffer. The channel 
automatically increments a memory pointer as the 
transfer proceeds. If the tag bit selects the lIO 
space, the upper four bits of the register are 
ignored; if the tag selects the system space, all 20 
bits are used. The source and destination may be 
located in the same or in different address spaces. 

Translate Table Pointer. If the data is to be 
translated as it is transferred, GC should be 
pointed at the first (lowest-addressed) byte in a 
256-byte translation table. The table may be 
10Gated in either the system or lIO space, and GC 

Table 3-8. DMA Transfer Control Information 

Information Register or Instruction Required or Optional 

Source Pointer GAorGB Required 
Destination Pointer GAorGB Required 
Translate Table Pointer GC Optional 
Byte Count BC Optional 
Mask/Compare Values MC Optional 
Logical Bus Width WID Optional* 
Channel Control CC Required 

*Must be executed once following processor RESET. 

3-27 
Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

should be loaded by an instruction that sets or 
clears its tag bit as appropriate. The translate 
operation is. only defined for byte data; source 
and destination logical bus widths must both be 
set to eight bits. 

The channel translates a byte by treating it as an 
unsigned 8-bit binary number. This number is 
added to the content of register GC to form a 
memory address; GC is not altered by the opera­
tion. If GC points to the lIO space, its upper four 
bits are ignored in the operation. The byte at this 
address (which is in the translate table) is then 
fetched from memory, replacing the source byte. 
Figure 3-25 illustrates the translate process. 

Byte Count. If the transfer is to be terminated 
on byte count- i.e., after a specific number of 
bytes have been transferred-the desired count 
should be loaded into register BC as an unsigned 
16-bit number. The channel decrements BC as the 
transfer proceeds, whether or not byte count ter­
mination has been specified. There are cases 
(discussed later in this section) where the dif-

ference between BC's value before and after the 
transfer does not accurately reflect the number of 
bytes transferred to the destination. 

Mask/Compare Values. If the transfer is to be 
terminated when a byte (possibly translated) is 
found equal or unequal to a search value, MC 
should be loaded as described in section 3.2. MC 
is not altered during the transfer. Normally, the 
logical destination bus width is set to eight bits 
when transferred data is being compared. If the 
logical destination width is 16 bits, only the low­
order byte of each word is compared. 

Logical Bus Width. The 8089 WID (logical bus 
width) instruction is used to set the logical width 
of the source and destination buses for a DMA 
transfer. Any bus whose physical width is eight 
bits can only have a logical width of eight bits. A 
16-bit physical bus, however, can have a logical 
width of 8 or 16 bits; i.e., it can be used as either 
an 8-bit or 16-bit bus in any given transfer. 
Logical bus widths are set independently for each 
channel. 

TRANSLATE TABLE 
IN SYSTEM OR I/O SPACE 

00200 1--,) 3F 4C 166119 87 1 ( 
GC • 

B : 
SOURCE BYTE I 

+ 

= 00202 ~ ______ J 
TRANSLATE ADDRESS 

TO DESTINATION 

TRANSLATED BYTE 

Figure 3-25. Translate Operation 

Mnemonics © Intel, 1979 
3-28 



8089 INPUT /OUTPUT PROCESSOR 

For a transfer to or from an 110 device on a 
16-bit physical bus, the logical bus width should 
be set equal to the peripheral's width; i.e., 8 or 16 
bits. Transfers to or from 16-bit memory will run 
at maximum speed if the logical bus width is set to 
16 since the channel will fetch/store words. In the 
following cases, however, the logical width 
should be set to 8: 

• the data is being translated, 
• the data is being compared under mask, and 

the 16-bit memory is the destination of the 
transfer. 

The WID instruction sets both logical widths and 
remains in effect until another WID instruction is 
executed. Following processor reset, the settings 
of the logical bus widths are unpredictable. 
Therefore, the WID instruction must be executed 
before the first DMA transfer. 

Channel Control. The 16 bits of the CC register 
are divided into 10 fields that specify how the 
DMA transfer is to be executed (see figure 3-26). 
A channel program typically sets these fields by 
loading a word into the register. 

The function field (bits 15-14) identifies the 
source and destination as memory or ports (110 
devices). During the transfer, the channel 
increments source/destination pointer registers 
that refer to memory so that the data will be 
placed in successive locations. Pointers that refer 
to I/O devices remain constant throughout the 
transfer. 

The translate field (bit 13) controls data transla­
tion. If it is set, each incoming byte is translated 
using the table pointed to by register GC. 
Translate is defined only for byte transfers; the 
destination bus must have a logical width of eight. 

The synchronization field (bits 12-11) specifies 
how the transfer is to be synchronized. 
Unsynchronized ("free running") transfers are 
typically used in memory-to-memory moves. The 
channel begins the next transfer cycle immediately 
upon completion of the current cycle (assuming it 
has the bus). Slow memories, which cannot run as 
fast as the channel, can extend bus cycles by 
signaling "not ready" to the 8284 Clock 
Generator, which will insert wait states into the 
bus cycle. A similar technique may be used with 
peripherals whose speed exceeds the channel's 

3-29 

ability to execute a synchronized transfer: in 
effect, the peripheral synchronizes the transfer 
through the use of wait states. Chapter 4 discusses 
synchronization in more detail. 

Source synchronization is typically selected when 
the source is an 110 device and the destination is 
memory. The 110 device starts the next transfer 
cycle by activating the channel's DRQ (DMA 
request) line. The channel then runs one transfer 
cycle and waits for the next DRQ. 

Destination synchronization is most often used 
when the source is memory and the destination is 
an 110 device. Again, the 110 device controls the 
transfer frequency by signaling on DRQ when it is 
ready to receive the next byte or word. 

The source field (bit 10) identifies register GA or 
GB as the source pointer (and the other as the 
destination pointer). 

The lock field (bit 9) may be used to instruct the 
channel to assert the processor's bus lock (LOCK) 
signal during the transfer. In a source­
synchronized transfer, LOCK is active from the 
time the first DMA request is received until the 
channel enters the termination sequence. In a 
destination-synchronized transfer LOCK is active 
from the first fetch (which precedes the first 
DMA request) until the channel enters the ter­
mination sequence. 

The chain field (bit 8) is not used during the 
transfer. As discussed previously, setting this 
bit raises channel program execution to priority 
level 1. 

The terminate on single transfer field (bit 7) can 
be used to cause the chaimel to run one complete 
transfer cycle only-i.e., to transfer one byte or 
word and immediately resume channel program 
execution. When single transfer is specified, any 
other termination conditions are ignored. Single 
transfer termination can be used with low-speed 
devices, such as keyboards and communication 
lines, to translate and/or compare one byte as it 
transferred. 

The three low-order fields in register CC instruct 
the channel when to terminate the transfer, 
assuming that single transfer has not been 
selected. Three termination conditions may be 
specified singly or in combination. 

Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

15 7 0 

I f ITRI STN I S I L I C ITSI Tf I T~C I TMC I 
F FUNCTION 
00 PORT TO PORT 
01 MEMORY TO PORT 
10 PORT TO MEMORY 
11 MEMORYTO MEMORY 

TR TRANSLATE 
o NO TRANSLATE 
1 TRANSLATE 

SYN SYNCHRONIZATION 
00 NO SYNCHRONIZATION 
01 SYNCHRONIZE ON SOURCE 
10 SYNCHRONIZE ON DESTINATION 
11 RESERVED BY INTEL 

S SOURCE 
o GA POINTS TO SOURCE 
1 GB POINTS TO SOURCE 

L LOCK 
o NO LOCK 
1 ACTUATE LOCK DURING TRANSFER 

C ~ 
o NO CHAINING 
1 CHAINED: RAISE TB TO PRIORITY 1 

TS TERMINATE ON SINGLE TRANSFER 
o NO·SINGLE TRANSFER TERMINATION 
1 TERMINATE AFTER SINGLE TRANSFER 

TX TERMINATE ON EXTERNAL SIGNAL 
00 NO EXTERNAL TERMINATION 
01 TERMINATE ON EXT ACTIVE; OFFSET = 0 
10 TERMINATE ON EXT ACTIVE; OFFSET = 4 
11 TERMINATE ON EXT ACTIVE; OFFSET = 8 

TBC TERMINATE ON BYTE COUNT 
00 NO BYTE COUNT TERMINATION 
01 TERMINATE ON BC = 0; OFFSET = 0 
10 TERMINATE ON BC = 0; OFFSET = 4 
11 TERMINATE ON BC = 0; OFFSET = 8 

TMC TERMINATE ON MASKED COMPARE 
000 NO MASK/COMPARE TERMINATION 
001 TERMINATE ON MATCH; OFFSET = 0 
010 TERMINATE ON MATCH; OFFSET = 4 
011 TERMINATE ON MATCH; OFFSET = 8 
100 (NO EFFECT) 
101 TERMINATE ON NON-MATCH; OFFSET = 0 
110 TERMINATE ON NON-MATCH; OFFSET = 4 
111 TERMINATE ON NON-MATCH; OFFSET = 8 

Figure 3-26. Channel Control Register Fields 

3-30 



80891NPUT/OUTPUT PROCESSOR 

External termination allows an 1/0 device 
(typically, the one that is synchronizing the 
transfer) to stop the transfer by activating the 
channel's EXT (external terminate) line. If byte 
count termination is selected, the channel will 
stop when BC=O. If masked compare termination 
is specified, the channel will stop the transfer 
when a byte is found that is equal or unequal (two 
options are available) to the low-order byte in MC 
as masked by MC's high-order byte. The byte that 
stops the termination is transferred. If translate 
has been specified, the translated byte is 
compared. 

When a DMA transfer ends, the channel adds a 
value called the termination offset to the task 
pointer and resumes channel program execution 
at that point in the program. The termination off­
set may assunie a value of 0, 4, or 8. Single 
transfer termination always results in a termina­
tion offset of O. Figure 3-27 shows how the ter­
mination offsets can be used as indices into a 
three-element "jump table" that identifies the 
condition that caused the termination. 

As an example of using the jump table, consider a 
case in which a transfer is to terminate when 80 
bytes have been transferred or a linefeed 
character is detected, whichever occurs first. The 
program would load 80H into BC and OOOAH 
into MC (ASCII line feed, no bits masked). The 
channel program could assign byte count termina­
tion an offset of 0 and masked compare termina­
tion an offset of 4. If the transfer is terminated by 
byte count (no linefeed is found), the instruction 
at location TP + 0 will be executed first after the 
termination. If the linefeed is found before the 
byte count ,expires, the instruction at TP + 4 will 
be executed first. The LJMP (long unconditional 
jump, see section 3.7) instruction is four bytes 
long and can be placed at TP + 0 and TP + 4 to 
cause the channel program to jump to a different 
routine, depending on how the transfer 
terminates. 

If the transfer can only terminate in one way and 
that condition is assigned an offset of 0, there is 
no need for the jump table. Code which is to be 
unconditionally executed when the transfer ends 
can imniediately follow the instruction after 
XFER. This is also the case when single transfer is 
specified (execution always resumes at TP + 0). 

It is possible, however, for two, or even three"ter­
mination conditions to arise at the same time. In 

3-31 

-(COULD IE A DIFFERENT INSTRUCTION) 

(TP PO~IN::TS-=TO!l'~.T~U~MP~'N~.~T"~UC~TI~ONd) _ ...... _, 

UMP OFFSET _O_CODE } 

L_~~L~JM~P~OF~FS~ET~_4~_~CO~D~E] THREE·ELEMENTJUMPTAILE 

TP+8 
LJMP OFFSET_I_CODE 

OFFSET _o_coDE:l 1 
EXECUTED IF TERMINATION T OFFSET_O T 

OFFSET _4_cODEl 1 
T IX!cUTg~r.lf'!.M~NATIONT 

OFFSET •• LCODE'l 1 
IXECUTED IFTERMINATION T OFFIET.I T 

Figure 3-27. Termination Jump Table 

the preceding example, this would occur if the 
80th character were a linefeed. When mUltiple ter­
minations occur simultaneously, the channel 
indicates that termination resulted from the con­
dition with the largest offset value. In the 
preceding example, if byte count and search ter­
mination occur at the same time, the channel pro­
gram resumes at TP + 4. 

Beginning the Transfer 

The 8089 XFER (transfer) instruction puts the 
channel into DMA transfer mode after the 
following instruction has been executed. This 
technique gives the channel time to set itself up 
when it is used with device controllers, such as the 
8271 Floppy Disk Controller, that begin transfer­
ring immediately upon receipt of the last in a 
series of parameters or commands. If the transfer 
is to or from such a device, the last parameter 
should be sent to the device after the XFER 
instruction. If this type of device is not being 
used, the instruction following XFER would 

Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

typically send a "start" command to the con­
troller. If a memory-to-memory transfer is being 
made, any instruction may follow XFER except 
one that alters GA, GB, or CC. The HL T instruc­
tion should normally not be coded after the 
XFER; doing so clears the channel's BUSY flag, 
but allows the DMA transfer to proceed. 

DMA Transfer Cycle 

A DMA transfer cycle is illustrated in figure 3-28; 
a complete transfer is a series of these cycles run 
until a termination condition is encountered. The 
figure is deliberately simplified to explain the 
general operation of a DMA transfer; in par­
ticular, the updating of the source and destination 
pointers (GA and GB) can be more complex than 
the figure indicates. Notice that it is possible to 
start an unending transfer by not specifying a ter­
mination condition in CC or by specifying a con­
dition that never occurs; it is the programmer's 
responsibility to ensure that the transfer eventu­
ally stops. 

If the transfer is source-synchronized, the channel 
waits until the synchronizing device activates the 
channel's DRQ line. The other channel is free to 
run during this idle period. The channel fetches a 
byte or a word, depending on the source address 
(contained in GA or GB) and the logical bus 
width. Table 3-9 shows how a channel performs 
the fetch/store sequence for all combinations of 
addresses and bus widths. If the destination is on 
a 16-bit logical bus and the source is on an 8-bit 
logical bus, and the transfer is to an even address, 
the channel fetches a second byte and assembles a 
word internally. During each fetch, the channel 
decrements BC according to whether a byte or 
word is obtained. Thus BC always indicates the 
number of bytes fetched. 

The channel samples its EXT line after every bus 
cycle in the transfer. If EXT is recognized after 
the first of two scheduled fetches, the second 
fetch is not run. After the fetch sequence has been 
completed, the channel translates the data if this 
option is specified in CC. 

If a word has been fetched or assembled, and 
bytes are to be stored (destination bus is eight bits 
or transfer is to an odd address), the channel 
disassembles the word into two bytes. If the 
transfer is destination-synchronized (only one 

Mnemonics © Intel, 1979 3-32 

Table 3-9. DMA Transfer 
Assembly IDisassembly 

Address Logical Bus Width 
(Source- Source-Destination) 

Destination) 8-8 8-16 16-8 16-16 

EVEN-EVEN B-B B/B-W W-B/B W-W 
EVEN-ODD B-B B-B W-B/B W-B/B 
ODD-EVEN B-B B/B-W B-B B/B-W 
ODD-ODD B-B B-B B-B B-B 

B= Byte Fetched or Stored in 1 Bus Cycle 
W= Word Fetched or Stored in 1 Bus Cycle 
B/B= 2 Bytes Fetched or Stored in 2 Bus Cycles 

type of synchronization may be specified for a 
given transfer), the channel waits for DRQ before 
running a store cycle. It stores a word or the 
lower-addressed byte (which may be the only byte 
or the first of two bytes). Table 3-9 shows the 
possible combinations of even/odd addresses and 
logical bus widths that define the store cycle. 
Whenever stores are to memory on a 16-bit logical 
bus, the channel stores words, except that bytes 
may be stored on the first and last cycles. 

The channel samples EXT again after the first 
store cycle and, if it is active, the channel prevents 
the second store cycle from running. If specified 
in the CC register, the low-order byte is compared 
to the value in Me. A "hit" on the comparison 
(equal or unequal, as indicated in CC) also 
prevents the second of two scheduled store cycles 
from running. In both of these cases, one byte has 
been "overfetched," and this is reflected in BC's 
value. It would be unusual, however, for a syn­
chronizing device to issue EXT in the midst of a 
DMA cycle. Note also that EXT is valid only 
when DRQ is inactive. Chapter 4 covers the tim­
ing requirements for these two signals in detail. 

GA and GB are updated next. Only memory 
pointers are incremented; pointers to I/O devices 
remain constant throughout the transfer. 

If any termination condition has occurred during 
this cycle, the channel stops the transfer. It uses 
the content of the CC register to assign a value to 
the termination offset, to reflect the cause of the 
termination. The channel adds this offset to TP 
and resumes channel program execution at the 
location now addressed by TP. This offset will 



80891NPUT/OUTPUT PROCESSOR 

ASSEMBLE 
BYTES 

(OPTIONAL) 

COMPARE 
UNDER 
MASK 

WAIT FOR 
DMA REQUEST 

ORO 

Figure 3-28. Simplified DMA Transfer Flowchart 

always be zero, four, or eight bytes past the end 
of the instruction following the XFER instruc­
tion. 

If no termination condition is detected and 
another byte remains to be stored, the channel 
stores this byte, waiting for DRQ -if necessary, 
and updates the source and destination pointers. 
After the store, it again checks for termination. 

3-33 

Following the Transfer 

A DMA transfer updates register Be, register GA 
(if it points to memory), and register GB (if it 
points to memory). If the original contents of 
these registers are needed following the transfer, 
the contents should be saved in memory prior to 
executing the XFER instruction. 

Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

A program may determine the address of the last 
byte stored by a DMA transfer by inspecting the 
pointer registers as shown in table 3-10. The 
number of bytes stored is equal to: 

lasLbyte_address - first_byte_address + 1. 

For 'port-to-port transfers, the number of bytes 
ttansferred can be determined by subtracting the 
final value of BC from its original value provided 
that: 

• the original BC > final BC, . 

• a transfer cycle is not "chopped off" before 
it completes by a masked compare or exter­
nal termination. 

In general, programs should not use the contents 
of GA, GB and BC following a transfer except as 
noted above and in table 3-10. This is because the 
contents of the registers are affected by numerous 
conditions, particularly when the transfer is ter­
minated by EXT. In particular, when a program 
is performing a sequence of transfers, it should 
reload these registers before each transfer. 

3.5 Multiprocessing Features 

The 8089 shares the multiprocessing facilities 
common to the 8086 family of processors. It has 

. on-chip logic for arbitrating the use of the local 
bus with a CPU or another lOP; system bus 
arbitration is delegated to an 8289 Bus Arbiter. 

The 8089's TSL (test and set while locked) in­
struction enables it to share a resource, such as a 
buffer, with other processors by means of 
semaphore (see section 2.5 for a discussion of the 
use of semaphores to control access to shared 
resources). Finally, the 8089 can lock the system 
bus for the duration of a DMA transfer to ensure 
that the transfer completes without interference 
from other processors on the bus. 

In the remote configuration, the 8089 is electric­
ally compatible with Intel's Multibus™ multi­
master bus design. This means that the power and 
convenience of 8089 lIO processing can be used 
in 8080- or 8085-based systems that implement the 
Multibus protocol or a superset of it. This 
includes single-board computers such as Intel's 
iSBC 80120™ and iSBC 80130™ boards. In addi­
tion, the lOP can access other iSBC board 
products such as memory and communications 
controllers. 

Bus Arbitration 

The 8089 shares its system bus with a CPU, and 
may also share its 1/0 bus with an lOP or another 
CPU. Only one processor ata time may drive a 
bus. When two (or more) processors want to use a 
shared bus, the system must provide an arbitra­
tion mechanism that will grant the bus to one of 
the processors. This section describes the bus 
arbitration facilities that may be used with the 
8089 and covers their applicability to different 
lOP configurations. 

Table 3-10. Address of Last Byte Stored 

Termination Source Destination Synchronization Last Byte Stored 

memory memory any destination pointer' 
byte count memory port any source pointer 

port memory any destination pOinter 

memory memory any destination pointer 
masked compare memory port any source pointer 

port memory any destination pointer 

memory memory unsynchronized destination pointer 
external memory port destination source pOinter' 

port memory source d.esUnation pointer 

'Source pointer may also be used. 
llftransfer is BI B-W, source pOinter must be decremented by 1 to point to last byte transferred. 

Mnemonics © Inlel,1979 3-34 



8089 INPUT/OUTPUT PROCESSOR 

Request/Grant Line 

When an 8089 is directly connected to 
another 8089, an 8086 or an 8088, the 
RQ/GT (request/grant) lines built into all of 
these processors are used to arbitrate use of a 
local bus. In the local mode, RQ/GT is used 
to control access to both the system and the 
110 bus. 

As discussed in section 2.6, the CPU's 
request/grant lines (RQ/GTO and RQ/GTl) 
operate as follows: 

• an external processor sends a pulse to the 
CPU to request use of the bus; 

• the CPU finishes its current bus cycle, if one 
is in progress, and sends a pulse to the pro­
cessor to indicate that it has been granted the 
bus; and 

• when the external processor is finished with 
the bus, it sends a final pulse to the CPU, to 
indicate that it is releasing the bus. 

The 8089's request/grant circuit can operate in 
two modes; the mode is selected when the lOP is 
initialized (see section 3.6). Mode 0 is compatible 
with the 8086/8088 request/ grant circuit and 
must be specified when the 8089's RQ/GT line is 
connected to RQ/GTO or RQ/GTl of one of 
these...fPUs. Mode 0 may be s~ified when 
RQ/GT of one 8089 is tied to RQ/GT of another 
8089. When mode 0 is used with a CPU, the CPU 
is designated the master, and the lOP is 
designated a slave. When mode 0 is used with 
another lOP, one lOP is the master, and the other 
is the slave. Master/slave designation also is made 
at initialization time as discussed in section 3.6. 
The master has the bus when the system is in­
itialized and keeps the bus until it is requested by 
the slave. When the slave requests the bus, the 
master grants it if the master is idle. In this sense, 
the CPU becomes idle at the end of the current 
bus cycle. An lOP master, on the other hand, 
does not become idle until both channels have 
halted program execution or are waiting for DMA 
requests. Once granted the bus, the slave (always 
an lOP) uses it until both channels are idle, and 
then releases it to the master. In mode 0, the 
master has no way of requesting the slave to 
return the bus. 

Mode 1 operation of the request/grant lines may 
only be used to arbitrate use of a private I/O bus 

3-35 

between two lOPs. In this case, one lOP is 
designated the master, and the other is designated 
the slave. However, the only difference between a 
master and a slave running in mode 1 is that the 
master has the bus at initialization time. Both 
processors may request the bus from each other at 
any time. The processor that has the bus will 
grant it to the requester as soon as one of the 
following occurs on either channel: 

• an unchained channel program instruction is 
completed, or 

• a channel goes idle due to a program halt or 
the completion of a synchronized transfer 
cycle (the channel waits for a DMA request). 

Execution of a chained channel program, a DMA 
termination sequence, a channel attention 
sequence, or a synchronized DMA transfer (i.e., a 
high-priority operation) on either channel 
prevents the lOP from granting the bus to the 
requesting lOP. 

The handshaking sequence in mode 1 is: 

• the ~uesting processor pulses once on 
RQ/GT; 

• the processor with the bus grants it by 
pulsing once; and 

• if the processor granting the bus wants it 
back immediately (for example, to fetch the 
next instruction), it will pulse RQ/GT again, 
two clocks after the grant pulse. 

The fundamental difference between the two 
modes is the frequency with which the bus can be 
switched between the two processors when both 
are active. In mode 0, the processor that has the 
bus will tend to keep it for relatively long periods 
if it is executing a channel program. Mode 1 in 
effect places unchained channel programs at a 
lower priority since the processor will give up the 
bus at the end of the next instruction. Therefore, 
when both processors are running channel pro­
grams or synchronized DMA, they will share the 
bus more or less equally. When a processor 
changes to what would typically be considered a 
higher-priority activity such as chained program 
execution or DMA termination, it will generally 
be able to obtain the bus quickly and keep the bus 
for the duration of the more critical activity. 



8089 INPUT /OUTPUT PROCESSOR 

8289 Bus Arbiter 

When an lOP is configured remotely, an 8289 Bus 
Arbiter is used to control its access to the shared 
system bus (the CPU also has its own 8289). In a 
remote cluster of two lOPs or an lOP and a CPU, 
one 8289 controls access to the system bus for 
both processors in the cluster. The 8289 has 
several operating modes; when used with an 8089, 
the 8289 is usually strapped in its lOB (I/O 
Peripheral Bus) mode. 

The 8289 monitors the lOP's status lines. When 
these indicate that the lOP needs a cycle on the 
system bus, and the lOP does not presently have 
the bus, the 8289 activates a bus request signal. 
This signal, along with the bus request lines of 
other 8289s on the same bus, can be routed to an 
external priority-resolving circuit. At the end of 
the current bus cycle, this circuit grants the bus to 
the requesting 8289 with the highest priority. 
Several different prioritizing techniques may be 
used; in a typical system, an lOP would have 
higher bus priority than a CPU. If the 8289 does 
not obtain the bus for its processor, it makes the 
bus appear "not ready" as if a slow memory were 
being accessed. The processor's clock generator 
responds to the "not ready" condition by insert­
ing wait states into the lOP's bus cycle, thereby 
extending the cycle until the bus is acquired. 

Bus Arbitration for lOP Configurations 

When the CPU initializes an lOP, it must inform 
the lOP whether it is a master or a slave, and 
which request/grant mode is to be used. This sec­
tion covers the requirements and options 
available for each lOP configuration; section 3.6 
describes how the information is communicated 
at initialization time. 

Table 3-11 summarizes the bus arbitration 
requirements and options by lOP configuration. 
In the local configuration, all bus arbitration is 
performed by the request/ grant lines without 
additional hardware. One lOP may be connected 
to each of the CPU's RQ/GT lines. The lOP con­
nected to RQ/GTO will obtain the bus if both pro­
cessors make simultaneous requests. 

Since a s~le lOP in a remote configuration does 
not use RQ/GT, its mode may be set to 0 or 1 
without affect. The single remote lOP, however, 
must be initialized as a master. If two remote 
lOPs share an I/O bus, one must be a master and 
the other a slave; both must be initialized to use 
the same request/grant mode. Normally, mode 1 
will be selected for its improved responsiveness, 
and the designation of master will be arbitrary. If 
one lOP must have the I/O bus when the system 
comes up, it should be initialized as the master. 

When a remote lOP shares its I/O bus with a 
local CPU, it must be a slave and must use 
request/grant mode O. 

Bus Load Limit 

A locally configured lOP effectively has higher 
bus priority than the CPU since the CPU will 
grant the bus upon request from the lOP. One or 
two local lOPs can potentially monopolize the 
bus at the expense of the CPU. Of course, if the 
lOP activities are time-critical, this is exactly what 
should happen. On the other hand, there may be 
low-priority channel programs that have less 
demanding performance requirements. 

In such cases, the CPU may set a CCW bit called 
bus load limit to constrain the channel's use of the 
bus during normal (unchained) channel program 

Table 3-11. Bus Arbitration Requirements and Options 

Local Remote 
Remote With 

Local CPU 
lOP 

Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT 
Slave Mode Slave Mode Slave Mode 

IOP1 Slave 0 Master o or 1 Slave 0 

IOP2 Slave 0 Slave 
Same as 

N/A N/A 
Master 

3-36 



8089 INPUT/OUTPUT PROCESSOR 

execution. When this bit is set, the channel 
decrements a 7-bit counter from 7F (127) to OH 
with each instruction executed. Since the counter 
is decremented once per clock period, the channel 
waits a minimum of 128 clock cycles before it exe­
cutes the next instruction. By forcing the execu­
tion time of all instructions to 128 clocks, the use 
of the bus is reduced to between 3 and 25 percent 
of the available bus cycles. 

Setting the bus load limit effectively enables a 
CPU to slow the execution of a normal channel 
program, thus freeing up bus cycles. This is of 
most use in local configurations, but also may be 
effective in remote configurations, particularly 
when channel programs are executed from system 
memory. Bus load limit has no effect on chained 
channel programs, DMA transfers, DMA ter­
mination, or channel attention sequences. 

Bus Lock 

Like the 8086 and 8088, the 8089 has a LOCK 
(bus lock) signal which can be activated by soft­
ware. The LOCK output is normally connected to 
the LOCK input of an 8289 Bus Arbiter. When 
LOCK is active, the bus arbiter will not release the 
bus to another processor regardless of its priority. 
A channel automatically locks the bus during exe­
cution of the TSL (test and set while locked) 
instruction and may lock the bus for the duration 
of a DMA transfer. 

If bit 9 of register CC is set, the 8089 activates its 
LOCK output during a DMA transfer on that 
channel. If the transfer is synchronized, LOCK is 
active from the time that the first DRQ is 
recognized. If the transfer is unsynchronized, 
LOCK is active throughout the entire transfer 
(there are no idle periods in an un synchronized 
transfer). LOCK goes inactive when the channel 
begins the DMA termination sequence. 

A locked transfer ensures that the transfer will be 
completed in the shortest possible time and that 
the transferring channel has exclusive use of the 
bus. Once the channel obtains the bus and starts a 
locked transfer, the channel, in effect, becomes 
the highest-priority processor on that bus. 

The 8089 TSL (test and set while locked) 
instruction can be used to implement a 
semaphore. (See section 2.5 for a discussion of 
how a semaphore may be used to control the 

3-37 

access of multiple processors to ~hared 
resource.) The instruction activates LOCK and 
inspects the value of a byte in memory. If the 
value of the byte is OH, it is changed (set) to a 
value specified in the instruction and the follow­
ing instruction is executed. If the byte does not 
contain OH, control is transferred to another loca­
tion specified in the instruction. The bus is locked 
from the time the byte is read until it is either writ­
ten or control is transferred to ensure that another 
processor does not access the variable after TSL 
has read it, but before it has updated it (i.e., 
between bus cycles). The following line of code 
will repeatedly test a semaphore pointed to by GA 
until it is found to contain zero: 

TEST_FLAG: TSL [GAl. OFFH, TEST_FLAG 

When the semaphore is found to be zero, it is set 
to FFH and the program continues with the next 
instruction. 

3.6 Processor Control and 
Monitoring 

This section focuses on lOP/CPU interaction, 
i.e., how the CPU initializes the lOP and sub­
sequently sends commands to channels, and how 
the channels may interrupt the CPU. It also 
covers the channels' DMA control signals and the 
status signals that external devices can use to 
monitor lOP activities. 

Initialization 

Before the 8089 channels can be dispatched to 
perform I/O tasks, the lOP must be initialized. 
The initialization sequence (figure 3-29) provides 
the lOP with a definition of the system environ­
ment: physical bus widths, request/grant mode, 
and the location of the channel control block. 

The sequence begins when the lOP's RESET line 
is activated. This halts any operation in progress, 
but does not affect any registers. Upon the first 

Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

RESET_ 

lOP 

HALT 

WAIT FOR 
CHANNEL 

ATTENTION 

READ 
INITIALIZATION 

CONTROL 
BLOCKS 

CH1 BUSY-OH 

WAIT FOR 
CHANNEL 

ATTENTION 

CA+SEL 

CPU 

PREPARE 
INITIALIZATION 

CONTROL 
BLOCKS 

CH1 BUSY-FFH 

CH2 BUSY-OH 

ISSUE 
CHANNEL 

ATTENTION 

lOP IS READY; 
CPU MAY INITIALIZE 

ANOTHER lOP 

Figure 3-29. Initialization Sequence 

RESET after power-up, the content of all lOP 
registers is undefined. Register contents are 
preserved if the lOP is subsequently RESET, 
except that RESET always clears the chain bit in 
register CC. 

The lOP initializes itself by reading information 
from initialization control blocks located in the 
system space (see. figure 3-30). The three blocks 
are the SCP (system configuration pointer), SCB 
(system configuration block) and the CB (channel 
control block). The CB is normally RAM-based; 

Mnemonics © Intel, 1979 3-38 

the SCP and the SCB may be in RAM or ROM. It 
is the CPU's responsibility to properly setup the 
control blocks. 

The CPU starts the initialization sequence by issu­
ing a channel attention to channell (SEL low) or 
to channel 2 (SEL high). The CPU typically 
accesses the channels as two consecutive addresses 
in its I/O or memory space. An OUT instruction 
(for an I/O-mapped lOP) or a memory reference 
instruction (such as MOV) then issues the channel 
attention. 



8089 INPUT/OUTPUT PROCESSOR 

SYSTEM 
CONFIGURATION 

POINTER 
(FIXED LOCATION) 

SYSTEM 
CONFIGURATION 

BLOCK 
(USER·DEFINED LOCATION) 

CHANNEL 
CONTROL 

BLOCK 
(USER·DEFINED LOCATION) 

C 
H 
A 
N 
N 
E 
L 
2 

C 
H 
A 
N 
N 
E 
L 
1 

HIGH SYSTEM MEMORY 

(RESERVED) 

SCB SEGMENT BASE 

SCB OFFSET 

(RESERVED) I SYSBUS 

8086/8088 
RESET LOCATION 

CB SEGMENT BASE 

CB OFFSET 

(RESERVED) I SOC 

(RESERVED) 

PB SEGMENT BASE 

PB OFFSET 

BUSY I CCW 

(RESERVED) 

PB SEGMENT BASE 

PB OFFSET 

BUSY I CCW 

LOW SYSTEM MEMORY 

F 

F 

}- F 

F 

F 

F 

F 

F 

}-t-

1-

}---

}--

Figure 3-30. Initialization Control Blocks 

FFFEH 

FFFCH 

FFFAH 

FFF8H 

FFF6H 

FFF4H 

FFF2H 

FFFOH 

If channel 1 is selected (SEL=low), the lOP con­
siders itself a master (as discussed in section 3.5). 
If channel 2 is selected (SEL=high), the lOP 
operates as a slave. The lOP ignores, and does 
not latch, any subsequent channel attentions that 
occur during initialization. 

If the lOP is a master, it assumes that it has the 
bus immediately. If it is a slave, it pulses RQ/GT 
to request the bus from the CPU (local configura­
tion) or the other lOP (remote configuration). 
When the lOP has obtained the bus, it assumes 
that the system bus is eight bits wide and reads the 

3-39 



8089 INPUT /OUTPUT PROCESSOR 

SYSBUS field (figure 3.31) from location 
FFFF6H in system memory. This byte reUs the 
lOP the actual physical width of the system bus; 
aU subsequent accesses take advantage of a 16-bit 
bus if it is available; i.e., even-addressed words 
are fetched in single bus cycles. It is therefore 
advantageous to word-align the control blocks. 

7 

o o o o o 

W = 0 = 8-BIT SYSTEM BUS 
W = 1 = 18-BIT SYSTEM BUS 

o 

Figure 3-31. SYSBUS Encoding 

o 

w 

Next, the lOP reads the SCB address located at 
FFFF8H. This is a standard doubleword pointer, 
and the lOP constructs a 20-bit physical address 
from it by shifting the segment base left four bits 
and adding the offset word of the pointer. 

Having obtained the SCB address, the lOP reads 
the SOC (system operation command). This byte 
(see figure 3-32) teUs the lOP the request/grant 
mode and the width of the I/O bus. 

7 

o o o o o 

R = REQUEST/GRANT MODE 
I = 0 = 8-BIT I/O BUS 
I = 1 = 111-BIT I/O BUS 

R 

Figure 3-32. SOC Encoding 

o 

Then the lOP reads the doubleword pointer to the 
channel control block, converts the pointer into a 
20-bit physical address, and stores it in an internal 
register. This register is not accessible to channel 

3-40 

programs and is only loaded during initialization. 
The CB, therefore, cannot be moved during exe­
cution except by reinitializing the lOP. 

After loading the address of the CB, the lOP 
clears the channell BUSY flag to OH. The other 
fields in the CB are used when a channel is dis­
patched and are not read or altered in the 
initialization sequence. 

After the CPU has started the initialization 
sequence, it should monitor channell's BUSY 
flag in the CB to determine when the sequence has 
been completed. When the BUSY flag has been 
cleared, the CPU can dispatch either channel. It 
also can begin the initialization of another lOP. 
Since each lOP normally has a separate CB, the 
CPU must allocate the CB and update the pointer 
in the SCB before initializing the next lOP. Alter­
natively, mUltiple SCBs could be employed, each 
pointing to a different CB area. In this case the 
CPU would update the pointer in the SCP before 
initializing the next lOP. It follows from this that 
in multi-lOP systems, either the SCB or SCP, or 
both, must be RAM-based. When all lOPs have 
been initialized, the CPU may use RAM occupied 
by the SCB for another purpose. 

Channel Commands 

After initialization, any channel attention is 
interpreted as a command to channel 1 
(SEL=low) or to channel 2 (SEL=high). As 
discussed in section 3.2, the channel attention, 
depending on the activities of both channels, may 
not be recognized immediately. The channel 
attention is latched, however, so that it will be 
serviced as soon as priorities allow. 

When the channel recognizes the CA, it sets its 
BUSY flag in the CB to FFH. This does not pre­
vent the CPU from issuing another CA, but pro­
vides status information only. In its response to a 
CA, the channel reads various control fields from 
system memory. It is the responsibility of the 
CPU to ensure that the appropriate fields are 
properly initialized before issuing the CA. 

After setting its BUSY flag, the channel reads its 
CCW from the CB. It examines the command 
field (see figure 3-33) and executes the command 
encoded there by the CPU. 



8089 INPUT/OUTPUT PROCESSOR 

7 

CF COMMAND FIELD 
000 UPDATE PSW 

o 

001 START CHANNEL PROGRAM LOCATED IN I/O SPACE. 
010 (RESERVED) 
011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE. 
100 (RESERVED) 
101 RESUME SUSPENDED CHANNEL OPERATION 
110 SUSPEND CHANNEL OPERATION 
111 HALT CHANNEL OPERATION 

ICF INTERRUPT CONTROL FIELD 
00 IGNORE, NO EFFECT ON INTERRUPTS. 
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED. 
10 ENABLE INTERRUPTS. 
11 DISABLE INTERRUPTS. 

B BUS LOAD LIMIT 
o NO BUS LOAD LIMIT 
1 BUS LOAD LIMIT 

P PRIORITY BIT 

Figure 3-33. Channel Command Word Encoding 

Figure 3-34 illustrates the channel's response to 
each type of command. Note that if CF contains a 
reserved value (010 or 100), the channel's 
response is unpredictable. 

The CPU can use the "update PSW" command 
to alter the bus load limit and priority bits in the 
PSW (see figure 3-17) without otherwise affecting 
the channel. This command also allows the CPU 
to control interrupts originating in the channel; 
this topic is discussed in more detail later in this 
section. 

The two "start program" commands differ only 
in their affect on the TP tag bit. If CF=OOI, the 
channel sets the tag to 1 to indicate that the pro­
gram resides in the 110 space. If CF=Oll, the tag 
is cleared to 0, and the program is assumed to be 
in the system space. The channel converts the 
doubleword parameter block pointer to a 20-bit 
physical address and loads this into PP. It loads 
the doubleword task block (channel program) 
pointer into TP, updates the PSW as specified by 
the ICF, Band P fields of the CCW and starts the 
program with the instruction pointed to by TP . 

3-41 

The CPU may suspend a channel operation 
(either program execution or DMA transfer) by 
setting CF to 110. The channel saves its state (TP, 
its tag bit, and PSW) in the first two words of the 
parameter block (see figure 3-18 for format) and 
clears its BUSY flag to OH. Note the following in 
regard to a suspended operation: 

• The content of the doubleword pointer to the 
beginning of the channel program is replaced 
by the channel state save data. Therefore, a 
suspended operation may be resumed, but 
cannot be start~d from the beginning without 
recreating the doubleword pointer. 

• TP is the only register saved by this 
operation. If another channel program is 
started on this channel, the other registers, 
including PP, are subject to being over­
written. In general, suspend is used to tem­
porarily halt a channel, not to "interrupt" it 
with another program. Section 3.10 provides 
an example of a program that can be used to 
save another program's registers. 



COMMAND 

8089 INPUT/OUTPUT PROCESSOR 

CHANNEL 

PP 

CHANNEL 
CONTROL 

BLOCK 

(RESERVED) 1 
r 

PARAMETER 
BLOCK 

UPDATE PSW 
(CF = 000) rn ... 1 __ T_p_-", 

PARAMETER - BLOCK -
POINTER 

BUSY I CCW 

4 

2 TB POINTER 
r-- OR -
CHANNEL STATE 0 

T 
START PROGRAM A 
(CF=001/011) G 

(CR=110) G ""'" '"'''''' f 
RESUME OPERATION 
(CF=101) 

U1~T 

PP 

~{ I TP 

PP 

~ 
PP 

8 

o 

(RESERVED) 6 1 ! PARAMETER 4 
, 

BLOCK 

{ POINTER 2 TASK 2 
- BLOCK -

POINTER 0 

(RESERVED) I 1 
PARAMETER 4 

, 'r 
f- BLOCK -

-:i{ 
POINTER 2 

I BUSY I - C~~~fEEL-
CCW 0 

(RESERVED) r 
PARAMETER 4 

BUSY I CCW 0 '--___ --' 0 

TP Ii If- P~~~:R -I. 2. { 2 . ., r -C~~~ikEL -

~ ____________ L-L-____________ ~ ! 
HALT OPERATION 
(CF=111) 

mG
T 

PP (RESERVED) 

PARAMETER 
~ BLOCK -

TP POINTER 

BUSY I CCW 

Figure 3-34. Channel Commands 

3-42 

1 
4 

2 TB POINTER 2 
- OR -

o CHANNEL STATE 0 



8089 INPUT IOUTPUT PROCESSOR 

• Suspending a DMA transfer does not affect 
any 110 devices (an 110 device will act as 
though the transfer is proceeding). The CPU 
must provide for conditions that may arise if, 
for example, a device requests a DMA 
transfer, but the channel does not 
acknowledge the request because it has been 
suspended. Similarly, an I/O device may be 
in a different condition when the operation is 
resumed. 

A suspended operation may be resumed by setting 
CF to 101. This command causes the channel to 
reload TP, its tag bit, and the PSW from the first 
two words of PB. Resuming an operation that has 
not been suspended will give unpredictable results 
since the first two words of PB will not contain 
the required channel state data. A resume com­
mand does not affect any channel registers other 
than TP. 

The CPU may abort a channel operation by 
issuing a "halt" command (CF=lll). The chan­
nel clears its BUSY flag to OH and then idles. 
Again, the CPU must be prepared for the effect 
aborting a DMA transfer may have on an I/O 
device. 

ORQ (OMA Request) 

The synchronizing device in a DMA transfer uses 
the DRQ line to indicate when it is ready to send 
or receive the next byte or word. The channel 
recognizes a signal on this line only during a 
DMA transfers, i.e., after the instruction follow­
ing XFER has been executed and before a ter-· 
mination condition has occurred. The channels 
have separate DMA request lines (DRQI and 
DRQ2). 

EXT (External Terminate) 

An external device (typically the synchronizing 
device) can terminate a DMA transfer by signal­
ing on this line. Each channel has its own external 
terminate line (EXTl and EXT2). The channel 
stops the transfer as soon as the current fetch or 
store cycle is completed. An external terminate in 
an unsynchronized transfer could result in a loss 
of data, although this would not be a typical use 
of EXT. In a synchronized transfer, the syn­
chronizing device will normally issue EXT instead 

3-43 

of DRQ following the last transfer cycle. If EXT 
is activated during a transfer cycle, a fetched byte 
may not be stored as explained in section 3.4. 

A channel does not recognize EXT if it is not per­
forming a DMA transfer. If EXTl and EXT2 are 
activated simultaneously, EXTI is recognized 
first. 

Interrupts 

Each channel has a separate system interrupt line 
(SINTRI and SINTR2). A channel program may 
generate a CPU interrupt request by executing a 
SINTR instruction. Whether this instruction 
actually activates the SINTR line, however, 
depends upon the state of the interrupt control bit 
(bit 3 of the PSW; see figure 3-17). If this bit is 
set, interrupts from the channel are enabled, and 
execution of the SINTR instruction activates 
SINTR. If the interrupt control bit is cleared, the 
SINTR instruction has no effect; interrupts from 
the channel are disabled. 

The CPU can alter a channel's interrupt control 
bit by sending any command to the channel with 
the value of ICF (interrupt control field) in the 
CCW set to 10 (enable) or II (disable). Thus, the 
CPU can prevent interrupts from either channel. 

Once activated, SINTR remains active until the 
CPU sends a channel command with ICF set to 01 
(interrupt acknowledge). When the channel 
receives this command, it clears the interrupt ser­
vice bit in the PSW (figure 3-17) and removes the 
interrupt request. Disabling interrupts also clears 
the interrupt service bit and lowers SINTR. 

Status Lines 

The lOP emits signals on the SO-S2 status.\ines to 
indicate to external devices the type of bus cycle 
the processor is starting. Table 3-12 shows the 
signals that are output for each type of cycle. 
These status lines are connected to an 8288 Bus 
Controller. The bus controller decodes these lines 
and outputs the signals that control components 
attached to the bus. The lOP indicates "instruc­
tion fetch" on these lines when it is reading and 
writing memory operands as well as when it is fet-

Mnemonics © Intel, 1979 



80891NPUT/OUTPUT PROCESSOR 

ched instructions. In the remote configuration, an 
8289 Bus Arbiter monitors th~ so-Si status lines 
to determine when a system bus access is required. 

Table 3-12. Status Signals SO-S2 

S2 S1 SO Type of Bus Cycle 

0 0 0 Instruction fetch from 1/0 space 

0 0 1 Data fetch from 1/0 space 

0 1 0 Data store to 1/0 space 

0 1 1 (not used) 

1 0 0 Instruction fetch from system 
space 

1 0 1 Data fetch from system space 

1 1 0 Data store to system space 

1 1 1 Passive; no bus cycle run 

Status lines S3-S6 indicate whether the bus cycle is 
DMA or non-DMA, and which channel is run­
ning the cycle (see table 3-13). Note that when the 
lOP is not running a bus cycle (e.g., when it is idle 
or when it is executing an internal cycle that does 
not use the bus), the status lines reflect the last 
bus cycle run. 

Table 3-13. Status Signals S3-S6 

S6 S5 S4 S3 Bus Cycle 

1 1 0 0 DMA cycle on channel 1 

1 1 0 1 Dfy'lA cycle on channel 2 

1 1 1 0 Non-DMA cycle on channel 1 

1 1 1 1 Non-DMA cycle on channel 2 

3.7 Instruction Set 

This section divides the lOP's 53 instructions into 
five functional categories: 

I. data transfer, 

2. arithmetic, 

3. logic and bit manipulation, 

4. program transfer, 

5. processor control. 

Mnemonics © Intel, 1979 3-44 

The description of each instruction in these 
categories explains how the instruction operates 
and how it may be used in channel programs. 
Instructions that perform essentially the same 
operation (e.g., ADD and ADDB, which add 
words and bytes respectively), are described 
together. A reference table at the end of the sec­
tion lists every instruction alphabetically and pro­
vides execution time, encoded length, and sample 
ASM-89 coding for each permissable operand 
combination. For information on how the 8089 
machine instructions are encoded in memory, see 
section 4.3. 

In reading this section, it is important to recall 
that the instruction set does not differentiate 
between memory addresses and I/O device 
addresses. Instructions that are described as 
accepting byte and word memory operands may 
also be used to read and write I/O devices. 

Data Transfer Instructions 

These instructions move data between memory 
and channel registers. Traditional byte and word 
moves (including memory-to-memory) are 
available, as are special instructions that load 
addresses into pointer registers and update tag 
bits in the process. 

MOV destination, source 

MOV transfers a byte or word from the source to 
the destination. Four instructions are provided: 

MOV 
MOVB 
MOVI 
MOVBI 

Move Word Variable, 
Move Byte Variable, 
Move Word Immediate, 
Move Byte Immediate. 

Figure 3-35 shows how these instructions affect 
register operands. Notice that when a pointer 
register is specified as the destination of a MOV, 
its tag bit is unconditionally set to I. MOV 
instructions are therefore used to load I/O space 
addresses into pointer registers-. 



8089 INPUT/OUTPUT PROCESSOR 

Register is Destination Register is Source 

Tag 19 15 7 0 Tag 19 15 7 o 
Byte __ -,-_____ -,-____ ---, 

Operation ~ 1J ~S ~ ~ sis S S S S S S SiR R R R R R R R I ~xJ0~~xlx X X X X X X XIT T T T T T TTl 

~XJG~~XITTTTTTTTITTTTTTTT I 

T = bit is transferred to destination operand 
R = bit is replaced by source operand 
S = bit is sign extension of high-order bit transferred 
X = bit is ignored 
1 = bit is unconditionally set 

Figure 3-35. Register Operands in MOV Instructions 

MOVP destination, source 

MOVP (move pointer) transfers a physical 
address variable between a pointer register and 
memory. If the source is a pointer register, its 
content and tag bit are converted to a physical 
address pointer (see figure 3-23). If the source is a 
memory location, the three bytes are converted to 
a 20-bit physical address and a tag value, and are 
loaded into the pointer register and its tag bit. 
MOVP is typically used to save and restore 
pointer registers. 

LPD destination, source 

LPD (load pointer with doubleword) converts a 
doubleword pointer (see figure 3-22) to a 20-bit 
physical address and loads it into the destination, 
which must be a pointer register. The pointer 
register's tag bit is unconditionally cleared to 0, 
indicating a system address. Two instructions are 
provided: 

LPD 

LPDI 

Load Pointer With Doubleword 
Variable 
Load Pointer With Doubleword 
Immediate 

3-45 

An 8086 or 8088 can pass any address in its 
megabyte memory space to a channel program in 
the form of a doubleword pointer. The channel 
program can access the location by using LPD to 
load the location address into a pointer register. 

Arithmetic Instructions 

The arithmetic instructions interpret all operands 
as unsigned binary numbers of 8, 16 or 20 bits. 
Signed values may be represented in standard 
two's complement notation with the high-order 
bit representing the sign (O=positive, l=negative). 
The processor, however, has no way of detecting 
an overflow into a sign bit so this possibility must 
be provided for in the user's software. 

The 8089 performs arithmetic operations to 20 
significant bits as follows. Byte and word 
operands are sign-extended to 20 bits (e.g., bit 7 
of a byte operand is propagated through bits 8-19 
of an internal register). Sign extension does not 
affect the magnitude of the operand. The opera­
tion is then performed, and the 20-bit result is 

Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

returned to the destination operand. High-order 
bits are truncated as necessary to fit the result in 
the available space. A carry out of, or borrow 
into, the high-order bit of the result is not 
detected. However, if the destination is a register 
that is larger than the source operand, carries will 
be reflected in the upper register bits, up to the 
size of the register. 

Figure 3-36 shows how the arithmetic instructions 
treat registers when they are specified as source 
and destination operands. 

ADD destination, source 

The sum of the two operands replaces the destina­
tion operand. Four addition instructions are 
provided: 

ADD 
ADDB 
ADD! 
ADDBI 

Add Word Variable 
Add Byte Variable 
Add Word Immediate 
Add Byte Immediate 

Register is Destination 

Tag 19 15 7 0 

INC destination 

The destination is incremented by 1. Two instruc­
tions are available: 

INC 
INCB 

Increment Word 
Increment Byte 

DEC destination 

The destination is decremented by 1. Word and 
byte instructions are provided: 

DEC 
DECB 

Decrement Word 
Decrement Byte 

Logical and Bit Manipulation 
Instructions 

The logical instructions include the boolean 
operators AND, OR and NOT. Two bit manipu­
lation instructions are provided for setting or 

Register is Source 

Tag 19 15 7 o 
Byte r::l r- -

Operation LXj~~~ RIR R R R R R R RIR R R R R R R R I rX; rx X Xxix X X X X X X xlp P P P P P P P I L .... .1.: ___ -L.. ____ .........J.L....-____ --' 

Word 

Operation ~xJ~~~ RIR R R R R R R RIR R R R R R R R I 

Mnemonics.© Intel, 1979 

X = bit is ignored in operation 
R = bit is replaced by operation result 
P = bit participates in operation 

Figure 3-36. Register Operands in Arithmetic Instructions 

3-46 



8089 INPUT/OUTPUT PROCESSOR 

clearing a single bit in memory or in an I/O device 
register. As shown in figure 3-37, the logical 
operations always leave the upper four bits of 
20-bit destination registers undefined. These bits 
should not be assumed to contain reliable values 
or the same values from one operation to the 
next. Notice also that when a register is specified 
as the destination of a byte operation, bits 8-15 
are overwritten by bit 7 of the result. Bits 8-15 can 
be preserved in AND and OR instructions by 
using word operations in which the upper byte of 
the source operand is FFH or OOH, respectively. 

AND destination, source 

The two operands are logically ANDed and the 
result replaces the destination operand. A bit in 
the result is set if the bits in the corresponding 
positions of the operands are both set, otherwise 
the result bit is cleared. The following AND 
instructions are available: 

AND 
ANDB 
ANDI 
ANDBI 

Logical AND Word Variable 
Logical AND Byte Variable 
Logical AND Word Immediate 
Logical AND Byte Immediate 

Register is Destination 

Tag 19 15 7 0 

AND is useful when more than one bit of a device 
register must be cleared while leaving the remain­
ing bits intact. For example, ANDing an 8-bit 
register with EEH only clears bits 0 and 4. 

OR destination, source 

The two operands are logically ORed, and the 
result replaces the destination operand. A bit in 
the result is set if either or both of the correspond­
ing bits of the operands are set; if both operand 
bits are cleared, the result bit is cleared. Four 
types of OR instructions are provided: 

OR 
ORB 
ORI 
ORBI 

Logical OR Word Variable 
Logical OR Byte Variable 
Logical OR Word Immediate 
Logical OR Byte Immediate 

OR can be used to selectively set multiple bits in a 
device register. For example, ORing an 8-bit 
register with 30H sets bits 4 and 5, but does not 
affect the other bits. 

Register is Source 

Tag 19 15 7 o 
Byte r A r. - - -

Operation L~LU~~ uis S S SS SS SIRR RRRR RR I [XJ ~ ~~ xix x X X X X X xlp p p p p p p pi 

Word r ;J r. -­
Operation L~ ~ ~ ~ U I R R R R R R R R I R R R R R R R R I [~~~ xlp p p p p p p pip p p p p p p p I 

X = bit is ignored in operation 
U = bit is undefined following operation 
R = bit participates in operation and is replaced by result 
S = bit is sign-extension of high-order result bit 
P = bit participates in operation, but is unchanged 

Figure 3-37. Register Operands in Logical Instructions 

3-47 
Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

NOT destination/destination, source 

NOT inverts the bits of an operand. If a single 
operand is coded, the inverted result replaces the 
original value. If two operands are coded, the 
inverted bits of the source replace the destination 
value (which must be a register), but the source 
retains its original value. In addition to these two 
operand forms, separate mnemonics are provided 
for word and byte values: 

NOT 
NOTB 

Logical NOT Word 
Logical NOT Byte 

NOT followed by INC will negate (create the 
two's complement of) a positive number. 

seTa destination, bit-select 

The bit-select operand specifies one bit in the 
destination, which must be a memory byte, that is 
unconditionally set to 1. A bit-select value of 0 
specifies the low-order bit of the destination while 
the high-order bit is set if bit-select is 7. SETB is 
handy for setting a single bit in an 8-bit device 
register. 

CLR destination, bit-select 

CLR operates exactly like SETB except that the 
selected bit is unconditionally cleared to O. 

Program Transfer Instructions 

Register TP controls the sequence in which chan­
nel program instructions are executed. As each 
instruction is executed, the length of the instruc­
tion is added to TP so that it points to the next 
sequential instruction. The program transfer 
instructions can alter this sequential execution by 
adding a signed displacement value to TP. The 
displacement is contained in the program transfer 
instruction and may be either 8 or 16 bits long. 
The displacement is encoded in two's complement 
notation, and the high-order bit indicates the sign 
(O=positive displacement, 1 =negative displace­
ment). An 8-bit displacement may cause a 
transfer to a location in the range -128 through 
+127 bytes from the end of the transfer instruc­
tion, while a 16-bit displacement can transfer to 

Mnemonics © Intel, 1979 3-48 

any location within -32,768 through +32,767 
bytes. An instruction containing an 8-bit displace­
ment is called a short transfer and ail instruction 
containing a 16-bit displacement is called a long 
transfer. 

The program transfer instructions have alternate 
mnemonics. If the mnemonic begins with the let­
ter "L," the transfer is long, and the distance to 
the transfer target is expressed as a 16-bit 
displacement regardless of how far away the 
target is located. If the mnemonic does not begin 
with "L," the ASM-89 assembler may build a 
short or long displacement according to rules 
discussed in section 3.9. 

The "self-relative" addressing technique used by 
program transfer instructions has two important 
consequences. First, it promotes position­
independent code, i.e., code that can be moved in 
memory and still execute correctly. The only 
restriction here is that the entire program must be 
moved as a unit so that the distance between the 
transfer instruction and its target does not 
change. Second, the limited addressing range of 
these instructions must be kept in mind when 
designing large (over 32k bytes of code) channel 
programs. 

CALL/LCALL TPsave, target 

CALL invokes an out-of-line routine, saving the 
value of TP so that the subroutine can transfer 
back to the instruction following the CALL. The 
instruction stores TP and its tag bit in the TPsave 
operand, which must be a physical address 
variable, and then transfers to the target address 
formed by adding the target operand's displace­
ment to TP. The subroutine can return to the 
instruction following the CALL by using a 
MOVP instruction to load TPsave back into TP. 

Notice that the 8089's facilities for implementing 
subroutines, or procedures, is less sophisticated 
than its counterparts in the 8086/8088. The prin­
cipal difference is that the 8089 does not have a 
built in stack mechanism. 8089 programs can 
implement a stack using a base register as a stack 
pointer. On the other hand, since channel pro­
grams are not subject to interrupts, a stack will 
not be required for most channel programs. 



8089 INPUT /OUTPUT PROCESSOR 

JMP/LJMP target 

JMP causes an unconditional transfer (jump) to 
the target location. Since the task pointer is not 
saved, no return to the instruction following the 
JMP is implied. 

JZlLJZ source, target 

JZ (jump if zero) effects a transfer to the target 
location if the source operand is zero; otherwise 
the instruction following JZ is executed. Word 
and byte values may be tested by alternate 
instructions: 

JZ/LJZ 
JZB/LJZB 

Jump/Long Jump if Word Zero 
Jump/Long Jump if Byte Zero 

If the source operand is a register, only the low­
order 16 bits are tested; any additional high-order 
bits in the register are ignored. To test the low­
order byte of a register, clear bits 8-15 and then 
use the word form of the instruction. 

JNZlLJNZ source, target 

JNZ operates exactly like JZ except that control is 
transferred to the target if the source operand 
does not contain all O-bits. Word and byte sources 
may be tested using these mnemonics: 

JNZlLJNZ Jump/Long Jump if Word Not 
Zero 

JNZB/LJNZB Jump/Long Jump if Byte Not 
Zero. 

JMCE/LJMCE source, target 

This instruction (jump if masked compare equal) 
effects a transfer to the target location if the 
source (a memory byte) is equal to the lower byte 
in register MC as masked by the upper byte in 
MC. Figure 3-15 illustrates how O-bits in the 
upper half of MC cause the corresponding bits in 
the lower half of MC and the source operand to 
compare equal, regardless of their actual values. 
For example, if bits 8-15 of MC contain the value 
01H, then the transfer will occur if bit 0 of the 
source and register MC are equal. This instruction 
is useful for testing multiple bits in 8-bit device 
registers. 

3-49 

JMCNE/LJMCNE source, target 

This instruction causes a jump to the target loca­
tion if the source is not equal to the mask/ 
compare value in MC. It otherwise operates iden­
tically to JMCE. 

JBT ILJBT source, bit-select, target 

JBT (jump if bit true) tests a single bit in the 
source operand and jumps to the target if the bit 
is a 1. The source must be a byte in memory or in 
an I/O device register. The bit-select value may 
range from 0 through 7, with 0 specifying the low­
order bit. This instruction may be used to test a 
bit in an 8-bit device register. If the target is the 
JBT instruction itself, the operation effectively 
becomes "wait until bit is 0." 

JNBT ILJNBT source, bit-select, target 

This instruction operates exactly like JBT, except 
that the transfer is made if the bit is not true, i.e., 
if the bit is O. 

Processor Control Instructions 

These instructions enable channel programs to 
control lOP hardware facilities such as the LOCK 
and SINTRI-2 pins, logical bus width selection, 
and the initiation of a DMA transfer. 

TSL destination, set-value, target 

Figure 3-38 illustrates the operation of the TSL 
(test and set while locked) instruction. TSL can be 
used to implement a semaphore variable that 
controls access to a shared resource in a 
multiprocessor system (see section 2.5). If the 
target operand specifies the address of the TSL 
instruction, the instruction is repetively executed 
until the semaphore (destination) is found to con­
tain zero. Thus the channel program does not 
proceed until the resource is free. 

WID source-width, dest-width 

WID (set logical bus widths) alters bits 0 and 1 of 
the PSW, thus specifying logical bus widths for a 
DMA transfer. The operands may be specified as 

Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

ACTIVATE 
COCK 

FETCH 
DESTINA TlON 

ASSIGN, 
SET·VALUETO 
DESTINA TION 

STORE 
OESTINA TION 

DE·ACTIVATE 
meR 

# OH DE·ACTIVATE 
LOCK 

NEXT SEQUENTIAL INSTRUCTION 

Figure 3-38. Operation of TSL Instruction 

8 or 16 (bits), with the restriction that the logical 
width of a bus cannot exceed its physical width. 
The logical bus widths are undefined following a 
processor RESET; therefore the WID instruction 
must be executed before the first transfer. 
Thereafter the logical widths retain their values 
until the next WID instruction or processor 
RESET. 

XFER (no operands) 

XFER (enter DMA transfer mode after following 
instruction) prepares the channel for a DMA 
transfer operation. In a synchronized transfer, 

Mnemonics © Intel, 1979 
3-50 

the instruction following XFER may ready the 
synchronizing device (e.g., send a "start" com­
mand or the last of a series of parameters). Any 
instruction, including NOP and WID, may follow 
XFER, except an instruction that alters GA, GB 
orGC. 

SINTR (no operands) 

This instruction sets the interrupt service bit in the' 
PSW and activates the channel's SINTR line if 
the interrupt control bit in the PSW is set. If the 



8089 INPUT /OUTPUT PROCESSOR 

interrupt control bit is cleared (interrupts from 
this channel are disabled), the interrupt service bit 
is set, but SINTRI-2 is not activated. A channel 
program may use this instruction to interrupt a 
CPU. 

NOP (no operands) 

This instruction consumes clock cycles but per­
forms no operation. As such, it is useful in timing 
loops. 

HLT (no operands) 

This instruction concludes a channel program. 
The channel clears its BUSY flag and then idles. 

Instruction Set Reference Information 

Table 3-16 lists every 8089 instruction 
alphabetically by its ASM-89 mnemonic. The 
ASM-89 coding format is shown (see table 3-14 
for an explanation of operand identifiers) along 

with the instruction name. For every combination 
of operand types (see table 3-15 for key), the 
instruction's execution time and its length in 
bytes, and a coding example are provided. 

The instruction timing figures are the number of 
clock periods required to execute the instruction 
with the given combination of operands. At 
5 MHz, one clock period is 200 ns; at 8 MHz a 
clock period is 125 ns. Two timings are provided 
when an instruction operates on a memory word. 
The first (lower) figure indicates execution time 
when the word is aligned on an even address and 
is accessed over a 16-bit bus. The second figure is 
for odd-addressed words on 16-bit buses and any 
word accessed via an 8-bit bus. 

Instruction fetch time is shown in table 3-17 and 
should be added to the execution times shown in 
table 3-16 to determine how long a sequence of 
instructions will take to run. (Section 3.2 explains 
the effect of the instruction queue on 16-bit 
instruction fetches.) External delays such as bus 
arbitration, wait states and activity on the other 
channel will increase the elapsed time over the 
figures shown in tables 3-16 and 3-17. These 
delays are application dependent. 

Table 3-14. Key to ASM-89 Operand Identifiers 

IDENTIFIER USED IN EXPLANATION 

destination data transfer, A register or memory location that may contain data operated on 
arithmetic, by the instruction, and which receives (is replaced by) the result 
bit manipulation of the operation. 

source data transfer, A register, memory location, or immediate value that is used in 
arithmetic, the operation, but is not altered'by the instruction. 
bit manipulation 

target program transfer Location to which control is to be transferred. 

TPsave program transfer A 24-bit memory location where the address of the next sequen-
tial instruction is to be saved. 

bit-select bit manipulation Specification of a bit location within a byte; O=least-significant 
(rightmost) bit, 7=most-significant (leftmost) bit. 

set-value TSL Value to which destination is set if it is found O. 

source-width WID Logical width of source bus. 

dest-width WID Logical width of destination bus. 

3-51 
Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

Table 3-15. Key to Operand Types 

IDENTIFIER EXPLANATION 

(no operands) No operands are written 

register Any general register 

ptr-reg A pointer register 

immed8 A constant in the range O-FFH 

immed16 A constant in the range O-FFFFH 

mem8 An 8-bit memory location (byte) 

mem16 A 16-bit memory location (word) 

mem24 A 24-bit memory location (physical address pointer) 

mem32 A 32-bit memory location (doubleword pointer.) 

label A label within -32,768 to +32,767 bytes of the end of the instruction 

short-label A label within -128 to +127 bytes of the end of the instruction 

0-7 A constant in the range: 0-7 

8/16 The constant 8 or the constant 16 

Table 3-16. Instruction Set Reference Data 

ADD destination, source Add Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 ADD BC, [GA].LENGTH 
mem16, register 16/26 2-3 ADD [GBJ, GC 

ADDB destination, source Add Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ADDB GC, [GA].N_CHARS 
mem8, register 16 2-3 ADDB [PP].ERRORS, MC 

ADDBI destination, source Add Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ADDBI MC,10 
mem8, immed8 16 3-4 ADDBI [PP+IX+].RECORDS,2CH 

ADDI destination, source Add Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ADD I GB,OC25BH 
mem16, immed16 16/26 4-5 ADDI [GB].POINTER,5899 

Mnemonics © Intel, 1979 3-52 



8089 INPUT /OUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

AND destination, source logical AND Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 AND MC, [GA].FlAG_WORD 
mem16, register 16/26 2-3 AND [GC].STATUS, BC 

ANDB destination, source logical AND Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 AND BC, [GC] 
mem8, register 16 2-3 AND [GA+IX].RESUlT, GA 

ANDBI destination, source logical AND Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 GA,01100000B 
mem8, immed8 16 3-4 [GC+IX],2CH 

ANDI destination, source logical AND Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 IX,OH 
mem16, immed16 16/26 4-5 [GB+IX].TAB,40H 

CALL TPsave, target Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 3-5 CAll [GC+IX].SAVE, GET_NEXT 

CLR destination, bit select Clear Bit To Zero 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 ClR [GAl. 3 

DEC destination Decrement Word By 1 

Operands Clocks Bytes Coding Example 

register 3 2 
mem16 16/26 2-3 DEC [PP].RETRY 

3-53 Mnemonics © Intel, 1979 



8089 INPUT IOUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

DECB destinlltion Decrement Byte By 1 

Operands Clocks Bytes Coding Example 

mema 16 2-3 DECB [GA+IX+l.TAB 

HLT (no operands) Halt Channel Program 

Operands Clocks Bytes Coding Example 

(no operands) 11 2 HLT 

INC destination Increment Word by 1 

Operands Clocks Bytes Coding Example 

register 3 2 INC GA 
mem16 16/26 2-3 INC [GAl.COUNT 

INCB destination Increment Byte by 1 

Operands Clocks Bytes Coding Example 

mema 16 2-3 INCB [GBl.POINTER 

JBT source, bit-select, target Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mema, 0-7, label 14 3-5 JBT [GA].RESULLREG, 3, DATA_VALID 

JMCE source, target Jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mema, label 14 3-5 JMCE [GBl.FLAG, STOP _SEARCH 

JMCNE source, target Jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

memB, label 14 3-5 JMCNE [GB+IX], NEXT_ITEM 

JMP target Jump Unconditionally 

Operands Clocks Bytes Coding Example 

label 3 ,3-4 JMP READ_SECTOR 

Mnemonics © Intel, 1979 
3-54 



8089 INPUT/OUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

JNBT source, bit-select, target Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 3-5 JNBT [GC], 3, RE_READ 

JNZ source, target Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JNZ BC, WRITE_LINE 
mem16, label 12/16 3-5 JNZ [PP].NUM_CHARS, PUT _BYTE 

JNZB source, target Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 3-5 JNZB [GAl. MORE_DATA 

JZ source, target Jump if Word is Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JZ BC, NEXT_LINE 
mem16, label 12/16 3-5 JZ [GC+IX].INDEX, BUF _EMPTY 

JZB source, target Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 3-5 JZB [PP].L1NES_LEFT, RETURN 

LCALL TPsave, target Long Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 4-5 LCALL [GC].RETURN_SAVE,INIT_8279 

LJBT source, bit-select, target Long Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA_OK 

LJMCE source, target Long jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 4-5 LJMCE [GBl. BYTE_FOUND 

3-55 
Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

LJMCNE source, target Long jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 4-5 LJMCNE [GC+IX+], SCAN_NEXT 

LJMP target Long Jump Unconditional 

Operands Clocks Bytes Coding Example 

label 3 4 LJMP GET _CURSOR 

LJNBT source, bit-select, target Long Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJNBT [GCl, 6, CRCC_ERROR 

LJNZ source, target Long Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJNZ BC, PARTIAL_XMIT 
mem16, label 12/16 4-5 LJNZ [GA+IXl.N_LEFT, PUT_DATA 

LJNZB source, target Long Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJNZB [GB+IX+l.ITEM, BUMP_COUNT 

LJZ source, target Long Jump if Word Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJZ IX, FIRST_ELEMENT 
mem16, label 12/16 4-5 LJZ [GBl.XMIT_COUNT, NO_DATA 

LJZB source, target Long Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJZB [GAl, RETURN_LINE 

LPD destination, source Load Pointer With Doubleword Variable 

Operands Clocks Bytes Coding Example 

ptr-reg, mem32 20/28' 2-3 LPD GA, [PPl.BUF _START 

*20 clocks if operand is on even address; 28 if on odd address 

Mnemonics © Intel, 1979 
3-56 



8089 INPUT /OUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

LPDI destination, source Load Pointer With Doubleword Immediate 

Operands Clocks Bytes Coding Example 

ptr-reg, immed32 12/16' 6 LPDI GB, DISK_ADDRESS 

'12 clocks if instruction is on even address; 16 if on odd address 

MOV destination, source Move Word 

Operands Clocks Bytes Coding Example 

register, mem16 8/12 2-3 MOV IX, [GC] 
mem16, register 10/16 2-3 MOV [GA].COUNT, BC 
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB] 

MOVB destination, source Move Byte 

Operands Clocks Bytes Coding Example 

register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT 
mem8, register 10 2-3 MOVB [PP].RETURN_CODE, GC 
mem8, mem8 18 4-6 MOVB [GB+IX+J, [GA+IX+] 

MOVBI destination, source Move Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 MOVBI MC, 'A' 
mem8, immed8 12 3-4 MOVBI [PP].RESULT,O 

MOVI destination, source Move Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 MOVI BC,O 
mem16, immed16 12/18 4-5 MOVI [GBJ, OFFFFH 

MOVP destination, source Move Pointer 

Operands Clocks Bytes Coding Example 

ptr-reg, mem24 19/27' 2-3 MOVP TP, [GC+IX] 
mem24, ptr-reg 16/22' 2-3 MOVP [GB].SAVE_ADDR, GC 

'First figure is for operand on even address; second is for odd-addressed operand. 

NOP (no operands) No Operation 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 NOP 

3-57 Mnemonics © Intel, 1979 



8089 INPUT IOUTPUT PROCESSOR 

Table 3-16. Instruction Set Reference Data (Cont'd.) 

NOT destination/destination, source Logical NOT Word 

Operands Clocks Bytes Coding Example 

register 3 2 NOT MC 
mem16 16/26 2-3 NOT [GA].PARM 
register, mem16 11/15 2-3 NOT BC, [GA+IX].LlNES_LEFT 

NOTB destination / destination, source Logical NOT Byte 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 NOTB [GA].PARM_REG 
register, mem8 11 2-3 NOTB IX, [GB].STATUS 

OR destination, source Logical OR Word 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 OR MC, [GC].MASK 
mem16, register 16/26 2-3 OR [GC], BC 

ORB destination, source Logical OR Byte 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ORB IX, [PP].POINTER 
mem8, register 16 2-3 ORB [GA+IX+], GB 

ORBI destination, source Logical OR Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ORBI IX,00010001B 
mem8, immed8 16 3-4 ORBI [GB].COMMAND,OCH 

ORI destination, source Logical OR Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ORI MC, OFFODH 
mem16,immed16 16/26 4-5 ORI [GA], 1000H 

SETB destination, bit-select Set Bit to 1 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 SETB [GA].PARM_REG,2 

SINTR (no operands) Set Interrupt Service Bit 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 SINTR 

Mnemonics © Intel. 1979 
3-58 



8089 INPUT /OUTPUT PROCESSOR 

Table3-16. Instruction Set Reference Data (Cont'd.) 

TSL destination, set-value, target Test and Set While Locked 

Operands Clocks Bytes Coding Example 

mem8, immed8, short-label 14/16* 4-5 TSL [GAj.FLAG,OFFH, NOT_READY 

*14 clocks if destination *" 0; 16 clocks if destination = 0 

WID source-width, dest-width 

Operands 

8/16,8/16 

XFER (no operands) 

Operands 

(no operands) 

Table 3-17. Instruction Fetch Timings 
(Clock Periods) 

BUSWIDTH 
INSTRUCTION 

LENGTH 16 

(BYTES) 
8 

(1) 

2 14 7 
3 18 14 
4 22 14 
5 26 18 

Clocks 

4 

Clocks 

4 

(2) 

11 
11 
15 
15 

(1) First byte of instruction is on an even 
address. 

(2) First byte of instruction is on an odd address. 
Add 3 clocks if first byte is not in queue (e.g., 
first instruction following program transfer). 

3.8 Addressing Modes 

8089 instruction operands may reside in registers, 
in the instruction itself or in the system or I/O 
address spaces. Operands in the system and I/O 
spaces may be either memory locations or I/O 
device registers and may be addressed in four dif­
ferent ways. This section describes how the chan-

Set Logical Bus Widths 

Bytes Coding Example 

2 WID 8,8 

Enter DMA Transfer Mode After Next Instruction 

3-59 

Bytes Coding Example 

2 XFER 

nel processes different types of operands and how 
it calculates addresses using its addressing modes. 
Section 3.9 describes the ASM-89 conventions 
that programmers use to specify these operands 
and addressing modes. 

Register and Immediate Operands 

Registers may be specified as source or destina­
tion operands in many instructions. Instructions 
that operate on registers are generally both 
shorter and faster than instructions that specify 
immediate or memory operands. 

Immediate operands are data contained in 
instructions rather than in registers or in memory. 
The data may be either 8 or 16 bits in length. The 
limitations of immediate operands are that they 
may only serve as source operands and that they 
are constant values. 

Memory Addressing Modes 

Whereas the channel has direct access to register 
and immediate operands, operands in the system 
and I/O space must be transferred to or from the 
lOP over the bus. To do this, the lOP must 
calculate the address of the operand, called its 

Mnemonics © Intel, 1979 



8089 INPUT IOUTPUT PROCESSOR 

effective address (EA). The programmer may 
specify that an operand's address be calculated in 
any of four different ways; these are the 8089'8 
memory addressing modes. 

The Effective Address 

An operand in the system space has a 20-bit effec­
tive address, and an operand in the lIO space has 
a 16-bit effective address. These addresses are 
unsigned numbers t):lat represent the distance (in 
bytes) of the low-order byte of the operand from 
the beginning of the.address space. Since the 8089 
does not "see" the segmented structure of the 
system space that it may share with an 8086 or 
8088, 8089 effective addresses are equivalent to 
8086/8088 physical addresses. 

All memory addressing modes use the content of 
one of the pointer registers, and the state of that 
register's tag bit determines whether the operand 
lies in the system or the I/O space. If the operand 
is in the I/O space (tag = 1), bits 16-19 of the 
pointer register . are ignored .in the effective 
address calculation. Section 4.3 describes the two 
fields (AA and MM) in the encoded machine 
instruction that specify addressing mode and base 
(pointer) register. 

R/B/P WB AA W OPCODE MM 

Based Addressing 

In based addressing (figure 3-39), the effective 
address is taken directly from the content of GA, 
GB, GC or PP. Using this addressing mode, one 
instruction may access different locations if the 
register is updated before the instruction exec~tes. 
LPD, MOV,' MOVP or arithmetic instructions 
might be used to change the value of the base 
register. 

Offset AddreSSing 

In this mode (figure 3-40) an 8-bit unsigned value 
contained in the instruction is added to the con­
tent of a base register to form the effective 
address. The offset mode provides a convenient 
way to address elements in structures (a 
parameter block is a typical example of a struc­
ture). As shown in figure 3-41, a base register s;an 
be pointed at the base (first element) in the struc­
ture, and then different offsets can be used to 
access the elements within the structure. By 
changing the base address, the same structure can 
be relocated elsewhere in memory. 

Indexed Addressing 

An indexed address is fOlmed by adding the con­
tent of register IX (interpreted as an unsigned 
quantity) to a base register as shown in figure 
3-42. Indexed addressing is often used to accesS 

MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB I OR EA 

GC 
OR 

PP 

Figure 3-39. Based Addressing 

3-60 



8089 INPUT IOUTPUT PROCESSOR 

MM MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 
OR 

GC 
OR 
PP 

---f--~(+ 

Figure 3-40. Offset Addressing 

~ 
HIGH ADDRESSES 

.----.+ 6 ERROR I LlNECT 

+4 BUFF_PTR 

+ 2 POSITIONI CURSOR 

r-
I ..... _-.,...-_... r --+ 0 END_BUS 

I I 
I I 

LOW ADDRESSES 
~ 

I I 
I I 
I EA I 
I I L _______________ ~ 

Figure 3-41. Accessing a Structure with Offset Addressing 

,~ 

,~ 

array elements (see figure 3-43). A base register 
locates the beginning of the array and the value in 
IX selects one element, i.e., it acts as the array 
subscript. The ith element of a byte array is 
selected when IX contains (i - 1). To access the 
ith element of a word array, IX should contain 
«i - 1) * 2). 

Indexed Auto-Increment Addressing 

3-61 

In this variation of indexed addressing, the effec­
tive address is formed by summing IX and a base 
register, and then IX is incremented automat­
ically. (See figure 3-44.) The addition takes place 



8089 INPUT /OUTPUT PROCESSOR 

after the EA is calculated. IX is incremented by 1 
for a byte operation, by 2 for a word operation 
and by 3 for a MOVP instruction. This addressing 

.10 
R/B/P WB AA W OPCODE MM 

mode is very useful for "stepping through" suc­
cessive elements of an array (e.g., a program loop 
that sums an array). 

MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB +-1 OR IX 

GC 

OR 

PP 

Figure 3-42. Indexed Addressing 

r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IX 

I 

I 
EA I • 

-----. 

HIGH ADDRESSES ~ 

ARRAY (g) 

ARRAY (8) 

ARRAY (7) 

ARRAY (6) 

ARRAY (5) 

ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

_lWORD_ 

" ," 
LOW ADDRESSES 

Figure 3-43. Accessing a Word Array with Indexed Addressing 

3-62 



8089 INPUT /OUTPUT PROCESSOR 

R/B/P WB AA W OPCODE MM MACHINE INSTRUCTION FORMAT 

GA 

OR 

GB 
OR 

GC 
OR 

PP 

EA 

~ ___ IX ____ ~~~ __ D_EL_T_A __ ~ 

Figure 3-44. Indexed Auto-Increment Addressing 

3.9 Programming Facilities 

The compatibility of the 8089 with the 8086 and 
8088 extends beyond the hardware interface. 
Comparing figure 3-45, with figure 2-45, one can 
see that, except for the translate step, the software 
development process is identical for both 
8086/8088 and 8089 programs. The ASM-89 
assembler produces a relocatable object module 
that is compatible with the 8086 family software 
development utilities LIB-86, LINK-86, LOC-86 
and OH-86, described in section 2.9. All of these 
development tools run on an Intellec® 800 or 
Series II microcomputer development system. 

This section surveys the facilities of the ASM-89 
assembler and discusses how LINK-86 and 
LOC-86 can be used in 8089 software develop­
ment. For a complete description of the 8089 
assembly language, consult 8089 Assembly 
Language User's Guide, Order No. 9800938, 
available from Intel's Literature Department. 

3-63 

ASM-89 

The ASM-89 assembler reads a disk file contain­
ing 8089 assembly language statements, translates 
these statements into 8089 machine instructions, 
and writes the result into a second disk file. The 
assembly input is called a source module, and the 
principal output is a relocatable object module. 
The assembler also produces a file that lists the 
module and flags any errors detected during the 
assembly. 

Statements 

Statements are the building blocks of ASM-89 
programs. Figure 3-46 shows several examples of 
ASM-89 statements. The ASM-89 assembler gives 
programmers considerable flexibility in format­
ting program statements. Variable names and 
labels (identifiers) may be up to 31 characters 
long, the underscore (_) character may be used 
to improve the readability of longer names (e.g., 



8089 INPUT /OUTPUT PROCESSOR 

WAIT_UNTIL_READY). The component 
parts of statements (fields) need not be located at 
particular "columns" of the statement. Any 
number of blank characters may separate fields 

and multiple identifiers within the operand field. 
Long statements may be continued onto the next 
link by coding an ampersand (&) as the first 
character of the continued line. 

(FROM PL/M·88 Ii ASM-8a TRANSLATORS) 

EDIT TRANSLATE LINK 

..... -1-1 LlNK-86 

Figure 3-45. 8089 Software Development Process 

; THIS STATEMENTCONTAINSACOMMENT FIELD ONLY 
ADDI BC,5 ; TYPICAL ASM89 INSTRUCTION 

ADDI BC, 5 ; NO "COLUMN" REQUIREMENTS 
MOV [GAl.STATUS, 
& 6 
SOURCE EQU GA 
L1NE_BUFFER_ADDRESS DD 

; A CONTINUED STATEMENT 
; A SIMPLE ASM89 DIRECTIVE 
; A LONG IDENTIFIER 

Figure 3-46. ASM-89 Statements 

Mnemonics © Intel, 1979 3-64 



8089 INPUT/OUTPUT PROCESSOR 

A statement whose first non-blank character is a 
semicolon is a comment statement. Comments 
have no affect on program execution and, in fact, 
are ignored by the ASM-89 assembler. Never­
theless, carefully selected comments are included 
in all well written ASM-89 programs. They sum­
marize, annotate and clarify the logic of the pro­
gram where the instructions are too 
"microscopic" to make the operation of the pro­
gram self-evident. 

An ASM-89 instruction statement (figure 3-47) 
directs the assembler to build an 8089 machine 
instruction. The optional label field assigns a 
symbolic identifier to the address where the 
instruction will be stored in memory. A labelled 
instruction can be the target of a program 
transfer; the transferring instruction specifies the 
label for its target operand. In figure 3-47 the 
labelled instruction conditionally transfers to 
itself; the program will loop on this one instruc-

tion as long as bit 3 of the byte addressed by 
[GAl.STATUS is not true. The mnemonic field of 
an instruction statement specifies the type of 8089 
machine instruction that the assembler is to build. 

The operand field may contain no operands or 
one or more operands as required by the instruc­
tion. Multiple operands are separated by commas 
and, optionally, by blanks. Any instruction state­
ment may contain a comment field (comment 
fields are initiated by a semicolon). 

An ASM-89 directive statement (figure 3-48) does 
not produce an 8089 machine instruction. Rather, 
a directive gives the assembler information to use 
during the assembly. For example, the DS (define 
storage) directive in figure 3-48 tells the assembler 
to reserve 80 bytes of storage and to assign a sym­
bolic identifier (INPUT_BUFFER) to the first 
(lowest-addressed) byte of this area. The ASM-89 
assembler accepts 14 directives; the more com­
monly used directives are discussed in this section. 

;WAIT UNTIL READY I 

[ COMMENT (OPTIONAL) 

OPERANDS (REQUIRED/PROHIBITED) 

L...---------------MNEMONIC (REQUIRED) 

'-------------------- LABEL (OPTIONAL) 

Figure 3-47. ASM-89 Instruction Format 

INPUT_BUFFER: DS 80 

COMMENT (OPTIONAL) 

1...-______ OPERANDS (REQUIRED/PROHIBITED) 

L..-_________ MNEMONIC (REQUIRED) 

"'--------------___ LABEL/NAME (REQUIRED/PROHIBITED) 

Figure 3-48. ASM-89 Directive Format 

3-65 Mnemonics © Intel, 1979 



8089 INPUT IOUTPUT PROCESSOR 

The first field in. a directive may be a label or a 
name; individual directives may require or pro­
hibit names, while labels are optional for direc­
tives.that accept them. A label ends in a colon like 
an instruction statement label. However, a direc­
tive label cannot be specified as the target of a 
program transfer. A name does not have a colon. 
The second field is the directive mnemonic, and 
the assembler distinguishes between instructions 
and directives by this field. Any operands 
required by the directive are written next; multiple 
operands are separated by commas and, option­
ally, l>Y blanks. A comment may be included in 
any directive by beginning the text with a 
semicolon. 

Constants 

Binary, decimal, octal and hexadecimal numeric 
constants (figure 3-49) may be written in ASM-89. 
instructions and directives. The assembler can 
add and subtract constants at assembly time. 
Numeric constants,including the· results of 
arithmetic operations, must be representable in 16 
bits. Positive numbers cannot exceed 65,535 
(decimal); negative numbers, whieh the assembler 
represents in two's complement notation, cannot 
be "more negative" than -32,768 (decimal). 

Character constants are enclosed in single quote 
marks as shown in figure 3-49. Strings of 
characters up to 255 bytes long may be written 
when initializing storage. Instruction operands, 
however, can only be one or two characters long 
(for byte and word instructions respectively). 

As an aid to program clarity, The EQU (equate) 
directive may be used to give names to constants 
(e.g., DISK_STATUS EQU OFF20H). 

Defining Data 

Four ASM-89 directives reserve space for memory 
variables in the ASM-89 program (see figure 
3-50). The DB,DW and DD directives allocate 
units of bytes, words and doublewords, respec­
tively, initialize the locations, and optionally label 
them so that they may be referred to by name in 
instruction statements. The label of a storage 
directive always refers to the first (lowest­
addressed) byte of the area reserved by the 
directive. 

The DB and DW directives may be used to define 
byte- and word-constant scalars (individual data 
items) and arrays (sequences of the same type of 
item). For example, a character string constant 
could be defined as a byte array: 

SIGN_ON_MSG: DB 'PLEASE ENTER PASSWORD' 

The DD directive is typically used to define the 
address of a location in the system space, i.e., a 
doubleword pOinter variable. The address may be 
loaded into a pointer register with the LPD 
instruction. 

The DS directive reserves, and optionally na~es, 
storage in units of bytes, but does not initialize 
any of the reserved bytes. DS is typically used for 
RAM-based variables such as buffers. As there is 
no special directive for defining a physical address 
pointer, DS is typically used to reserve the three 
bytes used by the MOVP instruction. 

MOVBI GA, 'A' ; CHARACTER 
MOVBI GA, 41 H ; HEXADECIMAL 
MOVBI GA, 65 ; DECIMAL 
MOVBI GA,65D ; DECIMAL ALTERNATIVE 
MOVBI GA,101Q ; OCTAL 
MOVBI GA, 1 Q1 0 ; OCTAL ALTERNATIVE 
MOVBI GA, 01000001 B ; BINARY 
; NEXT TWO STATEMENTS ARE EQUIVALENT AND 

ILLUSTRATE TWO'S COMPLEMENT REPRESENTATION 
, OF NEGATIVENUMI3ERS 
MOVBI GA,-5 
MOVBI GA,11111011B 

Figure 3-49. ASM89 Constants 

Mn~monics © Intel, 1979 3-66 



8089 INPUT/OUTPUT PROCESSOR 

; ASM89 DIRECTIVE ; MEMORY CONTENT (HEX) 
ALPHA: DB 1 ; 01 

DB -2 ; FE (TWO'S COMPLEMENT) 
DB 'A', 'B' ; 4142 

BETA: DW 1 ; 0100 
DW -5 ; FAFF 
DW 'AB' ; 4241 
DW 400,500 ; 2410F401 
DW 400H,500H ; 00040005 

gamma: DW BETA ; OFFSET OF BET A ABOVE, 
; FROM BEGINNING OF PROGRAM 

DELTA DD GAMMA ; ADDRESS (SEGMENT & OFFSET) 
;OFGAMMA 

ZETA: DS 80 ; 80 BYTES, UNINITIALIZED 

Figure 3-50. ASM-89 Storage Directives 

Structures 

An ASM-89 structure is a map or template that 
gives names and relative locations to a collection 
of related variables that are called structure 
elements or members. Defining a structure, 
however, does not allocate storage. The structure 
is, in effect, overlaid on a particular area of 
memory when one of its elements is used as an 
instruction operand. Figure 3-51 shows how a 
structure representing a parameter block could be 
defined and then used in a channel program. The 

OFFSETS. 

+10 

+8 

+6 

+4 

+2 

MEMORY MAP 

HIGHER ADDRESSES , 

BUFFER_LEN 

BUFFER_START 

COMMAND I RESULT 

TP _RESERVED 

LOWER ADDRESSES 

USING "HARD-CODED" OFFSETS 

LPD GA, [PPJ.6 
MOVBI [PPJ.5,O 

assembler uses the structure element name to pro­
duce an offset value (structures are used with the 
offset addressing mode). Compared to "hard· 
coded" offsets, structures improve program clar­
ity and simplify maintenance. If the layout of a 
memory block changes, only the structure defini­
tion must be modified. When the program is 
reassembled, all symbolic references to the struc­
ture are automatically adjusted. When multiple 
areas of memory are laid out identically, a single 
structure can be used to address any area by 
changing the content of the pointer (base) register 
that specifies the structure's "starting address." 

STRUCTURE DEFINITION 

PARM_BLOCK 
TP _RESERVED: 
COMMAND: 
RESULT: 
BUFFER_START: 
BUFFER_LEN: 

PARM_BLOCK 

STRUC 
OS 4 
OS 1 
OS 1 
OS 4 
OS 2 
ENDS 

USING STRUCTURE ELEMENT NAMES 

LPD GA, [PPJ.BUFFER_START 
MOVBI [PPJ.RESULT,O 

Figure 3-51. ASM-89 Structure Definition and Use 

3-67 
Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

Addressing Modes 

Table 3-18 summarizes the notation a program­
mer uses to specify how the effective address of a 
memory operand is to be computed. Examples of 
typical ASM-89 coding for each addressing mode, 
as well as register and immediate operands, are 
provided in figure 3-52._Notice that a bracketed 
reference to a register indicates that the content of 
the register is to be used to form the effective 
address of a memory operand, while an 
unbracketed register reference specifies that the 
register itself is the operand. 

The following examples summarize how the 
memory addressing modes can be used to access 
simple variables, structures and arrays. 

• If GA contains the address of a memory 
operand, then [GA] refers to that operand. 

• If GA contains the base address of a 
structure, then [GA].DATA refers to the 
DAT A element (field) in that structure. If 
DAT A is six bytes from the beginning of the 
structure, then [GA].6 refers to the same 
location. 

• If GA contains the starting address of an 
array, then [GA+IX] addresses the array ele­
ment indexed by IX. For example, if IX con- . 
tains the value 4H, the effective address 
refers to the fifth element of a byte array, or 
the third element of a word array. [GA+IX+] 
selects the same element and additionally 
auto-increments IX by 1 (byte operation), 2 
(word operation) or 3 (MOVP instruction) in 
anticipation of accessing the next array 
element. 

Note that any pointer register could have been 
substituted for GA in the previous examples. 

Table 3-18. ASM-89 Memory Addressing 
Mode Notation 

Notation Addressing Mode 

[ptr-reg] Based 
[ptr-reg].offset Offset 
[ptr-reg + IX] Indexed 
[ptr-reg + IX +] Indexed Post Auto-increment 

ptr-reg 
offset 

= GA, GB, GC or PP 
= 8-bit signed value; may be struc­

ture element 

Program Transfer Targets 

As discussed in section 3.7, program transfer 
instructions operate by adding a signed byte or 
word displacement to the task pointer. Table 3-19 
shows how the ASM-89 assembler determines the 
sign and size of the displacement value it places in 
a program transfer machine instruction. In the 
table, the terms "backward" and "forward" 
refer to the location of a label specified as a 
transfer target relative to the transfer instruction. 
"Backward" means the label physically precedes 
the instruction in the source module, and "for­
ward" means the label follows the instruction in 
the source text. The distances are from the end of 
the transfer instruction; the distance to the 
instruction immediately following the transfer is 
o bytes. 

ADDI 
ADD 
ADDBI 
ADDB 
ADDB 
ADD 
ADDI 
ADDB 

GA,5 ; REGISTER, IMMEDIATE 
GC, [GB] ; REGISTER, MEMORY (BASED) 
[PP],10 ; MEMORY (BASED), IMMEDIATE 
IX, [GB].5 ; REGISTER, MEMORY (OFFSET) 
BC, [GC].COUNT ; REGISTER, MEMORY (OFFSET) 
[GC+ IX], BC ; MEMORY (INDEXED), REGISTER 
[GA+ IX+ ],5 ; MEMORY (INDEXED AUTO-INCREMENT), IMMED 
[PP].ERROR, [GA] ; MEMORY (OFFSET), MEMORY (BASED) 

Figure 3-52. ASM-89 Operand Coding Examples 

Mnemonics © Intel, 1979 3-68 



8089 INPUT IOUTPUT PRO.CESSOR 

Two important points can be drawn from table 
3-19. First, a target must lie within 32k bytes of a 
transfer instruction; this should not prove restric­
tive except in very large programs. Second, one 
byte can be saved in the assembled instruction by 
writing the short mnemonic when the target is 
known to be within -128 through +127 assembled 
bytes of the transfer. 

It is also important to note that a program 
transfer target must reside in the same module as 
the transferring instruction, i.e., the target 
address must be known at assembly time. 

Procedures 

An ASM-89 program may invoke an out-of-line 
procedure (subroutine) with the CALLILCALL 
instruction. The first instruction operand 
specifies a memory location where the content of 
TP will be stored as a physical address pointer 
before control is transferred to the procedure. 
The procedure may return to the instruction 
following the CALL/LCALL by using the 
MOVP instruction to restore TP from the save 
area. Figure 3-53 illustrates one approach to pro­
cedure linkage. 

A channel program may use the first two words of 
its parameter block (pointed to by P.P) as a task 
pointer save area. However, this is not recom­
mended if there is any chance that the CPU will 

issue a "suspend" command to the channel; this 
command stores the current value of TP in the 
same location, possibly overwriting a return 
address. 

As in any program transfer, the target of a 
CALL/LCALL instruction must be contained in 
the same module and within 32k bytes of the 
instruction. 

Segment Control 

The relocatable object module produced by the 
ASM-89 assembler consists of a single logical seg­
ment. (A segment is a storage unit up to 64k bytes 
long; for a more complete description, refer to 
sections 2.3 and 2.7.) The ASM-89 SEGMENT 
and ENDS directives name the segment as shown 
in figure 3-54. Typically, all instructions and most 
directives are coded in between these directives. 
The END directive, which terminates the 
assembly, is an exception. 

The LOC-86 utility can assign this logical segment 
to any memory address that is a physical segment 
boundary (i.e., whose low-order four bits are 
0000). In a ROM-based system, variable data 
(which must be in RAM) can be "clustered" 
together at one "end" of the program as shown in 
figure 3-55. The ORG directive can then be used 
to force assembly of the variables to start at a 
given offset from the beginning of the segment 
(2,000 hexadecimal bytes in figure 3-55). As the 

Table 3-19. Program Transfer Displacement 

Target Location 

Mnemonic 
Direction Distance 

Displacement 
Form Sign Bytes 

Backward ~128 - 1 
Forward ~127 + 1 

Short Backward ~32,768 _. 2 
(e.g., JMP) Forward ~32,767 Error 

Backward >32,768 Error 
Forward >32,767 Error 

Backward ~128 - 2 
Forward ... 127 + 2 

Long Backward ... 32,768 - 2 
(e.g., LJMP) Forward ~32,767 + 2 

Backward >32,768 Error 
Forward >32,767 Error 

3-69 Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

CALL SAVE: DS 3 ; TP SAVE AREA 

; SET UP TP SAVE AREA 
NOTE: EXAMPLE ASSUMES PROGRAM 

IS IN 1/0 SPACE. USE LPDI 
IF IN SYSTEM SPACE. 

, MOVI GC, CALLSAVE ; LOAD ADDRESS TO GC 
; CALL IT. 

LCALL [GC],DEMO 

HL T ; LOGICAL END OF PROGRAM 

; DEFINE THE PROCEDURE. 
DEMO: 
; PROCEDUR.E INSTRUCTIONS GO HERE. 
; NOTE: PROCEDURE MUST NOT UPDATE GC 
; AS IT POINTS TO THE RETURN ADDRESS. 

; RETURN TO CALLER. 
MOVP TP, [GC] 

Figure 3-53. ASM-89 Procedure Example 

CHANNEL1 SEGMENT ; START OF SEGMENT 

ASM89 SOURCE STATEMENTS 

CHANNEL1 ENDS 
END 

; END OF SEGMENT 
; END OF ASSEMBLY 

Figure 3-54. ASM-89 SEGMENT and ENDS Directives 

figure shows, the segment can then be located so 
that instructions and constants fall into the ROM 
portion of memory, while the variable part of the 
segment is located in RAM. The entire segment, 
including any "unused" portions, of course, can­
not exceed 64k bytes. 

Intermodule Communication 

An ASM-89 module can make some of its 
addresses available to other modules by defining 
symbols with the PUBLIC directive. At a 

Mnemonics © Intel. 1979 3-70 

minimum, a channel program must make the 
address of its first instruction available to the 
CPU module that starts the channel program. 
Figure 3-56 shows an ASM-89 module that con­
tains three channel programs labelled READ, 
WRITE and DELETE. The example shows how a 
PLlM-86 program and an ASM-86 program 
could define these "entry points" as EXTER­
NAL and EXTRN symbols respectively. When 
the modules are linked together, LINK-86 will 
match the externals with the publics, thus pro­
viding the CPU programs with the addresses they 
need. 



8089 INPUT /OUTPUT PROCESSOR 

DEMO: SEGMENT 
;CONSTANT DATA 

;INSTRUCTIONS 

ORG 2000H 
;VARIABLE DATA 

DEMO ENDS 
END 

HIGHER ADDRESSES 

(AVAILABL E) 

VARIABLES 
2000H t-------f 

(UNUSED) 

INSTRUCTIONS 

CONSTANTS 

(AVAILABLE) 

LOWER ADDRESSES 

Figure 3-55. Using the ASM-89 ORO Directive 

t 
RAM 

ROM 

ASM-89 MODULE DEFINES THREE PUBLIC SYMBOLS 

PUBLIC READ, WRITE, DELETE 

READ: ; ASM89 INSTRUCTIONS FOR "READ" OPERATION 

HLT 
WRITE: ; ASM89 INSTRUCTIONS FOR "WRITE" OPERATION 

HLT 
DELETE: ; ASM89 INSTRUCTIONS FOR "DELETE" OPERATION 

HLT 

Figure 3-56. ASM-89 PUBLIC Directive 

3-71 
Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

PLlM-86 MODULE USES "WRITE" SYMBOL 

DECLARE (READ,WRITE,DELETE) POINTER EXTERNAL; 
DECLARE PARM$BLOCK STRUCTURE 

(TP$START POINTER, 
BUFFER$ADDR POINTER, 
BUFFER$LEN WORD); 

'"SET UP "WRITE" CHANNEL OPERATION"' 
PARM$BLOCK. TP$START = WRITE; 

ASM-86 MODULE USES "READ" SYMBOL 

EXTRN READ,WRITE,DELETE 

; PARM~BLOCK 
EVEN 

TP _START DD ? 
BUFFER_ADDRDD ? 
BUFFER_LEN DW? 

; FORCE TO EVEN ADDRESS 

; SET UP "READ" CHANNEL OPERATION 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTR TP _START, AX 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTR TP _START + 2, AX 

; 1ST WORD 

;2NDWORD 

Figure 3-56. ASM-89 PUBLIC Directive (Cont'd.) 

Conversely, an ASM-89 module can obtain the 
address of a public symbol in another module by 
defining it with the EXTRN directive. An external 
symbol, however, can only appear as the initial 
value operand of a DD directive (see figure 3-57). 
This effectively means that an ASM-89 program's 

Mnemonics © Intel, 1979 
3-72 

use of external symbols is limited to obtaining the 
addresses of data located in the system space. 
Another way of doing this, which may be 
preferable in many cases, is to have the CPU pro­
gram place system space addresses in the 
parameter block. 



8089 INPUT /OUTPUT PROCESSOR 

PLlM-86 PROGRAM DECLARES PUBLIC SYMBOL "BUFFER" 

DECLARE BUFFER (80) BYTE PUBLIC; 

ASM-89 PROGRAM OBTAINS ADDRESS OF PUBLIC SYMBOL "BUFFER" 

EXTRN BUFFER 

BUF _ADDRESS DO BUFFER 

LPD GA, BU F _ADDRESS ; POINT TO SYSTEM BU FFER 

Figure 3-57. ASM-89 EXTRN Directive 

Sample Program 

Figure 3-58 diagrams the logic of a simple 
ASM-89 program; the code is shown in figure 
3-59. The program reads one physical record (sec­
tor) from a diskette drive controlled by an 8271 
Floppy Disk Controller. No particular system 
configuration is implied by the program, except 
that the 8271 resides in the lOP's 110 space. 

Hardware address decoding logic is assumed to be 
set up as follows: 

• reading location FFOOH selects the 8271 
status register, 

• writing location FFOOH selects the 8271 
command register, 

• reading location FFOIH selects the 8271 
result register 

• writing location FFOIH selects the 8271 
parameter register 

• decoding the address FF04H provides the 
8271 DACK (DMA acknowledge) signal. 

Figure 3-58. ASM-89 Sample Program Flow 

3-73 Mnemonics © Intel, 1979 



8089 INPUT/OUTPUT PROCESSOR 

The program uses structures to address the 
parameter block and the 8271 registers. Register 
PP contains the address of the parameter block, 
and the program loads GC with FFOOH to point 
to the 8271 registers. The program's entry point 
(the label START) is defined as a PUBLIC sym­
bol so that the CPU program can place its address 
in the parameter block when it starts the program. 

Register IX is used as a retry counter.' If the 
transfer is not completed successfully (bit 3 of the 
8271 result register :I: 0), the program retries the 
transfer up to 10 times. 

Since the 8271 automatically requests a DMA 
transfer upon receipt of the last parameter, this 
parameter is sent immediately following the 
XFER command. 

8089 ASSEMBLER 

ISIS-II 8089 ASSEMBLER V1.0 ASSEMBLY OF MODULE FLOPPY 
OBJECT MODULE PLACED IN :FO:FLOPPY.OBJ 
ASSEMBLER INVOKED BY ASM89 FLOPPY.A89 

0000 

0000 
0004 
0008 
0009 
OOOA 
OOOB 

0000 
0001 
0002 

FFOO 
FF04 

0000 OA4F OA 00 

0004 B130 OAOO 

0008 5130 OOFF 

OOOC EABA 00 FC 

0010 OA4E 00 12 

0014 0293 08 02CE 01 

001A D130 2088 

Mnemonics © Intel, 1979 

1 
2 FLOPPY 
3 ; ••• 

SEGMENT 

4 ; ••• 8089 PROGRAM TO READ SECTOR FROM FLOPPY DISK 
5 ; ••• 
6 
7 
8 
9 

10, 
11 
12 
13 
14 
15 

;'" LAY OUT PARAMETER 
PARM BLOCK STRUC 

RESERVED TP: DS 
BUFF PTR: DS 
TRACK: DS 
SECTOR: DS 
RETURN CODE: DS 
PARM BLOCK ENDS 

16 ; ••• LAY OUT 8271 
17 FLOPPY REGS 

DEV,ICE 
STRUC 

DS 
DS 

ENDS 

18 COMMAND STAT: 
19 PARM RESULT: 
20 FLOPPY REGS 
21 
22 ;".8271 ADDRESSES. 

BLOCK. 

4 
4 
1 
1 
1 

REGISTERS. 

23 FLOPPY REG ADDR EQU OFFOOH 
24 DACK 8271 EQU OFF04H 
25 

;LOW-ADDRESSED REGISTER 
;DMA ACKNOWLEDGE 

26 ;'.'MAKE PROGRAM ENTRY POINT ADDRESS 
27 AVAILABLE TO OTHER MODULES. 
28 PUBLIC START 
29 
30 ;"'CLEAR RETURN CODE IN PARAMETER BLOCK. 
31 START: MOVBI [PP).RETURN CODE,O 
32 
33 ;"'INITIALIZE RETRY COUNT. 
34 MOVI lX, 10 
35 
36 ;"·POINT GC AT LOW-ORDER B271 REGISTER. 
37 MOVI GC, FLOPPY REG ADDR 
38 
39 
40 
4,1 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

; •• 'SEND COMMAND SEQUENCE TO 8271, HOLDING FINAL PARM. 
; ••• WAIT UNTIL 8271 IS NOT BUSY. 
RETRY: JNBT [GC j. COMMAND STAT, '7, RETR Y 
;"'SEND "READ SECTOR, DRIVE 0" COMMAND. 

MOVSI [GCj.COMMAND STAT,012H 
; ".SEND TRACK ADDRESS PARAMETER. 

MOVB [GCj.PARM RESULT,[PP).TRACK 

; ••• LOAD CHANNEL ,CONTROL REGISTER 
FROM PORT TO MEMORY, 
SYNCHRONIZ,E ON SOURCE, 
GA POINTS TO SOURCE, 
TERMINATE ON EXT, 
TERMINATION OFFSET O. 

MOVI CC,08820H 

SPECIFYING: 

Figure 3-59. ASM-89 Sample Program 

3-74 



8089 INPUTlOUTPUT PROCESSOR 

001E AOOO 

0020 238B 04 
0023 1130 04FF 

0027 AABA 00 FC 

002B 6000 

002D 0293 09 02CE 01 

0033 6ABE 01 05 

0037 A03C 

0039 A840 DO 

003C EABA 00 FC 

0040 OA4E 00 2C 

0044 BABA 00 FC 

OQ48 0292 01 02CF OA 

004E 4000 

0050 2048 

0052 

SYMBOL TABLE 
------------

DEFN VALUE TYPE NAME 

10 0004 SYM BUFF PTR 
18 0000 SYM COMMAND STAT 
24 FF04 SYM DACK_8271 
83 003C SYM EXIT 

2 0000 SYM FLOPPY 
17 0000 STR FLOPPY REGS 
23 FFOO SYI~ FLOPPY-REG ADDR 

8 0000 STR PARM BLOCK-
19 0001 SYM PARM-RESULT 
9 0000 SYM RESERVED TP 

41 OOOC SYM RETRY 
13 OOOA SYM RETURN CODE 
12 0009 SYM SECTOR 
31 0000 PUB START 
11 0008 SYM TRACK 
63 0027 SYM WAITl 
89 0044 SYM WAIT2 

ASSEMBLY COMPLETE; NO ERRORS FOUND 

55 
56 
57 
~8 
59 
60 
01 
02 
63 
64 
05 
66 
67 
08 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
~2 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

;***SET SOURCE BUS = 8, DEST BUS = 16. 
WID 8,16 

; ***POINT GB AT DESTINATION, GA AT SOURCE. 
LPD GB,[PP].BUFF PTR 
MOVI GA, DACK_8271-

;***INSURE THAT 8271 IS READY FOR LAST PARAMETER. 
WAIT1: JNBT [GC].COMMAND_STAT,5,WAITl 

;***PREPARE FOR DMA. 
XFER 

;***START DMA BY SENDING FINAL PARAMETER TO 8271. 
MOVB [GCJ.PARM_RESULT,[PP].SECTOR 

;***PROGRAM RESUMES HERE FOLLOWING EXT. 

;***IF TRANSFER IS OK THEN EXIT, ELSE TRY AGAIN. 
JBT [GCJ.PARM_RESULT,3,EXIT 

;***DECREMENT RETRY COUNT. 
DEC IX 

; '''TRY AGAIN IF COUNT NOT EXHAUSTED. 
JNZ IX, RETRY 

; ***WAIT UNTIL 8271 IS NOT BUSY. 
EXIT: JNBT [GC J. COMMAND STAT,7,EXIT -

; ***SEND "READ RESULT" COMMAND TO 8271. 
MOVBI [GCJ.COMMAND_STAT,02CH 

;***WAIT FOR RESULT. 
WAIT2: JNBT [GCJ.COHMAND_STAT,4,WAIT2 

;***POST RESULT IN PARAMETER BLOCK FOR CPU. 
MOVB [PP]. RETURN __ CODE, [GC J. PARM _RESULT 

;***INTERRUPT CPU. 
SINTR 

;***STOP EXECUTION. 

FLOPPY 

HLT 

ENDS 
END 

Figure 3-59. ASM-89 Sample Program (Cont'd.) 

Mnemonics © Intel, 1979 3-75 



8089 INPUT IOUTPUT PROCESSOR 

linking and Locating ASM-89 Modules 

The LINK-86 utility program combines multiple 
relocatable object modules into a single 
relocatable module. The input modules may con­
sist of modules produced by any of the 8086 fam­
ily language translators: ASM-89, ASM-86, or 
PLlM-86. LINK-86's principal function is to 
satisfy external references made in the modules. 
Any symbol that is defined with the EXTRN 
directive in ASM-89 or ASM-86 or is declared 
EXTERNAL in PLlM-86 is an external 
reference, i.e., a reference to an address con­
tainerl in another module. Whenever LINK-86 
encounters an external reference, it searches the 
other modules for a PUBLIC symbol of the same 
name. If it finds the matching symbol, it replaces 
the external reference with the address of the 
object. 

The most common occurrence of an external 
reference in a system that employs one or more 
8089s is the channel .program address. In order 
for a CPU program to start a channel program, it 
must ensure that the address of the first channel 
program instruction is contained in the first two 
words of the parameter block. Since the channel 
program is assembled separately, the translator 
that processes the CPU program will not typically 
know its address. If this address is defined as an 

external symbol (see figure 3-56), LINK-86 will 
obtain the address from the ASM-89 channel pro­
gram when the two are linked together. (The 
ASM-89 program must, of course, define the 
symbol in a PUBLIC directive.) 

Other external references may arise when one 
module uses data (e.g., a buffer) that is contained 
in another module, and (in PLlM-86 and 
ASM-86 modules) when one module executes 
another module, typically by a CALL statement 
or instruction. 

When an 8089 module (or modules) is to be 
located in the system space, it may be linked 
together with PLlM-86 or ASM-86 modules as 
described above and shown in figure 3-60. 
LINK-86 resolves. external references and com­
bines the input modules into a single relocatable 
object module. This module can be input to 
LOC-86 (LOC-86 assigns final absolute memory 
addresses to all of the instructions and data). This 
absolute object module may, in turn, be pro­
cessed by the OH-86 utility to translate the 
module into the hexadecimal format. This format 
makes the module readable (the records are writ­
ten in ASCII characters) and is required by some 
PROM programmers and RAM loaders. Intel's 
Universal PROM Programmer (UPP) and iSBC 
957™ Execution Package (loader) use the hexa­
decimal format. 

TO SYSTEM 
SPACE 

Figure 3-60. Creating a Single Absolute Object Module 

3-76 



8089 INPUT /OUTPUT PROCESSOR 

If the 8089 code is to reside in its lIO space, a dif­
ferent technique is required since separate 
absolute object modules must be produced for the 
system and 1/0 spaces. Figure 3-61 shows how to 
link and locate when there are external references 
between lIO space modules and system space 
modules. 

The normal link and locate sequence is followed 
and culminates in the production of an absolute 
module in hexadecimal format. Since the records 
in this file are human-readable, the file can be 
edited using the ISIS-II text editor. The editing 
task involves finding the 8089 lIO space records 
in the file, writing them to one file, and then 
writing the 8086/8088 records (destined for the 
system space) to another file. MCS-86 Absolute 
Object File Formats, Order No. 9800921, 
available from Intel's Literature Department, 
describes the records in absolute (including hexa­
decimal) object modules. 

When using the previous method, it is likely that 
LOC-86 will issue messages warning that 
segments overlap. For example, the 8089 code 
would typically be located starting at absolute 
location OH of the 1/0 space. However, the 
8086/8088 interrupt pointer table occupies these 
low memory addresses in the system space. Since 
LOC-86 has no way to know that the segment will 
ultimately be located in different address spaces, 
it will warn of the conflict; the warning may be 
ignored. 

An alternative to linking the modules together 
and then separating them is to link system space 
modules separately from lIO space modules as 
shown in figure 3-62. This approach avoids the 
manual edit of the absolute object module and the 

FROM 
PlIM-66 

FROM 
ASM·86 

FROM 
ASM·89 

segment conflict messages from LOC-86. It 
requires, however, that modules in the two spaces 
not use the EXTRN/PUBLlC mechanism to refer 
to each other. Modules in the same space can 
define external and public symbols, however. 

External references from lIO space modules to 
system space modules can be eliminated if the 
CPU programs pass all system space addresses in 
parameter blocks. In other words, a channel pro­
gram can obtain any address in the system space if 
the address is in the parameter block. Using this 
approach allows the system space addresses to be 
changed during execution. If the addresses are 
constant values, they may also be altered as 
system development proceeds without relinking 
the channel programs. 

External references from system space modules to 
addresses in the 1/0 space may be eliminated by 
assigning these addresses values that are known at 
assembly or compilation time. Figure 3-63 
illustrates how the ASM-89 ORO directive can be 
used to force the first instruction (entry point) of 
a channel program to an absolute address. In the 
case of the example, one module contains two 
entry points labelled "READ" and "WRITE." 
Assuming the module is located at absolute 
address OH in the lIO space, the channel pro­
grams will begin at 200H and 600H respectively. 
In the example, these values have been chosen 
arbitrarily; in a typical application they would be 
based on the length of the programs and the loca­
tion of RAM and ROM areas. By starting the pro­
grams at fixed addresses that are known to the 
CPU programs that activate them, the channel 
programs can be reassembled without needing to 
relink the CPU programs. 

TO SYSTEM 
SPACE 

TallO 
SPACE 

Figure 3-61. Creating Separate Absolute Object Modules-External References in Relocatable 
Modules 

3-77 



FROM 
PL/M-86 

FROM 
ASM-86 

FROM 
ASM-89 

80891NPUT/OUTPUT PROCESSOR 

TO SYSTEM 
SPACE 

TO 1/0 
SPACE 

Figure 3-62. Creating Separate Absolute Object Modules-No External References in Relocatable 
Modules· 

ASM-89 ENTRY POINT DEFINITIONS 

ORG200H 
READ: 

; INSTRUCTIONS FOR·'READ" CHANNEL PROGRAM 

ORG 600H 
WRITE: 

; INSTRUCTIONS FOR "WRITE" CHANNEL PROGRAM 

ASM-86DEFINITION OF ENTRY POINT ADDRESSES 

DD 200H 
DD 600H 

PLlM-86 DECLARATION OF ENTRY POINT ADDRESSES 

DECLARE READ$ADDR POINTER; 
DECLARE WRITE$ADDR POINTER; 
READ$ADDR = 200H; 
WRITE$ADDR = 600H; 

Figure 3-63. Using Absolute Entry Point Addresses 



8089 INPUT/OUTPUT PROCESSOR 

3.10 Programming Guidelines 
and Examples 

This section provides two types of 8089 program­
ming information. A series of general guidelines, 
which apply to system and program design, is 
presented first. These guidelines are followed by 
specific coding examples that illustrate program­
ming techniques that may be applied to many dif­
ferent types of applications. 

Programming Guidelines 

The practices in this section are recommended to 
simplify system development and, particularly, 
for system maintenance and enhancement. Soft­
ware that is designed in accordance with these 
guidelines will be adaptable to the changing 
environment in which most systems operate, 
and will be in the best position to take 
advantage of new intel hardware and software 
products. 

Segments 

Although the lOP does not "see" the segmented 
organization of system memory, it should respect 
this logical structure. The lOP should only 
address the system space through pointers passed 
by the CPU in the parameter block. It should not 
perform arithmetic on these addresses or other­
wise manipulate them except for the automatic 
incrementing that occurs during DMA transfers. 
It is the responsibility of the CPU to pass 
addresses such that transfer operations do not 
cross segment boundaries. 

Self-Modifying Code 

Programs that alter their own instructions are dif­
ficult to understand and modify, and preclude 
placing the code in ROM. They may also inhibit 
compatibility with future Intel hardware and soft­
ware products. 

Note also that when the 8089 is on a 16-bit bus, its 
instruction fetch queue can interfere with the 
attempt of one instruction to modify the next 
sequential instruction. Although the instruction 
may be changed in memory, its unmodified first 
byte will be fetched from the queue rather than 

3-79 

memory if it is on an odd address. The processor 
will thus execute a partially-modified instruction 
with unpredictable results. 

1/0 System Design 

Section 2.10 notes that I/O systems should be 
designed hierarchically. Application programs 
"see" only the topmost level of the structure; all 
details pertaining to the physical characteristics 
and operation of I/O devices are relegated to 
lower levels. Figure 3-64 shows how this design 
approach might be employed in a system that uses 
an 8089 to perform I/O. The same concept can be 
expanded to larger systems with multiple lOPs. 

The application system is clearly separated from 
the I/O system. No application programs per­
form I/O; instead they send an I/O request to the 
I/O supervisor. (In systems with file-oriented 
I/O, the request might be sent to a file system that 
would then invoke the I/O supervisor.) The 1/0 
request should be expressed in terms of a logical 
block of data-a record, a line, a message, etc. It 
should also be devoid of any device-dependent 
information such as device address, sector size, 
etc. 

The I/O supervisor transforms the application 
program's request for service into a parameter 
block and dispatches a channel program to carry 
out the operation. The 1/0 supervisor controls 
the channels; therefore, it knows the cor­
respondence between channels and I/O devices, 
the locations of CBs and channel programs, and 
the format of all of the parameter blocks. The 
I/O supervisor also coordinates channel 
"events," monitoring BUSY flags and respond­
ing to channel-generated interrupt requests. The 
1/0 supervisor does not, however, communicate 
with I/O devices that are controlled by the chan­
nels. If the CPU performs some I/O itself (this 
should be restricted to devices other than those 
run by the channels), the 1/0 supervisor invokes 
the equivalent of a channel program in the CPU 
to do the physical I/O. Note that although the 
1/0 supervisor is drawn as a single box in figure 
3-64, it is likely to be structured as a hierarchy 
itself, with separate modules performing its many 
functions. 

The software interface between the CPU's I/O 
supervisor and an lOP channel program should 
be completely and explicitly defined in the 



1 i 
APPLICATION I 

SYSTEM I 

! : 
-------1 

I 
I 
I 
I 
I 

8089 INPUT/OUTPUT PROCESSOR 

1 
CPU DOMAIN 

APPLICATION 
MODULE 

APPLICATION 
MODULE 

1/0 
SUPERVISOR 

APPLICATION 
MODULE 

~----------------r==='-------------------
I 

I/O SYSTEM 

I 
I 
I 
I 

CPU/lOP INTERFACE 
• PB PB 

~----------------------~------------------
I 

CHANNEL CHANNEL 
FUNCTION FUNCTION 

lOP DOMAIN 

I 
I 
I 
I , 

DEVICE , CONTROLLER , , , , ,. , , , 
I CHANNEL 1 
I 

Figure 3-64. 8089-Based I/O System Design 

3-.80 

CHANNEL 
SUPERVISOR 

CHANNEL 
FUNCTION 

DEVICE 
CONTROLLER 

CHANNEL2 

CHANNEL 
FUNCTION 



8089 INPUT /OUTPUT PROCESSOR 

parameter block. For example, the 110 supervisor 
should pass the addresses of all system memory 
areas that the channel program will use. The 
channel program should not be written so that it 
"knows" any of these addresses, even if they are 
constants. Concentrating the interface into one 
place like this makes the system easier to under­
stand and reduces the likelihood of an undesirable 
side effect if it is modified. It also generalizes the 
design so that it may be used in other application 
systems. 

Figure 3-64 shows a simple channel program run­
ning on channel 1 and a more complex program 
running on channel 2. Channell's program per­
forms a single function and is therefore designed 
as a simple program. The program on channel 2 
performs three functions (e.g., "read," "write," 
"delete") and is structured to separate its func­
tions. The functions might be implemented as 
procedures called by the "channel supervisor" 
depending on the content of the parameter block. 
Notice that to the 110 supervisor, both programs 
appear alike; in particular, both have a single 
entry point. 

In some channel programs, different functions 
will need different information passed to them in 
the parameter block. Figure 3-65 shows. one 
technique that accommodates different formats 
while still allowing the channel supervisor to 
determine which procedure to call from the PB. 
The parameter block is divided into fixed and 
variable portions, and a function code in the fixed 
area indicates the type of operation that is to be 
performed. Part of the fixed area has been set 
aside so that additional parameters can be added 
in the future. 

Programming Examples 

The first example in this section illustrates how a 
CPU can initialize a group of lOPs and then 
dispatch channel programs. This code is written 
in PLlM-86. 

The remaining examples, written in ASM-89, 
demonstrate the 8089 instruction set and address­
ing modes in various commonly-enc0\l:ntered pro­
gramming situations. These include: 

• memory-to-memory transfers 

• saving and restoring registers 

3-81 

1 
FIXED For 

1 
VARIABLE 

For 

TP/CHANNEL STATE 
SAVE AREA 

FIXED PARMi FUNCTION 
CODE 

~ 

1 

FIXED PARM2 

FIXED PARM3 

RESERVED FOR 
FUTURE USE 

VARIABLE PARAMETER 
FORMAT AND SIZE 

GOVERNED BY 
FUNCTION CODE 

o 

2 

4 

6 

8 

10 

12 

,~ 

J 
Figure 3-65. Variable Format Parameter Block 

Initialization and Dispatch 

The PLlM-86 code in figure 3-66 initializes two 
lOPs and dispatches two channel programs on 
one of the lOPs. The same general technique can 
be used to initialize any number of lOPs. The 
hypothetical system that this code runs on is con­
figured as follows: 

• 8086 CPU (16-bit system bus); 

• two remote lOPs share an 8-bit local 110 bus 
via the request/grant lines operating in 
mode 1; 

• 8089 channel attentions are mapped into four 
port addresses in the CPU's 110 space; 

• channel programs reside in the 8089 I/O 
space; 

• one 8089 controls a CRT terminal, one 
channel running the display, the other scan­
ning the keyboard and building input 
messages; 

• the function of the second 8089 is not defined 
in the example. 



8089 INPUT/OUTPUT PROCESSOR 

The code declares one CB (channel control block) 
for each 8089. The CBs are declared as two­
element arrays, each element defining the struc­
ture of one channel's portion of the CB. The SCB 
(system configuration block)· and SCP (system 
configuration pointer) are also declared as struc­
tures. The SCP is located at its dedicated system 
space address of FFFF6H. The other structures 
are not located at specific addresses since they are 
all linked together by a chain of pointers 
"anchored" at the SCP. 

Two simple parameter blocks define messages to 
be transmitted between the PL/M-86 program 
and the CRT. Each PB contains a pointer to the 
beginning of the message area and the length of 
the message. In the case of the keyboard (input) 
message, the channel program builds the message 
in the buffer pointed to by the pointer in the PB 
and returns the length of the message in the PB. 

The code initializes one lOP at a time since the 
chain of control blocks read by the lOP during 
initialization must remain static until the process 
is complete. To initialize the first lOP, the code 
fills in the SYSBUS and SOC fields and links the 
blocks to each other using the PL/M-86 @ 
(address) operator.. It sets channel I's BUSY flag 
to FFH so that it can monitor the flag to deter­
mine when the initialization has been completed 
(the lOP clears the flag to OH when it has 
finished). Channel 2's BUSY flag is cleared, 
although this could just as well have been done 
after the initialization. (the lOP does not alter 
channel 2's BUSY flag 'eluring initialization). The 
code starts the lOP by issuing a channel attention 
to channel I to indicate that the lOP is a bus 
master. PL/M-86's OUT function is used to select 
the port address to which the lOP's CA and SEL 
lines have been mapped. The data placed em the 
bus (OH) is ignored by the lOP. It then waits until 
the lOP clears the channell BUSY flag. 

The second lOP is initialized in the same manner, 
first changing the pointer in the SCB to point to 
the second lOP's channel control block. If this 

lOP were on a different 110 bus, the SOC field 
would have been altered if a different 
request/grant mode were being used or if the lOP 
had a 16-bit I/O bus. The second lOP is a slave so 
its initialization is started by issuing a CA to chan­
nel 2 rather than channel I. 

After both lOPs are ready, the code dispatches 
two channel programs (not coded in the example); 
one program is dispatched to each channel of one 
of the lOPs. To avoid external references, the 
system has been set up so that the PL/M-86 code 
"knows" the starting addresses of these channel 
programs (200H and 600H). The code uses the 
PLlM-86 LOCKSET function to: 

• lock the system bus; 

• read the BUSY flag; 

• set the BUSY flag to FFH if it is clear; 

• unlock the system bus. 

This operation continues until the BUSY flag is 
found to be clear (indicating thatthe channel is 
available). Setting the flag immediately to FFH 
prevents another processor (or another task in 
this program activated as a result of an interrupt) 
from using the channel. The code fills in the 
parameter block with the address and length of 
the message to be displayed, sets the CCW and 
then links the channel program (task block) start 
address to the parameter block and links the 
parameter block to the CB. The channel is dis­
patched with the OUT function that effects a 
channel attention for channel I. 

A similar procedure is followed to start channel 2 
scanning the terminal keyboard. In this case, the 
code allows channel 2 to generate an interrupt 
request (which it might do to signal that a message 
has been assembled). An interrupt procedure 
would then handle the interrupt request. 

I*ASSIGN NAMES TO CONSTANTS* I 
DECLARE CHANNEL$BUSY 
DECLARE CHANNEL$CLEAR 
DECLARE CR /*CARR. RET.*/ 
DECLARE LF /*LlNE FEED* / 
DECLARE DISPLAY$TB 
DECLARE KEYBD$TB 

LlTERALLY'OFFH'; 
LlTERALLY'OH'; 
LITERALLY 'ODH'; 
LlTERALLY'OAH'; 
LlTERALLY'200H'; 
LlTERALLY'600H'; 

Figure 3-66. Initialization and Dispatch Example 

3-82 



8089 INPUT IOUTPUT PROCESSOR 

DECLARE I*IOP CHANNEL ATTENTION ADDRESSES* I 
IOP$A$CH1 LITERALLY 'OFFEOH', 
IOP$A$CH2 LITERALLY 'OFFE1 H', 
IOP$B$CH1 LITERALLY 'OFFE2H', 
IOP$B$CH2 LITERALLY 'OFFE3H'; 

DECLARE I*CHANNEL CONTROL BLOCK FOR 10P$A) 
CB$A(2) STRUCTURE 
(BUSY BYTE, 
CCW BYTE, 
PB$PTR POINTER, 
RESERVED WORD); 

DECLARE I*CHANNEL CONTROL BLOCK FOR 10P$B* I 
CB$B(2) STRUCTURE 
(BUSY BYTE, 
CCW BYTE, 
PB$PTR POINTER, 
RESERVED WORD); 

DECLARE I*SYSTEM CONFIGURATION BLOCK* I 
SCB STRUCTURE 
(SOC BYTE, 
RESERVED BYTE, 
CB$PTR POINTER); 

DECLARE I*SYSTEM CONFIGURATION POINTER* I 
SCP STRUCTURE 
(SYSBUS BYTE, ' 
SCB$PTR POINTER) AT (OFFFF~H); 

DECLARE MESSAGE$PB STRUCTURE 
(TB$PTR POINTER, 
MSG$PTR POINTER, 
MSG$LENGTH WORD); 

DECLARE KEYBD$PB STRUCTUE 
(TP$PTR POINTER, 
BUFF _PTR POINTER, 
MSG$SIZE WORD); 

. DECLARE SIGN$ON BYTE (*) DATA 
(CR, LF, 'PLEASE ENTER USER ID'); 

DECLARE KEYBD$BUFF BYTE (256); 

1* 
*INITIALIZE 10P$A, THEN 10P$B 

*1 

I*PREPARE CONTROL BLOCKS FOR 10P$A* I 
SCP .SCB$PTR = @ SCB; 
SCP.SYSBUS = 01H· 1*16-BIT SYSTEM BUS* I 
SCB.SOC = 02H; I*RQ/GT MODE1, 8-BIT 1/0 BUS* I 
SCB.CB$PTR = @ CBSA(O); 
CB$A(O).BUSY = CHANNEL$BUSY 
CB$A(1 ).BUSY = CHANNEL$CLEAR; 

Figure 3-66. Initialization and Dispatch Example (Cont'd.) 

3-83 



80891NPUT/OUTPUT PROCESSOR 

I*ISSUE CA FOR CHANNEL1, INDICATING lOP IS MASTER* 1 
OUT (lOP$A$CH1) = OH; 

I*WAIT UNTIL FINISHED* 1 
DO WHILE CB$A(O).BUSY = CHANNEL$BUSY; 

END; 

I*PREPARE CONTROL BLOCKS FOR 10P$B* 1 
SCB.CB$PTR = @CBSB(O); 
CB$B(O).BUSY = CHANNEL$BUSY; 
CB$B(1).BUSY = CHANNEL$CLEAR; 

I*ISSUE CA FOR CHANNEL2, INDICATING SLAVE STATUS* 1 
OUT (lOP$B$CH2) = OH; 

I*WAIT UNTIL lOP IS READY* 1 
DO WHILE CB$B(O).BUSY = CHANNEL$BUSY; 

END; 

1* 
*SEND SIGN ON MESSAGE TO CRT CONTROLLED 
*BY CHANNEL 1 OF 10P$A 
*1 . 

I*WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY* 1 
DO WHILE LOCKSET (@CB$A(O).BUSY, CHANNEL$BUSY); 

END; 

I*SET CCW AS FOLLOWS: 
* PRIORITY = 1 , 
* NO BUS LOAD LIMIT, 
* DISABLE INTERRUPTS, 
* START CHANNEL PROGRAM IN 1I0SPACE*1 

CB$A(O).CCW = 10011001 B; 

1*L1NK MESSAGE PARAMETER BLOCK TO CB* 1 
CB$A(O).PB$PTR = @ MESSAGE$PB; 

I*FILL IN PARAMETER BLOCK* 1 
MESSAGE$PB.TB$PTR = DISPLAY$TB; 
MESSAGE$PB.MSG$PTR = @SIGN$ON; 
MESSAGE$PB. MSB$LENGTH = LENGTH (SIGN$ON); 

J*DISPATCH THE CHANNEL * 1 
OUT (IOP$A$CH1) = OH; 

1* 
*DISPATCH CHANNEL 2 OF 10P$A TO 
*CONTINUOUSLY SCAN KEYBOARD, INTERRUPTING 
*WHEN A COMPLETE MESSAGE IS READY 
*1 

I*WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY* 1 
DO WHILE LOCKSET (@ CB$A(1).BUSY, CHANNEL$BUSY); 

END; 

Figure 3-66. Initialization and Dispatch Example (Cont'd.) 

3-84 



8089 INPUT /OUTPUT PROCESSOR 

I*SET CCW AS FOLLOWS: 
* PRIORITY = 0 
* BUS LOAD LIMIT, 
* ENABLE INTERRUPTS, 
* START CHANNEL PROGRAM IN 1/0 SPACE* I 

CB$A(1).CCW = 00110001 B; 
I*LlNK KEYBOARD PARAMETER BLOCK TO CB* I 
CB$A(1).PB$PTR = @ KEYBD$PB; 
I*FILL IN PARAMETER BLOCK* I 
KEYBD$PB.TB$PTR = KEYBD$TB; 
KEYBD$PB.BUFF$PTR = @ KEYBD$BUFF; 
KEYBD$PB.MSG$SIZE = OH; 
I*DISPATCH THE CHANNEL* I 
OUT (IOP$A$CH2) = OH; 

Figure 3-66. Initialization and Dispatch Example (Cont'd~) 

Memory-to-Memory Transfer 

Figure 3-67 shows a channel program that per­
forms a memory-to-lJ1emory block transfer in 
seven instructions. The program moves up to 64k 
bytes between any two locations in the system 
space. A 16-bit system bus is assumed, and the 
CPU is assumed to be monitoring the channel's 
BUSY flag to determine when the program has 
finished. 

To attain maximum transfer speed, the program 
locks the bus during each transfer cycle. This 
ensures that another processor does not acquire 
the bus in the interval between the DMA fetch 
and store operations. By setting this channel's 
priority bit in the CCW to 1 and the other chan­
nel's to 0, the CPU could effectively prevent the 
other channel from running during the transfer. 
Byte count termination is selected so that the 
transfer will stop when the number of bytes 
specified by the CPU has been moved. Since there 
is only a single termination condition, a termina­
tion offset of 0 is specified. The transfer begins 
after the WID instruction, and the HL T instruc­
tion is executed immediately upon termination. 

Saving and Restoring Registers 

A CPU program can "interrupt" a channel pro­
gram by issuing a "suspend" channel command. 

3-85 

The channel responds to this command by saving 
the task pointer and PSW in the first two words 
of the parameter block. The suspended program 
can be restarted by issuing a "resume" command 
that loads TP and the PSW from the save area. 

If the CPU wants to execute another channel pro­
gram between the suspend and resume opera­
tions, the suspended program's registers will 
usually have to be saved first. If the "interrupt­
ing" program "knows" that the registers must be 
saved, it can perform the operation and also 
restore the registers before it halts. 

A more general solution is shown in figure 3-68. 
This is a program that does nothing but save the 
contents of the channel registers. The registers are 
saved in the parameter block because PP is the 
only register that is known to point to an available 
area of memory. A similar program could be writ­
ten.to restore registers from the same parameter 
block. 

Using this approach, the CPU would "interrupt" 
a running program as follows: 

• suspend the running program, 

• run the register save program, 

• run the "interrupting" program, 

• run the register restore program, 

• resume the suspended program. 



Mnemonics © Intel, 1979 

8089 INPUT IOUTPUT PROCESSOR 

MEMEXAMP SEGMENT 
;**MEMORY-TO-MEMORY TRANSFER PROGRAM** 
PB STRUC 
TP _RESERVED: OS 4 
FROM_ADDR: OS 4 
TO_ADDR: OS 4 
SIZE: OS 2 
PB: ENDS 

;POINT GA AT SOURCE, GB AT DESTINATION. 
LPD GA, [PPl.FROM_ADDR 
LPD GB, [PP .TO_ADDR 

;LOAD BYTE COUNT INTO BC. 
MOV BC, [PP].SIZE 

;LOAD CC SPECIFYING: 
; MEMORYTO MEMORY, 
; NO TRANSLATE, 
; UNSYNCHRONIZED, 
; GA POINTS TO SOURCE, 
; LOCK BUS DURING TRANSFER, 
; NO CHAJNING, 
; TERMINATING ON BYTE COUNT,OFFSET = O. 

MOV . CC,OC208H 
;PREPARE CHANNEL FOR TRANSFER. 

XFER 

;SET LOGICAL BUS WIDTH. 
WID 16,16 

;STOP EXECUTION AFTER DMA. 
HLT 

MEMEXAMP ENDS 
END 

Figure 3-67. Memory-to-Memory Transfer Example 

SAVEREGS SEGMENT 
;SAVE ANOTHER CHANNEL'S REGISTERS IN PB 
PB STRUC 
TP _RESERVED: OS 4 
GA_SAVE: OS 3 
GB_SAVE: OS 3 
GC_SAVE: OS 3 
IX_SAVE: OS 2 
BC_SAVE: OS 2 
MC~SAVE: OS 2 
CC_SAVE: OS 2 
PB ENDS 

SAVEREGS 

MOVP 
MOVP 
MOVP 
MOV 
MOV 
MOV 
MOV 
HLT 
ENDS 
END 

PP .GA_SAVE, GA 
PP .GB_SAVE, GB 
PP .GC_SAVE, GC 
PP .IX_SAVE, IX 
PP .BC_SAVE, BC 
PP .MC_SAVE, MC 
PP .CC_SAVE, CC 

Figure 3-68. Register Save Example 

3-86 



Chapter 4 
Hardware Reference 
Information 



CHAPTER 4 
HARDWARE REFERENCE INFORMATION 

4.1 Introduction 

This chapter presents specific hardware informa­
tion regarding the operation and functions of the 
8086 family processors: the 8086 and 8088 Central 
Processing Units (CPUs) and the 8089 110 Pro­
cessor (lOP). Abbreviated descriptions of the 
8086 family support circuits and their circuit 
functions appear where appropriate within the 
processor descriptions. For more specific 
information on any of the 8086 family support 
circuits, refer to the corresponding data sheets in 
Appendix B. 

4.2 8086 and 8088 CPUs 

The 8086 and 8088 CPUs are characterized by a 
20-bit (1 megabyte) address bus and an identical 
instruction/function format, and differ essential­
ly from one another by their respective data bus 
widths (the 8086 uses a 16-bit data bus, and the 
8088 uses an 8-bit data bus). Except where 
expressly noted, ,the ensuing descriptions are 
applicable to both CPUs. 

Both the 8086 and 8088 feature a combined or 
"time-multiplexed" address and data ,bus that 
permits a number of the pins to serve dual func­
tions and consequently allows the complete CPU 
to be incorporated into a single, 40-pin package. 
As explained later in this chapter, a number of the 
CPU's control pins are defined according to the 
strapping of a single input pin (the MN/MX pin). 
In the "minimum mode," the CPU is configured 
for small, single-processor systems, and the CPU 
itself provides all control signals. In the "max­
imum mode," an Intel® 8288 Bus Controller, 
rather than the CPU, provides the control signal 
outputs and allows a number of the pins pre­
viously delegated to these control functions to be 
redefined in order to support multiprocessing 
applications. Figures 4-1 and 4-2 describe the pin 
assignments and signal definitions for the 8086 
and 8088, respectively. 

CPU Architecture 

As shown in figures 4-3 and 4-4, both CPUs 
incorporate two separate processing units: the 
Execution Unit or "EU" and the Bus Interface 

4-1 

Unit or "BIU." The EU for each processor is 
identical. The BIU for the 8086 incorporates a 16-
bit data bus and a 6-byte instruction queue 
whereas the 8088 incorporates an 8-bit data bus 
and a 4-byte instruction queue. 

The EU is responsible for the execution of all 
instructions, for providing data and addresses to 
the BIU, and for manipulating the general 
registers and the flag register. Except for a few 
control pins, the EU is completely isolated from 
the "outside world." The BIU is responsible for 
executing all external bus cycles and consists of 
the segment and communications registers, the 
instruction pointer and the instruction object 
code queue. The BIU combines segment and off­
set values in its dedicated adder to derive 20-bit 
addresses, transfers data to and from the EU on 
the ALU data bus and loads or "prefetches" 
ipstructions into the queue from which they are 
fetched by the EU . 

The EU, when it is ready to execute an instruc­
tion, fetches the instruction object code byte from 
the BIU's instruction queue and then executes the 
instruction. If the queue is empty when the EU is 
ready to fetch an instruction byte, the EU waits 
for the instruction byte to be fetched. In the 
course of instruction execution, if a memory loca­
tion or 110 port must be accessed, the EU 
requests the BIU to perform the required bus 
cycle. 

The two processing sections of the CPU operate 
independently. In the 8086 CPU, when two or 
more bytes of the 6-byte instruction queue are 
empty and the EU does not require the BIU to' 
perform a bus cycle, the BIU executes instruction 
fetch cycles to refill. the queue. In the 8088 CPU, 
when one byte of the 4-byte instruction queue is 
empty, the BIU executes an instruction fetch 
cycle; Note that the 8086 CPU, since it has a 16-
bit data bus,' can access two instruction object 
code bytes in a single bus cycle, while the 8088 
CPU, since it has an 8~bit data bus, accesses one 
instruction object code byte per bus cycle. If the 
EU issues a request for bus access while the BIU is 
in the process of an instruction fetch bus cycle, 
the BIU completes the cycle before honoring the 
EU's request. 



HARDWARE REFERENCE INFORMATION 

Common Signals 

Name Function Type 

AD15-ADO Address/Data Bus Bidirectional, 
3·State 

A19/S6- Address/Status Output, 
A16/S3 3·State 

BHE/S7 BlJ~ High Enable/ Output, 
Status 3·State 

MN/MX Minimum/Maximum Input Mode Control 

RD Read Control Output, 
3·State 

TEST Wait ()n Test Control Input 
READY wait State Control Input 
RESET System Reset Input 

NMI Non·Maskable Input Interrupt Request' 
INTR InterrJpt Req'uast Input 
ClK System Clock Input 
Vee 't5V Input 
GND Gro\md 

Minimum Mode, Signals (M N/MX = V cd 
Name Function Type 

HOLD Hold Requast Input 
HLDA Hold Acknowledge 'Output 

WR Write Control Output, 
3;State 

MilO MemoryllO Control Output, 
3·State 

DT/R Data Transmit/ Output, 
Rec.eive 3·State 

DEN Data Enable Output, ' 
3·State 

ALE Address Latch Output Enable 
INTA Interrupt Acknowledge Output 

Maximum Mode Signals (MN/MX =GND) 

Name Function TYPe 

RQ/G'i'T,O Request/Grant Bus Bidirectional Access Control 

IO'CR Bus Priority Lock Output, 
Control 3·State 

52-SO Bus Cycle Status ' Output, 
3·State , 

QS1, QSO Instruction Queue Output Status 

GND 

AD14 

AD13 

AD12 

ADll 

AD10 

AD9 

ADa 

AD7 

AD6 

ADS 

AD4 

AD3 

AD2 

AD1 

ADO 

NMI 

INTR' 

eLK 

GND 

vcc 

AD15 

A16/S3 

A17/S4 

Ala/S5 

A19/S6 

BHE/S7 

MN/MX 

iiii 

8086 HOLD (iiQ / GTo) 
CPU 

HLDA (RO/iffi) 

\iii '(LOCK) 

M/iO (52) 

DTIR (51) 

DEN (SO) 

ALE (OSO) 

iNi'A (OSl) 

'fffi ' 

READY 

RESET 

MAXIMUM MODE PIN FUNCTIONS (e.g.,UiCK) 
ARE SHOWN IN PARENTHESES 

Figure 4-1. 8086 Pili Definitions 

4-2 



HARDWARE REFERENCE INFORMATION 

Common Signals 

Name Function Type 

AD7-ADO Address/Data Bus Bidirectional, 
3-State 

A15-A8 Add'ress Bus Output, 
3-State 

A19/S6- Address/Status Output, 
A16/S3 3-State 

MN/MX Minimum/Maximum Input Mode Control 

RD Read Control Output, 
3-State GND vcc 

TEST Wait On Test Control Input 
A14 A15 

READY Wait State Control Input 
RESET System Reset Input 

A13 A16/S3 

NMI Non-Maskable Input Interrupt Request 
A12 AU/S4 

A11 A18/S5 

INTR Interrupt Request Input 
ClK System Clock Input 

A10 A19/S6 

Vee +5V Input A9 SSO (HIGH) 

GND Ground A8 MN/MX 

AD7 iiii 
Minimum Mode Signals (MN/MX = VCC) 

Name Function Type 
AD6 8088 HOLD (RQ/GTO) 

CPU 
AD5 HLDA (RQ/GT1) 

HOLD Hold Request Input AD4 WR (LOCK) 

HlDA Hold Acknowledge Output 
AD3 IO/M (52) 

WR Write Control Output, 
3-State AD2 DT/R (51) 

10/M 10/Memory Control Output, 
3-State 

AD1 DEN (SO) 

DT/A Data Transmit/ Output, 
Receive 3-State 

ADO ALE (OSO) 

NMI INTA (OS1) 

DEN Data Enable Output, 
3-State INTR TEST 

ALE Address latch Output Enable 
CLK READY 

RESET 
INTA Interrupt Acknowledge Output 

SSO SO Status Output, 
3-State 

Maximum Mode Signals (MN/MX = GND) 
MAXIMUM MODE PIN FUNCTIONS (e.g., LOCK) 
ARE SHOWN IN PARENTHESES 

Name Function Type 

RQ/GT1,0 Request/Grant Bus Bidirectional Access Control 

lOCK Bus Priority lock Output, 
Control 3-State 

S2-S0 Bus Cycle Status Output, 
3-State 

QS1, QSO Instruction Queue Output Status 

Figure 4-2. 8088 Pin Definitions 

4-3 



HARDWARE REFERENCE INFORMATION 

GENERAL 
REGISTERS 

GENERAL 
REGISTERS 

AH AL 

BH BL 

CL 

DH DL 

SP 
DATA BUS 

BP 

DI 

" 

AlU DATA BUS 

(1681TSI 

EXECUTION UNIT 
(EU) 

CS 

DS 

ES 

INTERNAL 
COMMUNICATIONS 

REGISTERS 

(16 BITS) 

BUS INTERFACE UNIT 
(B1U) 

Figure 4-3. 8086 Elementary Block Diagram 

AH AL 

BH BL 

CH 

DH DL 

SP 

8P 

DI 

SI 

ALU DATA BUS 

(16 BITS) 

eXECUTION UNIT 
(EU) 

CS 

DS 

ES 

IP 

INTERNAL 
COMMUNICATIONS 

REGISTERS 

DATA BUS 

(8 BITS) 

BUS INTERFACE UNIT 
(BIU) 

Figure 4-4. 8088 Elementary Block Diagram 

4-4 

BUS 
CONTROL 

lOGIC 
eo" 
BUS 

BOB8 
BUS 



HARDWARE REFERENCE INFORMATION 

Bus Operation 

To explain the operation of the time-multiplexed 
bus, the BIU's bus cycle must be examined. 
Essentially, a bus cycle is an asynchronous event 
in which the address of an I/O peripheral or 
memory location is presented, followed by either 
a read control signal (to capture or "read" the 
data from the addressed device) or a write control 
signal and the associated data (to transmit or 
"write" the data to the addressed device). The 
selected device (memory or I/O peripheral) 
accepts the data on the bus during a write cycle or 
places the requested data on the bus during a read 
cycle. On termination of the cycle, the device 
latches the data written or removes the data read. 

As shown in figure 4-5, all bus cycles consist of a 
minimum of four clock cycles or "T -states" iden­
tified as Tl, T2' T3 and T4' The CPU places the 
address of the memory location or I/O device on 
the bus during state T l' During a write bus cycle, 
the CPU places the data on the bus from state T 2 
until state T 4' During a read bus cycle, the CPU 
accepts the data present on the bus in states T 3 

and T 4' and the multiplexed address/data bus is 
floated in state T 2 to allow the CPU to change 
from the write mode (output address) to the read 
mode (input data). 

It is important to note that the BIU executes a bus 
cycle only when a bus cycle is requested by the EU 
as part of instruction execution or when it must 
fill the instruction queue. Consequently, clock 
periods in which there is no BIU activity can 
occur between bus cycles. These inactive clock 
periods are referred to as idle states (TI)' While 
idle clock states result from several conditions 
(e.g., bus access granted to a coprocessor), as an 
example, consider the case of the execution of a 
"long" instruction. In the following example, an 
8-bit register multiply (MUL) instruction (which 
requires between 70 and 77 clock cycles) is exe­
cuted by the 8086. Assuming that the multiplica­
tion routine is entered as a result of a program 
jump (which causes the instruction queue to be 
reinitialized when the jump is executed) and, as 
will be explained later in this chapter, that the 
object code bytes are aligned on even-byte bound­
aries, the BIU's bus cycle sequence would appear 
as shown in figure 4-6. 

----BUS CyCLE----' ----BUS CyCLE------I 

r'\ r., r., 
I 

.J 

EU AS A RESULT OF THE JMP 
ACTIVITY INSTRUCTION, THE EU 

REINITIALIZES THE QUEUE 
DURING EXECUTION OF 
THE JUMP. 

Figure 4-5. Typical BIU Bus Cycles 

2 4 I 5 7 8 I 9 10 11 
EU FETCHES THE FIRST TWO BYTES FROM THE aUEUE (THE MUL INSTRUCTION) AND 
COMPLETES INSTRUCTION EXECUTION IN 70 TO 77 CLOCK CYCLES. 

EU FETCHES THE NEXT 
OBJECT CODE BYTES 
FROM THE QUEUE AND 
BEGINS EXECUTING THE 
NEXT INSTRUCTION. 

BIU 
ACTIVITY 

SINCE THE QUEUE IS BIU FETCHES TWO OBJECT BIU FETCHES TWO MORE 
OBJECT CODE BYTES. 
QUEUE IS NOW FULL (SIX 
BYTES). 

81U IS IDLE FOR 62-69 CLOCK CYCLES BIU FETCHES TWO OBJECT 
EMPTY, THE 81U FETCHES CODE BYTES. QUS:UE WHILE THE EU COMPLETES EXECUTION OF CODE BYTES TO REFILL 
TWO OBJECT CODE BYTES AGAIN CONTAINS FOUR THE MUL INSTRUCTION. THE QUEUE. THE QUEUE IS 

AGAIN FULL (THE MUL INSTRUCTION) IN BYTES. 
ONE BUS CYCLE AND I 
COMPLETES A SECOND 
BUS CYCLE. THE QUEUE 
CONTAINS FOUR BYTES. 

Figure 4-6. BIU Idle States 

4-5 



HARDWARE REFERENC'E INFORMATION 

In addition to the idle state previously described, 
both the 8086 and 8088' CPUs include a 
mechanism fQr inserting additional T -states in the 
bus cycle to compensate for devices (memory or 
I/O) that cannot transfer data at the maximum 
rate. These extra T -states are called wait states 
(TW) and, when required, are inserted between 
states T3 and T4' During a wait state, the data on 
the bus, remains unchanged. When the device can 
complete the transfer (present or accept the data), 
it signals the CPU to exit the wait state and to 
enter state T4' 

As shown in the following timing diagrams, the 
actual bus cycle timing differs between a read and 
a write bus cycle and varies between the two 
CPUs. Note that the timing diagrams illustrated 
are for the minimum mode. (Maximum mode 
timing is described later in this chapter.) 

Referring to figures 4-7 and 4-8, the 8086 CPU 
places a 20-bit address on the multiplexed 
address/ data bus during state T l' During state 
T2' the CPU removes the address from the bus 
and either three-states (floats) the lower 16 
address/ data lines in preparation for a read cycle 
(figure 4-7) or places write data on these lines 

(figure 4-8). At this time, bus cycle status is 
available on the address/status lines. During state 
T3' bus cycle status is maintained on the 
address/status lines and either the write data is 
maintained or read data is sampled on the lower 
16 address/data lines. The bus cycle is terminated 
in state T 4 (control lines are disabled and the 
addressed device deselects from the bus). 

The 8088 CPU, like the 8086, places a 20-bit 
address on the multiplexed address/data bus dur­
ing state T 1 as shown in figures 4-9 and 4-10. 
Unlike the 8086, the 8088 maintains the address 
on the address lines (A IS-A8) for the entire bus 
cycle. During state T2' the CPU removes the 
address on the address/data lines (AD7-ADO) and 
either floats these lines in preparation for a read 
cycle (figure 4-9) or places write data on these 
lines (figure 4-10). At this time, bus cycle status is 
available on the address/status lines. During state 
T3, bus cycle status is maintained on the 
address/status lines and either write data is main­
tained or read data is sampled on the 
address/data lines. The bus cycle is terminated in 
state T 4 (control lines are disabled and the 
addressed device deselects from the bus). 

I---------oNE BUSCYCLE---------! 

eLK 

A1~S:'~~~ =:J---< ADDR'ESS, iiliEoUT X'-_____ ST_"_JU_S_OU_T ____ ...J>-
AD15-ADo -----f<I..-_-~:,A~D;;;D0R~E;S~S;-;;O~U:T;-_-_)) ------1<'-__ D_ATA_'_N _ ..... )>-----

ALE I \~ __ ~ ____ ~----~r 
M/iO ~ ______ LO_W_=_"O_R_EA_D_, H_IG_H=_M_EM_O_RY_R_EA_D ______ C 

\l-: ----~I 
DJ/R ---\ :---___ ~, ___ ----------------~----Ll 

-----,1..--------"""\ / 
11m ___ -1 \-_____ ---J 

Figure 4-7. 8086 Read Bus Cycle 

4-6 

\ 
\ 
\_-



HARDWARE REFERENCE INFORMATION 

elK 

A19/S6-A1S/S3 ~ ADDRESS, BHE OUT X STATUS OUT ANOB'REf57 ~ ...... ___________ --' 

A015-AOO ~ ADDRESS OUT X .... _____ DA_TA_O_U_T ____ --' 

ALE / 
_----J \~------------------' 

M/iO ~'--_____ "_OW_=_'_'O_W_R'_TE_. H_'G_H_=_ME_M_OR_y_W_R'_TE _____ ---' 

\'----------' 
----~j---------------------~ 

DT/A I 
___ J 

DEN --- - - "'7/-----""'1\ 
____ ~ ..... _____________ --J 

Figure 4-8. 8086 Write Bus Cycle 

A majority of system memories and peripherals 
require a stable address for the duration of the 
bus cycle (certain MCS-85™ components can 
operate with a multiplexed address/data bus). 
During state T 1 of every bus cycle, the ALE 
(Address Latch Enable) control signal is output 
(either directly from the microprocessor in the 
minimum mode or indirectly through an 8288 Bus 
Controller in the maximum mode) to permit the 
address to be latched (the address is valid on the 
trailing-edge of ALE). This "demultiplexing" of 
the address/data bus can be done remotely at 
each device in the system or locally at the CPU 
and distributed throughout the system as a 
separate address bus. For optimum system per­
formance and for compatibility with multi­
processor systems' or with the Intel Multibus 
architecture, the locally-demultiplexed address 
bus is recommended. To latch the address, Intel ® 
8282 (non-inverting) or 8283 (inverting) Octal 
Latches are offered as part of the 8086 product 
family and are implemented as shown in figure 
4-11. These circuits, in addition to providing the 
desired latch function, provide increased current 
drive capability and capacitive load immunity. 

4-7 

The data bus cannot be demultiplexed due to the 
timing differences between read and write cycles 
and the various read response times among 
peripherals and memories. Consequently, the 
multiplexed data bus either can be buffered or 
used directly. When memory and I/O peripherals 
are connected directly to an unbuffered bus, it is 
essential that during a read cycle, a device is 
prevented from corrupting the address present on 
the bus during state T l' To ensure that the 
address is not corrupted, a device's output drivers 
should be enabled by an output enable function 
(rather than the device's chip select function) con­
trolled by the CPU's read signal. (The MCS-86 
family processors guarantee that the read signal 
will not be valid until after the address has been 
latched by ALE.) Many Intel peripheral, 
ROM/EPROM, and RAM circuits provide an 
output enable function to allow interface to an 
unbuffered multiplexed address/data bus. The 
alternative of using a buffered data bus should be 
considered since it simplifies the interfacing 
requirements and offers both increased drive cur­
rent capability and capacitive load immunity. The 
Intel® 8286 (non-inverting) and 8287 (inverting) 



HARDWARE REFERENCE INFORMATION 

1---------- ONE BUSCYClE---------~ 

T, T2 T4 

ClK 

A19/S6-A16/S3 ~,--_A_O_O_RE_S_S_OU.;..T_-IXII..-_____ S_TA_J_US_O_U_T _____ --J}--

A15-Aa ~ ADDRESS OUT }--

AD7-ADO ADDRESS OUT DATA IN 

ALE , \~~ ____________ ~r-
101M ~,--______ lO_W_=_M_E_M_O_RY_R_E_A_O'_H_'G_H_=_'IO_RE_A_O _______ -'C 

\~ ______ ____J, 
---, ,---

OTI~ \ , ___ ~I ________________________ -'L' ___ _ 

DEN =~~~-JT/------------'\ .. ________ .... /r---T\~~= 
Figure 4-9.8088 Read Bus Cycle 

I----------ONE BUS CYClE----------­

T2 

ClK 

A'9ISS-A'SIS3 .~,--_A_D_D_RE_S_S_OU_T_-IX'I..-_____ S_TA_J_US_O_U_T _____ ~}--

A'5-AS ~ _________ AO_O_R_ES_S_O_U_T ________ ~}--

ADT-ADO ~ __ A_O_D_RE_S_S_O_UT_-IX,,--_____ DA_J_A_O_UT ______ --,}-

ALE , \~ ______________ ~r-
101M ~,--______ l_OW_=_ME_M_O_R_Y _W_RI_TE_, _HI_GH_=_'_IO_W_R_'T_E __________ C 

\'-------', 
~,-----~------------------~'r---

~~ , , ___ ~ L.;.. __ 

-----r,---------------------.\ ,---
DEN ____ J '-______ ----1' 

Figure 4-10.8088 Write Bus Cycle 

4-8 



HARDWARE REFERENCE INFORMATION 

Octal Bus Transceivers, shown in figure 4-12, are 
expressly designed to buffer the data bus. These 
transceivers use the CPU's DEN (Data Enable) 
and DT lif (Data Transmit/Receive) control 
signals to enable and control the direction of data 
on the bus. These signals provide the proper tim­
ing relationship to guarantee isolation of the 
address that is present on the multiplexed bus 
during state T 1. 

o Vee r 11 1 
MNIMX 

AD - eLK 

- 8284 WR 
RES CLOCK - READY 101M 

GENERATOR - RESET 

8088 
epu ALE 

ADDRESS 
A19-A16 

ADDRESS 
A15-Aa ~ 

AD7-ADO 
1.<1 ADDRESSIOATA It. 
I~ , 

Except where noted, all subsequent discussions 
and e.'{amples in this chapter assume a locally 
demultiplexed address bus and a buffered data 
bus. The resultant address and data buses from 
the address latches and data transceivers to the 
memory and 110 devices will be referred to collec­
tively as the "system" bus. 

STS 
ADDRESS BUS 

8282 

~.J,.~~ ~ ! ~ OR ~ 8283 
(2 OR 3) 

SEl RDWR 

DE 
MEMORY 110 PERIPHERAL 

1 DATA DATA 

~ ~ 

Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus 

o Vee 

Vee r I~ r 
MNIMX AD r-- eLK 

8284 \VA 
~ RES CLOCK r--- READY M/iO GENERATOR 

r-- RESET 

I 8086 SHE 
ALE STS epu 

I AdDRESS BUS ADDRESS I> 
A19-A16 8282 

OR 

j Jj I SHE 
8283 

A D15-ADO 
I ~ ADDRESSIOATA I> 

5Th 01- • OE .. 
! 

MEMORY 110 PERIPHERAL 

DATA DATA 

~ ! DATA BUS ! 
8286 

T OR 
8287 .... OE V" 

Figure 4-12. Minimum Mode 8086 Buffered Data Bus 

4-9 



HARDWARE REFERENCE INFORMATION 

Clock Circuit 

To establish the bus cycle time, the CPU requires 
an external clock signal. As an integral part of the 
8086 family, Intel offers the 8284 Clock 
Generator/Driver for this purpose. In addition to 
providing the primary (system) clock signal, this 
device provides both the hardware reset interface 
and the mechanism for the insertion of wait states 
in the bus cycle. 

The clock generator/driver requires an external 
series-resonant crystal input (or external frequen­
cy source) at three times the required system clock 
frequency (i.e., to operate the CPU at 5 MHz, a 
15 MHz fundamental frequency source is 
required). The divided-by-three output (CLK) 
from the 8284 is routed directly to the CPU's 
CLK input. The clock generator/driver provides a 
second clock output called PCLK (Peripheral 
Clock) at one half the frequency of the CLK out­
put and a buffered TTL level OSC (oscillator) 
output at the applied crystal input frequency. 
These outputs are available for use by system 
devices. 

The 8284's hardware reset function is accom­
plished with an internal Schmitt trigger circuit 
that is activated by the RES (Reset) input. When 
this input is pulled low (i.e., a contact closure to 
ground), the RESET output is activated syn­
chronously with the CLK signal. This signal must 
be active for four clock cycles and causes the CPU 
to fetch and execute the instruction at location 
FFFFOH. An external RC circuit is connected to 
the RES input to provide the power-on reset func­
tion (on power-on, the RES input must be active 
for 50 microseconds). The RESET output is 
coupled directly to the RESET input of the CPU 
as well as being available to system peripherals as 
the system reset signal. 

The insertion of wait states in the CPU's bus cycle 
is accomplished by deactivating one of the 8284's 
RDY inputs (RDYI or RDY2). Either of these 
inputs, when enabled by its corresponding AENI 
or AEN2 input, can be deactivated directly by a 
peripheral device when it must extend the CPU's 
bus cycle (when it is not ready to present or accept 
data) or by a "wait state generator" circuit (a 
logic circuit that holds the RDY input inactive for 
a given number of clock cycles). 

The READY output, which is synchronized to the 
CLK signal is coupled directly to the CPU's 
READY input. As shown in figure 4-13, when the 
addressed device needs to insert one or more wait 
states in a bus cycle, it deactivates the 8284's RDY 
input prior to the end of state T2 which causes the 
READY output to be deactivated at the end of 
state T2. The resultant wait state (TW) is inserted 
between states T3 and T4. To exit the wait state, 
the device activates the 8284's RDY input which 
causes the READY input to the CPU to go active 
at the end of the current wait state and allows the 
CPU to enter state T 4. 

Minimum/Maximum Mode 

A unique feature of the 8086 and 8088 CPUs is 
the ability of a user to define a subset of the 
CPU's control signal outputs in order to tailor the 
CPU to its intended system environment. This 
"system tailoring" is acc0l!!.l2lished by the strap­
ping of the CPU's MN/MX (minimum/max­
imum) input pin. Table 4-1 defines the 8086 and 
8088 pin assignments in both the minimum and 
maximum modes. 

I-------ONE BUS CYCLE------I 

T3 

elK 

ROV 'NPUT _____ ....",="" '" ,. 
READY OUTPUT _______ ...., 

\'--__ ---'1 

Figure 4-13. Wait State Timing 

4-10 



HARDWARE REFERENCE INFORMATION 

Table 4-1. Minimum/Maximum Mode Pin Assignments 

8086 

Mode 
Pin 

Minimum Maximum 

31 HOLD RQ/GTO 
30 HLDA RQ/GT1 
29 WR LOCK 
28 MilO S2 
27 DT/R 51 
26 DEN SO 
25 ALE QSO 
24 INTA QS1 

Minimum Mode 

In the minimum mode (MN/MX pin strapped to 
+5V), the CPU supports small, single-processor 
systems that consist of a few devices and that use 
the system bus rather than support the 
Multibus™ architecture. In the minimum mode, 
the CPU itse!f..-Aenerates all bus control 
signals (DT/R, DEN, ALE and either MilO or 
101M) and the command output signal (RD, WR 
or INT A), and provides a mechanism for 
requesting bus access (HOLD/HLDA) that is 
compatible with bus master type controllers (e.g., 
the Intel® 8237 and 8257 DMA Controllers). 

In the minimum mode, when a bus master 
requires bus access, it activates the HOLD input 
to the CPU (through its request logic). The CPU, 
in response to the "hold" request, activates 
HLDA as an acknowledgement to the bus master 
requesting the bus and simultaneously floats the 
system bus and control lines. Since a bus request 
is asynchronous, the CPU samples the HOLD 
input on the positive transition of each CLK 
signal and, as shown in figure 4-14, activates 
HLDA at the end of either the current bus cycle 
(if a bus cycle is in progress) or idle clock period. 
The hold state is maintained until the bus master 
inactivates the HOLD input at which time the 
CPU regains control of the system bus. Note that 
during a "hold" state, the CPU will continue to 
execute instructions until a bus cycle is required. 

Note that in the minimum mode, the I/O-memory 
control line for the 8088 CPU is the converse of 
the corresponding control line for the 8086 CPU 
(MilO on the 8086 and 101M on the 8088). This 
was done to provide the 8088 CPU, since it is an 

4-11 

8088 

Mode 
Pin 

Minimum Maximum 

31 HOLD RQ/GTO 
30 HLDA RQ/GT1 
29 WR LOCK 
28 101M S2 
27 DT/A" S1 
26 DEN SO 
25 ALE QSO 
24 INTA QS1 
34 SSO High State 

8-bit device, compatibility with existing 
MCS-85™ systems and specific MCS-85™ family 
devices (e.g., the Intel® 8155156). 

Maximum Mode 

In the maximum mode (MN/MX pin strapped to 
ground), an Intel® 8288 Bus Controller is added 
to provide a sophisticated bus control function 
and compatibility with the Multibus architecture 
(combining an Intel® 8289 Arbiter with the 8288 
permits the CPU to support multiple processors 
on the system bus). As shown in figure 4-15, the 
bus controller, rather than the CPU, provides all 
bus control and command outputs, and allows the 
pins previously delegated to these functions to be 
redefined to support multiprocessing functions. 

S2, S1 and SO 

ReferringJ,oJ'igure 4-15, the 8288 Bus Controller 
uses the S2, SI and SO status bit outputs from the 
CPU (and the 8089 lOP) to generate all bus con­
trol and command output signals required fm a 
bus cycle. The status bit outputs are decoded as 
outlined in table 4-2. (For a detailed description 
of the operation of the 8288 Bus Controller, refer 
to the associated data sheet in Appendix B.) 

The 8088 CPU, in the minimum mode, provides 
an SSO status output. This output is equivalent to 
SO in the maximum mode and can be decoded 
with DT IN: and 101M (inverted), which are 
equivalent to Si and S2 respectively, to provide 
the same CPU cycle status information defined in 
table 4-2. This type of decoding could be used in a 
minimum mode 8088-based system to allow 
dynamic RAM refresh during passive CPU cycles. 



VCC 

~ 
I 

S2 

0 
0 
0 
0 
1 
1 
1 
1 

rDl 
8284 ,..... ... 

-RES --
GE~~~~~OR r---

HARDWARE REFERENCE'INFORMATION 

I T4 QR TI I 

Figure 4-14. HOLD/HLDA Timing 

n L 8288 
ClK BUS 

MN/iilX CONTROLLER 
ClK So So iNi'A 
READY 51 51 MRDC 
RESET 52 52 

MWfC - DEN 

r- DT/R 
iOiiC 

r-- ALE il5WC 

8088 
CPU 

C. STB 

ADDRESS Ii> A19-A81----...oitl 
I I r 

8282 
OR 

8283 

... ADDRESS/DATA ~ 
AD7-ADO" 

Il~~ ~ =, 

ADDRESS BUS 

MEMORY 110 PERIPHERAL 

DATA DATA 

t DATA BUS t 

Figure 4-15. Elementary Maximum Mode System 

Table 4-2. Status Bit Decoding 

Status Inputs 
CPU Cycle 8288 Command 

S1 SO 

0 0 Interrupt Acknowledge INTA 
0 1 Read 1/0 Port 10RC 
1 0 Write 1/0 Port 10WC,AIOWC 
1 1 Halt None 
0 0 Instruction Fetch MRDC 
0 1 Read Memory MRDC 
1 0 Write Memory MWTC,AMWC 
1 1 Passive None 

4-12 



HARDWARE REFERENCE INFORMATION 

- ----RQ/GT1, RQ/GTO 

The Request/Grant signal lines (RQ/GTO and 
RQ/GTl) provide the CPU's bus access 
mechanism in the maximum mode (replacing the 
HOLD/HLDA function available in the 
minimum mode) and are designed expressly for 
multiprocessor applications using the 8089 110 
Processor in its local mode or other processors 
that can support this function. These lines are 
unique in that the request/grant function is 
accomplished over a single line (RQ/GTO 
or RQ/GTl) rather than the two-line 
HOLD/HLDA function. 

As shown in figure 4-16, the request/grant 
sequence is a three-phase cycle: request, grant and 
release. The sequence is initiated by another pro­
cessor on the s~em bus when it outputs a pulse 
on one of the RQ/GT lines to request bus access 
(request phase). In response, the CPU outputs a 
pulse (on the same line) at the end of either the 
current bus cycle (if a bus cycle is in progress) or 
idle clock period to indicate to the requesting pro­
cessor that it has floated the system bus and that it 
will logically disconnect from the bus controller 
on the next clock cycle (grant phase) and enter a 

"hold" state. Note that the CPU's execution unit 
(EU) continues to execute the instructions in the 
queue until an instruction requiring bus access is 
encountered or until the queue is empty. In the 
third (release) phase, the request~ processor 
again outputs a pulse on the RQ/GT line. This 
pulse alerts the CPU that the processor is ready to 
release the bus. The CPU regains bus access on its 
next clock cycle. Note that the exchange of pulses 
is synchronized and, accordingly, both the CPU 
and requesting processor must be referenced to 
the same clock signal. 

The request/ grant lines are prioritized with 
RQ/QTIj taking precedence over RQ/GTl. If a 
request arrives on both lines simultaneously, the 
processor o~RQ/GTO is granted the bus (the 
request on RQ/GTl is granted when the bus is 
released by the first processor following ~ne~ 
two clock channel transfer delay). Both RQ/GT 
lines (and the HOLD line in minimum mode) have 
a higher priority than a pending interrupt. 

Request/grant latency (the time interval between 
the receipt of a request pulse and the return of a 
grant pulse) for several conditions is given in table 
4-3. 

I T40R TI I 
CLK JLf\L 

RQ/GT :\D 
COPROCESSOR REQUESTS CPU GRANTS BUS COPROCESSOR RELEASES 

BUS ACCESS TO COPROCESSOR BUS 

Figure 4-16. Request/Grant Timing 

Table 4-3. Request/Grant Latency 

Operating Condition 
Request/Grant Delay 

8086 8088 

Normal Instruction Processing-LOCK inactive 3-6 (10*) clocks 3-10 clocks 

INTA Cycle Executing-LOCK active 15 clocks 15clocks 

Locked XCHG Instruction Processing-LOCK active 24-31 (39*) clocks 24-39 clocks 

*The number of clocks in parentheses applies when the instruction being executed references a word 
operand at an odd address boundary. 

4-13 



HARDWARE REFERENCE INFORMATION 

Latency during normal instruction processing 
(LOCK inactive) can be as short as three clock 
cycles (e.g., during execution of an instruction 
that does not reference memory) and no more 
than ten clock cycles. Whenever the LOCK out­
put is active (LOCK is activated during an inter­
rupt acknowledge cycle or during execution of an 
instruction with a Lock prefix), latency is 
increased. In the case of the execution of a locked 
XCHG instruction (used during semaphore 
examination), maximum latency is limited to 39 
clock cycles. Greater latencies occur when a 
"long" instruction is locked. This, however, is 
neither necessary nor recommended. 

At the end of processor activity, the 8086 or 
8088 will not redirve its control and data buses 
until two clock cycles following receipt of the 
release pulse (or two clock cycles after HOLD 
goes inactive in the minimum mode). 

A Hold request is honored immediately following 
CPU reset if the HOLD line is active when the 
RESET line goes inactive. This action facilitates 
the downloading of programs and, more 
specifically, the setting of memory location 
FFFFOH prior to CPU activation. Note that the 
same result can be effected in the maximum mode 
through the RQ/GT line by generating the request 
pulse in the first or second clock cycle after 
RESET goes inactive. 

LOCK 

The LOCK output is used in conjunction with an 
Intel 8289® Bus Arbiter to guarantee exclusive 
access of a shared system bus for the duration of 
an instruction. This output is software controlled 
and is effected by preceding the instruction 
requiring exclusive access with a one byte "lock" 
prefix (see instruction set description in Chapter 
2). 

When the lock prefix is decoded by the EU, the 
EU informs the BIU to activate the LOCK output 
during the next clock cycle. This signal remains 
active until one clock cycle after the execution of 
the associated instruction is concluded. 

QS1, QSO 

The QSl and QSO (Queue Status) outputs permit 
external monitoring of the CPU's internal 
instruction queue to allow instruction set exten-

4-14 

sion processing by a coprocessor. (The 
corresponding Intel ICE modules use these status 
bits during "trace" operations.) The encoding of 
the QSl and QSO bits is shown in table 4-4. 

Table 4-4. Queue Status Bit Decoding 

QS1 QSO Queue Status 

o (low) 0 No Operation. During the last 
clock cycle, nothing was taken 
from the queue. 

0 1 First Byte. The byte taken from the 
queue was the first byte of the 
instruction. 

1 (high) 0 Queue Empty. The queue has 
been reinitialized as a result of the 
execution of a transfer instruction. 

1 1 Subsequent Byte. The byte taken 
from the queue was a subsequent 
byte of the instruction. 

The queue status is valid during the clock cycle 
after the indicated activity has occurred. 

External Memory Addressing 

The 8086 and 8088 CPUs have a 20-bit address 
bus and are capable of accessing one megabyte of 
memory address space. 

The 8086 memory address space consists of a 
sequence of up to one million individual bytes in 
which any two consecutive bytes can be accessed 
as a 16-bit data word. As shown in figure 4-17, 
the memory address space is physically divided 
into two banks of up to 512k bytes each. 

One bank is associated with the lower half of the 
CPU's 16-bit data bus (data bits D7-DO), and the 
other bank is associated with the upper half of the 
data bus (data bits DI5-D8). Address bits A19 
through Al are used to simultaneously address a 
specific byte location in both the upper and lower 
banks, and the AOaddress bit is not used in 
memory addressing. Instead, AO is used in 
memory bank selection. The lower bank, which 



HARDWARE REFERENCE INFORMATION 

ADDRESS BUS 

~ ~ 

"" 
! ... 

"" m Ao-Ala SEL AO-A18 

UPPER LOWER 
(ODD) (EVEN) 
BANK BANK 

5l2K x8 5l2K x a 

00-07 00-07 

AI ,.. T ~ 

"" UPPER HALF OF DATA BUS ....... 

07-00 ----"!"LO!!!!W!!!E'!!'R !'!'!HA!'!'!L!"F O!'!F!'!!D"!!AT!'!'!A'!!BU!!!!S-----'! 

Figure 4-17.8086 Memory Interface 

contains even-address bytes, is selected when 
AO=O. The upper bank, containing odd address 
bytes (AO=l), is selected by a separate signal, Bus 
High Enable (BHE). Table 4-5 defines the 
BHE-AO bank selection mechanism. 

Table 4-5. Memory Bank Selection 

BHE AO Byte Transferred 

o (low) 0 Both bytes 
0 1 Upper byte to/from odd address 
1 (high) 0 Lower byte to/from even address 
1 1 None 

When accessing a data byte at an even address, 
the byte is transferred to or from the lower bank 
on the lower half of the data bus (D7-DO). In this 
case, the inactive level of the AO address bit 
enables the addressed byte in the lower bank, and 
the inactive level of the BHE signal disables the 
addressed byte in the upper bank. Conversely, 
when performing a byte access at an odd address, 
the data byte is transferred to or from the upper 
bank on the upper half of the data bus (D15-D8). 
The active level of the BHE signal enables the 
upper bank, and the active level of the AO address 
bit disables the lower bank. 

As indicated in table 4-5, the. 8086 can access a 
byte in both the upper and lower banks 
simultaneously as a 16-bit word. When the low­
order byte of the word to be accessed is on an 
even address boundary (that is, when the low-

4-15 

order byte is in the lower bank), the word is said 
to be "aligned" and can be accessed in a single 
operation (a single bus cycle). As with the byte 
transfers previously described, address bits A19 
through Al address both banks, except that now 
BHE is active (selecting the upper bank) and AO is 
inactive (selecting the lower bank) to access both 
bytes. 

When the low-order byte of the word to be 
accessed is on an odd address boundary (when the 
low-order byte is in the upper bank), the word is 
"not aligned" and must be accessed in two bus 
cycles. During the first cycle, the low-order byte 
of the word is transferred to or from the upper 
bank as described for a byte access at an odd 
address (AO and BHE active). The memory 
address is then incremented, which causes AO to 
shift to an inactive level (selecting the lower 
bank), and a byte access at an even address is per­
formed during the next bus cycle to transfer the 
word's high-order byte to or from the lower bank. 
The above sequence is initiated automatically by 
the 8086 whenever a word access at an odd 
address is performed. Also, the directing of the 
high- and low-order bytes of the 8086's internal 
word registers to the appropriate halves of the 
data bus is performed automatically and, except 
for the additional four clock cycles required to 
execute the second bus cycle, the entire operation 
is transparent to the program. 

The 8088 memory address space is logically 
organized as a linear array of up to one million 
bytes. Since the 8088 uses an 8-bit-wide data bus, 
memory consists of a single bank. Address bit AO 
is used to address memory, and a BHE signal is 
not provided. 

Word (16-bit) operands can be located at odd- or 
even-address boundaries. The low-order byte of 
the word is stored in the lower-valued address 
location, and the high-order byte is stored in the 
next, higher-valued address location. The 8088 
automatically executes two bus cycles when 
accessing word operands. 

I/O Interfacing 

The 8086 and 8088 CPUs support both I/O 
mapped I/O and memory mapped I/O. I/O 
mapped I/O permits an I/O device to reside in a 
separate address space (first 64k of address 
space), and the standard I/O instruction set is 



HARDWARE REFERENCE INFORMATION 

available for device communications. Memory 
mapped 1/0 permits an 110 device to reside 
anywhere in memory and allows the complete 
CPU instruction set to be used for 1/0 
operations. 

The 8086 supports both 8-bit and 16-bit 1/0 
devices. An 8-bit 110 device may be associated 
with either the upper or ·lower half of the data 
bus. (Assigning an equal number of devices to 
each half of the data bus distributes bus loading.) 
When an 1/0 device is assigned to the lower half 
of the bus (D7-DO), aU 110 addresses must be 
even (AO equal "0"), and when an 1/0 device is 
assigned to the upper half of the bus, all 110 
addresses must be odd (AO equal" 1 "). Note that 
since AO always will be either a "1" or a "0" for 
a specific device, it cannot be used as an address 
input to select registers within the I/O device. 
When an 110 device on the upper. half of the bus 
and an 1/0 device on the lower half of the bus are 
assigned addresses that differ only by the state,of 
AO (adjacent odd and even addresses), AO and 
BHE both must be conditions of device selection 
to prevent a write operation to one device from 
overwriting data in the other device. 

To permit data transfers to 16-bit I/O devices to 
be performed in a single bus cycle, the device is 
assigned an even address .. To ensure that the 110 
device is selected only for word transfers, AO and 
BHE both must be conditions of device selection. 

The 8088, since its data bus is eight bits wide, is 
designed to support 8-bit 110 devices and places 
no restrictions on odd or even addresses. 

When the 8086 or the 8088 is operated in the 
minimum mode, the CPU's read and write com­
mands (RD and WR) are common for memory 
and 110 devices. If the memory and 1/0 address 
spaces ..QY,erlap, device selection must be qualified 
by MilO (8086) or 101M (8088) to determine if 
the device is memory or 110. This restriction does 
not apply to systems in which 1/0 and memory 
addresses' do not overlap or to systems that use 
memory-mapped 1/0 exclusively. In the max­
imum mode, the CPU generates (through the bus 
controller) separate memory readlwrite and 110 
readlwrite commands in place of the MilO or 
101M signal. In a maximum mode system, an 1/0 
device is assigned to an 110 address or to a 
memory address (memory mapped 1/0) by con­
necting either the memory or 110 re~d/write como. 
mand lines to the device's command inputs. 

4-16 

When the 1/0 and memory address spaces 
overlap, device selection is determined by the 
appropriate read/write command set. 

Interrupts 

CPU interrupts can be software or hardware 
initiated. Software interrupts originate directly 
from program execution (i.e., execution of a 
breakpointed instruction) or indirectly through 
program logic (i.e., attempting to divide by zero). 
Hardware interrupts originate from external logic 
and are classified as either non-maskable or 
maskable. All interrupts, whether software or 
hardware initiated, result in the transfer of con­
trol to a new program location. A 256-entry vec'­
tor table, which contains address pointers to the 
interrupt routines, resides in absolute locations 0 
through 3FFH. Each entry in this table consists of 
two 16-bit address values ,(four bytes) that are 
loaded into the code segment (CS) and the 
instruction pointer (IP) registers. as the int~rrupt 
routine address when an. interrupt is accepted. 
Figure 4-18 illustrates the organization of tbe 256-
entry vector table. 

Memory Table Vector 
Addrass Entry Definition 

::: t-1---~-:;S-55-----1I} V.~M~~O 

82 

80 

7E 

7C 

18 

14 

12 

10 

OE 

oc 

0/\ 

08 

08 

04 

02 

00 

I 
I 

. 

CS32 

IP32 
", . 

CS31 

IP31 

CS5 

IP5 

CS4 

IP4 

CS3 

IP3 

CS2 

IP2 

CSI 

IPI 

CS Value - Vector 0 (CS 0) 

IP Volue - Yactor 0 (IP 0), 

I 
I UHr Available 

I R ••• rved 

~ VIctor 5 

I' 
Vector 4 - Ovetflow 

~ V~or 3 - Breaki>Qlnt 

>- Vector 2 - NMI 

t Yector 0 - Divide Error 

Vector 1 - Slngle·Stap 

2 Bytas -------. 

Figure 4-18. Interrupt Vector Table 



HARDWARE REFERENCE INFORMATION 

As shown in figure 4-18, the first five interrupt 
vectors are assoCiated with the software-initiated 
interrupts and the hardware non-mask able inter­
rupt (NMI). The next 27 interrupt vectors are 
reserved by Intel and should not be used if com­
patibility with future Intel products is to be main­
tained. The remaining interrupt vectors (vectors 
32 thorugh 255) are available for user interrupt 
routines. 

The non-mask able interrupt (NMI) occurs as a 
result of a positive transition at the CPU's NMI 
input pin. This input is asynchronous and, in 
order to ensure that it is recognized, is required to 
have a minimum duration of two clock cycles. 
NMI is typically used with power fail circuitry, 

. error correcting memory or bus parity detection 
logic to allow fast response to these fault condi­
tions. When NMI is activated, control is trans­
ferred to the interrupt service routine pointed to 
by vector 2 following execution of the current 
instruction. When a non-maskable interrupt is 
acknowledged, the current contents of the flags 
register are pushed onto the stack (the stack 
pointer is decremented by two), the interrupt 
enable and trap bits in the flags register are 
cleared (disabling maskable and single-step inter­
rupts), and the vector 2 CS and IP address 
pointers are loaded into the CS and IP registers as 
the interrupt service routine address. 

CLK 

The CPU provides a single interrupt request input 
(INTR) that can be software masked by clearing 
the interrupt enable bit in the flags register 
through the execution of a CLI instruction. The 
INTR input is level triggered and is synchronized 
internally to the positive transition of the CLK 
signal. In order to be accepted before the next 
instruction, INTR must be active during the clock 
period preceding the end of the current instruc­
tion (and the interrupt enable bit must be set). 

As shown in figure 4-19, when a maskable inter­
rupt is acknowledged, the CPU executes two 
interrupt acknowledge bus cycles. 

During the first bus cycle, the CPU floats the 
address/ data bus and activates the INT A (Inter­
rupt Acknowledge) command output during 
states T2 through T4' In the minimum mode, the 
CPU will not recognize a hold request from 
another bus master until the full interrupt 
acknowledge sequence is completed. In the max­
imum mode, the CPU activates the LOCK output 
from state T2 of the first bus cycle until state T2 
of the second bus cycle to signal all 8289 Bus 
Arbiters in the system that the bus should not be 
accessed by any other processor. During the 
second bus cycle, the CPU again activates its 
INT A command output. In response to the 

ALEI' n r 
'LOCK \ I 

\'-_----11 \\-__ ----1 

AD7-ADO ---------------------~<. VECTOR TYPE )>----
'MAXIMUM MODE ONLY 

"SEVERAL (3 TYPICAL) IDLE CLOCK STATES OCCUR BETWEEN THE FIRST AND SECOND 
INTERRUPT ACKNOWLEDGE BUS CYCLES IN THE 8086 CPU (DURING THIS INTERVAL THE 
BUS IS DRIVEN). INTERRUPT ACKNOWLEDGE BUS CYCLES OCCUR BACK·TO·BACK IN 
TH E 8088 CPU. 

Figure 4-19, Interrupt Acknowledge Sequence 

4-17 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

second INT A, the external interrupt system (e.g., 
an Intel® 8259A Programmable Interrupt Con­
troller) places a byte on the data bus that iden­
tifies the source of the interrupt (the vector 
number or vector "type"). This byte is read by 
the CPU and then multiplied by four with the 
resultant value used as a pointer into the interrupt 
vector table. Before calling the' corresponding 
interrupt routine, the. CPU saves the machine 
status by pushing the current contents of the flags 
register onto the stack. The CPU then clears the 
interrupt enable and trap bits in the flags register 
to prevent subsequent .maskable and sing~e-step 
interrupts, and establishes the interrupt routine 
return linkage by pushing the current CS and IP 
register contents onto the stack before loading the 
new CS and IP register values from the vector 
table. 

I 

The four classes of interrupts are prioritized with 
software-initiated interrupts having the highest 
priority and with maskable and single-step inter­
rupts sharing the lowest priority (see section 2.6). 
Since the CPU disables maskable and single-step 
interrupts when acknowledging any interrupt, if 
recognition of maskable interrupts or single-step 
operation is required as part of the interrupt 
routine, the routine first must set these bits. 

The processing times for the various classes of 
interrupts are given in table 4-6. (These times also 
are Included with the 8086/8088 instruction times 
cited in section 2.7.) 

Table 4-6. Interrupt Processing Time 

Interrupt Class Processing Time 

External Maskable Interrupt 
(lNTR) 61 clocks 

Non-Maskable Interrupt (NMI) 50 clocks 

INT (with vector) 51 clocks 
INT Type 3 52 clocks 
INTO 53 clocks 

Single Step 50 clocks 

Note that the times shown in table 4-6 represent 
only the time required to process the interrupt 
request after it has been recognized. To determine 
interrupt latency (the time interval between the 
posting of the interrupt request and the execution 
of "useful" instructions within the interrupt 

Mnemofljcs © Inlel. 19.78 4-18 

routine), additional time must be included for the 
completion on an instruction being executed when 
the interrupt is posted (interrupts are generally 
processed' only at instruction boundaries), for 
saving the contents of any additional registers 
prior to interrupt processing (interrupts 
automatically save only CS, IP and Flags) and for 
any wait states that may be incurred during inter­
rupt processing. 

Machine Instruction Encoding and 
Decoding . . 

Writing a MOV instruction in ASM-86 in the 
form: 

MOV destination,source 

will cause the assembler to generate 1 of 28 pos­
sible forms of the MOV machine instruction. A 
programmer rarely needs to know the details of 
machine instruction formats or encoding. An 
exception may occur during debugging when it 
may be necessary to monitor instructions fetched 
on the bus, read unformatted memory dumps, 
etc. This section provides the information 
necessary to translate or decode an 8086 or 8088 
machine instruction. • 

To pack instructions into memory as densely as 
possible, the 8086 and 8088 CPUs utilize aneffi­
cient coding technique. Machine instructions vary 
from one to six bytes in length. One-byte instruc­
tions, which generally operate on single registers 
or flags, are simple to identify. The keys to 
decoding longer instructions are in the first two 
bytes. The format of these bytes can varY,but 
most instructions follow the format shown in 
figure 4-20. 

The first six bits of a multibyte instruction 
generally contain an opcode that identifies the 
basic instruction type: ADD, XOR, etc. The 
following bit, called the D field, generally 
specifies the "direction" of the operation: 1 = the 
REG field in the second byte identifies the 
destination operand, 0 = the REG field identifies 
the source operand. The W field distinguishes 
between byte and word operations: 0 = byte, 1 = 
word. 

One of three additional single-bit fields, S, V or 
Z, appears in some instruction formats. S is used 
in conjunction with W to indicate sign extension 



HARDWARE REFERENCE INFORMATION 

of immediate fields in arithmetic instructions. V 
distinguishes between single- and variable-bit 
shifts and rotates. Z is used as a compare bit with 

the zero flag in conditional repeat and loop 
instructions. All single-bit field settings are sum­
marized in table 4-7. 

BYTE 3 BYTE 4 BYTE 5 BYTE 6 
r-TTM;;';'"T'"I""T-r~~;';-I""T'" - - - - - -,- - - - - - r - - - - -..., - - - - - - 1 

I I I I 
.......................... -t-H-'-+''--'--t-&.-.L-I LOW DISP/DATA I HIGH DISP/DATA I LOW DATA I HIGH DATA I 

I I I I 
'--'!"""-""""""""P"'''''-",!-''''-''''I'''''''- - - - - - - - - - - - ~ - - - - - -'- - - - - _.J 

~ REGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION 

REGISTER OPERAND/EXTENSION OF OPCODE 

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH 

WORD/BYTE OPERATION 

L-______ DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER 

L-_________ OPERATION (INSTRUCTION) CODE 

Figure 4-20. TypicalSOS6/S0SS Machine Instruction Format 

Table 4-7. Single-Bit Field Encoding 

Field Value Function 

S 
0 No sign extension 
1 Sign extend 8-bit immediate data to 16 bits if W=1 

W 
0 Instruction operates on byte data 
1 Instruction operates on word data 

0 
0 Instruction source is specified in REG field 
1 Instruction destination is specified in REG field 

V 
0 Shift/rotate count is one 
1 Shift/rotate count is specified in CL register 

Z 
0 Repeatlloop while zero flag is clear 
1 Repeatlloop while zero flag is set 

4-19 



HARDWARE.REFERENCE INFORMATION 

The second byte of the instruction usually iden­
tifies the instruction's operands: The MOD 
(mode) field indicates whether one of the 
operands is in memory or whether both operands 
are registers (see. table 4-8). The REG (register) 
field identifies a register that is one of the instruc­
tion operands (see table 4-9). In a number of 
instructions, chiefly the immediate-to-memory 
variety, REG is used as an extension of the 
opcode to identify the type of operation. The 
encoding of the RIM (register Imemory) field (see 
table 4-10) depends on how the mode field is set. 
If MOD = 11 (register-to-register mode), then 
RIM identifies the second register operand. If 
MOD selects memory mode, then RIM indicates 
how the effective address of the memory operand 
is to be calculated. Effective address calculation 
is covered in detail in section 2.8. 

Bytes 3 through 6 of an instruction are optional 
fields that usually contain the displacement value 
of a memory operand and I or the actual value of 
an immediate constant operand. 

Table 4-8. MOD (Mode) Field Encoding 

CODE EXPLANATION 

00 Memory Mode, no displacement 
follows* 

01 Memory Mode, 8-bit 
displacement follows 

10 Memory Mode, 16-bit 
displacement follows 

11 Register Mode (no 
displacement) 

*Except when RIM = 110, then 16-bit 
displacement follows 

Table 4-9. REG (Register) Field Encoding 

REG W=O W=1 

000 AL AX 
001 CL CX 
010 OL OX 
011 BL BX 
100 AH SP 
101 CH BP 
110 OH SI 
111 BH 01 

There may be one or two displacement bytes; the 
language translators generate one byte whenever 
possible. The .. MOD field. i.ndicates how many 
displacement bytes are present. Following Intel 
convention, if the displacement is two bytes, the 
most-significant byte is stored second in the 
instruction. If the displacement is only a single 
byte, the 8086 or 8088 automatically sign-extends 
this quantity to 16-bits before using the informa­
tion in further address calculations. Immediate 
values always follow any displacement values that 
may be present. The second byte of a two-byte 
immediate value is the most significant. 

Table 4-12 lists the instruction encodings for all 
8086/8088 instructions. This table can be used to 
predict the machine encoding of any ASM-86 
instruction. Table 4-13 lists the 8086/8088 
machine instructions in order by the binary value. 
of their first byte. This table can be used to 
decode any machine instruction from its binary 
representation. Table 4-11 is a key to the 
abbreviations used in tables 4-12 and 4-13. Table 
4-14 is a more compact instruction decoding 

. guide. 

Table 4-10. R/M (Register/Memory) Field Encoding 

MOD=11 EFFECTIVE ADDRESS CALCULATION 

RIM W=O W=1 RIM MOD=OO MOD=G1 MOD=1Q 

000 AL AX 000 (aX)+(SI) (BX) + (SI) + 08 (BX)+(SI)+ 016 
001 CL CX 001 (BX)+(OI) (BX) + (01) + 08 (BX)+(01)+016 
010 OL OX 010 (BP)+(SI) (BP)+(SI)+08 (BP)+(SI)+016 
011 BL BX 011 (BP)+(OI) (BP) + (01) + 08 (BP)+(01)+016 
100 AH SP 100 (SI) (SI)+08 (51)+016 
101 CH BP 101 (01) (01)+08 (01)+016 
110 OH SI 110 OiRECT AOORESS (BP)+08 (BP)+016 
111 BH 01 111 (BX) (BX)+08 (BX)+D16 



IDENTIFIER 

MOD 

REG 

R/M 

SR 

W,S,D,V,Z 

DATA-8 

DATA-SX 

DATA-LO 

DATA-HI 

(DISP-LO) 

(DISP-HI) 

IP-LO 

IP-HI 

CS-LO 

CS-HI 

IP-INC8 

IP-INC-LO 

IP-INC-HI 

ADDR-LO 

ADDR-HI 

xxx 
YYY 
REG8 

REG16 

MEM8 

MEM16 

IMMED8 

IMMED16 

SEGREG 

DEST-STR8 

HARDWARE REFERENCE INFORMATION 

Table 4-11. Key to Machine Instruction Encoding and Decoding 

EXPLANATION 

Mode field; described in this chapter. 

Register field; described in this chapter. 

Register/Memory field; described in this chapter. 

Segment register code: OO=ES, 01=CS, 10=SS, 11 =DS. 

Single-bit instruction fields; described in this chapter. 

8-bit immediate constant. 

8-bit immediate value that is automatically sign-extended to 16-bits 
before use. 

Low-order byte of 16-bit immediate constant. 

High-order byte of 16-bit immediate constant. 

Low-order byte of optional 8- or 16-bit unsigned displacement; MOD 
indicates if present. 

High-order byte of optional 16-bit unsigned displacement; MOD 
indicates if present. 

Low-order byte of new IP value. 

High-order byte of new IP value 

Low-order byte of new CS value. 

High-order byte of new CS value. 

8-bit signed increment to instruction pointer. 

Low-order byte of signed 16-bit instruction pointer increment. 

High-order byte of signed 16-bit instruction pointer increment. 

Low-order byte of direct address (offset) of memory operand; EA not 
calculated. 

High-order byte of direct address (offset) of memory operand; EA not 
calculated. 

Bits may contain any value. 

First 3 bits of ESC opcode. 

Second 3 bits of ESC opcode. 

8-bit general register operand. 

16-bit general register operand. 

8-blt memory operand (any addressing mode). 

16-bit memory operand (any addressing mode). 

8-bit immediate operand. 

16-bit immediate operand. 

Segment register operand. 

Byte string addressed by 01. 

4-21 



HARDWARE REFERENCE INFORMATION 

Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont'd.) 

IDENTIFIER EXPLANATION 

SRC-STRB Byte string addressed by SI. 

OEST-STR16 Word string addressed by 01. 

SRC-STR16 Word string addressed by SI. 

SHORT-LABEL Label within ±127 bytes of instruction. 

NEAR-PROC Procedure in current code segment. 

FAR-PROC Procedure in another code segment. 

NEAR-LABEL Label in current code segment but farther than -12B to +127 bytes 
from instruction. 

FAR-LABEL Label in another code segment. 

SOURCE-TABLE XLAT translation table addressed by BX. 

OPCOOE ESC opcode operand. 

SOURCE ESC register or memory operand. 

Table 4-12.8086 Instruction Encoding 

DATA TRANSFER 

MOV = Move: 765432107654321076543210765432107654321076543210 

Registerfmemory to/from register 100010dw mod reg rim (DISP·LO) (DISP·HI) I 
Immediate to register/memory 1 1 0 0 0 1 1 w mod o 0 0 rim (DISP·LO) (DISP·HI) I data I dataifw=1 

J 
Immediate to register 1 0 1 1 w reg data data if w = 1 

Memory to accumulator 1010000w addr·lo addr-hi 

Accumulator to memory 1010001w addr-Io addr-hi 

Aegisterlmemory to segment register 1 0 0 0 1 1 1 0 mod 0 SR rim (DISP·LO) (DISP·HI) I 
Segment register to register/memory 10001100 mod 0 SR rim (DISP·LO) (DISP·HI) J 

PUSH = Push: 

Register/memory 11111111 mod 1 1 a rIm I (DISP·LO) I (DISP·HI) J 
Register 01010 re9 

Segment register 000reg110 

POP = Pop: 

Register/memory 1 0 0 0 1 1 1 1 mod a 0 0 rIm J (DISp·LO) I (DISP·HI) I 
Register o 1 0 1 1 reg 

Segment register 000re9111 

Mnemonics @ Intel, 1978 4-22 



HARDWARE REFERENCE INFORMATION 

Table 4-12.8086 Instruction Encoding (Cont'd.) 

DATA TRANSFER (Cont'd.) 

XCHG =- ExChlnge: 75S432tO 785432tO 78S432tO 78543210 71,432tO 71'43210 

Reglsterl memory with register 

Register with accumulator 

IN == Input from: 

Fixed port 

Variable port 

OUT = Output tD: 

Fixed port 1 1 1 0 0 1 1 w DATA·S 

Variable port 1 1 1 0' 1 1 w 

XLAT = Translate byte to AL 1 1 0 1 0 1 1 1 

LEA = Load EA to register 1 0 0 0 1 1 0 1 mod reg rim (DISP·LO) (DISP-HI) 

LOS = Load pointer to OS 1 1 0 0 0 1 0 1 mod reg rim (DISP·LO) (DISP·HI) 

LES = Load pointer to ES 11000100 mod reg rim (DlSP·LD) (DISP·HI) 

LAHF • Load AH with flags 1 0 0 1 1 111 

SAHF = Store AH Into flags 1 0 0 1 1 1 1 0 

PUSHF =- Push flags 1 0 0 1 1 1 0 0 

POPF • Pop flags 1 0 0 1 1 1 0 1 

ARITHMETIC 

ADD. Add: 

Regl memory with register to either OOOOOOdw mod reg rim (DISP-LO) (DISP·HI) I 
Immediate to register/memory 100000sw mod o 0 0 rim (DISP·LO) (DISp·HI) I data T data If s: w=01 1 
Immediate to accumulator 0000010w data data ifw"" 

Aoe =- AcId with carry: 

Reg/ memory with register to either 000100dw mod rog rim (DISP·LO) (DISP·HI) I 
Immediate to register/memory 100000sw mod o 1 0 rim (DISP·LD) (DlSP·HI) 1 data I data If 8: w-01 I 
Immediate to accumulator 0001010w data data It w-, 

INC. Increment: 

Reglster/memory 1111111 w mod 0 0 0 rim I (DISP-LD) I (DISP·HI) I 
Register 01000rog 

AAA • ASCII adjust for add o 0 1 1 0 1 1 1 

OM = Decimal adjust for add o 0 1 o 0 1 1 1 

4-23 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

Table 4-12.8086 Instruction Encoding (Cont'd.) 

ARITHMETIC (Conl'd.) 

SUB = Subtract: 78543210 78543210 78543210 78543210 78543210 78543210 

Reg I memory and register to either 001010dw mod reg rim IOISP-LO) IOISP-HI) 

Immediate from reglsterfmemory 100000sw mod 1 0 1 rim IOISP-LO) IOISP-HI) data I data if s: w=Ol I 
Immediate from accumulator 0010110w data datalfw=l 

sss = Subtract with borrow: 

Reg/memory and register to either 0OO110dw mod reg rim IOISP-LO) IOISP-HI) I 
Immediate from register/memory 100000sw mod o 1 1 rim IOISP-LO) IOISP-HI) I data 1 data if s: w=Ol J 
Immediate from accumulator 0001110w data data if w=l 

DEC Oecremenl: 

Register/memory 1 1 1 1 1 1 1 w mod 0 0 1 rIm i IOISP-LO) I IOISP-HI) I 
Register 01001reg 

NEG Change sign 1 1 1 1 01 1 w mod 0 1 1 rIm I IOISP·LO) I IOISP-HI) I 

CMP ;;; Compara: 

Register/memory and register 001110dw mod reg rim IOISP-LO) IOISP-HI) 

Immediate with register/memory 100000sw mod 1 11 rim IOISP-LO) IOISP-HI) data I data if s: w=l I 
Immediate with accumulator o 0 1 1 1 lOw data 

AAS ASCII adjust for ;;ubtract o 0 1 111 11 

CAS Decimal adjust for subtract o 0 1 o 1 1 11 

MUL Multiply (unsigned) 1111 01 1 w mod 1 0 0 rim IOISP-LO) IOISP-HI) 

IMUL Integer multiply (signed) 1111 o 1 1 w mod 1 o 1 rim IOISP-LO) IOISP-HI) 

AAM ASCII adjust for multiply 1 1 0 1 0 1 0 0 00001010 IOISP-LO) IOISP-HI) 

DIV Divide (unsigned) 1 1 1 1 01 1 w mod 1 1 0 rIm IOISP-LO) IOISP-HI) 

IDIV Integer divide (signed) 1 1 1 1 0 1 1 w mod 1 11 rim IOISP-LO) IOISp·HI) 

AAD ASCII adjust for divide 1 1 0 1 o 1 0 1 00001010 IOISP-LO) IOISP-HI) 

caw Convert byte to word 1 0 0 1 1 o 0 0 

CWD Convert word to double word 1 0 0 1 1 o 0 1 

LOGIC 

NOT Invert 1 1 1 1 01 1 w mod 0 1 o rIm IOISP-LO) IOISP-HI) 

SHLJSAl Shift loglcallarithmetic left 11 0100vw mod 1 o 0 rim IOISP-LO) IOISP-HI) 

SHR Shift logical right 110100vw mod 1 o 1 rim IOISp·LO) IOISP-HI) 

SAR Shift arithmetic right 1 1 0 1 o 0 v w mod 1 1 1 rim IOISP-LO) IOISp·HI) 

ROl Rotate left 1 1 0 1 o 0 v w mod 0 0 0 rim IOISP·LO) IOISP-HI) 

Mnemonics © Intel, 1978 4-24 



HARDWARE REFERENCE INFORMATION 

Table 4"12. 8086 Instruction Encoding (Cont'd.) 

LOGIC (Conl'd,) 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5·4 3 2 1 0 

ROR Rotate ,right 1 1 a 1 o 0 v w mod o 0 1 rim (DISP-LOI (DISP-HII 

RCL Rotate through carry flag left I I o 1 o 0 v w mod 0 1 a rIm (DISP-LOI (DISP-HII 

RCR Rotate through carry right 1 1 0 1 a a v w mod o 1 1 rim (DISP-LOI (DISP-HII 

AND = And: 

Reg/memory with register to either 0010QOdw mod reg rim (DISP-LOI IDISP-HII I 
Immediate to registerl memory 1000000w mod 1 o 0 rim (DISP-LOI (DISP-HII I data I data jf w=1 I 
Immediate 10 accumulator 0010010w data data if w=1 

TEST = And function to flags no result: 

Register/memory and register OOQ100dw mod reg rim IDISP-LO) I (DISP-HI) I 
Immediate data and register/memory 1 I 1 1 01 1 w mod o 0 0 rim (DISP-LO) I (DISP-HII I data I data if w=1 1 
Immediate data and accumulator I 0 1 o 1 0 0 w data 

OR = Or: 

Reg! memory and register to either 0OOO10dw mod reg rim (OISP-LO) (DISP-HI) I 
Immediate to register Imemory 1QOOOOOw mod o 0 1 rim (DISP-LO) (DISP-HI) I data I data ifw=1 I 
Immediate to accumulator 0OOO11Qw data data if w=1 

XOR = Exclusive or: 

Reg/memory and register to either o 0 1 1 a 0 d w mod reg rim (DISP-LOI (DISP-HII I 
Immediate to register/memory o 0 I 1 0 1 0 w data (DISP-LO) (DISP-HII I data I data ifw=1 I 
Immediate to accumulator o 0 1 1 0 1 0 w data data if w=1 

STRING MANIPULATION 

REP = Repeat 1 1 1 1 0 a 1 z 

MOVS=Move byte/word 1 0 1 o 0 1 0 w 

CMPS=Compare byte/word I 0 1 o 0 1 1 w 

SCA5=Scan byte/word I 0 .1 o I 11 w 

LOOS=Load bytelwd to ALIAX I 0 1 o 1 lOw 

STDS=Stor bytelwd from ALIA I 0 1 a 1 0 1 w 

4-25 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

Table 4-12.8086 Instruction Encoding (Cont'd.) 

CONTROL TRANSFER 

CALL = Call: 765432107654321076543210765432107654321078543210 

Direct within segment 

Indirect within segment 

Direct intersegment 

Indirect intersegment 

JMP = Unconditional Jump: 

Direct within segment 

Direct within segment-short 

Indirect within segment 

Di~ect intersegment 

Indirect intersegment 

RET = Return trom CALL: 

Within segment 

Within seg adding immecl to SP 

Intersegment 

Intersegment adding Immediate to SP 

JE/JZ=Jump on equal/zero 

JL/JNGE=Jump on less/not greater or equal 

JLE/JNG =Jump on less or equal/not greater~ 

JB/JNAE=Jump on below/not above or equal 

JBE/JNA.=Jump on below or equal/nol above 

JP/JPE=Jump on parity/parity eVen 

JO=Jump on overflow 

JS=Jump on sign 

JNE/JNZ_Jump on not equallnot zerO 

JNL/JGE-Jump on npt less/greater or equal 

JNLE/JG _Jump on not le88 or equal/greater 

JNB/JAE_Jump on not below/above oreque! 

JNBE/JA=Jump on not below or equal/above 

JNP/JPO-Jump on not par/par odd 

JNO_Jumpon not overflow 

Mnemonics © Intel, 1978 

11 1 0 1 o 0 0 

11 11 1111 

1 00 11 o 1 0 

11111 1 11 

1 1 1 0 1 o 0 1 

111 o 1 o 1 1 

11 111 111 

11 1 0 1 01 0 

111111 1 1 

11000011 

11 o 0 0 0 1 0 

11 o 0 1 o 1 1 

11 o 0 1 o 1 0 

o 1 11 o 1 o 0 

o 1 1 111 o 0 

o 1 111 1 1 0 

o 1 1 1 0 0 1 0 

o 1 1 1 0 1 1 0 

o 1 1 1 10 1 0 

o 1 1 1 0 0 0 0 

o 1 1 1 1 0 0 0 

o 1 1 1 0 1 o 1 

o 1 1 111 o 1 

o 1 111111 

o 1 1 1 0 0 1 1 

o 1 1 1 0 1 1 1 

o 1 1 1 1 0 1 1 

o 1 1 1 0 0 0 1 

IP-INC-LO IP-INC-HI 

mod o 1 0 rim (DISP-LO) (DISP-HI) I 
Ip·lo Ip·hi 

CS·lo CS·hi 

mod o 1 1 rim (DISP-LO) (DISP-HI) I 

IP-ING-LO Ip·INC·HI 

IP-INC8 

mod 1 0 0 rim (DISP-LO) (DISP-HI) I 
lp·lo Ip·hi 

CS·lo CS-hl 

mod 1 0 1 rim (DISP-LO) (DISP-HI) I 

data·lo data·hi I 
data·lo data·hi I 
IP-INC8 

IP-INC8 

IP-INCB 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INCB 

IP~INCB 

IP-INC8 

IP-INC8 

4-26 



HARDWARE REFERENCE INFORMATION 

Table 4-12.8086 Instruction Encoding (Cont'd.) 

CONTROL TRANSFER (Cont'd.) 

RET = Return from CALL: 76543210 76543210 76543210 76543210 76543210 76543210 

JNS=Jumpon not sign o 1 1 1 1 0 0 1 IP-INC8 

LOOP= Loop ex times 1 1 1 0 0 0 1 0 IP-INC8 

LOOPZ/LOOPE = Loop while zero/equal 11100001 IP-INC8 

LOOPNZ/LOOPNE = Loop while not zero/aqua I 11100000 IP-INC8 

JCXZ=Jump on ex zero 11100011 IP-INC8 

INT' = Interrupt: 

Type specified 1 1 0 0 1 1 0 1 DATA-8 I 
Type3 1 1 a 0 1 1 0 0 

INTO= Interrupt on overflow 1 1 0 0 1 1 1 0 

IRET = Interrupt return 1 1 0 0 1 1 1 1 

PROCESSOR CONTROL 

CLC = Clear carry 1 1 1 1 1 0 0 a 

CMC =Complement carry 1 1 1 1 0 1 0 1 

STC = Set carry 1 1 1 1 1 0 0 1 

CLD =Clear direction 1 1 1 1 1 1 0 0 

5TO=5et direction 1 1 1 1 1 1 0 1 

CL1=Clear interrupt 1 1 1 1 1 0 1 0 

STI=Set Interrupt 1 1 1 1 1 0 1 1 

HLT=Halt 11110100 

WAIT=Wait 1 0 0 1 1 0 1 1 

ESC = Escape (to extern~1 device) 1 1 0 1 1 x x x modyyyr/m I (DISP-LO) I (DISP-HI) I 
lOCK=Bus lock prefix 1 1 1 1 0 0 0 0 

SEGMENT=Override prefix 001re9 11 O 

Table 4-13. Machine Instruction Decoding Guide 

1ST BYTE 
2ND BYTE BYTES 3, 4, 5, 6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

00 0000 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG8/MEM8,REG8 
01 0000 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG16/MEM16,REG16 
02 0000 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG8,REG8/MEM8 
03 0000 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG16,REG16/MEM16 
04 0000 0100 DATA-8 ADD AL,IMMED8 
05 0000 0101 DATA-LO DATA-HI ADD AX,IMMED16 
06 0000 0110 PUSH ES 
07 0000 0111 POP ES 

4-27 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

08 0000 1000 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8/MEM8,REG8 
09 0000 1001. MOD REG RIM (DISP-LO),(DISP-HI) OR REG16/MEM16,REG16 
OA 0000 1010 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8,REG8/MEM8 
OB 0000 1011 MOD REG RIM (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16 
OC 0000 1100 DATA-8 OR AL,IMMED8 
00 0000 1101 DATA-LO DATA-HI OR AX,IMMED16 
OE 0000 1110 PUSH CS 
OF 0000 1111 (not used) 
10 0001 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8/MEM8,REG8 
11 0001 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16/MEM16,REG16 
12 0001 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8,REG8/MEM8 
13 0001 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16 
14 0001 0100 DATA-8 ADC AL,IMMED8 
15 0001 0101 DATA-LO DATA-HI ADC AX,IMMED16 
16 0001 0110 PUSH SS 
17 0001 0111 POP SS 
18 0001 1000 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8/MEM8,REG8 
19 0001 1001 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16 
1A 0001 1010 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8,REG8/MEM8 
1B 0001 1011 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16 
1C 0001 1100 DATA-8 SBB AL,IMMED8 
10 0001 1101 DATA-LO DATA-HI SBB AX,IMMED16 
1E 0001 1110 PUSH OS 
1F 0001 1111 POP OS 
20 0010 0000 MOD REG RIM (DISP-LO),(DISP-HI) AND REG8/MEM8,REG8 
21 0010 0001 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16/MEM16,REG16 
22 0010 ·0010 MOD REG RIM (DISP-LO),(DISP-HI) AND REG8,REG8/MEM8 
23 0010 0011 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16,REG16/MEM16 
24 0010 0100 DATA-8 AND AL,IMMED8 
25 0010 0101 DATA-LO DATA-HI AND AX,IMMED16 
26 0010 0110 ES: (segment override 

prefix) 
27 0010 0111 DAA 
28 0010 1000 MOD REG RIM (DISP-LO), (DISP-H I) SUB REG8/MEM8,REG8 
29 0010 1001 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG16/MEM16,REG16 
2A 0010 1010 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG8,REG8/MEM8 
2B 0010 1011 MOD REG RIM (DISP-LO,(DISP-HI) SUB REG16,REG16/MEM16 
2C 0010 1100 DATA-8·· SUB AL,IMMED8 
20 0010 1101 DATA-LO DATA-HI SUB AX,IMMED16 
2E 0010 1110 CS: (segment override 

prefix) 
2F 0010 1111 DAS 
30 0011 0000 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG8/MEM8,REG8 
31 0011 0001 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16 
32 0011 0010 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG8,REG8/MEM8 
33 0011 0011 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16 
34 0011 0100 DATA-8 XOR AL,IMMED8 
35 0011 0101 DATA-LO DATA-HI XOR AX,IMMED16 ' 
36 0011 0110 SS: (segment override 

prefix) 

Mnemonics © Inlel, 1978· 4-28 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

37 0011 0110 AAA 
38 0011 1000 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8/MEM8,REG8 
39 0011 1001 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16 
3A 0011 1010 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8,REG8/MEM8 
3B 0011 1011 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16 
3C 0011 1100 DATA-8 CMP AL,IMMED8 
3D 0011 1101 DATA-LO DATA-HI CMP AX,IMMED16 
3E 0011 1110 OS: (segment override 

prefix) 
3F 0011 1111 AAS 
40 0100 0000 INC AX 
41 0100 0001 INC CX 
42 0100 0010 INC OX 
43 0100 0011 INC BX 
44 0100 0100 INC SP 
45 0100 0101 INC BP 
46 0100 0110 INC SI 
47 0100 0111 INC 01 
48 0100 1000 DEC AX 
49 0100 1001 DEC CX 
4A 0100 1010 DEC OX 
4B 0100 1011 DEC BX 
4C 0100 1100 DEC SP 
40 0100 1101 DEC BP 
4E 0100 1110 DEC SI 
4F 0100 1111 DEC 01 
50 0101 0000 PUSH AX 
51 0101 0001 PUSH CX 
52 0101 0010 PUSH OX 
53 0101 0011 PUSH BX 
54 0101 0100 PUSH SP 
55 0101 0101 PUSH BP 
56 0101 0110 PUSH SI 
57 0101 0111 PUSH 01 
58 0101 1000 POP AX 
59 0101 1001 POP CX 
5A 0101 1010 POP OX 
5B 0101 1011 POP BX 
5C 0101 1100 POP SP 
50 0101 1101 POP BP 
5E 0101 11'10 POP SI 
5F 0101 1111 POP 01 
60 0110 0000 " (not used) 
61 0110 0001 (not used) 
62 0110 0010 (not used) 
63 0110 0011 (not used) 
64 0110 0100 (not used) 
65 0110 0101 (not used) 
66 0110 0110 (not used) 
67 0110 0111 (not used) 

4-29 Mnemonics © Intel, 1978 



HARDWARE REFEREN.CE INFORMATION 

Table 4-13.Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

68 0110 1000 (not used) 
69 0110 1001 (not used) 
6A 0110 1010 (not used) 
6B 0110 1011 (not used) 
6C 0110 1100 (not used) 
60 0110 1101 (not used) 
6E 0110 1110 (not used) 
6F 0110 1111 (not used) 
70 0111 0000 IP-INC8 JO SHORT-LABEL 
71 0111 0001 IP-INC8 JNO SHORT-LABEL 
72 0111 0010 IP-INC8 JB/JNAEI SHORT-LABEL 

JC 
73 0111 0011 IP-INC8 JNB/JAEI SHORT-LABEL 

JNC 
74 0111 0100 IP-INC8 JE/JZ SHORT-LABEL 
75 0111 0101 IP-INC8 JNE/JNZ SHORT-LABEL 
76 0111 0110 IP-INC8 JBE/JNA SHORT-LABEL 
77 0111 0111 IP-INC8 JNBE/JA SHORT-LABEL 
78 0111 1000 IP-INC8 JS SHORT-LABEL 
79 0111 1001 IP-INC8 JNS SHORT-LABEL 
7A 0111 1010 IP-INC8 JP/JPE SHORT-LABEL 
7B 0111 1011 IP-INCIf JNP/JPO SHORT-LABEL 
7C 0111 1100 IP-INC8 JLlJNGE SHORT-LABEL 
70 0111 1101 IP-INC8 JNLlJGE SHORT-LABEL 
7E 0111 1110 IP-INC8 JLE/JNG SHORT-LABEL 
7F 0111 1111 IP-INC8 JNLE/JG SHORT-LABEL 
80 1000 0000 MODOOOR/M (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 001 RIM . (DISP-LO),(DISP-HI), OR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 011 RIM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 100 RIM (DISP-LO),(DISP-HI), AND REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 110 RIM (DISP-LO),(DISP-HI), XOR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
81 1000 0001 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD 001 RIM (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMED16 

DATAcLO,DATA-HI 
81 1000 0001 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 

Mnemonics @; Intel, 1978 4-30 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 
HEX BINARY 

81 1000 0001 MOD100 RIM (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 110 RIM (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

82 1000 0010 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 001 RIM (not used) 
82 1000 0010 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG81 MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 011 RIM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD100 RIM (not used) 
82 1000 0010 MOD 101 f'l/M (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 110 RIM (not used) 
82 1000 0010 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
83 1000 0011 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 001 RIM (not used) 
83 1000 0011 MOD010 RIM (DISP-LO), (DISP-HI), ADC REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 100 RIM (not used) 
83 1000 0011 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD110 RIM (not used) 
83 1000 0011 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED8 

DATA-SX 
84 1000 0100 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG8/MEM8,REG8 
85 1000 0101 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16 
86 1000 0110 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG8,REG8/MEM8 
87 1000 0111 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16 
88 1000 1000 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG81 M EM8, REG8 
89 1000 1001 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16 
8A 1000 1010 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG8,REG8/MEM8 
8B 1000 1011 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16 
8C 1000 1100 MODOSRR/M (DISP-LO),(DISP-HI) MOV REG16/MEM16,SEGREG 
8C 1000 1100 MOD 1-- RIM (not used) 
8D 1000 1101 MOD REG RIM (DISP-LO),(DISP-HI) LEA REG16,MEM16 
8E 1000 1110 MODOSR RIM (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16 
8E 1000 1110 MOD 1-- RIM (not used) 
8F 1000 1111 MOD 000 RIM (DISP~LO),(DISP-HI) POP REG16/MEM16 
8F 1000 1111 MOD 001 RIM (not used) 
8F 1000 1111 MOD 010 RIM (not used) 

4-31 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

8F 1000 1111 MOD 011 RIM (not used) 
8F 1000 1111 MOD100 RIM (not used) 
8F 1000 1111 MOD101 RIM (not used) 
8F 1000 1111 MOD 110 RIM (not used) 
8F 1000 1111 MOD111 RIM (not used) 
90 1001 0000 NOP (exchange AX,AX) 
91 1001 0001 XCHG AX,CX 
92 1001 0010 XCHG AX,DX 
93 1001 0011 XCHG AX,BX 
94 1001 0100 XCHG AX,SP 
95 1001 0101 XCHG AX,BP 
96 1001 0110 XCHG AX,SI 
97 1001 0111 XCHG AX,DI 
98 1001 1000 CBW 
99 1001 1001 CWO 
9A 1001 1010 DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC 

SEG-HI 
9B 1001 1011 WAIT 
9C 1001 1100 PUSHF 
90 1001 1101 POPF 
9E 1001 1110 SAHF 
9F 1001 1111 LAHF 
AO 1010 0000 ADDR-LO ADDR-HI MOV AL,MEM8 
A1 1010 0001 ADDR-LO ADDR-HI MOV AX,MEM16 
A2 1010 0010 ADDR-LO ADDR-HI MOV MEM8,AL 
A3 1010 0011 ADDR-LO ADDR-HI MOV MEM16,AL 
A4 1010 0100 MOVS DEST -STR8,SRC-STR8 
A5 1010 0101 MOVS DEST-STR16,SRC-STR16 
A6 1010 0110 CMPS DEST -STR8,SRC-STR8 
A7 1010 0111 CMPS DEST-STR16,SRC-STR16 
A8 1010 1000 DATA-8 TEST AL,IMMED8 
A9 1010 1001 DATA-LO DATA-HI TEST AX,IMMED16 
AA 1010 1010 STOS DEST-STR8 
AB 1010 1011 STOS DEST-STR16 
AC 1010 1100 LODS SRC-STR8 
AD 1010 1101 LODS SRC-STR16 
AE 1010 1110 SCAS DEST-STR8 
AF 1010 1111 SCAS DEST-STR16 
BO 1011 0000 DATA-8 MOV AL,IMMED8 
B1 1011 0001 DATA-8 MOV CL,IMMED8 
B2 1011 0010 DATA-8 MOV DL,IMMED8 
B3 1011 . 1011 DATA-8 MOV BL,IMMED8 
B4 1011 0100 DATA-8 MOV AH,IMMED8 
B5 1011 0101 DATA-8 MOV CH,IMMED8 
B6 1011 0110 DATA-8 MOV DH,IMMED8 
B7 1011 0111 DATA-8 MOV BH,IMMED8 
B8 1011 1000 DATA-LO DATA-HI MOV AX,IMMED16 
B9 1011 1001 DATA-LO DATA-HI MOV CX,IMMED16 
BA 1011 1010 DATA-LO DATA-HI MOV DX,IMMED16 
BB 1011 1011 DATA-LO DATA-HI MOV BX,IMMED16 

Mnemonics © Intel, 1978 4-32 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 A~M-86INSTRUCTION FORMAT HEX BINARY 

BC 1011 1100 DATA-LO DATA-HI MOV SP,IMMED16 
BD 1011 1101 DATA-LO DATA-HI MOV BP,IMMED16 
BE 1011 1110 DATA-LO DATA-HI MOV SI,IMMED16 
BF 1011 1111 DATA-LO DATA-HI MOV DI,IMMED16 
CO 1100 0000 (not used) 
C1 1100 0001 (not used) 
C2 1100 0010 DATA-LO DATA-HI RET IMMED16 (intraseg) 
C3 1100 0011 RET (intrasegment) 
C4 1100 0100 MOD REG RIM (DISP-LO),(DISP-HI) LES REG16,MEM16 
C5 1100 0101 MOD REG RIM (DISP-LO),(DISP-H I) LDS REG16,MEM16 
C6 1100 0110 MODOOOR/M (DISP-LO),(DISP-HI), MOV MEM8,IMMED8 

DATA-8 
C6 1100 0110 MOD 001 RIM (not used) 
C6 1100 0110 MOD010 RIM (not used) 
C6 1100 0110 MOD011 RIM (not used) 
C6 1100 0110 MOD 100 RIM (not used) 
C6 1100 0110 MOD101 RIM (not used) 
C6 1100 0110 MOD 110 RIM (not used) 
C6 1100 0110 MOD 111 RIM (not used) 
C7 1100 0111 MOD 000 RIM (DISP-LO),(DISP-HI), MOV MEM16,IMMED16 

DATA-LO,DATA-HI 
C7 1100 0111 MOD 001 RIM (not used) 
C7 1100 0111 MOD 010 RIM (not used) 
C7 1100 0111 MOD011 RIM (not us~d) 
C7 1100 0111 MOD 100 RIM (not used) 
C7 1100 0111 MOD101 RIM (not used) 
C7 1100 0111 MOD110R/M (not used) 
C7 1100 0111 MOD111 RIM (not used 
C8 1100 1000 (not used) 
C9 1100 1001 (not used) 
CA 1100 1010 DATA-LO DATA-HI RET IMMED16 (intersegment) 
CB 1100 1011 RET (intersegment) 
CC 1100 1100 INT 3 
CD 1100 1101 DATA-8 INT IMMED8 
CE 1100 1110 INTO 
CF 1100 1111 IRET 
DO 1101 0000 MODOOO RIM (DISP-LO),(DISP-HI) ROL REG8/MEM8,1 
DO 1101 0000 MOD001 RIM (DISP-LO),(DISP-HI) ROR REG8/MEM8,1 
DO 1101 0000 MOD010R/M (DISP-LO),(DISP-HI) RCL REG8/MEM8,1 
DO 1101 0000 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG8/MEM8,1 
DO 1101 0000 MOD 100 RIM (DISP-LO),(DISP-HI) SALISHL REG8/MEM8,1 
DO 1101 0000 MOD 101 RIM (DISP-LO),(DISP-HI) SHR REG8/MEM8,1 
DO 1101 0000 MOD110 RIM (not used) 
DO 1101 0000 MOD 111 RIM (DISP-LO),(DISP-HI) SAR REG8/MEM8,1 
D1 1101 0001 MOD 000 RIM (DISP-LO),(DISP-HI) ROL REG16/MEM16,1 
D1 1101 0001 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG16/MEM16,1 
D1 1101 0001 MOD010 RIM (DISP-LO),(DISP-HI) RCL REG16/MEM16,1 
D1 1101 0001 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG16/MEM16,1 
D1 1101 0001 MOD100 RIM (DISP-LO),(DISP-HI) SALISHL REG16/MEM16,1 

4-33 Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 
... 

1ST BYTE 
2NO BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

01 1101 0001 M00101 RIM (OISP~LO),(OISP-HI) SHR REG16/MEM16,1 
01 1101 0001 M00110R/M (not used) 
01 1101 0001 MOO,111 RIM (OISP-LO),(OISP-HI) SAR REG16/MEM16,1 
02 1101 0010 MOD 000 RIM (OISP-LO),(OISP-HI) ROL REG8/MEM8,CL 
02 1101 0010 MOD 001 RIM (OISP-LO),(OISP-HI) ROR REG8/MEM8,CL 
02 1101 0010 MOO010R/M (OISP-LO),(OISP-HI) RCL REG8/MEM8,CL 
02 1101 0010 M00011 RIM (OISP-LO),(OISP-HI) RCR REG8/MEM8,CL 
02 1101 0010 M00100 RIM (OISP-LO),(OISP-HI) SALISHL REG8/MEM8,CL 
02 1101 0010 M00101 RIM (OISP-LO),(OISP-HI) SHR REG81 M EM8,CL 
02 1101 0010 M00110 RIM (not used) 
02 1101 0010 M00111 RIM (OISP-LO),(OISP-HI) SAR REG8/MEM8,CL 
03 1101 0011 MOD 000 RIM (OISP-LO),(OISP-HI) ROL REG16/MEM"16,CL 
03 1101 0011 MOD 001 RIM (OISP-LO),(OISP-HI) ROR REG16/MEM16,CL 
03 1101 0011 MOD 010 RIM (OISP-LO),(OISP-HI) RCL REG16/MEM16,CL 
03 1101 0011 M00011 RIM (OISP-LO),(OISP-HI) RCR REG16/MEM16,CL 
03 1101 0011 M00100 RIM (OISP-LO),(OISP-HI) SALISHL REG16/MEM16,CL 
03 1101 0011 MOO 101 RIM (OISP-LO),(OISP-HI) SHR REG16/MEM16,CL 
03 1101 0011 M00110 RIM (not used) 
03 1101 0011 M00111 RIM (OISP-LO),(OISP-HI) SAR REG16/MEM16,CL 
04 1101 0100 00001010 AAM 
05 1101 0101 00001010 AAO 
06 1101 0110 . (not used) 
07 1101 0111 XLAT SOURCE-TABLE 
08 1101 1000 MOD 000 RIM 

1XXX MOOYYY RIM (OISP-LO), (OISP-HI) ESC OPCOOE,SOURCE 
OF 1101 1111 M00111 RIM 
EO . 1110 0000 IP-INC-8 LOOPNEI SHORT-LABEL 

LOOPNZ 
E1 1110 0001 IP-INC-8 LOOPEI SHORT-LABEL 

LOOPZ 
E2 1110 0010 IP-INC-8 LOOP SHORT-LABEL 
E3 .1110 0011 IP-INC-8 JCXZ SHORT ~LABEL 
E4 1110 0100 OATA-8 IN AL,IMME08 
E5 1110 0101 OATA-8 IN AX,IMME08 
E6 1110 0110 DATA-8 OUT AL,IMME08 
E7 1110 0111 OATA-8 OUT AX,IMME08 
E8 1110 1000 IP-ING-LO IP-INC-HI CALL NEAR-PROC 
E9 1110 1001 IP-INC-LO IP-INC-HI JMP NEAR-LABEL 
EA 1110 10~0 IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL 
EB 1110 1011 IP-INC8 JMP SHORT-LABEL 
EC 1110 1100 IN AL,OX 
ED 1110 1101 IN AX,OX 
EE 1110 1110 OUT AL,OX 
EF 1110 1111 OUT AX,OX 
FO 1111 0000 LOCK (prefix) 
F1 1111 0001 (not used) 
F2 1111 0010 REPNE/REPNZ 
F3 1111 0011 REP/REPE/RERZ 
F4 1111 0100 HLT 
F5 1111 0101 CMC 

Mnemonics © Intel, 1978 4-34 



HARDWARE REFERENCE INFORMATION 

Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

F6 1111 0110 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REG8/MEM8,IMMED8 
DATA-8 

F6 1111 0110 MOD 001 RIM (not used) 
F6 1111 0110 MOD010 RIM (DISP-LO),(DISP-HI) NOT REG8/MEM8 
F6 1111 0110 MOD011 RIM (DISP-LO),(DISP-HI) NEG REG8/MEM8 
F6 1111 0110 MOD100R/M (DISP-LO),(DISP-HI) MUL REG8/MEM8 
F6 1111 0110 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG8/MEM8 
F6 1111 0110 MOD110 RIM (DISP-LO),(DISP-HI) DIV REG8/MEM8 
F6 1111 0110 MOD111 RIM (DISP-LO),(DISP-HI) IDIV REG8/MEM8 
F7 1111 0111 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
F7 1111 0111 MOD 001 RIM (not used) 
F7 1111 0111 MOD010R/M (DISP-LO) ,(DISP-H I) NOT REG16/MEM16 
F7 1111 0111 MOD 011 RIM (DISP-LO),(DISP-HI) NEG REG16/MEM16 
F7 1111 0111 MOD 100 RIM (DISP-LO),(DISP-HI) MUL REG16/MEM16 
F7 1111 0111 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG16/MEM16 
F7 1111 0111 MOD110 RIM (DISP-LO),(DISP-HI) DIV REG16/MEM16 
F7 1111 0111 MOD111 RIM (DISP-LO),(DISP-HI) IDIV REG16/MEM16 
F8 1111 1000 CLC 
F9 1111 1001 STC 
FA 1111 1010 CLI 
FB 1111 1011 STI 
FC 1111 1100 CLD 
FD 1111 1101 STD 
FE 1111 1110 MOD 000 RIM (DISP-LO),(DISP-HI) INC REG8/MEM8 
FE 1111 1110 MOD 001 RIM (DISP-LO),(DISP-HI) DEC REG8/MEM8 
FE 1111 1110 MOD010 RIM (not used) 
FE 1111 1110 MOD011 RIM (not used) 
FE 1111 1110 MOD100 RIM (not used) 
FE 1111 1110 MOD101 RIM (not used) 
FE 1111 1110 MOD110R/M (not used) 
FE 1111 1110 MOD111 RIM (not used) 
FF 1111 1111 MOD 000 RIM (DISP-LO),(DISP-HI) INC MEM16 
FF 1111 1111 MOD 001 RIM (DISP-LO),(DISP-HI) DEC MEM16 
FF 1111 1111 MOD010 RIM (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra) 
FF 1111 1111 MOD011 RIM (DISP-LO),(DISP-HI) CALL MEM16 (intersegment) 
FF 1111 1111 MOD100R/M (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra) 
FF 1111 1111 MOD101 RIM (DISP-LO),(DISP-HI) JMP MEM16 (intersegment) 
FF 1111 1111 MOD110R/M (DISP-LO),(DISP-HI) PUSH MEM16 
FF 1111 1111 MOD111 RIM (not used) 

4-35 Mnemonics © Intel, 1978 



Lo 
HI 0 1 2 

0 ADD ADD ADD 
b.t.rlm w.t.rlm b.t.rlm 

1 AoC AoC AoC 
b.f.rlm w.t.rlm b.t.rlm 

2 AND AND AND 
b.t.rlm w.t.rlm b.t.rlm 

3 XOR XOR XOR 
b.t.rlm w.t.rlm b.t.rlm 

4 INC INC INC 
AX CX OX 

5 PUSH PUSH PUSH 
AX CX OX 

8 

7 JO JNO JBI 
JNAE 

8 Immed Immed Immed 
b.rlm w.rlm b.rlm 

9 XCHG XCHG XCHG 
AX CX OX 

A MOV MOV MOV 
m -AL m -AX AL - m 

B MOV MOV MOV 
i - AL i _ CL i - oL 

C RET. 
(i+SP) 

0 Shift Shift Shift 
b W b.v 

E LOOPNZI LOOPZI LOOP LOOPNE LOOPE 
F LOCK REP 

Mnemonics © Intel, 1978 

HARDWARE REFERENCE INFO'RM~TION' 

Table 4-14. Machine Instruction Encoding Matrix 

3 4 5 6 7 8 9 A B 
ADD ADD ADD PUSH POP OR OR OR OR 

w.t.rlm b. ia w.ia ES ES b.t.rlm w.t.rlm b.t.rlm w.l.r/m 
AoC AoC AoC PUSH POP SBB SBB SBB SBB 

w.t.rlm b.i w,i 5S SS b.t.rlm w.t.rlm b.t.rlm w.t.rlm 
AND AND AND SEG oAA SUB SUB SUB SUB 

w.t.rlm b.i w,i "ES b.t.rlm w.t.rlm b.t.r!m w.t.rlm 
XOR XOR XOR SEG AAA CMP CMP CMP CMP 

w.t.rlm b.i w,i "SS b.t.rlm w.t.rlm b.t.rlm w.t.rlm 
INC INC INC INC INC DEC DEC DEC DEC 
BX SP BP SI DI AX CX OX BX 

PUSH PUSH PUSH PUSH PUSH POP POP POP POP 
BX SP BP SI 01 AX CX OX BX 

JNBI JEI JNEI JBEI JNBEI JS JNS JPI JNPI 
JAE JZ JNZ JNA JA JPE JPO 

Immed TEST TEST XCHG '·XCHG MOV MOV MOV MOV 
is,rlm b.rlm w.rlm b.rlm 
XCHG XCHG XCHG XCHG 

BX SP BP SI 
MOV MOVS MOVS CMPS 

AX - m 
MOV MOV MOV MOV 

i - BL i -AH i - CH i - oH 

RET LES LOS MOV 
b.i.rlm 

Shift AAM AAo 
~,v 

JCXZ IN IN OUT 
b W b 

REP HLT CMC 
Grp t 

z b.rlm 

where' 
modDr/m 000 001 

Immed ADD DR 
Shift ROl ROR 
Grpl TEST -
Grp2 INC DEC 

b = byte operation 
d = direct 
I = Irom CPU reg 
i= immediate 

010 
ADC 
RCl 
NOT 

CAll 
id 

ia = immed. to accum. 
id = indirect 
is = immed. byte. sign ext. 
I = long ie. intersegment 

w.rlm 
XCHG 

01 

CMPS 

MOV 
i - BH 

MOV 
w.i.r/m 

XLAT 

OUT 
W 

Grp 1 
w.rlm 

011 
SBB 
RCR 
NEG 

CAll 
Ud 

b.t.rlm w.t.rlm b.t.rlm w.t.rlm 

CBW CWO CALL WAIT I.d 
TEST TEST STOS STOS b,I,. W,I,. 

MOV MOV MOV MOV 
i-AX i - CX i-OX i - BX 

RET. RET 
1.(i+SP) I 

ESC ESC ESC ESC 
0 t 2 3 

CALL JMP JMP JMP 
d d I.d si.d 

CLC STC CLI STI 

100 101 110 111 
AND SUB XdR CMP, 

SHLISAl SHR - SAR 
MUl IMUl DIV IDIV 
JMP JMP PUSH -

id 1,ld 

m = memory 
rim = EA is second byte 
si = short intrasegment 
sr = segment register 
t = to CPU reg 
v = variable 
w = word operation 
z = zero 

4-36 

C 0 E F 
OR OR PUSH .. 
b.i w.i CS 

SBB SBB PUSH POP 
b.i w,j OS OS 

SUB SUB SEG oAS 
b.i w.i ~CS 

CMP CMP SEG AAS b;i w.i ~OS 

DEC DEC DEC DEC 
SP BP SI 01 

POP poi> POP POP 
SP BP SI 01 

JLI JNLI JLEI JNLEI 
JNGE JGE JNG JG . 

MOV LEA MOV POP 
sr,l,rlm ar.t,r/m rim 

PUSHF POPF SAHF LAHF 

LODS LODS SCAS' SCAS 

MOV MOV MOV MOV 
i - SP i - BP i -SI' i - 01 

INT INT INTO IRET Type 3 (Any) 
ESC ESC ESC ESC 
'4 5 6 7 

IN IN OUT OUT 
v,b V,W v,b V,W 

CLo sm Grp2 Grp 2 
b,rlm w.rlm 



HARDWARE REFERENCE INFORMATION 

8086 Instruction Sequence 

Figure 4-22 illustrates the internal operation and 
bus activity that occur as an 8086 CPU executes a 
sequence of instructions. This figure presents the 
signals and timing relationships that are impor­
tant in understanding 8086 operation. The follow­
ing discussion is intended to help in the interpreta­
tion of the figure. 

Figure 4-22 shows the repeated execution of an 
instruction loop. This loop is defined in both 
machine code and assembly language by figure 
4-21. A loop was chosen both to demonstrate the 
effects of a program jump on the queue and to 
make the instruction sequence easy to follow. The 
program sequence shown was selected for several 
reasons. First, consisting of seven instructions 
and 16 bytes, the sequence is typical of the tight 
loops found in many application programs. 
Second, this particular sequence contains several 
short, fast-executing instructions that 
demonstrate both the effect of the queue on CPU 
performance and the interaction between the exe­
cution unit (EU) fetching code from the queue 
and the bus interface unit (BIU) filling the queue 
and performing the requested bus cycles. Last, 
for the purpose of this discussion, code, stack, 
and memory data references were arranged to be 
aligned on even word boundaries. 

ASSEMBLY LANGUAGE 

MOV AX, OF802H 
PUSH AX 
MOVCX, BX 
MOVDX,CX 
ADD AX, [SI] 
ADD SI, 8M6H 
JMP $ -14 

MACHINE CODE 

B802F8 
50 
8BCB 
8BD1 
0304 
81C68680 
EBFO 

Figure 4-21. Instruction Loop Sequence 

Figure 4-22 can be more easily interpreted' by 
keeping the following guidelines in mind. 

• The queue status lines (QSO, QSl) are the key 
indicators of EU activity. 

• Status lines S2 through SO are the main 
indicators of 8086/8088 bus activity. 

• Interaction of the BIU and EU is via> the 
queue for pre fetched opcodes and via the EU 
for requested bus cycles for data operands. 

4-37 

Keeping these guidelines in mind, the instruction 
sequence depicted in figure 4-22 can be described 
as follows. Starting the loop arbitrarily in clock 
cycle 1 with the queue reinitialization that occurs 
as part of the JMP instruction, JMP instruction 
execution is completed by the EU, while the BIU 
performs an opcode fetch to begin refilling the 
queue. (Note that a shorthand notation has been 
used in the figure to represent the two queue 
status lines and the three status lines-active 
periods on any of these lines are noted and the 
binary value of the lines is indicated above each 
active region.) 

In clock cycle 8, the queue status lines indicate 
that the first byte of the Mbv immediate instruc­
tion has been removed from the queue (one clock 
cycle after it was placed there by the BIU fetch) 
and that execution of this instruction has begun. 
The second byte of this instruction is taken from 
the queue in clock cycle 10 and then, in clock 
cycle 12, the EU pauses to wait one clock cycle for 
the BIU's second opcode fetch to be completed 
and for the third byte of the MOV immediate 
instruction to be available for execution 
(remember the queue status lines indicate queue 
activity that 'has occurred in the previous clock 
cycle). 

Clock cycle 13 begins the execution of the PUSH 
AX instruction, and in clock cycle 15, the BIU 
begins the fourth opcode fetch. The BIU finishes 
the fourth fetch in clock cycle 18 and prepares for 
another fetch when it receives a request from the 
EU for a memory write (the stack push). Instead 
of completing the opcode fetch and forcing the 
EU to wait four additional clock cycles, the BIU 
immediately aborts the fetch cycle (resulting in 
two idle clock cycles (TI) in clock cycles 19 and 
20) and performs the required memory write. This 
interaction between the EU and BIU results in a 
single clock extension to the execution time of the 
PUSH AX instruction, the maximum delay 'that 
can occur in response to an EU bus cycle request. 

Execution continues in clock cycle 24 with the 
execution of back-to-back, register-to-register 
MOV instructions'. The first of these instructions 
takes full advantage of the pre fetched opcode to 
complete this operation in two clock cycles. The 
second MOV instruction, however, depletes the 
queue and requires two additional clock cycles 
(clock cycles 28 and 29). 

Mnemonics © Intel, 1978 



HARDWARE REFERENCE INFORMATION 

1 ' I" 1 "I 7 I • 1 • 1 • 1 n 1 • 1 • 1 • 1 • 1 • I D 1 • I • I ~ 1 • 1 ·1· 1 • 1 • 1 • 1 

co., 

101 100 100 100 no 100 

Ii 'Iii L...-CCHlE_FETCH_ ..... I"I .. _oo_ .. _m_CH--'r-l CODEmCH... 1"I .... _oo_"_FEI'_"O ..... I WA~MEMORY " 
CODE fETCH r 

I" I TI J T1 
T, ", T4 111 T, To T4 I T, T, .. rot I T1 

T, TI .. I T, I " I" " T. 
T. 111 T, 

FEl'CHII02 mCH .... FETCHIBC8 FETCH 'I~ WfUTEF8020NTO FEreHa 
STAC' 

~ ~ ~ ~ ~~~ ~ ~~~ 
.8 D1 ., ., au"" 

Ql1,GIO FIRST I NEXT I FIRS1' I I L...-_____________ -' BYTE I BYTE ,BYTE I I 

... 
·lNITJIucmotI­

El10cun0N 

_____ , ... '1_14 ____ -!--- --.J-------pusItAx---------t-I .. MOV cx. ax+-

Figure 4-22. Sample Instruction Sequence Execution 

In clock cycle 30, the ADD memory indirect to 
AX instruction begins. In the time required to 
execute this instruction, the BIU completes two 
opcode fetch cycles and a memory read and 
begins a fourth opcode fetch ,cycle, Note that in 
the case of the memory read, the EU's request for 
a bus cycle occurs at a point ill the BIU fetch cycle 
where it can be incorporated directly (idle states 
are not required and no ED delay is imposed). 

In clock cycle 44, the ED begins the ADD 
immediate instruction, taking four bytes from the 
queue and completing instruction execution in 
four clock cycles. Also during this time, the BID 
senses a full queue in clock cycle 45 and enters a 
series of bus idle states (five or six bytes constitute 
a full queue in the 8086; the BID waits until it can 
fetch a full word of opcodebefore accessing the 
bus). 

At clock cycle 47, the BID again begins a bus 
cycle sequence, one that is destined to, be an 
"overfetch" since the, ED is executing a JMP 
instruction. As part' of the JMP instruction" the 
queue reinitialization (which began the instruc­
tion sequence) occurs. 

The entire sequence of instructions has taken 55 
clock cycles. Eighteen opcode bytes were fetched, 
one word memory read occurred, and one word 
stack write was performed. 

This example was,by design, partially bus limited 
and indicates the types of ED and BID interaction 
that can occur in this situation. Most application 

Mnemonics © Intel, 1978 4-38 

code sequences, however, use a higher proportion 
of more complex, longer-executing instructions 
and addressing modes, and therefore tend to be 
execution limited. In this case, less BID-ED 
interaction is required, the queue more often is 
full, and more idle states occur on the bus. 

The previous example sequence can be easily 
extended to incorporate wait states in the bus 
access cycles. In the case of a single wait state, 
each bus cycle would be lengthened to five clock 
cycles with a wait state (TW) inserted between 
every T 3 and T 4 state of the bus cycle. As a first 
approximation, the instruction sequence exection 
time would appear to be lengthened by 10 clock 
cycles, one cycle for each useful read or write bus 
cycle that occurs. Actually, this approximation 
for the number of wait states inserted is incorrect 
since the queue can compensate for wait states by 
making use of previously idle bus time. For the 
example sequence, this compensation reduced the 
actual execution time by one wait state, and the 
sequence was completed in 64 clock cycles, one 
less than the approximated 65 clock cycles. 

4.3 80891/0 Processor 

The Intel® 8089 110 Processor (lOP) combines 
the functions of a DMA controller with the pro­
cessing capabilities of a microprocessor. In addi­
tion to the normal DMA function of transferring 
data, the 8089 is capable of dynamically 
translating arid comparing the data as it is 



HARDWARE REFERENCE INFORMATION 

• I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I 

- - -=--rI,--CO_"_"'_CH---,!I~_'''_O_.'_''_RY-,!lL.._CO_OE_fET_C_H -' ". CODE fETCH ,-------------, 
I ._-

" " T4 I T1 " T, 
T4 111 " " T4 I T1 " " FETCH.1Ca FETCH_III READ DATA"T FETCH EI FO 

AODftE8811Q 
T. I TI I TI I ~ I T, F~CHXX~ T4 I TI I TI I TI I 'I I 

~~~ ~ ;~~~~ ~~ ~ 
FIRST I NEXT I NEXT I NEXT I f1f1lT '--_____ -,-__________ BYTE I BYTE 11m I BYTE I BYTE

2_,
I

'----------' QUEU£ ,- - -­
EMPTIED

________ ADDoU,(8.,..' ----------.tol.--ADD8I-j ______ ,JMPI_14 ___ _

Figure 4-22. Sample Instruction Sequence Execution

transferred and of supporting a number of ter­
minate conditions including byte count expired,
data compare or miscompare and the occurrence
of an external event. The 8089 contains two
separate DMA channels, each with its own
register set. Depending on the established
priorities (both inherent and program deter­
mined), the two channels can alternate
(interleave) their respective operations.

Designed expressly to relieve the 8086 or 8088
CPU of the overhead associated with 110 opera­
tions, the 8089, when configured in the remote
mode, can perform a complete 110 task while the
CPU is performing data processing tasks. The
8089, when it has completed its I/O task, can then
interrupt the CPU.

Transfer flexibility is an integral part of the
8089's design. In addition to routine transfers
between an I/O peripheral and memory, transfers
can be performed between two I/O devices or
between two areas of memory. Transfers between
dissimilar bus widths are automatically handled
by the 8089. When data is transferred from an
8-bit peripheral bus to a 16-bit memory, bus, the
8089 reads two bytes from the peripheral,
assembles the bytes into a 16-bit word and then
writes the single word to the addressed memory
location. Also, both 8- and 16-bit peripherals can
reside on the same (16-bit) bus; byte transfers are
performed with the 8-bit peripheral, and word
transfers are performed with the 16-bit
peripheral.

4-39

System Configuration

The 8089 can be implemented in one of two
system configurations: a "local" mode in which
the 8089 shares the system bus with an 8086 or
8088 CPU and a "remote" mode in which the
8089 has exclusive access to its own dedicated bus
as well as access to the system bus. Note that in
either the local or remote mode, the 8089 can
address a full' megabyte of system memory and
64k bytes of 110 space.

Local Mode

In the local mode, the 8089 acts as a slave to an
8086 or 8088 CPU that is operating in the max­
imum mode. In this configuration, the 8089
shares the system address latches, data
transceivers and bus controller with the CPU as
shown in figure 4-23.

Since the lOP and CPU share the system bus,
either the lOP or the CPU will have access to the
bus at anyone time. When one processor is using
the bus, the other processor floats its
address/ data and control lines. Bus access
between the lOP and CPU is determined through
the request/grant function. Recalling the CPU's
request/grant sequence, the lOP requests the bus
from the CPU, the CPU grants the bus to the
lOP, and the lOP relinquishes the bus to the CPU
when its operation is complete. Remember that
the CPU cannot request the bus from the lOP
(the CPU is only capable of granting the bus and

HARDWARE REFERENCE INFORMATION

- eLK MNIMX

~
....

r; READY '-t elK iAfA
RESET §i-llii

~
§i-lIiilllml! ... DEN MW'fl!

A'9-Ao ...~ DT/Ii :-07-Do
ALE

0
iiQ/OTii

-=
.2 .. ST80£

~ eLK

-+ ADDAESS BUS I - "" READY 12 Oft 3) • •

· ~
RESET • • • • • • - '-- rX .., rX.., .-_7_-.

:DE~DE : :D:~E : I A~ggg~~gL 1- ___

-=
RQ/lrr I I I RESET Si·lIii - .------ --r- --r- ~r--r' I

READY
_T I I I I I - eLK

"" I I I I I
"" '----+ OE

ATABU

r-=: E)CT2 I I I I

1

I

1

DRQ2 A19-AO I I I I I
r;

D7-Do ADDRESS/DATA EXT 1
'-- I I I I I

ORO 1 + t ,t J I A SE

+ .. + r OOIICE RC• I r e~DACLKI r:'DACK .. ~ I CDAeK .. ~ J I A'5-A,
RAM 110 PERIPHERAL I/O PERIPHERAL 110 PEAIP~eRAL

,
(2142) (27'''''

mwc ORO INT ORO INT ORO INT

15-BITIIO E I
ADDRESS DECODe ~

I

.rt-

Figure 4-23. Typical 8088/8089 Local Mode Configuration

must wait for the lOP to release the bus). Also,
since the request/grant pulse exchange must be
synchronized, both the CPU and lOP must be
referenced to the samec10ck signal.

The 8089 lOP, when used in the local mode; can
be added to an 8086 or 8088 maximum mode con­
figuration with little'affect on component count
(channel attention decoding logic as required) and
offers the benefits of intelligent DMA
(scan/match, translate, variable termination con­
ditions), modular' programming in a full
megabyte of memory address space and a set of
optimizedIlO instructions that are unavailable to
the8086 and 8088 CPUs. Themajor disadvantage
to the local configuration is that since the system
bus is shared, bus contention always exists,
between the CPUiand lOP. The use,of the bus
load limit field in, the channel control word can
help reduce lOP bus acceSs dUring task block pro­
gram execut~on (bus load limiting has no affect on
DMA transfers) although, for I/O intensive
systems, the remote mode should be considered.

4-40

Remote Mode

The 8089, when used in the remote mode, pro­
vides a multiprocessor system with true parallel
processing. In this mode, the 8089 has a separate
(local) bus and memory for I/O peripheral com­
munications, and the system bus is completely
isolated from the I/O peripheral(s). Accordingly,
I/O transfers between an I/O peripheral and the
lOP's local memory can occur simultaneously
with CPU operations on the system bus.

As shown in figure 4-24, to interface the 8089 to
the system bus, data transceivers and address
latches are used to separate the lOP's local bus
from the system bus, an 8288 Bus Controller is
used to generate the bus control signals for both
the local and system buses as well as to govern the
operation of the transceivers/latches, an,d an 8289
Bus Arbiteds used to control access to the system
bus (each processor in the system would ,have an
associated 8289 Bus Arbiter). To interface the
8089 to its local bus, another set of add~ess

HARDWARE REFERENCE INFORMATION

r-----------;===~-AoFROMCPU

110 POM

A~~~':' A1S-A1 FROM CPU

MLE~~~Y ~:: ~ "F~~~~~S t--+-+-~..-~1:::::::: !r::::~-_::::=--::::j-lr--:::=--R:,.::ET.' y RSRST'I_' _~ ____ L_.G:.'C:.= ____ :~~:;';s::MAN.
RDY'I~'_-_--__ TRANSFER ACKNOWLEDGE

(t.E..XACKt

'- II "1 1I0D~gi ~~ss~ CA.....-~~~
GACK '---0. sa CLKI_+-_I-----4~ CLK
CS DRQt---·IDRQ1 ---l.

~MULl'IMASTER l.,...----r CONTROL BUS

r--r 52-SO
I -+I-!I-.. +-~ PEAI~~ERA~NTI---TO-IFR-O.·IEXT1 A-'N

ANOTHER lOP
..... fil5IOr

~I~:CK GRO GRQ2 "_iiiloo-!o-+-~....:. :.....w"S2-SiiAEN

1~4~"""'i'-!----.·1, PERt~~ERA~NTI----.IEXT2A~~::'~~ I" I. II ," ~ elK MROc r---- MEMORY READ COMMAND

L... -------------I-----.j~-I_ot'~ JNTA MWi'Cr----- MEMORY WRITE COMMAND

~~B288
L-_____________ I ___ ~-+_--~~

I LOCAL ADDRESS BUS (A15-AoI

I ... LOCAL DATA BUS

Figure 4-24. Typical 8089 Remote Mode Configuration

latches is required (unless MCS-85™ multiplexed
address components are exclusively interfaced)
and, depending on the bus loading demands, one
(8-bit bus) or two (l6-bit bus) data transceivers
would be used.

In the remote mode, the lOP's local bus is treated
as 1/0 space (up to 64k bytes), and the system bus
is treated as memory space (l megabyte). The
8288 Bus Controller's 110 command outputs con­
trol the local (110) bus, and its memory command
outputs control the system (memory) bus. The
8289 Bus Arbiter, which is operated in its lOB
(1/0 ~ripheral bus) mode, also decodes the
lOP's S2 through SO status outputs. In this mode,
the 8289 will not request the multimaster system
bus when the lOP indicates an operation on its
local bus. If the lOP's bus arbiter currently has
access to the system bus, the CPU's arbiter (or
any other arbiter in the system) can acquire use of
the system bus at this time (a bus arbiter main­
tains bus access until another arbiter requests the
bus).

4-41

Bus Operation

The 8089 utilizes the same bus structure as an
8086 or 8088 CPU that is configured in the max­
imum mode and performs a bus cycle only on de­
mand (e.g., to fetch an instruction during task
block execution or to perform a data transfer)_
The bus cycle itself is identical to an 8086 or 8088
CPU's bus cycle in that all cycles consist of four
T -states and use the same time-multiplexing
technique of the addressdata lines. As shown in
the following timing diagrams, the address (and
ALE signal) is output during state T 1 for either a
read or write cycle. Depending on the type of
cycle indicated, the addressldata lines are floated
during state T2 for a read cycle (figure 4-25) or
data is output on these lines during a write cycle
(figure 4-26). During state T3, write data is main­
tained or read data is sampled, and the busy cycle
is concluded in state T 4'

Since the 8089 is capable of transferring data to or
from both 8-bit and 16-bit buses, when an 8-bit
physical bus is specified (bus width is specified

HARDWARE REFERENCE INFORMATION

elK

------\~----------------------------~/~----------~--~'----
S2-SO 52-SO ACTIVE 52-SO INACTIVE \

'-----------' '----

ADDRESSIS:rATUS ---~ A19-A16 X 56-53 ~
___ -' L. __________ ~.". ____________________________ ~.

----, r---------------------------------------,
(A~~~!~~, ___ -'~ A15-A8)--

DATA IN 07-00

'ALE r-\ --------~I I~ _________________________________ __

"MORC or 'IORC \'------~!
---..-, -----.\ r--

'DTIA I

--~ '--------------------------~

'DEli! I ______ ----J \
'8288 BUS CONTROLLER OUTPUTS

Figure 4-25. Read Bus Cycle (8-Bit Bus)

elK

-----,\~--------------------------_,Ir-------------~'----
52-SO 52-SO ACTIVE S2-§O INACTIVE \ '--_____ ----J L.. __ _

ADDRESS/STATUS = = ~ ~ }-----{L ___ A_'_'-_A'_' ____ XIl. ______________ s_,-_s_, ____________ ..J~

BHE lOW FOR DATA TRANSFER ON HIGH ORDER BYTE (015-08)

ADORESSIDATA ----~ A1S-AO X DATA OUT 015-00 }--
(AD15-AOO) ____ ''-----'L.. __________J.L.. ____________________________ ..J.

'ALE r----\ ______ ~I IL __ _

"AMWC OR *AIOWC \L-____ ---..J!

*MWfC: OR *iOYn:: \'--_----J!
---, I

'OEN \ --_ '--------'
*8288 BUS CONTROLLER OUTPUTS

Figure 4-26. Write Bus Cycle (l6-Bit Bus)

4-42

HARDWARE REFERENCE INFORMATION

during the initialization sequence), the address
present on the AD15 through AD8 address/data
lines is maintained for the entire bus cycle as
shown in figure 4-25 and, unless added drive
capability is required, the associated address latch
can be eliminated. An 8-bit data bus is compatible
with the 8088 CPU and with the MCS-85™
multiplexed address peripherals (8155, 8185,
etc.).

The 8089 operates identically to the 8086 CPU
with respect to the use of the low- and high-order
halves of the data bus. Table 4-14 defines the data
bus use for the various combinations of bus width
and address boundary.

The S2 through SO status lines define the bus cycle
to be performed. These lines are used by an 8288
Bus Controller to generate all memory and I/O
command and control signals, and are decoded
according to table 4-15.

Table 4-14. Data Bus Usage

Physical Bus Width'
Logical Address

Bus Width' Boundary 16
8

I Byte Transfer Word Transfer

Even
AD7-ADO = DATA AD7-ADO = DATA

N/A (SHE not used) (SHE h.igh)
8

Odd
AD7-ADO = DATA . AD15-AD8 = DATA

N/A (SHE not used) (SHE low)

Even Illegal
AD7-ADO = DATA AD15-ADO = OAT A

(SHE high) (SHE low)
16

Odd Illegal
AD15-AD8 = DATA

N/A' (SHE low)

Notes:

1. Logical bus width is specified by the WID instruction prior to the DMA transfer.

2. Physical bus width is specified when the 8089 is initialized.

3. A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans­
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the .second byte is the high­
order byte on the low-order data bus (AD7-ADO). The 8089 automatically assemb.les the two bytes in
their proper order.

Table 4-15. Bus Cycle Decoding

Status Output
Bus Cycle Indicated

Bus Controller

S2 S1 SO Command Output

0 0 0 Instruction fetch from I/O space INTA
0 0 1 Data read from I/O space IORC
0 1 0 Data write to I/O space IOWC,AIOWC
0 1 1 Not uSed None
1 0 0 Instruction fetch from system memory MRDC
1 0 1 Data read from system memory MRDe
1 1 0 Data write to system memory MWTC,AMWC
1 1 1 Passive None

4-43

HARDWARE REFERENCE INFORMATION

Note that the 8089 indicates. an instruction fetch
from 1/0 space as a status of zero (S2, SI and' SO
equal 0). Since the 8288 Bus Controller decodes
an input status value of zero as an interrupt
acknowledge bus cycle, the bus controller's INTA
output must be OR'ed with its IORC output to
permit fetching of task block instructions from
local 8089 memory (remote configuration) or
system 110 space (local and remote
configtirations). .

The S2 through SO status lines become active in
state T 4 if a subsequent bus cycle is to be per­
formed. These lines are set to the passive state (all
"ones") in the state immediately prior to state T 4
of the current bus cycle (state T 3 or T w) and are
floated when the 8089 does not have access to the
bus.

The S6 through S3 status lines are multiplexed
with the high-order address bits (AI9-AI6) and,
accordingly, become valid in state T2 of the bus
cycle. The S4 and S3 status lines reflect the type of
bus cycle being performed on the corresponding
channel as indicated in table 4-16.

Table 4-16. Type of Cycle Decoding

Status Output
Type of Cycle

S4 S3

0 a DMA on Channel 1
0 1 DMA on Channel 2
1 0 Non-DMA on Channel 1
1 1 Non-DMA on Channel 2

The S6 and S5 status lines are always" 1" on the
8089. Since these lines are not both "1" on the
other processors in the 8086 family (S6 is always
"0" on the 8086 and 8088 CPUs), these status
lines can be used as a "signature" in a
multiprocessor environment to identify' the type
of processor performing the bus cycle.

The 8089 includes the same provision as do the
8086 and 8088 CPUs for the insertion of wait
states (T w) in a bus cycle when the associated
memory or I/O device cannot respond within the
alloted time'interval or when, in the remote mode,
the 8089 must wait for access to the system bus.
An 8284 Clock Generator/Driver is used to con­
trol the insertion of wait states which, when
r~quired, are inserted between states T3 and T4'
The actual insertion of wait states is accomplished
by deactivating one of the 8284's RDY inputs

4-44

(RDYI or RDY2). Either of these inputs, when
enabled by its corresponding AENI or AEN2
input, can be deactivated directly by the memory
or 110 device when it must extend the 8089's bus
cycle (when the addressed device is not ready to
present or accept data). The 8284's READY out­
put, which is synchronized to the CLK signal, is
directly connected to the 8089'8 READY input.
As shown in figure 4-27, when the addressed
device requires one or more wait states to be
inserted into a bus cycle, it deactivates the 8284's
RDY input prior to the end of state T2' The
READY output from the 8284 is subsequently
deactivated at the end of state T 2 which causes the
8089 to insert wait states following state T3' To
exit the wait state, the device activates the 8284's
RDY input which causes the READY input to the
8089 to go active on the next clock cycle and
allows the 8089 to enter state T 4'

elK

RDY INPUT

READY
OUTPUT

'Awel' --11- 'Awel '-11- --1 I--,elA,X' - •
READY \ ... __ NO_'A_EA_DY _____ ' READY

*REFER TO THE 8284 CLOCK GENERATOR/DRIVER DATA SHEET IN APPENDIX B FOR
TIMING INFORMATION

Figure 4-27. Wait State Timing

Periods of inactivity can occur between bus
cycles. These inactive periods are referred to as

. idle states (T I) and, as with the 8086 and 8088
CPUs, can result from the execution of a "long"
instruction or the loss of the bus to another pro­
cessor during task block instruction execution.
Additionally, the 8089 can experience idle states
when it is in the DMA mode and it is waiting for a
DMA request from the addressed 110 device or
when the bus load limit (BLL) function is .enabled
for a channel performing task block instruction
execution and the other channel is idle.

InitiaUzation

Initialization of the lOP is generally the respon­
,sibilityof the host processor which, as. stated in
Chapter 3, prepares the communications data
structure in shared memory. Initialization of the
lOP itself begins with the activation of its RESET
input. This input (originating typically from an

HARDWARE REFERENCE INFORMATION

8284 Clock Generator/Driver) must be held active
for at least five clock cycles to allow the 8089's
internal reset sequence to be completed. Note that
like the 8086 and 8088 CPUs, the RESET input
must be held active for at least 50 microseconds
when power is first applied. Following the reset
interval, the host processor signals the lOP to
begin its initialization sequence by activating the
8089's CA (Channel Attention) input. The 8089
will not recognize a pulse at its CA input until one
clock cycle after the RESET input returns to an
inactive level. Note that the minimum width for a
CA pulse is one clock cycle and that this pulse
may go active prior to RESET returning to an
inactive level provided that the negative-going,
trailing-edge of the CA pulse does not occur prior
to one clock cycle after RESET goes inactive.
Figure 4-28 illustrates the timing for this portion
of the initialization sequence.

elK

RESET ~8~~,~i ~~~~ \
CYCLES '-------1-' eLK MIN-I

-----------~~~~CA CA ________ , ___ J~~~~ RECOGNIZED

Figure 4-28. RESET -CA Initialization Timing

Coincident with the trailing edge of the first
CA pulse following reset, the 8089 samples its
SEL (Select) input from the host processor to
determine master/slave status for its
request/ grant circuity. If the SEL input is low,
the 8089 is designated a "master," and if the SEL
input is high, the 8089 is designated a "slave." As
a master, the 8089 assumes that it has the bus
initially, and it will subsequently grant the bus to
a requesting slave when the bus becomes available
(i.e., the 8089 will respond to a "request" pulse
on its RQ/GT line with a "grant" pulse). A single
8089 in the remote configuration (or one of two
8089s in a remote configuration) would be
designated a master. As a slave, the 8089 can only
request the bus from a master processor (i.e., the
8089 initiates the request/grant sequence by out­
putting a "request" pulse on its RQ/GT line). An
8089 that shares a bus with an 8086 or 8088 (or
one of two 8089s in a remote configuration)
would be designated a slave. Note that since the
8086 and 8088 CPUs can grant the bus only in
response to a request, whenever an 8086 or 8088

4-45

and an 8089 share a common bus, the 8089 must
be designated the slave. Also, when the RQ/GT
line is not used (i.e., a single 8089 in the remote
configuration), the 8089 must be designated a
master.

In addition to determining master/slave status,
the CA pulse also causes the 8089 to begin execu­
tion of its internal ROM initialization sequence.
Note that since the 8089 must have access to the
system bus in order to perform this sequence, the
8089 immediately initiates a request/grant
sequence (if designated a slave) and, if required,
then requests the bus through the 8289 Arbiter.
(If designated a master, the 8089 requests the bus
through the 8289 Arbiter.) In the execution of the
initialization sequence, the 8089 first fetches the
SYSBUS byte from location FFFF6H. The W bit
(bit 0) of this byte specifies the physical bus width
of the system bus. Depending on the bus width
specified, the 8089 then fetches the address of the
system configuration block (SCB) contained in
locations FFFF8H through FFFFBH in either two
bus cycles (16-bit bus, W bit equal 1) or four bus
cycles (8-bit bus, W bit equal 0). The SCB offset
and segment address values fetched are combined
into a 20-bit physical address that is stored in an
internal register. Using this address, the 8089 next
fetches the system operation command (SOC)
byte. As explained in Chapter 3, this byte
specifies both the request/grant operational mode
(R bit) and the physical width of the I/O bus (I
bit). After reading the SOC byte, the 8089 fetches
the channel control block (CB) offset and seg­
ment address values. These values are combined
into a 20-bit physical address and are stored in
another internal register. To inform the host CPU
that it has completed the initialization sequence,
the 8089 clears the Channel 1 Busy flag in the
channel control block by writing an all "zeroes"
byte to CB + 1.

After the lOP has been initialized, the system
configuration block may be altered in order to in­
itialize another lOP. Once an lOP has been in­
itialized, its channel control block in system
memory cannot be moved since the CB address,
which is internally stored by the lOP during the
initialization sequence, is automatically accessed
on every subsequent CA pulse.

HARDWARE REFERENCE INFORMATION

As previously stated, the generation of the CA
and SEL inputs to the lOP are the responsibility
of the host CPU. Typically. these signals result
from the CPU's execution of an liD write·
instruction to one of two adjacent liD ports (liD
port addresses that only differ by AD). Figure 4-29
illustrates a simple decoding circuit that could be
used to generate the CA and SEL signals. Note
that by qualifying the CA output with 10WC, the
SEL output, since it is latched for the entire liD
bus cycle, is guaranteed to be stable on the trailing
edge of the CA pulse.

A7

A6

AS

A4

A3

A2

Al

iOm:

AO

530

PORT FC = CHANNEL 1 CA
PORT FD = CHANNEL 2 CA

CA

• 5EL

Figure 4-29. Channel Attention Decoding Circuit

1/0 Dispatching

During normal operation, the liD supervisory
program running in the host CPU will receive a
request to perform a specific I/O operation on
one of the 8089's channels. In response to this
request, the supervisory program will typically
perform the following sequence of operations:

• Check the availability of the specified
channel by examining the channel's busy flag
in the Channel Control Block. If it is possible
for another processor to access the channel, a
semaphore operation (implemented by a
locked XCHG instruction) is used to check
channel availability.

• Load the variable parameters required for
the intended operation into the channel's
parameter block.

• Load the channel command word (CCW)
into the channel control block.

• Establish the necessary linkages by writing
the starting address of the channel program
(task block) in the first four bytes of the

Mnemonics © Intel. 1979 4-46

parameter block and writing the address of
the parameter block in the channel control
block.

• Issue a channel attention (CA) to the
specified channel.

In response to the CA, the 8089 interrupts any
current activity at its first opportunity (see "Con­
current Channel Operation" in section 3.2) and
begins execution of an internal instruction
sequence that fetches and decodes the channel
command word (CCW) and then performs the
operation indicated (i.e., start, halt or continue
channel program execution).

If the CCW specifies start channel program (start
task block execution), the address of the
parameter block is fetched from the channel
control block, the address of the first channel
program instruction (contained in the first four
bytes of the parameter block) is fetched and then
loaded into the TP (task pointer) register and,
finally, task block execution is initiated from
either system or I/O space. Task block execution
continues, subject to the activity on the other
channel as described in "Concurrent Channel
Operation," until a XFER instruction is
executed. Following execution. of this instruction,
the next sequential channel program instruction is
executed before the channel enters the DMA
transfer mode.

If the CCW specifies halt channel, the current
operation on the specified channel is halted. If the
channel is performing task block execution (either
chained or not chained), channel operation is
stopped at an instruction boundary, and if the
channel is performing a DMA transfer, channel
operation is stopped at a DMA transfer cycle
boundary. Note that a channel will not stop a
locked DMA transfer until the operation is com­
pleted. There are two unique halt channel com­
mands. One command simply halts the channel
and clears the busy flag in the channel control
block. This command is used when the halted
operation is to be discarded. The other command
halts the channel, saves the task pointer and pro­
gram status word (PSW) byte, and clears the busy
flag. This command is used when the halted
operation is to be resumed. Note that this halt
command will not affect the integrity of resumed
task block execution or a memory-to-memory
DMAtransfer, but could affect the integrity of a
synchronized DMA transfer (a DMA request
occuring while the channel is halted could be
missed).

HARDWARE REFERENCE INFORMATION

If the CCW specifies continue channel, an opera­
tion that has been previously halted is resumed
(and the busy flag is set). Since this command
restores the task pointer and PSW, it should be
used only if the task pointer and PSW have been
saved by a previous halt command.

Table 4-17 outlines the various CCW command
execution times. Note that the times listed in the
table for the halt commands do not include the
time required to complete any current channel
activity when the channel attention is received
(completion of the current DMA transfer cycle or
task block instruction).

DMA Transfers

The number of bytes transferred during a single
DMA cycle is determined by both the source and
destination logical bus widths as well as by the

address boundary (odd or even address). The
8089 performs DMA transfers between dissimilar
bus widths by assembling bytes or disassembling
words in its internal assembly register file. As
explained in Chapter 3, the DMA source and
destination bus widths are defined by the execu­
tion of a WID instruction during task block
(channel command) execution. Note that the bus
widths specified remain in force until changed by
a subsequent WID instruction. Table 4-18 defines
the various byte (B) and word (W)
source/destination transfer combinations based
on address boundary and bus width specified.

The 8089 additionally optimizes bus accesses dur­
ing transfers between dissimilar bus widths
whenever possible. When either the source or
destination is a 16-bit memory bus (auto­
incrementing) that is initially aligned on an odd

Table 4-17. CCW Command Execution Times

CCWCommand Minimum Time' Maximum Time"

CANOP 48 + 2n clocks 48 + 2n clocks
CA Halt (no save) 48 + 2n clocks 48 + 2n clocks

CA Halt (with save) 94 + 5n clocks 100 + 6n clocks
CA Start (memory) 108 + 6n clocks 124 + 10nclocks

CA Start (1/0) 96 + 5n clocks 108 + 8n clocks
CAContinue 95 + 5n clocks 103 + 6n clocks

Notes:
n is the number of wait states per bus cycle.

* Minimum time occurs when both the channel control block and parameter block addresses are aligned on
an even address boundary and a 16-bit bus is used.

Maximum time occurs when both the channel control block and parameter block addresses are aligned
on an odd address boundary on a 16-bit bus or when an 8-bit bus is used.

Table 4-18. DMA Assembly Register Operation

Logical Bus Width
Address Boundary (Source Destination)

(Source Destination)
8 8 8 16 16- 8 16 16

Even Even S S S/B W W S/B W W
Even Odd S S S S W S/S w SIS
Odd Even B B S/B W S B S/B W
Odd Odd S S S S S S S S

4-47 Mnemonics © Intel, 1979

HARDWARE REFERENCE .INFORMATI.ON

address boundary (causing the first transfer cycle
to be byte-to-byte), following the first transfer
cycle, the memory address will be aligned on an
even address boundary, and word transfers will
subsequently occur. For example, when perform­
ing a memory-to-port transfer from a 16-bit bus
to an 8-bit bus with the source beginning on an
odd address boundary, the first transfer cycle will
be byte-to-byte (B -+ B) as indicated in table 4-18,
but subsequent transfers will be word-to­
bytelbyte (W -+ BIB).

All DMA transfer cycles consist of at least two
bus cycles; one bus cycle to fetch (read) the data
form the source into the lOP, and one bus cycle
to store (write) the data previously fetched from
the lOP into the destination. Note that in all
transfers, the data passes through the lOP to
allow masklcompare and translate operations to
be optionally performed during the transfer as
well as to allow the data to be assembled or
disassembled.

The lOP performs DMA transfers in one of three
modes: unsynchronized, source synchronized or
destination synchronized (the transfer mode is
specified in the channel control register). The un­
synchronized mode is used when both the source
and destination devices do not provide a data re­
quest (DRQ) signal to the lOP as in the case of a
memory-to-memory transfer. In the synchronized
transfer modes, the source (source synchronized)
or destination (destination synchronized) device
initiates the transfer cycle by activating the lOP's.
DRQl (channell) or DRQ2 (channel 2) input.

elK

DRQ~
(FROM 110 DEVICE)

The DRQinput is asynchronous and usually
originates from an 1/0 device controller rather
than from a memory circuit. This input is latched
on the positive transition of the clock (CLK)
signal and therefore must remain active for more
than one clock period (more than 200.
nanoseconds when using a 5 MHz clock) in order
to guarantee that it is recognized.

During state T 1 of the associated fetch bus cycle
(source synchronized) or store bus cycle (destina­
tion synchronized), the lOP outputs the address
of the 1/0 device (the port address). This address
must be decoded (by' external circuitry) to
generate the DMA acknowledge (DACK) signal
to the liD controller as the response to the con­
troller's DMA request. An lIO controller will
typically use DACK as a conditional input for the
removal of DRQ. (After receipt of the DACK
signal, most Intel peripheral controllers deac­
tivate DRQ following receipt of the correspon­
ding read or write signal.) Figures 4-30 and 4-31
illustrate the DRQ/DACK timing for both source
synchronized (Le., port-to-memory) and destina­
tion synchronized (Le., memory-to-port)
transf~rs.

Table 4-19 defines the DMA transfer cycles in
terms of the number of bus and clock cycles re­
quired. Note that the number of clocks required
to complete a transfer cycle does not take into ac­
count the effects of possible concurrent opera­
tions on the other channel or wait states within
any of the bus cyCles.

• DAeK I \
(DECODED 110 ADDRESS) ---1 VALID 110 ADDRESS PRESENt '-________ -""

NOTES:

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT
TRANSFER CYCLE BEGINS. IF ORO IS RECEIVED PRIOR to STAte T4 OF THE CURRENT
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE
CURRENT STORe CYCLE.

2. IF THE 8089 IS IDLE WHEN ,ORO IS'RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED.

Figure 4-30. Soutce Synchronized Transfer Cycle

4-48

HARDWARE REFERENCE INFORMATION

elK

ORO HOLD -1 __ 1 1-2IDLE~I-4 tOLE-I_SIDLE CLOCKS3-_
FROM WRITE I CLOCKS3 CLOCKSJ

ORO' -------------i~[!!=~ ,r~;Q_:_;;;N_;;~R:~~;;_YCLE-I+-------~~=~ ,r-----
(FROM 110 DEVICE) ~ ~ • ~ ~

(DECODED 110 ADO~:~~ _________ --JJ VALID 110 ADDRESS PRESENT \I.. ___________ .J!

NOTES: 1. FIRST OMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK
INSTRUCTION IS EXECUTED.

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1.

3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS
CYCLE 2 BEGINS. IF ORO 15 RECEIVED PRIOR TO STATE T4 OF STORE BUS CYCLE 1,
STORE BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING FETCH BUS CYCLE 2.

4. IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED STORE BUS CYCLE IS INITIATED.

Figure 4-31. Destination Synchronized Transfer Cycle

Table 4-19. DMA Transfer Cycles

Transfer Mode

L

Logical Bus Width
Unsynchronized Source Synchronized Destination Synchronized

Source Destination
Bus Cycles TotaP Bus Cycles Total' Bus Cycles Total'
Required Clocks Required Clocks Required Clocks

8 8 2(1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8'
8 16' 3 (2 fetch, 1 store) 12 3 (2 fetch, 1 store) 16' 3 (2 fetch, 1 store) 12

16' 8 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 16'
16' 16' 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8

Notes:
1. The "Total Clocks Required" does not include wait states. One clock cycle per wait state must be

added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the
first fetch cycle of any memory-to-memory transfer requires seven clock cycles).

2. When performing a translate operation, one additional 7-clock bus cycle must be added to the values
specified in the table.

3. Word transfers in the table assume an even address word boundary. Word transfers to or from odd
address boundaries are performed as indicated in table 4-18 and are subject to the bus cycle/clock
requirements for byte-to-byte transfers.

4. Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between
dissimilar logical bus widths) insert four idle clock cycles between the two synchronized bus cycles
to allow additional time for the synchronzing device to remove its initial DMA request.

4-49

HARDWARE REFERENCE INFORMATION

DACK latency is defined as the time required for
the 8089 to acknowledge, by outputting the
device's corresponding port address, a DMA
request at its DRQ input. This response latency is
dependent on a number of factors including the
transfer cycle being performed, activity on the
other channel, memory address boundaries, wait
states present in either bus cycle and bus arbitra­
tion times.

Generally, when the other channel is idle, the
maximum DACK latency is five clock cycles (l
microsecond at 5 MHz), excluding wait states and
bus arbitration times. An exception occurs when
performing a word transfer to or from an odd
memory address boundary. This operation, since
two store (source synchronized) or two fetch
(destination synchronized) bus cycles are required
to access memory, has a maxirimm possible laten­
cy of nine clock cycles. When the other channel is
performing DMA transfers of equal priority
("P" bits equal), interleaving occurs at bus cycle
boundaries, and the maximum latency is either
nine clock cycles when' the other channel is per­
forming a normal 4-clock fetch or store bus cycle
or twelve clock cycles when the other channel is
performing the first fetch cycle of a memory-to­
memory transfer. If the other channel is perform­
ing "chained" task block instruction execution of
equal priority, maximum latency can be as high as
12 clock cycles (channel command instruction
execution is interrupted at machine cycle boun­
daries which range from two to eight clock
cycles).

DMA Termination

As stated in Chapter 3, a channel can exit the
DMA transfer mode (and return to task block
execution) on any of the following terminate
conditions:

• Single cycle transfer

•
•
•

Byte count expired

Mask/compare match or mismatch

External event

The terminate conditions are specified by in­
dividual fields in: the channel control register.
More than one terminate condition can be
specified for a transfer (e.g., a transfer can be ter­
minated when a specific byte count is reached or
on the occurrence of an external event). When

Mnemonics © Intel, 1979 4-50

more than one terminate condition is possible,
displacements (which are added to the task
pointer register value) are specified to cause task
block execution to resume at a unique entry point .
for each condition. Three reentry points are
available: TP, TP + 4 and TP+ 8. The time inter­
val between the occurrence of a terminate condi­
tion and the resumption of task block !!xecution is
12 clock cycles for reentry point TP and 15 clock
cycles for reentry points TP + 4 and TP + 8.

Peripheral Interfacing

When interfacing a peripheral to an 8-bit physical
data bus, the 8089 uses only the lower half of the
address/data lines (AD7-ADO) as the bidirec­
tional data bus, and the upper half of' the ad­
dress/data lines (AD15-AD8) maintain address
information for the entire bus cycle. Consequent­
ly, with this bus configuration, only one octal
latch (e.g., an Intel® 8282/83 Octal Latch) is re­
quired since only the lower half of the ad­
dress/ data lines is time-multiplexed (unless the
address bus requires the increased current drive
capability and capacitive load immunity provided
by the latch).

When interfacing a peripheral to a 16-bit data
bus, both the lower and upper halves of the ad­
dress/data lines are time-multipelxed, and two,oc­
tal.latches are required. Note that unlike, the 8086
and 8088 CPUs, the 8089 does not time-multiplex
BHE (this signal is valid for the entire bus cycle).
Both 8- and 16-bit peripherals can be interfaced to
a 16-bit bus. An 8-bit peripheral can be connected
to either the upper or lower half of the bus. An 8.
bit peripheral on the lower half of the bus must
use an even source/destination address, and an 8-
bit peripheral on the upper half of the bus must
use an odd source/destination address. To take
advantage of word transfers, a 16-bit peripheral
must use an even source/destination address.

To prepare a peripheral device for a DMA
transfer, command and parameter'data is written
to the device's command/status port. This is
usually accomplished using pointer register GC.
Recalling that the 8089 executes one additional
task block instruction fOllowing execution of the
XFER instruction (the XFER instruction' causes
the 8089 to enter the DMA mode), this additional
instruction is used to ·access the command port of
an I/O device that immediately begins DMA

HARDWARE REFERENCE INFORMATION

operation on receipt of the last command (the
8271 Floppy Disk Controller begins its DMA
transfer on receipt of the last command
parameter). Since a translate DMA operation re­
quires the use of all three pointer registers (GA
and GB specify the source and destination ad­
dresses; GC specifies the base address of the
translation table), when it is necessary to use the
last task block instruction to start the device,
command port access can be accomplished
relative to one of the pointer registers or relative
to the PP register. If the device's data port ad­
dress (GA or GB) is below the device's command
port address, either an offset or an indexed
reference can be used to access the command
port.

A peripheral's (or peripheral controller's) DMA
communication protocol with the 8089 is as
follows:

• The peripheral (when source or destination
synchronized) initiates a DMA transfer cycle
by activating the 8089's DRQ (DMA request)
input.

• The 8089 acknowledges the request by
placing the peripheral's assigned data port
address on the bus during state T 1 of the cor­
responding fetch (source synchronized) or
store (destination synchronized) bus cycle.
The peripheral is responsible for decoding
this address as the DMA acknowledge
(DACK) to its request.

• The data is transferred between the
peripheral and the 8089 during the T 2
through T 4 state interval of the bus cycle.
The peripheral must remove its DMA request
during this interval.

• The peripheral, when ready, requests another
DMA transfer cycle by again activating the
DRQ input, and the above sequence is
repeated.

• The peripheral can, as an option, end the
DMA transfer by activating the 8089's EXT
(external terminate) input.

The 8089 can support mulitple peripheral devices
on a single channel provided that only one device
is in the active transfer mode at anyone time. To
interface multiple devices, the DMA request
(DRQ) lines are OR'ed together as are the exter­
nal terminate (EXT) lines. Unique port addresses
are, however, assigned to each device so that an

4-51

individual DMA acknowledge (DACK) is return­
ed to only the active device. DACK decoding can
be accomplished with an Intel ® 8205 Binary
Decoder or a ROM circuit. Note that the 8089 can
only determine which device has requested service
or terminated by the context of the task block
program.

Most peripheral devices interfaced to the 8089 will
use the decoded DMA acknowledge signal
(DACK) as the "chip select" input. Peripheral
devices that do not follow this convention must
use DACK as a conditional input of chip select.

While most interrupts associated with the 8089
will be DMA requests or external terminates, non­
DMA related interrupts can additionally be
supported.

One technique that would be used when an 8089 is
the local configuration (or when an 8086 or 8088
and an 8089 are locally connected as a remote
module) is to allow the CPU to accept the inter­
rupt and then direct the 8089 to the interrupt ser­
vice routine. Another technique is to allow the
8089 to "poll" the device to determine when an
interrupt has occurred (most peripheral con­
trollers have an interrupt pending bit in a status
word). The 8089's bit testing instructions are
ideally suited for polling.

When the 8089 is in a remote configuration, non­
DMA related interrupts can be supported with the
addition of an Intel® 8259A Programmable
Interrupt Controller. Systems that require this
type of interrupt structure would dedicate one of
the 8089's channels to interrupt servicing. In
implementing this structure, the interrupt output
from the 8259A is directly connected to the chan­
nel's external terminate (EXT) input, and the
channel's DMA request (DRQ) input is not used.
A task block program is initially executed to per­
form a source-synchronized DMA transfer (with
an external terminate) on the "interrupt" channel
to "arm" the interrupt mechanism. Since the
DRQ input is not used, when the channel enters
the DMA transfer mode, the channel idles while
waiting for the first DMA request (which never
occurs). The other channel, since the interrupt
channel is idle, operates at maximum throughput.
When an interrupt occurs, the "pseudo" DMA
transfer is immediately terminated, and task
block instruction execution is resumed. The task
block program would write a "poll" command to
the 8259A's command port and then read the

HARDWARE REFERENCE INFORMATION

8259A's data port to acknowledge the interrupt
and to determine the device responsible for the
interrupt (the device is identified by a 3-bit binary
number in the associated data byte). The device
number read would be used by the task block pro­
gram as a vector into a jump table for the device's
interrupt service routine. Pertinent interrupt data
could be written into the associated parameter
block for subsequent examination by the host
processor.

The interrupt mechanism previously described,
since it uses the 8089's external terminate func­
tion, provides an extremely fast interrupt
response time.

Note that when using dynamic RAM memory
with the 8089, an Intel® 8202 Dynamic RAM
Controller can be used to simplify the interface
and to perform the RAM refresh cycle. When
maximum transfer rates are required, the RAM
refresh cycle can be externally initiated by the
8089. By connecting the decoded DACK (DMA
acknowledge) signal to the 8202's REFRQ
(refresh request) input, the refresh cycle will occur
coincident with the 110 device bus cycle and
therefore will not impose wait states in the
memory bus cycle.

Instruction Encoding

Most 8089 programming will be performed at the
assembly language level using ASM-89, the 8089
assembler. During program debugging, however,
it may be necessary to work directly with machine
instructions when monitoring the bus, reading un­
formatted memory dumps, etc. This section con­
tains both a table to encode any ASM-89 instruc­
tion into its corresponding machine instruction

(table 4-24) and a table to "disassemble" any
machine instruction back into its associated
assembly language equivalent (table 4-26).

Figure 4-32 shows the format of a typical 8089
machine instruction. Except for the LPDI and
memory-to-memory forms of the MOY and
MOYB instructions that are six bytes long, all
8089 machine instructions consist of from two to
five bytes. The first two bytes are always present
and are generally formatted as shown in figure
4-32 (table 4-24 contains the exact encoding of
every instuction).

Bits 5 through 7 of the first byte of an instruction
comprise the R/B/P field. This field identifies a
register, bit select or pointer register operand as
outlined in table 4-20.

Table 4-20. R/B/P Field Encoding

Code Register Bit Pointer

000 GA 0 GA
001 GB 1 GB
010 GC 2 GC
011 BC 3 NJA
100 TP 4 TP
101 IX 5 NJA
110 CC 6 NJA
111 MC 7 NJA

The WB field (bits 3 and 4 of the first byte) in­
dicates how many displacement! data bytes are
present in the instruction as outlined in table 4-21.
The displacement bytes are used in program
transfers; one byte is present for short transfers,
while long transfers contain a two-byte (word)
displacement. As mentioned in Chapter 3, the

BYTE 1

I I I I I I

R/B/PI WB I AA Iw

BYTE 2

III II II

IMM

- ~Y~:" - 4- - .!~ ~ - +- - ~:; ~ - -l

11~111lllllllllllll111~ 1

Mnemonics © Intel, 1979

OPCODE OFFSET I LOW DISPIDATA I HIGH DISPIDATA I
_____ L _____ ~ _____ ~

L BASE REGISTER FOR MEMORY OPERAND

OPERATION (INSTRUCTION) CODE

WIDTH (BYTE OR WORD OPERANDS)

MEMORY ADDRESSING MODE

NUMBER OF DISPLACEMENT IDATA BYTES

REGISTER, BIT, POINTER SELECT

Figure 4-32. Typical 8089 Machine Instruction Format

4-52

HARDWARE REFERENCE INFORMATION

displacement is stored in two's complement nota­
tion with the high-order bit indicating the sign.
Data bytes contain the value of an immediate con­
stant operand. A byte immediate instruction
(e.g., MOVBI) will have one data byte, and a
word immediate instruction (e.g., ADD!) will
have two bytes (a word) of immediate data. An
instruction may contain either displacement or
data bytes, but not both (the TSL instruction is an
exception and contains one byte of displacement
and one byte of data). If an offset byte is present,
the displacement/data byte(s) always follow the
offset byte.

Table 4-21. WB Field Encoding

Code Interpretation

00 No displacement/data bytes
01 One displacement/data byte
10 Two displacement/data bytes
11 TSL instruction only

The AA field specifies the addressing mode that
the processor is to use in order to construct the ef­
fective address of a memory operand. Four ad­
dressing modes are available as outlined in table
4-22. (Address modes are described in detail in
section 3.8.) .

Table 4-22. AA Field Encoding

Code Interpretation

00 Base register only
01 Base register plus offset
10 Base register plus IX
11 Base register plus IX,

auto-increment

Bit 0 of the first instruction byte indicates whether
the instruction operates on a byte (W=O) or a
word (W=I).

Bits 7 through 2 of the second instruction byte
specify the instruction opcode. The opcode, in
conjunction with the W field of the first byte,
identifies the instruction. For example, the op­
code "111011" denotes the decrement instruc­
tion; if W=O, the assembly language instruction is
DECB, while if W=I, the instruction is DEC.
Table 4-26 lists, in hexadecimal order, the opcode
of every assembly language instruction.

The MM field (bits 0 and 1) indicates which
pointer (base) register is to be used to construct
the effective address of a memory operand. Table
4-23 defines the MM field encoding. (Memory
operand addressing is described in section 3.8.)

Table 4-23. MM Field Encoding

Code Base Register

00 GA
01 GB
10 GC
11 pp

When the AA field value is "01" (base register
+ offset addressing), the third byte of the instruc­
tion contains the offset value. This unsigned value
is added to the content of the base register
specified by the MM field to form the effective
address of the memory operand.

When the AA field value is "10," the IX register
value is added to the content of the base register
specified by the MM field to provide a 64k range
of effective addresses. (Note that the upper four
bits of the IX register are not sign-extended.)

When the AA field value is "11," the IX register
value is added to the base register value to form
the effective address as described for an AA field
value of "10." In this addressing mode, however,
the IX register value is incremented by one after
every byte accessed.

Table 4-24. 8089 Instruction Encoding
DATA TRANSFER INSTRUCTIONS

MOV = Move word variable 78543210 78543210 78543210 78543210 78543210 78543210

Memory to register RRROOAAI 100000MM offset it AA-01

Register to memory RRROOAAI 1 000.0 1 M M 6ff.olll AA=OI

Memory to memory OOOOOAAI 100100MM offset if AA""01 00000 A A 1 1" 0 0 1 1 M M I off.otiIAA-Ol I

4-53 Mnemonics © Intel, 1979

DATA TRANSFER INSTRUCTIONS (Cont'd.)

Mova • Move byte variable

Memory to register

Register to memory

Memory to memory

Moyai III: Move byte Immediate

Immediate to register

Immediate to memory

: MOVI = Move word Immediate

Immediate to register

Immediate to memory

MOVP.= Move pointer

Memory to pointer register

Pointer register to memory

LPD III: Load pointer with doublaword variable

HARDWARE REFERENCE INFORMATION

Table 4-24. 8089 Instruction Encoding (Cont'd.)

78643210 78643210 78543210 78643210 78543210 78643210

RRROOAAO 100000MM off •• tIfAA-01

RRROOAAO 100001MM off •• tIfAA=01

OOOOOAAO 100100MM offset If AA ... 01 00000 A A 0 11 1001 1 M M"' offsstlfAA=01

off •• t If AA=OI

LPDI = load pOtnler with doubleword Immediate

ARITHMETIC INSTRUCTIONS

ADD. Add word variable

Memory to ,register

Register to memory

ADDB = Add byte variable

Memory to fegister

Register to memory

ADDI l1li: Add word Immediate

Immediate to register

Immediate to memory

Mnemonics © Intel; 1979 4-54

I

ARITHMETIC INSTRUCTIONS (Conl'd.)

ADDBI = Add byte immediate

Immedalte to register

Immediate to memory

INC = Increment word by 1

Register

Memory

INCB • Increment byte by 1

DEC = Decrement word by 1

Register

Memory

OEca = Decrement byte by 1

HARDWARE REFERENCE INFORMATION

Table 4-24.8089 Instruction Encoding (Cont'd.)

78543210 78543210 78543210 78543210 78543210 78543210

100000 A A 0 11 1 1 01 0 M M I oH.elifAA=Ol

100000 A A 01111011 M M I olf.etif AA-01

LOGICAL AND BIT MANIPULATION iNSTRUCTIONS

AND. AND word variable

Memory to register

Register to memory

ANDB • AND byte variable

Memory to register

Regi8terto memory

ANDI • AND word Immediate

Immediate to register

Immediate to memory

ANDBI = AND byle immediate

Immediate to register

Immediate to memory

OR = OR word variable

Memory to register

Register to memory

4-55 Mnemonics © Inlel, 1979

HARDWARE REFERENCE INFORMATION

Table 4-24.8089 Instruction Encoding (Cont'd.)

LOGICAL AND BIT MANIPULATION INSTRUCTIONS (Conl'd.)

ORB = OR byte variable 76543210 76543210 76543210 76543210 76543210 76543210

Memory to register

Register to memory

ORI = OR word immediate

Immediate to register

Immediate to memory

ORBI = OR byte immediate

Immediate to register

Immediate to memory

NOT = NOT word variable

Register RRROOOOO o 0 1 0 1 1 0 0

Memory o 0 0 0 0 A A 1 1 1 0 1 1 1 M M offset if AA=01 I
Memory to register RRROOAA1 1 0 1 0 1 1 M M offset if AA=01 I
NOTB = NOT byte variable

Memory

Memory to register

seTS = Set bit to 1 IBBBOOAAOl111101MM offset if AA=01

eLR = ClearbittoO BBBOOAAO 1111110MM offset if AA=01

PROGRAM TRANSFER INSTRUCTIONS

·CALL = Call

LCALL = Long call

·JMP = Jump unconditional l' 0001 000 1001 00000 disp-8

LJMP = Long jump unconditional 1'001000'100'00000 dlsp-Io

*The ASM-89 Assembler will automatically generate the long form of a program transfer instruction ,when the

target is known to be beyond the byte-displacement range.

Mnemonics © Intel, 1979 4-56

HARDWARE REFERENCE INFORMATION

Table 4-24.8089 Instruction Encoding (Cont'd.)

PROGRAM TRANSFER INSTRUCTIONS (Conl'd.l

*JZ = Jump if word IsO

Label to register

7 8 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 8· 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 8 5 4 3 2 1 0

label to memory

LJZ = Long jump if word Is 0

Label to register

Label to memory

-JZB. Jump if byte IsO

UZB = Long jump if byte is 0

*JNZ = Jump If word natO

Label to register

Label to memory

UNZ = Long jump If word not 0

Label to register

Label to memory

*JNZB = Jump If byte notO

UNZ8 = Long jump if byte not 0

*JMCE = Jump If masked compare equal

LJMCE = Long jump If masked compare equal

*JMCNE = Jump If masked compare notequai

WMCNE = Long jump if masked compare not equal

*JBT = Jump If bit Is 1

disp-8

offset If AA=01

offset if AA-01

-The ASM-89 Assembler will automatically gen~rate the long form of a program transfer Instruction when the

target Is known to be beyond the byte-displacem.ent range.

4-57

disp-8

disp-8

Mnemonics © Intel, 1979

HARDWARE REFERENC.E INFORMATION

Table 4-24.8089 Instruction Encoding (Cont'd.)

PROGRAM TRANSFER INSTRUCTIONS (Cont'd.)

78543210 76543210 78543210 7854~210 78543210 78543210

LJBT = Long jump if hit Is 1

·JNBT = Jump if bit is notl

LJNBT = Long jump if bit is not 1

PROCESSOR CONTROL INSTRUCTIONS

TSl = Test and set while locked

WID = Set logical bus widths 11 S O' 0 0 0 0 0 I 0 0 0 0 0 0 0 0

'S=source width, D=destination width; 0=8 bits, 1=16 bits

XFER = Enter OMA mode 101100000100000000

SINTR = Set interrupt service bit 101000000100000000

HLT = Halt channel program 100100000101001000

NOP = No operation 100000000100000000

'The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the

target is known to be beyond the byte-dlsplacement range.

Table 4-26 lists all of the 8089 machine instruc­
tions in hexadecimal/binary order by their second
byte. This table may be used to "decode" an

Mnemonics © Intel, 1979 4-58

assembled machine instruction into its ASM-89
symbolic form. The preceding table (table 4-25)
defines the notation used in table 4-26.

HARDWARE REFERENCE INFORMATION

Table 4-25. Key to 8089 Machine Instruction Decoding Guide

Identifier Explanation

5 Logical width of source bus; 0=8, 1=16
0 Logical width of destination bus; 0=8, 1=16

PPP Pointer register encoded in RI B/P field
RRR Register encoded in RI B/P field
AA AA (addressing mode) field

BBB Bit select encoded in RI B/P field
offset-Io Low-order byte of offset word in doubleword pOinter
offset-hi High-order byte of offset word in doubleword pointer

segment-Io Low-order byte of segment word in doubleword pointer
segment-hi High-order byte of segment word in doubleword pointer

data-8 8-bit immediate constant
data-Io Low-order byte of 16-bit immediate constant
data-hi High-order byte of 16-bit immediate constant
disp-8 8-bit signed displacement
disp-Io Low-order byte of 16-bit signed displacement
disp-hi High-order byte of 16-bit signed displacement
(offset) Optional 8-bit offset used in offset addressing

Table 4-26. 8089 Machine Instruction Decoding Guide

Byte 1
Byte 2

ASM89 Instruction Format
Hex Binary

Bytes 3, 4, 5, 6

00000000 00 00000000 NOP
01000000 00 00000000 51NTR

15DOOOOO 00 00000000 WID source-width,dest-width
01100000 00 00000000 XFER

01 00000001

} + + not used
07 00000111

PPP10001 08 00001000 offset-Io,offset-hi,segment-Io,segment-hi LPDI ptr-reg,immed32
09 00001001

} + + not used
1F 00011111

RRR01000 20 00100000 data-8 ADDBI register,immed8
RRR10001 20 00100000 data-Io,data-hi ADOI register,immed16
10001000 20 00100000 disp-8 JMP short-label
10010001 20 00100000 disp-Io,disp-hi LJMP long-label

21 00100001

} + + not used
23 00100011

RRR01000 24 00100100 data-8 ORBI register,immed8
RRR10001 24 00100100 data-Io,data-hi ORI register,immed16

25 00100101

} + + not used
27 00100111

RRR01000 28 00101000 data-8 ANDBI register,immed8

4-59 Mnemonics © Intel, 1979

HARDWARE REFERENCE INFORMATION

Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd.

Byte 1
Byte2

Bytes 3, 4, 5, 6 ASM89 Instruction Format
Hex Binary

RRR10001 28 00101000 data-Io,data-hi ANDI register,immed16
29 00101001

} + + not used
2B 00101011

RRROOOOO 2C 00101100 NOT register
20 00101101

} + + not used
2F 00101111

RRR01000 30 00110000 data-8 MOVBI register,immed8
RRR10001 30 00110000 data-Io,data-hi MOVI register,immed16

31 00110001

} + + not used
37 00110111

RRROOOOO 38 00111000 INC register
39 00111001

} + + not used
3B 00111011

RRROOOOO 3C 00111100 DEC register
3D 00111101

} + + not used
3F 00111111

RRR01000 40 01000000 disp-8 JNZ reg ister, short-label
RRR10000 40 01000000 disp-Io,disp-hi LJNZ register, long-label

41 01000001

} + t not used
43 01000011

RRR01000 44 01000100 disp-8 JZ register ,short-label
RRR10000 44 01000100 disp-Io,disp-hi LJZregister,short-label

45 01000101

} + + not used
47 01000111

00100000 48 01001000 HLT
49 01001001

} + + not used
4B 01001011

00001AAO 4C 010011MM

} } + + + (offset) ,data-8 MOVBI mem8,immed8
00001AAO 4F 010011 MM
00010AA1 4C 010011 MM

} } t + + (offset),data-Io,data-hi MOVI mem16,immed16
00010AA1 4F 010011 MM

50 01010000

} + + not used
7F 01111111

RRROOAAO 80 100000MM

} } + + (offset) MOVB register,mem8
RRROOAAO 83 100000MM

Mnemonics © Intel, 1979
4-60

HARDWARE REFERENCE INFORMATION

Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd.

Byte 1
Byte2

Bytes 3, 4, 5, 6 ASM89 Instruction Format
Hex Binary

RRROOAA1 80 100000MM

} } + + + (offset) MOV register,mem16
RRROOAA1 83 100000MM
RRROOAAO 84 100001 MM

} } + t + (offset) MOVB mem8,register
RRROOAAO 87 100001 MM
RRROOAA1 84 100001 MM

} } + + + (offset) MOV mem16, register
RRROOAA1 87 100001 MM
PPPOOAA1 88 100010MM

} } + + + (offset) LPD ptr-reg,mem32
PPPOOAA1 8B 100010MM
PPPOOAA1 8C 100011MM

} } + + + (offset) MOVP ptr-reg,mem24
PPPOOAA1 8F 100011 MM
OOOOOAAO 90 100100MM

} } + t t (offset),OOOOOAAO, 110011 MM,(offset) MOVB mem8,mem8
OOOOOAAO 93 100100MM
00000AA1 90 100100MM

} } t t t (offset),OOOOOAA 1,110011 MM,(offset) MOV mem16,mem16
00000AA1 93 100100MM
00011AAO 94 100101 MM

} } + + t (offset) ,data-8,disp-8 TSL mem8,immed8,short-label
00011AAO 97 100101 MM
PPPOOAA1 98 100110MM

} } t t t (offset) MOVP mem24, ptr-reg
PPPOOAA1 9B 100110MM
10001AA1 9C 100111MM

} } + t + (offset),disp-8 CALL mem24,short-label
10001AA1 9F 100111MM
10010AA1 9C 100111MM

} } + t t (offset),d isp-Io,d isp-h i LCALL mem24,long-label
10010AA1 9F 100111MM

RRROOAAO AO 101000MM

} } t t t (offset) ADDB register,mem8
RRROOAAO A3 101000MM
RRROOAA1 AO 101000MM } } t t t (offset) ADD register,mem16
RRROOAA1 A3 101000MM
RRROOAAO A4 101001MM

} } t t + (offset) ORB register,mem8
RRROOAAO A7 101001MM
RRROOAA1 A4 101001MM

} } t t t (offset) OR register,mem16
RRROOAA1 A7 101001 MM
RRROOAAO A8 101010MM

} } + + + (offset) ANDB mem8,register
RRROOAAO AB 101010MM

4-61 Mnemonics © Intel, 1979

HARDWARE REFERENCE INFORMATION

Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd.

Byte 1
Byte2

Bytes 3, 4, 5, 6 ASM89 Instruction Format
Hex Binary

RRROOAA1 A8 101010MM

} } t t t (offset) AND mem16,register
RRROOAA1 AB 101010MM
RRROOAAO AC 101011MM

} } t t t (offset) NOTB register,mem8
RRROOAAO AF 101011 MM
RRROOAA1 AC 101011 MM

} } t t t (offset) NOT register,mem16
RRROOAA1 AF 101011MM
00001AAO BO 101100MM

} } t t t (offset),disp-8 JMCE mem8,short-label
00001AAO B3 101100MM
00010AAO BO 101100MM

} } t t t (offset),disp-Io,disp-hi LJMCE mem8, long-label
00010AAO B3 101100MM
00001AAO B4 101101 MM

} } t t t (offset),disp-8 JMCNE mem8,short-label
00001AAO B7 101101 MM
00010AAO B4 101101 MM

} } t t t (offset),disp-Io,disp-hi LJMCNE mem8, long-label
00010AAO B7 101101 MM

BBB01AAO B8 101110MM

} } t t t (offset),disp-8 JNBT mem8,bit-select,short-label
BBB01AAO BB 101110MM
BBB10AAO B8 101110MM

} } t t t (offset) ,disp-Io,d isp-h i LJNBT mem8,bit-select,long-label
BBB10AAO BS 101110MM
BBB01AAO BC 101111MM

} } t t t (offset),disp-8 JBT mem8, bit-select, short-label
BBB01AAO BF 101111MM
BBB10AAO BC 101111 MM

} } t t t (offset) ,disp-Io,d isp-hi LJBT mem8,bit-select,long-label
BBB10AAO BF 101111MM
00001AAO CO 110000MM

} } t t t (offset) ,data-8 ADDBI mem8,immed8
00001AAO C3 110000MM
00010AA1 CO 110000MM

} } t t t (offset) ,data-Io,data-h i ADDI mem16,immed16
00010AA1 C3 110000MM
00001AAO C4 110001 MM

} } t t t (offset),data-8 ORBI mem8,immed8
00001AAO C7 110001 MM
00010AA1 C4 110001 MM

} } t t t (offset), data-Io, data-h i ORI mem16,immed16
00010AA1 C7 110001MM
00001AAO C8 110010MM

} } t t t (offset),data-8 ANDBI mem8,immed8
00001AAO CB 110010MM

Mnemonics © Intel, 1979 4-62

HARDWARE REFERENCE INFORMATION

Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd.

Byte 1
Byte 2

Bytes 3, 4, 5, & ASM89 Instruction Format
Hex Binary

00010AA1 C8 110010MM
} (offset),data-Io,data-hi } t t + ANDI mem16,immed16

00010AA1 CB 110010MM
CC 11001100

} t + not used
CF 11001111

RRROOAAO DO 110100MM

} } + t + (offset) ADDB mem8,register
RRROOAAO 03 110100MM
RRROOAA1 DO 110100MM

} } + + + (offset) ADD mem16,register
RRROOAA1 03 110100MM
RRROOAAO 04 110101MM

} } + + + (offset) ORB mem8,register
RRROOAAO 07 110101MM
RRROOAA1 04 110101 MM

} } t + t (offset) OR mem16,register
RRROOAA1 07 110101 MM
RRROOAAO 08 110110MM

} } ANDB mem8,register t + t (offset)
RRROOAAO DB 110110MM
RRROOAA1 08 110110MM

} (offset) } AND mem16,register t + +
RRROOAA1 DB 110110MM
RRROOAAO DC 110111 MM

} (offset) } + + + NOTB mem8,register
RRROOAAO OF 111l111MM
RRROOAA1 DC 110111MM

} } + + t (offset) NOT mem16,register
RRROOAA1 OF 110111MM
00001AAO EO 111000MM } } JNZB mem8,short-label + + + (offset),disp-8
00001AAO E3 111000MM
00001AA1 EO 111000MM

} } + + + (offset).disp-8 JNZ mem16,short-label
00001AA1 E3 111000MM
00010AAO EO 111000MM

} } + t + (offset),disp-Io,disp-hi LJNZB mem8,long-label
00010AAO E3 111000MM
00010AA1 EO 111000MM } } + + + (offset),disp-Io,disp-hi LJNZ mem16,longlabel
00010AA1 E3 111000MM
00001AAO E4 111001MM

} } JZB mem8,short-label t t t (offset),disp-8
00001AAO E7 111001MM
00001AA1 E4 111001MM

} (offset),disp-8 } JZ mem16,short-label t t t
00001AA1 E7 111001MM

4-63 Mnemonics·© Intel, 1979

HARDWARE REFERENCE INFORMATION

Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd.

Byte 1
Byte 2

Bytes 3, 4, 5, 6 ASM89 Instruction Format
Hex Binary

00010AAO E4 111001MM

} } t t t (offset),d isp-Io,disp-h i LJZB mem8,long-label
00010AAO E7 111001 MM
00010AA1 E4 111001MM

} } t t t (offset),disp-Io,disp-hi LJZ mem16,long-label
00010AA1 E7 111001 MM
OOOOOAAO E8 111010MM

} } t t t (offset) INCB mem8
OOOOOAAO EB 111010MM
00000AA1 E8 111010MM

} } t t t (offset) INC mem16
00000AA1 EB 111010MM
OOOOOAAO EC 111011MM

} } DECB t t t (offset) mem8
OOOOOAAO EF 111011MM
00000AA1 EC 111011MM

} (offset) } DEC t t t mem16
00000AA1 EF 111011MM

FO 11110000
} not used t t

F3 11110000
BBBOOAAO F4 111101MM

} (offset) } SETB mem8,0-7 t t t
BBBOOAAO F7 111101MM
BBBOOAAO F8 111110MM

} (offset) } GLR mem8,0-7 t t t
BBBOOAAO FB 111110MM

FC 11111100
} not used t t

FF 11111111

Mnemonics ©Intel, 1979
4-64

Appendix A
Application Notes

APPENDIX A
APPLICATION NOTES

This appendix contains Intel application notes pertinent to the 8086 family microprocessors. The following
application notes, in the order listed, have been included within this appendix:

AP-67
AP-61
AP-50
AP-51
AP-59
AP-28A
AP-43

8086 System Design
Multitasking for the 8086
Debugging Strategies and Considerations for 8089 Systems
Designing 8086, 8088, 8089 Multiprocessing Systems with the 8289 Bus Arbiter
Using the 8259A Programmable Interrupt Controller
Intel® Multibus™ Interfacing
Using the iSBC-957™ Execution Vehicle for Executing 8086 Program Code

A-li A-2

© Intel CorporatIon 1979

APPLICATION
NOTE

A-3

Ap·67

September 1979

8086 System Design

AP-67

Contents

1. INTRODUCTION

2. 8086 OVERVIEW AND BASIC SYSTEM
CONCEPTS

A. Bus Cycle Definition
B. Address and Data Bus Concepts
C. System Data Bus Concepts
D. Multiprocessor Environment

3. 8086 SYSTEM DETAILS

A. Operating Modes
B. Clock Generation
C. Reset
D. Ready Implementation and Timing
E. Interrupt Structure
F. Interpreting the 8086 Bus Timing Diagrams
G. Bus Control Transfer

4. INTERFACING WITH 1/0

5. INTERFACING WITH MEMORIES

6. APPENDIX

A-4

AP·67

1. INTRODUCTION

The 8086 family, Intel's new series of microprocessors
and system components, offers the designer an ad­
vanced system architecture which can be structured to
satisfy a broad range of appllcatlons_ The variety of
speed, configuration and component selections avail­
able within the family enables optimization of a specific
design to both cost and performance objectives. More
important however, the 8086 family concept allows the
designer to develop a family of systems providing multi­
ple levels of enhancement within a single design and a
growth path for future designs.

This application note Is directed toward the implemen­
tation of the system hardware and will provide' an in­
troduction to a representative sample of the systems
configurable with the 8086 CPU member of the family.
Application techniques and timing analysis will be given
to aid the designer In understanding the system require­
ments, advantages and limitations. Additional Intel
publications the reader may wish to reference are the
8086 User's Manual (9800722A), 8086 Assembly Lan-

guage Reference Guide (9800749A), AP-28A MULTI­
BUS™ Interfacing (98005876B), INTEL MULTIBUS™
SPECIFICATION (9800683), AP-45 Using the 8202 Dy­
namic RAM Controller (9800809A), AP-51 Designing
8086, 8088, 8089 Multiprocessor Systems with the 8289
Bus Arbiter and AP-59 Using the 8259A Programmable
Interrupt Controller. References to other Intel publica­
tions will be made throughout this note.

2. 8086 OVERVIEW AND BASIC SYSTEM CONCEPTS

2A. 8086 Bus Cycle Definition

The 8086 is a true 16-bit microprocessor with 16-blt In­
ternal and external data paths, one megabyte of memory
address space (2**20) and a separate 64K byte (2**16)
I/O address space. The CPU communicates with its ex­
ternal environment via a twenty-bit time multiplexed ad­
dress, status and data bus and a command bus. To
transfer data or feich instructions, the CPU executes a
bus cycle (Fig. 2A 1). The minimum bus cycle consists of
four CPU clock cycles called T states. During the first T
state (T1), the CPU asserts an address on the twenty-bit

!--T,_ - -T2-- ~T,rrw T4-I-

READ
CYCLE

WRITE
CYCLE

CLK
-----'

A191S6,A161S3

READY

RD

DTiii

DEN

0

WR

DEN

---DTIR ---

lL'

)(

~-

-

~ ~ ...,v----- ..,~

ADDR STATUS }.

- D -

---)(r..UiAr" r-----ADDRESS A15-Ao \ FLOAT IX DA A IN D15'Do --1--- r-- -----

V

1\ V

X ADDRESS X DATA OUT JC:..

V

Figure 2A 1. Basic 8086 Bus Cycle

A-5

AP-67

multiplexed address/data/status bus. For the second T
state (T2), the CPU removes the address from the bus
and either three-states its outputs on the lower sixteen
bus lines in preparation for a read cycle or asserts write
data. Data bus transceivers are enabled in either T1 or
T2 depending on the 8086 system configuration and the
direction of the transfer (into or out of the CPU). Read,
write or interrupt acknowledge commands are always
enabled in T2. The maximum mode 8086 configuration
(to be discussed later) also provides a write command
enabled in T3 to guarantee data setup time prior to com­
mand activation.

During T2, the upper four multiplexed bus lines switch
from address (A19-A16) to bus cycle status
(S6,S5,S4,S3). The status information (Table 2A1) is
available primarily for diagnostic monitoring. However,
a decode of S3 and S4 could be used to select one of
four banks of memory, one assigned to each segment
register. This technique allows partitioning the memory
by segment to expand the memory addressing beyond
one megabyte. It also provides a degree of protection by
preventing erroneous write operations to one segment
from overlapping into another segment and destroying
information in that segment.

The CPU continues to provide status information on the
upper four bus lines during T3 and will either continue
to assert write data or sample read data on the lower six­
teen bus lines. If the selected memory or I/O device is
not capable of transferring data at the maximum CPU
transfer rate, the device must signal the CPU "not
ready" and force the CPU to insert additional clock
cycles (Wait states TW) after T3. The 'not ready' indica­
tion must be presented to the CPU by the start of T3.
Bus activity during TW is the same as T3. When the
selected device has had sufficient time to complete the
transfer, it asserts" Ready" and allows the CPU to con­
tinue from the TW states. The CPU will latch the data on
the bus during the last wait state or during T3 if no wait
states are requested. The bus cycle is terminated in T4
(command lines are disabled and the selected external
device deselects from the bus). The bus cycle appears
to devices in the system as an asynchronous event con­
sisting of an address to select the device followed by a
read strobe or data and a write strobe. The selected
device accepts bus data during a write cycle and drives
the desired data onto the bus during a read cycle. On ter­
mination of the command, the device latches write data
or disables its bus drivers. The only control the device
has on the bus cycle is the insertion of wait cycles.

The 8086 CPU only executes a bus cycle when instruc­
tions or operands must be transferred to or from
memory or I/O devices. When not executing a bus cycle,

. the bus interface executes idle cycles (TI). During the
idle cycles, the CPU continues to drive status informa­
tion from the previous bus cycle on the upper address
lines. If the previous bus cycle was a write, the CPU con­
tinues to drive the write data onto the multiplexed bus
until the start of the next bus cycle. If the CPU executes
idle cycles following a read cycle, the CPU will not drive
the lower 16 bus lines until the next bus cycle is
required.

A-6

Since the CPU prefetches up to six bytes of the instruc­
tion stream for storage and execution from an internal
instruction queue, the relationship of instruction fetch
and associated operand transfers may be skewed in
time and separated by additional instruction fetch bus
cycles. In general, if an instruction is fetched into the
8086's internal instruction queue, several additional in­
structions may be fetched before the instruction is
removed from the queue and executed. If the instruction
being executed from the queue is a jutnp or other con­
trol transfer instruction, any instructions remaining in
the queue are not executed and are discarded with no ef­
fect on the CPU's operation. The bus activity observed
during execution of a specific instruction is dependent
on the preceding instructions but is always deter­
ministic within the specific sequence.

S3

o
1

o

S4

o
o

Table 2A1

Alternate (relative to the ES segment)

Stack (relative to the SS segment)

Code/None (relative to the CS seg-
ment or a default of zero)

Data (relative to the OS segment)

S5 = IF (interrupt enable flag)
S6 = 0 (indicates the 8086 is on the bus)

2B_ 8086 Address and Data Bus Concepts

Since the majority of system memories and peripherals
require a stable address for the duration of the bus
cycle, the address on the multiplexed address/data bus
during T1 should be latched and the latched address
used to select the desired peripheral or memory loca­
tion. Since the 8086 has a 16-bit data bus, the multi­
plexed bus components of the 8085 family are not ap­
plicable to the 8086 (a device on address/data bus lines
8-15 will not be able to receive the byte selection ad­
dress on lines 0-7). To demultiplex the bus (Fig. 2B1a),
the 8086 system provides an Address Latch Enable
signal (ALE) to capture the address in either the 8282 or
8283 8-bit bi-stable latches (Diag. 2B1). The latches are
either inverting (8283) or non-inverting (8282) and have
outputs driven by three-state buffers that supply 32 mA
drive capability and can switch a 300 pF capacitive load
in 22 ns (inverting) or 30 ns (non-inverting). They prop­
agate the address through to the outputs while ALE is
high and latch the address on the falling edge of ALE.
This only delays address access and chip select
decoding by the propagation delay of the latch. The out­
puts are enabled through the low active OE input. The
demultiplexing of the multiplexed address/data bus
(Iatchings of the address from the multiplexed bus), can
be done locally at appropriate points in the system or at
the CPU with a separate address bus distributing the ad­
dress throughout the system (Fig. 2B1b). For optimum
system performance and <:ompatibility with multiproc­
essor and MULTIBUS™ configurations, the latter tech­
nique is strongly recommended over the first. The re­
mainder of this note will assume the bus is demul­
tiplexed at the CPU.

8088

ADDRESS
BUS

Figure 2B1a. Demultiplexing the 8086 Bus

8088
CPU

ADDRESS BUS

DATA BUS

SEPARATE ADDRESS AND DATA BUSSES

r------.,
I I
I I
I I : ;...' ----.~-----1 f-~--.. ALE
I 8088 I CPU
I

'---''"'--__ J\ ADDRESS/DATA

I BUS
I ,
I , L ______ J

MULTIPLEXED BUS WITH LOCAL ADDRESS DEMULTIPLEXING

Figure 2B1b.

T, T2

CLK ~ r---\
--J

AP-67

--

The programmer views the 8086 memory address space
as a sequence of one million bytes in which any byte
may contain an eight bit data element and any two con­
secutive bytes may contain a 16-bit data element. There
is no constraint on byte or word addresses (boundaries).
The address space is physically implemented on a six­
teen bit data bus by dividing the addrllss space into two
banks of up to 512K bytes (Fig. 2B2). One bank is con­
nected to the lower half of the sixteen-bit data bus (07-0)
and contains even addressed bytes (AD = 0). The other
bank is connected to the upper half of the data bus
(015-8) and contains odd addressed bytes (AD = 1). A
specific byte within each bank is selected by address
lines A19-A1. To perform byte transfers to even ad­
dresses (Fig. 2B3a), the information is transferred over
the lower half of the data bus (07-0). AD (active low) is
used to enable the bank connected to the lower half of
the data bus to participate in the transfer. Another
signal provided by the 8086, Bus High Enable (BHE), is
used to disable the bank on the upper half of the data
bus from participating in the transfer. This is necessary
to prevent a write operation to the lower bank from
destroying data in the upper bank. Since BHE is a
multiplexed signal with timing identical to the A19-A16
address lines, it also should be latched with ALE to pro­
vide a stable signal during the bus cycle. Ouring T2
through T4, the BHE output is multiplexed with status
line S7 which is equal to BHE. To perform byte transfers
to odd addresses (Fig. 2B3b), the information is trans­
ferred over the upper half of the data bus (015-08) while
BHE (active low) enables the upper bank and AD
disables the lower bank. Oirecting the data transfer to
the appropriate half of the data bus and activation of
BH E and AD is performed by the 8086, transparent to the
programmer. As an example, consider loading a byte of
data into the CL register (lower half of the CX register)
from an odd addressed memory location (referenced
over the upper half of the 16-bit data bus). The data is
transferred into the 8086 over the upper 8 bits of the
data bus, automatically redirected to the lower half of
the 8086 internal 16-bit data path and stored into the CL
register. This capability also allows byte 1/0 transfers
with the AL register to be directed to 1/0 devices con­
nected to either the upper or lower half of the 16-bit data
bus.

To access even addressed sixteen bit words (two con­
secutive bytes with the least significant byte at an even

T3 Tw T,

~ lr-i~ ~

--- ---
DATA IN OR OUT v, X -X--

'--- --- - \--_-

r--

\ I ALE -

Diagram 2B1. ALE Timing

A-7

AP-67

byte address),A19-A1 select the appropriate byte within
each bank and AO and SHE (active low) enable both
banks simultaneously (Fig. 2S3c). To access an odd ad­
dressed 16-bit word (Fig. 2S3d), the least significant
byte (addressed by A 19-A 1) is first transferred over the
upper half of the bus (odd addressed byte, upper bank,
SHE low active and AO= 1). The most significant byte is
accessed by incrementing the address (A19-AO) which
allows A19-A1 to address the next physical word loca­
tion (remember, AO was equal to one which indicated a
word referenced from an odd byte boundary). A second
bus cycle is then executed to perform the transfer of the
most significant byte with the lower bank (AO is now ac­
tive low and SHE is high). The sequence is automatically
executed by the 8086 whenever a word transfer is ex­
ecuted to an odd address. Directing the upper and lower
bytes of the 8086's internal sixteen-bit registers to the
appropriate halves of the data bus is also performed
automatically by the 8086 and is transparent to the pro­
grammer.

(A) LOGICAL ADDRESS SPACE
(8) PHYSICAL IMPLEMENTATION OF THE

ADDRESS SPACE

512K BYTES 512K BYTES

FFFFF

FFFFE

FFFFD
FFFFC

~
1 MEGABYTE

1\

-V

1

FFFFF

FFFFO

Figure 2B2. 8086 Memory

TRANSFER X

Y+l ~ Y
X+l ~(X)~

IV

I
--4C'-- 4. i:>..

~_I
""'"

7"

FFFF£
FFFFC,

A'9-A1 015-08 BHE (HIGH) 07-00 Ao (LOW)

Figure 2B3a. Even Addressed Byte Transfer

TRANSFER X + 1

..1\ Y+l t\ Y

IV'
(:0: (X + 1) '0:

IV
X

...,; :>.. <)..

1 '" 5>- _I "" 7"
A19-A, 0,,-0, BHE (LOW) 0,-00 Ao (HIGH)

Figure 2B3b. Odd Addressed By1e Transfer

,--__ ..,TRANSFER X+ I, Xr-__ --.

015- D8 AO(LOW)

Figure 2B3c. Even Addressed Word Transfer

FIRST BUS CYCLE

.l\ Y+l ~ Y
j0%; (X+ 1) W,

IV
X

V

l
C>-

4. :>.. L.)..

I S>"" 1 ~
O,s-De BHE (LOW) Ao(HIGH)

Figure 2B3d. Odd Addressed Word Transfer

During a byte read, the CPU floats the entire sixteen-bit
data bus even though data is only expected on the upper
or lower half of the data bus. As will be demonstrated
later, this action simplifies the chip select decoding re­
quirements for read only devices (ROM, EPROM). During
a byte write operation, the 8086 will drive the entire
sixteen-bit data bus. The information on the half of the
data bus not transferring data is indeterminate. These
concepts also apply to the I/O address space. Specific
examples of I/O and memory interfacing are considered
in the corresponding sections .

2C. System Data Bus Concepts

When referring to the system data bus, two implemen­
tation alternatives must be considered; (a) the multi­
plexed address/data bus (Fig. 2C1a) and a data bus buf­
fered from the multiplexed bus by transceivers (Fig.
2C1b).

If memory or 1/0 devices are connected directly to the
multiplexed bus, the designer must guarantee the
devices do not corrupt the address on the bus during T1.

A-8

ALE

AP-67

MULTIPLEXED DATA BUS

ADDREBS

MULTIPLEXED
'-------'----..,/ ADDRESS/DATA

Figure 2Cla. Multiplexed Data Bus

BUFFERED DATA BUS

8282

Figure 2Clb. Bull.red Data Bua

Tl

/ \.

SYSTEM
BUS

T2

To avoid this, device output drivers should not be enabl­
ed bY the device chip select, but should have an output
enable controlled by the system read signal (Fig. 2C2).
The' 8086 timing guarantees that read Is not valid ,until
after the address Is latched by ALE (Olag. 2C1). All Intel
peripherals, EPROM products and RAM's for microproc­
essors provide output enable or read inputs to allow
connection to the multiplexed bus.

ALE----I

ADDRESS BUS

iiii------01

Figure 2C2. Device. with Output Enable. on the Multiplexed Bua

Several techniques are available for interfacing devices
without output enables to the multiplexed bus but each
introduces other restrictions or limitations. Consider
Figure 2C3 which has chip select gated with read and
write. Two problems exist with this technique. First, the
chip select access time is reduced to the read access
time, and may require a faster device if maximum
system performance (no walt states) is to be achieved
(Olag. 2C2). Second, the designer must verify that chip
select to write setup and hold times for the device are
not violated (Oiag. 2C3). Alternate techniques can be ex­
tracted from the bus Interfacing techniques given later
In this section but are subject to the associated restric­
tions. In general, the best solution is obtained with
devices having output enables.

A subsequent limitation on the multiplexed bus Is the
8086's drive capability of 2.0 mA and capacitive loading
of 100 pF to guarantee the specified A.C. character­
Istics. Assuming capacitive loads of 20 pF per 1/0
device, 12 pF per address latch and 5-12 pF per memory
device, a system mix of three peripherals and two to
four memory devices (per bus line) are close to the
loading limit.

T3 T4

,----

Diagram 2Cl. Relationship of ALE to READ

A-9

AP·67

ADDRESS

ALE

'--_________ ..J\ MULTIPLEXED BUS

Figure 2C3. Device. without Output Enable. on the Multiplexed Bu.

ADDRESS---\ _____________ _

DATA----------+--~

1 ACCESS TIME FOR CS GENERATED FROM ADDRESS DECODE.

2 ACCESS TIME IF CS IS GATED WITH RD/WH.

Diagram 2C2. Access Time: CS Gated with iiiilWR

ADDR~'_ _____ ~--------
WR---~----, ~

sa lu
1 CS lS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE

DELAYS LATER.

2 CS REMAINS VALID AFTER WRITE ONE OR TWO GATE DELAYS.

Diagram 2C3. CS to WR Set·Up and Hold

To satisfy the capacitive loading and drive requirements
of larger systems, the data bus must be buffered. The
8286 non-Inverting and 8287 inverting octal transceivers
are offered as part of the 8086 family to satisfy this re­
quirement. They have three-state .output buffers that
drive 32 mA on the bus interface arid .10 mA 011 the CPU
interface ano can switch capacitive loads of 300 pF at
the bus interface and 100 pF on the CPU interlace in 22
ns (8287) or 30 ns (8286). To enable and cont~onthe direc­
tion of the transceivers, the 8086 systemprov,ldes Data
ENable (DEN) and Data Transmit/Receive(DTiRj slgnliis
(Fig. 2C1 b). These signals provide the appropriate tim­
ing to guarantee isolation of the multiplexed'bus from
the system during T1 and elimination of bus contention
with the CPU during read and write (Diag. 2C4). Although
the memory and peripheral devices are isolated from the
CPU (Fig. 2C4), bus contention 'may stlll exist in the
system if the devices do riot have an output enable con­
trol other than chip select. AS an example, bus contlln­
tion will exist during transition from one chip select to
another (the newly selected device begins driving the
bus before the previous device has disabled its drivers).
Another, more severe case exists during a write.cycle.
From chip select to write active, a dJlvice whose outputs
are controlled only by chip select, will drive the bus
simultaneously with write data being driven through the
transceivers by the CPU (Dlag. 2C5). The same tech­
nique given for circumventing these problems ,on the
multiplexed bus can be applied here with the' same limi-
tations. '

One last extension to the bus implementation Is a sec- '
ond level of buffering to reduce the total load seen by ,
devices on the system bus (Fig. 2C5). This Is typically
done for multiboard systems and Isolation of memory
arrays. The concerns with this configuration are the, ad­
ditional delay for access and more important, conVol of
the second transceiver in relationship to the system blls
and the device being interfaced to the system bus.
Several techniques for controlling the transoeiver are
given in Figure 2C6. This first technique (Fig. 2C6a)
simply distributes DEN and DTIR ·throughout the
system. DT/R is inverted to prQvide proper direQtiori con­
trol for the second level transceivers. The seconG·exam­
pie (Fig. 2C6b) provides control for devices with output
enables. RD is used to normally direct data from, the
system bus to the periptleral. The .buffElT is sel!lcted
whenever a device on the local bus is Chip $elected. Bus
contention Is possible on the device~s local bus during a
read as the read simultaneously enables the device out­
put and changes the transceiver direction. The conten­
tion may also occur as the read is·terminated.

For devices without output enables, the same technique
can be applied (Fig. 2C6c) If the chip select to the device
Is conditioned by read or write. Controlling the chip
select with read/wrlte prevents the device from driving
against the transceiver prior to the command being
received. The, limitations with this technique are access
limited to read/write time and limited CS to write setup
and hold times.

A-lO

1

ADo

AD1swADo

READ iiii
CYCLE

DTIA

DEN

AD1S-ADO

WR

WRITE
CYCLE

DEN

DTIA

AP-67

r---Tlll_~ __ T2~~T3-_r------T4~

-+---+--"X ADDRESSA15-/Io IFLO;" -- X DATA IN D..-D,)(FLoAT" -----
---1r---r--.../'--t--t---'--- --- --- -----

- i\

[\'---I---+---fV

ADDRESS x DATA OUT

~----~-+----~-+-----yi/
- ---

I - _J

1 DEN IS ENABLED AFTER THE 8088 HAS FLOATED THE MULTIPLEXED BUS

2 DEN ENABLES THE TRANSCEIVERS EARLY IN THE CYCLE, BUT DTIR GUARANTEES
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WILL
NOT DRIVE AGAINST THE CPU.

Diagram 2C4. Bus Transceiver Control

I FLOAT

ADDR ---<'-______________ _

DTIR I
.J

'-------------01l1li DATA

~------------------~WR
~~f.:ES~~~V:~~ -----"0(

~------------'

~ 8US CONTENTION ~ _
BOTH DEVICES DRIVE _____ _---------

THE 8US

Figure 2C4. Devices with Output Enables on the System Bus Diagram 2C5.

A-II

AP-67

CPU LOCAL
BUS

SYSTEM
BUS

MEMORYIIO
LOCAL BUS

Figure 2C5. Fully Bullered System

MEMORY/I/O DEVICES
I\r-==--,/

828817

Figura 2C8a. Controlling System Transceivers with DEN and DT/R

WR------------------------,
elI----------~t_------__,

RD--------~~~------~~--t_.

SYSTEM
DATA
8US

Figura 2C8b. Bullarlng Davlcos with OEiiiii

828117

MEMORY/110
DEVICE

MEMORYIifO
DEVICE

Figura 2C8c. Bullering Dovlces without OEiiiii and with Common
or Separate Inpul/Output

An alternate technique applicable to devices with and
without output enables is shown in Figure 2C6d. RD
again controls the direction of the transceiver but it is
not enabled until a command and chip select are active.
The possibility for bus contention stl II exists but is
reduced to variations in output enable vs. direction
change time for the transceiver. Full access time from
chip select is now available, but data will not be valid
prior to write and will only be held valid after write by the
delay to disable the transceiver.

C!--------~----------------------~

SYSTEM DATA 8US

828617

MEMORY/I/O
DEVICE

Figure 2C6d. Bullerlng Devices without OEiRD and with Common
or Separate Inpul/Output

One last technique is given for devices with separate in­
puts and outputs (Fig. 2C6e). Separate bus receivers and
drivers are provided rather than a single transceiver. The
receiver is always enabled while the bus driver is con­
trolled by RD and chip select. The only possibility for
bus contention in this system occurs as multiple
devices on each line of the local read bus are enabled
and disabled during chip selection changes.

Throughout this note, the multiplexed bus will be con­
sidered the local CPU bus and the demultlplexed ad­
dress and buffered data bus will be the system bus. For
additional Information on bus contention and the
system problems associated with it, refer to Appendix 1.

A-12

AP-67

~-.------------------------,

IIII---qi.-'

WR--------f--------------,

SYSTEM

74S04
OR

74$240

DATA _-------+-1
BUS

LOCAL WRITE BUS
o

MEMORYniO
LOCAL READ BUS DEVICE

74$240

Figura 2C6e. Bullaring Davicas without OEiRD and with Saparata
Input/Output

2D. Multiprocessor Environment

The 8086 architecture supports multiprocessor systems
based on the concept of a shared system bus (Fig. 2D1).
All CPU's in the system communicate with each other
and share resources via the system bus. The bus may be
either the Intel Multibus™ system bus or an extension
of the system bus defined in the previous section. The
major addition required to the demultlplexed system
bus is arbitration logic to controi access to the system
bus. As each CPU asynchronously requests access to
the shared bus, the arbitration logic resolves priorities
and grants bus access to the highest priority CPU. Hav·
ing gained access to the bus, the CPU completes its
transfer and wlli either relinquish the bus or wait to be
for{:ed to relinquish the bus. For a discussion on
Multibus ™ arbitration techniques, refer to AP-28A, Intel
Multibus™ Interfacing.

SHARED
PERIPHERALS

Figura 2D1. 8086 Family Muillprocessor Systam

To support a muitimaster interface to the Multibus
system bus for the 8086 family, the 8289 bus arbiter is
included as part of the family. The 8289 is compatible
with the 8086's iocal bus and in conjunction with the
8288 bus controller, implements the Multibus protocol
for bus arbitration. The 8289 provides a variety of arbitra­
tion and prioritization techniques to allow optimization
of bus availability, throughput and utilization of shared
resources. Additional features (implemented through

strapping options) extend the configuration options
beyond a pure CPU interface to the multlmaster system
bus for access to shared resources to Include concur­
rent support of a local CPU bus for private resources.
For specific configurations and additional Information
on the 8289, refer to application note AP-51.

3. 8088 SYSTEM DETAILS

3A. Operating Mode.

Possibly the most unique feature of the 8086 Is the abili­
ty to select the base machine configuration most suited
to the application. The MN/MX input to the 8086 Is a
strapping option which allows the designer to select
between two functional definitions of a subset of the
8086 outputs.

MINIMUM MODE

The minimum mode 8086 (Fig. 3A1) is optimized for
small to medium (one or two boards), single CPU
systems. Its system architecture Is directed at satiSfy­
Ing the requirements of the lower to middle segment of
high performance 16-bit applications. The CPU main­
tains the full megabyte memory space, 64K byte I/O
space and 16-bit data path. The CPU directly provides all
bus control (DT/R, DEN, ALE, M/io), commands
(RD,WR,INTA) and a simple CPU preemption mech­
anism (HOLD, HLDA) compatible with existing DMA
controllers.

MAXIMUM MODE

The maximum mode (Fig. 3A2) extends the system ar­
chitecture to support multiprocessor configurations,
and local instruction set extension processors (co­
processors). Through addition of the 8288 bipolar bus
controller, the 8086 outputs assigned to bus control and
commands in the minimum mode are redefined to allow
these extenSions and enhance general system perform­
ance. Specifically, (1) two prioritized levels of processor
preemption (RQ/GTO, RQ/clff) allow multiple proc­
essors to reside on the 8086's local bus and share its in­
terface to the system bus, (2) Queue status (QSO,QS1) is
available to allow external devices like ICE™-86 or
special instruction set extension co-processors to track
the CPU instruction execution, (3) access control to
shared resources in multiprocessor· systems Is sup­
ported by a hardware bus lock mechanism and (4)
system command and configuration options are ex­
panded via an ciliary devices like the 8288 bus controller
and 8289 bus arbiter.

The queue status indicates what Information is being
removed from the internal queue and when the queue Is
being reset due to a transfer of control (Table 3A 1). By
monitoring the SO,51,52 status lines for Instructions
entering the 8086 (1,0,0 indicates code access while AO
and BHE indicate word or byte) and QSO, QS1 for in­
structions leaving the 8086's internal queue, it is possi­
ble to track the instruction execution. Since Instruc­
tions are executed from the 8086's internal queue, the
queue status is presented each CPU clock cycle and is
not related to the bus cycle activity. This mechanism (1)
allows a co-processor to detect execution of an

A-13

AP-67

ESCAPE instructiOn which directs the co-processor to
perform a specific task and (2) allows ICE-B6 to trap ex­
ecution ofa specific memory location. An example of a
circuit used by ICE is given in Figure 3A3. The first up
down counter tracks the depth of the. queue while the
second captures the queue depth on a match. The sec­
ond counter decrements on further fetches from the
queue until the queue is flushed or the count goes to
zero indicating execution of the match address. The
first counter decrements on fetch from the queue
(OSO= 1) and increments on code fetches into the

queue. Note that a normal code fetch will transfer two
bytes into the queue so two clock increments are given
to the counter (T201 and T301) unless a single byte is
loaded over the upper half of the bus (AO-P is high).
Since the execution unit (EU) is not synchronized to the
bus interface unit (BIU), a fetch from the queue can oc­
cur simultaneously with a transfer into the queue. The
exclusive-or gate driving the. ENP input of the first
counter allows these simultaneous operations to cancel
each other and not modify the queue depth.

rD~
8284 CLOCK
GENERATOR

RES

Vee

~
ROY

t
T

GND

Vee rD~

~ 8284

T
GND

CLOCK
~NERATOR

RES

ROY

t

MN/MX
... ClK MIlO

... READY INTA

... RESET RD
WR

OTiR

DEN

-4---Ycc

}
----,
--~II

COMM AND
S BU

8088 CPU I I r-----.
I

_ ClK

ALE

ADo-AD15
A16-Ai9

BHE

I I I STB

I GND I I DE
,A I I • 8282

J rODR/DATA lATCH

r 20R 3

~

I I
II -rr----:1 IL T---'I
L--IOE II

8286 I ~
OPTIONAL

FOR INCREASED
DATA BUS DRIVE

TRANSCEIVER I
I (2)

Figure 3Al. Minimum Mode 8086

+
ClK

MN/MX "-GND MRDC-
-

SO So

~ 1 MEGABYTE v' ADDRESS BUS

> 16·BIT
DATA BUS

_ READY S; S;
MWTC-

8288 AMWC­

BUS IORC­

CTRlR IOWC-

,.. RESET 52

8086
CPU

lOCK

-
r---

r-

-N.C.

52
DEN

DTiR

ALE

AIOWC­

INTA-1.--__ ---1

STB

GND-If-t--J DE

COMMAND
BUS

ADD-AD A ~
15 ADDR/DATA

8282
lATCH
(20R 3)

'"====J. 1 MEGABYTE t- ~ ADDRESS BUS A1S-A19 r
BHE-

L..... __ r

~~
......... - 8286

TRANSCEIVER
(2)

Figure 3A2. "'axlmum ':odL:-e~8:::0~88::--"""

A-14

vi A'L-__ ..J~'\ HI-BIT

I~ r DATA BUS

AP·67

TABLE 3A1. QUEUE STATUS

QS1 QSO

o (LOW) 0 No Operation
0 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

The queue status is valid during the CLK cycle after
which the queue operation is performed.

To address the problem of controlling access to shared
resources, the maximum mode 8086 provides a hard·
ware LOCK output. The LOCK output Is activated
through the instruction stream by execution of the
LOCK prefix instruction. The LOCK output goes active
in the first CPU clock cycle following execution of the
prefix and remains active until the clock following the
completion of the instruction following the LOCK prefix.
To provide bus access control in multiprocessor
systems, the LOCK signal should be incorporated into
the system bus arbitration logic resident to the CPU.

During normal multiprocessor system operation, pri­
ority of the shared system bus is determined by the ar­
bitration circuitry on a cycle by cycle basis. As each
CPU requires a transfer over the system bus, It requests
access to the bus via its resident bus arbitration logic.
When the CPU gains priority (determined by the system
bus arbitration scheme and any associated logic), It
takes control of the bus, performs its bus cycle and
either maintains bus control, voluntarily releases the
bus or Is forced off the bus by the loss of priority. The
lock mechanism prevents the CPU from losing bus con­
trol (either voluntarily or by force) and guarantees a CPU
the ability to execute multiple bus cycles (during execu-

tion of the locked instruction) without intervention and
possible corruption of the data by another CPU. A
classic use of the mechanism is the 'TEST and SET
semaphore' during which a CPU must read from a
shared memory location and return data to the location
without allowing another CPU to reference the same
location between the TEST operation (read) and the SET
operation (write). In the 8086 this is accomplished with a
locked exchange instruction.

LOCK XCHG reg, MEMORY; reg Is any register
;MEMORY Is the address of the
;8~maphore

The activity of the LOCK output is shown in Diagram
3A1. Another Interesting use of the LOCK for multiproc­
essor systems is a locked block move which allows high
speed message transfer from one CPU's message buf­
fer to another.

During the locked instruction, a request for processor
preemption (RQ/GT) is recorded but not acknowledged
u.ntil completion of the locked instruction. The LOCK
has no direct affect on interrupts. As an e~.Eie, a
iocked HALT instruction will cause HOLD (or RQ/GT) re­
quests to be ignored but will allow the CPU to exit the
HALT state on an interrupt. In general, prefix bytes are
considered extensions of the Instructions they precede.
Therefore, interrupts that occur during execution of a
prefix are not acknowledged (assuming interrupts are
enabled) until completion of the instruction following
the prefixes (except for instructions which allow servic­
Ing interrupts during their execution, I.e., HALT, WAIT
and repeated string primitives). Note that multiple prefix
bytes may precede an instruction. As another example,
consider a 'string primitive' preceded by the repetition

.-------l:><>------'2'+CLK

============:jr=~!--------------t-=-=~~~----~9 ~AD
748188

QCTO

MHBYTE AND 1 - MATCH CONDITIONS
CLKA - CPU CLOCK
OSl, aso - CPU QUEUE STATUS

~_T~ : 6:J~~~~J: :~S~(CLOCK LOW TIME_Ol)

C ACCESS - CODE ACCESS
OCTO - QUEUE MATCH
AO·P - SINGLE BYTE ON UPPER HALF OF THE BUS

~::======1[:J~~~~1---~-------SllH 13 C ACCESS

iIDi ______:.13,

74$04

Figure 3A3. Example Circuit to Track the 8088 Queue

A-15

AP·67

prefix (REP) which is interruptible after each execution
of the string primitive. This holds even if the REP prefix
is combined with the lOCK prefix and prevents inter­
rupts from being locked out during a block move or
other repeated string operation. As long as the opera­
tion is not interrupted, lOCK remains active. Further in­
formation on the operation of an interrupted string
operation with multiple prefixes is presented in the sec­
tion dealing with the 8086 interrupt structure.

Three additional status lines (SO, S1, S2) are defined to
provide communications with the 8288 and 8289. The
status lines tell the 8288 when to initiate a bus cycle,
what type of command to issue and when to terminate
the bus cycle. The 8288 samples the status lines at the
beginning of each CPU clock (ClK). To initiate a bus cy­
cle, the CPU drives the status lines from the passive
state (SO, S1, S2 = 1) to one of seven possible command
codes (Table 3A2). This occurs on the rising edge of the
clock during T4 of the previous bus cycle or a TI (idle cy­
cle, no current bus activity). The 8288 detects the status
change by sampling the status lines on the high to low
transition of each clock cycle. The 8288 starts a bus cy­
cle by generating ALE and appropriate buffer direction
control in the clock cycle immediately following detec­
tion of the status change (T1). The bus transceivers and
the selected command are enabled in the next clock
cycle (T2) (or T3 for normal write commands). When the
status returns to the passive state, the 8288 will ter­
minate the command as shown in Diagram 3A2. Since
the CPU will not return the status to the passive state
until the 'ready' indication is received, the 8288 will
maintain active command and bus control for any
number of walt cycles. The status lines may also be
used by other processors on the 8086's local bus to
monitor bus activity and control the 8288 If they gain
control of the local bus.

CLK

QSO

LOCK

LOCK
PREFIX

BYTE FROM
QUEUE,

NOP BYTE
FROM THE

QUEUE
(LOCKED NOP)

TABLE 3A2. STATUS LINE DECODES

S2 SI So

o (lOW) 0 0 Interrupt Acknowledge
0 0 1 Read 1/0 Port
0 1 0 Write 1/0 Port
0 1 1 Halt
1 (HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

The 8288 provides the bus control (DEN, DT/R, ALE) and
commands (INTA, MRDC, 10RC, MWTC, AMWC, iOWC,
AIOWC) removed from the CPU. The command structure
has separate read and write commands for memory and
1/0 to provide compatibility with the Multibus command
structure.

The advanced write commands are enabled one clock
period earlier than the normal write to accommodate the
wider write pulse widths often required by peripherals
and static RAMs. The normal write provides data setup
prior to write to accommodate dynamic RAM memories
and I/O devices which strobe data on the leading edge of
write. The advanced write commands do not guarantee
that data is valid prior to the leading edge of the com­
mand. The DEN signal in the maximum mode is inverted
from the minimum mode to extend transceiver control
by allowing logical conjunction of DEN with other
signals. While not appearing to be a significant benefit
In the basic maximum mode configuration, introduction
of interrupt control and various system configurations
will demonstrate the usefulness of quallfylng'DEN.
Diagram 3A3 compares the timing of the minimum and
maximum mode bus transfer commands. Although the

~--------~~
I----__________________ ,~

LOCKED INSTRUCTION

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE.

2 THE LOCK OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS.

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND
ACTIVATION OF THE i:OCK SIGNAL.

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK
CYCLE, THE i:OCK OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE
FOLLOWING THE INSTRUCTION.

5 IF THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE, THE
L6CR OUTPUTSTI'LL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING
FETCHED.

8 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION
OF A LOCKED INSTRUCTION. THE L6CR MERELY LOCKS THE BUS TO THIS CPU FOR
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION.

Diagram 3A 1. 8088 Lock Activity

A-16

AP-67

maximum mode configuration is designed for multi­
processor environments, large single CPU designs
(either Multibus systems or greater than two PC boards)
should also.use the maximum mode. Since the 8288 is a
bipolar dedicated controller device, its output drive for
the commands (32 mAl and tolerances on AC character­
istics (timing parameters and worse case delays) pro­
vide better large system performance than the minimum
mode 8086.

CLK

ALE

READY

In addition to assuming the functions removed from the
CPU, the 8288 provides additional strapping options and
controls to support multiprocessor configurations and
peripheral devices on the CPU local bus. These capa­
bilities allow assigning resources (memory or 1/0) as
shared (available on the Multibus system bus) or private
(accessible only by this CPU) to reduce contention for
access to the. Multibus system bus and improve multi­
CPU system performance. Specific configuration possi­
bilities are discussed in AP-51.

GOES INACTIVE IN THE STATE
JUST PRIOR TO T 4

o
WAIT

READY

Diagram 3A2. Status Line Activation and Termination

MN
MODE
8086

MX
MODE
8086
WITH
8288

CLK (8284 OUTPUn

TCVCTX- 110 ns

35 os TCLMH 35

TCLMH_ 35_

~ORAIOWC --------~------------4-,1

TCLML 35 - TCLMH

Diagram 3A3. 8086 Minimum and Maximum Mode Command Timing

A-I7

AP-67

3B. Clock Generation

The 8086 requires a clock signal with fast rise and fall
times (10 ns max) between low and high voltages of
- 0.5 to + 0.6 low and 3.9 to VCC + 1.0 high. The max·
imum clock frequency of the 8086 is 5 MHz and 8 MHz
for the 8086·2. Since the design of the 8086 incorporates
dynamic cells, a minimum frequency of 2 MHz is reo
quired to retain the state of the machine. Due to the
minimum frequency requirement, single stepping or
cycling of the CPU may not be accomplished by dis·
abling the clock. The timing and voltage requirements of
the CPU clock are shown in Figure 3B1. In general, for
frequencies below the maximum, the CPU clock need
not satisfy the frequency dependent pulse width limi·
tations stated in the 8086 data sheet. The values
specified only reflect the minimum values which must
be satisfied and are stated in terms of the maximum
clock frequency. As the clock frequency approaches the
maximum frequency of the CPU, the clock must con·
form to a 33% duty cycle to satisfy the CPU minimum
clock low and high time specifications.

10n8 MAX

1.5

.6t---~~~~~~~~~--------1i----.~ 1 __ ----- :gg~: :~~ -----.,

Figure 381. 8086 Clock

An optimum 33% duty cycle clock with the required
voltage levels and transition times can be obtai ned with
the 8284 clock generator (Fig. 3B2). Either an external
frequency source or a series resonant crystal may drive
the 8284. The selected source must oscillate at 3X the
desired CPU frequency. To select the crystal Inputs of
the 8284 as the frequency source for clock generation,
the Fie Input to the 8284 must be strapped to ground.
The strapping option allows selecting either the crystal
or the external frequency Input as the source for clock
generation. Although the 8284 provides an Input for a
tank circuit to accommodate overtone mode crystals,
fundamental mode crystals are recommended for more
accurate and stable frequency generation. When selec·
ting a crystal for use with the 8284, the series resistance
should be as low as possible. Since other circuit com·
ponents will tend to shift the operating frequency from
resonance, the operating impedance will typically be
higher than the specified series resistance. If the at·
tenuatlon of the oscillator's feedback circuit reduces
the loop gain to less than one, the oscillator will fail.
Since the oscillator delays in the 8284 appear as induc·
tive elements to the crystal, causing it to run at a fre·
quency below that of the pure series resonance, a
capaCitor should be placed in series with the crystal and
the X2 input of the 8284. This capaCitor serves to cancel
this Inductive element. The value of the capaCitor (Cl)

must not cause the impedance of the feedback circuit to
reduce the loop gain below one. The impedance of the
capaCitor is a function of the operating frequency and
can be determined from the following equation:

XCl= 1/2n'F'Cl

17
X, osc 12

8284 8088 XTAl CJ

Y 18 ClK 19 ClK

X2
Cl

13 Fft

Figure 382. 8284 Clock Generalor

It is recommended that the crystal series resistance
plus XCl be kept less than 1 K ohms. This capaCitor also
serves to debias the crystal and prevent a DC voltage
bias from straining and perhaps damaging the crystal­
line structure. As the crystal frequency increases, the
amount of capaCitance should be decreased. For exam­
ple, a 12 MHz crystal may require Cl '" 24 pF while 22
MHz may require Cl'" 8 pF. If very close correlation
with the pure series resonance is not necessary, a
nominal CL value of 12-15 pF may be used with a 15 MHz
crystal (5 MHz 8086 operation). Board layout and compo­
nent variances will affect the actual amount of induc­
tance and therefore the series capacitance required to
cancel it out (this Is especially true for wire-wrapped
layouts).

Two of the many vendors which supplycrystals for Intel
microprocessors are listed in Table 3B1 along with a list
of crystal part numbers for various frequencies which
may be of interest. For additional information on speci·
fying crystals for Intel components refer to application
note AP-35.

TABLE 3Bl. CRYSTAL VENDORS

f Parallel! Crystek(l) CTS Knlght,(2)
Series Corp. Inc.

15.0 MHz S CY15A MP150
18.432 S CY19B' MP184'
24.0 MHz S CY24A MP240

'Inlel also supplies a crystal numbered 8801 for this application.

Nol •• : 1. Address: 1000 Crystal Drive, Fort Meyers, Florida 33901
2. Address: 400 Reimann Ave., Sandwich, illinois

If a high accuracy frequency source, externally variable
frequency source or a common source for driving mUl­
tiple 8284's is desired, the External Frequency Input
(EFI) of the 8284 can be selected by strapping the FICin­
put to 5 volts through ",1 K ohms (Fig. 3B3). The external
frequency source should be TTL compatible, have a
50% duty cycle and oscillate at three times the desired
CPU operating frequency. The maximum EFI frequency
the 8284 can accept is slightly above 24 MHz with
minimum clock low and high times of 13 ns. Although

A-18

AP-67

no minimum EFI frequency is specified, it should not
violate the CPU minimum clock rate. If a common fre·
quency source is used to drive multiple 8284's
distributed throughout the system, each 8284 should be
driven by its own line from the source. To minimize
noise in the system, each line should be a twisted pair
driven by a buffer like the 74LS04 with the ground of the
twisted pair connecting the grounds of the source and
receiver. To minimize clock skew, the lines to all 8284's
should be of equal length. A simple technique for gen­
erating a master frequency source for additional 8284's
is shown in Figure 384. One 8284 with a crystal is used
to generate the desired frequency. The oscillator output
of the 8284 (OSC) equals the crystal frequency and is
used to drive the external frequency to all other 8284's
in the system.

+5

x,
leo

EXTERNAL Fie 18
FREQUENCY---""'-! EFI ClK i-=---~ ClK

SOURCE

8284 8088

Figure 3B3. 8284 with External Frequency Source

14
EFI ClK

8284
Fie

~---'-'-IEFI ClK

+5

8284

Fie

EFI ClK
8284

13 Fie

'K

Figure 384. External Frequency lor Multiple 8284s

OSC

ClK

PClK

The oscillator output is inverted from the oscillator
signal used to drive the CPU clock generator circuit.
Therefore, the oscillator output of one 8284 should not
drive the EFI input of a second 8284 If both are driving
clock inputs of separate CPU's that are to be syn-

, chronized. The variation on EFI to' CLK delay over a
range of 8284's may approach 35 to 45 ns. If, however, all
8284's are of the same package type, have the same
relative supply voltage and operate in the same tem­
perature environment, the variation will be reduced to
between 15 and 25 ns.

There are three frequency outputs from the 8284, the
oscillator (OSC) mentioned above, the system clock
(CLK) which drives the CPU, and a peripheral clock
(PCLK) that runs at one half the CPU clock frequency.
The oscillator output is only driven by the crystal and Is
not affected by the FIe strapping option. If a crystal is
not connected to the 8284 when the external frequency
input is used, the oscillator output Is Indetermlnate_ The
CPU clock is derived from the selected frequency
source by an internal divide by three counter. The
counter generates the 33% duty cycle clock which is op­
timum for the CPU at maximum frequency. The
peripheral clock has a 50% duty cycle and is derived
from the CPU clock. Diagram 380 shows the relation­
ship of CLK to OSC and PCLK to CLK. The maximum
skew is 20 ns between OSC and CLK, and 22 ns between
CLK and PCLK.

Since the state of the 8284 divide by three counter is In­
determinate at system initialization (power on), an exter­
nal sync to the counter (CSYNC) is provided to ailow
synchronization of the CPU clock to an external event.
When CSYNC is brought high, the CLK and PCLK out­
puts are forced high. When CSYNC returns low, the next
positive clock from the frequency source starts clock
generation. CSYNC must be active for a minimum of two
periods of the frequency source. If CSYNC is asynchro­
nous to the frequency source, the circuit in Figure 385
should be used for synchronization. The two latches
minimize the probability of a meta-stable state in the
latch driving CSYNC. The latches are clocked with the
inverse of the frequency source to guarantee the 8284
setup and hold time of CSYNCto the frequency source
(Dlag. 381). If a single 8284 is to be synchronized to an
external event and an external frequency source Is not
used, the osciilator output of the 8284 may be used to

Diagrem 380. OSC - ClK and ClK - PClK Relationships

A-19

AP-67

synchronize CSYNC (Fig. 386). Since the oscillator out·
put Is inverted from the internal oscillator signal, the In·
verter in the previous example Is not required. If multiple
8284's are to be synchronized, an external frequency
source must drive all 8284's and a single CSYNC syn­
chronization circuit must drive the CSYNC Input of all
8284's (Fig. 3B7). Since activation of CSYNC may cause
violation of CPU minimum clock low time, it should only
be enabled during reset or CPU clock high. CSYNC must
also be disabled a minimum of four CPU clocks before
the end of reset to guarantee proper CPU reset.

EXTERNAL
SYNC-----I

CONDITION
EXTERNAL

FREQUENCY

+5

lK

TO
CSYNC
INPUT

TO L-____________ EFI

Figure 3BS. Synchronizing CSYNC with EFI

EFI

CIYNC J
I

-+I
I
I--TYHEH

INPUT

·MAX tS SPEC'ED TO GUARANTEE MAX 8088 CLOCK FREQUENCY

Diagram 3Bl. CSYNC Setup and Hold to EFI

OSC 12

+5
C

Y 18
X.

13 Fie
0:- 1 eLK 8 SYNC CSYNC

Figure 3B8. EFI .rom 8284 Oscillator

,.
17 X1

C
Y ,. '"

13 FiC

SYNC-----+---j

Fillure 3B7. Synchronizing Multiple 82848

Due to the fast transitions and high drive (5 rnA) of the
8284 CLK output, it may be necessary to put a 10 to 100
ohm resistor in series with the clock line to eliminate
ringing (reSistor value depending on the amount of drive
required). If multiple sources of CLK are needed with
minimum skew, CLK can be buffered by a high drive
device (74S241) with outputs tied to 5 volts through 100
ohms to guarantee VOH = 3.9 min (8086 minimum clock
input high voltage) (Fig. 3B8). A single 8284 should not
be used to generate the CLK for multiple CPU's that do
not share a common local (multiplexed) bus since the
8284 synchronizes ready to the CPU and can only ac­
commodate ready for a single CPU. If multiple CPU's
share a local bus, they should be driven with the same
clock to optimize transfer of bus control. Under these
circumstances, only one CPU will be using the bus for a
particular bus cycle which allows sharing a common
READY signal (Fig. 3B9).

+5

10011

CLK

8284
10011

+5

10011

Figure 3B8. Bull.rlng the 8284 ClK Output

A-20

AP-67

MULTIPLEXED BUS

Figur. 3B9. 8086 and Co·Processor on the Local Bus Share a
Common 8284

3C_ Reset

The 8086 requires a high active reset with minimum
pulse wi'~th of four CPU clocks except after power on
which requires a 50 ,.,s reset pulse. Since the CPU inter­
nally synchronizes reset with the clock, the reset is in­
ternally active for up to one clock period after the exter­
nal reset. Non-Maskable Interrupts (NMI) or hold re­
quests on RQ/GT which occur during the internal reset,
are not acknowledged. A minimum mode hold request
or maximum mode RQ pulses active immediately after
the internal reset will be honored before the first in­
struction fetch.

From reset, the 8086 will condition the bus as shown in
Table 3C1. The multiplexed bus will three-state upon
detection of reset by the CPU. Other signals which
three-state will be driven to the inactive state for one
clock low interval prior to entering three-state (Fig_ 3C1)_
In the minimum mode, ALE and HLDA are driven inac­
tive and are not three-stated. In the maximum mode
RQ/GT lines are held inactive and the queue status in:
dicates no activity. The queue status will not indicate a
reset of the queue so any user defined external circuits
monitoring the queue should also be reset by the
system reset. 22K ohm pull-up resistors should be con­
nected to the CPU command and bus control lines to

CLOCK

RESET INPUT

INTERNAL RESET

BUS

guarantee the inactive state of these lines in systems
where leakage currents or bus capacitance may cause
the voltage levels to settle below the minimum high
voltage of devices in the system. In maximum mode
systems, the 8288 contains internal pull-ups on the
SO-52 inputs to maintain the inactive state for these
lines when the CPU floats the bus. The high state of the
status lines during reset causes the 8288 to treat the
reset sequence as a passive state. The condition of the
8288 outputs for the passive state are shown in Table
3C2. If the reset occurs during a bus cycle, the return of
the status lines to the passive state will terminate the
bus cycle and return the command lines to the inactive
state_ Note that the 8288 does not three-state the com­
mand outputs based on the passive state of the status
lines. If the designer needs to three-state the CPU off
the bus during reset in a single CPU system, the reset
signal should also be connected to the 8288's AEN input
and the output enable of the address latches (Fig. 3C2).
This forces the command and address bus interface to
three-state while the inactive state of DEN from the 8288
three-states the transceivers on the data bus.

Table 3C1. 8086 Bus During Resat

Signals Condition

AD15.(J Three-State
A19-1sfS6-3 Three-State
BHE/57 Three-State
52J(M/iQ) Driven to "1" then three-state
511(DT/R) Driven to "1" then three-state
SO/DEN Driven to "1" then three-state
LOCKlWR Driven to "1" then three-state
RD Driven to "1" then three-state
INTA Driven to "1" then three-state
ALE 0
HLDA 0
RQ/GTO 1
RQ/GT1 1
QSO 0
QS1 0

t LFLOATBUS

~ DRIVE OUTPUT TO INACTIVE STATE

Flgur. 3C1. 8086 Bus Conditioning on Res.t

A-21

AP-67

TABLE 3C2. 8288 OUTPUTS. DURING PASSIVE MODE

8284

ALE
DEN
DTiR
MCE/PDEN
COMMANDS

o
o
1

0/1
1

,---------_-1 AEN

8288
·DEN

OE
8282

RESET 1---4--1 RESET

8086

Figure 3C2. Re,el Disable lor Max Mode 8086 Bus Inlerface

For multiple processor systems using arbitration of a
multimaster bus, the system reset should be connected
to the INIT input of the 8289 bus arbiter in addition to
the 8284 reset input (Fig. 3C3). The low active INIT Input
forces all 8289 outputs to their inactive state. The inac·
tive state of the 8289 AEiii output will force the 8288 to
three·state the command outputs and the address
latches to three-state the address bus interface. DEN in­
active from the 8288 will three-state the data bus inter­
face. For the multimaster CPU configuration, the reset
should be common to all CPU's (8289's and 8284's) and
satisfy the maximum of either the CPU reset re­
quirements or 3 TBLBL (3 8289 bus clock times)+ 3
TCLCL (3 8086 clock cycle times) to satisfy 8289 reset
requirements.

r _________ ------(SySTEM)
RESET

8284

RESET

RESET

8086

Figure 3C3. Resel Disable 01 lor Max Mode 8086 Bus Inlerface In
Multi CPU Syslem

If the 8288 command outputs are three-stated during
reset, the command lines should be pulled up to Vee
through 2.2K ohm reSistors.

The reset signal to the 8086 can be generated by the
8284. The 8284 has a schmitt trigger input (RES) for
generating reset from a low active external reset. The
hysteresis specified In the 8284 data sheet implies that
at least .25 volts will separate the 0 and 1 Switching
point of the 8284 reset input. Inputs without hysteresis
will switch from low to high and high to low at approxi­
mately the same voltage threshold. The Inputs are
guaranteed to switch at specified low and high voltages
(VIL and VIH) but the actual switching point is anywhere
in-between. Since VIL min is specified at .8 volts, the
hysteresis guarantees that the reset will be active until
the input reaches at least 1.05 volts. A reset will not be
recognized until the input drops at least .25 volts below
the reset inputs VIH of 2.6 volts.

To guarantee reset from power up, the reset input must
remain below 1.05 volts for 50 microseconds after Vee
has reached the minimum supply voltage of 4.5 volts.
The hysteresis allows the reset input to be driven by a
simple RC circuit as shown in Figure 3C4. The
calculated RC value does not inClude time for the power
supply to reach 4.5 volts or the charge accumulated duro
Ing this interval. Without the hysteresis, the reset out·
put might oscillate as the input voltage passes through
the switching voltage of the input. The calculated RC
value provides the minimum required reset period of 50
microseconds for 8284's that switch at the 1.05 volt
level and a reset period of approximately 162 micro­
seconds for 8284's that switch at the 2.6 volt level. If
tighter tolerance between the minimum and maximum
reset times is necessary, the reset circuit shown in
Figure 3C5 might be used rather than the simple RC cir·
cuit. This circuit provides a constant current source and
a linear charge rate on the capacitor rather than the in­
verse exponential charge rate of the RC circuit. The
maximum reset period for this implementation is 124
microseconds.

+V

RESET IN
11 RES

Ve!l) = Jl_.iit)
8284

I I = 50 ~s.c
V = 4.5
Ve = 1.05
RC = 188 x 10- 8

V
I!R 5

I
.8

MINIMUM RESET ACTIVE TIME

I.-MAXIMUM RESET ACTIVE TIME

Figure 3C4. 8284 Re.el Circuit

A-22

AP-67

Vee

RESET

R, - DETERMINES CURRENT TO CHARGE C
R. - VALUE NOT CRITICAL .,0K

Ie == CHARGE CURRENT. YbdD, ~ D2 - T,)

IF All SEMICONDUCTORS ARE SILICON, Ics 'W

·k----SVee-.6
T

Figure 3CS. Constant Current Power·On Reset Circuit

The 8284 synchronizes the reset input with the CPU
clock to generate the RESET signal to the CPU (Fig.
3C6). The output is also available as a general reset to
the entire system. The reset has no effect on any clock
circuits in the 8284.

17 X, ClK 8
SYSTEM
RESET

C 8284 19
ClK

Y 18
X. 8086

+5 13 10 21
Fie RESET RESET

-::-

11 m
I

Figure 3C6. 8088 Reset and System Reset

CLOCK

8086 READY

3D. Reedy Implementation and Timing

As discussed previously, the ready signal Is used in the
system to accommodate memory and 110 devices that
cannot transfer information at the maximum CPU bus
bandwidth. Ready is also used In multiprocessor
systems to force the CPU to wait for access to the
system bus or Multibus system bus. To insert a wait
state in the bus cycle, the READY signal to the CPU
must be inactive (low) by the end of T2. To avoid inser·
tion of a walt state, READY must be active (high) within
a specified setup time prior to the positive transition
during T3. Depending on the size and characteristics of
the system, ready Implementation may take one of two
approaches.

The classical ready implementation is to have the
system 'normally not ready.' When the selected device
receives the command (RDIWRlINTA) and has had suffi·
cient time to complete the command, It activates
READY to the CPU, allowing the CPU to terminate the
bus cycle. This implementation is characteristic of large
multiprocessor, Multlbus systems or systems where
propagation delays, bus access delays and device char·
acteristics inherently slow down the system. For max·
imum system performance, devices that can run with no
wait states must return 'READY' within the previously
described limit. Failure to respond In time will only
result in the insertion of one or more walt cycles.

An alternate technique is to have the system 'normally
ready.' All devices are assumed to operate at the max·
imum CPU bus bandwidth. Devices that do not meet the
requirement must disable READY by the end of T2 to
guarantee the insertion of wait cycles. This Implementa­
tion is typically applied to small single CPU systems
and reduces the logic required to control the ready
signal. Since the failure of a device requiring walt states
to disable READY by the end of T2 will result in prema·
ture termination of the bus cycle, the system timing
must be carefully analyzed when using this approach.

The 8086 has two different timing requirements on
READY depending on the system implementation. For a
'normally ready' system to Insert a walt state, the
READY must be disabled within 8 ns (TRYLCL) after the
end of T2 (start of T3) (Dlag. 301). To guarantee proper

READY INACTIVE 8 no M"' 30 ns

\.- 119 ns TO OUARANTEE THE
NEXT CYCLE IS To

Diagram 3D1. Normally Ready System Inserting a Walt State

A-23

AP-67

operation of the 8086, the READY input must not change
from ready to not ready during the clock low time of T3.
For a 'normally not ready' system to avoid walt states,
READY must be active within 119 ns (TRYHCH) of the

positive clock transition during T3 (Diag. 302). For both
cases, READY must satisfy a hold time of 30 ns
(TCHRYX) from the T3 or TW positive clock transition.

CLOCK

8088 READY

Diagram 302. Normally Not Ready System Avoiding a Wail State

17
X, ClK

18
CLK

C] RESET 10 21
RESET

Y 18
X. 22

READY READY
+5 13

FtC
8284 8088

-=
11

RES
3

AEN1

~ RDY1
7 AEN2

6 RDY2

To generate a stable READY signal which satisfies the
previous setup and hold times, the 8284 provides two
separate system ready inputs (RDY1, RDY2) and a single
synchronized ready output (READY) for the CPU. The
ROY inputs are qualified with separate access enables
(AEN1,AEN2, low active) to allow selecting one of the
two ready signals (Fig. 301). The gated signals are
logically OR'ed and sampled at the beginning of each
ClK cycle to generate READY to the CPU (Diag. 303).
The sampled READY Signal is valid within 8 ns (TRYlCl)
after ClK to satisfy the CPU timing requirements on
'not ready' and ready. Since READY cannot change until
the next ClK, the hold time requirements are also satis·
fied. The system ready inputs to the 8284 (RDY1,RDY2)
must be valid 35 ns (TRIVCl) before T3 and AEN must be
valid 60 ns before T3. For a system using only one ROY
input, the associated AEN is tied to ground while the
other AEN is connected to 5 volts through ",1 K ohms
(Fig. 3D2a). If the system generates a low active ready
Signal, it can be connected to the 8284 AEN input if the
additional setup time required by the 8284 AEN input is
satisfied. In this case, the associated ROY input would
be tied high (Fig. 3D2b). Figura 301. Ready Inpuls to Ihe 8284 and OulpullO Ihe 8086

CLOCK

8284 READY OUT
(TO 8088)

---~o-- T.,rrw

NOTE: THE 8284 DATA SHEET SPECIFIES READY OUT DELAY (TRYLCL) AS -8 ••
'BEFORE' THE END OF T. WHICH IMPLIES THE TIMING SHOWN.

Diagram 303. 8284 wllh 8086 Ready Timing

A-24

AP-67

SYSTEM
READY

+5

RDY1

AOO
RDY2

Figure 3D2a. Using RDY1/RDY2 to Generate Ready

1K

+5

3 AEIIl 8284
4 RDY1
7 Am
8

RDY2

Figure 3D2b. Using AEN1/AEN2 to Generate Ready

The majority of memory and peripheral devices which
fail to operate at the maximum CPU frequency typically
do not require more than one wait state. The circuit
given in Figure 303 Is an example of a simple wait state
generator. The system ready line Is driven low whenever
a device requiring one walt state is selected. The flip
flop is cleared by ALE, enabling ROY to the 8284. If no
wait states are required, the flip flop does not change. If
the system ready is driven low, the flip flop toggles on
the low to high clock transition of T2 to force one wait
state. The next low to high clock transition toggles the
flip flop again to Indicate ready and allow completion of
the bus cycle. Further changes in the state of the flip
flop will not affect the bus cycle. The circuit allows
approximately 100 ns for chip select decode and condi­
tioning of the system ready (Dlag. 304).

If the system is 'normally not ready,' the programmer
should not assign executable code to the last six bytes
of physical memory. Since the 8086 prefetches instruc­
tions, the CPU may attempt to access non-existent
memory when executing code at the end of physical

memory. If the access to non-existent memory fails to
enable READY, the system will be caught in an in­
definite wait.

RO ... TO 1214

Figure 3D3. Single Walt State Generetor

3E_ Interrupt Structure

The 8086 interrupt structure is based on a table of inter­
rupt vectors stored in memory locations OH through
003FFH. Each vector consists of two bytes for the in­
struction poi nter and two bytes for the code segment.
These two values combine to form the address of the in­
terrupt service routine. This allows the table to contain
up to 256 interrupt vectors which specify the starting ad­
dress of the service routines anywhere In the one mega­
byte address space of the 8086. If fewer than 256 differ­
ent Interrupts are defined in the system, the user need
only allocate enough memory for the interrupt vector
table to provide the vectors for the defined Interrupts.
During Initial system debug, however, it may be desir­
able to assign all undefined interrupt types to a trap
routine to detect erroneous interrupts.

Each vector is associated with an interrupt type number
which pOints to the vector's location in the interrupt vec­
tor table. The interrupt type number multiplied by four
gives the displacement of the first byte of the associ­
ated interrupt vector from the beginning of the table. As
an example, Interrupt type number 5 pOints to the sixth
entry In the Interrupt vector table. The contents of this
entry in the table points to the interrupt service routine
for type 5 (Fig. 3E1). This structure allows the user to
specify the memory address of each service routine by
placing the address (Instruction pointer and code seg­
ment values) In the table location provided for that type
interrupt.

Diagram 3D4.

A-25

AP-67

INTERRUPT TYPE

r ~U~I!" - .----.,.,..--,-=;::-::;
I •

TYPE 5 INTERRUPT
SERVICE ROUTINE

'--____ -' FFFFE

INTERRUPT
VECTOR
TABLE

Figure 3El. Direction to Interrupt Service Routine through the
Interrupt Vector Table

All Interrupts In the 8086 must be assigned an Interrupt
type which uniquely Identifies each Interrupt. There are
three classes of Interrupt types In the 8086; predefined
Interrupt types which are issued by specific functions
within the 8086 and user defined hardware and software
Interrupts. Note that any interrupt type including the
predefined Interrupts can be Issued by the user's hard­
ware and/or software.

PREDEFIN ED INTERRUPTS

The predefined Interrupt types In the 8086 are listed
below with a brief description of how each is Invoked.
When Invoked, the CPU will transfer control to the
memory location specified by the vector associated
with the specific type. The user must provide the inter­
rupt service routine and Initialize the interrupt vector
table with the appropriate service routine address. The
user may additionally Invoke these interrupts through
hardware or software. If the preassigned function Is not
used in the system, the user may assign some other
function to the associated type. However, for com­
patibility with future Intel hardware and software prod­
ucts for the 8086 family, Interrupt types 0-31 should not
be assigned as user defined interrupts.

TYPE 0 - DIVIDE ERROR

This interrupt type Is Invoked whenever a division opera­
tion Is attempted during which the quotient exceeds the
maximum value (ex. division by zero). The Interrupt is
non-maskable and Is entered as part of the execution of
the divide Instruction. If Interrupts are not reenabled by
the divide error Interrupt service routine, the service
routine execution time should be included In the worst
case divide Instruction execution time (primarily when
considering the longest Instruction execution time and
its effect on latency to servicing hardware Interrupts).

TYPE 1 - SINGLE STEP

This interrupt type occurs one instruction after the TF
(Trap Flag) is set In the flag register. It is used to allow
software single stepping through a sequence of code.
Single stepping Is initiated by copying the flags onto the
stack, setting the TF bit on the stack and popping the
flags. The Interrupt routine should be the single step
routine. The interrupt sequence saves the flags and pro­
gram counter, then resets the TF flag to allow the single
step routine to execute normally. To return to the
routine under test, an interrupt return restores the IP,
CS and flags with TF set. This allows the execution of
the next instruction in the program under test before
trapping back to the single step routine. Single Step Is
not masked by the IF (Interrupt Flag) bit in the flag
register.

TYPE 2 - NMI (Non-Maskable Interrupt)

This is the highest priority hardware interrupt and is
non-maskable. The input is edge triggered but is syn­
chronized with the CPU clock and must be active for two
clock cycles to guarantee recognition. The interrupt
signal may be removed prior to entry to the service
routine. Since the input must make a low to high transi­
tion to generate an interrupt, spurious transitions on the
Input should be suppressed. If the Input is normally
high, the NMI low time to guarantee triggering is two
CPU clock times. This Input Is typically reserved for
catastrophic failures like power failure or timeout of a
system watchdog timer.

TYPE 3 - ONE BYTE INTERRUPT

This Is invoked by a special form of the software inter­
rupt Instruction which requires a single byte of code
space. Its primary use is as a breakpoint interrupt for
software debug. With full representation within a Single
byte, the Instruction can map into the smallest instruc­
tion for absolute resolution In setting breakpoints. The
Interrupt Is not maskable.

TYPE 4 - INTERRUPT ON OVERFLOW

This interrupt occurs if the overflow flag (OF) is set in
the flag register and the INTO Instruction Is executed.
The instruction allows trapping to an overflow error ser­
vice routine. The interrupt Is non-maskable.

Interrupt types 0 and 2 can occur without specific action
by the programmer (except for performing a divide for
Type 0) while types 1,3, and 4 require a conscious act by
the programmer to generate these interrupt types. All
but type 2 are Invoked through software activity and are
directly associated with a specific Instruction.

USER DEFINED SOFTWARE INTERRUPTS

The user can generate an interrupt through the software
with a two byte Interrupt 'Instruction INT nn. The first
byte is the INT opcode while the second byte (nn) con­
tains the type number of the Interrupt to be performed.
The INT Instruction Is. not maskable by the interrupt
enable flag. This instruction can be used to transfer con­
tr.ol to routines that are dynamically relocatable and
whose location in memory is not known by the calling

A-26

AP-67

program. This technique also saves the flags of the call­
ing program on the stack prior to transferring control.
The called procedure must return control with an inter­
rupt return (IRET) instruction to remove the flags from
the stack and fully restore the state of the calling pro­
gram.

All interrupts invoked through software (all interrupts
discussed thus far with the exception of NMI) are not
maskable with the IF flag and initiate the transfer of
control at the end of the instruction in which they occur.
They do not initiate interrupt acknowledge bus cycles
and will disable subsequent maskable Interrupts by
resetting the IF and TF flags. The interrupt vector for
these interrupt types is either implied or specified in the
instruction. Since the NMI is an asynchronous event to
the CPU, the point of recognition and initiation of the
transfer of control is similar to the maskable hardware
interrupts.

USER DEFINED HARDWARE INTERRUPTS

The maskable interrupts initiated by the system hard­
ware are activated through the INTR pin of the 8086 and
are masked by the IF bit of the status register (interrupt
flag). During the last clock cycle of each instruction, the
state of the INTR pin is sampled. The 8086 deviates from
this rule when the instruction is a MOV or POP to a seg­
ment register. For this case, the Interrupts are not
sampled until completion of the following instruction.
This allows a 32-bit pOinter to be loaded to the stack
pOinter registers SS and SP without the danger of an in­
terrupt occurring between the two loads. Another excep­
tion is the WAIT instruction which waits for a low active
input on the TEST pin. This instruction also continu­
ously samples the interrupt request during its execution
and allows servicing interrupts during the wait. When an
interrupt is detected, the WAIT instruction is again
fetched prior to servicing the interrupt to guarantee the
interrupt routine will return to the WAIT instruction.

UNINTERRUPTABLE INSTRUCTION SEQUENCE

MOV SS, NEW$STACK$SEGMENT
MOV SP, NEW$STACK$POINTER

Also, since prefixes are considered part of the instruc­
tion they precede, the 8086 will not sample the interrupt
line until completion of the instruction the prefix(es)
precede(s). An exception to this (other than HALT or
WAIT) is the string primatives preceded by the repeat
(REP) prefix. The repeated string operations will sample
the interrupt line at the completion of each repetition.
This includes repeat string operations which include the
lock prefix. If multiple prefixes precede a repeated
string operation, and the instruction is interrupted, only
the prefix immediately preceding the string primative is
restored. To allow correct resumption of the operation,
the following programming technique may be used:

LOCKED$BLOCK$MOVE: LOCK REP MOVS DEST. CS:SOURCE
AND CX, CX

JNZ LOCKED$BLOCK$MOVE

The code bytes generated by the 8086 assembler for the
MOVS instruction are (in descending order): LOCK
prefix, REP prefix, Segment Override prefix and MOVS.
Upon return from the interrupt, the segment override
prefix is restored to guarantee one additional transfer is
performed between the correct memory locations. The
instructions following the move operation test the
repetition count value to determine if the move was
completed and return if not.

If the INTR pin is high when sampled and the IF bit is set
to enable interrupts, the 8086 executes an interrupt
acknowledge sequence. To guarantee the interrupt will
be acknowledged, the INTR input must be held active
until the interrupt acknowledge is issued by the CPU. If
the BIU is running a bus cycle when the interrupt condi­
tion is detected (as would occur if the BIU is fetching an
instruction when the current instruction completes), the

I T, \ T2 T3 T4 TI TI T1 \ T, T,

ALE f\'---__ ~n'-------,-_

\'---__ ------J/

~ \'---~/ ~'--+---\
\ FlOAT ~~ ,,~, ~ t-ADo-AD" -.J>--"''---------------....... \ TYPE VECTOR •

DIVEN BY CPU IF QUEUE IS NOT FULL

Figure 3E2. Interrupt Acknowledge Sequence

A-27

AP-67

interrupt must be valid at the 8086 2 clock cycles prior to
T 4 of the bus cycle if the next cycle is to be an interrupt
acknowledge cycle. If the 2 clock setup is not satisfied,
another pending bus cycle will be executed before the
interrupt acknowledge is issued. If a hold request is also
pending (this might occur if an interrupt and hold re­
quest are made during execution of a locked instruc­
tion), the interrupt is serviced after the hold request is
serviced.

The interrupt acknowledge sequence is only generated
in response to an interrupt on the 8086 INTR input. The
associated bus activity is shown in Figure 3E2. The cy­
cle consists of two INTA bus cycles separated by two
idle clock cycles. During the bus cycles the INTA com­
mand is issued rather than read. No address is provided
by the 8086 during either bus cycle (BHE and status are
valid), however, ALE is still generated and will load the
address latches with indeterminate information. This
condition requires that devices in the system do not
drive their outputs without being qualified by the Read
Command. As will be shown later, the ALE is useful in
maximum mode systems with multiple 8259A priority in­
terrupt controllers. During the INTA bus cycles, DT/R
and DEN are conditioned to allow the 8086 to receive a
one byte interrupt type number from the interrupt
system. The first INTA bus cycle signals an interrupt
acknowledge cycle is in progress and allows the system
to prepare to present the interrupt type number on the
next INTA bus cycle. The CPu. does not capture informa­
tion on the bus during the first cycle. The type number
must be transferred to the 8086 on the lower half of the
16-bit data bus during the second cycle. This implies
that devices which present interrupt type numbers to
the 8086 must be located on the lower half of the 16-bit
data bus. The timing of the INTA bus cycles (with excep­
tion of address timing) is similar to read cycle timing.
The 8086 interrupt acknowledge sequence deviates
from the form used on 8080 and 8085 in that no instruc­
tion is issued as part of the sequence. The 8080 and
8085 required either a restart or call instruction be
issued to affect the transfer of control.

In the minimum mode system, the MilO signal will be
low indicating I/O during the INTA bus cycles. The 8086
internal LOCK signal will be active from T2 of the first
bus cycle until T2 of the second to prevent the BIU from
honoring a hold request between the two INTA cycles.

In the maximum mode, the status lines SO-52 will re­
quest the 8288 to activate the INTA output for each cy­
cle. The LOCK output of the 8086 will be active from T2
of the first cycle until T2 of the second to prevent the
8086 from honoring a hold request on either RQ/GT in­
put and to prevent bus arbitration logic from relinquish­
ing the bus between INTA's in multi-master systems.
The consequences of READY are identical to those for
READ and WRITE cycles.

Once the 8086 has the interrupt type number (from the
bus for hardware interrupts, from the instruction stream
for software interrupts or from the predefined con­
dition), the type number is multiplied by four to form the
displacement to the corresponding interrupt vector in
the interruot vector table. The four bytes of the interrupt

vector are: least significant byte of the instruction
pointer, most significant byte of the instruction pOinter,
least significant byte of the code segment register,
most significant byte of the code segment register. Dur­
ing the transfer of control, the CPU pushes the flags and
current code segment register and instruction pointer
onto the stack. The new code segment and instruction
pOinter values are loaded and the single step and inter­
rupt flags are reset. Resetting the interrupt flag disables
response to further hardware interrupts in the service
routine unless the flags are specifically re-enabled by
the service routine. The CS and IP values are read from
the interrupt vector table with data read cycles. No seg­
ment registers are used when referencing the vector
table during the interrupt context switch. The vector
displacement is added to zero to form the 20-bit address
and 54, 53= 10 indicating. no segment register selec­
tion.

The actual bus activity associated with the hardware in­
terrupt acknowledge sequence is as follows: Two inter­
rupt acknowledge bus cycles, read new IP from the in­
terrupt vector table, read new CS from the interrupt vec­
tor table, Push flags, Push old CS, Opcode fetch of the
first instruction of the interrupt service routine, and
Push old IP. After saving the old IP, the BIU will resume
normal operation of prefetching instructions into the
queue and servicing EUrequests for operands. 55 (inter­
rupt enable flag status) will go inactive in the second
clock cycle following reading the new CS.

The number of clock cycles from the end of the instruc­
tion during which the interrupt occurred to the start of
interrupt routine execution is 61 clock cycles. For soft­
ware generated interrupts, the sequence of bus cycles
is the same except no interrupt aCknowledge bus cycles
are executed. This reduces the delay to service routine
execution to 51 clocks for INT nn and single step, 52
clocks for INT3 and 53 clocks for INTO. The same inter­
rupt setup requirements with respect to the BIU that
were stated for the hardware interrupts also apply to the
software interrupts. If wait states are inserted by either
the memories or the device supplying the interrupt type
number, the given clock times will increase accordingly.

When conSidering the precedence of interrupts for
multiple simultaneous interrupts, the following guide­
lines apply: 1. INTR is the only maskable interrupt and if
detected simultaneously with other interrupts, resetting
of IF by the other interrupts will mask INTR. This causes
INTR to be the lowest priority interrupt serviced after all
other interrupts unless the other interrupt service
routines reenable interrupts. 2. Of the nonmaskable in­
terrupts (NMI, Single Step and software generated), in
general, Single Step has highest priority (will be ser­
viced first) followed by NMI, followed by the software in­
terrupts. This implies that a simultaneous NMI and
Single Step trap will cause the NMI service routine to
follow single step; a simultaneous software trap and
Single Step trap will cause the software interrupt ser­
vice routine to follow single step and a simultaneous
NMI and software trap will cause the NMI service
routine to be executed followed by the software inter­
rupt service routine. An exception to this priority struc­
ture occurs if all three interrupts are pending. For this
case, transfer of control to the software interrupt ser-

A-28

AP-67

vice routine followed by the NMI trap will cause both the
NMI and software interrupt service routines to be ex·
ecuted without single stepping. Single stepping
resumes upon execution of the instruction following the
instruction causing the software interrupt (the next in·
struction in the routine being single stepped).

If the user does not wish to single step before INTR ser·
vice routines, the single step routine need only disable
interrupts during execution of the program being single
stepped and reenable interrupts on entry to the single
step routine. Disabling the interrupts during the pro·
gram under test prevents entry into the interrupt service
routine while single step (TF= 1) is active. To prevent
single stepping before NMI service routines, the single
step routine must check the return address on the stack
for the NMI service routine address and return control to
that routine without single step enabled. As examples,
consider Figures 3E3a and 3E3b. In 3E3a Single Step
and NMI occur simultaneously while in 3E3b, NMI, INTR
and a divide error all occur during a divide instruction
being single stepped.

TF,IF=l

NMI

NORMAL SINGLE STEP
OPERATION

Figure 3E3a. NMI During Single Stepping and Normal Single Step
Oparatlon

A-29

TF=l
IF=l

CONTINUE TO SINGLE STEP
THE PROGRAM

Figura 3E3b. NMI, INTR, Single Step and Divide Error Simultaneous
Interrupts

SYSTEM CONFIGURATIONS

To accommodate the INTA protocol of the maskable
hardware interrupts, the 8259A Is provided as part of the
8086 family. This component Is programmable to
operate In both 8080/8085 systems and 6086 systems.
The devices are cascadable In master/slave arrange·
ments to allow up to 64 interrupts in the system. Figures
3E4 and 3E5 are examples of 8259A's In minimum and
maximum mode 6086 systems. The minimum mode con·
figuration (a) shows an 8259A connected to the CPU's

AP-67

multiplexed bus. Configuration (b) illustrates an 8259A
connected to a demultiplexed bus system. These Inter·
connects are also applicable to maximum mode
systems. The configuration given for a maximum mode
system shows a master 8259A on the CPU's multiplexed
bus with additional slave 8259A's out on the buffered
system bus. This configuration demonstrates several
unique features of the maximum mode system Inter­
face. If the master 8259A receives interrupts from a mix
of slave 8259A's and regular interrupting devices, the
slaves must provide the type number for devices con­
nected to them while the master provides the type
number for devices directly attached to its interrupt In­
puts. The master 8259A is programmable to determine if
an Interrupt is from a direct input or a slave 8259A and
will use this information to enable or disable the data
bus transceivers (via the 'nand' function of DEN and
EN). If the master must provide the type number, it will
disable the data bus transceivers. If the slave provides
the type number, the master will enable the data bus
transceivers. The EN output is normally high to allow

the 8086/8288 to control the bus transceivers. To select
the proper slave when servicing a slave Interrupt, the
master must provide a cascade address to the slave. If
the 8288 is not strapped in the 1/0 bus mode (the 8288
lOB Input connected to ground), the MCElPDEN output
becomes a MCE or Master Cascade Enable output. This
signal Is. only active during INTA cycles as shown In
Figure 3E6 a,nd enables the master 8259A's cascade ad­
dress onto the 8086's 10ca.1 bus during ALE. This allows
the address latches to capture the cascade address with
ALE and allows use of the system address bus for
selecting the proper slave 8259A. The MCE is gated with
LOCK to minimize local bus contention between the
8086 three-stating Its bus outputs and the cascade ad­
dress being enabled onto the bus. The first INTA bus cy;
cle allows the master to resolve internal priorities and
output a cascade address to be transmitted to ·tlie
slaves on the sui:)sequent INTA bus cycle. For additional
information on the 8259A, reference application note
AP-59.

I-__L. ___ ..:;:]....L.:-_.=J....J:=--_~\ ADDRESS

I---.,.-----..,.----.""T'---,/ BUS

IJL------......::"""'--......::"---~\ DATA
I'\r---------------,/ BUS

..

b.

Figure 3E4. Min Mode 8OB6 .wIth Master 8259A on the Local Bus and Sl •• e 8259As on the System Bus

A-30

AP-67

INTERRUPT

INTERRUPT

~~~--~--+-------~-----r----~-----r--~ffiITA 

ADDRESS 
~'-------'--------r-r--------,-~------,/BUS 

I/I------------------~~--------~~------~\DATA 

r----------------------------------------,/BUS 

Figure 3E5. Max Mode 8086 with Master 8259A on the Local Bus and Sla.e 8259As on the System Bu. 

T1 I T2 T3 T4 TI T, T1 1 T, T, 

ALE f" _______ ---Jnl..-..--__ 
\~ ___ -----J/ 

iNTA 

FLOAT 
ADO-AD15 

\'--___ ---J/ \~-

Figure 3E6. MCE Timing to Gate 8259A CAS Addres. onto the 8086 Local Bu. 

A-31 



AP-67 

3F. Interpreting the 8086 Bus Timing Diagrams 

At first glance, the 8086 bus timing diagrams (Diag. 3F1 
min mode and Diag. 3F2 max mode) appear rather com· 
plex. However, with a few words of explanation on how 
to interpret them, they become a powerful tool in deter· 
mining system requirements. The timing diagrams for 
both the minimum and maximum modes may be divided 
into six sections: (1) address and ALE timing; (2) read cy· 
cle timing; (3) write cycle timing; (4) interrupt acknowl· 
edge timing; (5) ready timing; and (6) HOLD/HlDA or 
RQ/GT timing. Since the A.C. characteristics of the 
signals are specified relative to the CPU clock, the rela· 
tionship between the majority of signals can be de· 
duced by simply determining the clock cycles between 
the clock edges the signals are relative to and adding or 
subtracting the appropriate minimum or maximum 
parameter values. One aspect of system timing not com· 
pensated for in this approach is the worst case relation· 
ship between minimum and maximum parameter values 
(also known as tracking relationships). As an example, 
consider a signal which has specified minimum and 
maximum turn on and turn off delays. Depending on 
device characteristics, it may not be possible for the 
component to simultaneously demonstrate a maximum 
turn·on and minimum turn·off delay even though worst 
case analysis might imply the possibility. This argument 
is characteristic of MOS devices and is therefore ap· 
plicable to the 8086 A.C. characteristics. The message 
is: worst case analysis mixing minimum and maximum 
delay parameters will typically exc~ed the worst case 
obtainable and therefore should not be subjected to fur· 
ther subjective degradation to obtain worst·worst case 
values. This section will provide guidelines for specific 
areas of 8086 timing sensitive to tracking relationships. 

A. MINIMUM MODE BUS TIMING 

1. ADDRESS and ALE 

The address/ALE timing relationship is important to 
determine the ability to capture a valid address from the 
multiplexed bus. Since the 8282 and 8283 latches cap· 
ture the address on the trailing edge of ALE, the critical 
timing involves the state of the address lines when ALE 
terminates. If the address valid delay is assumed to be 
maximum TCLAV and ALE terminates at its earliest 
point, TCHllmin (assuming zero minimum delay), the 
address would be valid only TClCHmin·TClAVmax=8 
ns prior to ALE termination. This result is unrealistic in 
the assumption of maximum TClAV and minimum 
TCHlL To provide an accurate measure of the true 
worst case, a separate parameter specifies the 
minimum time for address valid prior to the end of ALE 
(TAVAl). TAVAl= TClCH·60 ns overrides the clock 
related timings and guarantees 58 ns of address setup 
to ALE termination for a 5 MHz 8086. The address is 
guaranteed to remain valid beyond the end of ALE by the 
TlLAX param~ter. This specification overrides the rela· 
tionship between TCHll and TClAX which might seem 
to imply the address may not be valid by the end of the 
latest possible ALE. TllAX holds for the entire address 
bus. The TClAXmin spec on the address indicates the 
earliest the bus will go invalid if not restrained by a slow 
ALE. TllAX and TClAX apply to the entire multiplexed 
bus for both read and write cycles. AD15-O is three· 

A-32 

stated for read cycles and immediately switched to 
write data during write cycles. AD19·16 immediately 
switch from address to status for both read and write 
cycles. The minimum ALE pulse width is guaranteed by 
TlHllmin which takes precedence over the value ob­
tained by relating TCllHmax and TCHllmin. 

To determine the worst case delay to valid address on a 
demultiplexed address bus, two paths must be con· 
sidered: (1) delay of valid address and (2) delay to ALE. 
Since the 8282 and 8283 are flow through latches, a valid 
address is not transmitted to the address bus until ALE 
is active. A comparison of address valid delay TCLAV· 
max with ALE active delay TCllHmax indicates TCLAV· 
max is the worst case. Subtracting the latch prop· 
agation delay gives the worst case address bus valid 
delay from the start of the bus cycle. 

2. Read Cycle Timing 

Read timing consists of conditioning the bus, activating 
the read command and establishing the data transceiver 
enable and direction controls. DT/R is established early 
in the bus cycle and requires no further consideration. 
During read, the DEN signal must allow the transceivers 
to propagate data to the CPU with the appropriate data 
setup time and continue to do so until the required data 
hold time. The DEN turn on delay allows TClCl+ 
TCHClmin - TCVCTVmax - TDVCl = 127 ns transceiver 
enable time prior to valid data required by the CPU. 
Since the CPU data hold time TClDXmin and minimum 
DEN turnoff delay TCVCTXmin are both 10 ns relative to 
the same clock edge, the hold time is guaranteed. Addi· 
tionally, DEN must disable the transceivers prior to the 
CPU red riving the bus with the address for the next bus 
cycle. The maximum DEN turn off delay (TCVCTXmax) 
compared with the minimum delay for addresses out of 
the 8086 (TClCl+ TCLAVmin) indicates the trans· 
ceivers are disabled at least 105 ns before the CPU 
drives the address onto the multiplexed bus. 

If memory or I/O devices are connected directly to the 
multiplexed address and data bus, the TAZRl parameter 
guarantees the CPU will float the bus before activating 
read and allowing the selected device to drive the bus. 
At the end of the bus cycle, the TRHAV parameter spec· 
ifies the bus float delay the device being deselected 
must satisfy to avoid contention with the CPU driving 
the address for the next bus cycle. The next bus cycle 
may start as soon as the cycle following T4 or any 
number of clock cycles later. 

The minimum delay from read active to valid data at the 
CPU is 2TClCl - TClRlmax - TDVCl = 205 ns. The 
minimum pulse width is 2TClCl-75ns=325 ns. This 
specification (TRlRH) overrides the result which could 
be derived from clock relative delays (2TClCl­
TClRlmax + TClRHmin). 

3. Write Cycle Timing 

The write cycle involves providing write data to the 
system, generating the write command and controlling 
data bus transceivers. The transceiver direction control 
Signal DTfFi is conditioned to transmit at the end of each 
read cycle and does not change during a write cycle. 



AP-67 

This allows the transceiver enable signal DEN to be ac· 
tlve early In the cycle (while addresses are valid) without 
corrupting the address on the multiplexed bus. The 
write data and write command are both enabled from the 
leading edge of T2. Comparing minimum WR active 
delay TCVCTVmln with the maximum write data delay 
TCLDV Indicates that write data may be not valid until 
100 ns after write Is active. The devices in the system 
should capture data on the trailing edge of the write 
command rather than the leading edge to guarantee 
valid data. The data from the 8086 is valid a minimum of 
2TCLCL - TCLDVmax + TCVCTXmin = 300 ns before the 
trailing edge of write. The minimum write pulse width is 
TWLWH = 2TCLCL - 60 ns = 340 ns. The CPU maintains 
valid write data TWHDX ns after write. The TWHDZ spec· 
ification overrides the result derived by relating 
TCLCHmin and TCHDZmin which implies write data 
may only be valid 18 ns afterWR. The 8086 floats the bus 
after write only if being forced off the bus by a HOLD or 

RQ input. Otherwise, the CPU simply switches the out· 
put drivers from data to address at the beginning of the 
next bus cycle. As with the read cycle, the next bus cy· 
cle may start in the clock cycle following T4 or any clock 
cycle later. 

DEN is disabled a minimum of TCLCHmin + 
TCVCTXmin - TCVCTXmax = 18 ns after write to 
guarantee data hold time to the selected device. Since 
we are again evaluating a minimum TCVCTX with a max· 
imum TCVCTX, the real minimum delay from the end of 
write to transceiver disable is approximately 60 ns. 

4. Interrupt Acknowledge Timing 

The interrupt acknowledge sequence consists of two in· 
terrupt acknowledge bus cycles as previously de· 
scribed. The detailed timing of each cycle is identical to 
the read cycle timing with two exceptions: command 
timing and address/data bus timing. 

11 T2" T3 Tw T. 

ClK (8284 OUTPUT) 

MIlO 

ALE 

RDY (8284 INPUT) 
see NOTE4 

READY (8088 INPUT) 

READ CYCLE 

NOTE 1 

(WR, iN1'A=VOH) 
DT/A 

VCHv--\ _TClCl-:JHC1~~ ~ 

~ ~ -...::; TCHCTV '-- TCHCl I-- TClCH_ 

I 
TClAV- - I TClA;: i=-TDV TCHDX ...... -

BHE, A1 .... A1 I\. 57-53 

TCllH- Y TlHJL-=: I-T~lAX r--

TCHll-1 

/~---
I-- -TR1VCL 

I--TAVAl- VIH~i= ~~ ~ ~ vt~ _ 
I j--TClRIX 

TRYLCL- -

1 

- \ 

I. - -TCHRYX 

- lAVAL I--

~TRYHCHj TClAV. I- -TllAX-

I- - -TClAX TDVCl-- -TClDX-:-1 

A15-"" DATA IN '\I 

M FLOA:J-
TAZRl~ TCLRH- ~ f--TRHAV 

r----
=~TCHCTV TClRl f TRlRH 

1 
TCHCTV 

TCVCTV~ f TCVCTX- I 

Figure 3Fl. 8086 Bus Timing - Minimum Mode System 

A-33 



CLK (8284 OUTPUT) 

WRITE CYCLE 

NOTE 1 

(RiS, iNTA, 
DTIII=vOH) 

INTACYCLE 
NOTES 1 &3 

RiS,W1I.vOH 
liRE = VOL) 

MliO 

ALE 

AD15-ADo 

DTiii 

SOFTWARE HALT - (DEN = 
VOe: 1m, WlI, iiiiTA DTlft - VOH; AD,.-Ao" 

TI'S FOLLOW n, THEN NMI OR INTR 
BEGIN A NEW Tl. 

AD1S- ADo 

AP-67 

TCLAZ 

FLOAT 

TCHCTV 

INVALID ADDRESS 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOl UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T" T., Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRIDATA BUS IS 
FLOATING DURING THE SECOND INTA CYCLE. CONTROL SIGNALS SHOWN 
FOR SECOND INTA CYCLE. 

4. SIGNALS AH284ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 3F1. 8086 Bus Timing - Minimum Mode System (Con't) 

A-34 



AP-67 

T, T, 

CLK 

I--TCLCL-TCH1CH2~ 

VCH~ ,f\ 
I- TCL2CL1 T 

r~ r\ 
VCL-I 1\----1 ,'----.) '--------.I "----'I L-

52,51,So (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

see NOTE 5 

ROY (8284 INPUT) 

"~.,,~ '''"' 1 

READ CYCLE 

8288 OUTPUTS 

SEE NOTES 5,6 

RD 

DT/R 

MRDC OR IORC 

DEN 

TCLAV- I------ TCHCL _TCLCH_ 

,_ TCHSV i--TCLSH 

-----,~---4----r_---+---4~7n~~r+----_r~-----­W;i;;f;!;7 SEE NOTE 8 

~---r---r--~4----r~~TU 

_______ ~-++_~,~T$~tXX--~,_T-CtL-DV----f_~----_r----_t--T-C-H-D-X-+~--"' 
L ii'HE, Al.-Al~ 5,,5, 

TSVLH --- _ r- TCHLL 
TCLLH- '\ 

\ 
\..._----

r-­
I~ __ -

Ii !--TR1VCL 

~K~~~~~ 
TRYlCL· _ 

-TCHRYX 

TYHSH
, -

TCLAv-1 ~ t==-
TRYHCH 

-- TCLAZ I-- I 

AD,.-Ao )----:F::-r"'O."AT:-~ 
TAZRL- -

----JL DATA IN 

TCLRH 

FLOAT I\-­
I------t<-lt-'TRHAV ----.j 

/ 
I ~~ ______________ +---JI\~I 

_ _________ TC_H_D_T_L_--__ I_{~~T-C+LR-Lr_------
,- TRLRHI-----+-----I 

TCHDTH 

A ~~r-----------_rJ 

TCLML-- -
TCLMH--

Ir-TCVNV--

----------------------------~¥ 
TCVNX---

Figure 3F2a. 8086 Bus Timing ~. Maximum Mode System (Using 8288) 

A-35 



WRITE CYCLE 

8288 0\I1'PUTS 
see NOTES 5,6 

INTACYCLE 

ClK 

Si,Ij,s, (EXCEPT HAL n 

AD1S-ADO 

DEN 

MWIC OR lowe 

AD16-ADo 
SEe NOTES 3 & 4 

MCEl 
Pl!EN 

DliA: 

82. oum.JlS '_ 

SEe NOTES s.SjINTA 

DEN 

VCl 

AP-67 

T, T. T, 

Tw 

TCHDX-

DATA 

TCVNV- TCVNX-

FLOAT 

rDvcL- TC DX 

POINTER 
FLOAT 

TCVNX 

INVAUD ADDRESS 

TelAY 

~ r---------"""T\ ------. . \'--__ ---'1 \ _____ _ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T2. Ta. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

a. CASCADE ADDRESS IS VAUD BETWEEN FIRST AND SECOND INTA CYCLES. 
4, BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 lOCAL ADDR/DATA BUS IS 

"FLOAnNG DURING THE SECOND INTA CYCLE. CONTROL FOR POINTER ADDRESS 
IS· SHOWN FOR SECOND INTA CYCLE. 

5, SIGNALS AT 8214 OR 1288 ARE SHOWN FOR REFERENCE ONLY, 
8. THE ISSUANCE OF THE _ COMMAND AND CONTROL SIGNALS (MRIIe, 

IIWTC, owe, RIIIC, mwc, mI\Vll, IRn AND DEN) LAGS THE ACTIVE HIGH 
I288CEN, 

7, ALL nMING MEASUREMENTS ARE MADE AT ,.5V UNLESS OTHERWISE 
NOTED. . 

e. STATUSINAcnVe IN STATE.JUSTPRIOR TO To, 

Figura 3F2\I; !1088 Bus Tlmln. -l\IIaxlniU.~I"Mode System (Using 8288) (Con't) 

A-36 

'\ .. _---

r-­
I 

TCHDTH 



AP-67 

The multiplexed address/data bus floats from the begIn­
ning (T1) of the INTA cycle (within TCLAZ ns). The upper 
four multiplexed address/status lines do not three-state. 
The address value on A19-A16 is indeterminate but the 
status Information will be valid (S3=O, S4=O, S5=IF, 
S6= 0, S7 = BHE= 0). The multiplexed address/data 
lines will remain in three-state until the cycle after T4 of 
the INTA cycle. This sequence occurs for each of the 
INTA bus cycles. The interrupt type number read by the 
8086 on the second INTA bus cycle must satisfy the 
bame setup and hold times required for data during a 
read cycle. 

The DEN and DT/R signals are enabled for each INTA cy­
cle and do not remain active between the two cycles. 
Their timing for each cycle is Identical to the read cycle. 

The INTA command has the same timing as the write 
command. It Is active within 110 ns of the start of T2 pro­
viding 260 ns of access time from command to data 
valid at the 8086. The command is active a minimum of 
TCVCTXmln = 10 ns into T4 to satisfy the data hold time 
of the 8086. This provides minimum INTA pulse width of 
300 ns, however taking signal delay tracking into con­
sideration gives a minimum pulse width of 340 ns. Since 
the maximum Inactive delay of INTA is TCVCTXmax= 
110 ns and the CPU will not drive the bus until 15 ns 
(TCLAVmln) Into the next clock cycle, 105 ns are avail­
able for interrupt devices on the local bus to float their 
outputs. If the data bus is buffered, DEN provides the 
same amount of time for local bus transceivers to three­
state their outputs. 

5. Ready Timing 

The detailed timing requirements of the 8086 ready 
signal and the system ready signal into the 8284 are 
described in Section 3D. The system ready signal Is 
typically generated from either the address decode of 
the selected device or the address decode and the com­
mand (RD, WR, INTA). For a system which Is normally 
not ready, the time to generate ready from a valid ad­
dress and not insert await state, is 2TCLCL­
TCLAVmax - TR1VCLmax = 255 ns. This time Is avail­
able for buffer delays and address decoding to deter­
mine if the selected device does not require a wait state 
and drive the RDY line high. If walt cycles are required, 
the user hardware must provide the appropriate ready 
delay. Since the address will not change until the next 
ALE, the RDY will remain valid throughout the cycle. If 
the system Is normally ready, selected devices requiring 
walt states also have 255 ns to disable the RDY line. The 
user circuitry must delay re-enabling RDY by the ap­
propriate number of wait states. 

If the RD command is used to enable the RDY signal, 
TCLCL- TCLRLmax- TRIVCLmax= 15 ns are available 
for external logic. If the WR command is used, TCLCL­
TCVCTVmax - TRIVCLmax = 55 ns are available. Com­
parison of RDY control by address 'or command in­
dicates that address decoding provides the best timing. 
If the system is normally not ready, address decode 
alone could be used to provide RDY for devices not re­
quiring walt states while devices requiring walt states 
may use a combination of address decode and com­
mand to activate a walt state generator. If the system is 

normally ready, devices not requiring wait states do 
nothing to RDY while devices needing wait states 
should disable RDY via the address decode and use a 
combination of address decode and command to ac­
tivate a delay to re-enable RDY. 

If the system requires no wait states for memory and a 
fixed number of wait states for AD and WR to ail I/O 
devices, the M/iO signal can be used as an early indica­
tion of the need for wait cycles. This allows a common 
circuit to control ready timing for the entire system 
without feedback of address decodes. 

6. Other Considerations 

Detailed HOLD/HLDA timing is covered in the next sec­
tion and is not examined here. One last signal con­
sideration needs to be mentioned for the minimum 
mode system. The TEST input is sampled by the 8086 
only during execution of the WAIT instruction. The TEST 
signal should be active for a minimum of 6 clock cycles 
during the WAIT instruction to guarantee detection. 

B. MAXIMUM MODE BUS TIMING 

The maximum mode 8086 bus operations are logically 
equivalent to the minimum mode operation. Detailed 
timing analysis now involves signals generated by the 
CPU and the 8288 bus controlier. The 8288 also provides 
additional control and command signals which expand 
the flexibility of the system. 

1. ADDRESS and ALE 

In the maximum mode, the address information con­
tinues to come from the CPU while the ALE strobe is 
generated by the 8288. To determine the worst case rela­
tionships between ALE and the address, we first must 
determine 8288 ALE activation relative to the SO-S2 
status from the CPU. The maximum mode timing 
diagram specifies two possible delay paths to generate 
ALE. The first is TCHSV + TSVLH measured from the ris­
ing edge of the clock cycle preceding n. The second 
path is TCl.LH measured from the start of n. Since the 
8288 initiates a bus cycle from t'he status lines leaving 
the passive state (SO-52 = 1), if the 8086 is late in issuing 
the status (TCHSVmax) while the clock high time is a 
minimum (TCHCLmin), the status will not have changed 
by the start of n and ALE is Issued TSVLH ns after the 
status changes. If the status changes prior to the begin­
ning of n, the 8288 will not issue the ALE until TCLLH 
ns after the start of T1. The resulting worst case delay to 
enable ALE (relative to the start of T1) is TCHSVmax+ 
TSVLHmax - TCHCLmin = 58 ns. Note, when calcu­
lating signal relationships, be sure to use the proper 
maximum mode values rather than equivalent minimum 
mode values. 

The trailing edge of ALE is triggered In the 8288 by the 
positive clock edge in n regardless of the delay to 
enable ALE. The resulting minimum ALE pulse width Is 
TCLCHmax-58ns=75ns assuming TCHLL=O. 
TCLCHmax must be used since TCHCLmln was all­
sumed to derive the 58 ns ALE enable delay. The ad­
dress is guaranteed to be valid TCLCHmin + 
TCHLLmln - TCLAVmal( = 8 ns prior to the trailing edge 

A-37 



AP-67 

of ALE to capture the address In the 8282 or 8283 
latches. Again we have assumed a very conservative 
TCHLL=O. Note, since the address and ALE are driven 
by separate devices, no tracking of A.C. characteristics 
can be assumed. 

The address hold time 10 the latches Is guaranteed by 
the address remaining valid until the end of T1 while 
ALE is disabled a maximum of 15 ns from the positive 
clock transition in T1 (TCHCLmin - TCHLLmax = 52 ns 
address hold time). The multiplexed bus transitions 
from address to status and write data cir three-state (for 
read) are identical to the minimum mode timing. Also, 
since the address valid delay (TCLAV) remains the 
critical path in establishing a valid address, the address. 
access times to valid data and ready are the same as·the 
minimum mode system. 

2. Read Cycle Timing 

The maximum mode system offers read signals 
generated by both the 8086 and the 8288. The 8086 RD 
output signal timing is identical to the minimum mode 
system. Since the A.C. characteristics .of the read com­
mands generated by the 8288 are significantly better 
than the 8086 output, access to devices on the demui­
tiplexed buffered system bus should use the 8288 com­
mands. The 8086 RD signal is available for devices 
which reside directly on the multiplexed bus. The 
following evaluations for read, write and interrupt 
acknowledge only consider the 8288 command timing. 

The 8288 provides separate memory and 110 ~ead signals 
which conform to the same A.C. characteristics. The 
commands are issued TCLML ns after the start of T2 
and terminate TCLMH ns after the start of T4.The 
minimum command length is 2TCLCL- TCLMLmax+ 
TCLMLmin = 375 ns. The access time to valid data at the 
CPU Is 2TCLCL-TCLMLmax-TDVCLmax=335 ns. 
Since the 8288 was designed for systems with buffered 
data busses, the commands are enabled before the CPU 
has three-statedthe multiplexed bus and should not be 
used with devices which reside directly on the multi­
plexed bus (to do so ·could result in bus contention dur-
ing 8086 bus float and devicerurn-on)·: . 

The direction control fordata bus transceivers is estab­
lished in T1 while the transceivers are not enabled by 
DEN until the positive clock transition of T2. This pro­
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float 
delay and TCHCLmin+TCLCL-TCVNVmax­
TDVCLmax = 187 ns of transceiver active to data valid at 
the CPU. Since both DEN and command are valid a mini­
mum of 10 ns into T4, the CPU data hold time TCLDX is 
guaranteed. A maximum DEN disable of 45ns (TCVNX 
max) guarantees the transceivers are disabled by the 
start of the next 8086 bus cycle (215 ns minimum from 
the same clock edge). On the positive clock transition of 
T4, DT/R is returned to transmit in preparation for a 
possible write operation on the next bus cycle. Since 
the system memory and 110 devices reside on a buffered 
system bus, they must three-state their outputs before 
the device for the next bus cycle is selected (approxi­
mately 2TCLCL) or the transceivers drive write data onto 
the tilus (approximately 2TCLCL). 

3. Write Cycle Timing 

In the maximum mpde, the 8.288 provides normal and ad­
vanced write commands for memory and 110. The ad­
vanced write commands are active a full clock cycle 
aheadpf the np(mal write commands and have timing 
identicalio the read commands. The· advanced write 
pulse width is 2TCLCL- TCLMLmax+ TCLMHmln=375 
ns while the nprmal write pulse width is TCLCL­
TCLMLmax + TCLMHmln = 175 ns. Write data setup 
time to the selected device Is a function of either the 
data valid delay from the 8086 (TCLDV) or the transceiver 
enable delay TCVNV. The worst case delay to valid write 
data is TCLDV", 110 ns minus transceiver propagation 
delays. This Implies the data may not be valid until 100 
ns after the advanced write command but will be valid 
approximately TCLCL"': TClDVmax + TCLMLmin = 100 
ns prior to the leading edge of the normal write com­
mand. Data will be valid 2TCLCL-TCLDVmax+ 
TCLMHmin = 300 ns before the trailing edge of either 
write command. The data and command overlap for the 
advanced command is 300 ns while the overlap with the 
normal write command Is 175 ns. The transceivers are 
disabled a minimum of TCLCHmin - TCLMHmax + 
TCVNXmin =85 ns after the write command while the 
CPU provides valid data a minimum of TCLCHmin­
TCLMHmax + TCHDZmin = 85 ns. This guarantees write 
data hold of 85 ns after the write command. The trans­
ceivers are disabled TCLCL - TCVNXmax + 
TCHDTLmln=155 ns (assuming TCHDTL=O) prior to 
transceiver direction change for a subsequent read 
cycle. 

4. Interrupt Acknowledge Timing 

The maximum mode INTA sequence is logically iden­
tical to the minimum mode sequence. The transceiver 
control (DEN and DT/R) and INTA command timing of 
each interrupt acknowledge cycle is identical to the 
read cycle. As in the minimum mode system, the multi­
plexed address/data bus will float from the leading edge 
of T1 for each IIIITA bus cycle and not be driven by the 
CPU until after T4 of .each INTA cycle. The setup and 
hold times on the vector 'number for the second cycle 
are the same as data setup and hold for the read. If the 
devlcll providing the interrupt vector number is con­
nected to the local bus, TCLCL - TCLAZmax + 
TCLMLmin = 130 ns are available from 8086. bus float to 
INTA command active. The selected deVice on the local 
bus must disable the system data bus transceivers 
since DEN is still generated'by the 8288. 

If the 8288 Is not in the lOB (110 Bus) mode, the 8288 
MCE/PDEN output becomes the MCE output. This out­
put is active during each iiii'fA cycle and overiaps the 
ALE signal during T1. The MCE is available for gatlrig 
cascade addresses from a master 8259A onto three of 
the upper AD15-AD8Iines and allowing ALE to latch the 
cascade address into the address latches. The address 
lines may then be used to provide CAS address selec­
tion to slave 8259A's located on the system bus (refer­
ence Figure 3E5). MCE is active within 15 ns of status or 
the start of T1 for each INTA cycle. MCE should not 
enable the CAS lines onto the multiplexed bus during 
the first cycle since the CPU does not guarantee to float 

A-38 



AP-67 

the bus until 80 ns into the first INTA cycle. The first 
MCE can be inhibited by gating MCE with LOCK. The 
8086 LOCK output is activated during T2 of the first 
cycle and disabled during T2 of the second cycle. The 
overlap of LOCK with MCE allows the first MCE to be 
masked and the second MCE to gate the cascade ad­
dress onto the local bus. Since the 8259A will not pro· 
vide a cascade address until the second cycle, no infor· 
mation is lost. As with ALE, MCE is guaranteed valid 
within 58 ns of the start of T1 to allow 75 ns CAS ad­
dress setup to the trailing edge of ALE. MCE remains 
active TCHCLmin - TCHLLmax + TCLMCLmln = 52 ns 
after ALE to provide data hold time to the latches. 

If the 8288 is strapped in the lOB mode, the MCE output 
becomes PDEN and all I/O references are assumed to be 
devices on the local bus rather than the demultiplexed 
system bus. Since INTA cycles are considered I/O 
cycles, all interrupts are assumed to come from the 
local system and cascade addresses are not gated onto 
the system address bus. Additionally, the DEN signal is 
not enabled since no I/O transfers occur on the system 
bus. If the local I/O bus is also buffered by transceivers, 
the PDEN signal is used to enable those transceivers. 
PDEN A.C. characteristics are identical to DEN with 
PDEN enabled for I/O references and DEN enabled for 
instruction or memory data references. 

5. Ready Timing 

Ready timing based on address valid timing is the same 
for maximum and minimum mode systems. The delay 
from 8288 command valid to RDY valid at the 8284 is 
TCLCL- TCLMLmax- TRIVCLmin= 130 ns. This time is 
available for external circuits to determine the need to 
insert wait states and disable RDY or enable RDY to 
avoid wait states. INTA, all read commands and ad­
vanced write commands provide this timing. The normal 
write command is not valid until after the RDY signal 
must be valid. Since both normal and advanced write 
commands are generated by the 8288 for all write 
cycles, the advanced write may be used to generate a 
RDY indication even though the selected device uses 
the normal write command. 

Since sepa.!!te commands are provided for memory and 
110, no MilO signal is specifically available as in the 
minimum mode to allow an early 'wait state required' in­
dication for I/O devices. The S2 status line, however is 
logically equivalent to the MilO signal and can be used 
for this purpose. 

6. Other Considerations 

The RO/GT timing is covered in the next section and will 
not be duplicated here. The only additional signals to be 
considered in the maximum mode are the queue status 
lines OSO, OS1. These signals are changed on the 
leading edge of each clock cycle (high to low transition) 
including idle and wait cycles (the queue status is in­
dependent of the bus activity). External logic may sam­
ple the lines on the low to high transition of each clock 
cycle. When sampled, the signals indicate the queue ac­
tivity in the previous clock cycle and therefore lag the 
CPU's activity by one cycle. The TEST input require· 

ments are identical to those stated for the minimum 
mode. 

To inform the 8288 of HALT status when a HALT Instruc­
tion is executed, the 8086 will Initiate a status transition 
from passive to HALT status. The status change will 
cause the 8288 to emit an ALE pulse with an Indeter­
minate address. Since no bus cycle is Initiated (no com­
mand is issued), the results of this address will not af­
fect CPU operation (I.e., no response such as READY Is 
expected from the system). This allows external hard· 
ware to latch and decode all transitions In system 
status. 

3G. Bus Control Transfer (HOLD/HLDA and RQ/GT) 

The 8086 supports protocols for transferring control of 
the local bus between itself and other devices capable 
of acting as bus masters. The minimum mode conflg· 
uration offers a signal level handshake similar to the 
8080 and 8085 systems. The maximum mode provides 
an enhanced pulse sequence protocol designed to op· 
timize utilization of CPU pins while extending the 
system configurations to two prioritized levels of alter­
nate bus masters. These protocols are simply tech· 
niques for arbitration of control of the CPU's local bus 
and should not be confused with the need for arbitration 
of a system bus. 

1. MINIMUM MODE 

The minimum mode 8086 system uses a hold request in­
put (HOLD) to the CPU and a hold acknowledge (HLDA) 
output from the CPU. To gain control of the bus, a 
device must assert HOLD to the CPU and wait for the 
HLDA before driving the bus. When the 8086 can relin­
quish the bus, it floats the RD, WR, INTA and M/iO com­
mand lines, the DEN and DT/Rbus control lines and the 
multiplexed address/data/status lines. The ALE signal is 
not three-stated. The CPU acknowledges the request 
with HLDA to allow the requestor to take control of the 
bus. The requestor must maintain the HOLD request ac­
tive until it no longer requires the bus. The HOLD re­
quest to the 8086 directly affects the bus interface unit 
and only indirectly affects the execution unit. The CPU 
will continue to execute from its internal queue until 
either more instructions are needed or an operand 
transfer is required. This allows a high degree of overlap 
between CPU and auxiliary bus master operation. When 
the requestor drops the HOLD Signal, the 8086 will re­
spond by dropping HLDA. The CPU will not re-drive the 
bus, command and control signals from three-state until 
it needs to perform a bus transfer. Since the 8086 may 
still be executing from its internal queue when HOLD 
drops, there may exist a period of time during which no 
device is driving the bus. To prevent the command lines 
from drifting below the minimum VIH level during the 
transition of bus control, 22K ohm pull up resistors 
should be connected to the bus command lines. The 
timing diagram in Figure 3G1 shows the handshake se­
quence and 8086 timing to sample HOLD, float the bus, 
and enable/disable HLDA relative to the CPU clock. 

To guarantee valid system operation, the designer must 
assure that the requesting device does not assert con-

A-39 



AP-67 

trol of the bus prior to the 8086 relinquishing control and 
that the device relinquishes control of the bus prior to 
the 8086 driving the bus. The HOLD request into the 
8086 must be stable THVCH ns prior to the CPU's low to 
high clock transition. Since this input is not syn­
chronized by the CPU, signals driving the HOLD input 
should be synchronized with the CPU clock to 
guarantee the setup time is not violated. Either clock 
edge may be used. The maximum delay between HLDA 
and the 8086 floating the bus is TCLAZmax­
TCLHAVmin = 70 ns. If the system cannot tolerate the 
70 ns overlap, HLDA active from the 8086 should be 
delayed to the device. The minimum delay for the CPU to 
drive the control bus from HOLD inactive is THVCHmin 
+3TCLCL=635 ns and THVCHmin+3TCLCL+ 
TCHCL= 701 ns to drive the multiplexed bus. If the 
device does not satisfy these requirements, HOLD inac­
tive to the 8086 should be delayed. The delay from HLDA 
inactive to driving the busses Is TCLCL+ TCLCHmin­
TCLHAVmax = 158 ns for the control bus and 2TCLCL­
TCLHAVmax = 240 ns for the data bus. 

1.1 Latency of HLDA to HOLD 

The decision to respond to a HOLD request is made in 
the bus interface unit. The major factors that influence 
the decision are the current bus activity, the state of the 
LOCK signal internal to the CPU (activated by the soft­
ware LOCK prefix) and interrupts. 

If the LOCK is not .active, an interrupt acknowledge cy­
cle is not in progress and the BIU (Bus Interface Unit) Is 
executing a T4 or TI when the HOLD request is received, 
the minimum latency to HLDA is: 

35 ns 
65 ns 
200 ns 
10 ns 

310 ns 

elK 

HOLD 

THVCH min (Hold setup) 
TCHCL min 
TCLCL (bus float delay) 
TCLHAV min (HLDA delay) 

@ 5 MHz 

The maximum delay under these conditions is: 

34 ns 
200 ns 
82 ns 
200 ns 
180 ns 

677 ns 

Uust missed setup time) ,',. 
delay to next sample 
TCHCL max 
TCLCL (bus float delay) 
TCLHAV max (HLDA delay) 

@5MHz 

If the BIU just initiated a bus cycle when the HOLD Re­
quest was received, the worst case response time is: 

34 ns 
82 ns 
7*200 
N*200 
160 ns 

1.676"s 

THVCH Uust missed) 
tCHCL max 
bus cycle execution 
N walt states/bus cycle 
TCLHAV max (HLDA delay) 

@ 5 MHz, no wait states 

Note, the 200 ns delay for just misSing is included in the 
delay for bus cycle execution. If the operand transfer is 
a word transfer to an odd byte boundary, two bus cycles 
are executed to perform the transfer. The BIU will not 
acknowledge a HOLD request between the two bus 
cycles. This type of transfer would extend the above 
maximum latency by four additional clocks plus N addi­
tional wait states. With no wait states in the bus cycle, 
the maximum would be 2.476 microseconds. 

Although the minimum mode 8086 does not have. a hard­
ware LOCK output, the software LOCK prefix may stili 
be included in the instruction stream. The CPU Internal­
ly reacts to the LOCK prefix as would the maximum 
mode 8086. Therefore, the LOCK does not allow a HOLD 
request to be honored until completion of the instruc­
tion following the prefix. This allows an instruction 
which performs more than one memory reference (ex. 
ADD [BX), CX; which adds CX to [BXD to execute without 
another bus master gaining control of the bus between 
memory references. Since the LOCK signal is active for 
one clock longer than the instruction execution, the 
maximum latency to HLDA is: 

.~m~==~==~7-;t--~~----------------------------~~--------------~f-~ 
CONTROL 

HlDA ___ .-oJ 

Figura 3G1. HOLD/HLDA Sequence 

A-40 



34 ns 
200 ns 
82 ns 
(M+ 1)*200 ns 
200 ns 
160 ns 

THVCH ijust miss) 
delay to next sample 
TCHCL max 
LOCK Instruction execution 
set up HLDA (Internal) 
TCLHAV max (HLDA delay) 

(M*200ns)+876ns @ 5 MHz 

If the HOLD request Is made at the beginning of an Inter· 
rupt acknowledge sequence, the maximum latency to 
HLDA Is: 

34 ns 
82 ns 
2600 ns 
160 ns 

2.876 JAB 

THVCH Oust missed) 
TCHCL max 
13 clock cycles for INTA 
TCLHAV max 

@ 5 MHz 

1.2 Minimum Mode DMA Configuration 

Vee 

AP-67 

A typical use of the HOLD/HLDA signals in the minimum 
mode 8086 system Is bus control exchange with DMA 
devices like the Intel 8257·5 or 8237 DMA controllers. 
Figure 3G2 gives a general interconnect for this type of 
configuration using the 8237·2. The DMAcontrolier 
resides on the upper half of the 8086's local bus and 
shares the A8·A15 demultiplexing address latch of the 
8086. All registers in the 8237·2 must be assigned odd 
addresses to allow Initialization and Interrogation by the 
CPU over the upper half of the data bus. The 8086 
RDIWR commands must be demultiplexed to provide 
separate 1/0 and memory commands which are compati· 
ble with the 8231'2 commands. The AEN control from 
the 8237·2 must disable the 8086 commands from the 
command bus, disable the address latches from the 
lower (AO·A7) and upper (A19·A16) address bus and 
select the 8237·2 address strobe (ADSTB) to the A8·A15 
address latch. If the data bus is buffered, a pull·up 
resistor on the DEN line will keep the buffers dJsabled. 
The DMA controller will only transfer bytes between 

DEMULTIPLEX T 
rD~ I 

RDIWRlIOIM 

1 8284 1 
WE A11- 11 

L 8088 

READY 
ALE 

CLK 

RESET AD150Q 

HOLD HLDA 

74L874 

Q 

CLR 

-~D 

--{> 

MIN MODE COMMANDS 

T EJill!LE -
8282 

01 DO 

T 
STB 

'-- -r-
~ 

UPPER = 001--

DMA 01 
AD DR -

- 8282 1/0 PORT 
LOADED DURING 

8237 INITIALIZATION 

r--e2i2 
01 DO 

~ STB 

AP7-O 
8282 

'--- 01 DO 

STB 

EN 

~ 
(AO) 

087-0 

~: ) - AEN 

ADSTB 8237·2 iOW 1-
MEMR HLDA 

HRQ CLK 
MEMW 

t RESET 

Figure 3G2. DMA Using the 8237·2 

A-41 

)0-

COMMAND 
BUS 

LOCAL DATA 
BUS 



AP-67 

memory and 1/0 and requires the 1/0 devices to reside on 
an 8-bit bus derived from the 16-bit t08-bit bus multiplex 
circuit given in Section 4. Address lines A7·AO are driven 
directly by the 8237 and BHE is generated by inverting 
AO.lf A19-A16 are used, they must be provided by an ad­
ditional port with either a fixed value or initialized by 
software and enabled onto the address bus by AEN. 

Figure 3G3 gives an interconnection for placing the 
8257 on the system bus. By using a separate latch to 
hold the upper address from the 8257·5 and connecting 
the outputs to the address bus as shown, 16·bit DMA 
transfers are provided. In this configuration, AEN 
simultaneously enables AO and BHE to allow word 
transfers. AEN still disables the CPU interface to the 
command and addres.s busses. 

2. MAXIMUM MODE (RO/GT) 

The maximum mode 8086 configuration supports a sig­
nificantly different protocol for transferring bus control. 
When viewed with respect to the HOLD/HLDA sequence 
of the minimum mode, the protocol appears difficult to 
implement externally. However, it is necessary to under­
stand the intent of the protocol and its purpose within 
the system architecture. 

CPU 

A19·16 

ALE 

BHE 

BUS AD15.8 
INTERFACE 

~ 
01 00 
STB 

T 
r--a282 
01 

00 

t---- STB 

T 
~ 

01 

00 
~ STB 

~ 

2.1 Shared System Bus (RO/GT Alternative) 

The maximum mode RO/GT sequence is intended to 
transfer control of the CPU local bus between the CPU 
and alternate bus masters which reside totally on the 
local bus and share the complete CPU interface to the 
system bus. The complete interface includes the ad· 
dress latches, data transceivers, 8288 bus controller and 
8289 multi master bus arbiter. If the alternate bus 
masters in the system do not reside directly on the 8086 
local bus, system bus arbitration is required rather than 
local CPU bus arbitration. To satisfy the need for multi· 
master system bus arbitration at each CPU's system in· 
terface, the 8289 bus arbiter should be used rather than 
the CPU RO/GT logic. 

To allow a device with a simple HOLD/HLDA protocol to 
gain control of a Single CPU system bus, the circuit in 
Figure 3G4 could be used. The design is effectively a 
simple bus arbiter which isolates the CPU from the 
system bus when an alternate bus master issues a 
HOLD request. The output of the Circuit, A£R (Address 
ENable), disables the 8288 and 8284 when the 8086 in· 
dicates idle status (50,51,$2 = 1), LOCK is not active and 
a HOLD request is active. With AEN inactive, the 8288 
three·states the command outputs and disables DEN 

3 
A19.l7 

1 
A16 

I 
BHE 

1 3 

"'L A15·9 

1 As 

7 1 

A7.' 

7 1 

OTIR 

DEN 

r---a2a6 
'----A 

_c~ll 
y-DE 8282 

01 

~ 
I 

00 I AEN 
DE 8282 110 PORT 

01 

0 HOL 

HLOA 

J 
t 

AEN 087.0 ADSTB A, 

.1 8257-5 
As·o 

,I I I I, 
Ao TO GROUND AND 

(FIXED OR REG) 
I UPPER BITS OF OMA ADDRESS 

CONTROLS ARE SAME AS 8·BIT 
TRANSFER CONFIGURATION WITH 
MANIPULATION OF THE DATA BUS 

Figure 3G3. 8086 Min Syslem, 8257 on System Bus 16·Bil Transfers 

A-42 



AP-67 

which three-states the data bus transceivers. AEN must 
also three-state the address latch (8282 or 8283) outputs. 
These actions remove the 8086 from the system bus and 
allow the requesting device to drive the system bus. The 
AEN signal to the 8284 disables the ready Input and 
forces a bus cycle initiated by the 8086 to wait until the 
8086 regains control of the system bus. The CPU may 
actively drive its local bus during this interval. 

The requesting device will not gain control of the bus 
during an 8086 initiated bus cycle, a locked instruction 
or an Interrupt acknowledge cycle. The LOCK signal 
from the 8086 Is active between INTA cycles to 
guarantee the CPU maintains control of the bus. Unlike 
the minimum mode 8086 HOLD response, this arbitra­
tion circuit allows the requestor to gain control of the 
bus between consecutive bus cycles which transfer a 
word operand on an odd address boundary and are not 
locked. Depending on the characteristics of the re­
questing device, any of the 74LS74 outputs can be used 
to generate a HLOA to the device. 

Upon completion of its bus operations, the alternate bus 
master must relinquish control of the system bus and 
drop the HOLD request. After AEN goes inactive, the ad­
dress latches and data transceivers are enabled but, if a 
CPU Initiated bus cycle is pending, the 8288 will not 
drive the command bus until a minimum of 105 ns or 
maximum of 275 ns later. If the system is normally not 
ready, the 8284 AEN input may immediately be enabled 
with ready returning to the CPU when the selected 
device completes the transfer. If the system is normally 
ready, the 8284 AEN input must be delayed iong enough 
to provide access time equivalent to a normal bus cycle. 
The 741..S74 latches in the design provide a minimum of 
TCLCHmin for the alternate device to float the system 
bus after releasing HOLD. They also provide 2TCLCL ns 
address access and 2TCLCL- TAEVCHmax ns (8288 
command enable delay) command access prior to ena­
bling 8284 ready detection. If HLOA is generated as 
shown in Figure 3G4, TCLCL ns are available for the 
8086 to release the bus prior to issuing HLOA while 
HLOA is dropped almost immediately upon loss of 
HOLD. 

so 
s, 
s,~==C) 

LOCK 
HOLD 

ClK 

+5 

D Q 

C Q 

+5 

A circuit configuration for an 8257-5 using this tech­
nique to interface with a maximum mode 8086 can be 
derived from Figure 3G3. The 8257-5 has its own address 
latch for buffering the address lines A15-A8 and uses its 
AEN output to enable the latch onto the address bus. 
The maximum latency from HOLD to HLOA for this cir­
cuit is dependent on the state of the system when the 
HOLD is issued. For an idle system the maximum delay 
is the propagation deiay through the nand gate and RIS 
flip-flop (T01) plus 2TCLCL plus TCLCHmax plus prop­
agation delay of the 74LS74 and 74LS02 (T02)_ For a 
locked instruction it becomes: T01 + T02 + (M + 2) 
*TCLCL+ TCLCHmax where M is the number of clocks 
required for execution of the locked instruction. For the 
interrupt acknowledge cycle the latency is 
T01 + T02 + 9 *TCLCL + TCLCHmax. 

2.2 Shared Local Bus (RQ/GT Usage) 

The RQ/GT protocol was developed to allow up to two in­
struction set extension processors (co-processors) or 
other special function processors (like the 8089 1/0 
processor in local mode) to reside directly on the 8086 
local bus. Each RQ/GT pin of the 8086 supports the full 
protocol for exchange of bus control (Fig. 3G5). The se­
quence consists of a request from the alternate bus 
master to gain control of the system bus, a grant from 
the CPU to indicate the bus has been relinquished and a 
release pulse from the alternate master when done_ The 
two RQ/GT pins (RQ/GTO and RQ/Gn) are prioritized 
with RQ/GTO having the highest priority. The prioritiza­
tion only occurs if requests have been received on both 
pins before a response has been given to either. For ex­
ample, if a request is received on RQ/GT1 followed by a 
request on RQ/GTO prior to a grant on RQ/Gn, RQ/GTO 
will gain priority over RQ/GT1. However, if RQ/Gn had 
already received a grant, a request on RQ/GTO must wait 
until a release pulse is received on RQ/Gn. 

The request/grant sequence interaction with the bus in­
terface unit is similar to HOLO/HLOA. The CPU con­
tinues to execute until a bus transfer for additional in­
structions or data is required. If the release pulse is 

,.-------------AEN (TO 8288&828213'0) 

AEN' (TO 8284) 

HlDA 

Figure 304. Circuit to Translate HOLD Into AEN Di.abl"fo~ Max Mode 8088 

A-43 



AP-67 

received before the CPU needs the bus, it will not drive 
the bus until a transfer is required. 

Upon receipt of a request pulse, the 8086 floats the 
multiplexed address, data and status bus, the SO, 51, 
and 52 status lines, the LOCK pin and RD. This action 
does not disable the 8288 command outputs from driv­
ing the command bus and does not disable the address 
latches from driving the address bus. The 8288 contains 
Internal pull-up resistors on the So, 51, and 52 status 
lines to maintain the passive state while the 8086 out­
puts are three-state. The passive state prevents the 8288 
from initiating any commands or activating DEN to 
enable the transceivers buffering the data bus. If the 
device issuing the RO does not use the 8288, it must 
disable the 8288 command outputs by disabling the 
8288 AEN input. Also, address latches not used by the 
requesting device must be disabled. 

OND Vcc 
AD14 AD15 

AD13 A161S3 

AD12 A171S4 

AD11 A181S5 

AD10 A191S6 

AD9 BHE/S7 

AD8 MNIMX 

AD7 RD 

AD6 RDIGTO 

AD5 RaIGTl 

AD4 lOCK 

AD3 52 
AD2 Si 
AD1 so 
ADO aso 

NMI aS1 

INTR TEST 

ClK READY 

GND RESET 

Figure 3G5. 8086 RQ/GT Connections 

__ I I-roye,", 
TClCL---------I r-TCHGX---

iiOiGi~'PULSE!....r r----lT .~ 

NOTES: 
1. THE 10M FLOATSAxDx 8USIfti AND COCii ON THIS Eoo! 
2. THE OTHER MASnR fLOATS Ii. Ii, 10 FADM 1.1.1 STATE ON THIS EDGE 
3. THE OTHER MASTER FLOATS A~Ox IUS, ~ AND ~ ON THIS EOIlE 
4. THE 10M REORIYES THE CONTROL LINES 
5. THE 10M IIEDAIYES THE AOJoc LINES 

2.3 RO/GT Operation 

Detailed timing of the RO/GT sequence is given in 
Figure 3G6. To request a transfer of bus control via the 
RO/GT lines, the device must drive the line low for no 
more than one CPU clock interval to generate a request 
pulse. The pulse must be synchronized with the CPU 
clock to guarantee the appropriate setup and hold times 
to the clock edge which samples the RO/GT lines in the 
CPU. After issuing a request pulse, the device must 
begin sampling for a grant pulse with the next low to 
high clock edge. Since the 8086 can respond with a 
grant pulse in the clock cycle immediately following the 
request, the RO/GT line may not return to the positive 
level between the request and grant pulses. Therefore 
edge triggered logic is not valid for capturing a grant 
pulse. It also implies the circuitry which generates the 
request pulse must guarantee the request is removed in 
time to detect a grant from the CPU. After receiving the 
grant pulse, the requesting device may drive the local 
bus. Since the 8086 does not float the address and data 
bus, LOCK or RD until the high to low clock transition 
following the low to high clock transition the requestor 
uses to sample for the grant, the requestor should wait 
the float delay of the 8086 (TCLAZ) before driving the 
local bus. This precaution prevents bus contention dur­
ing the access of bus control by the requestor. 

To return control of the bus to the 8086, the alternate 
bus master relinquishes bus control and issues a 
release pulse on the same RO/GT line. The 8086 may 
drive the SO-52 status lines, RD and LOCK, three clock 
cycles after detecting the release pulse and the ad­
dress/data bus TCHCLmin ns (clock high time) after the 
status lines. The alternate bus master should be three­
stated off the local bus and have other 8086 interface 
circuits (8288 and address latches) re-enabled within the 
8086 delay to regain control of the bus. 

2.4 RO/GT Latency 

The RO to GT latency for a single RO/GT line is similar 
to the HOLD to HLDA latency. The cases given for the 
minimum mode 8086 also apply to the maximum mode. 
For each case the delay from RO detection by the CPU 
to GT detection by the requestor is: 

(HOLD to HLDA delay)- (THVCH + TCHCL+ TCLHAV) 

Figure 3G6. Request/Grant Sequence 

A-44 



AP-67 

This gives a clock cycle maximum delay for an idle bus 
interface. All other cases are the minimum mode result 
minus 476 ns. If the 8086 has previously issued a grant 
on one of the RQ/GT lines, a request on the other RQ/GT 
line will not receive a grant until the first device releases 
the interface with a release pulse on its RQ/GT line. The 
delay from release on one Ra/GT line to a grant on the 
other is typically one clock period as shown in Figure 
3G7. Occasionally the delay from a release on RQ/GT1 

CHANNEL 0 TO 1 

CLOCK 

to a grant on RQ/G'fO will take two clock cycles and is a 
function of a pending request for transfer of control 
from the execution unit. The latency from request to 
grant when the interface is under control of a bus 
master on the other RQ/GT line is a function of the other 
bus master. The protocol embodies no mechanism for 
the CPU to force an alternate bus master off the bus. A 
watchdog timer should be used to prevent an errant 
alternate bus master from 'hanging' the system. 

RoIGTO ~ RELEASE 

~GRANT 

CHANNEL 1 TO 0 

CLOCK 

RoIGn ~RELEASE 

\'-__ ---J/ GRANT 

OR 

\ / GRANT 

Figure 3G7. Channel T,ans'e, Delay 

A-45 



AP-67 

2.5 RQ/GT to HOLD/HLDA Conversion 

A circuit for translating a HOLD/HLDA hand-shake se­
quence into a RQ/GTpulse sequence Is given in Figure 
3GB. After receiving the grant pulse, the HLDA Is ena­
bled TCHCLmin ns before the CPU has three-stated the 
bus. If the requesting circuit drives the bus wlthin20 ns 

of HLDA, It may be desirable to delay the acknowledge 
one clock period. The HLDA is dropped no later than one 
clock period after HOLD is disabled. The HLDA also 
drops at the beginning of the release pulse to provide 
2TCLCL + TCLCH for the requestor to relinquish control 
of the status lines and 3TCLCL to float the remaining 
signals. 

ClOCK--,-----------------, 

A 

74lS78 74502 
)o--H-I J Q 1-....... --; ........ HlDA 

ClK 
K o ...... -+-+-. 

ClR 

HOLD 

74LS78 
)o-+<M-IJ Q 

ClK 

K ClR Q 

RESET---------------~ 

8UMIN-1 
eLK 

HLDR 

A 

Figure 3G8a. HOLD/HLD_iiO/GT Conv.rsion Circuil 

r -1 r-~8MIN r- DATA BUS FLOATS 

HLDA ~ 
------~----------~I 

Figure 3G8b. HOLD/HLD~Q/G'i' Conversion Timing 

A-46 

74502 

+5 

R 

74LS04 



AP-67 

4. INTERFACING WITH 1/0 

The 8086 is capable of interfacing with 8· and 16-bit 1/0 
devices using either 110 instructions or memory mapped 
1/0. The 110 instructions allow the 110 devices to reside 
in a separate 1/0 address space while memory mapped 
1/0 allows the full power of the instruction set to be 
used for 1/0 operations. Up to 64K bytes of 1/0 mapped 
1/0 may be defined in an 8086 system. To the program­
mer, the separate 1/0 address space is only accessible 
with INPUT and OUTPUT commands which transfer data 
between 1/0 devices and the AX (for 16-bit data trans­
fers) or AL (for 8-bit data transfers) register. The first 256 
bytes of the 1/0 space (0 to 255) are directly addressable 
by the 1/0 instructions while the entire 64K is accessible 
via register indirect addressing through the DX register. 
The later technique is particularly desirable for service 
procedures that handle more than one device by allow­
ing the desired device address to be passed to the pro­
cedure as a parameter. 1/0 devices may be connected to 
the local CPU bus or the buffered system bus. 

4A. Elght·Slt i/O 

Eight-bit 110 devices may be connected to either the up­
per or lower half of the data bus. Assigning an equal 
number of devices to the upper and lower halves of the 
bus will distribute the bus loading. If a device is con­
nected to the upper half of the data bus, all 110 ad­
dresses assigned to the device must be odd (AO= 1). If 
the device is on the lower half of the bus, its addresses 
must be even (AO = 0). The address assignment directs 
the eight-bit transfer to the upper (odd byte address) or 
lower (even byte address) half of the sixteen-bit data 
bus. Since AO will always be a one or zero for a specific 
device, AO cannot be used as an address input to select 
registers within a specific device. If a device on the 
upper half of the bus and one on the lower half are 
assigned addresses that differ only in AO (adjacent odd 
and even addresses), AO and BHE must be conditions of 
chip select decode to prevent a write to one device from 
erroneously performing a write to the other. Several 
techniques for generating 1/0 device chip selects are 
given in Figure 4A1. 

The first technique (a) uses separate 8205's to generate 
chip selects for odd and even addressed byte periph­
erals. If a word transfer is performed to an even ad­
dressed device, the adjacent odd addressed 110 device 
is also selected. This allows accessing the devices in­
dividually with byte transfers or simultaneously as a 
16-bit device with word transfers. Figure 4A1(b) restricts 
the chip selects to byte transfers, however a word 
transfer to an odd address will cause the 8086 to run two 

• byte transfers that the decode technique will not detect. 
The third technique simply uses a single 8205 to 
generate odd and even device selects for byte transfers 
and will only select the even addressed eight-bit device 
on a word transfer to an even address. 

If greater than 256 bytes of the 110 space or memory 
mapped 110 is used, additional decoding beyond what is 
shown in the examples may be necessary. This can be 
done with additional TTL, 8205's or bipolar PROMs (In­
tel's 3605A). The bipolar PROMs are slightly slower than 
multiple levels of TTL (50 ns vs 30 to 40 ns for TTL) but 

provide full decoding in a single package and allow in­
serting a new PROM to reconfigure the system 110 map 
without circuit board or wiring modifications (Fig. 4A2). 

ADDRESS 

BHE--+--<JI 

(a) 

(b) 

ADDRESS~ AO"S205 °tO 

Au A, 
Ei 
~ 0, 

(e) 

EVEN ADDRESSED 
WORD OR BYTE 
PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

EVEN ADDRESSED 
BYTE PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

EVEN ADDRESSED 
PERIPHERALS 
(WORD/BYTE) 

ODD ADDRESSED 
PERIPHERALS 
(BYTE) 

Figure 4A 1. Techniques for 110 Device Chip Selects 

CS1 D. 11 
10 

CS2 12 0, 
Au 02 13 
A, 

3805 01 14 A, A·1 
A, A, 15 

"" Au 18 
As 

Au A, 17 

Figure 4A2. Bipolar PROM Decoder 

One last technique for Interfacing with eight-bit periph­
erals Is considered In Figure 4A3. The sixteen-bit data 
bus is multiplexed onto an elght·bit bus to accom­
modate byte oriented DMA or block transfers to memory 
mapped eight·bit i/O. Devices connected to this inter­
face may be assigned a sequence of odd and even ad­
dresses rather than all odd or .even. 

A-47 



AP-67 

RD--,:~--------------, 

I'-' ____ J \ a-Bit 

BHE 
PERIPHERAL 

CS .. 

PERIPHERAL 
DATA BUS 

Figure 4A3. 16· 10 8·BIt Bus Con.Brslon 

4B. Sixteen· Bit 1/0 

For obvious reasons of efficient bus utilization and sim· 
plicity of device selection, sixteen·bit 1/0 devices should 
be assigned even addresses. To guarantee the device is 
selected only for word operations, AO and BHE should 
be conditions of chip select code (Fig. 4B1). 

ADDRESS ___ ...,....,hl 

"'0---+-01 
lIRE ---+--<>1 

AO·2 00 

8205 I 
E3 07 

EVEN ADDRESSED 
WORD PERIPHERALS 

Figure 4Bl. Sixleen·Bil 1/0 Decode 

4C. General Design Considerations 

MINIMAX, MEMORY 1/0 MAPPED AND LINEAR SELECT 

Since the minimum mode 8086 has common read and 
write commands for memory and 1/0, if the memory and 
1/0 address spaces overlap, the chip selects must be 
qualified by MilO to determine which address space the 
devices are assigned to. This restriction on chip select 
decoding can be removed if the 1/0 and memory ad· 
dresses in the system do not overlap and are properly 
decoded; all 1/0 is memory mapped; or RD, WR and M/iO 
are decoded to provide separate memory and 1/0 
readlwrite commands (Fig. 4C1). The 8288 bus controller 
in the maximum mode 8086 system generates separate 
1/0 and memory commands in place of a M/iO signal. An 
1/0 device is assigned to the 1/0 space or memory space 
(memory mapped 1/0) by connection of either 1/0 or 
memory command lines to the command Inputs of the 
device. To allow overlap of the memory and 1/0 address 
space, the device must not respond to chip select alone 
but must require a combination of chip select and a read 
or write command. 

74LS02 74LS368 

WR --t--+,-; ......... '-L ........ _ lOW 

DEFINED EN~~~~ -----------------+-........ 

NOTE: IF IT IS NOT NECESSARY TO THREE·STATE THE COMMAND LINES. A 
DECODER (8205 OR 748138) COULD BE USED. THE 74LS257 IS NOT 
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE 
SPIKES WHEN ENTERING OR LEAVING THREE-STATE • 

Figure 4Cl. Decoding Memory and 1/0 RD and WR Commands lor 
Minimum Mode 8086 Syslems 

Linear select techniques (Fig. 4C2) for 1/0 devices can 
only be used with devices that either reside in the 1/0 ad· 
dress space or require more than one active chip SP''lct 
(at least one low active and one high active). Devices 
with a single chip select input cannot use linear select if 
they are memory mapped. This is due to the aSSignment 
of memory address space FFFFFOH-FFFFFFH to reset 
startup and memory space 00000H-003FFH to interrupt 
vectors. 

ADDRESS .{]cs ... LINE 

~ 1m 

Il5We Wfi 

110 DEVICE 

(0) SEPARATE 110 COMMANDS 

ADDRESSi{]S 
LINES( CS 

1m 1m 110 DEVICE 

WA WA 

(b) MULTIPLE CHIP SELECTS 

Figure 4C2. Linear Selecllor 1/0 

4D. Determining 1/0 Device Compatibility 

This section presents a set of A.C. characteristics whioh 
represent the timing of the asynchronous bus interface 
of the 8086. The equations are expressed in terms of the 
CPU clock (when applicable) and are derived for 
minimum and maximum modes of the 8086. They repre­
sent the bus characteristics at the CPU. 

The results can be used to determine 1/0 device re­
quirements for operation on a single CPU looal bus or 
buffered system bus. These values are not applicable to 

A-48 



AP-67 

a Multibus system bus Interface. The requirements for a 
Multibus system bus are available In the Multibus inter· 
face specification. 

A list of bus parameters, their definition and how they 
relate to the A.C. characteristics of Intel peripherals are 
given in Table 401. Cycle dependent values of the 
parameters are given in Table 402. For each equation, If 
more than one signal path is involved, the equation 
reflects the worst case path. 

ex. TAVRL(address valid before read active) = 
(1) Address from CPU to RO active 

( or) 
(2) ALE (to enable the address through the 

address latches) to ROactive 

The worst case delay path Is (1). 

For the maximum mode 8086 configurations, TAVWLA, 
TWLWHA and TWLCLA are relative to the advanced 
write signal while TAVWL, TWLWH and TWLCL are 
relative to the normal write signal. 

TABLE 401. PARAMETERS FOR PERIPHERAL COMPATIBILITY 

TAVRl - Address stable before RD leading edge 
TRHAX - Address hold after RD trailing edge 
TRlRH - Read pulse width 
TRLDV - Read to data valid delay 
TRHDZ - Read trailing edge to data floating 
TAVDV - Address to valid data delay 
TRLRL - Read cycle time 
TAVWL - Address valid before write leading edge 
TAVWLA - Address valid before advanced write 
TWHAX - Address hold after write trailing edge 
TWLWH - Write pulse width 
TWLWHA - Advanced write pulse width 
TDVWH - Data set up to write trailing edge 
TWHDX - Data hold from write trailing edge 
TW.LCL - Write. recovery time 
TWLCLA - Advanced write recovery time 
TSVRL - Chip select stable before RD leading edge 
TRHSX - Chip select hold after R[) trailing edge 
TSLDV - Chip select to data valid delay 
TSVWL - Chip select stable before WR leading edge 
TWHSX - Chip select hold afterWR trailing edge 
TSVWLA - Chip select stable before advanced write 

(TAR) 
(TRA) 
(TRR) 
(TRD) 
(TDF) 
(TAD) 

. (TRCYC) 
(TAW) 
(TAW) 
(TWA) 

(TWW) 
(TWW) 
(TOW) 
(TWO) 
(TRV) 
(TRV) 
(TAR) 
(TRA) 
(TRD) 
(TAW) 
(TWA) 
(TAW) 

Symbols in parentheses are equivalent parameters specified for 
Intel peripherals. 

In the given list of equations, TWHOXB is the data hold 
time from the trailing edge of write for the minimum 
mode with a buffered data bus. For this equation, 
TCVCTX cannot be a minimum for data hold and a max· 
Imum for write Inactive. The maximum difference Is 50 
,ns giving the result TCLCH·50. If the reader wishes to 
verify the equations or derive others, refer to Section 3F 
for assistance with Interpreting the 8086 bus timing 
diagrams. 

Figure 401 shows four representative configurations 
and the compatible Intel peripherals (Including walt 
states If required) for each configuration are given In 
Table 403. Configuration 1 and 2 are minimum mode 
demultlplexed bus 8086 systems without (1) and with (2) 
data bus transceivers. Configurations 3 and 4 are max· 
Imum mode systems with one (3) and two (4) levels of ad­
dress and data buffering. The last configuration is 
characteristic of a multi-board system with bus buffers 
on each board. The 5 MHz parameter values for these 
configurations are given In Table 404 and demonstrate 

the relaxed device requirements for even a large com­
plex configuration. The analysis assumes ali com· 
ponents are exhibiting the specified worst case param­
eter values and are under the corresponding tem­
perature, voltage and capacitive load conditions. If the 
capacitive loading on the 8282183 or 8286/87 Is less than 
the maximum, graphs of delay vs. capacitive loading In 
the respective data sheets should be used to determine 
the appropriate delay values. 

A-49 

TABLE 402. CYCLE DEPENDENT PARAMETER REQUIREMENTS 
FOR PERIPHERALS 

(a) Minimum Mode 

TAVRL= TCLCL+ TCLRLmin- TCLAVmax=TCLCL-100 
TRHAX = TCLCL - TCLRHmax + TCLLHmln = TCLCL - 150 
TRLRH = 2TCLCL- 60;' 2TCLCL- 60 
TRLDV = 2TCLCL- TCLRLmax- TDVCLmin = 2TCLCL-195 
TRHDZ= TRHAVmin = 155 ns 
TAVDV=3TCLCL- TDVClmin- TCLAVmax=3TCLCL-14O 
TRLRL _ 4TCLCL= 4TCLCL 
TAVWL=TCLCL+ TCVCTVmln- TCLAVmax=TCLCL-l00 
TWHAX=TCLCL+ TCLLHmin- TCVCTXmax=TCLCL-ll0 
TWLWH = 2TCLCL - 40= 2TCLCL - 40 
TDVWH = 2TCLCL+ TCVCTXmin - TCLDVmax = 2TCLCL - 100 
TWHDX= TWHDZmln =·89 
TWLCL = 4TCLCL = 4TCLCL 
TWHDXB=TCLCHmln+(- TCVCTXmax+ TCVCTXmin)= 

TCLCHmin - 50 

Note: Delays relative to chip select are a function of the chip select 
decode technique used and are equal to: equivalent delay 
from address - chip select decode delay . 

(b) Maximum Mode 

TAVRL= TCLCL+ TCLMLmin- TCLAVmax=TCLCL-l00 
TRHAX = TCLCL - TCLMHmax + TCLLHmln = TCLCL - 40 
TRLRH = 2TCLCL- TCLMLmax + TCLMHmln = 2TCLCL- 25 
TRLDV= 2TCLCL- TCLMLmax- TDVCLmin=2TCLCL-65 
TRHDZ= TRHAVmin = 155 
TAVDV= 3TCLCL- TDVCLmin- TCLAVmax= 3TCLCL-140 
TRLRL= 4TCLCL= 4TCLCL 
TAVWLA = TAVRL= TCLCL- 100 
'TAVWL=TAVRL+ TCLCL=2TCLCL-l00 
TWHAX=TRHAX= TCLCL- 40 
TWLWHA = TRLRH = 2TCLCL- 25 
TWLWH = TRLRH - TCLCL= TCLCL - 25 
TDVWH = 2TCLCL+ TCLMHmin - TCLDVmax = 2TCLCL-l00 
TWHDX= TCLCHmin- TCLMHmax+ TCHDZmin= TCLCHmln- 30 
TWLCL = 3TCLCL = 3TCLCL 
TWLCLA = 4TCLCL = 4TCLCL 

TABLE 403. COMPATIBLE PERIPHERALS (5 MHz 8088) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

8251A " lW " " 8253·5 " lW " " 8255A·5 " lW " " 8257·5 " lW " " 8259A " " " " 8271 " lW " " 8273 '" lW " " 8275 " lW " " 8279·5 " lW " " 8041A" " lW " " 8741A " lW " " 8291 " " " '" 
"Includes other Intel peripherals besed on the8041A (I.e., 8292, 8294, 
8295). 

" implies full operation with no walt states. 

W Implies the number of wait states requirad. 



TABLE 404. PERIPHERAL REQUIREMENTS FOR FULL SPEED 
OPERAnoN WITH 5 MHz 8086 

CiinHguratiOn 

Minimum Mode Maximum Mode 

Unbuffered Suffered Suffered Fully Bullered 

TAVRL 70 72 70 58 
TRHAX 57 27 169 141 
TRLRH 340 320 375 347 
TRLDV 205 150 305 261 
TRHOZ 155 158 382 380 
TAVOV 430 400 400 372 
TRLRL 800 mi' 800 772 
TAVWL 70 72 270 298 
TAVWLA - - 70 58 
TWHAX 97 67 169 ' .. 141 
TWLWH 380 340 175 147 
TWLWHA - - 375 347 
TOVWH 300 339 270 25B 
TWHOX 66 15 95 13 
TWLCL 800 772 600 572 
TWLCLA - - ~o 772 
TSVRL ' 52 54 52 40 
TRHSX 50 50 171 143 
TSLOV 412 382 382 354 
TSVWL 52 54 252 240 
TWHSX 90 90 -'171 143 
TSVWLA - - 52 40 

- Not applicable, 

•• MINIMUM MODE 

.... 

AP·67 

Peripheral compatibility Is determined from the equa· 
tions given for the CPU by modifying them to account 
for additional delays from address latches. and data 
transceivers In the configuration. Once the. system con· 
figuration Is selected, the system requirements can be 
determined at the peripheral Interface and used to 
evaluate' compatibility of the peripheral to the system. 
During this process, two ,areas must be considered. 
First, can the device operate at maximum bus band· 
width and If not, how many wait states are required. Sec· 
ond, are there any problems that cannot be resolved by 
wait states. 

Examples of the first are TRLRH (rue:! po," width) and 
TRLDV (read 'access or RD active to output data valid). 
Consider address access time (valle:! address to valid 
data) for the maximum mode fully buffered configura· 
tlon. 

TAVDV=3TCYC-140 ns - address latch delay -
address buffer delay - chip select decode delay - 2 
transceiver delays 

Assuming Inverting latches, buffers and trans· 
celvers with 22 ns max delays (8283, 8281) and a 
bipolar PROM decode with 50 ns delay, the result 
is: 

TAVDV=322 ns @ 5 MHz 

b. MINIMUM MODE BUFFERED DATA AND COMMAND BUSSES 

Figura 401. 8066 Sy~lem Conllgurations 

A-50 



AP-67 

c. MAXIMUM MODE BUFFERED DATA BUS 

eLK 

.21. 

NOTE: FOR OPTIMUM PERFORMANCE WITH INTEl. PERIPHERAl.S, AIOW (ADVANCED 
WRITE) SHOUl.D BE USED. 

d. MAXIMUM MODE DOUBl.E BUFFERED SYSTEM 

eLK 

.214 

.... 
eMD 

PERIPHERAl. 

I-===-...,/IADDR DEVICE 

Figure 401. 8086 System Configurations (Con't) 

The result gives the address to data valid delay required 
at the peripheral (in this configuration) to satisfy zero 
walt state CPU access time. If the maximum delay 
specified for the peripheral Is less than the result, this 
parameter is compatible with zero wait state CPU opera­
tion. If not, wait states must be inserted until TAVDV + n 
* TCYC (n is the number of wait states) is greater than 
the peripherals maximum delay. If several parameters 
require wait states, either the largest number required 
should always be used or different transfer cycles can 
insert the maximum number required for that cycle. 

The second area of concern includes TAVRL (address 
set up to read) and TWHDX (data hold after write). 
Incompatibilities in this area cannot be resolved by the 
Insertion of wait states and may require either .addi-

tional hardware, slowing down the CPU (If the parameter 
is related to the clock) or not using the device. 

As an example consider address valid prior to advanced 
write low (TAVWLA) for the maximum mode fully buf­
fered system. 

TAVWLA= TCYC-100 ns - address latch delay -
address buffer delay - chip select decode delay+ 
write buffer delay (minimum) 

A-51 

Assuming inverting latches and buffers with 22 .ns 
delay (8283, 8287) and an 8205 address decoder with 
18 ns delay 

TAVWLA=38 ns which Is the .tlme a 5 MHz 8086 
system provides 



AP-67 

4E. 110 Examples 

1. Consider an interrupt driven procedure for handling 
multiple communication lines. On receiving an Interrupt 
from one of the lines, the invoked procedure polls the 
lines (reading the status of each) to determine which 
line to service. The procedure does not enable lines but 
simply services Input and output requests until the 
associated output buffer is empty (for output requests) 
or until an input line is terminated (for the example only 
EOT is considered). On detection of the terminate condl· 
tion, the routine will disable the line. It Is assumed that 
other routines will fill a lines output buffer and enable 
the device to request output or empty the Input buffer 
and enable the device to Input additional characters. 

The routine begins operation by loading CX with a count 
of the number of lines in the system and OX with the 110 
address of the first line. The I/O addresses are assigned 
as shown in Figure 4E1 with 8251A's as the I/O devices. 
The status of each line is read to determine if it needs 
service. If yes, the appropriate routine is called to input 
or output a character. After servicing the line or if no 
service is needed, CX is decremented and OX is in· 
cremented to test the next line. After all lines have been 
tested and serviced, the routine terminates. If all inter· 
rupts from the lines are OR'd together, only one inter· 
rupt is used for all lines. If the interrupt is input to the 
CPU through an 8259A interrupt controller, the 8259A 
should be programmed in the level triggered mode to 
guarantee all line interrupts are serviced. 

To service either an input or output request, the called 
routine transfers OX to BX, and shifts BX to form the off· 
set for this device into the table of input or output buf· 
fers. The first entry in the buffer is an index to the next 
character position in the buffer and is loaded into the 51 
register. By specifying the base address of the table of 

DEVICES ARE CONNECTED TO THE UPPER AND 
LOWER HALVES OF THE DATA BUS. 

ADDRESS 

o 
1 
2 
3 
4 
5 
6 
7 

ETC. 

DEVICE 0 
DEVICE 1 
DEVICE 0 
DEVICE 1 
DEVICE 2 
DEVICE 3 
DEVICE 2 
DEVICE 3 

DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 
DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 

Figure 4E1. Device Asslgnmenl 

buffers as a displacement into the data segment, the 
base + index + displacement addressing mode allows 
direct access to the appropriate memory location. 8086 
code for part of this example is shown In Figure 4E2. 

2. Asa second example, consider using memory 
mapped I/O and the 8086 string prlmative instructions to 
perform block transfers between memory and I/O. By 
assigning a block of the memory address space 
(equivalent in size to the maximum block to be trans· 
ferred to the I/O device) and decoding this address 
space to generate the I/O device's chip select, the block 
transfer capability Is easily implemented. Figure 4E3 
gives an Interconnect for 16·bit1/0 devices while Figure 
4E4 incorporates the 16·bit bus to 8·bit bus multiplexing 
scheme to support 8·bit 110 devices. A code example to 
perform such a transfer is shown in Figure 4E5. 

; THIS CODe DEMONSTRATES TESTING DEVICE 
; STATUS FOR SERVICE, CONSTRUCTING THE 
; APPROPRIATE LINE BUFFER ADDRESS FOR INPUT 
; AND OUTPUT AND SERVICING AN INPUT 
; REQUEST 

MASK EQU OFFFDH 
CHECK_STATUS: INPUT AL, OX ; GET 8251A STATUS. 

MOV AH,AL 
TEST AH, READ_OFLWRITLSTATUS 
JZ NEXT_IO 
CALL ADDRESS 
TEST AH, READ STATUS 
JZ WRITE_SERVICE 
CALL READ 
TEST AH, WRITE STATUS 
JZ NEXT_IO 

WRITE_SERVICE: CALL WRITE 
NEXT_IO: DEC ex ; TEST IF DONE. 

ADDRESS: 

READ: 

JNC EXIT ; YES, RESTORE. RETURN. 
AND OX, MASK ; REMOVE Ai AND 
ADD OX, 3 ; INCREMENT ADDREss. 
OR OX, 2 ; SELECT STATUS FOR 
JMP CHECtLSTATUS ; NEXT INPUT. 

AND ox, MASK 
MOV BH, Dl 
INC BH 
SHR BH 
XOR Bl, Bl 
RET 
INPUT Al, ox 

; SELECT DATA. 
; CONSTRUCT BUFFER 
; DISPLACEMENT FOR 
; THIS DEVICE. 
; ax IS THE DISPLACEMENT. 

; READ CHARACTER. 
MOV SI, READ_BUFFERS IBX] 
MOV READ_BUFFERS IBX + 511, AL 
INC READ_BUFFERS [BX] 

; GET CHARACTER POINTER. 
; STORE CHARACTER. 
; INCR CHAAACTER POINTER. 
; END OF TRANSMISSION? CMP Al, EOT 

JNZ CONT_READ 
CAll DISABLE READ 
CONT _READ: RET 

Figure 4E2. 

q 3605 
A19.8 A·1 

DECODE 

BIPOLAR 
PROM 

; YES, DISABLE RECEIVER. 
; SEND MESSAGE THAT INPUT 
; IS READY. 

1/0 CHIP SELECT 

16· 
BIT 
1/0 

TRANSFER 256 BYTE BLOCKS TO THE 1/0 DEVICE 

THE ADDRESS SPACE ASSIGNED TO THE 1/0 DEVICE IS 

A,. 
FROM k-- BASE 
THRU j.-BASE =*=' A7 ~o 

ADDRESS O's 
ADDRESS 1's 

MEMORY DATA NEED NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES 
1/0 TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES 

Figure 4E3. Block Transfer 10 16·BII 110 USing 8086 String Prlmatlves 

A-52 



AP·67 

015·8 \,.,---...,J 

BHE --r--<t.._ 

3605 
A·1 

CHIP SELECT 

CS 

8·BIT 
110 

DEVICE 

ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 16-BIT BUS IS 
MULTIPLEXED ONTO AN 8·BIT PERIPHERAL BUS. 

Figure 4E4. Block Transfer 10 8·BIt 110 Using 8086 Siring Prlmatives 

; DEFINE THE 110 ADDRESS SPACE 
110 SEGMENT 
ORG BLOCILADDRESS 

IIO_BLOCK: OW 128 DUP (?) 
110 ENDS 

; ASSUME THE DATA IS FROM THE CURRENT 
; DATA SEGMENT 

CLD ;DF=FORWARD 
LES 01, IIO_BLOCK....ADDRESS ; 110 BLOCK ADDRESS 

MOV CX, BLOCK_LENGTH 
MOV SI, SOURCE....ADDRESS 

; CONTAINS THE ADDRESS 
; OF 110 BLOCK 

MOVS 110 BLOCK ; PERFORM WORD TRANSFERS 

; END CODE EXAMPLE 

NOTE THE CODE IS CAPABLE OF PERFORMING BYTE TRANSFERS BY 
CHANGING THE 110 BLOCK DEFINITION FROM 128 WORD TO 256 BYTES 

Figure 4E5. Code for Block Transfers 

5. INTERFACING WITH MEMORIES 

Figure 5.1 is a general block diagram of an 8086 
memory. The basic characteristics of the diagram are 
the partitioning of the 16·bit word memory into high and 
low 8·bit banks on the upper and lower halves of the 
data bus and inclusion of BHE and AO in the selection of 
the banks. Specific implementations depend on the type 
of memory and the system configuration. 

5A. ROM and EPROM 

The easiest devices to interface to the system are ROM 
and EPROM. Their byte format provides a simple bus in· 
terface and since they are read only devices, AO and 
BHE need not be included in their chip enable/select 
decoding (chip enable is similar to chip select but addi· 
tionally determines if the device is in active or standby 
power mode). The address lines connected to the 
devices start with A 1 and continue up to the maximum 

number the device can accept, leaving the remaining ad; 
dress lines for chip enable/select decoding. To connect 
the devices directly to the multiplexed bus, they must 
have output enables. The output enable is also 
necessary to avoid bus contention in other configura· 
tions. Figure 5A1 shows the bus connections for ROM 
and EPROM memories. No special decode techniques 
are required for generating chip enables/selects. Each 
valid decode selects one device on the upper and lower 
halves of bus to allow byte and word access. Byte ac· 
cess is achieved by reading the full word onto the bus 
with the 8086 only accepting the desired byte. For the 
minimum mode 8086, if RD, WR and M/iO are not decod· 
ed to form separate commands for memory and I/O, and 
the I/O space overlaps the memory space assigned to 
the EPROM/ROM then M/iO (high active) must be a con· 
dition of chip enable/select decode. The output enable 
is controlled by the system memory read signal. 

HIGH BAN~E(~----------, 

ADDRESS _____ ..., 

CONTROL 

DATA 

SE~;~~~~ __________ ~ 

Figure 5.1. 8086 Memory Array 

CHIP SELECT -----~--_<4 CE 

A1-12 -----'r1 

Ril------H 

Do·, \1"'-----,,----1 

NOTE Ao AND iiHE ARE NOT USED. 

Figure 5A1. EPROM/ROM Bus Interface 

A-53 



AP-67 

Static ROM's and EPROM's have only four parameters 
to evaluate when determining .their compatibility to the 
system. The parameters, equations and evaluation tech· 
niques given in the I/O section are also applicable to 
these devices. The relationship of parameters is given in 
Table 5A1. TACC and TCE are related to the same equa· 
tion and differ only by the delay associated with the chip 
enable/select decoder. As an example, consider a 2716 
EPROM memory residing orithe multiplexed bus of a 
minimum mode configuration: 

TACC = 3TCLCL- 140- address bufferdelay= 430 ns 
(8282= 30 ns max delay) 

TCE=TACC-decoder delay=412 ns 
(8205 decoder delay= 18 ns) 

TOE= 2TCLCL-195= 205 ns 

TDF= = 155 ns 

TABLE 5Al. EPROM/ROM PARAMETERS 

TOE - Output Enable to Valid Data" TRLDV 
TACC - Address to Valid Data" TAVDV 
TCE - Chip Enable to Valid Data" TSLDV 
TDF - Output Enable High to Output Float" TRHDZ 

The results are the times .the system configuration re­
quires of the component for full speed compatibility 
with the system. Comparing these times with 2716 
parameter limits indicates the 2716·2 will work with no 
wait states while the 2716 will require one wait state. 
Table 5A2 demonstrates EPROM/ROM compatibility for 
the configurations presented in the I/O section. Before 
designing a ROM or EPROM memory system, refer to 
AP-30 for additional information on design techniques 
that give the system an upgrade path from 16K to 32K 
and 64K devices. 

TABLE 5A2. COMPATIBLE EPROM/ROM (5 MHz 8086) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

2716·1 '" '" '" '" 2716·2 '" lW lW lW 
2732 lW lW lW lW 
2332 '" '" '" '" 2364 '" '" '" '" 

58. Static RAM 

Interfacing static RAM to the system introduces several 
new requirements to the memory design. AO and BHE 
must be included in the chip seleCt/chip enable 
decoding of the devices and write timing must be con· 
sidered in the compatibility analysis. 

For each device, the data bus connections must be 
restricted to either the upper or lower half of the data 
bus. Devices like the 2114 or 2142 must not straddle the 
upper and lower halves of the data bus (Fig. 5B1). To 
allow selecting either the upper byte, lower byte or full 
16-bit word for a write operation, BHE must be a condi· 
tion of decode for selecting the upper byte and AO must 
be a condition of decode for selecting the lower byte. 
Figure 5B2 gives several selection· techniques for 

devices with single chip selects and no output enables 
(2114, 2141, 2147). Figure 5B3gives selection tech­
niques for devices with chip selects and output enables. 

1101 ...---... 09 

CS--~I 

0, 

ADDRESS 
0, 

RD--.ajOD 
0, 

Figure 581. Incorrect Connection of 2142 Across Byte Boundaries 

The first group requires inclusion of AO and BHE to 
decode or enable the chip selects. Since these 
memories do not have output enables, read and write 
are used as enables for chip select generation to pre­
vent bus contention. If read and write are not used to 
enable the chip selects, devices with common input/out· 
put pins (like the 2114) will be subjected to severe bus 
contention between chip select and write active. For 
devices with separate input/output lines (like 2141, 
2147), the outputs can be externally buffered with the 
buffer enable controlled by read. This solution will only 
allow bus contention between memory devices in the ar­
ray during chip select transition periods. These tech· 
niques are considered in more detail in Section 2C. 

For devices with output enables (2142), write may be 
gated with BHE and AOto provide upper and lower bank 
write strobes. This simplifies chip select decoding by 
eliminating BHE and AO as a condition of decode. 
Although both devices are selected during a byte write 
operation, only one will receive a write strobe. No bus 
contention will exist during the write since a read com· 
mand must be issued to enable the. memory output 
drivers. 

If multiple chip selects are available at the device, BHE 
and AO may directly control device selection. This 
allows normal chip select decoding of the address 
space and direct connection of the read and write com­
mands to the devices. Alternately, the multiple chip 
select inputs of the device could directly decode the ad­
dress space (linear select) and be combined with the 
separate write strobe technique to minimize the control 
circuitry needed to generate chip selects. 

As with the EPROM's and ROM's, if separate commands 
are not provided for memory and I/O in the minimum 
mode 8086 and the address spaces overlap, M/iO (high 
active) must be a condition of chip select decode. Also, 
the address lines connected to the memory devices 
must start with A 1 rather than AO. 

A-54 



ADDRESS L ____ --, 

AO------j 

BHE----t-r--~ 

M/iO OR 
ADDITIONAL ----+..-t----q 

ADDRESS 

ADDR '--_-.--,.--.,/ 

iiD 
WR 

(a) 

AO------------" 
BHE--------------(-b)----~ 

iiHE------l 
Ao----l 
AD 
ViR 

M/iO ----------1 

ADOR 

(e) 

CS3 

CS4 

~--t-+--~ CS1 

AD 
WR 

M/iO ----rt---I 

iiHE-----r----~ 

(d) 

+5 

AP-67 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

LOW BANK 
CHIP SELECT 

2142's 

A10·1 

AD 

Ao 

WR 

BHE 

A19·14 

+v 

(a) HIGH AND lOW BANK WRITE STROBES 

2142's 

HIGH BANK A,O., 
CHIP SELECT --------..., 

CHIP SELECTS 
(HIGH AND LOW FOR 
FOUR GROUPS) 

+5 

+5 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

RD----------~ 

WR------~_i 

Ao------+-i 

BHE -----'--+------qCS6S2 

CS-----~~-----~ 

(b) Ao AND BHE AS DIRECT CHIP SELECT INPUTS 

2142's 

A10.' ________ ..., 

AD -----'-----1 

BHE---'_..J 

A19 ------..... --r-----q CSi:S2 

A'8 ------------< ....... ----~ 
(e) LINEAR CHIP SELECT USED WITH HIGH 

AND LOW BANK WRITE STROBES 

Figure 5B2. Generating Chip Selects for Devices without Output 
Enable. Figure 5B3. Chip Selection for Device. with Output Enables 

A-55 



AP-67 

For analysis of RAM compatibility, the write timing 
parameters listed in Table SB1 may also need to be con· 
sidered (depending on the RAM device being consid· 
ered). The CPU ciock relative timing is given in Table 
SB2. The equations specify the device requirements at 
the CPU and provide a base for determining device reo 
quirements in other configurations. As an example con· 
sider the write timing requirements of a 2142 in a max· 
imum mode buffered 8086 system (Figure SB4). The 
2142 write parameters that must be analyzed are TWA 
advanced wri~e pulse width, TWR write release time, 
TDWA data to write time overlap and TDH data hold 
from write time. 

lWA=2TCLCL- TCLMLmax+ TCLMHmin=375 ns. 
lWR=2TCLCL- TCLMHmax+ TCLLHmln+ TSHOVmin= 170 ns. 
TDWA= 2TCLCL- TCLDVmax + TCLMHmin - TIVOVmax = 265 ns. 
TDH = TCLCH - TCLMHmax+ TCHDXmln + TIVOVmln = 95 ns. 

TABLE SB1. TYPICAL WRITE TIMING PARAMETERS 

lW - Write Pulse Width 
lWR - Write Release (Address Hold From End of Write) 
TDW - Data and Write Pulse Overlap 
TDH - Data Hold From End of Write 
TAW - Address Valid to End of Write 
TCW - Chip Select to End of Write 
TASW - Address Valid to Beginning of Write 

TABLE 5B2. CYCLE DEPENDENT WRITE PARAMETERS 
FOR RAM MEMORIES 

(a) Minimum Mode 

TW=lWLWH =2TCLCL-60= 340 ns 
lWR= TCLCL- TCVCTXmax+ TCLLHmin= 90 ns 
TDW = 2TCLCL - TCLDVmax + TCVCTXmin = 300 ns 
TDH=lWHDX=88 ns 
TAW= 3TCLCL- TCLAVmax+ TCVCTXmin = 500 ns 
TCW=TAW-Chip Select Decode 
TASW=TCLCL- TCLAVmax+ TCVCTXmin= 100 ns 

(b) Maximum Mode 

TW= TCLCL- TCLMLmax+ TCLMHmin = 175 ns 
lWR= TCLCL- TCLMHmax+ TCLLHmin= 165 ns 
TDW= lW= 175 ns 
TDH = TCLCHmin- TCLMHmax+ TCHDXmin = 93 ns 
TAW= 3TCLCL- TCLAVmax+ TCLMHmin= 500 ns 
TCW=TAW-Chip Select Decode 
TASW= 2TCLCL- TCLAVmax + TCLMLmin = 300 ns 
lWA'=lW+TCLCL=375 ns 
TDWA' = 2TCLCL - TCLDVmax + TCLMHmin = 300 ns 
TASWA' = TASW- TCLCL= 100 ns 

• Relative to Advanced Write. 

Comparing these results with the 2142 family indicates 
the standard 2142 write timing is fully compatible with 
this 8086 configuration. Read timing analysis is also 
necessary to completely determine compatibility of the 
devices. 

5C. Dynamic RAM 

Dynamic RAM is perhaps the most complex device to 
design into a system. To relieve the engineer of most of 
this burden, Intel provides the 8202 dynamic RAM con· 
troller as part of the 8086 family of peripheral devices. 
This section will discuss using the 8202 with the 8086 to 
build a dynamic memory system for an 8086 system. For 

additional information on the 8202, refer to the 8202 
data sheet (9800873) and application note Ap·4S USing 
the 8202 Dynamic RAM Controller (9800809A). 

Figure 5B4. Sample Configuration for Compatibility Analysis Example 

5.C.1 Standard 8086·8202 Interconnect 

Figure S.C.1.1 shows a standard interconnection for an 
8202 into an 8086 system. The configuration accom· 
modates 64K words (128K bytes) of dynamic RAM ad· 
dressable as words or bytes. To access the RAM, the 
8086 initiates a bus cycle with an address that selects 
the 8202 (via PCS) and the appropriate transfer com· 
mand (MRDC or MWTC). If the 8202 is not performing a 
refresh cycle, the access starts immediately, otherwise, 
the 8086 must wait for completion of the refresh. XACK 
from the 8202 is connected to the 8284 ROY input to 
force the CPU to wait until the RAM cycle is completed 
before the CPU can terminate the bus cycle. This effec· 
tively synchronizes the asynchronous events of refresh 
and CPU bus cycles. The normal write command 
(MWTC) is used rather than the advanced command 
(AMWC) to guarantee the data is valid at the dynamic 
RAMS before the write command is issued. The gating 
of WE with AO and BHE provides selective write strobes 
to the upper and lower banks of memory to allow byte 
and word write operations. The logic which generates 
the strobe for the data latches allows read data to prop· 
agate to the system as soon as the data is available and 
latches the data on the trailing edge of CAS. 

DETAILED TIMING 

Read Cycle 

For no wait state operation, the 8086 requires data to be 
valid from MRDC in: 

2TCLCL - TCLM L - TDVCL - buffer delays = 291 ns. 

Since the 8202 is CAS access limited, we need only ex· 
amine CAS access time. The 8202/2118 guarantees data 
valid from 8202 .AD low to be: 

(tph + 3tp + 100 ns) 8202 TCC delay + TCAC for the 2118 

A-56 



AP-67 

MRDC 
MWTC 

HIGH BYTE 
WRITE 

.HE 

8217 UFBHE XCEIYER 
I A. 

I 

OTHER 
AEADY 
INPUTS 

OAT, 
I 

DATA 

2118 

Figure 5C1.1. 5 MHz 8088I8202I128K Byte System - Double Data, Control and Address Buffering (Note: Bus driver on 8202 Is not needed Ille.8 
than 14K byla. are uaed) 

For a 25 MHz 8202 and 2118·3, we get 297 ns which Is in· 
sufficient for no wait state operation. If only 64K~tes 
are accessed, the 8202 requires only (tph + 3tp + 80 ns) 
giving 282 ns access and no wait states required. Refer 
to Figure 5.C.1.2 and 5C.1.3 for timing information on 
the 8202 and 2118. 

Write Cycle 

An important consideration for dynamic RAM write 
cycles Is to guarantee data to the RAM is valid when 
both CAS and WE are active. For the 2118, if WE is valid 
prior to CAS, the data setup is to CAS and If CAS is valid 
before WE (as would occur during a read modify write 
cycle) the data setup time Is to WE. For the 8202, the WR 
to CAS delay Is analyzed to determine the data setup 
time to CAS inherently provided by the 8202 command 
to RASICAS timing. The minimum delay from WR to· 
CASis: 

TCCmln=tph+2tp+ 25= 127 i1s @ 25 MHz 

Subtracting buffer delays and data setup at the 2118, 
we have 83 ns to generate valid data after the write 
command is issued by the CPU (in this case the 8288). 
Since the 8086 will not guarantee valid data until 
TCLAVmax-TCLMLmln=.100 ns from the advanced 

write signal, the normal write signal Is used. The normal 
write MWTC guarantees data is valid 100 ns before It Is 
active. The worst case write pulse width Is approximate· 
Iy 175 ns which is sufficient for all 2118's. 

Synchronization 

To force the 8086 to wait during refresh the XACK or 
SACK lines must be returned to the 8284 ready input. 
The maximum delay from RO to SACK (if the 8202 is not 
performing refresh) Is TAC = tp + 40 = 80 ns. To prevent 
a wait state at the 8086, ROY must be valid at the 8284 
TCLCHmin - TCLMLmax - TR1VCLmax = 48 ns after 
the command is active. This implies that under worst 
case conditions, one wait state will be inserted for every 
read cycle. Since MWTC does not occur until one clock 
later, two wait states may be inserted for writes. 

The XACK from command delay will assert ROY TCC + 
TCX = (tph + 3tp + 100) + (5tp + 20) = 460 ns after the 
command. This will typically insert one or two wait 
states. 

Unless 2118·3's are used in 64K byte or less memories, 
SACK must not be used since It does not guarantee a 
wait state. From the previous access time analysis we 
saw that other configurati9ns required a walt state. 

A-57 



XlCLK 

- tsc 

--. --'---, I--t._ 

RDORW R \ 

_teA -_I ___ tCHS~ 
tee 
I--tRCD--

s 

- tAS 
__ t .. AJ 

IS 

• 

a 

K 

K XAC 

OH WE (WE=V 
FOR A RD eye LEI 

[rELAY' ONLVJ 

- -.. 
ROW 

- -' 

- 1c=l 
\ 

-, IRAH 1-
ADDR 

-I lAse f-

------- -

-
\ 

-I twes -

AP-67 

r----------------------

I tA' 

tAC 
IRSH 

COL ADDR 

leAH 

t 
tCAS - tcK-

- tKCH ------------, r--
\ I 

tACK- ~ 

[--
lex . - txw ---1 I 

twwr ____ '-...;. _____ 
I I 

tCWH 

Figure 5CU. 8202 Timing Information 

A-58 

'---

IL 

I-



AP-67 

A.C. CHARACTERISTICS 
TA=O·Cto 70·C, Vcc=5V±10% 

Measurements made with respect to RAS1 - RAS4, CAS, 
WE, OUTo- OUTe are at 2.4V and 0.8V. All other pins are 
measured at 1.5V. 

Loading: 

64 Devices 

Symbol 

tp 

tAC 

tAAH 

tASA 

tCAH 

tASC 

tAco 

twcs 

tASH 

tCAS 

tAP 

tWCH 

tREF 

tCA 

tcc 

tAFA 

tAS 

tCA 

tCK 

tKCH 

tsc 

tcx 

tACK 

txw 

tLL 

tCHS 

tww 

tAL 

tLA 

tpL 

tpH 

tpH 

Notel: 

CL= 30 pF 
CL=320 pF 
CL=230 pF 
CL=450 pF 
CL=640 pF 

Parameter 

Clock (Internal/External) Period (See Note 1) 

Memory Cycle Time 

Row Address Hold Time 

Row Address Setup Time 

Column Address Hold Time 

Column Address Setup Time 

RAS to CAS Delay Time 

WE Setup to CAS 

RAS Hold Time 

CAS Pulse Width 

RAS Precharge Time (See Note 2) 

WE Hold Time to CAS 

Internally Generated Refresh to Refresh Time 
64 Cycle 
128 Cycle 

RD, WR to RAS Delay 

RD, WR to CAS Delay 

REFRQ to RAS Delay 

Ao-A15 to RD, WR Setup Time (See Note 4) 

RD, WR to SACK Leading Edge 

RD, WR to XACK, SACK Trailing Edge Delay 

RD, WR Inactive Hold to SACK Trailing Edge 

RD, WR, PCS to X/CLK Setup Time (See Note 3) 

CAS to XACK Time 

XACK Leading Edge to CAS Trailing Edge Time 

XACK Pulse Width 

REFRQ Pulse Width 

RD, WR, PCS Active Hold to RAS 

WR to WE Propagation Delay 

S1 to ALE Setup Time 

S1 to ALE Hold Time 

External Clock Low Time 

External Clock High Time 

External Clock High Time for Vcc = 5V ± 5% 

1. tp minimum determines maximum oscillator frequency. 

Min Max Units 

40 54 ns 

10tp-30 12 tp ns 

tp-10 ns 

tpH ns 

5 tp ns 

tp- 35 ns 

2 tp- 10 2 tp+ 45 ns 

tp- 40 ns 

5 tp- 30 ns 

5 tp- 30 ns 

4 tp- 30 ns 

5 tp- 35 ns 

548 tp 576 tp ns 
264 tp 288 tp ns 

tpH+ 30 tpH + tp+ 75 ns 

tpH+ 2 tp+ 25 tpH + 3 tp+ 100 ns 

1.5tp+30 2.5 tp+ 100 ns 

0 ns 

tp+ 40 ns 

30 ns 

10 ns 

15 ns 

5 tp- 40 5 tp+ 20 ns 

10 ns 

2 tp- 25 ns 

20 ns 

0 ns 

8 50 ns 

40 ns 

2 tp+ 40 ns 

15 ns 

22 ns 

18 ns 

tp maximum determines minimum frequen~ maintain 2 ms refresh rate and tAP minimum. 
2. To achieve the minimum time between the RAl) of a memory cycle and the ItliS of a refresh cycle, such as a transparent refresh, AEFAQ should be 

pulsed In the previous memory cycle. 
3. tsc Is not required for proper operation which Is In agreement withthe other specs, but can be used to synchronize external signals with XlCLK If It Is 

desired. 
4. If tAS Is less than 0 then the only Impact is that tASR decreases by a corresponding amount. 

Figure 5Cl.2. 8202 Timing Information (Con'l) 

A-59 



Ap·67 

AEADCYCLE 

v,. 
m 

VIL 

"C .1 

'''' 1---'''---.1 
@ 

l@ 1 

v,. 
CAS 

VIL 

-"1 'co, -teP.~ @ 
'ROO tRSH 

I CD' \\\ \ ' .... 
® 

V,. 

ADDRESSES 

VIL 

lA, 

1"" 1--''''--1 --/'''' - 1---'",.-

gx ROW ,X ){ COLUMN K ADDRESS ADDRESS 

V,. 

WE 
VIL 

IIRCS - 'AC'- J-eD 
c6! \ 

teAC 
-toFF~ tRAC 

VO' 
HIGH IMPEDANCE 

DoUT 

VOL 

® r--~-V'-L-'D----i @ 
------------------------------------------~-----------------@~~I ____ D_A_U_O~U_T ____ _$ 

WAITE CYCLE 

V,. 

m 
VIL 

VIH 

CAS 
VIL 

VIH 

ADDRESSES 

VIL 

V,. 
WE 

VIL 

VIH 

D'N 

V" 

Vo. 

DOUT 

VOL 

"C 
' .... 

eD ® 

@ 1CRP1 
te,. 

""'. IRSH 

I eD \\ \~ teAS 
® 

1 IA .. 
lA, 

I-IRAH--! -jIASC io- 1----''''.-

XeD ROW X X COLUMN K ® ADDRESS ADDRESS 

!RWL 

IOWL 

I--twcs- I---'WC. ===:i / 
®\I twp I 

IWCR 

i-<!) '''~ _-.--IDH~ 
:XeD ® 

IOHA 

HIOH IMPEDANCE 

NOTES: 1.2. VIH MIN AND VIL MAX ARE REFERENCE LEVELS FDA MEASURING tiMING OF 
INPUT SIGNALS. 

3,4., YOH MIN AND VOL ..... x ARE REFERENCE LEVELS FOR MEASURING TIMING 
OF DOUT. 

6. tOl''' IS MEASURED TO lOUT < IIOLI. _ _ . 
I. 108 AND IOH ARE REFeRENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 
t· lReH IS REFERENCED TO THE TRAILING eDGE OF CAl OR W, WHICHEVER 

OCCURS FIRST. 
8. ICRP REQUIREMENTIS ONLY APPLICABLE FOR RiDlCAS CYCLES 

PRECEDED BY A cu.ONL Y CYCLE (I .•. , FOR SYSTEMS WHERE CAS HAS 
NOT BEEN DECODED WITH RAi). 

Figure 5C1.3. 2118 Family Timing 

A-60 

1--, .. --1 
11 

r-'CPNI 
If 

K 



AP·67 

A.C. CHARACTERISTICSll,2,3J 
TA = O'C to 70'C, VOO=5V:t 10%, Vss=OV, unless otherwise noted. 

READ, WRITE, READ·MODIFY·WRITE AND REFRESH CYCLES 

2118·3 2118-4 211&7 

Syml!ol Parameter Min. ...... Min. Max. Min. MIlK. Unit Not •• 

tRAC Access Time From RAS 100 120 150 ns 4,5 

tCAC Access Time from CAS 55 65 80 ns 4,5,6 

tREF Time Between Refresh 2 2 2 ms 

tRP RAS Precharge Time 110 120 135 ns 

tCPN CAS Precharge Time (non·page cycles 50 55 70 ns 

tCRP CAS to RAS Precharge Time 0 0 0 ns 

tRCO RAS to CAS Delay Time 25 45 25 55 25 70 ns 7 

tRSH RAS Hold Time 70 65 105 ns 

tCSH CAS Hold Time 100 120 165 ns 

tASR Row Address Set·Up Time 0 0 0 ns 

tRAH Row Address Hold Time 15 15 15 ns 

tASC Column Address Set·Up Time 0 0 0 ns 

tCAH Column Address Hold Time 15 15 20 ns 

tAR Column Address Hold Time to RAS 80 70 90 ns 

tT Transition Time (Rise and Fall) 3 50 3 50 3 50 ns 8 

tOFF Output Buffer Turn Off Delay 0 45 0 50 0 80 ns 

READ AND REFRESH CYCLES 

TRC Random Read Cycle Time _ 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

teAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

tRCS Reed Command Set·Up Time 0 0 0 ns 

tRCH Read Command Hold Time 0 0 0 ns 

WRITE CYCLE 

tRC Random Write Cycle Time 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

teAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

twcs Write Command Set·Up Time 0 0 0 ns 9 

tWCH Write Command Hold Time 25 30 45 ns 

tWCR Write Command Hold Time, to RAS 70 65 115 ns 

twp Write Command Pulse Width 25 30 50 ns 

tRWL Write Command to RAS Lead Time 80 65 110 ns 

tCWL Write Command to CAS Lead Time 45 50 100 ns 

tos Data·ln Set·Up Time 0 0 0 ns 

tOH Data·ln Hold Time 25 30 '45 ns 

tOHR Data·ln Hold Time, to RAS 70 65 115 ns 

READ·MODIFY·WRITE CYCLE 

tRWC Read·Modlfy·Wrlte Cycle Time 265 320 410 ns 

tRRW RMW Cycle RAS Pulse Width 165 10000 190 10000 265 10000 ns 

tCRW RMW Cycle CAS Pulse Width 105 10000 120 10000 165 10000 ns 

tRWO RAS to WE Delay 100 120 150 n8 9 

tcwo CAS to WE Delay 55 65 80 ns 9 

NOTES: 
1. All voltages referenced to vss. _ 
2. Eight cycles are required after power'up or prOlonged periods (greater than 2 ms) of AAS Inactivity before proper davice operation Is achieved. Any 8 cycles which perform 

refresh are adequate for this purpose. 
3. A.C. Characteristics assume tr = 5 ns. 
4. Assume that tRCo -< tRCD (max.), If tRCO Is greater than tRCo (max.) then tRAe ~lIIlncrea88 by the amount that tRCO exceeds tRCO (max.). 
5. Load = 2 TTL loads and 100 pF. 
6. Assumes tRCo > tRCo (max.). 
7. tACO (max.) fs specified as a reference point only; If tRCO Is less than tRCo (m,ax.) access time Is tRACt If tRCD Is greater than tRCo (max.) acce$s time Is tRCo+tCAC· 
8. tor Is measured between VIH (min.) and VIL (max.). . 
9. tr,CS. tcwo and tr,WO are specified as reference pOints only. If twcs ;. twes (min.) the cycle Is an early write cycle and the data out pin will remain high Impedance 

~e:~~~o~~~~:S:~~f~e~r~!~·~: :RY~~~~~n~~~~~~ ~n:a~~~d~t~:~gn~~~~~' ~~~:'~~~~~~t~s~~~:~·~~::. cycle and the data out will contain the data read from the 

Figure SC1.3. 211. Family Timing (Con't) 

A-61 



AP·67 

S.C.2 Enhanced Operation 

Two problems are evident from the previous investlga· 
tlon: 

1) SACK timing from command will not allow reliable 
operation while XACKis not active early enough to pre· 
vent wait states. 

2) The norm,,' write command required to guarantee 
data setup is not enabled until the CPU has sampled 
READY thereby forcing multiple wait states during write 
operations. 

The first problem could be resolved if an early command 
could be generated that would guarantee SACK was 

+5 

PRE 

52"-----+=-t D 

10 

81---+--+"1 

13 

4, 

. Sii---+--rt D 

74LS32 

Q 

Q 

Q 

F+----'-11"1C~4LS74 Q 8 

CLR 

'--__ --113 

EARLYRo 

valid when READY was sampled and SACK to data valid 
satisfied the CPU requirements. Figure 5.C.2.1 is a clr· 
cuit which provides an early read command derived from 
the maximum mode status. The early command Is en· 
abled. from the trailing edge of ALE and disabled on the 
trailing edge of the normal command. The command 
provides an additional TCHCLmin - TCHLLmax + 
TCLMLmax - circuit delays = 53 ns of access time and 
time to generate RDY from the early command. If we go 
back to our previous equations, early command to valid 
data at the CPU is now: 

TCHCLmin - TCHLLmax + 2TCLCL - TDVCLmax - buf· 
fer and circuit delays = 333 ns 

13 

Figura 5C2.1. Early Read and Write Command Generation 

1\.-62 



AP-67 

We can now use the slowest 2118 which gives 8202 and 
2118 access of 320 ns. Early command to ROY timing is 
TCLCL- TCHLLmax - circuit delays - TR1VCLmax = 
115 ns and provides 35 ns of margin beyond the 8202 
command to SACK delay. 

The write timing of the 8202 and write data valid timing 
of the 8086 do not allow use of an early write command. 
However, if the 8202 clock is reduced from 25 MHz to 20 
MHz and WE to the RAM's is gated with CAS, the ad· 
vanced write command (AMWC) may be used. At 20 MHz 
the minimum command to CAS delay is 148 ns while the 
maximum data valid delay is 144 ns. 

The reduced 8202 clock frequency still satisfies no wait 
state read operation from early read and will insert no 
more than one wait state for write (assuming no conflict 
with refresh). 20 MHz 8202 operation will however reo 
quire using the 2118·4 to satisfy read access time. 

Note that slowing the 8202 to 22.2 MHz guarantees valid 
data within 10 ns after CAS and allows using the 2118·7. 
Since this analysis is totally based on worst case 
minimum and maximum delays, the designer should 
evaluate the timing requirements of his specific im· 
plementation. 

It should be noted that the 8202 SACK is equivalent to 
XACK timing if the cycle being executed was delayed by 

refresh. Delaying SACK until XACK time causes the 
CPU to enter wait states until the cycle is completed. If 
the cycle is a read cycle, the XACK timing guarantees 
data is valid at the CPU before ROY is issued to the CPU. 

The use of the early command Signals also solves a 
problem not mentioned previously. The cycle rate of the 
8202 @ 20 MHz requires that commands (from leading 
edge to leading edge) be separated by a minimum of 695 
ns. The maximum mode 8086 however may issue a read 
command 600 ns after the normal write command. For 
the early read command and advanced write command, 
725 ns are guaranteed between commands. 

EARLY RD 

We TO RAMS 

'-----CAS 

Figure 5C2.2. Delayed Write 10 Dynamic RAMs 

A-63 



AP-67 

APPENDIX I 
BUS CONTENTION AND ITS EFFECT ON SYSTEM INTEGRITY 

SYSTEM ARCHITECTURE 

As higher performance microprocessors have become 
available, the architecture of microprocessor systems 
has been evolving, again placing demands on memory. 
For many years, system designers have been plagued 
with the problem of bus contention when connecting 
multiple memories to a common data bus. There have 
been various schemes for avoiding the problem, but 
device manufacturers have been unable to design inter· 
nal circuits that would guarantee that one memory 
device would be "off" the bus before another device 
was selected. With small memories (512x8 and 1 Kx8), it 
has been traditional to connect all the system address 
lines together and utilize the difference between tACC 
and tco to perform a decode to select the correct device 
(as shown in Figure 1). 

Figure 1. Single Control Line Architecture 

With the 1702A, the chip select to output delay was only 
100 ns shorter than the address access time; or to state 
it another way, the tACC time was 1000 ns while the tco 
time was 900 ns. The 1702A tACC performance of 1000 ns 
was suitable for the 4004 series microprocessors, but 
the 8080 processor required that the corresponding 
numbers be reduced to tACC= 450 ns and tco= 120 ns. 
This allowed a substantial Improvement in performance 
over the 4004 series of microprocessors, but placed a 
substantial burden on the memory. The 2708 was 
developed to be compatible with the 8080 both in ac· 
cess time and power supply requirements. A portion of 
each 8080 machine cycle time had to be devoted to the 
architecture of the system decoding scheme used. This 
devoted portion of the machine cycle included the time 
required for the system controller (8224) to perform its 
function before the actual decode process could begin. 

Let's pause here and examine the actual decode 
scheme that was used so we can understand how the 
control functions that a memory device requires are 
related to system architecture. 

The 2708 can be used to illustrate the problem of having 
a single control line. The 2708 has only one read control 

function, chip select (CS), which is very fast (tco = 120 
ns) with respect to the overall access time (tACC = 450 
ns) of the 2708. It is this time difference (330 ns) that is 
used to perform the decode function, as illustrated in 
Figure 2. The scheme works well and does not limit 
system performance, but it does lead to the possibility 
of bus contention. 

ADDRESS~ I 

I { I CS 

DATA OUT ,_o,~~_L~ 
Figure 2. Single Line Control Architecture 

BUS CONTENTION 

There are actually two problems with the scheme 
described in the previous section. First, if one device in 
a multiple memory system has a relatively long deselect 
time, and a relatively fast decoder is used, it would be 
possible to have another device selected at the same 
time. If the two devices thus selected were reading op­
posite data; that is, device number one reading a HIGH 
and device number two reading a LOW, the output tran­
sistors of the two memory devices would effectively pro· 
duce a short circuit, as Figure 3 illustrates. In this case, 
the current path is from Vcc on device number one to 
GND on device number two. This current is limited only 
by the "on" impedance of the MOS output transistors 
and can reach levels in excess of 200 mA per device. If 
the MOS transistors have a lot of "extra" margin, the 
current is usually not destructive; however, an instan­
taneous load of 400 mA can produce "glitches" on the 
VCC supply-glitches large enough to cause standard 
TIL devices to drop bits or otherwise malfunction, thus 
causing incorrect address decode or generation. 

The second problem with a single control line scheme is 
more subtle. As previously mentioned, there is only one 
control function available on the 2708 and any decoding 
scheme must use it out of necessity. In addition, any in­
advertent changes in the state of the high order address 
lines that are inputs to the decoder will cause a change 
in the device that is selected. The result is the same as 
before-bus contention, only from a different source. 
The deselected device cannot get "off" the bus before 
the selected one is "on" the bus as the addresses rapid­
ly change state. One approach to solving this problem 
would be to design (and specify as a maximum) devices 

A-64 



AP-67 

with tOF time less than teo time, thereby assuring that if 
one device is selected while another is simultaneously 
being deselected, there would be some small (20 ns) 
margin. Even with this solution, the user would not be 
protected from devices which have very fast teo times 
(teo is specified as a maximum). 

RESULTS OF IMPROPER TIMING WHEN OR TYING MULTIPLE 
MEMORIES. 

Figure 3. Results 01 Improper Timing when OR Tying Multiple 
Memories 

The only sure solution appears to be the use of an exter· 
nal bus driver/transceiver that has an independent 
enable function. Then that function, not the "device 
selecting function," or addresses, could control the 
flow of data "on" and "off" the bus, and any contention 
problems would be confined to a particular card or area 
of a large card. In fact, many systems are implemented 
that way-the use of bus drivers is not at all uncommon 
in large systems where the drive requirements of long, 
highly capacitive interconnecting lines must be taken 
into consideration-it also may be the reason why more 
system designers were not aware of the bus contention 
problem until they took a previously large (multicard) 
system and, using an advanced micorprocessor and 
higher density memory devices, combined them all on 
one card, thereby eliminating the requirement for the 
bus drivers, but experiencing the problem of bus con­
tention as described above. 

THE MICROPROCESSOR/MEMORY INTERFACE 

From the foregoing discussion, it becomes clear that 
some new concepts, both with regard to architecture 
and performance are required. A new generation of two 
control line devices is called for with general require­
ments as listed below: 

1. Capability to control the data "on" and "off" the 
system bus, independent of the device selecting func­
tion identified above. 

2. Access time compatible with the high performance 
microprocessors that are currently available .. 

Now let's examine the system architecture that is re­
quired to implement the two line control and prevent 
bus contention. This is shown in the form of a timing 
diagram (Figure 4). As before, addresses are used to 

generate the unique device selecting function, but a 
separate and independent Output Enable (OE) control is 
now used to gate data "on" and "off" the system data 
bus. With this scheme, bus contention is completely 
eliminated as the processor determines the time during 
which data must be present on the bus and then 
releases the bus by way of the Output Enable line, thus 
freeing the bus for use by other devices, either 
memories or peripheral devices. This type of architec· 
ture can be easily accomplished if the memory devices 
have two control functions, and the system is im· 
plemented according to the block diagram shown in 
Figure 5. It differs from the previous block diagram 
(shown in Figure 1) in that the control bus, which is con­
nected to all memory Output Enable pins, provides 
separate and independent control over the data bus. In 
this way, the microprocessor is always in control of the 
system; while in the previous system, the microproc· 
essor passed control to the particular memory device 
and then waited for data to become available. Another 
way to look at it is, with a single control line the sytem is 
always asynchronous with respect to microprocessorl 
memory communications. By using two control lines, 
the memory is synchronized to the processor. 

ADDRESS J 'C 
SELECTION 

OUTPUT \ I ENABLE 

DATA ( ) OUT 

Figure 4. Two Control Line Architecture 

Figure 5. Two Control LinEt Architecture 

A65/A66 





© Intel Corporation, 1979 

APPLICATION 
NOTE 

A-67 

Ap·61 

July 1979 



AP-61 

Multitasking 
For the 8086 Contents 

INTRODUCTION 

ANATOMY OF THE TASK MULTIPLEXER 

DEFINITIONS 

STATE DIAGRAM 

LINKED LISTS 

DELAY STRUCTURE 

PROCEDURES 

ACTIVATE$TASK Procedure 
ACTIVATE$DELA Y Procedure 
DECREMENT$DELAY Procedure 
CASE$TASK Procedure 
PREEMPT Procedure 
DISPATCH Procedure 

PL/M·86 PROCEDURES 

Initialization and the Main Loop 
Additional Ideas 
Source Code 

REFERENCES 

A-68 



AP-61 

INTRODUCTION 

Real-time software systems differ markedly from batch 
processing systems_ An external signal indicating that 
it is time for an hourly log or an interrupt caused by an 
emergency condition is an event usually not encoun­
tered in batch processing. Because real-time control 
systems of all types share a number of characteristics, 
it is possible to develop flexible operating systems 
which will meet the needs of a great majority of real­
time applications. Intel Corporation has developed such 
a system, the RMX/80TM system, for the iSBCTM line of 
8080/85 based single board computers. Thus, the user is 
released from the chore of designing an operating 
system and is free to concentrate his efforts on the 
applications software for the individual tasks and 
merely integrate them into a pre-existing system. 

But what if a user does not need all the capabilities of an 
RMX/80™ system or wants a different hardware con­
figuration than an iSBC™ computer? This application 
note contains a set of PLlM-86 procedures designed to 
be used in medium-complexity 8086 real-time systems. 

A normal control system can be broken down into a 
number of concurrently executable tasks. The CPU can 
be running only one task at any instant of time but the 
speed of the processor often makes concurrent tasks 
appear to be running simultaneously. Breaking the soft­
ware functions into separate concurrent tasks is the job 
of the designer/programmer. Once this is done there re­
mains the problem of integrating these tasks with a 
supervisory program which acts as a traffic cop in the 
scheduling and execution of the separate tasks. This 
note discusses a set of PLlM-86 procedures to imple­
ment the supervisory program function. 

A minimum operating system might (like its batch proc­
essing cousin) have only a queue for ready tasks (tasks 
waiting to be executed). Any task that becomes ready is 
put on the bottom of the queue and when a running task 
is finished, the task on the top of the queue is started. 
Any interrupt causes the state of the system to be 
saved, an interrupt routine to be executed, the state of 
the system to be restored, and execution of the inter­
rupted program to continue. The interrupt routine might 
(or might not) put a new task on the ready queue. This 
approach has worked well for many simple control 
systems, especially in the single-chip computer area. 
But what features are lacking in this approach that are 
necessary (or at least nice)? 

1. A system of priorities is often needed. All waiting 
ready tasks must be executed sooner or later but some 
tasks need immediate attention while others can be run 
when there is nothing else to do. If a midnight monthly 
report, due for completion by 8 a.m. the next day, is in 
the process of printing at 1 a.m. and a fire alarm occurs, 
it is reasonable to assume that the fire alarm has higher 
priority since the fire could conceivably render the 
monthly report irrelevant. 

There are a number of ways in which to assign priorities. 
Tasks are usually numbered and may be assigned 
priorities according to their ascending (or descending) 
numbers. They could instead be grouped into a number 
of priority levels, with tasks on the same level having 
equal priorities. The latter approach is taken in this 
application note. 

Assume that a monthly report is being printed and an 
alarm occurs in the external world that, because of its 
importance, must be attended to immediately. The inter­
rupt routine, executed as a result of the alarm input, 
should not automatically return to the interrupted log­
ging routine but instead should call a preempt routine 
which checks to see if a higher priority task is ready for 
execution. The reason for this is that the monthly report 
routine, if returned to, has no way of "knowing" that a 
higher priority task is waiting to be executed. The alarm 
output task has been readied by the interrupt routine 
and since it is known to be higher priority than the log­
ging task, it is executed first, thereby immediately 
signaling the system operator that there has been an 
alarm. It then returns to the logging task provided that 
there are no further high priority tasks waiting to be exe­
cuted. The logging printer may not have even paused 
during the alarm output task. The computer appears to 
human beings to be executing concurrent tasks 
simultaneously. 

Of course, the alarm output function could be performed 
inside the interrupt procedure. But sooner or later, the 
designer will encounter a worst case situation in which 
there is not enough time to execute all required tasks 
between interrupts, and the system will fall behind in 
real-time. It is much cleaner to make the interrupt pro­
cedures as short as possible and stack up tasks to be 
executed than to stack up interrupt procedures. 

2. Another feature that might be necessary is a capabil­
ity to put a task to sleep for a known period of real time. 
Assume a relay output must remain closed for one sec­
ond. Most real-time systems cannot tolerate the dedica­
tion of the CPU to such a trivial task for that length of 
time so a system of programmable dynamic delays 
could be implemented. This application note imple­
ments such a system. 

Although the PLlM-86 procedures here have been de­
bugged and tested, it is assumed that the user will want 
to change, add, or delete features as needed. This appli­
cation note is intended to present ideas for a logical 
structure of procedures that, because they are written in 
PLlM-86, can be easily modified to user requirements. 
Each procedure will be discussed in detail and integra­
tion and optional features will be presented. 

PLlM-86 

PLM-86 is a block structured high level language that 
allows direct design of software modules. Using 
PLlM-86, designers can forget their assembly level 

A-69 



AP-61 

coding problems and design directly.in a subset of the 
English language, The 8086 architecture was designed 
to accommodate highly structured languages and the 
PLM·86 compiler is quite efficient in the generation of 
machine code. 

PLM·86 STRUCTURE 

PLlM·86 automatically keeps track of the level of the dif· 
ferent software blocks, (See Chapter 10, "PLlM·86 Pro· 
gramming Manual"), There are methods of writing 
PLlM·86 which contribute to the understandability of 
the source code without adding to the amount of object 
code generated, For instance, the following three 
IF/THEN/ELSE blocks generate identical object code 
but are compiled from different source statements, 

Line Level 

3 1 

7 
8 

9 
10 

11 
13 
14 
15 
16 
17 
18 

1 
2 
2 
1 
2 
2 

Statement 

IF A= BTHEN C= D; ELSE E= F; G= H; 

IF A= B THEN 
C=D; 
ELSE 
E=F; 
G=H; 

IF A= B THEN DO; 
C = D; 
END; 
ELSE DO; 
E= F; 
END; 
G= H; 

It is not instantly apparent from the code on line 3 or the 
code starting at line 7 which statements will be exe· 
cuted, However, adding the DO; and END; statements 
(starting at line 11) remove any doubt, Either the 
statements starting at line 11 or the statements starting 
at line 15 will be executed and the statement on line 18 
will be executed in either case, Why? Because all these 
lines are at level 1 in the block structure, The other lines 
are at level 2 because of the DO;/END; combinations, 
When one refers to the relatively complex structures of 
the task multiplexer procedures, the usefulness,of such 
an approach is obvious, as the procedures have been in· 
dented according to the level numbers generated by 
PLlM·86, In particular, if the designer is not careful, 
nested IF/THEN/ELSE statements can generate im· 
proper results, Using a proper number of DO;/END; com· 
binations avoids the possible ambiguity in nested 
IF/THEN/ELSE statements as can be seen in the ACTI· 
VATE$TASK procedure listed in the PLlM·86 source 
code later in this note, The DO;/END;construct naturally 
must be used when multiple statements are required 
within the IF/THEN/ELSE blocks, Following are exam· 
pies of the possible primary structures of PLlM·86: 

DO; 
A=B; 
C=D; 
END; 

DO WHILE A= B; 
C=D; 
E= F; 
END; 

DO 1=1 TO 5; 
A= I; 
C= D+I; 
END; 

DO CASE A; 
A= B; 
A=C; 
A=D; 
END; 

IF A= B THEN DO; 
C= D; 
END; 

ELSE DO; 
E= F; 
END; 

IF A=BTHENDO; 
C=D; 
END; 

ELSE IF A= C THEN DO; 
D=E; 
END; 

ELSE IF A= D THEN DO; 
E= F; 
END; 

ELSE DO; 
F=G; 
END; 

A complete tutorial on structured programming is 
beyond the scope and intent of this application note and 
the reader is referred to the appropriate references ap· 
pearing in the bibliography. 

ANATOMY OF THE TASK MULTIPLEXER 

Once a decision is made on the details of the kind of 
data structure that is needed to implement the task 
multiplexer, the procedures that manipulate the struc· 
ture are relatively simple to write. The following char· 
acteristics are assumed for the task multiplexer appear· 
ing in this application note. 

There are two levels of priority, high and low, All high 
priority tasks that are ready to run will be dispatched, 
executed, and completed, on a FIFO basis, before any 
low priority task is dispatched. 

Any task can be interrupted. No task multiplexer pro· 
cedure can be interrupted. 

If a high priority task is interrupted, it will be completed 
before any other task is dispatched. If a low priority task 
is interrupted, all ready high priority tasks will be dis· 
patched, executed, and completed before program can· 
trol is returned to the low priority task. 

A-70 



AP-61 

There are two ready queues, one for high priority tasks 
and one for low priority tasks. Each queue has a head 
(top) pointer and a tail (bottom) pointer and tasks on any 
queue are link-listed from head to tail. Tasks are "dis­
patched" (taken off the queue) at the head and "acti­
vated" (put on the queue) at the tail on a FIFO basis. 

Link-listed queues are chosen for simplicity. All dis­
patch and activate information is contained in the head 
and tail pointers. Tasks located in the middle of these 
link-lists are of no concern for activating and dispatch­
ing. This means, of course, that tasks are executed in 
the order that they appear on the queue, i.e., first-in, 
first-out. 

There is a pointer byte associated with each task. If a 
task is on either the low priority or high priority ready 
queue, its associated pointer byte will pOint to the next 
task number on the list. These pointer bytes enable the 
task ready lists to be linked. Note that the pointer byte is 
o for the last task on a list. 

There is a status (flag) byte associated with each task. If 
a task is on a ready list or a delay list, bit 7 will be a "1" 
indicating that that particular task is busy. If a task is on 
either high priority or low priority ready queues, bit 6 will 
be a "1" indicating that the task is on one of the ready 
queues. If the task is listed on the delay list, (see next 
item), bit 5 will be a "1" indicating that this particular 
task has a delay in progress. If a task is unlisted, bits 
5-7 will be "0." Bits 0-4 are not used by the task 
multiplexer procedures and are available to the user, giv­
ing 5 user defined flags per task. 

There is a delay byte associated with each task. This 
feature allows tasks to be "put to sleep" for a variable 
length of time, from 1 to 255 "ticks" of the interrupt 
clock. If a task does not need an associated delay then 
this byte is available to the user as a utility byte to be 
used for any purpose. These delays will be discussed in 
detail later in the application note. 

The following diagram is a representation of the task 
multiplexer data structure: 

TASK NUMBER porNTER BYTE STATUS BYTE DELAY BYTE 

n n+1 n+2 
n+3 n+4 n+5 
n+6 n+7 n+8 
n+9 n+ 10 n+ 11 

n+ 12 n+ 13 n+ 14 
n+ 15 n+ 16 n+ 17 

m-1 n + 3m - 6 n+3m- 5 n+ 3m-4 
m n + 3m - 2 n+3m-1 n+3m 

3m + 3 TOTAL RAM BYTES 
n = FIRST RAM ADDRESS OF ARRAY 

Following is a chart of what a task multiplexer data 
structure might look like at a given moment in time: 

HIGH$PRIORITY$HEAD = 5 
HIGH$PRIORITY$TAIL = 3 
LOW$PRIORITY$HEAD = 8 
LOW$PRIORITY$TAIL = 10 
DELAY$HEAD =4 

TASK NUMBER TASKln).PNTR TASKln).STATUS TASKln).DELAY 

1100 0000 
1010 0000 
1100 0000 
1010 0000 
1100 0000 
0000 0000 
1010 0000 

10 1100 0000 
0 0000 0000 

10 0 1100 0000 

·See text. 

What information can one ascertain from observation of 
the above chart? The ready-to-run high priority tasks, in 
order, are 5,1,3. This can be seen by following the high 
priority ready linked list from head to tail. The ready-to­
run low priority tasks, in order are 8, 10. The 
TASK(n).PNTR byte=O for the last listed task. Tasks 4, 
7, 2 are listed, in order, on the delay list and have 
associated delays of 4, 10, 13 ticks respectively. Tasks 6 
and 9 are not listed and therefore idle. The' for the 
TASK (0) bytes indicate a special condition. There is no 
TASKOO allowed and a zero condition is treated as an er­
ror condition. TASK(O).PNTR byte is used for the 
DELAY$HEAD byte to minimize code in the ACTI­
VATE$DELAY procedure. TASK(O).STATUS and 
TASK(O).DELAY are unused bytes. 

DEFINITIONS 

NEW$TASK is the number of the task that will be in­
stalled on a ready list or the delay list when ACTI­
VATE$TASK or ACTIVATE$DELAY is called. 

NEW$DELAY is the value of the delay that will be in­
stalled on the delay list when ACTIVATE$DELAY is 
called. 

A task is defined as RUNNING if it is in the act of execu­
tion or if an interrupt routine is executing which inter­
rupted a RUNNING task. 

A task is defined as PREEMPTED if it has been inter­
rupted and a higher priority task is being executed. 

A task is defined as READY if it is contained within one 
of the ready queues. 

A task is defined as IDLE if its BUSY$BIT (bit 7) is not 
set, I.e., it is not listed anywhere else. Note that it is 
possible to completely disable an IDLE task simply by 
setting its BUSY$BIT. In that case, it is not and cannot 
be listed anywhere else. This feature is useful during 
system integration. 

A-71 



AP-61 

STATE DIAGRAM 

The state diagram indicates the relationships among 
the possible task states and the procedures involved in 
changing states. 

The state diagram looks somewhat complic'ated arid a 
discussion of the possible change of states is in order. 
Assuming a certain existing state, future possible 
states will be discussed including the procedures which 
can cause the change of state. 

From the unlisted (idle) state, the ACTIVATE$TASK pro· 
cedure will put the NEW$TASK on either the high priori· 
ty ready queue or the low priority ready queue at the tail 
end of the queue. The number of the task automatically 
assigns the priority and therefore the proper queue. All 
task numbers below FIRST$LOW$PRIORITY$TASK are 
assumed to be high priority tasks. Also, from the 
unlisted state the ACTIVATE$DELAY procedure will put 
the NEW$TASK and NEW$DELAY at the proper position 
on the delay list. 

After a task has been put ,On eWler h'igh priority ready 
queue or low priority ready queue it eventually will go to 
the RUNNING$TASK state,Jhe DJSPATCH procedure 
accomplishell this action. ' ' 

From the delay list a task can only go to one of the ready 
queues. When a task's associated delay goes to zero the 
DECREMENT$DELAY procedure calls the ACTI· 
VATE$TASK procedure and installs the NEW$TASK on 
the proper ready queue. 

From the RUNNING$TASK state a task may use the 
CASE$TASJ( procedure to put itself on the ready list tail 
by setting' NE'W$TASK= RUNNING$TASK. It may 
instead put itself on the delay list by setting 
NEW$TASK= RUNNING$TASK and also setting 
NEW$DELAY equal to something other than zero. Other· 
wise, it will progress to the unlis,ted state upon comple· 
tion. 

The CASE$TASK procedure unlists tasks when they 
have completed execution. A low priority RUN· 
NING$TASK will go to the preempted state if a high 
priority task is on the ready listfollowing an interrupt 
during execution of the low priority task if the PREEMPT 
procedure is called. 

And finally, a PREEMPTED$TASK will return to a RUN· 
NING$TASK state wheh all high priority ready task:s 
have completed execution. This is accomplished by the 
DISPATCH procedure which then returns to the PRE· 
EMPT procedure. ' 

STATE DIAGRAM 

A-72 



AP-61 

Some lockouts are necessary to avoid chaos in the task 
multiplexer. These are as follows: 

The BUSY$BIT= 1 in the TASK(n).STATUS byte will 
abort the ACTIVATE$TASK and the ACTIVATE$DELAY 
procedures and return an indication of the aborting by 
setting the STATUS byte equal zero. A task must be 
unlisted to be able to be installed on a list. 

A RUNNING$TASK may put itself on a list after it has 
executed but it is not allowed to re·list any listed tasks 
(i.e., no task may ever be listed twice at the same time!). 
A task that tries to activate another task that is already 
busy can wait (via the delay feature) for the required task 
to complete execution, become idle, and therefore be 
available to be activated. A PREEMPTED$TASK may not 
be listed. If the ACTIVATE$TASK or ACTIVATE$DELAY 
procedure is called and NEW$TASK= PRE· 
EMPTED$TASK, the procedure will be aborted and 
return with STATUS=O. Otherwise, the STATUS byte is 
returned with the new task status. 

Only one task may be preempted as there are only two 
levels of priority. The user may desire to implement 
many levels of priority in which case a linked·list of 
preempted tasks could be declared in a structure which 
includes the number of the first task in each priority 
level group of tasks. This obviously complicates the 
PREEMPT and DISPATCH procedures. 

The tasks themselves are made into reentrant proce· 
dures because of the necessary forward references of 
the CASE$TASK procedure. 

PLlM·86 allows structures and arrays of structures. The 
structure needed for the task multiplexer is a link·list 
pointer byte, a task status byte, and a task delay byte. 
Each task has an associated pOinter byte, status byte, 
and delay byte. These are combined into an array of up 
to 255 tasks. For purposes of this discussion, the 
number of tasks is chosen as an arbitrary 10, leading to 
the following array declaration. 

DECLARE TASK(10)STRUCTURE 
(PNTR BYTE,STATUS BYTE,DELAY BYTE); 

Thus the delay byte associated with task number 7 can 
be accessed by using the variable TASK(7).DELAY and 
the status of task number 5 can be examined through 
the use of TASK(5).STATUS. The TASK(n).PNTR byte 
contains the task number of the next listed task on the 
same list as TASK(n), i.e., if TASK(n) is on the delay list, 
then TASK(n).PNTR will contain the number of the next 
task on the delay list or 0 indicating the end of the list. 

TASK(n).STATUS is a byte with the following reserved 
flags: 

BIT 7 BUSY$BIT, "1" IF TASK IS BUSY 
BIT 6 READY$BIT, "1" IF ON READY LIST 
BIT 5 DELAY$BIT, "1" IF ON DELAY LIST 
BIT 4 - BIT 0 UNUSED 

The unused bits in the STATUS byte are available to the 
user. 

The TASK(n).DELAY byte is a number which can put 
TASK(n) to sleep for up to 255 system clock ticks. The 
system clock tick is interrupt driven from the user's 
timer and its period is chosen for the particular applica· 
tion. A one millisecond timer is popular and assuming 
such a time, delays of up to 255 ms are available in the 
task multiplexer as it is written. If this delay range is not 
wide enough, the user may want to define his 
TASK(n).DELAY as a word instead of a byte in the 
PLlM·86 declare statement, giving delays of up to 65 
seconds from the basic one millisecond clock tick. 

LINKED LISTS 

Linked lists are useful for a number of reasons. 
However, a treatise on linked lists would defeat the pur· 
pose of this application note and the reader is referred 
to the references listed in the bibliography. 

The linked lists used in this application. note have a 
head byte associated with each list, i.e., the head byte 
contains the number of the first task on the list. The first 
task pOinter byte points to the second task on the list, 
etc. The pointer of the last task on the list is set at zero 
to indicate that it is the last task. Two of the linked lists 
are ready queues and require a tail byte as well as a head 
byte. The tail byte points to the last entry on the list. 
Tasks are put on the bottom, or tail, of the ready lists 
and are taken off the top, or head, of the ready lists. The 
delay list has no tail but does have a head, called a 
DELAY$HEAD. The delay list is not a queue, as delays 
are installed on the list in order of delay magnitude for 
reasons to be explained later. 

There are two ready lists, one for'high priority tasks and 
one for low priority tasks. The head and tail pointers 
associated with these two lists are: HIGH$PRIORITY$ 
HEAD, HIGH$PRIORITY$TAIL, LOW$PRIORITY$HEAD, 
and LOW$PRIORITY$TAIL. Obviously, the structure can 
be expanded to any number of priority levels by expand· 
ing the head and tail pOinters and the historical record 
of the preempted tasks. 

DELAY STRUCTURE 

A task multiplexer can have a number of simultaneous 
delays active and it would be efficient if there were a 
way to keep from decrementing all delays on every clock 
tick, which is most time consuming. One way to accom· 
plish this feat is to move the problem from the 
DECREMENT$DELAY routine to the ACTIVATE$DELAY 
routine. The delays are arranged in a linked·list of 
ascending sizes such that the value of each delay in· 
cludes the sum of all previous delays. This allows the 
decrementing of only one delay during each clock tick 
interrupt routine. An example will further illuminate this 
approach. Suppose the following conditions exist: 

A-73 



AP-61 

Task 7 has a 5 millisecond delay 

Task 3 has an 8 millisecond delay 

Task 9 has a 14 millisecond delay 

The delay structure is arranged so that: 

DELAY$HEAD = 07 
TASK(7).PNTR = 03 
TASK(3).PNTR = 09 
TASK(9).PNTR = 00 
TASK(7).DELAY=05 (FIRST DELAY = 5) 
TASK(3).DELAY= 03 (5+ 3= 8) 
TASK(9).DELAY=06 (5+3+6= 14) 

The linked-list is arranged so that the delays are in 
ascending order and each delay is equal to the sum of 
all previous delays up through that point. Since this is 
true, all delays are effectively decremented merely by 
decrementing the first delay. Of course, something for 
nothing is impossible and the speed gained by arrang­
ing the delays in the above manner is paid for by the 
complexity of the ACTIVATE$DELAY routine. But since 
the ACTIVATE$DELAY routine is executed less fre­
quently than the DECREMENT$DELAY routine, the sav­
ings in real time is worth the added complexity. 

Suppose a new delay is to be activated in the above 
scheme. Task 5 with a delay of 10 milliseconds is to be 
added. A before and after chart will indicate what the 
ACTIVATE$DELA Y procedure must accomplish. 

BEFORE 

TASK NUMBER 07 ,03 09 

POINTER 07 03 09 00 

DELAY 05 03 06 

AFTER 

TASK NUMBER 07 03 05 

POINT~R 07 03 05" 09@ 

, DELAY 05 03 02@ 

FIRST POINTER IS THE DELAY$HEAD 
CHANGES ARE MARKED WITH AN " 
ADDITIONS ARE MARKED WITH AN @ 

09 

00 

04" 

Note that the pOinter before the added task haS changed 
and the delay after the added task has changed. The 
function of the ACTIVATE$DELAY procedure is to ac­
complish these changes and additions. 

PROCEOVRES 

The following procedure explanations, reference the 
PLlM-86 source code listing which follows the applica­
tion note text. 

ACTIVATE$TASK Procedure 

This procedure is initiated by a call instruction with the 
byte NEW$TASK containing the number of the task to 
be put on the proper ready queue. ' 

Interrupts must be disabled whenever the link-lists are 
being changed. If interrupts are enabled when this 
procedure is called, they should be re-enabled upon 
returning. 

The assignment of priority is a simple matter. A declare 
statement, DECLARE FIRST$LOW$PRIORITY$TASK 
LITERALLY 'N,' (where N is the actual number of the 
first low priority task) indicates to the procedures that 
tasks 1 to N are high priority tasks and tasks N or higher 
are low priority tasks. 

This procedure checks the busy bit in the status byte to 
see if this particular task is already busy and if so, 
returns a STATUS of zero. Otherwise, it returns the new 
STATUS of the task. It then checks the priority to see if 
this particular task is a high or low priority. If it is high 
priority, then the task pOinter pOinted to by the HIGH$ 
PRIORITY$TAIL pOinter is changed from zero to the 
number of the NEW$TASK. The HIGH$PRIORITY$TAIL 
pOinter is then changed to the number of the 
NEW$TASK and the pOinter associated with NEW$ 
TASK is made equal to zero. This completes the ACTI­
VATE$TASK functions. If the new task is a low priority 
task, then the same functions are performed using the 
LOW$PRIORITY$TAIL pointer. 

ACTIVATE$OELAY Procedure, 

This procedure is initiated by a call with the byte NEW$ 
TASK containing the number of the task to be put on the 
delay list and the byte NEW$DELAY containing the 
value of the associated delay. 

Interrupts are disabled and the busy bit of this particular 
task is checked. If the busy bit is set the STATUS byte is 
set to zero and the procedure returns without activating 
the delay. If the busy bit is not set the integer value DIF­
FERENCE is set equal to the NEW$DELAY value. 
POINTER$O ,is set equal to the DELAY$HEAD. POINT­
ER$1 is set to zero. The DO WHILE loop executes, until 
POINTER$O equals zero or DIFFERENCE Is less tha'n 
zero. Remember that the proper place to insert the new 
delay is being searched for, and that will be either at the 
end of the list (POINTER$O = 0) or when the sum of the 
previous delays do not exceed the new delay value. The 
DO WHILE loop has POINTER$O, POINTER$1, OLD$DIF­
FERENCE, and DIFFERENCE keeping track of where 
the procedure is in the loop, while searching for the 
proper place to insert the new delay. The existing delays 
are sequentially subtracted from the remains of NEW$ 
DELAY according to the link-listed order until the end of 
the list or a negative result is encountered indicating 
that the proper delay insertion point has been reached. 
At this point POINTER$O contains the task number to be 
assigned to TASK(NEW$TASK).PNTR. POINTER$1 con­
tains the task number immediately preceding the 
NEW$TASK such that TASK(POINTER$1). PNTR= NEW$ 
TASK and our link list is fully updated, with the actual 
delays yet to go. If POINTER$O = 0 it means that the new 
delay is larger than any of the other delays and therefore 
should go on the end of the list so TASK(NEW$ 
TASK).DELAY is set equal to the DIFFERENCE. If 

A-74 



AP-61 

POINTER$O is not equal to zero then if POINTER$O 
equals POINTER$1 (indicating that there were not any 
delays previously listed), then TASK(POINTER$1).PNTR 
is set equal to zero. TASK(NEW$TASK).DELAY is 
set equal to the OLD$DIFFERENCE and TASK 
(POINTER$O).DELAY is set equal to the negative of DIF· 
FERENCE which at this point is negative, thereby 
resulting in a positive unsigned number. The reader is 
encouraged to implement an example (see Delay Struc· 
ture section) to prove that the above approach is valid. 
Particular attention should be paid to the contents of 
the two pOinters, as they are the key to the procedure. 
The final function of this procedure is to set the 
BUSY$BIT and DELAY$BIT in the TASK(NEW$ 
TASK).STATUS byte. The byte named STATUS which is 
returned by this procedure is set equal to the status of 
the new task. If it is desired to have interrupts enabled, 
they must be enabled after the procedure return instruc· 
tion. The reason for such a complex method of ac· 
tivating a delay will become apparent in the following 
section. 

DECREMENT$DELAY Procedure 

The first delay on the linked·list is decremented and, if it 
is zero, the associated task is put on the appropriate 
ready queue. The next delay (if any) is checked to see if 
it is zero and if so, that task is put on the appropriate 
ready queue, etc. A loop is performed until either no 
delay or a non·zero delay is found. The procedure then 
returns. 

It is assumed that this procedure is part of an interrupt 
routine and that the interrupts are disabled during its 
execution. Interrupts cannot be enabled during changes 
to any of the linked·lists or else recovery may not be 
possible. 

This procedure begins by checking to see if there are 
any active delays. If DELAY$HEAD = 0 then this pro· 
cedure returns immediately. Otherwise it decrements 
the first delay. If this delay goes to zero then the 
associated task number is passed to the ACTIVATE$ 
TASK procedure as the OFF$DELAY byte. A new 
DELAY$HEAD is chosen from. the next link·listed delay 
and that delay checked for a value of zero which will 
happen if the first two or more delays are equal. This 
loop is accomplished by the DO WHILE DELAY$ 
HEAD <> 0 AND TASK(DELAY$HEAD).DELAY = 0; This 
procedure is designed to require very little CPU time 
unless a delay times out. The DO WHILE loop is by· 
passed if the resulting delay value is not zero. A certain 
amount of care should be exercised to insure that many 
delays do not all time out at the same time. One method 
would be to modify the ACTIVATE$DELAY procedure to 
insure that there are no zero entries in the delay bytes. 
The basic procedure, however, assumes that the clock 
"tick" timing will be chosen to minimize the above 
potential problem. 

CASE$TASK Procedure 

This procedure performs the function of calling the task 
indicated by the contents of the RUNNING$TASK byte. 
All listed tasks are called in this manner. The 
CASE$TASK procedure is called by the DISPATCH pro· 
cedure. When a particular task has completed execution 
it returns to the CASE$TASK procedure which then 
resets the BUSY$BIT and the READY$BIT and returns to 
the DISPATCH procedure after setting RUNNING$TASK 
equal to zero. This procedure allows a task to relist itself 
immediately upon returning from execution. 

PREEMPT PROCEDURE 

The PREEMPT procedure is called whenever it is pos· 
sible that a high priority task has been put on the ready 
queue while a low priority task was in the process of 
execution. An example will illustrate: 

Assume that the control system is being interrupted by 
the 60 Hz line frequency and a register is being in· 
cremented each time this 16.67 ms edge occurs. When 
the register gets to 60 (indicating that one second has 
passed), the register is zeroed and the high priority time· 
keeping task is put on the ready queue. Assume also 
that a low priority data logging task was running when 
this interrupt occurred. The interrupt routine calls PRE­
EMPT. If a high priority task is running, PREEMPT 
simply returns. But in our example, a low priority task is 
running so PREEMPT transfers RUNNING$TASK to 
PREEMPTED$TASK and calls DISPATCH, which calls 
CASE$TASK, which calls the time-keeping task. When 
the time-keeping task has completed, it returns to 
CASE$TASK which returns to DISPATCH which returns 
to the PREEMPT procedure which returns to the inter­
rupt routine which returns to the interrupted low priority 
data logging task if no other high priority tasks are on 
the ready queue. If the high priority ready queue is not 
empty, any and all high priority tasks will be completed 
before the interrupted routine is returned to. PREEMPT 
refuses to return to the interrupt routine until HIGH$ 
PRIORITY$HEAD is equal to zero. It is important to note 
that a low priority task will not be preempted unless the 
PREEMPT procedure is called .. As noted above, it is nor­
mally called from the interrupt routine which interrupted 
the low priority task, but there is nothing to prohibit 
PREEMPT from being called from inside a low priority 
task procedure. 

DISPATCH PROCEDURE 

This procedure calls a high priority task if HIGH$ 
PRIORITY$HEAD is not equal to zero, restores a pre­
empted task if PREEMPTED$TASK is not equal to zero, 
calls a low priority task if LOW$PRIORITY$HEAD is not 
equal to zero, and simply returns if there is nothing to 
do, all in order of priority. The DISPATCH procedure is 
called from the main program loop which must enable 
interrupts as DISPATCH disables interrupts as soon as 

A-7S 



AP-61 

it is called. It is alsp called by the PREEMPT procedure. 
RUNNING$TASK must be 0 when this procedure is 
called. 

PL/M·86 PROCEDURES 

Because the block structure and levels are so important 
to the understanding of the following procedures, they 
have been indented according to level. This was a sim· 
pie task accomplished by no indenting for level one, 
indenting once for level two, etc. The resulting attrac· 
tive, easy to follow format was worth the effort to 
increase the initial level of understanding for readers of 
this application note who are not intimately familiar 
with PLiM. 

Everything except the very simple main program loop 
has been made into procedures. Interrupt routines and 
tasks are also procedures. Keeping track of interrupts, 
calls, and returns is easy for PLiM and a violation of the 
block structure through such devices as GOTO targets 
outside the procedure body is the best way the author 
knows to crash and burn. Honor the power of the struc· 
ture, accept the limitations involved, and checkout and 
debugging will be a pleasure. 

Since CASE$iASK references the individual tasks, the 
task procedure structure was included in the PLlM·86 
compilation. All the user has to do is insert the par· 
ticular task code in place of the I*TASKnn CODE*I com· 
ment, define the interrupt procedures and the system 
shoUld be ready to run. Obviously, the user will desire to 
change the total number of tasks and the number of the 
FIRST$LOW$PRIORITY$TASK. 

INITIALIZATION AND THE MAIN LOOP 

The last entry in the PLlM·86 program is the initialization 
process which essentially zeros the task multiplexer 
data and the main loop which loops until TRUE= FALSE, 
i.e. forever, with interrupts enabled. The STATUS = 
STATUS instruction simply insures that the loop can be 
interrupted as the instruction following an ENABLE in· 
struction is not interruptible. 

These few instructions are included for information only 
and will need to be expanded considerably for use in a 
real·world system. The task multiplexer procedures 
were checked out on an iSBC 86112™ computer running 
under random interrupt control and these instructions 
were the minimum necessary to cause the system to 
run. As was stated earlier, the following source code 
does not include any interrupt procedures and these will 
have to be generated following the format explained in 
the PLlM·86 programming manual. 

ADOITIONAL IDEAS 

Resource allocation is a feature that could be added to 
the task multiplexer. To keep it simple and yet avoid the 
deadlock problem (two tasks each grab a resource that 
the other needs), an extra array can be added to the 
TASK(n).XXX structure in which each bit in the byte (or 
word), represents a resource necessary for the execu· 
tion of a task. A RESOURCES$STATUS byte can then 
keep the dynamic busy status of the system resources 
(printers, terminals, floating point math packages, etc.). 
When the CASE$TASK procedure is called, the 
resources required by the next RUNNING$ 
TASK can be compared to the RESOURCES$STATUS 
byte to see if the required resources are available. If they 
are, the following PLlM·86 statement will update the 
new status of the resources: 

RESOURCES$STATUS = RESOURCES$STATUS OR 
TASK(RUNNING$TASK).RESOURCES: 

However, if the resources are not available, the CASE$ 
. TASK procedure can return the task to the ready or delay 
list and try again later. When the task has completed, 
the following PLlM·86 statement will update the 
resources status byte: 

RESOURCES$STATUS= RESOURCES$STATUS AND NOT 
TASK(RUNNING$TASK).RESOURCES; 

Message passing from task to task may also be 
necessary. Assuming that a task will have only one 
message at a time to deliver or receive, another byte 
could be added to the task structure such that 
TASK(RUNNING$TASK).MESSAGE could represent a 
byte containing the number of the task wishing to 
deliver a message to the RUNNING$TASK. Since a task 
can call CASE$TASK which in turn will call another task, 
message block parameters can be passed directly from 
one task to another. The task that calls CASE$TASK 
must handle the necessary housekeeping involved in 
recovering after the message has been passed. Of 
course, the data structure would have to be expanded to 
accommodate the message parameters and blocks. For 
further ideas involving message handling refer to the 
RMXI80™ user's guide. 

Two additional relatively simple procedures could be 
added to obtain the SUSPEND and RESUME features of 
the RMXI80™ system. Remember that if the BUSY$BIT 
is set in a TASK(n).STATUS byte and the task is unlisted, 
then it cannot be listed. If it is desired to dynamically 
enable and disable a task, this bit could be set by a 
SUSPEND procedure and reset by the RESUME pro· 
cedure. 

A-76 



AP-61 

SOURCE CODE 

'rM86:DO; 

DECLARE TOTAL$TASKS LITERALLY '10'; 
DECLARE TRUE LITERALLY '0FFH'; 
DECLARE FALSE LITERALLY '0'; 
DECLARE BUSY$BIT LITERALLY '10000000B'; 
DECLARE READ~$BIT LITERALLY '010000008'; 
DECLARE DELAY$BIT LITERALLY '00100000B'; 
DECLARE FIRST$LOW$PRIORIT~$TASK LITERALLY '6'; 

DECLARE TASK(TOTAL$TASKS) STRUCTURE(PNTR BYTE, STATUS BYTE, DELAY BYTE); 
DECLARE HIGH$PRIORITY$HEAD BYTE, HIGH$PRIORITY$TAIL BYTE; 
DECLARE LOW$PRIORITY$HEAD BY'rE, LOW$PRIORI'rY$'rAIL BYTE; 
DECLARE RUNNING$'rApK BYTE, PREEI"'lPTED$TASK BYTE; 
DEC~ARE STATUS BYTE, NEW$TASK BYTE, NEW$DELAY BYTE; 
DECLARE DELA~$HEAD 8 YT E A'r (@TASK (0) • PN'fR) ; 

ACTIVATE$TASK: PROCEDURE; /* ASSUMES NEW$TASK<>0 */ 
DISABLE; 
IF (TASK(NEW$TASK) .STATUS AND BUSY$BIT)<>0 THEN STATUS=0; 
ELSE /* SINCE TASK IS NOT BUSY */ DO; 

IF NEW$TASK < FIRST$LOW$PRIORITY$TASK THEN DO; 
IF HIGH$PRIORITY$TAIL<>0 THEN DO; 

TASK (HIGH$PRIORITY$TAIL) .PNTR=NEW$TASK; 
END; 

ELSE /* SINCE HIGH$PRIORITY$TAIL=0 THEN */ DO; 
HIGH$PRIORITY$HEAD=NEW$TASK; 
END; 

HIGH$PRIORITY$TAIL=NEW$TASK; 
END; 

ELSE /* SINCE TASK IS LOW PRIORITY THEN */ DO; 
If LOW$PRIORITY$TAIL<>0 THEN DO; 

TASK (LOW$PRIORITY$'rAIL) • PN'fR=NEW$TASK; 
END; 

ELSE /* SINCE LOW$PRIORITY$TAIL=0 THEN */ DO; 
LOW$PRIORITY$HEAD=NEW$TASK; 
END; 

LOW$PRIORITY$TAIL=NEW$TASK; 
END; 

TASK (NEW$TASK) .PNTR=0; 
TASK(NEW$TASK) .STATUS=TASK(NEW$TASK) .STATUS OR 

BUSY$BIT OR READY$BIT; 
STATUS=TASK(NEW$TASK) .STATUS; 
END; 

NEW$TASK=0; 
RE'rURN ; 
END ACTIVATE$TASK; 

A-77 



AP-61 

ACTIVATE$DELAY: PROCEDURE;/*ASSUMES NEW$TASK, NEW$DELAY<>0*/ 
DECLARE POHI'rER$0 BYTE, POINrER$l BY'rE; 
DECLARE OLD$DIFFERENCE INTEGER, DIFFERENCE INTEGER; 
DISABLE; 
IF (TASK(NEW$TASK) .STATUS AND aUSY$BIT)<>0 THEN STATUS=0; 
ELSE /* SINCE TASK IS NOT BUSY */ DO; 

DIFFERENCE=INT(NEW$DELAY) ; 
POINTER$0=DELAY$HEAD; 
POINTER$1=0; 
DO wHILE POINTER$0<>0 AND DIFfERENCE>0; 

OLD$DIffERENCE=DIFFERENCE; 
DIFfERENCE=DIFFERENCE-INT(TASK(POINTER$0) .DELAY) ; 
If DIfFERENCE>0 THEN DO; 

POINTER$1=POINTER$0; 
POINTER$0=TASK(POINTER$1) .PNTR; 
END; 

END; 
TASK(NEW$TASK) .PNTR=POINTER$0; 
TASK(POINTER$l) .PNTR=NEW$TASK; 
IF POINTER$0=0 THEN TASK (NEW$TASK) .DELAY=LOW(UNSIGN(DIFFERENCE)); 
ELSE /* SINCE DIFfERENCE<0 THEN */ DO; 

IF POINTER$0=POINTER$1 THEN TASK(POINTER$l) .PNTR=0; 
TASK(NEW$TASK) .DELAY=LOw(UNSIGN(OLD$DIFFERENCE)); 
TASK(POINTER$0) .DELAY=LOW(UNSIGN(-DIFFERENCE)); 
END; 

TASK(NEW$TASK) .STATUS=TASK(NEW$TASK) .STATUS OR 
BUSY$BIT OR DELAY$BIT; 

STATUS=TASK(NEW$TASK) .STATUS; 
END; 

NEW$'rASK=0 ; 
NEW$DELAY=0; 
RETURN; 
END ACTIVATE$DELAY; 

DECREMENT$DELAY: PROCEDURE; /* ASSUMES INTERRUPTS DISABLED */ 
DECLARE OFF$DELAY BYTE; 
IF DELAY$HEAD<>0 THEN DO; 

TASK (DELAY$HEAD) • DELAy='rASK (DELAY$HEAD) • DELAY-l; 
DO WHILE DELAY$HEAO<>0 AND TASK(OELAY$HEAO) .DELAY=0; 

OFF$DELAY=DELAY$HEAD; 
DELAY$HEAD=TASK(DELAY$HEAD) .PNTR; 
TASK (OFF$DELAY) .STATUS=TASK(OFF$DELAY) .STATUS 

AND NOT(BUSY$BIT OR DELAY$BIT); 
NEW$TASK=OFf$DELAY; 
CALL ACTIVATE$TASK; 
END; 

END; 
RETURN; 
END DECREMENT$DELAY; 

A-78 



CASE$TASK: PROCEDURE REENTRANT; 
DO CASE RUNNING$TASK; 

CALL 'rASK00; 
CALL 'rASK01; 
CALL 'rASK02; 
CALL TASK0j; 
CALL TASK04; 
CALL 'rASK05; 
CALL 'rASK06; 
CALL TASK07; 
CALL'rASK08; 
CALL TASK09; 
END; 

AP-61 

TASK (RUNNING$TASK) .STATUS=TASK(RUNNING$TASK) .STATUS AND 
NOT (BUSY$8IT OR READY$BIT); 

TASK (RUNNING$TASK) .PNTR=0; 
IF RUNNING$TASK=NEW$TASK THEN 00; 

IF NEW$DELAY<>0 THEN DO; 
CALL ACTIVATE$DELAY; 
END; 

ELSE /* SINCE NEW$DELAY=0 */ DO; 
CALL ACTIVATE$TASK; 
END; 

END; 
RUNNING$'rASK=0 ; 
RETURN ; 
END CASE$TASK; 

PREE~PT:PROCEDURE REENTRANT; /* ASSUMES INTERRUPTS DISABLED */ 
IF PREEMPTED$TASK=0 THEN DO; 

IF (HIGH$PRIORITY$HEAD<>0) AND (RUNNING$TASK>= 
FIRST$LOW$PRIORITY$TASK) THEN DO; 

PREEMPTED$TASK=RUNNING$TASK; 
RUNNING$TASK=0; 
DO WHILE PREEMPTED$TASK<>0; 

CALL DISPATCH; 
END; 

END; 
END; 

RETURN ; 
END PREEMPT; 

A-79 



AP~1 

DISPATCH:PROCEDURE REENTRANT, /* ASSUMES RUNNING$TASK=0 */ 
DISABLE, 
IF HIGH$PRIORITY$HEAD<>0 THEN DO, 

RUNNING$TASK=HIGH$PRIORITY$HEAD, 
dIGH$PRIORITY$HEAD=TASK(RUNNING$TASK) .PNTR, 
IF HIGH$PRIORITY$HEAD = 0 THEN HIGH$PRIORITY$TAIL 0, 
CALL CASE$TASK, 
END, 

ELSE IF PREEMPTED$TASK<>0 THEN DO, 
RUNNING$TASK=PREEMPTED$TASK, 
PREEMPTED$TASK=0, 
END, 

ELSE IF LOW$PRIORITY$HEAD<>0 THEN DO, 
RUNNING$TASK=LOW$PRIORITY$HEAD, 
LOW$PRIORITY$HEAD=TASK(RUNNING$TASK) .PNTR, 
IF LOW$PRIORITY$HEAD = 0 THEN LOW$PRIORITY$TAIL 0, 
CALL CASE$TASK, 
END, 

ELSE RETURN, 
RETURN, 
END DISPATCH, 

A~O 



AP-61 

TASK00: PROCEDURE REENTRANT;/*ERROR CODE*/RETURN;END TASK00; 

TASK01: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN; 

/*'rASK01 CODE*/ 

END TASK01; 

TASK02: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*'rASK02 CODE*/ 

END 'rASK0 2; 

TASK01: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*TASK01 CODE*/ 

END 'rASK01; 

'rASK04: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RETURN ; 

/*'rASK04 CODE*/ 

END 'rASK04; 

TASK05: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN; 

/*'rASK05 CODE*/ 

END 'rASK05; 

TASK06: PROCEDURE REENTRANT; 
eNABLE; 

DISABLE; 
RE'rURN ; 

/*'rASK06 CODE*/ 

END TASK06; 

TASK07: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RETURN ; 

/*'rASK07 CODE* / 

END TASK07; 

A-Sl 



TASK08: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*rASK08 CODE*/ 

END TASK08; 

'rASK09: PROCEDURE REENTRAN'r; 
ENABLE; 

DISABLE; 
RETURN; 

/*'rASK09 CODE*/ 

END 'rASK09; 

/ * I N I 'r I AL I Z E * / 

DISABLE; 
DO STATUS=0 TO 9; 

TASK(STATUS).PNTR=0; 
TASK(STATUS) .STATUS=0; 

AP-61 

TASK(STATUS) .DELAY=0; 
NEW$TASK,NEW$DELAY=0; 
HIGH$PRIORITY$HEAD,HIGH$PRIORITY$TAIL=0; 
LOW$PRIORITY$HEAD,LOW$PRIORITY$TAIL=0; 
RUNNING$TASK,PREEMPTED$TASK=0; 
END; 

/* MAIN LOOP */ 

DO WHILE TRUE<>FALSE; 
CALL DISPA'rCH; 
ENABLE; 
STA'rUS=STA'rUS; 
END; 

END TM86; 

A-82 



AP·61 

REFERENCES 

1. Hansen, Brinch, Operating System Principles, Prentice-Hall, Englewood, N.J., 1973. 

2. Knuth, D. E., The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1969. 

3. Wirth, Nicklaus, Algorithms + Data Structures = Programs, Prentice-Hall, Englewood, N.J., 1976. 

4. "PLlM-86 Programming Manual," Intel Corporation, 1978, manual order number 9800466A. 

5. "RMX/80 User's Guide," Intel Corporation, 1977, manual order number 9800522B. 

A83/ A84 





inter 

© Intel Corporation, 1979 

APPLICATION 
NOTE 

A-85 

Ap·50 

September 1979 



AP-50 

Debugging Stragegies 
and Considerations for 

8089 Systems 

Contents 

INTRODUCTION 

STATIC (OR FUNCTIONAL) DEBUGGING 

Hardware Testing 
External Processor Interface 
Software Testing 

REAL·TIME TESTING 

Logic Analyzer Techniques 

A REVIEW OF lOP OPERATION 

Task Execution 
Going from Instruction Execution into DMA 
DMA Termination 
Priorities/Dual Channel Operation 

SUMMARY 

Appendix I. CHECKLIST OF 
POSSIBLE PROBLEMS 

Appendix II. BREAKPOINT ROUTINE 
AND CONTROL PROGRAM 

Our thanks to John Atwood and Dave Ferguson, the authors cif this 
note. Both John and Dave are members of Intel's 8089 design 
engineering group. Please direct any questions you may, have to 
your local Intel FAE (field application engineer) or to MPO 
Marketing at Intel, Santa Clara. 

A-86 



AP-50 

INTRODUCTION 

The Intel 8089 is the first integrated 110 processor 
available. This 1/0 processor (lOP) makes available the 
power of 1/0 channels, as used in mainframes and mini­
computers, in a microcomputer form. Designed as part 
of the MCS-86™ family, the lOP can be interfaced with 
the MCS-80™ and MCS-85™ families as well. 

An 110 channel Is basically a processor remote from the 
main CPU, which independently runs 1/0 operations 
upon command of the CPU. To relate the 8089 to ex­
isting LSI components, it is similar to a microprocessor 
that is time-multiplexed with a DMA controller, but with 
two channels available. However, since the 8089 proc­
essor is optimized for 110 and multiprocessor opera­
tions, and the DMA has been made much more flexible 
than existing DMA controllers, a truly general purpose 
and powerful 110 control system is available on one chip. 

Due to the uniqueness of the 8089, this application note 
was written to review debugging strategies and point 
out possible pitfalls when developing an lOP system. 
Debugging an lOP system is very similar to debugging 
mlcroprocessor/DMA controller systems, and many of 
the techniques described here are standard microproc­
essor techniques. However, several factors are present 
which can complicate the debugging process: 

1. Multiprocessor Operation 

Although usable by itself, the lOP Is designed to be 
used with other processors. All factors normally en­
countered with multiprocessor operation, including bus 
arbitration, processor communication, critical code sec­
tions, etc., must be addressed in the design and debug 
of an lOP system. 

2. DMA Tle·in to lOP Program Execution 

The relationship between lOP program execution and 
DMA transfers and termination is different from earlier 
DMA controllers and should be fully understood to prop­
erly run the system. 

3. Dependency of Programs on Real-Time 1/0 
Operations 

Requirements by 1/0 devices for maximum data rates 
and minimum latency times force the software program­
mer to be aware of hardware timing constraints and can 
complicate program debugging. 

4. Dual Channel Operation 

Related to multiprocessor operation and real-time 
dependencies, the two independent channels available 
on the 8089 may have to be coordinated with each other 
to make the whole system function. Dependence of one 
channel on the other can also complicate debugging. 

Due to the complexities of running in a real-time envi­
ronment, as many steps as possible should be taken to 
facilitate debugging. A major help here Is to make sure 
as much of the hardware and software as possible is 
working before running real-time tasks. This Is a good 
practice anyway, but It should be reemphasized that a 
complex multichannel system can quickly get out of 
hand If more than a few things are not right. 

An aid to debugging any system is a clean, well organ­
ized system deSign. The 8089 lends itself to structured, 
modular software interfaces to the host CPU, via the 
linked-list initialization structure, and parameter com­
munication through the parameter block (PB) area. 
Some of the aspects of structured programming that aid 
debugging are: 

• Top Down Programming - The functions done by 
lOW-level routines are well understood, and the 
number of program .fixes, which can cause more 
errors, is minimized. 

• Program Modularity - Small, easy to manage sub­
programs can be debugged independently, increas­
ing the chance that the entire system will work the 
first time. 

• Modular Remoteness - By having all program 
modules communicate only through a well-defined 
interface, one module's knowledge of the "inner 
workings" of another is minimized. System soft­
ware complexity is reduced. Updates to program 
modules are more reliable, too. 

Two major areas of debugging will be outlined here -
static (or functional) debugging in which the hardware 
and software are not tested in a real-time environment, 
and real-time debugging. Applying a logic analyzer to 
lOP debugging will also be explained, and a review of 
lOP operation and potential problems will be done. 

STATIC (OR FUNCTIONAL) DEBUGGING 

The predominant errors in a system, when first tried out, 
are, either errors In implementation (I.e., wrong hookups 
or coding errors), or an Incorrect implementation (a 
wrong assumption somewhere). Most of these bugs can 
be found through static debugging techniques that are 
usually easier to work with than real-time testing. 

Hardware Testing 

Static hardware testing Is done mainly to see if all indi­
vidual parts of the system work, so the whole system 
will "play" when run. The level of testing can run from 
checking for continuity and shorts (which finds only 
hookup errors) to trying to move data around and run­
ning 1/0 devices from a monitor or special test programs 
(which can also find Incorrect circuit design). In all but 
the simplest systems, the latter approach is recom­
mended since It is a step towards software debugging. 

Several approaches to hardware testing will be covered. 
Running diagnostic programs (such as a monitor) out of 
the lOP's host system, in both the LOCAL and REMOTE 
modes, will be covered. The case where the host system 
cannot support diagnostic software and must have an 
external processor to exercise the lOP and its periph­
erals will also be explained. 

The case where the host system can run diagnostics or 
test programs that have interactive user 1/0, such as a 
CRT terminal or teletype, provides the most straightfor­
ward way to test the lOP. Naturally, before these pro­
grams can be run, the baSic hardware must be correct 
enough to run programs. When this point is reached, a 
monitor program can be used to exercise memory and 
1/0 controllers on the system bus. 

A-87 



AP·50 

It should be mentioned that aids, other than just testing 
with software, are helpful for hardware debugging. 
While a necessity for real.time debugging, a logic 
analyzer is also a definite help for static hardware 
debugging. Its main use in hardware debugging is show· 
Ing timing relationships between address or data paths 
and other signals. It is especially useful for functional 
software debugging, to be described shortly. The last 
debugging section outlines the use of an analyzer with 
the lOP. Of course, an oscilloscope, logic probes and 
pulsers, etc., can be used to trac!, out specific logic or 
timing problems. . 

LOCAL Mode 

When the lOP is run'ning in the LOCAL Mode, all 1/0 con· 
trollers and memory are accessible by the host or con· 
trolling CPU. Thus a standard monitor, such as the one 
supplied with the SDK-86 or available for the ISSC· 
86112™ development kit, can exercise all hardware on 
the bus.' The breakpoint routines, however, will not 
work due to the different instruction set. The 8086 or 
8088 Is best suited for running the lOP in the LOCAL 
mode due to Identical status lines and bus timing, as 
well as the Request/Grant line, which eliminates bus ar· 
bitration hardware. Figure 1 shows the general LOCAL 
mode configuration. 

'The SDK·86 serial monitor Is a good basis for a general 8086 monl.tor. 
The lOP cannot be used directly with the SDK·86, since the 8086 Is run· 
nlng In the minimum mode. The SDK-86 can be converted t.o run In the 
maximum mode, If desired. 

~ 8284 11 

REMOTE Mode 

From a system 'design standpOint, running the lOP in 
the REMOTE Mode is advantageous In that It removes 
the I/O bus cycles from the system bus. Normally, the 
remote I/O Is not accessible to the host, CPU. Until the 
lOP is able to run its own test programs to transfer data 
from the REMOTE bus to the system bus, I/O controllers 
and memory on the REMOTE bus will be invisible to the 
hO-!lt. To get around this problem during prototyplng, 
either an external processor interface can be used (see 
next section), or a temporary bypass can be made to ac· 
cess the REMOTE bus from the system bus. 

Bypassing the normal REMOTE/SYSTEM interface is a 
handy technique for doing preliminary debugging on the 
REMOTE bus. This can be done by memory·mapping the 
lOP's I/O space into an unused portion of the host 
CPU's system memory space. When accessing this 
space, the lOP access to its own I/O space is disabled, 
and a separate set of address buffers, transceivers and 
bus control signal buffers are enabled. Reads and writes 
can then be done to the formerly Inaccessible REMOTE 
bus by the host CPU. 

A simple system (Figure 2) implements this bypassing 
scheme. It was designed for just forCing or examining 
devices on the REMOTE bus and may not read or write 
correctly if the lOP is simultaneously trying to do bus 
cycles. A more sophisticated arbitration system would 
permit reliable run·time checking also. 

SYSTEM BUS 

.l\ 3 x 8282 IAO-19" 1;1-
~ CLOCK (lENERATOR ADo·AD" 

lOCAL BUS r--v PROM 
A'I-A'1 lATCH r---v Ir READY RESET ClK 8086 1\1 

ClK 
CPU 

RESET so-S2 !--f!-
READY 

RQIGii'i' ~ 2 x 8286 
~DO-15 

~ IV' TRANS, 
~ 

RQf(lRT 

11 
ClK ADo-AD'5 ,lolJI"Ij"C AiS- A'1 

RESET 8089 \I 
, iiIWfC lOP SO-s. so-S2 READY 
,AiolWl:, 8288 

BUS ,1l!I!DC a 
~ 

CONTROllER a 
I~ Q 

ClK ~ 

Figure 1. Generalized LOCAL Conflgurallon-8086 In Max Mode 

A-88 

;U\ 
RAM ,\rY 

lft...t\ SERIAL 
j---T-

110 

In (8251) 

~ 110 PERIPHERAL 

J I 
CONSOLE 110 
TO RUN TEST 
PRO~RAMS 



8086 OR 8088 
(HOST CPU) 

AP-50 

SYSTEM I 
ADDR:~~ )~ ____________ ~ ________________ ~ ________ ~ ____________ ~ ________________ ~ 

SYSTEM ( 

DATABUS))--______________ ~----------------~-----------------------~--------~----~ 

SYSTEM ~---------------'-------------------"-----------'---------------'------------'-----_( 

CONTROL~----------------~--------------~------~--------------~--~----~----~ BUS r------ -l 
lOP DISABLE I I ~~~T~~ TO 

I 
I 
I 

I/:~~ESS 
I LOGIC 

I 
I I L ________ :.J 

I-I-================================j ~~DRESS BUS 

1--------------------'-------'------( 1/0 DATA 

1----------------------------------4 BUS 

1/0 
L-__________________ ~L-____ '--____________________ ---J ______________ CONTROL 

BUS 

Figure 2. Remote Mode Bypass for Debugging 

Running the lOP in the REMOTE mode, particularly if 
the MUL TIBUS™ protocol is adhered to, has the advan· 
tage that the lOP can be exercised with any MULTlBUS· 
compatible processor. If the main processor is not 
amenable to being used as a debugging tool, another 
processor could be used to debug the hardware inter· 
face. If the microprocessor is of the same type as the 
intended host processor, software debugging can be 
done as well. A generalized REMOTE mode configura· 
tion using the MULTI BUS is shown in Figure 3. 

External Processor Interface 

A technique that can be used if the host processor can· 
not run any debugging or monitor.routines is to have an 
external processor tie into the host processor's bus. 
This is useful if the main system CPU cannot run an in· 
teractive monitor or other debugging programs. If a 
MULTIBUS interface is being used, an 8289 bus arbiter 
and a set of address/data/control buffers can be used. A 
somewhat simpler system, similar to the remote bus ac· 
cess system mentioned above, could be used for static 
debugging of non·MUL TlBUS systems. Again, if true bus 
arbitration is added (which brings us nearly to a MULTI· 
BUS interface), it could also be used for run·time 
testing. Intel processors that have the MUL TlBUS 
interface include the iSBC·80/20™, iSBC·86/12™, iSBC· 

80/10™, iSBC·80/05™, the Intellec'" development 
systems, among others. 

In the previously described systems, the external proc· 
essor would disable the host CPU's access to the bus, 
either by some form of bus request or by a "brute force" 
disabling of the CPU's buffers. In the latter case, the ex· 
ternal processor could only control the bus during a 
time that the CPU is halted, without destroying the pro· 
gram flow. Mapping the processor's memory space into 
the external processor memory space is the simplest 
method, but can impact programs being run on the 
external processor. If the processor under test utilizes 
the MULTIBUS interface (with bus arbitration), then a 
processor like the iSBC·80/30™ or iSBC·86/12™ could 
be used as the debug vehicle with no special hardware. 
A more flexible interface that would have less impact on 
the system memory space would have the addresses for 
the system under test generated from latches loaded by 
the I/O instructions from the external processor. This 
case must have software routines to interface to the I/O 
ports and handle the desired debugging routines (see 
Figure 4). 

Software Testing 

It is desirable to check as much of the lOP program as 
possible statically, since various tools and techniques 
are available which may not be usable during real·time 

A-89 



MULTI BUS 
CONTROL---
SIGNALS 

ADDRESS - ..... ---jH-I 

Ap·50 

Figure 3. Generalized Remote Bus Using MULTI BUS Interface 

HIGH ORDER 
ADDRESS LINES 

LOW ORDER 
ADDRESS 
LINES 

16-20 BITS 

THESE BUFFERS ENABLED WHEN SYSTEM 
UNDER TEST'S BUFFERS DISABLED ~ 

CNTL -----"-'~-I -t>- I--"M"U"'L"'TI"'B"US=-.=.C.=O"N"'TR"'O"'Lo.,L=I"N=ES'---!'-___ ....,.-+_1 

EXTERNAL PROCESSOR 

SYSTEM UNDER TEST'S MEMORY Is MAPPED 
INTO EXTERNAL PRO,CESSOR'S MEMORY. 
UPPER ADDRESS BITS CAN BE SUPPLIED 
FROM 110 LATCH. 

Figure 4. External Processor Interface 

A-90 

HOST CPU 

ADDRESS OATA CNTL 
BUS BUS SIGNALS 

SYSTEM UNDER TEST 



AP·50 

testing. This "static" software testing is not applicable 
to heavily I/O-dependent or DMA-dependent routines, 
but Is best suited to longer computational or data han­
dling routines. The Idea Is to test the correctness of 
algorithms, rather than seeing if the whole system runs. 

There are two main approaches to functional software 
testing. One is to essentially run the program In real 
time and monitor program flow on a logic analyzer. The 
difference between this and real-time testing Is that pro· 
gram subsections can be tested separately by using dif­
ferent TP (Task POinter) starting addresses. If It is 
necessary to set up certain registers or parameters in 
memory, a small "setup" program can be run afterini­
tialization, which can load up registers or memory, then 
jump to the program section desired. 

Another technique is to run the programs with break­
point routines so that one can step through code 
segments and follow program execution. Software 
breakpOints are usually implemented by inserting a 
jump or restart to a monitor routine at the breakpoint 
l'Ocatlon. This jump or restart is machine language 
dependent so, unfortunately, the existing breakpoint 
routines within monitors for the 8080 or 8086 are not 
applicable. 

New routines tailored to the 8089 can be used, and, if 
done properly, can even be used to examine programs 
running on a REMOTE bus. Using breakpOints is some­
what complicated on the 8089 because the minimum In­
struction length is two bytes. There is no absolute CALL 
instruction, only a relative one (which would have to 
have its displacement recalculated each time it was 
used). But, with a several-byte absolute jump inserted at 
each place a breakpoint is desired, full breakpoint 
capabilities can be obtained. 

There are many ways the breakpOints can be imple­
mented. When a breakpoint is reached, the 8089 itself 
could output the machine state to a console through Its 
own routines. Better suited to debugging, though, is a 
system that has the 8089 place its machine state in 
memory, alert the host processor, and then halt. The 
host then picks up the 8089's state and can treat it in the 
same way it runs its own breakpoint routines. Since the 
host processor is more likely to be running a monitor or 
some other kind of debugging routine (and most likely 
has at least temporary console 1/0), it is the logical sys­
tem to initiate and examine 8089 breakpOints. If the lOP 
is running in the REMOTE mode, and the host processor 
has access to the 1/0 bus via the scheme mentioned In 
the hardware debugging section, then lOP programs 
running on the REMOTE bus can be examined. 

The breakpoint itself can consist of an escape sequence 
that is used to save the TP value and jump to the save 
routine, or just a jump to the save routine. This routine 
saves all register contents for the channel the break­
point is in, signals the host processor, and stops the 
lOP. All user programmable registers (GA, GB, GC, IX, 
MC, BC, TP), as well as the pointer tags, are accessible. 
The PP (Parameter Pointer) and PSW are not normally 
accessible, but if the generation of the CA Is such that 
the lOP can send Itself a CA, then by sending a CA 
HALT, the PSW will appear at PP + 3. Remember that 

since the lOP doesn't have arithmetic or logical condi­
tion codes, the PSW is not as Important as in other 
machines. 

The most straightforward way to pass data from the lOP 
to the host processor is through the PB (Parameter 
Block) area since the PP will normally remain relatively 
fixed throughout the lOP program. In order not to in· 
fringe on the PB areas used by the programs, an area 18 
bytes long should be allocated at the end of the PB 
block to hold the register contents. Using other areas to 
store the register data requires saving and reloading a 
pOinter register as part of the breakpOint escape 
sequence. 

The data returned from the breakpoint save routine will 
appear to the host processor as a sequential block of 
data in the PB area. Sixteen-bit data can easily be ex· 
tracted, but 20-bit pointer data will have to be 
reconstructed from the move pOinter (MOVP) format: 

7 07 07 

:~~~:~ !D19 ... D1S!rOO! D15 ••• DB D7 ••• DO 

TAG BIT 
O=SYSTEM 

1mUO 

I LOWEST 
ADDRESS 

Several means are available to signal the host processor 
that a breakpoint has been reached. A bit could be set In 
memory or an interrupt sent to the CPU. The best way, 
though, is to use the BUSY flag (at CP + 1 or CP + 9). 
After starting the lOP, the BUSY flag is set to FF. When 
a breakpoint is reached, the lOP performs its save 
routine and does either a software or CA HALT. These 
result in clearing the BUSY flag, which then signals the 
CPU to obtain valid breakpoint data. The CPU can then 
restart the lOP by either a CA START or CA CONTINUE. 

The breakpoint routine outlined above will work for a 
"one-shot" test. However, to be more useful as a 
general purpose debugging tool, some refinements 
must be added. To keep from destroying the program 
whenever a breakpoint is placed, the supervisory pro­
gram running from the host processor must save the 
lOP code that is occupied by the escape sequence. 
When the breakpoint is completed and lOP execution is 
to resume, the host program restores the lOP code, sets 
the TP in the CB area back to where the breakpoint was 
placed, and sends a CA START. Since the length of each 
instruction can be easily found from bits 1-4 of the op­
code, a single stepping function can also be done.· By 
the time this is implemented, the host program is 
becoming a full·fledged debugging routine. Appendix 3 
describes a debugging program that makes use of the 
ideas presented here. 

BreakpOint routines can be quite useful, but some 
restrictions and limitations should be mentioned. The 
processor examining the breakpOints must have access 
to the lOP program memory, either directly, or through 
lOP programs that simulate direct access. The program 
memory must be in RAM. The breakpoint must be 

"The formula for length of instructions Is: length (In bytes) = 2+ 1 (If bits 
1.0=01)+ 1 (If bits 3,2=01) + 2 (if bit 3= 1)+2 (If LPDI). 

A-91 



AP-50 

placed on an instruction boundary, and multiple break­
pOints must not be placed so that they overlap. There 
may be some impact on the PB area. CA generation may 
have to be different than usual. But, despite these 
limitations, the breakpoints offer a useful and more con­
ventional software debugging tool than analyzers. 

REAL-TIME TESTING 

Running an lOP program in its final environment with 
real 1/0 devices is the true test of dynamic operation. 
The program is no longer in a static, isolated environ­
ment. The demands of DMA and multiprocessing may 
reveal unplanned timing dependencies or critical sec­
tion problems. There may also be sections of hardware 
or software, which couldn't be tested statically, that 
may have bugs. The whole purpose of static or func­
tional testing is to dig these problems out while con­
venient debugging tools can be used. Since there are no 
simple techniques for real-time debugging, the use of a 
logic state analyzer and techniques to fully understand 
the lOP's real-time operation will be emphasized. 

Multiprocessing operations and real-time asynchronous 
110 requests can cause the timing complexity of the 
system as a whole to rise beyond the point of complete 
comprehension by an individual. It is then essential that 
techniques to ensure correctness are used. These in­
clude good design methods, especially a clean, well­
structured design, as well as good testing. A thorough 
test requires the attitude that the system should be 
tested for failures, rather than tested for correctness. In 
other words, one should try to make the system fail, 
tests should be chosen that will put the worst stress on 
critical timing areas. 

The best way to do this is to write a diagnostic program 
that puts the CPU, lOP, and 110 devices through the 
worst conceivable timing and program combinations. 
Ideally, the program should be self-checking so that it 
can be run without supervision, printing any data or pro­
gram errors that occur, much like a memory test. 

The two main real-time problem areas are insufficient 
data rates or latency, and critical section problems. To 

:-~50MS-­, 
L _______ ~~4 CK-I-~1CK---'-
I IF FIRST / 

RESET IRESET AFTER I 

_ __ I ~O_W_E~ __ Uf_/ 

test for data rate problems, run the system clock at its 
lowest expected frequency and use memory and 110 
with maximum expected wait states. Identify the 
tightest program timings and try to have these sections 
cOincide with worst case DMA or other heavy bus utiliza­
tion (see dual channel operation later). Critical section 
problems can occur when two independent processors 
communicate with each other with improper "handshak­
ing." This can result in one processor missing another's 
message, or even having both processors hang up, 
waiting for each other to go ahead. The 8089 provides 
aids to these problems, including the TSL instruction (to 
implement semaphores) and the BUSY flag. However, 
any interprocessor communication (including one chan­
nel of the lOP to the other) should be checked. Beware 
of cases when one processor is running considerably 
slower than the other (due to DMA overhead or chained 
instruction sequences). 

The techniques for real-time debugging evolve from 
functional testing using a logic analyzer. For all but the 
simplest systems, an analyzer is essential, since it can 
graphically show program execution and timing rela­
tionships during real-time execution. Another aid is a 
delayed oscilloscope. Triggering the scope from the 
logic analyzer, the delay can be adjusted so that any 
signal in the system can be monitored. 

To facilitate the use of the logic analyzer, especially if 
its memory is not very deep or when using it to trigger 
an OSCilloscope, a repetitive system can be used to con­
tinually update the display. Using a repetitive reset 
helps to debug the software-hardware interface, since 
oscilloscope or logic analyzer probes can be readily 
moved around the circuit to observe new Signals 
without manually retriggering the display. At its 
simplest, the reset to the host processor can be strob­
ed, say every 10 ms. The processor will then provide the 
two channel attentions (CAs) that are needed to in­
itialize the lOP. Where this isn't feasible, the CAs can be 
externally forced by either a string of one-shots or a sim­
ple processor with timing loops (such as a SDK-85 or 
SDK-86). See Figure 5 for initialization timing. 

;:..150CK*-

-;::.1CK-

CA 

INITIALIZE START CH2 
SLAVE-~r ___ '\ ,.. _______ _ 

SEL_-7-________ ,<-' _\ ..... ____ ~I 
MASTER-7 --

POWER 
,ON ,-

ROIGRT MODE 

'LONGER IF WAIT STATES 

Figure 5. Initialization Input Sequence 

A-92 



AP-50 

Memory protection of the lOP and system programs is 
helpful when debugging OMA operation. It is quite easy 
for runaway OMA to wipe out memory. Another precau· 
tion to avoid this problem is to set an upper limit on the 
number of bytes transferred by always specifying a byte 
count termination. 

Logie Analyzer Techniques 

In the absence of other powerful debugging systems, 
the logic analyzer has shown to be an extremely useful 
tool. Because of its importance in debugging an lOP 
system, some basic techniques and observations that 
relate to monitoring lOP operation will be reviewed here. 
The particular brand or type of analyzer used is not too 
important, but would be desirable to have the following 
features: 

• At least a 24·bit data width 
• Flexible triggering and qualification control 
• Display after triggering on a sequence of states 
• Capability for hexadecimal data display 

It is best to hook up to the address/data lines at the lOP, 
as opposed to looking at the separate address and data 
lines, since 39 lines would be required just to look at ad· 
dress, data and status lines. The three lower status lines 
should be monitored to show the type of bus cycle be· 
ing run. Other lines can be connected where needed, at 
places like the ORQ lines, the EXT lines or other lines 
related to the system. 

For general purpose debugging, triggering the analyzer 
on the rising edge of the lOP clock shows the most 
useful data concerning bus cycles. Of course, using the 
falling edge may be necessary to check certain signals, 
particularly ones that are active only while the clock is 
low. The following discussion is based on sampling 
data on the clock's rising edge. 

One should be careful when setting up the triggering 
for the analyzer that the desired event is what is dis· 
played and not a later event with the same trigger word. 
This can happen when the logic analyzer is in the repet· 
itive trigger mode. It may retrigger before the system ac· 
tually resets. A sequence restart feature is helpful. 

The basis of following program execution and DMA on a 
logic analyzer is to follow an 8089 bus cycle, which is 
identical to a 8086 and 8088 bus cycle. The following 
diagram shows a typical 8089 bus cycle. 

For general purpose debugging, displaying every clock 
is useful, but for quickly finding one's way around a pro· 
gram, the analyzer can be qualified so that only instruc· 
tion fetches (status = 100 or 000), with ALE active, are 
trapped. A much more compact display of execution 
flow resu Its. 

BUS 
CYCLE 

T1 

T2 

T3 

T4 

A16·19 ADO·15 ~ PREVIOUS ADDRESS. UPPER STATUS 

X xxxx 111 IDLE STATUS 

F 0 1 0 1 0 1 2O·BIT ADDRESS = FF010. 

E ~FFF 101 LOWER STATUS = MEMORY DATA READ 

E A A 5 0 111 16-BIT DATA RETURNED=AA50 

E F 0 1 0 1 1 1 ADDRESS REMAINS IN CHIP OUTPUT t LATCH AFTER END OF BUS CYCLE 

DATA NOT READY YET 
UPPER STATUS INDICATES: NON·DMA. CH1 

As mentioned earlier, on a 16·bit bus, most instructions 
starting on odd addresses won't show the first fetch, 
since the internal queue is in use. It is a good idea in 
that case to use only even instruction boundaries as 
trigger words. When following dual channel operation, 
one should keep an eye on the upper status bits (S3-S6), 
since S3 indicates which channel is running (0 = CH1, 
1 = CH2), and S4 indicates DMA/non·DMA transfer 
(0 = OM A, 1 = non·OMA). 

A REVIEW OF lOP OPERATION 
(With things to look out for) 

When trying to get an unfamiliar system going for the 
first time, it is too easy to stumble on apparent prob· 
lems that are really just unexpected operation modes or 
peculiarities of the machine. For this reason the basic 
principles of lOP operation will be reviewed here with 
special emphasis on possible problem areas or pitfalls 
that a user might encounter when debugging a 8089 sys· 
tem. The topics are covered generally in the order en· 
countered when bringing up a system. For complete 
details of operation and some design examples, see the 
8086 Family User's. Manual. 

RESET 
RESET must be active (HIGH) for at least four clocks in 
order to fully initialize all internal circuitry. On power up, 
RESET should be held high for at least 50 microsec· 
onds. The chip is only ready to accept a Channe.1 Atten· 
tion (CA) one clock after RESET goes inactive. 

Note that the SEL pin is sampled on the falling edge of 
the first CA after RESET to tell the 8089 whether it is a 
master (0) or a slave (1) for its request/grant circuitry. If a 
master, it will assume it has the bus from the beginning. 
If a slave, it will strobe the RQ/GT Line to request the 
bus back and will not start any bus transfers until it has 
been granted the bus. If the RQ/GT line is not being 
used, make sure the lOP comes up in the master mode. 

Initialization 

Upon the first CA after reset, a sequence of instructions 
is executed from an internal ROM. These instructions 
pick up parameters and load data from the linked list 
sequence (Figure 6). The instruction sequence is essen· 
tially: 

MOVB SYSBUS from FFFF6 
LPD System Configuration Block (SCB) from FFFF8 
MOVB SOC from (SCB) 
LPO Control Poi nter (CP) from (SCB) + 2 
MOVBI "00" to CP + 1 (clears BUSY flag) 

A-93 



AP-50 

Remember that four bytes must be fetched during an 
LPD. If on a 16·blt bus, with even addressed boundaries, 
only two fetches are needed. Otherwise (8·bit bus or odd 
boundaries), four fetches are needed. 

Even though no bus cycles are run to fetch these in· 
structions, the CH1 Task Pointer (TP) appears on the ad· 
dress latches during the short internal fetch periods. 
On power up, this value is meaningless, but if a repeti· 
tive RESET is used, the TP remains unchanged from the 
end of the last program run. See Figure 6 for the start of 
a typical initialization sequence as viewed on a logic 
analyzer. 

Bit 0 in the SYSBUS field sets the actual (or physical) 
system bus width that the lOP expects. In the 8·bit 
mode, only byte accesses are made, and all 8·bit data 
should appear on the lower eight data lines. In the 16·bit 
mode, word accesses can be made (if the address is 
even), all data on even addresses appears on the lower 
eight data lines, and all data at odd addresses appears 
on the upper eight. 

Bit 0 in the SOC field sets the physical width for the 110 
bus. The same rules for the system bus apply here. Note 
that these bits should reflect the actual hardware imple' 
mentation and are not to be confused with the DMA logi· 
cal widths set by the WID instruction. 

The R bit (bit 1) in the SOC field is used to change the 
mode of the RQ/GT circuitry. When the lOP is on the 
same bus as an 8086, it is required to have the R bit be 0, 
with the 8086 as the master and the 8089 as the slave. 

CA 

10 
CK 

14 { 
CK 

6 
CK 

A19-AO S3-S0 

FF F F F 111 
FF F F F 111 
FF F F F 111 
FF F F F 111 
EOO 0 0 111 
EOO 0 0 111 
FF C6 0 111 

FFC60 111 
FF F F 6 101 
EF F F F 101 
EFF 01 111 
EF F F F 111 
EF F F 6 111 
EF F F 6 111 
FF C6 0 111 

FFC60 111 
FF F F 8 101 
EF F F F 101 
EF F F 0 111 
EF F F F 111 
EF F F 8 111 
EF F F 8 111 
EF F F 8 111 
EF F F 8 111 
FF F FA 101 
EF F F F 101 
EF F FA 111 

EF F F A 111 
FF C6 0 111 

T COMMENTS 

Trigger ClK t 

Bus un-tristated 

TP to latch 

T1 Address loaded to latch 
T2 Data not ready yet (nothing on bus) 
T3 SYSBUS loaded into chip (01) 
T4 Nothing on bus 

After bus cycle, address remains in 
latch 

TP is loaded to latch, even though 
fetches are from internal ROM 

T1 Address to latch 
T2 
T3 1st 2 bytes of lPO data fetched (FFFO) 
T4 

2nd 2 bytes of lPO data fetched (FFFA) 

Figure 6. Start of Initialization Sequence On a 16·Bit Bus 

The master (8086 or 8088) can never tab the -bus away 
from the slave (8089); only the slave can give back the 
bus. In other words, during DMA transfers, the 8089 
would not have the bus taken away. This is the only 
mode compatible with the 8086 or 8088. 

Wh~ two lOPs are being used on the same bus, the 
RQ/GT circuity can be put into an equal priority mode 
by setting the R bit to one. A slave can only be granted 
the bus if the master is doing unchained instructions or 
running idle cycles. The master can request the bus 
back from the slave at any time. The slave grants it if do· 
ing unchained instructions or If it is idling. The master 
and slave are put on essentially the same priority. 

At the end of initialization, the "BUSY" flag of CH1 is 
Cleared. For systems where the 8086 is waiting for the 
initialization sequence to end before giving another CA, 
it can set the BUSY flag high prior to initialization. The 
BUSY flag going low is a sign that the lOP Is ready for 
another CA. It is important to remember that the lOP will 
not respond to, nor latch, a CA during an initialization 
sequence. 

Channel Attentions 

The main system processor initiates communications 
with the lOP through the Channel Attention (CA) line. As 
mentioned earlier, the first CA after system RESET in· 
itializes the lOP. All subsequent CAs cause the lOP to 
do a two· step process. It first fetches the Channel Con· 
trol Word (CCW) from the appropriate channel at (PP) for 
channel 1 or (PP + 8) for channel 2. (SEL at the time of 
CA falling determines the channel for all following ac· 
tions.) The lower three bits of the CCW Command Field 
(CF) are examined and then cause the lOP to execute 
the desired function. 

Command Field (CF) 

Control of task block programs is accomplished 
through the command field. The various CF functions 
are: 

A-94 

CF 

000 - Examine other field only and set BUSY flag 
001 - Start task program in 110 space 
011 - Start task program in system memory 

The start command causes the following instructions 
to be executed out of the internal ROM: 

LOP CP from (CP) + 2 (CH1) or + 10 (CH2) 
LOP TP from (PP) (for TP in system) or 
MOVB TBP from (PP) (for TBP in 110) 

MOVBI "FF" to (CP) + 1 or+ 9 (set BUSY flag) 
111 - HALT channel. BUSY flag cleared to "00" 
110 - HALT channel. Save state of machine and 

clear BUSY flag by executing: 
MOVP TP to (PP) 
MOVB PSW to (PP) + 3 

MOVBI "00" to (PP) + 1 or + 9 



AP-50 

The channel will HALT and the machine will con­
tinue execution on the other channel or go to idle if 
the other channel is idle. 

101 - Continue channel. The channel is revived 
after a HALT by executing: 

MOVP TP from (PP) 
MOVB PSW from (PP) + 3 
MOVBI "FF" to (CP)+ 1 or +9 

(set BUSY flag) 

Do not do a CONTINUE after initialization without doing 
a CA START first since the (PP) register in CH1 is used 
as a temporary register (to hold SCB) and is only correct­
ly loaded by a CA START. 

The upper 5 bits in the CCW will have affect if CF = 000 
or upon a CA START. Some things to note about these 
upper fields are: 

• Priority Bit - If both channels are doing tasks of 
the same overall priority, the tasks with the higher 
priority bit will run. If the priority bits are the same, 
execution will alternate between the two channels. 

• BLL Bit (Bus Load Limit) - Keeps nonchained in­
structions from occurring more often than once 
every 128 clocks. However, channel attention or ter­
mination cycles, even on the other channel, may 
disrupt the exact time interval to the next 
instruction. 

It should be noted that the setting or clearing of the 
BUSY flag occurs after the loading or storing of 
registers, so that in a system where the main CPU uses 
the BUSY flag as a form of semaphore to tell when the 
lOP is truly finished, there is no danger that the SCB, 
CP, PP or TP could be changed before the lOP loads 
them. 

Also since DMA termination cycles and chained instruc­
tion execution have a higher priority than CA, it is pOSSi­
ble for CA to be "shut-out" by these higher priorities 
runn'ing on the other channel. However, since CA is 
always latched (except during initialization), it won't be 
forgotten. 

How Can a Channel be Halted? 

Sometimes a channel may stop its operation unex­
pectedly. To see what could cause this, and to show the 
impact of halting a channel, the various ways of stop­
ping a channel are explained: 

HALTED CHANNEL - If the channel has never started 
after initialization, if it has received a CA HALT com­
mand or a software HALT, channel operation is sus­
pended. If the other channel can run, it will, otherwise 
idle cycles will run. Only a CA START or CONTINUE can 
resume operation. 

WAITING FOR A DMA REQUEST - If the channel is in a 
source or destination synchronized DMA transfer mode, 
it will wait until DRQ is active before running its syn­
chronized transfer. To minimize the impact on the 
overall throughput of the chip, the other channel can run 
during these DRQ wait periods. 

WAITING TO GET THE BUS BY RQ/GT - If the lOP has 
given the bus away via Ra/m, it won't initiate any bus 
transfers until it has the bus back. The machine will run 
up to just before T1 of a bus clock cycle and will three­
state its address/data and status pins until it has been 
granted the bus. 

WAITING FOR READY - When running bus transfers, 
READY is sampled at T3 of a busy cycle. If inactive, the 
whole chip will wait until READY goes active. 

The last two cases of waiting (or "wait" states) stop the 
whole chip and do not permit the other channel to run. 
However, with READY inactive or with the bus not ac­
quired, there is not much that can be done on the other 
channel anyway. These two cases only stop the chip 
when running bus cycles. Any internal operations can 
proceed without having the bus or with the system not 
READY. 

Note the difference between when the chip is HALTed 
when using RQ/GT and an external arbiter (8289) for 
bus arbitration. Not having the bus due to RQ/GT will 
inhibit the bus cycle from even starting. Since the 8289 
stops the chip by forcing AEN inactive, which goes 
through the 8284 clock generator to force READY inac­
tive to the lOP (or 8086/8088), a bus cycle has already 
been started, with ALE asserted, and the address on the 
address/data lines. When the bus is obtained, operation 
proceeds at T3 of the bus cycle. 

As will be mentioned later, many invalid opcodes will 
cause the machine to hang up. In these cases the 
address/data lines will point to where the bad opcode 
was fetched. 

Task Execution 

Although optimized for fast and flexible DMA operation, 
the lOP is also a full-fledged microprocessor. The 8086 
Family User's Manual deals with programming 
strategies and other details. Some of the things to be 
noted during debugging will be mentioned here. 

Instruction Fetching 

Unlike the 8085 (but like the 8086), the 8089 labels all 
fetches from the instruction stream, whether OPCODE, 
offset, displacement, or literal data, as an instruction 
fetch on the status lines. In some cases, such as MOV 
R,I and ADD R,I, the instruction fetch time greatly ex­
ceeds execution time because literals are treated as in­
struction fetches. When following programs on a logic 
analyzer, triggering on status = 100 or 000 (instruction 
fetch) and a known program address is the handiest way 
to trace the flow of the program. 

When running programs on a 16-bit bus, a 1-byte queue 
register comes into play, saving the upper byte fetched 
from the last instruction fetch, if not used by the 
previous instruction. This reduces fetch time and bus 
utilization since the odd byte doesn't need to be fetched 
again. An internal four-clock cycle fetches data from the 
queue. Like the internal ROM fetches, the task pOinter is 
put out on the addressldata lines, but no bus cycle is run. 

A-95 



AP-50 

The queue can have some possible unexpected affects 
thaI have to be taken into account during debugging. 
These apply only to 16-bit systems and are: 

1. Instructions that start on odd boundaries will not 
likely have bus cycles run to fetch the odd byte 
unless jumped to, unless preceded by LPDI (which 
clears the queue), or an instruction that modifies the 
task pointer is executed. The latter causes the queue 
to be cleared so that part of an old instruction won't 
become part of the new one. 

2. There is a queue register for each channel so loading 
or clearing the queue on one channel has no affect on 
the other channel's queue. 

3. The second word of immediate data fetched by a 
LPDI is done during a pseudo-instruction fetch cycle 
that cannot make use of the queue or already fetched 
data. Thus, if on an odd boundary, fetching an LPDI 
will be byte, word, byte, byte, byte, and the queue will 
not be loaded. 

When Can the Other Channel Interrupt Instruction 
Execution? 

This will be explained more in the "dual channel" opera­
tion section, but a few points will be mentioned here. All 
instructions are made up of internal cycles, with each 
cycle composed of two to eight clocks. Each bus cycle 
is one internal 'cycle, but there 'can be internal cycles 
with no comunications to outside the chip. Internal 
cycles will be extended by the number of wait states in 
each bus cycle, Between any of these cycles, DMA from 
the other channel can intervene if the priorities permit it. 
Instruction fetching and execution can only interrupt in­
structions on the other channel when the instruction 
has been completed, not between internal cycles. 

Registers 

All the registers have some special purpose use in the 
Instruction Execution or DMA, but all except the CC 
register can be used as general purpose registers during 
instruction sequences. A few are loaded specially: 

• CP - Is only loaded during an initialization se­
quence. There is one CP register that handles both 
channels. (All others are duplicated, one set for 
each channel.) 

• PP - Is only properly loaded during a CA START 
command. It holds the SCB value after the initializa­
tion sequence. 

• TP - This is included as part of the registers in the 
RRR field, but cannot be operated on unless you 
plan on having your program execution jump 
around. Every time this is operated on, the queue is 
cleared. The TP is loaded from two words (address 
and displacement) on a CA START, LPD, or LPDI, 
and loaded from 3-byte MOVP format (see illustra­
tion on page 5) on a CA CONTINUE, and can be op­
erated on using any register oriented instructions. 

The following registers are loaded during program exe­
cution, but can have special effects: 

• CC - The only thing that affects instructions in the 
CC register is the chaining bit. If chaining doesn't 
matter (if only one channel is being used without 
channel attentions, for example), then the CC reg­
ister can be general purpose. However, for portabil­
ity of programs, it is strongly suggested not to use 
the CC register except for altering DMA parameters 
and chaining. 

• MC - Is a general purpose 16-bit register, but is 
also used to do a masked comparison either for 
DMA search/match termination or for the JMCE and 
JMCNE instructions. 

• BC, /X - Both general purpose 16-bit registers. In 
instructions that reference memory using the AA 
field, if AA = 11, the IX register is incremented by 
the number of bytes fetched or stored. 

• Pointer Registers (GA, GB, GC and TP) - Are 20-bit 
registers, but can also be used as 16-bit registers. 
Adds will carry into the upper 4 bits, but other 
operations (COMP, OR, AND) are done only on the 
lower 16 bits. Note that when used as pOinters to 
system memory, it is possible to add a large 16-blt 
number to the pointer and to put the pointer Into 
another 64K block of memory. 

Sign Extension 

All program data brought into the chip, either literals or 
displacements in opcodes, or program data fetched 
from memory, is sign-extended. Offsets used for 
calculating addresses are not sign extended. Any 8-blt 
data brought in has bit 7 sign-extended up to bit 19_ 
Sixteen-bit data is sign-extended from bit 15 to bit 19. It 
is important to note this, because it can affect logical 
operations. For example, if one wanted to OR 0084H 
with 1234H in register GC, you couldn't do ORBI GC, 
84H, because bit 7 would sign-extend into the upper 
byte. Instead, you should code ORI, 0084H to do this 
properly (note that this has a word for the immediate 
data). The non-ADD operations will cause the upper four 
bits of the pOinter registers to be invalid since the upper 
four bits of the ALU come only from the adder. 

Tags 

It should be noted that the way the lOP knows which 
bus to access (system or I/O) is via the Tag bit associ­
ated with the pointer register used. The TAG can only be 
set in these ways: loading as a 16-bit register (MOV R,M, 
MOV R,I) sets TAG to I/O space, loading as a pointer 
(LPD, LPDI) sets TAG to a system space), or bringing the 
TAG in from memory by a MOVP instruction. 

Effects of Inralld Opcodes 

The upper 6 bits of the 2-btye opcode actually determine. 
which opcode will be executed. If these bits are a valid 
opcode, but lower bits are invalid, the chances are good 
that the bad bits will be ignored. But if the upper six bits 
are invalid, there is a very good chance that the chip will 
hang up and stop execution in that channel. The only 
way to get out of this mode is to reset the chip. If this 
hang-up occurs, it can usually be traced because the 
last address of the instruction fetch will still be on the 

A-96 



AP-50 

address/data lines, showing where the program went 
astray. 

Going from Instruction Execution into DMA 

The XFER instruction places the current channel into 
the OMA mode after the next instruction. This permits 
one last instruction to start up an I/O device (start CRT 
display on an 8275, for example). However, in order for 
the lOP to get setup for OMA, the GA, GB, and CC 
registers should not be altered during this last instruc­
tion. Failure to observe this will probably result in an 
improper first OMA fetch. The WID instruction can be 
placed after XFER. 

DMA Transfers 

tncrementing/Non·lncrementing pointers 

A memory or I/O pOinter can be made to increment for 
each byte transferred during OMA or it can remain fixed. 
Incrementing is used primarily for memory block 
transfers, and non-incrementing is used to access I/O 
ports. 

B/W Mode 

Each OMA transfer is composed of separate fetch and 
store cycles so that 8/16-bit data can be assembled and 
disassembled, and translation and termination may also 
be easily handled. There are four possible transfers or 
B/W modes. They are: 

B - B-1 byte fetched, 1 byte stored 
B/B - W - 2 bytes fetched, 1 word stored 
W - B/B - 1 word fetched, 2 bytes stored 
W - W - 1 word fetched, 1 word stored 

The B/W mode used depends on the logical bus width 
(selected by the WID instruction), address boundary, 
and incrementing mode. 

All systems with 8-bit physical buses wil.1 run in the B/B 
mode. On 16-bit physical buses the other modes are 
possible, depending on the logical widths selected. 
Note that the logical bus width can be different than the 
physical bus width since there are cases where an 8-bit 
peripheral may be used on a 16-bit bus. The selection of 
the logical width, and not the physical width, is what 
determines the B/W mode. Thus it is the responsibility 
of the programmer not to program an invalid combina­
tion (i.e., don't specify a 16-bit logical width on an 8-bit 
physical bus). 

Any transfer on an odd boundary will be B/B but if the 
pointer is incrementing and on a 16-bit logical bus, after 
the first transfer, the pointer will be on an even .bound­
ary. The lOP will then try to maintain word transfers in 
order to transfer data as effeciently as possible. See the 
user's manual for details. The change in B/W mode oc­
curs only after the first transfer or, as explained in the 
termination section, upon certain byte count ter­
minations. 

Synchronization 

In the unsynchronzied mode, transfers occur as fast as 
priorities will allow. This is the lOP's "block-move" 
mode. Most I/O peripherals only want a OMA transfer on 
demand; the ORO lines, along with synchronization 
specified, will handle this need. Source synchronization 

A-97 

is used for I/O reads and destination synchronization is 
used for I/O writes. 

If the lOP is waiting for a OMA request, it will run pro­
grams or OMA on the other channel, or execute idle 
cycles if nothing is pending. If running idle cycles when 
the ORO comes, the transfer starts five clocks after 
ORO is recognized. If running OMA or instructions on 
the other channel, the ORO cannot be serviced until the 
current internal cycle is done, and may require a max­
imum of 12 clocks (without bus arbitration or wait 
states). 

Consecutive ORO-synchronized OMA transfers on the 
same channel are separated by four idle clocks (assum­
ing no other delays) by an internal sampling mechanism. 
This happens between the 2-byte fetches on source­
synchronized B/B-W cycles, and between the two stores 
on destination-synchronized W-B/B cycles. This delay 
between consecutive OMA cycles allows adequate time 
for proper acknowledgement of the current DMA re­
quest before the next request is processed. On 
destination-synchronized OMA, this isn't a problem, but 
on source-synchronized OMA, there will be four extra 
clocks per transfer. Unless one is running right at the 
speed limit, this won't be a problem. Near the maximum 
data rate, unsynchronized transfers can be used, with 
synchronization done by manipulating the READY line. 

Trans/ate Mode 

When the translate bit is set, the data fetched during 
OMA will be added to the GC register. This new pointer 
will in turn be used to fetch, via a seven clock extra fetch 
cycle, new data, which will then be stored. Translate is 
only defined for byte transfers. The bytes are added to 
GC as a positive offset, so a lookup table for translating 
data can be a maximum of 256 bytes long. Even if the 
data to be translated falls within a smaller range (such 
as ASCII code), a full 256-byte lookup table is recom­
mended so that erroneous data can be flagged and con­
trolled. 

Translate can be run on any of the B/B transfer modes, 
so it is useful for doing block translation within program 
execution as well as translation directly to or from an I/O 
port. 

DMA Termination 

One of the powerful features of the lOP is its varied 
DMA termination conditions and their close tie-in with 
resuming Instruction Block programs. However, be­
cause of the multitude of DMA modes, care must be 
taken in predicting the exact termination parameters. 
Various things to be careful about will be outlined here. 

Byte Count (BC) Termination 

The Be register is decremented for every byte trans­
ferred whether or. not Be termination is set. If Be ter­
mination is set, the last transfer done is the one that 
results in Be being zero. To avoid the problem of miss­
ing Be= 0 on word transfers, if Be is odd between every 
transfer, the lOP detects when Be is 1, and forces the 
last transfer to be in the BIB mode. Since both the fetch 
and store cycles are complete, the source and destina­
ti.on pOinters point exactly to the next byte or word that 
would have been fetched. 



AP-50 

Mesked Compere (MC) Terminetion 

An MC termination occurs when a pattern matches (or 
doesn't match, depending on mode selected) the lower 
half of the MC register (the match pattern) with only the 
bits that are enabled by the upper half of MC (the mask 
pattern) contributing to a match. Thus the masked bits 
can be "don't cares" in both the data byte and the match 
byte. 

The masked comparison is only done on store (deposit) 
cycles. Any bytes transferred (in BIB or W-B/B mode) will 
be compared. But, since the MC comparison is done on 
only one byte, any words stored (W-W or B-BIW) have 
only their lower byte compared. This may be fine, but if 
not, make the destination logical width 8 bits. 

Just like BC termination, the pointers will point to the 
next data to be transferred. The BC will also be decre­
mented correctly, except if the termination occurs on 
the first byte of a W-B/B transfer. In this case the BC will 
be decremented as if the entire transfer (both bytes) had 
taken place. 

The store cycle that causes an MC termination will be 
lengthened by two extra clocks (or by one extra clock if 
there are walt states), to allow time to set up the ter­
mination cycle. 

MASK PATTERN ____ oJ MATCH 

Figure 7. Masked Compare Logic lor 1-811 

Externel (EXT) Terminetion 

External termination allows the I/O devi.ce or controller 
to use its own conditions to generale a termination. 
Basically, the lOP will halt OMA as soon as Itrecognizes 
an EXT terminate, even if a transfer is only partially com­
plete. There might be concern that multi byte cycles 
(W-B/B or B/B-W) might have data lost If an EXT ter­
minate stopped the store cycle. In unsynchronlzed OMA 
this would happen, but this mode Is typically not used 
with I/O controllers that could generate external ter­
minations. In synchronized OMA modes, it Is assumed 
that the I/O controller will only do a ORQ for valid data 
transferred, and ttiat it won't give an EXT terminate with 
Its ORQ active. In destination synchronization, the 
possible problem occurs In the W-B/B mode, where EXT 
terminate comes after the first store but before the sec­
ond. This Is fine, since even though data was over­
fetched, the proper amount was actually transferred. In 
source synchronization, the B/B·W mode raises prob­
lems since if an EXT terminate came after the first byte 
fetched and before the second byte fetched, normally 
no store cycles would be done at all; thus losing the first 
byte fetched. In this case (Le., source synced, ORQ Inac· 
tive, and 1 byte already fetched), a ,single byte store 
cycle is run before the termination cycle, ensuring data 
integrity. . 

In orderto prevent an invalid signal level from becoming 
trapped from the asynchronous EXT term lines, two 
clocks of delay and signal conditioning are done on 
these lines. In addition, a termination cycle can only be 
started at certain times during OMA (or TB on the other 
channel - see dual channel operation section). The EXT 
terminate lines should be valid eight clocks before the 
start of the OMA cycle to be stopped. 

EXT is sampled even when the lOP is running something 
on the other channel. Remember though, that despite 
the high priority {)f termination, the current Instruction 
on the other channel has to finish before the termination 
cycle is run. Simultaneous EXTs on both channels result 
in CH1 termination being done first. 

In order to have enough time to process a byte count ter­
mination, the BC register is always decremented during 
OMA fetch cycles. Because of this, external or MC ter­
minations that occur during W·B/B cycles will result in 
the byte count always being decremented by two, even 
if only one byte is stored. This also occurs In the block­
to-block or block-to-port B/B-W modes. To find the exact 
number of bytes transferred, the source pointer addre&6 
can be checked in the block-to-port and block-to-block 
modes during B/B-W cycles and In the block-to-port 
W-B/B mode. The destination pointer address can be 
used to find the number of bytes transferred in the port­

. to-block and block-to-block modes during W-B/B cycles. 

Termlnetlon Cycles end Multiple Termlnetlons 

Upon termination, the user can run different task block 
programs, depending on which type of termination has 
occurred, by specifying an appropriate termination off­
set. That is, instruction fetching will begin after a 
termination cycle starting at either the TP value before 
the OMA started, TP + 4 or TP + 8. These offsets permit 
long or short jumps to termination routines. 

The termination cycle is an add immediate instruction 
that runs from the internal ROM and adds the proper off­
set to the TP. It is 15 clocks long for'TP + 4 and TP + 8 
termination and 12 clocks long for TP+ o termination. 

As mentioned earlier, EXT terminate must. come a cer­
tain time before the end of a transfer to ensure that the 
next transfer doesn't start. If it comes In time and MC 
termination also occurs on the current transfer, then the 
termination cycle with the largest offset is run. A 
simultaneous BC terminate cycle will have priority over 
MC and will result in the running the BC termination 
program. 

Priorities/Dual Channel Operation 

Tile lOP can share its internal and external hardware 
between two separate channels. The user sees two 
identical lOP channels with all registers, machine flags, 
etl)., independent of the other channel. The only register 
In common Is the CP register, loaded by the initializa­
tion sequence. The mechanism for achieving dual chan­
nel ,operation is time multiplexing .between the two 
channels. 

Since interleaving two channels affects their respGIlse 
time to external events and since Interfacing to these 
events.is the prime purpose of the lOP, several means of 
adjusting the priorities of the channels are provided. 

A·98 

n. 



AP-SO 

Before going into the priority algorithms in detail the 
four types of cycles that are affected by the priorities 
will be outlined: 

1. DMA Cycles - Any type of DMA transfer cycle, 
including single transfers and translate cydes. DMA 
can be interrupted after any bus transfer by the other 
channel. 

2. Instruction Cycles - Any instructions that have 
been fetched out of 1/0 or system memory. Instruc· 
tion cycles are made up of internal cycles, each two 
to eight clocks long (assuming no wait states). Some 
cycles may not run bus transfers. Instructions can be 
interrupted by DMA after anyone of the internal 
cycles, but can only be interrupted by instructions on 
the other channel (normal ones or ones from internal 
ROM) after the current instruction is completed. 

3. Termination Cycle - Performed when DMA transfers 
end and instructions resume (except on Single 
transfers). 

4. Channel Attention Cycles - Performed when chan· 
nel attention is given, performs actions specified in 
the CCW field. Both termination and CA cycles can 
be interrupted by DMA after any internal cycle, but 
can only be interrupted by instruction cycles after 
the complete sequence of internal cycles is done. 

Termination and channel attention cycles as well as the 
initialization cycle (which never runs concurrently with 
other operations) are sequences of instructions fetched 
from an internal ROM. 

Recognizing the higher importance in doing DMA, ter­
mination and (to a lesser extent) CA cycles, the follow­
ing priority scheme is built into the lOP. Any channel 
that has a higher-priority operation will run continuously 
until done. If both channels are running the same priori­
ty, execution will alternate between them. 

Highest Priority 

1. DMA transfers, termination, chained instructions 
2. Channel attention cycles 
3. I nstruction cycles 
4. Idle cycles 

Lowest Priority 

Two ways exist to alter the priority scheme. One way is 
to utilize the priority bits for each channel. If one is 
greater than the other, that channel will run at the ex­
pense of the other if both channels are otherwise run­
ning at the same priority. Thus the P bit only has effect 
on channels running at the same priority level. 

If one wants to run instructions along with or in place of 
DMA on the other Channel, the other technique is to set 
the chaining bit (in the CC register) which brings the 
instruction priority up to the level of DMA. Care should 
be taken with this since now CAs are at a lower priority 
than instructions and will not be serviced unless that 

channel goes idle. Chaining will also lock out normal in­
structions on the other channel. Chaining should thus 
be used with care. 

In order to reduce the possibility of shutting out channel 
attentions, an exception is made to the above priority 
scheme. After every DMA transfer, whether synchro­
nized or unsynchronized, the lOP will service any pend­
ing CA. However, chained task block execution will still 
shut out CAs on the other channel. 

What is the importance of priorities? Well, as an 
example, let's say that we are running long periods of 
non·time-critical block moves (via DMA) on one channel 
and running short bursts of DMA that must be serviced 
promptly on the other channel. With the defaul.! 
priorities, the short DMA channel bursts would be in· 
terleaved with the longer DMA, reducing the maximum 
transfer rate for both channels. If, however, the priority 
bit was one on the burst mode DMA and zero on the 
other, the bursts would be serviced continuously at the 
fastest possible data rate. 

An even more critical case would be the same low prior· 
ity, long DMA transfers on one channel with DMA on the 
other channel that must terminate, run a short instruc· 
tion sequence, and resume DMA again within a short, 
fixed time. (This might be the case in running a CRT dis· 
play with linked list processing between lines.) Normal­
ly, the low priority, long DMA could indefinitely block 
the short TB sequence. By setting the high·priority chan· 
nel's priority bit to one and putting it into the chained 
instruction mode, the low priority channel would stop 
its DMA entirely so that the terminationlinstruction se· 
quence could run. 

When establishing the priorities to be run, care should 
be taken that both channels will run successfully under 
a worst case combination. This can be tricky when the 
channels are running asynchronously with fast data 
rates and/or short latencies, but must be taken into ac· 
count. Of course, running only one channel on the lOP is 
an easy solution, but if more than one lOP is being used 
in the system, the priorities and delays of the bus ar· 
bitration used (either RQ/GT or an 8289 bus arbiter) must 
be taken into account. It may be found that the on·chip 
arbitration between the two channels is faster and more 
powerful than external arbitration. 

SUMMARY 

It is hoped that the material presented here will aid 
those who are putting together and debugging an 8089 
lOP system, and help them in understanding the opera· 
tion of the lOP. Many of the debugging techniques 
should be familiar to those who have worked with micro· 
and minicomputer systems before. Other debugging 
techniques not mentioned here, which work well with 
microprocessor systems, could be just as applicable to 
the 8089. The unique nature of the lOP among LSI 
devices warrants special consideration for its I/O func· 
tions and multiprocessor capabilities. 

A-99 



AP-50 

Appendix I 

CHECKLIST OF POSSIBLE PROBLEMS 

HARDWARE PROBLEMS 

• Is RESET at least four clocks long? 

• Are both Vss lines connected to ground? 

• Does the first CA falling edge come at least two clocks 
after RESET goes away? 

• Does the second CA come at least 150 clocks (16-bit 
system, no wait states) after the first CA? 

• Is READY correctly synchronized and gated by 
local/system bus lines? 

• Is SEL correct for first CA so that lOP comes up cor­
rectly as master or slave? 

• If two lOPs are local to each other, is a 2.7K pull-up re­
sistor used on RQ/GT? 

SOFTWARE PROBLEMS 

• Are the initialization parameters in the initialization 
I inked-list correct? 

• Is BUSY flag being properly tested by host CPU soft­
ware before modifying PB or providing a new com­
mand? 

• Has the chaining, translate, or lock bit in the CC 
register been erroneously set? 

• Have DMA termination conditions been met? The lOP 
could be trying to do endless DMA. 

Appendix II 

BREAKPOINT ROUTINE 
AND 

CONTROL PROGRAM 

The debugging program described here is an example of 
the kind of software development tool that can be 
developed for the 8089 lOP. It was written to tryout 
various breakpoint schemes, and has been used to 
debug an engineering application test system. The pro­
gram is not meant to be the ultimate debugging tool, but 
is an example of what can be put together to utilize the 
breakpoint routine described earlier in the application 
note. 

The debugging program was tested on a 8086-based 
system that emulates the SDK-86 110 structure, and uses 
the SDK-86 serial monitor. This enables it to use the 
SDK-86 Serial Downloader to interface to an 
Intellec@ development system on which the software 
was created. The 8086 system is interfaced via a 
MULTIBUS™ interface to an lOP running in the REMOTE 
mode. The remote bus access technique, mentioned 
earlier in this note, is implemented on this system, but 
was not used in the software debugging program. 

The breakpoint routine uses a simple jump to a save 
routine. The PUM-86 supervisory or control program 
handles the placement of the jump within the users pro­
gram. Since it can not normally access the remote bus, 
all lOP programs to be tested must run out of system 
memory. 

When the control program starts, it assumes the lOP has 
just been reset. It then prompts the user for the CP 
and PP values. After this, it sends the first (initialization) 
channel attention. It then asks the user for the channel 
to be run, and the starting and stopping addresses. After 
the stopping address has been entered, a Channel At­
tention Start is given. If the breakpoint is reached, a 
HALT is executed, and the control program prints the 
register contents. If the breakpoint hasn't been reached, 
the user can type any character, and a Channel Atten­
tion Halt will be sent to the lOP. If the lOP responds 
within 50 ms, the TP where it was halted is printed. 
Otherwise, the control program issues an error 
message. If, at any time, the user wants to get out of the 
program, typing an ESC will pass control back to the 
SDK-86 monitor. Figure 9 shows the flow of the control 
program. 

Note that, unlike a single CPU debugging routine, hav­
ing the 8086 supervise the 8089 enables a clean exit 
from crashed lOP programs. The program code where 
jumps had been placed are always restored. The control 
program is a good example of how the power of dual 
processors can be put to good advantage. 

Comments within the control program indicate 
parameters that need to be changed to run on different 
systems. It should be noted that channel attentions are 
invoked by the recommended method of using an 110 
write to a port to generate CA and using AO for SEL. 

Source and object files of this program are available 
through Intel's INSITE™ User's Program Library as pro­
gram 8089 Break. 89 (number AD6). 

MASTER DATA STORAGE LOCATIONS: 

TP 

TP 

GA 

GA 

GB 

GC GB 

GC 

BC 

IX 

cc 
MC 

=l INCREASING 
ADDRESS 

pp -

-

-

--l-
I--

pp+ 239 

pp+ 242 

pp+ 245 

PP + 248 
pp+ 250 

PP+ 252 
pp+ 254 

Figure 8. Breakpoint Routine to Run 8089 Program out of System 
Memory 

A-IOO 



LOAD PP 
WITH STARTING 

POINT. 

BUSY FLAG 
WITH OFFH 

AP-50 

NO 

Figure 9. Breakpoint Routine to Run 8089 Program out of System Memory 

A-lO! 



AP-50 

PL/M-86 COMPILER 8089 BREAKPOINT ROUTINE 

ISIS-I I PLlM--86 Xl03 COMPILATION OF MODULE BREAKPOINT 
OBJECT MODULE PLACED IN BREAK.OBJ 
COMPILER INVOKED BY: . Fl: PLM86 BREAK. SRC PAGEWIDTH (100) 

2 
3 
4 
5 
6 

7 
8 
9 

10 

11 

$TITLE ('8089 BREAKPOINT ROUTINE') 
; .. 

8089 BR~AK POINT PROCEDURE 
WRITTEN BY DAVE FERGUSON 2/2/79 
INTEL CORPORATION 

BREAK$POINT: 
DO; 
DECLARE I BYTE; 

REV 2 8/14179 

DECLARE SAVECODE (4) WORD; I*BUFFER FOR STORAGE*I 
DECLARE ON~PP POINTER; 1* CHAN ONE PP *1 
DECLARE TWOPP POINTER; 1* CHAN TWO PP *1 
DECLARE STARTBYTES (4) BYTE; 1* BUFFER FOR START ADDRESS *1 

DECLARE STARTPOINTER POINTER; 1* POINTER FOR START ADDR. *1 
DECLARE ENDPOINTER POINTER; 1* POINTER FOR END ADDR. *1 
DECLARE PRESENT POINTER AT (@INPNTR); 1* POINTER BUFFER *1 
DECLARE TRUE LITERALLY 'OFFH', FALSE LITERALLY 'oaoH'; 

1* YOU MUST CONFIGURE YOUR 1/0 STRUCTURE AND 
SYSTEM TO MATCH THE PROGRAM OR VISA VERSA *1 

DECLARE CRTSTATUS LITERALLY '0F,FF2H', 1* 8251 STATUS PORT *1 
CRTDATA LITERALLY 'OFFFOH', 1* 8251 DATA PORTS *1 

... *1 

CHANATTEN LITERALLY 'OFAH', 1* CHANNEL ONE CHANNEL ATTENTION PORT *1 
1* CHANNEL TWO CHANNEL ATTENTION PORT = CHANATTEN + I *1 

CHANNEL ONE LITERALLY 'OOH', 
CHANNELTWO LITERALLY 'OIH', 

1* ASCII IS A STRING OF HEX CHARACHTERS IN ASCII FORM *1 
ASCII (*) BYTE DATA .('0123456789ABCDEF'), 
TITLE$STRING (*) BYTE DATA (OAH,ODH, '8089 BREAKPOINT VER 1.0', 

OAH,ODH, 'TYPE ESCAPE TO RETURN TO MONITOR. " 
OAH, ODH, 0), 

CHANGIVEN (*) BYTE DATA ('CHANNEL ATTENTION GIVEN TYPE ANY KEY TO ABORT. ' 
,OAH, ODH, 0), 

BKREACHED (*) BYTE DATA (OAH,ODH, 'BREAKPOINT REACHED',OAH,ODH,O), 
GETCP (*) BYTE DATA ('INPUT CP IN HEX',OAH,ODH,OO), 
GET$PP (*) .BYTE DATA ('INPUT PP. IN HEX FOR ',OOH),. 

PAGE 

GETSTART (*) BYTE DATA (OAH,ODH, 'INPUT STARTING ADDRESS IN HEX',OAH,ODH,OOH), 
STOPADDR (*) BYTE DATA ('INPUT END ADDRESS IN HEX',OAH,ODH,OOH), 
CHANNUMBER (*) BYTE DATA (OAH,ODH, 'CHANNEL ONE OR TWO? ',OOH), 
ABORT (*) BYTE DATA (' FATAL ERROR - lOP DOES NOT RESPOND TO CHANNEL', 
, ATTENTION. RE-INITIALIZE SYSTEM ',0), 
ABORTAT <*) BYTE DATA (' TP WAS ',0), 
ONE (*) BYTE DATA (' CHANNEL ONE',OAH,ODH,OOH), 
TWO (*) BYTE DATA (' CHANNEL TWO',OAH,ODH,OOH), 
GASTRING (*) BYTE DATA ('GA = ',OOH), 

A-102 



.' 

PL/M-86 COMPILER 

il 

12 
13 

14 

15 

16 
17 

18 

19 
20 
22 
23 

24 

2S 
26 
28 
29 
30 
32 
33 

34 

35 
36 
37 
39 
40 
41 

2 

2 
2 

2 
2 
2 
2 

1 
2 
2 
2 
2 
2 
2 

2 
2 
3 
3 
2 
2 

AP-50 

8089 BREAKPOINT ROUTINE 

('GB = ',OOH), 
('GC = ',OH), 

GBSTRING (*) BYTE DATA 
GCSTRING (*) BYTE DATA 
BCSTRING (*) BYTE DATA 
IXSTRING (*) BYTE DATA 
CCSTRING (*) BYTE DATA 
MCSTRING (*) BYTE DATA 

(OAH,ODH, 'BC = ',OOH), 
(OAH,ODH. 'IX ',OOH), 
(OAH.ODH. 'CC ',OOH), 
(OAH,ODH, 'MC, = ',OOH) 

DECLARE CHAR BYTE. 
DECLARE ONETWO BYTE. 

1* SDKMON IS A PLM TECHNIGUE USED TO FORCE THE CPU INTO AN 
INTERUPT LEVEL 3, IN ORDER TO USE THIS THE PROGRAM MUST 
BE COMPIL.ED (LARGE>' *1 

SDKMON: 
PROCEDURE. 

DECLARE HERE (*) BYTE DATA (OCCH), 
1* THIS IS AN INT, 3 *1 

WHERE WORD DATA(,HERE). 
CALL WHERE. 

END. 

1* CO SENDS A CHAR TO THE CONSOLE WHEN READY *1 
1* THIS ROUTINE IS WRITTEN TO RUN VIA THE SERIAL 

PORT OF AN SDK86 *1 
CO: 
PROCEDURE (C). 

DECLARE C BYTE. 
DO WHILE (INPUT(CRTSTATUS) AND 01H) 
OUTPUT (CRTDATA) = C. 

END. 

0, END, 

1* CI GETS A CHARACHTER FROM THE USER VIA THE SERIAL PORT *1 
1* CI AUTOMATICALLY ECHOS THE CHARACHTER TO THE USER CONSOLE *1 
DECLARE tSCAPE LITERALLY 'iSH', 

CI: PROCEDURE BYTE, 
DO WHILE (INPUT(CRT$STATUS) AND 02H) = 0, END, 
CHAR = INPUT (CRTDATA) AND 07FH, 
CALL CO(CHAR), 
IF CHAR = ESCAPE THEN CALL SDKMON, 1* GO TO SDK MONITOR *1 
RETURN CHAR, 

END, 

1* VALIDHEX CHECKS THE VALIDITY OF A BYTE AS A HEX CHARACHTER*I 
1* THE PROCEDURE RETURNS TRUE IF VALID FALSE IF NOT *1 

VALIDHEX: 
PROCEDURE (H) BYTE, 

DECLARE H BYTE, 
DO 1=0 TO LAST(ASCIl), 

IF H-ASCII(I) THEN RETURN TRUE. 
END, 
RETURN FALSE, 

END, 

A-103 

'Ii' 

PAGE 2 



PL/M-86 COMPILER 

42 

43 2 
411 2 
46 2 
47 3 
49 3 
50 2 

51 

52 2 
::;3 2 
54 2 
55 2 

56 

57 2 
58 2 
59 2 
60 2 

61 

62 

63 2 

64 2 
65 2 
66 2 
67 2 

68 2 
69 2 

AP-50 

8089 BREAKPOINT ROUTINE 

1* HEXCONV CONVERTS A HEX CHARACTER TO BINARY FOR MACHINE USE. : 
IF THE CHARACTER IS NOT A VALID HEX CHAR. THE PROCEDURE RETURNS 
THE VALUE OFFH *1 

HEXCONV: 
PROCEDURE (OAT) BYTE, 

DECLARE OAT BYTE, 
IF VALIDHEX(DAT) () OFFH THEN RETURN TRUE, 
DO 1=0 TO LAST(ASCII), 

IF OAT = ASCII(I) THEN RETURN I, 
END, 
END, 

1* HEXOUT'WILL CONVERT A VALUE OF TYPE BYTE TO AN ASCII STRINQ 
AND SEND IT TO THE CONSOLE *1 

HEXOUT: 
PROCEDURE (C) , 

DECLARE C BYTE, 
CALL CO(ASCII(SHR(C.4) AND OFH», 
CALL CO(ASCll (C AND OFH», 

END; 

1*. WORDOUT CONVERTS A VALUE OF TYPE WORD TO AN ASC I I STR ING 
AND SENDS IT TO THE CONSOLE *1 

WORDOUT: 
PROCEDURE (W), 

DECLARE W WORD; 
CALL HEXOUT(HIGH(W»; 
CALI_ HEXOUT(LOW(W»; 

END; 

I" G'ETADDRESS IS A PROCEDURE'TO GET AN ADDRESS FROM THE CONSOLE, 
THIS PROCEDURE WILL ONLY CONSIDER THE LAST::; CHARACHTERS ENTERED 
*1 

DECLARE INPNTR (4) BYTE; 

GET$ADDRESS: 
PROCEDURE POINTER; 

DECLARE BUFF BYTE; 
I*CLEAR ALL VALUES TO ZERO *1 

I NPNTR (Q) 0; 
INPNTR(I) 0; 
INPNTR(2) 0; 
INPNTR(3) 0; 

BUFF = 0; 
DO WHILE BUFF () TRUE; 

1* THIS SEGUENCE OF SHIFTS ALLOW THE USER TO TYPE IN FIVE 
OR MORE CHARACHTERS TO BECOME THE ACTUAL POINTER FOR aoac;> 
OR 8086, THIS PROCEDURE RETURNS THE LAST FIVE IN PROPER 
SEGUENCE STORED IN INPNTR(0-3). THE STORAGE 
IS AS FOLLOWS: 

I, THE LAST CHARACTER INPUT GOES INTO 
THE LOW FOUR BITS OF INPNTR(O). 

2, THE NEXT TO LAST CHARACTER GOES INTO 
THE LOW FOUR BITS OF INPNTR(2). 

PAQE 



PL/M-86 COMPILER 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

80 

81 
82 
83 
84 
85 
86 
87 

8B 

89 

90 
91 
92 

93 
94 
95 

96 
97 
98 

3 
3 
3 
3 
3 
3 
2 
2 
2 
2 

2 
2 
2 
3 
3 
3 
2 

2 
2 
2 

2 
3 
3 

2 
3 
3 

AP-50 

8089 BREAKPOINT ROUTINE 

3. THE THIRD CHARACTER INPUT GOES INTO 
THE HIGH FOUR BITS OF INPNTR(2) 

4. THE SECOND CHARACHTER INPUT GOES INTO 
THE LOW FOUR BITS OF INPNTR(3) 

5. THE FIRST CHARACTER INPUT GOES INTO 
THE UPPER FOUR BITS OF INPNTR(3). 

THE 86 SHIFTS INPNTR (2.AND3) LEFT FOUR BITS AND ADDS THIS TO 
INPNTR(O) RESULTING IN THE ADDRESS THE USER TYPED IN. *1 

INPNTR(3) = (SHL(INPNTR(3).4) OR (SHR( INPNTR(2).4) AND OFH), 
INPNTR(2) = (SHL(INPNTR(2).4) OR (INPNTR(O) AND OFH», 
INPNTR(O) = BUFF, 
BUFF = CI, 
BUFF = HEXCONV(BUFF) , 

END, 
CALL CO(OAH), I*LINE FEED TO CRT*I 
CALL CO(ODH), I*CARRIAGE RET TO CRT*I 
RETURN PRESENT, 1* PRESENT IS A POINTER TO THE ARRAY INPNTR. *1 

END, 

1* STRINGOUT IS A PROCEDURE TO SEND THE CONSOLE AN ASCII STRING 
ENDING IN THE VALUE 00. STRINGOUT NEEDS A VALUE OF TYPE POINTER 

*1 

STRING$OUT: 
PROCEDURE( PTR), 

DECLARE PTR POINTER.STR BASED PTR (1) BYTE, 
I = 0, 
DO WHILE STR(I) (> 0, 

CALL CO(STR( I»), 
I = I + 1, 

END, 
END, 

DECLARE TAGIS (*) BYTE DATA (. OPERATING IN '.0). 
TAGISONE <*) BYTE DATA ('10 SPACE'.OAH.ODH.O). 
TAGISZERO (*) BYTE DATA ('SYSTEM SPACE'.OAH.ODH.O), 

1* TAGTEST TESTS THE TAG BIT AND SENDS A MESSAGE TO THE CONSOLE 
THE TAG IS LOCATED IN BIT THREE. A TAG BIT OF ONE MEANS THE 
POINtER IS TO liD SPACE. AND A TAG BIT OF ZERO MEANS THE 
POINTER IS TO SYSTEM SPACE *1 

1* THE CALLER MUST DECIDE WHICH BYTE HAS THE TAG AND PASS IT TO TAGTEST *1 

TAGTEST: 
PROCEDURE (TEST) , 

DECLARE TEST BYTE, 
CALL STRINGOUT(@TAGIS), 
IF (TEST AND 01000B) (> 0 
THEN 
DO, 

CALL STRINGOUT(@TAGISONE), 
END, 
ELSE 
DO, 

CALL STRINGOUT(@TAGISZERO), 
END, 

A-lOS 

PAGE 4 



AP-50 

PL/M-86 COMPILER 8089 BREAKPOINT ROUTINE 

qq 

100 

101 

102 

103 
104 

1,)5 

IC.6 

107 
108 
IG9 
110 
111 

1 1 '-' 

113 
114 

115 

lIb 
117 

118 
Ilq 

120 

2 

2 

2 
;;> 
2 
2 
;;> 

;;2 
2 

END, 
DECLARE SAVE$ADDR LITERALLY '2000H', 

SAVE$SEG LITERALLY 'OOCOH', 

DECLARE BREAK89 (4) WORD DATA (9B8IH,089IH,SAVE$ADDR,SAVESSEG); 
1* BREAK89 IS AN 4 WORD ESCAPE SEQUENCE TO ADDRESS 2000H 

CONSISTING OF AN LPDI TP,SAVE$ADDR WITH SEGMENT, 
LOCATED AT OCOOH, *1 

1* BRKRTN IS 33 BYTES OF CODE THAT STORES ALL REGISTERS 
AS FDl LOWS 

GA STORED AT PP + 239 
GB STORED AT PP + 242 
GC STORED AT PP + 245 
BC STORED AT PP + 248 
IX STORED AT PP + 250 
CC STORED AT PP + 252 
Me STORED AT PP + 254 

*1 

DECLARE BRKRTN (33) BYTE AT (02COOH) 
i* 02COOH IS ACTUALL,Y (SAVE$ADDR + (SHUSAVE$SEG), 4», AND SHOULD 

MATCH ADDRESS AND SEGMENT WHERE BREAK ROUTINE IS WANTED *1 
INITIAL, 

,03H, 09BH,OEFH,023H,09BH,OF2H,043H,09BH,OF5H,063H,087H,OF8H,OA3H,087H, 
OF~h,OC3H,OB7H,OFCH,OE3H,087H,OFEH,020H,048H) 

DECLARE PP POINTER, 
DECLARE PPP BASED PP (1) BYTE, 

START$PRGM 
PROCEDURE(oNE$TWo,PPP), 
DECLARE ONE$TWo BYTE,PPP POINTER, 
WHERE BASED PPP (1) BYTE, 

WHEREIO) = START$BYTES(O), 
WHERE I I) 0, 
WHERE(2) - ~TART$BYTES(2)' 
WHERE(3) ~ START$BYTES(3), 
CPDAT(loNE$TWo) * 8) = 3, 
1* IF ONE TWO = 1 THEN OUTPUT TO PORT OFBH, IF oNETWo 

IS 0 THEN OUTPUT TO PORT OFAH *1 
OUTPUTICHANATTEN + (oNETWo ) = 0, 
CALL STRINGoUT(@CHANOIVEN), 

END, 

1* THIS PART OF THE PROGRAM ALLOWS THE USER TO DEFINE THE 
CP,PP OF EACH CHANNEL *1 

DECLARE BREAKOUT BASED ENDPoINTER (I) WORD, 

DECLARE CP POINTER, 
DECLARE CPDAT BASED CP (1) BYTE, 

DECLARE oNEPPDAT BASED oNEPP (1) BYTE; 
DECLARE TWoPPDAT BASED TWoPP (1) BYTE, 

CALL STR INGoUT (@TITLESTRING); 

A-106 

PAGE 5 



PL/M-86 COMPILER 

1:21 
1:22 
123 
124 
125 
126 
127 
128 
129 

8089 BREAKPOINT ROUTINE 

CALL STRINGOUT(@GETCP), 
CP = GETADDRESS, 
CALL STRINGOUT(@GETPP), 
CALL STRINGOUT(@ONE), 
ONEPP = GETADDRESS, 
CALL STRINGOUT(@GETPP), 
CALL STRINGOUT(@TWO), 
TWOPP = GETADDRESS, 

AP-50 

OUTPUT (CHANATTEN) = 0, 1* INITIALIZATION CA *1 

130 MAIN: 

131 
132 

134 2 
135 2 
136 2 

137 1 
138 2 
139 2 
140 2 

141 

142 I 
143 I 
144 2 
145 2 
146 1 

147 I 
148 I 
149 2 
150 2 
151 1 
152 2 
153 2 
154 1 
155 I 
156 I 
157 2 
158 2 
159 2 
160 1 

161 

CALL STRINGOUT(@CHANNUMBER), 
CHAR = CI, 1* GET CHANNEL NUMBER *1 
IF (CHAR AND 01H) (> 0 1* CHECK BIT ZERO TO DEFINE 

CHANNEL NUMBER *1 
THEN DO, 

CALL STRINGOUT(@ONE), 
ONE TWO = CHANNELSONE, 

END, 
ELSE 

DO, 
CALL STRINGOUT(@TWO), 
ONE TWO = CHANNELSTWO, 

END, 

CALL STRINGOUT(@GETSSTART), 1* GET STARTING ADDRESS 
FROM USE:R *1 

STARTPOINTER = GET ADDRESS, 
DO I = 0 TO 3, 1* MOVE STARTING ADDRESS INTO CP AREA *1 

STARTBYTES(I) = INPNTR(I), 
END, 
CALL STRINGOUTC@STOPADDR), 1* GET STOP ADDRESS 

FROM USER *1 

ENDPOINTER = GETADDRESS, 
DO I = 0 TO 3, 1* MOVE CODE TO SAFE AREA *1 

SAVECODE(I) = BREAKOUTCI), 
END, 
DO I = 0 TO 3, 

BREAKOUT(I) = BREAK89(I), 1* MOVE ESCAPE SEQUENCE INTO PLACE *1 
END, 
CPDAT(I) = OFFH, 1* SET CHANNEL ONE BUSY FLAG *1 
CPDAT(9) = OFFH, 1* SET CHANNEL TWO BUSY FLAG *1 
DO CASE ONETWO, 
PP = ONEPP, 
PP = TWOPP, 
END, 
CALL STARTSPRGM(ONESTWO,PP), 
1* WAIT FOR ONE OF THE FOLLOWING 

1. CPDAT(I) = 0 CHI NOT BUSY 
2.CPDAT(9) = 0 CH2 NOT BUSY 
3. THE 8251 REC. BUFFER IS FULL BECAUSE USER HAS DEPRESSED A KEY 

*1 
DO WHILE ( (CPDAT(I) AND CPDAT(9» AND (NOT (INPUT(CRTSSTATUS) AND 02H») 

A-107 

PAGE 6 

OFFH, 



PL/M-86 COMPILER 

162 2 
163 1 

164 1 
165 2 
166 2 
167 3 
168 3 

169 2 

170 2 
171 2 
172 3 
173 3 

174 2 

175 2 
176 3 
177 3 

178 2 
17.9 3 
180 3 

181 3 

182 3 

183 3 
184 2 
185 2 
186 2 
187 1 

188 2 

189 2 
190 2 
191 2 
192 2 
193 2 

194 2 
195 2 
196 2 

AP-50 

8089 BREAKPOINT ROUTINE 

END; 
IF (INPUT(CRT$STATUS) AND 02H) <> 0 

THEN 
DO; 

CHAR = CI; 
DO I = 0 TO 3; 

BREAKOUT(I) = SAVECODE(I); 
END; 

1* IF ONE TWO = 0 THEN PUT CHA HLT IN CPDAT(O) 
IF ONE TWO = 1 THEN PUT CHA HLT IN CPDAT(8) 

*1 
CPDAT(ONE$TWO *8) = 06H; 

1* IF ONE TWO = 0 THEN OUTPUT TO PORT OFAH. IF ONETWO 
IS 1 THEN OUTPUT TO PORT OFBH. 

*1 
OUTPUT(CHANATTEN + ONETWO) = 0; 
DO I ~. 0 TO 5; 

CALL TIME (100); 
END; 

1* IF BUSY FLAG HAS BEEN CLEARED. THEN A CA HALT~SAVE 
WAS EXECUTED. IF SO. PRINT SAVED TP; IF NOT. ABORT *1 

IF CPDAT(SHL(ONETWO.3) + 1) (> 0 
THEN 
DO; 

CALL STRINGOUT(@ABORT)/ 
END; 
ELSE 
DO; 

CALL STRINGOUT(@ABORTAT); 

1* CHECK BUSY FLAG *1 

CALL CO(ASCII(SHR(PPP(2).4»); 1* UPPER NIBBLE OF ADDR 
STORED BY HALT *1 

END; 
DO; 

CALL HEXOUT(PPP<l»; 1* MIDDLE BYTE OF ADDR 
STORED BY HALT *1 

CALL HEXOUT(PPP(O»; 1* LEAST SIG BYTE OF ADDR 
STORED BY HALT *1 

END; 
CPDAT(ONETWO * 8) = 3H; 1* CA START IN CPDAT(O) OR CPDAT(8) *1 
GO TO MAIN; 

CALL STRINGOUT(@BKREACHED); 

CALL STRINGOUT(@GASTRING); 
CALL CO(ASCII(SHR(PPP(241).4»); 
CALL HEXOUT(PPP(240»; 
CALL HEXOUT(PPP(239»; 
CALL TAGTEST(PPP(241»; 

CALL STRINGOUT(@GBSTRING); 
CALL CO(ASCII(SHR(PPP(244).4»); 
CALL HEXOUT(PPP(243»; 

A-108 

PAGE 7 



AP-50 

PL/M-86 COMPILER 8089 BREAKPOINT ROUTINE 

197 
198 

199 
200 
201 
202 
203 

.204 
205 
206 

207 
208 
209 

210 
211 
212 

213 
214 
215 

216 

217 
218 
219 

220 

221 

2 
2 

2 
2 
<2 
<2 
<2 

2 
2 
;]. 

2 
2 
2 

2 
2 
2 

2 
2 
<2 

<2 

END, 

CALL HEXOUTIPPP(242»; 
CALL TAGTESTIPPP(244», 

CALL STRINGOUTI@GCSTRING); 
CALL COIASCIIISHRIPPP(247),4»), 
CALL HEXOUTIPPP(246»; 
CALL HEXOUTIPPP(245»; 
CALL TAGTESTIPPP(247», 

CALL STRINGOUTI@BCSTRING); 
CALL HEXOUT I PPP I 249) ); 
CALL HEXOUTIPPP(248», 

CALL STRINGOUTI@IXSTRING), 
CALL HEXOUTIPPPI251l); 
CALL HEXDUTIPPP(250»; 

CALL STRINGOUTI@CCSTRING); 
CALL HEXOUT I PPP I 253) ), 
CALL HEXOUT (PPP I 252) ); 

CALL STRINGOUT(@MCSTRING1, 
CALL HEXOUTIPPP(255», 
CALL HEXDUTIPPP(254», 

END, 
1* RESTORE CODE TO ORIGINAL LOCATION *1 
DO I ... 0 TO 3, 

BREAKOUT I I) SAVECODEII), 
END, 

GO TO MAIN; 

MODULE INFORMATION 

CODE AREA SIZE, 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACk SIZE 
427 LINES READ 
o PROGRAt1 ERROR IS) 

END OF PL~M-86 COMPILATION 

0619H 
OIEFH 
0020H 
OOl4H 

15610 
4950 

320 
200 

A-109 

PAGE B 



AP-50 

8089 ASSEMBLER 

ISIS-II 8089 ASSEMBLER X004 ASSEMBLY OF MODULE APSO_BREAKPOINT_ROUTINE 
OBJECT MODULE PLACED IN :FO:BRKASM.OBJ 
ASSEMBLER INVOKED BY ASM89.4 BRKASM.SRC 

0000 

2000 

0000 

0000 
OOEF 
00F2 
00F5 
00F8 
OOFA 
OOFC 
OOFE 
0100 

2000 
2003 
2006 
2009 
200C 
200F 
2012 

2015 

2017 

9108 00200000 

039B EF 
239B F2 
439B F5 
6387 F8 
A387 FA 
C387 FC 
E387 FE 

2048 

I 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2S 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

NAME APSO_BREAKPOINT_ROUTINE 
BRKPNT SEGMENT 
i************************************** 

BASIC 8089 BREAKPOINT ROUTINE 
BY JOHN ATWOOD REV 3 8/13/79 
INTEL CORPORATION 

i************************************** 

THE FOLLOWING CODE IS CONTAINED IN THE PL/M-86 
CONTROL PROGRAM(BREAK.89) AND IS ASSEMBLED HERE 
TO ILLUSTRATE HOW THE ESCAPE SEGUENCE AND SAVE 
ROUTINE CODE WAS GENERATED. TO USE THE 8089 BREAK­
POINT PROGRAM. THIS ASM89 PROGRAM WOULD NOT BE 
NEEDED. SAVE_ADDR IS THE SAME AS SAVE$ADDR IN THE 
BREAK. 89 PROGRAM. 

SAVEjlDDR EGU 2000H 

LPDI TP.SAVE_ADDR 

,SAVE ROUTINE ADDRESS 

,JUMP TO SAVE ROUTINE 

i*************************************** 

REGISTER SAVE LOCATIONS WITHIN PB: 

REGS STRUC 
PBLOCK: 05 239 , PARAMETER BLOCK 
GASAV: 05 3 ,GA AREA 
GBSAV: OS 3 ,GB AREA 
GCSAV: OS 3 , GC AREA 
BCSAV: OS 2 ,BC AREA 
IXSAV: DS 2 , IX AREA 
CCSAV: OS 2 , CC AREA 
MCSAV: 05 2 ,MC AREA 
REGS ENDS 

REGISTER SAVE ROUTINE: 

ORG SAVE_ADDR 

MOVP [PPJ.GASAV.GA 
MOVP [PPJ.GBSAV.GD 
MOVP [PPJ.GCSAV.GC 
MOV [PPJ.BCSAV.BC 
MOV [PPJ. IXSAV. IX 
MOV [PPJ.CCSAV.CC 
MOV [PP1.MCSAV.MC 

HLT 

,SAVE GA 
) SAVE GB 
) SAVE GC 
) SAVE BC 
,SAVE IX 
) SAVE CC 
) SAVE Me 

) STOP THIS CHANNEL. 
,CLEAR BUSY FLAG. 

i**************************************** 
BRKPNT ENDS 

END 

A-I 10 



inter APPLICATION 
NOTE 

A-lli 

Ap·51 

March 1979 



Designing 8086, 8088, 
8089 Multiprocessor 

Systems with the 
8289 Bus Arbiter 

AP·51 

Content~ 

INTRODUCTION 

BUS ARBITER OPERATING CHARACTERISTICS 

MULTI·MASTER SYSTEM BUS SURRENDER 
AND REQUEST 

8289 BUS ARBITER INTERFACING TO THE 
8288 BUS CONTROLLER 

8289 BUS ARBITER INTERNAL ARCHITECTURE 

8086 FAMILY PROCESSOR TYPES AND 
SYSTEM CONFIGURATIONS 

8289 SINGLE BUS INTERFACE 

lOB INTERFACE 

RESBINTERFACE 

INTERFACE TO TWO MULTI·MASTER BUSES 

WHEN TO USE THE DIFFERENT MODES 
Single Bus Multi·master Interface 
lOB Mode 
Resident Bus Mode 

CONCLUSION 

Our thanks to Jim Nadir, the author of this application note. Jim is a 
design engineer in the microprocessors and peripheJats bperation" 
division. Please direct any technical questions you may have to, 
your local Intel FAE (Field Application Engineer). . 

A·112 



AP-51 

INTRODUCTION 

Over the past several years, microprocessors have been 
increasing in popularity. The performance improve· 
ments and cost reductions afforded by LSI technology 
have spurred on the design motivation of using multiple 
processors to meet system real·time performance 
requirements. The desire for improved system real·time 
response, system reliability and modularity has made 
multiprocessing techniques an increasingly attractive 
alternative to the system design engineer; techniques 
that are characterized as having more than one micro· 
processor share common resources, such as memory 
and 1/0, over a common multiple processor bus. 

This type of design concept allows the system designer 
to partition overall system functions into tasks that 
each of several processors can handle individually to 
increase system performance and throughput. But, how 
should a designer proceed to implement a multiproc· 
essing system? Should he design his own? If so, how 
are the microprocessors synchronized to avoid conten· 
tion problems? The designer could put them all in phase 
using one clock for all the microprocessors. This may 
work, until the physical dimensions of the system 
become large. When this occurs, the designer is faced 
with many problems, like clock skew (resulting in bus 
spec Violations) and duty cycle variations. 

A better approach to implementing a multiprocessor 
system is not to have a common processor clock, but 
allow each processor to work asynchronously with 
respect to each other. The microprocessor requests to 
use the multiple processor bus could then be synchro· 
nized to a high frequency external clock which will per· 
mit duty cycle and phase shift variations. This type of 
approach has the benefit of allowing modularity of hard· 
ware. When new system functions are desired, more 
processing power can be added without impacting 
existing processor task partitioning. 

One approach to implement this asynchronous process­
ing structure would be to have all the bus requests enter 
a priority encoder which samples its inputs as a func­
tion of the higher frequency "bus clock". The inputs 
would arrive asynchronously to the priority encoder and 
would be resolved by the priority encoder structure as to 
which microprocessor would be granted the bus. An­
other approach, that used by Intel, is rather than allow­
ing the requests to arrive asynchronously with respect 
to one another at the priority encoder, the bus requests 
are synchronized first to an external high frequency bus 
clock and then sent to the priority encoder to be re­
solved. In this way, the resolving circuitry common to all 
microprocessors is kept at a minimum. Overall system 
reliability is improved in the sense that should a circuit 
which serves to synchronize the processor's request 
(which is now located on the same card as the micro­
processor itself) fail, it is only necessary to remove that 
card from the system and the rest of the system will 
continue to function. Whereas in the other approach, 
should the synchronizing mechanism fail, the whole 

system goes down, as the synchronizing mechanism is 
located at the shared resource. In addition to the im­
proved system reliability, moving the synchronization 
mechanism to the processor permits processor control 
over that mechanism, thereby permitting system flexi­
bility (as will be shown) which could not be reasonably 
obtained by any other approach. 

This synchronizing or arbitrating function was inte­
grated into the 8289, a custom arbitration unit for the 
8086, 8088, and 8089 processors. This note basically 
describes the 8289 arbitration unit, illustrates its dif­
ferent modes of operation and hardware connect in a 
multiprocessor system. Related and useful documents 
are: 8086 user's manual, 8289 data sheet, Article Reprint 
-55: Design Motivations for Multiple Processor 
Microcomputer Systems (which discusses implement­
ing a semaphore with the MULTIBUS™) and Application 
Note 28A, Intel MULTIBUS™ interfacing. 

BUS ARBITER OPERATING CHARACTERISTICS 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface an 8086, 8088, or 8089 
processor to a multi-master system bus (the 8289 is 
used as a general bus arbitration unit). The processor is 
unaware of the arbiter's existence and issues com­
mands as though it has exclusive use of the system bus. 
If the processor does not have the use of the multi­
master system bus, the bus arbiter prevents the bus 
controller, the data transceivers and the address latches 
from accessing the system bus (i.e., all bus driver out­
puts are forced into the high impedance state). Since 
the command was not issued, a transfer acknowledge 
(XACK) will not be returned and the processor will enter 
into wait states. Transfer acknowledges are signals 
returned from the addressed resource to indicate to the 
processor that the transfer is complete. This signal is 
typically used to control the ready inputs of the clock 
generator. The processor will remain in wait until the 
bus arbiter acquires the use of the multi-master system 
bus, whereupon the bus arbiter will allow the bus con­
troller, the data transceivers and the address latches to 
access the system bus. Once the command has been 
issued and a data transfer has taken place, a transfer 
acknowledge (XACK) is returned to the processor. The 
processor then completes its transfer cycle. Thus, the 
arbiter serves to multiplex a processor (or bus master) 
onto a multi-master system bus and avoid contention 
problems between bus masters. 

Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides for several 
resolving techniques. All the techniques are based on a 
priority concept that at a given time one bus master will 
have priority above all the rest. These techniques in­
clude the parallel priority resolving techniques, serial 
priority resolving and rotating priority techniques. 

A-I 13 



AP-51 

A parallel priority resolving technique has a separate 
bus request (BREQ) line for each arbiter on the multi­
master bus (see Figure 1). Each BREQ line enters into a 
priority encoder which generates the binary address of 
the highest priority BREQ line which is active at the 
inputs. The output binary address is decoded by a 
decoder to select the corresponding BPRN (bus priority 
in) line to be returned to the highest priority requesting 
arbiter. The arbiter receiving priority (BPRN active low) 
then allows its associated bus master onto the multi­
master system bus as soon as it becomes available (i.e., 
it is no longer busy). When one bus arbiter gains priority 
over another arbiter, it cannot immediately seize the 
bus, it must wait until the present bus occupant com-

pletes its transfer cycle. Upon completing its transfer 
cycle, the present bus occupant recognizes that it no 
longer has priority and surrenders the bus, releasing 
BUSY. BUSY is an active low OR-tied signal line which 
goes to every bus arbiter on the system bus. When 
BUSY goes high, the arbiter which presently has bus 
priority (BPRN active low) then seizes the bus and pulls 
BUSY low to keep other arbiters off the bus. (See 
waveform timing diagram, Figure 2.) Note that all multi­
master system bus transactions are synchronized to the 
bus clock (BCLK). This allows for the parallel priority 
resolving circuitry or, any other priority resolving 
scheme employed, time to settle and make a correct 
decision. 

74138 
3TO 8 

DECODER 4 

Figure 1. Parallel Priority Resolving Technique 

BCLK~ 

\ I( if 0\ . 
~~~I-------------r--------~\-----------------------------------

d \\ 1,\, "\ 0\ ._
\ \v
®y~---~\~------------BUSY

o HIGHER PRIORITY BUS ARBITER REOUESTS THE MULTI-MASTER SYSTEM BUS.

o ATTAINS PRIORITY.

@ LOWER PRIORITY BUS ARBITER RELEASES BUSY.

@ HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN.

Figure 2. Higher Priority Arbiter Obtaining The Bus From A Lower Priority Arbiter

A-114

AP-51

A serial priority resolving technique eliminates the need
for the priority encoder-decoder arrangement by daisy­
chaining the bus arbiters together. This is accomplished
by connecting the higher priority bus arbiter's BPRO
(bus priority out) output to the BPRN of the next lower
priority (see Figure 3). The highest priority bus arbiter
would have its BPRN line grounded, signifying to the ar­
biter that it always has highest priority when requesting
the bus.

HIGHEST PRIORITY

.
CBRO: : BUSY

THE NUMBER OF ARBITERS THAT MAY BE DAISY·CHAINED
TOGETHER IN THE SERIAL PRIORITV RESOLVING TECH·
NIQUE IS A FUNCTION OF ICCK AND THE PROPAGATION
DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz
ONLY 3 ARBITERS MAY BE DAISY·CHAINED. SEE TEXT.

Figure 3. Serial Priority Resolving

A rotating priority resolving technique arrangement is
similar to that of the parallel priority resolving technique
except that priority is dynamically reassigned. The pri­
ority encoder is replaced by a more complex circuit
which rotates priority between requesting arbiters, thus
guaranteeing each arbiter equal time on the multi­
master system bus.

There are advantages and disadvantages for each of the
techniques described above. The rotating priority re­
solving technique requires an extensive amount of logic
to Implement, while the serial technique can accommo­
date only a limited number of bus arbiters before the
daisy-chain propagation delay exceeds the multi-master
system bus clock (BeD<). The parallel priority resolving
technique is, in general, the best·compromlse.1t allows
for many arbiters to be present on the bus whi Ie not
requiring much logic to implement.

Whatever resolving technique is chosen, it is the
highest priority bus arbiter requesting use of the multi­
master system bus which obtains the bus. Exceptions
do exist with the 8289 Bus Arbiter where a lower priority
arbiter may take away the bus from a higher priority ar­
biter without the need for any additional external logic.
This Is accomplished through the use of the CBRQ pin,
discussed In a later section.

MULTI-MASTER SYSTEM BUS SURRENDER AND
REQUEST

The 8289 Bus Arbiter provides an intelligent interface to
allow a processor or bus master of the 8086 family to ac­
cess a multi-master system bus. The arbiter directs the
processor onto the bus and allows both higher and
lower priority bus masters to acquire the bus. Higher
priority masters obtain the bus when the present bus
master utilizing the bus completes its transfer cycle (in­
cluding hold time). Lower priority bus masters obtain
the bus when a higher priority bus master is not
accessing the system bus and a lower priority arbiter
has pulled CBRQ low. This signifies to the arbiter
presently holding the multi-processor bus that a lower
priority arbiter would like to acquire the bus when it is
not being used. A strapping option (ANYRQSn allows
the multi-master system bus to be surrendered to any
bus master requesting the bus, regardless of its priority.
If there are no other bus masters requesting the bus, the
arbiter maintains the bus as long as its associated bus
master has not entered the HALT state. The 8289 Bus
Arbiter will not voluntarily surrender the system bus and
has to be forced off by another bus master. An excep­
tion to this can be obtained by strapping CBRQ low and
ANYRQST high. In this configuration the 8289 will
release the bus after each transfer cycle.

How the 8289 Bus Arbiter is configured determines the
manner in which the arbiter requests and surrenders the
system bus. If the arbiter is configured to operate with a
processor which has access to both a multi-master
system bus and a resident bus, the arbiter requests the
use of the multi-master system bus only for system bus
accesses (i.e., it is a function of the SYSB/RESB input
pin). While the processor is accessing the resident bus,
the arbiter permits a lower priority bus master to seize
the system bus via ~, since it is not being used. A
processor configuration with both an 1/0 peripheral bus
and a system bus behaves similarly. If the processor Is
accessing the peripheral bus, the arbiter permits the
surrendering of the mUlti-master system bus to a lower
priority bus master. To request the use of the multi­
master system bus, the processor must perform a
system memory access (as opposed to an 1/0 access).

The arbiter decodes the processor status lines to deter­
mine what type of access is being performed and be­
haves correspondingly. For simpler system config­
urations, such as a processor which accesses only a
multi-master system bus, the arbiter requests the use of
the system bus when it detects the status lines in­
itiating a transfer cycle. The decoding of these status
lines can be referenced in the 8086, 8088 (non-I/O proc­
essor) data sheets or the 8089 (1/0 processor) data
sheet.

There is one condition common to all system configura­
tions where the multi-master system bus is surrendered
to a lower priority bus master requesting the bus by pull­
Ing CBRQ low. This Is the idle or inactive state (TI) which
Is unique to the 8086 and 8088 processor family. This TI
state comes about due to the processor's ability to
fetch Instructions In advance and store them internally
for quick access. The size of the Internal queue was op­
timized so that the processor would make the most ef-

A-li5

AP-51

fective use of its resources and be slightly execution
bound. Since the processor can fetch code faster than it
can execute it, it will fill to capacity its internal storage
queue. When this occurs, the processor will enter into
idle or inactive states (TI) until the processor has ex·
ecuted some of the code in the storage queue. Once this
occurs, the processor will exit the TI state and again
start code fetching. Between entering into and exiting
from the TI state an indeterminate number of TI states
can occur during which the bus arbiter permits the sur·
rendering of the multi-master system bus to a lower
priority bus master. As noted earlier and worth
repeating here, once the 8289 Bus Arbiter acquires the
use of the multi-master system it will not voluntarily sur­
render the bus and has to be forced off by another bus
master. This will be discussed in more detail later.

Two other signals, LOCK and CRQLCK (Figure 4), lend
to the flexibility of the 8289 Bus Arbiter within system
configurations. LOCK is a signal generated by the proc­
essor to prevent the bus arbiter from surrendering the
multi-master system bus to any other bus master, either
higher or lower priority. CRQLCK (common request lock)
serves to prevent the bus arbiter from surrendering the
bus to a lower priority bus master when conditions war­
rant it. LOCK is used for implementing software
semaphores for critical code sections and real time

LOCK TIMING

critical events (such as refreshing or hard disk
transfers).

8289 BUS ARBITER INTERFACING TO THE 8288
BUS CONTROLLER

Once the 8289 Bus Arbiter determines to either allow its
aSSOCiated processor onto the multi-master system bus
or to surrender the bus, it must guarantee that com­
mand setup and hold times are not violated. This is a
two part problem. One, guaranteeing hold time and two,
guaranteeing setup time. The 8288 Bus Controller per­
forms the actual task of establishing setup time, while
the 8289 Bus Arbiter establishes hold time (see Figure
5).

The 8289 Bus Arbiter communicates with the 8288 Bus
Controller via the AEN line. When the arbiter allows its
associated processor access to the multi-master sys­
tem bus, it activates AEN. AEN immediately enables the
address latches and data transceivers. The bus con­
troller responds to AEN by bringing its command output
buffers out of high impedance state but keeping all
commands disqualified until command setup time is
established. Once established, the appropriate com­
mand is then issued. AEN is brought to the false state
after the command hold time has been established by
the arbiter when surrendering the bus.

THE ONLY CRITICAL LOCK TIMING IS THAT SHOWN ABOVE. LOCK MUST BE
ACTIVATED NO SOONER THAN 20 ns INTO 01 AND NO LATER THAN 40 ns
PRIOR TO THE END OF <tJ2. LOCK INACTIVE HAS NO CRITICAL TIMING AND
CAN BE ASYNCHRONOUS.

CRelCK HAS NO CRITICAL TIMING AND IS CONSIDERED AS AN
ASYNCHRONOUS INPUT SIGNAL.

AEN
(8289)

Figure 4. Lock Timing

~SETUP---.l
COMMAND FLOAT

ACTIVE _"":";='--+-..1
(3288)

'ADDRESS

CONT~~~~E~2~~ ---oof"
AEN FROM 8289

'ADDRESSES ARE ACTIVATED IMMEDIATELY WHILE COMMAND IS DELAY
TO ESTABLISH SETUP TIME REQUIREMENTS.

**THE 8289 ARBITER INTERNALLY TRACKS THE PROCESSOR CYCLE TO
ESTABLISH THE PROPER AMOUNT OF HOLD TIME AFTER THE COMMAND
HAS GONE INACTIVE.

Figure 5. Single Bus Interface Timing

A-116

AP-51

8289 BUS ARBITER INTERNAL ARCHITECTURE

A block diagram of the internal architecture of the 8289
Bus Arbiter is shown in Figure 6. It is useful to under·
stand this block diagram when discussing the different
modes of the 8289 and their impact on processor bus
operations; however, you may want to skip this section
to "8086 family processor types and system configura­
tions" and return to it afterwards, as this section ad­
dresses the very involved reader. The front end state
generator (FETG) and the back end state generator
(BETG) allow the arbiter to track the processor cycle. An
examination of an 8086 family processor state timings
show that all command and control signals are issued in
states T1 and T2 while being terminated in states T3 and
T4, with an indeterminate number of wait states (Tw) oc­
curring in between. Note further, that an indeterminate
number of idle or inactive states can occur immediately
proceeding and following a given transfer cycle. Since
an indeterminate number of wait states can occur, two
state generators are required; one to generate control
signals (the FETG) and one to terminate control signals
(the BETG). The FETG is triggered into operation when
the processor activates the status lines. The FETG is
reset and the BETG is triggered into operation by the
status lines going to the passive condition. The BETG is
reset when the status lines again go active.

It is necessary for the 8289 Bus Arbiter to track the proc­
essor in order that it is properly able to determine where
and when to request or surrender the use of the multi­
master system bus. In system configurations which ac­
cess a resident bus, the use of the multi-master system

PRO~~~~~~ ...----''\1

• CLOCK

STATUS' MOVE
DECODE

-MMS= MULTI-MASTER SYSTEM

BREQ
RESET

WINDOW

bus is requested later in order to allow time for the
SYSB/RESB input to become valid. For systems which
access a peripheral bus, the arbiter issues a request for
the system bus only for memory transfer cycles which it
decodes from the status lines (and time must be al­
lowed for the status lines to become valid and then de­
coded). In a system which accesses only a multi-master
system bus, a request is made as soon as the arbiter
detects an active-going transition on the processor's
status lines. Thus, when the processor initiates a
transfer cycle, the FETG is triggered into operation and
depending upon what mode the arbiter is configured in:
the STATUS & MODE DECODE circuitry initiates a re­
quest for the system bus at the appropriate time. The re­
quest enters the BREQ SET circuitry where it is then
synchronized to the mUlti-master system bus clock
(BCLK) by the PROCESSOR SYNCHRONIZATION cir­
cuitry. * Once synchronized, the multi-master system
bus interface circuitry issues a BREQ. When the priority
resolving circuitry returns a BPRN (bus priority in), the
PROCESSOR SYNCHRONIZATION circuitry seizes the
b~s the next time it becomes available (i.e., BUSY goes
high) by pullin~USY low one BCLK after it goes high
and enables AEN. (See waveform timing diagram in
Figure 2). Once the arbiter acquires the use of the
system bus and a data exchange has taken place (a
transfer acknowledge, XACK, was returned to the proc­
essor), the processor status lines go passive and the

*Due to the asynchronous nature of process.or trasnsfer request to the
multi-master system bus clock, it is necessary to synchronize the proc­
essor's transfer request to BelK.

PROCESSOR
SYNCHRONIZATION

CIRCUITRY

MMS· BUS
SYNCHRONIZATION

CIRCUITRY

~--------------~~

Figure 6. 8289 Bus Arbiter Block Diagram

A-I 17

AP·51

BETG is triggered into operation. The BETG provides
the timing for the bus surrender circuitries in the event
that conditions warrant the surrender of the multi·
master bus, i.e., the bus arbiter lost priority to a higher
bus master or the processor has entered into TI states
and CBRQ is pulled low, etc. If such is the case, the
BREQ RESET DECODER initiates a bus surrender reo
quest. The bus surrender request is synchronized by the
MMS BUS SYNCHRONIZATION CIRCUITRY to the proc·
essor clock. The MMS BUS SYNCHRONIZATION CIR·
CUITRY instructs the bus controller interface circuitry
to make AEN go false and resets the BREQ SET cir·
cultry. Resetting the BREQ SET circuitry will cause its
output to go false and be synchronized by the processor
synchronization, eventually instructing the MULTI·
MASTER SYSTEM BUS INTERFACE circuitry to reset
BREQ. In the event that a lower priority arbiter has
caused the arbiter to surrender the bus, it is necessary
that BREQ be reset. Resetting BREQ allows the priority
resolving circuitry to generate BPRN to the next highest
priority bus master requesting the bus. The BREQ
RESET WINDOW circuitry provides a 'window' wherein
the arbiter allows the multi·master system bus to be sur·
rendered and serves as part of the MMS bus·processor
synchronization circuitry.

8086 FAMILY PROCESSOR TYPES AND
SYSTEM CONFIGURATIONS

There are two types of processors in the 8086 family -
an I/O processor (the 8089 lOP) and a non·I/O processor
(the 8086 and 8088 CPUs). Consequently, there are two
basic operating modes in the 8289 Bus Arbiter. One, the
lOB (I/O peripheral bus) mode, permits the processor ac·
cess to both an I/O peripheral bus and a multi·master
system bus. The second, the RESB (resident bus) mode,
permits the processor to communicate over both a resi·
dent bus and a multi·master system bus. Even though it
is intended for the arbiter to be configured in the lOB
mode when interfacing to an I/O processor and for it to
be in the RESB mode when interfacing to a non·I/O proc­
essor, it is quite possible for the reverse to be true. That
is, it is possible for a non-I/O processor to have access
to an I/O peripheral bus or for an I/O processor to have
access to a resident bus as well as access to a multi­
master system bus. The lOB strapping option con·
figures the 8289 Bus Arbiter into the lOB mode and
RESB strapping option configures it into the resident
bus mode. If both strapping options are strapped false,
a third mode of operation is created, the single bus
mode, in which the arbiter interfaces the processor to a
multi-master system bus only. With both options strap­
ped true, the arbiter interfaces the processor to a multi­
master system bus, a resident bus and an I/O bus.

To better understand the 8289 Bus Arbiter, each of the
operating modes, along with their respective timings;
are examined by means of examples. The simplest con­
figuration, the Single Bus Configuration, (both lOB and
RESB strapped inactive) will be co.nsidered first, fol-

lowed by the I/O bus Configuration and the Resident
Bus Configuration. Finally, brief mention is made of a
configuration that allows the processor to interface to
two multi-master system buses. ,This particular con­
figuration is briefly mentioned because, as will be seen,
it is simply an extension of the resident bus configura­
tion. When discussing the Single Bus Configuration, .
processor/arbiter, arbiter/system bus and internal ar­
biter, considerations are made resulting In a table that il­
lustrates overhead in requesting the system bus. AS this
applies to the other 8289 configurations, only additional
considerations will be given. A summary of when to use
the different configurations is given at the end.

8289 SINGLE BUS INTERFACE

Figure 7 shows a block diagram of a bus master which
has to interface only to a system bus - preferably the
MULTIBUS - where there exists more than one bus
master. In later configurations, it will be shown how the
processor can be made to interface with more than one
bus. Since the processor has only to interface with one
bus, this configuration is called "single".

Connecting the 8289 Bus Arbiter to the processor is as
simple as it was to connect the 8288 Bus Controller.
Namely, the three status lines, SO, S1, and S2 are
directly conne.cted from the processor to the arbiter.
The clock line from the 8284 Clock Generator is brought
down and connected. (Note that both the 8288 Bus Con­
troller and the 8289' Bus Arbiter are connected to the
same clock, CLK and not the peripheral clock, PCLK as
the 8086 processor.) From the arbiter, AEN is con­
nected to the bus controller ancl to the clock generator.
The lOB pin on the arbiter is strapped high and on the
controller the .IOB pin is strapped low. In addition, the
RESB pin on the arbiter is strapped low, finishing the
processor interface.

Some flexibility exists with the MULTI BUS or multi­
master system bus interface. The system designer must
first decide upon the type of priority resolving scheme
to be employed, whether it is to be the serial, parallel, or
rotating priority scheme. A rotating priority scheme
would be employed where the system designer would
want to guarantee that every bus master on the bus
would be given time on the bus. In the serial and parallel
schemes, the possibi lity exists that the lowest assigned
priority bus master may not acquire the bus for long
periods of time. This occurs because priority is perma­
nently assigned and if bus demand is high by the higher
assigned priorities, then the lower priorities must wait.
In most cases, this situation is acceptable because the
highest priority is assigned to the bus master that can·
not wait. Highest priority is usually assigned to DMA
type devices where service requirements occur in real
time. CPUs are assigned the lower priorities. For the
purpose of this discussion, the parallel priority scheme
will be used with brief reference to the serial priority
scheme.

A-llS

AP-51

r---------- --------------------------
LOCAL BUS

~.1.. -4 ::::..
:5:
c·

llil 81
c

11ii 8088

11JJ I§ ~

<l-
~.s uo:

~ ;,- I ""?- I l !~ 1 I~J! IWIO: I~ Z 11il11ii11JJ ~ 11ilI1ii11JJ ~1!Si z .:>
00: ... CI

W W u.s CI U uo'" CI ... " C
0: 0:

8287 '--~
u

8283 8288 8288 8284
CI

E-----~ ., 1~1~~liIll51I~.,e ± ~
9 i~IiIiI~12a: _

0:

L --~-----~-----~~--1t~Ht~-~ ------J

Figure 7. Single Muilimaster Bus Interface

Figure 8 shows how a typical multi-processing system
might be configured with the 8289 in the Single Bus
mode. In the system there are three bus masters, each
having the assigned priority as indicated-priority 1
being the highest and priority 3 being the lowest. Prior·
ity is established using the parallel priority scheme
(ignore the dotted signal interconnect for the moment).
Each bus arbiter monitors its associated processor and
issues a bus request (BREQ) whenever its processor
wants the bus. A common clocking signal (BCLK) runs
to each of the arbiters in the system. It is from the fail­
ing edge of this clock that all bus requests are issued.
Since all bus requests are made on the same clock
edge, a valid priority can be established by the priority
resolving circuitry by the next falling EiCIi< edge. Note
that all multi-master system bus (MULTIBUS) input sig­
nals are considered to be valid at the falling edge of
BCLK. And that all multi-master system bus output
signals are issued from the falling edge of BCLK. With
the parallel resolving module, arbiters 2 and 3 would
issue their respective BREQs (Figure 9) on the falling
!dge of BCLK 1, as shown. The outputs (BPRN 1, BPRN
2, and BPRN 3) of the priority encoder-decoder arrange­
ment change to reflect their new input conditions and
need to be valid early enough in front of BCLK 2 to
guarantee the arbiter's setup time requirements. Since
arbiter 2 at the time is the highest priority arbiter re­
.9.uesting the bus, bus priority is. given to arbiter 2 (BPRN
2 goes low), and since the bus was not busy (BUSY is
high) at the time priority was granted to arbiter 2 arbiter
2 pulls BUSY inactive on BCLK 2, thereby sei~ing the
bus and excluding all other arbiters access to the bus.
Once the bus is seized, arbiter 2 activates its AEN. AEN
gOing low directly enables the 8283 address latches and

wakes up the 8288 Bus Controller. The bus controller
enables the 8287 transceivers, waits until the address to
command setup time has been established, and then
enables its command drivers onto the bus.

If the serial priority resolving mode was used instead,
much of the events that happened for the parallel prior·
ity resolving mode would be the same except, of course,
there would be no parallel priority resolving module. In­
stead, the system would be connected as indicated in
Figure 8 by the dotted signal lines connecting the BPRO
of one arbiter to BPRN of the next lower priority arbiter.

The BREQ lines would be disconnected and the priority
encoder-decoder arrangement removed. This arrange­
ment is simpler than the parallel priority arrangement
except that the daisy-chain propagation delay of the
highest priority bus arbiter's BPRO to the lowest priority
bus arbiter's BPRN, including setup time requirement
(BPRN to BLCK), cannot exceed the BCLK period. In
short, this means there are only so many arbiters that
can be daisy-chained for a given BCLK frequency. Of
course, the lower the BCLK frequency, the more arbiters
can be daisy-chained. The maximum BCLK frequency is
specified at 10 MHz, which would allow for three 8289
arbiters to be daisy-chained. In general, the number of
arbiters that can be connected in the serial daisy-chain
configuration can be determined from the following
equation:

BCLK period ~ TBLPOH + TPNPO (N -1) + TPNBL

where N = # of arbiters in system

A-119

r---------------------------------~1;2.., r----------------------------------~~

A I ~=;nF======~r=======~~============~~~~~ LOCAL BUS I I (LOCAl BUS

"..<;>- _AD" I

r-:---------,------1.. AwA.. I ~------.-_--l.. Ii
.-----+-t---------I" "" I .-------h~---l" _
.------+--h----I;,. > I ". • a

,-----(.... 1--1 f-- ~ ~ m. I § i'
.--~7-'1!.,J,,1! - ~ _ ,,;j ~J- .,; l:i .!. j l:r i 'i - ~?L,. ~ .J -... lij : j I I

8281 8283 L--DTIR82BB I2tIIt IIH4 I .. 7 au L....-DT1R8111 l21li 11214 I

L....-.,.,.---' ... ~ m I~ nn~h h· RD": ."1- ACE '0' ~nlnh iR,- U i I
L -41------"11'------- t::--·nr--I~,.Y--------.J --- r=------jj------ 1~--- - ,L£. __ l!#~ __ J , ;1 ''--- ---------------- -------- -------- -----../ '---, I
A 1-" f
~1==~II======~~,~~=====i~~~==~II~II~I==~cl~~~N~D~~======~I~I~I~I====~~>~~I~I==~~~

ADDRESS BUS :)

~..11.- ir I III I II"Jj.,J II II K
OATA8US

i~'~~
r---: ------- ------- ----~ IJ I TA'-- --- ----, ~ ~J r,'r PAIORITY3

S"~""A<-' ...J..L.-!~~ - iU I1:U Iil iR,- RD" I
r- DTIii. 8218 82811

- I

"':1" I ~ ilh ~ I

f II~ I n I
DON u~~ mr-r'" n~nl~

~ d § I
L-__ ---+~---IftB ~ I

'--------+-''---------1'' "" I

: 10 I ~ :
C=A~======~~=============='~====~~r_I-'1

L ____________________________________ J

1

r-
l- f- I-- I- r-
~ f= 1

r- r-

~ f= I
~ ~ r- f= r- l-

I
r-r- I- r- r-

7' 2".:- ~ ~

.""'. I
SYSTEM

."''''''' 00

Figure 8. Multiprocessing System With 8289 In Single Bus Mode

I

v

r---- - ----,
I :I 2 1 I
I I '",OR"' I I ENCODER

I .,jJ,. I
I r DECODER I I
I I

I
I

: PRIORITY RESOLVING I
L __ ~D~E~~L~ __ .J

i0.Hz
CUlCK

r

AP-51

BREa
ARBITER #1

BREa
ARBITER #2 L....../-....... I-----lr--+-I<r--+----ll------+lJ

BREa
ARBITER #3

BPRN
ARBITER #1

SPRN
ARBITER #2

BPRN
ARBITER #3

V
INVAlIO·

V
INVALID·

\
ARBITER 1#2

'I---I ----i

V
INVALID

\ \ / 7
INVALID INVALID

V ','I \ \

INVALID INVALID

ARBITER#~ ~ ARBITER#3

;-1 ~r-1 L::.:..

CBRa ~\-\ ------\',r\------I',\-', ____ -I,,~
"DECODING GLITCHES ARE PERMITTED

Figure 9. Example Timing For Figure 8

Returning to Figure 9, it can be seen that K BClKs later,
arbiter 1 has decided to request the bus and its BREQ,
BREQ 1, has gone low. Since arbiter 1 is of higher priori·
ty than arbiter 2, which presently has the bus, bus priori­
ty is reassigned by the priority module (or the daisy­
chain approach in the serial priority) to arbiter 1. BPRN 1
goes low and BPRN 2 now goes high (BPRN 3 remains
high, even though decoding can cause it to glitch
momentarily). The loss of priority instructs arbiter 2 that
a higher priority arbiter wants the bus and that it is to
release the bus as soon as its present transfer cycle is
done. Since arbiter 2 cannot immediately release the
bus, arbiter 1 must wait. In the particular case illustrated
in Figure 9, arbiter 2 releases the bus (allows BUSY to go
high) on clock edge M, and on clock edge M + 1, arbiter 1
now seizes the bus, pulling BUSY low. Arbiter 1 is the
highest priority arbiter in the system and it now has the
bus. Arbiters 2 and 3 still want the bus (their BREQs are
both low).

How quickly arbiter 1 can acquire the bus is dependent
upon the configuration and strapping options of the ar­
biter it is trying to acquire it from. For example, if the
lOCK input to arbiter 2 was active (low) at the time, then
arbiter 1, even though it was of higher priority, would not
have acquired the bus until after lOCK was released
(goes high). Effectively, lOCK locks the arbiter onto the
bus once the bus has been acquired. lOCK will not
force another arbiter to release the bus any sooner, it
just prevents the bus from being given away no matter
what the priority of the other arbfter. Another factor to
be considered is where in the transfer cycle is the proc­
essor when the arbiter is instructed to give up the bus.
Obviously, if the cycle had just started, it will take
longer for the bus to be released than if the cycle was
just ending. Another factor to be included in this con­
sideration is the phase relationship of the processor's
clock (ClK) to the bus clock (BClK). This relationship is
examined in more detail later on. Table 1 lists the time

A-121

AP-51

requirements for various arbiter actions such as bus ac­
quisition and bus release (under LOCK and other
circumstances) taking into account the phase relation­
ships between CLK and BCLK.

Bus Request (BREO I) Mode Delay Delay
(Max) (Min)

Status- BREQI Single 2 BClKs I BClK

Status-BREQI lOB 2BClKs+ I BClK+
-I ClK- -V2 elK-

Status - BREQ I RESB 2 BClKs+ I BClK+
-2 ClKst -11/2 ClKst

Status - BREQ I 10B-RESB 2 BClKs+ I BClK+
-2 ClKst IV, ClKst

-Request onglnates off of <1>2 of TI and BREQI occurs I BClK (min)
to 2 BClKs (max) thereafter. Depending upon where status occurs
with respect to clock determines how long a time exists between
status and <1>2 of n, and is anywhere from V2 CLK (min) to I ClK
(max).

tRequest originates off of T2·q,1 and BREQI occurs I BClK (min) to
2 BCLKs (max) thereafter. The same reasoning as used in the lOB
mode is valid here:

Bus Release (BREO!) Mode Delay Delay
(Max) (Min)

Higher Priority (BPRN I) All 2 CLKs+ I CLK+
2 BCLKs I BClK

lower Priority (CBRQI) All 2 CLKs+ I CLK+
2 BCLKs I BCLK

Surrender occurs once the proper surrender conditions exist.

Table 1. Surrender and Request Time Delays

One signal which has been basically ignored to this
point is CBRQ. CBRQ, like BUSY, is an open-collector
signal from the arbiter which is tied to the CBRQ Signals
of the other arbiters and to a pull-up resistor (see Figure
8). CBRQ is both an input and an output. As an output,
CBRQ serves to instruct the arbiter presently on the bus
that another arbiter wishes to acquire the bus. As an in­
put, CBRQ serves to instruct the arbiter presently on the
bus that another arbiter wants the bus. CBRQ is an input
or output, dependent on whether the arbiter is on the
bus or not (respectively), and is issued as a function of
BREQ. Thus, a lower priority arbiter requesting the bus
already controlled by a higher priority arbiter will pull
CBRQ low, as well as BREQ. Even a higher priority ar­
biter will pull CBRQ low until it acquires the bus. Note,
however, that the higher priority arbiter will acquire the
bus through the reassignment of priorities - it being
given priority and the other arbiter presently on the bus
losing it. In effect, CBRQ serves to notify the arbiter that
an arbiter of lower priority wants the bus.

If the arbiter presently on the bus is configured to react
to CBRQ and the proper surrender conditions exist, the
bus is released. When releasing the bus, the arbiter also
turns off its BREQ (BREQ goes high) in order to allow
priority to be established to the next lower arbiter re­
questing the bus. Such is the case shown in Figure 9.
Whereas it was assumed that the proper surrender con­
ditions did not exist for arbiter 2 when it had the bus, it
is assumed that the proper conditions do exist during
the time that arbiter 1 has the bus. Arbiter 2 had to give
up the bus because an arbiter of higher priority was re-

questing it. Arbiter 1 surrenders the bus because the
proper surrender conditions exist and a lower priority ar­
biter requested the bus by pulling CBRQ low. This is an
assumed condition which is not otherwise shown in
Figure 9. This is not an unrealistic condition. Normally,
a higher priority arbiter will acquire the bus through the
reassignment of priorities, while lower priority arbiters
acquire the bus through CBRQ.

Digressing for a moment, the 8289 Bus Arbiter will not
voluntarily surrender the bus (except when the proc­
essor halts execution). As a result, it has to be forced off
the bus. The 8289 Bus Arbiter does not generate a BREQ
for each cycle. It generates a BREQ once and then
hangs onto the bus. To do otherwise would require that
BREQ be dropped (go high) after each transfer cycle so
that if it did need to do another transfer cycle, another
arbiter would automatically be assigned priority. This
approach, however, entails certain overhead. Command
to address setup and hold time must be prefixed and ap­
pended to each transfer cycle. Each transfer cycle
would be characterized by first acquiring the bus, then
establishing the setup time requirements, finally per­
forming the transfer cycle, establishing the hold time re­
quirements, and then releasing the bus (see Figure 10).
If another transfer cycle was to immediately follow and
if the arbiter still had priority, then the whole above pro­
cedure would be repeated. The end result would be
wasted time as hold times following setup times (see
Figure 10A). The approach taken by the 8289 Bus Arbiter
of having to be forced off the bus, even when it is not
using the bus (Le., forced off by a lower priority arbiter),
provides for greater bus efficiency. A lower priority ar­
biter having to force off another arbiter that is not using
the bus but just hanging on to it, may not seem very effi­
cient. In actuality it is a good trade-off. In many multi­
master systems some bus masters occasionally de­
mand the bus, while others demand the bus constantly.
The bus master which constantly demands the bus may
momentarily need not to access the bus. Why should
that arbiter surrender the bus when chances are that the
other bus masters which occasionally access the bus
don't want it at the time? If it doesn't give up the bus,
then it can momentarily cease access to the bus and
then continue, without any performance penalty of hav­
ing to reestablish control of the bus. The greater bus ef­
ficiency that it affords is well worth the added complexi­
ty (Figure 10B).

Returning to Figure 9, the combination of the proper sur­
render conditions existing and CBRQ being low, forced
the higher priority arbiter, arbiter 1, off the bus. Arbiter
2, being of next higher priority and wanting the bus, ac­
quired the bus on clock edge N + 1. If arbiter 1 decides
to re-access the bus, it would reacquire the bus through
the reassignment of priorities. This is not the case
shown in Figure 9. Arbiter 1 has decided that it does not
need the bus and does not renew its BREQ. Arbiter 2,
having acquired the bus through CBRQ, is now the
highest priority arbiter requesting the bus. As can be
seen it is not the only arbiter requesting the bus. Arbiter
3 is still patiently waiting for the bus and CBRQ remains
low. The same conditions that forced arbiter 1 off the

A-122

AP-51

bus for arbiter 2 now forces arbiter 2 off the bus for ar­
biter 3_ When the proper surrender conditions exist, ar­
biter 2 releases its BREQ and surrenders the bus to ar­
biter 3. Arbiter 3 acquires the bus on clock edge P + 1
and releases its CBRQ. Since no other arbiter wants the
bus (I.e., there is no other arbiter holding CBRQ low),
CBRQ goes high (inactive). This would have also been
true when arbiter 2 acquired the bus and released its
CBRQ if arbiter 3 didn't want the bus.

In the Single interface, the arbiter monitors the proc­
essor's status lines, which are activated whenever the
processor performs a transfer cycle. The arbiter, on
detecting the status lines going active, will issue a
BREQ if the status is not the HALT status. If the proc­
essor issues the HALT status, the arbiter will not re­
quest the bus, and if it has the bus, will release it.

This effectively concludes how arbiters interact to one
another on the bus. Having examined the processor-to­
arbiter interface, and arbiter-to-MUlTIBUS (arbiter-to­
arbiter) interaction, one interface is left, the internal
interface of processor-related signals to that of
MULTI BUS-related signals.

An important pOint to remember is that the processor
has its own clock (ClK) and the multi-master system
bus has its own (BClK). These two clocks are usually
out of phase and of different frequencies. Thus, the ar­
biter must synchronize events occurring on one inter­
face to events occurring on another interface. As a
result of this back and forth synchronization, ambiguity
can arise as to when events actually do take place.

Very simply, the 8289 arbiter operation can be repre­
sented as two events, requesting and surrendering.
Figure 11 is a representation of the timing relationships
involved. The request input is a function of the proc­
essor's clock and the surrender input is a function of
either the bus clock or the processor's clock. To request

1'1

Ib)

the bus, the processor activates its status lines which in
turn enables the request input. Depending upon the
phase relationship between the occurrence of status (re­
quest active) and BClK, BREQ appears one to two
BCIKs later. As shown in Figure 12, the phase relation­
ship between request and BClK is such that the BRQ1
flip-flop mayor may not catch request on the first
BClK."

If BRQ1 flip-flop does catch the request, then one eeIK
later, BREQ goes low and one BClK after that, ~
goes low (it is assumed that priority is immediately
granted and that the bus is available). If BRQ1 flip-flop
does not catch the request, then request is caught on
the next BClK and BREQ goes low one BClK later, fol­
lowed by BUSY which also goes low one BClK later.
Note that BREQ and BUSY track, as BREQ is an input
term for BUSY. During bus acquisition, the surrender
flip-flop is false (SURNDR Q= low) and AEN follows
BUSY.

Once the bus is acquired, the surrender circuitry is
enabled so that when a valid surrender condition exists,
the bus can be surrendered. The surrender circuitry syn­
chronizes the surrender request to the processor's
clock and drives SURNDR low. Like the acquisition cir­
cuitry, it takes from one to two processor clocks to gen­
erate SURNDR and depends upon the phase relation­
ship between the surrender request and the processor's
clock.

'The two bus request flip·flops, BRat and BRa2, are edge·triggered,
high resolution flip-flops and serve to reduce the probabW!X...2.! walkout
down to an acceptable level. Walkout occurs because BCLK is asyn­
chronous with respect to request. If walkout does occur on BRQ1 flip­
flop, the probability is high that the BRat flip·flop will resolve itself
prior to BRa2 flip-flop being triggered. Even if BRat flip·flop did not
quite resolve itself, the probability of BRa2 flip·flop walking out to an
unacceptable point in time is itself low.

a) BUS UTILIZATION AS A RESULT OF HAVING TO REQUEST AND RELEASE THE BUS
FOR EACH TRANSFER CYCLE. THIS PERMITS LOWER PRIORITY ARBITERS EASY
ACCESS TO THE 8US SHOULD THE HIGHER PRIORITY ARBITER NO LONGER NEED
THE BUS. HOWEVER, BUS EFFICIENCY IS POOR DUE TO THE ARBITER THRASING ON
AND OFF OF THE BUS FOR EACH TRANSFER CYCLE.

b) 8289 BUS UTILIZATION IS MORE EFFICIENT IN THAT THE ARBITER HAS ONLY TO
ACQUIRE THE BUS ONCE. THE 8289 HANGS ONTO THE BUS UNTIL FORCED OFF.
THIS APPROACH ADDS A LITTLE MORE COMPLEXITY TO THE SYSTEM INASMUCH AS
SOME MEANS MUST BE PROVIDED FOR LOWER PRIORITY ARBITERS TO FORCE THE
HIGHER PRIORITY ARBITER OFF OF THE BUS WHEN IT IS NOT USING IT. THE ADDED
COMPLEXITY IS WELL WORTH THE BUS EFFICIENCY AND SYSTEM FLEXIBILITY IT
AFFORDS. THE 8289 ARBITER CAN BE CONFIGURED TO HAVE THE TRANSFER TIMING
AS SHOWN IN (8) (IMITATING THE METHOD 8218 AND 8219 USES, BUS ARBITERS FOR
8080 AND 8085 RESPECTIVELY) BY STRAPPING ANYRQST HIGH AND CBREQ LOW.

Figura 10. Two Techniques For Doing Multlbus Trans.er Cycles

A-123

REQUEST
'(elKI

ACQU
CIR

J

r---

ISITION
CUITRY

BRQl FF

0 Q

~j -

0-
'----

AP-5'1

~
S, Q

....
~j BUSY FF

~S ;.

Q
R
'---- i>1

R
'----

.,-

-- -----------'-------- ,..- -'-- -'---NDER SURRE
CIRC UITRY r--

Q 0

Q 0 I

1<1-- r<~

SURNDR 0-

'---- -
RESOLVE SAMPLE

THIS CONCEPTUAL DIAGRAM IS PROVIDED FOR AIDING IN UNDERSTANDING
CLOCK AND BUS CLOCK RELATED EVENTS. IT DOES NOT REPRESENT THE
ACTUAL SCHEMATIC OF THE 8289 DEVICE, AND IS FOR CONCEPTUAL
PURPOSES ONLY.

Figure 11. Symbolic Representation of Internal 8289 Timing

ClK

Il mroR't / '(eLK)

BC:[K

0! !®

0! !®

0! !®
*WHEN THE REQUEST OCCURS SIMULTANEOUSLY WITH BClK, BClK MAY OR

MAY NOT CATCH THE REQUEST. IFIT DOES, THE WAVEFORMS FOllOW
THOSE SHOWN DESIGNATED BY ® ,IF NOT, THE REQUEST IS PICKED UP
ON THE NEXT EDGE OF BC:[K AND THE WAVEFORMS FOllOW THOSE
SHOWN DESIGNATED BY @ .

Figure 12. Results Of An Asynchronous Event

A~124

~
AEN

\

BPRN

BREQ

BjJSY

BClK

SURRENDER
REQUEST
f(BCLK, elK)

ClK

AP-51

Having synchronized the surrender request to the proc­
essor's clock to generate SURNDR, SURNDR is then
synchronized to BClK to reset the BUSY and BRQ flip­
flops. When BUSY-Q goes low, the surrender circuitry is
reset which in turn re-enables the request input. The tim­
ing in Figure 13 shows the surrender request input
gOing high on the falling edge of the clock. If the Sample
flip-flop was able to catch the surrender request on the
edge of clock 1, then SURNDR would be generated (go
low) on clock edge 2. If not, SURNDR would be gener­
ated on clock edge 3. SURNDR going low on clock edge
2will be, for ease of discussion, referred to as SURNDR
a and SURNDR going low on clock edge 3 will be refer­
red to as SURNDR b. As can be seen from Figure 13,
SURNDR a just happens to go low on BClK edge 2.
Since SURNDR is used to reset the BRQ flip-flops,
which are clocked by the falling edge of BClK, the
BRQ1 flip-flop may or may not catch SURNDR a on
BClK edge 2. If it does, then BRQ and BUSY go high on
BClK edge 3 which, for convenience, will be called
BREQ a or BUSY a. If not, theh BREQ and BUSY will go
high on BClK edge 4, which will be referred to as BREQ
b or BUSY b, respectively. SURNDR b occurs early
enough to assure that BUSY and BREQ are reset on
BClK edge 5, which will be referred to as BUSY b1 and

ClK

SURRENDER
REQUEST

BREQ b1. Depending upon when BUSY goes high, deter­
mines when the surrender circuitry is reset and how
soon the next BREQ can be generated. BUSY a1 causes
SURNDR c to occur where shown and SURNDR c in turn
would allow the earliest bus request to occur at BREQ
c1. At the other extreme, BUSY b1 allows the earliest
bus request to occur at BREQ e1.

Table 1 summarizes the maximum and minimum delays
for bus request, once the proper request and surrender
conditions exist. Table 2 lists the proper surrender con­
ditions.

~~--~-.--.-----~

Mode

Single

lOB

RESB

10B·RESB

Surrender Conditions

HALT state, loss of BPRN. TI.CBREO

HALT state, loss of BPRN, TI·CBREO,
110 Command.CBRO

HALT state, loss of BPRN, TI·CBREO,
(SYSBIRESB ~ O)·CBRO

HALT state, loss of BPRN, TI·CBREO,
(SYSBIRESB ~ O)·CBREO,
110 Command.CBRO

Table 2. Surrender Conditions

·i ·i bl
BREQI

, \
\C1 \d1 \e1

...... _ _______ .1...-_

(EARLIEST THAT BREQ COULD GO ACTIVE AFTER BUS RELEASE)

Figure 13. Asynchronous Bus Release

A-125

AP-51

lOB INTERFACE

Now that the processor·arbiter, arbiter·system bus and
internal arbiter timings have been discussed, it is ap·
propriate to consider the other interfaces that the 8289
Bus Arbiter provides.

In the lOB mode, the processor communicates and con·
trois a host of peripherals over the peripheral bus. When
the I/O processor needs to communicate with system
memory, it is done so over the system memory bus. Fig·
ure 14 shows a possible 1/0 processor system con·
figuration, utilizing the 8089 I/O processor in its
REMOTE mode. Resident memory exists on the periph·
eral bus in order that canned I/O routines and buffer
storage can be provided. Resident memory is treated as
an I/O peripheral. When a peripheral device needs ser·
vicing, the I/O processor accesses resident memory for
the proper I/O driver routine and services the device,
transmitting or storing peripheral data in buffer storage
area of resident memory. The resident memory's buffer
storage area could then be emptied or replenished from
system memory via the system bus. Using the lOB inter·
face allows an I/O processor the capability of executing
from local memory (on the peripheral bus) concurrently
with the host processor.

Timing in this mode is no different from timing in the
SINGLE BUS mode. The only difference lies in the reo
quest and surrender conditions. The arbiter extends the
single bus mode conditions to qualify when the system
bus is requested and adds on additional surrender con·
ditions. The system bus is only requested during sys·
tem bus commands (the arbiter decodes the processor's
status lines) and, in addition to the other surrender

terms, the arbiter permits surrender to occur during I/O
bus (or local bus) commands, when the I/O processor is
using its own local bus.

Like the arbiter, the bus controller must also be in·
formed of the mode it is operating in. In the lOB mode,
the 8288 bus controller issues I/O bus commands in·
dependently of the state of AEN from the arbiter. It is
assumed that all I/O bus commands are intended for the
I/O bus and hence there is a separate I/O command bus
from the controller. All I/O bus commands are sent
directly to the I/O bus and are not influenced by AEN.
System bus commands are assumed as going to the
system bus. Since system bus commands are directed
to the system bus, they must still be influenced by AEiiI
and the arbitration mechanism provided by the 8289.

As an example, suppose the processor issues an I/O bus
command. The 8288 Bus Controller generates the
necessary control signal to latch the I/O address and
configure the transceivers in the correct direction. In the
lOB mode, the multiplexed MCE/PDEN pin of the 8288
becomes PDEN (peripheral data enable) and serves to
enable the I/O bus's data transceivers during I/O bus
commands. DEN similarily serves to enable the system
bus's data transceivers during memory commands.
PDEN and DEN are mutually exclusive, so it is not possi·
ble for both sets of transceivers to be on, thereby
avoiding contention between the two sets. Since the I/O
bus commands are generated independently of AEN In
the lOB mode, the I/O bus has no delay effects due to
the arbiter. During this time in which the processor is
accessing memory the arbiter, if it already has the bus,
will permit it to be surrendered to either a higher or
lower priority independently of where the processor is in

XACK(IIO 8U5)------I I---------------{)tACK MULTI·MASTER SYSTEM 8US

'0 ADDRESS
BUS

10
DATA
BUS

8289
BUS

ARBITER

K=====) MULTI·MASTEA CONTROL
BUS

~=====:}MULTI'MASTER SYSTEM
COMMAND
BUS

~==~~~======JMULnMAsn:R SYSTEM
ADDRESS

ri-----\ ~:;.VARBlE aus

K===========;MULfl.MASTEA SYSTEM
DATA
BUS

Figure 14. 8289 Configured In 110 Bus Mode With 8089 1/0 Processor

A-126

MULTI-MASTER
SYSTEM8US

AP-51

its transfer cycle (i.e., independent of the machine
state).' If the arbiter does not already have the bus, it
will make no effort to acquire the bus.

If the processor issues a memory command instead, the
same set of events take place, except that 1) the system
bus's data transceivers are enabled instead of the
peripherals bus's data transceivers, and 2) when the
command is issued depends upon the state of the ar·
biter. In both cases of I/O bus commands and system
bus commands, the address generated for that com·
mand is latched into both sets of address latches, the
system bus's address latches, and the peripherals bus's
address latches. For each command (regardless of com·
mand type), an address is put out on the I/O bus and on
the system bus if the arbiter has the bus at that particu·
lar time. However, the bus controller only issues a com­
mand to one of the buses and hence, no ill effects are
suffered by addressing both buses.

If the arbiter already has the system bus when a system
bus command is issued, no delays due to the arbiter wi II
be noticed by the processor. If the arbiter doesn't have
the bus and must acquire it, then the processor will be
delayed (via the system bus command being delayed by
the bus controller through AEN from the arbiter) until
the arbiter has acquired the bus. The arbiter will then
permit the bus controller to issue the command and the
transfer cycle continues.

RESBINTERFACE
The non-IIO processors in the 8086 family can communi­
cate with both a resident bus and a multi-master system
bus. Two bus controllers would be needed in such a con­
figuration as shown in Figure 15. In such a system con­
figuration the processor would have to access to
memory and peripherals of both buses. Address map­
ping techniques can be applied to select which bus is to
be accessed. The SYSB/RESB (system bus/resident bus)
input on the arbiter serves to instruct the arbiter as to
whether or not the system bus is to be accessed. It also
enables or disables commands from one of the bus con­
trollers.

In such a system configuration, it is possible to issue
both memory and 110 commands to either bus and as a
result, two bus controllers are needed, one for each bus.
Since the controllers have to issue both memory and 110
commands to their respective buses, the lOB options on
the controllers are strapped off (lOB is low). The ar­
biter, too, has to be informed of the system configura­
tion in order to respond appropriately to system inputs
and has its RESB option strapped on (RESB is high). The
arbiter's lOB option is strapped inactive (lOB is high).
Strapping the arbiter into the resident bus mode
enables the arbiter to respond to the state of the
SYSB/RESB input. Depending upon the state of this in­
put, the arbiter either requests and acquires the system
bus or permits the surrendering of that bus.

·Under other circumstances, bus surrendering wou!,d only be permitted
during the period from where address to command hold time has been
established just prior to where the next command would be issued.

In the system shown in Figure 15, memory mapping
techniques are applied on the resident bus side of the
system rather than on the multiprocessor or system
bus side. As mentioned earlier in the lOB interface, both
sets of address latches (the resident bus's address
latches and the system bus's address latches) are
latched with the same address; in this case, by their
respective bus controllers.' The system bus's address
latches, however, mayor may not be enabled depending
upon the state of the arbiter. The resident bus's address
latches are always enabled, hence the address mapping
technique is applied to the resident bus.

Address mapping techniques can range in complexity
from a single bit of the address bus (usually the most
significant bit of the address), to a decoder, to a PROM.
The more elaborate mapping technique, such as PROM,
provides segment mapping, system flexibility, and easy
mapping modifications (simply make a new PROM).

In actual operation, both bus controllers respond to the
processor's status lines and both will simultaneously
issue an address latch strobe (ALE) to their respective
address latches. Both bus controllers will issue com­
mand and control signals unless inhibited. The purpose
of the address mapping circuitry is to inhibit one of the
bus controllers before contention or erroneous com­
mands can occur. The transceivers are enabled off the
same clock edge the commands are issued, namely <1>1
of T2 (Figure 16). The address is strobed into the ad­
dress latches by ALE. ALE is activated as soon as the
processor issues status, and is terminated on <1>2 of of
T1. From when ALE is issued, plus the propagation
delay of the address latches, determines where the ad­
dress is valid. The time from which the address is valid
to where control and commands are issued determines
how much settling time is available for the address map­
ping circuitry. The mapping circuitry must inhibit (via
CEN) one of the bus controllers prior to where controls
and commands are issued. Part of the settling time
(see Figure 16) is consumed as a setup time requirement
to the bus controllers. As it turns out, CEN (command
enable) can be disqualified as late as on the falling edge
of clock (the leading edge of <1>1 of T2) without fear of the
bus controller issuing any commands or transceiver
control signals. In systems (8 MHz) where less time is
available for the address mapping circuitry, the address
latches can be bypassed, hooking the mapping circuitry
straight onto the processor's multiplexed address/data
bus (the local bus) and using ALE to strobe the mapping
circuitry. This would avoid the propagation delay time of
the transceivers. Besides needing to inhibit one of the
bus controllers, the arbiter needs to be informed of the
address mapping circuitry's decision. Depending upon
that decision, the arbiter acquires or permits the release
of the system bus.

• A simpler system with an 8086 or 8088 can exist, if it is desirable to
only have PROM, ROM, or a read only peripheral interface on the resi·
dent bus. The 8086 and 8088 additionally generate a read signal in con·
junction with the 8288 control signals. By using this read signal and
memory mapping, the 8086 or 8088 could operate from local program
store without having the contention of using the system bus.

A-127

o

8284
CLOCK

AP-51

XACK
RESIDENT BUS

-----+---~---- XACK MULTI·MASTER SYSTEM BUS

RESIDENT COMMAND ;'-___ L
BUS

RESIDENT ADDRESS I~--~

BUS '<----------1

eLK

PROCESSOR
STATUS

ALE (8288)

ADDRESS (8282,3)

COMMAND, CONTROL (8288)

'BY ADDING ANOTHER 8289 ARBITER AND CONNECTING ITS AEN TO THE 8288
WHOSE KEN IS PRESENTLY GROUNDED, THE PROCESSOR COUto HAve ACCESS
TO TWO MUL TJ.MASTER BUSES

Figure 15. 8289 Configured In Resident Bus Mode

T4 T1

TCY jTCLAY + DELAY TIME THROUGH LATCHES] + 5 '" TSETTUNG

\
AVAILABLE

ADDAESS MAPPING
SETTLING TIME

Figure 16. Time Avairabl. For Address Mapping Prom

A-128

MUlHMIj.STER SYSTEM
BUS CONTROL

MULTI·MASTER SYSTEM
COMMAND BUS

MULTI-MASTER SYSTEM
ADDRESS BUS

T2

MULTI-MASTER
SYSTEM BUS

AP-51

The arbiter is informed of this decision via its
SYSB/RESB input. If the memory mapping circuitry
selects the resident bus, then SYSB/RESB input to the
arbiter and CEN input of the system bus controller are
brought low; and the CEN Input of the resident bus con·
troller is brought high. The commands and control
signals of the resident bus are now enabled and those of
the system bus are disabled. In addition, with the arbiter
being informed that the transfer cycle is occurring on
the resident bus, the system bus is permitted to be sur·
rendered. Glitching is permitted on the SYSB/RESB in­
put of the arbiter up until ¢1 of T2. Thereafter, only clean
transitions can occur on the input.· So, if mapping cir­
cuitry can settle prior to ¢1 of T2, there is no need to be
concerned over glitching. If the mapping circuitry is
unable to settle prior to this time, then the designer
must guarantee a clean transition on the SYSB/RESB in­
put.

INTERFACE TO TWO MULTI-MASTER BUSES

The interface of an 8086 family processor to two multi­
system buses is simply an extension of the resident bus
interface. The only difference is that now two arbiters
are needed, one for each multi-master bus, and the ad­
dress mapping circuitry must acquire its input straight
off the processor's multiplexed address/data bus (the
local bus), using ALE as an address strobe input. Figure
17 depicts how such a system might be configured.

Figure 17 illustrates the use of the 8289 in a system en­
vironment in three of its four modes. The host 8086 CPU
(priority 3) is using the 8289 in its single bus multi­
master mode, while an 8089 I/O processor is using the
8289 in its lOB mode. A work station based on an 8088
processor uses the 8289 in it system/resident bus mode.
This diagram represents a hypothetical system wherein
there can exist more than one work station (only one
shown). Each work station shares system resources and
I/O. The lowest priority processor (8086) would provide
supervisory functions and system control, i.e., allow
operator intervention into the system resources. A work
station would call in assemblers and compilers or ap­
plication programs as needed. When compiled or
assembled, the results are transferred to the I/O station
for output, thus freeing up a work station for another
user.

*In certain memory mapping techniques, the CENs of the bus control·
lers are controlled differently from the SYSB/RESB input of the arbiter.
In short, CEN Is brought low automatically to both bus controllers,
thereby disabling their command and control outputs. This permits a
longer settling time for the memory mapping Circuitry, since both con·
trollers are disabled. When the mapping circuitry settles, sometime
after <tol of T2, one of the bus controllers and its associated bus arbiter
(if one exists) is enabled. After <tol of T2, the arbiter can only permit
cl~an transitions on the SYSB/RESB Input line.

If one work station is used, the serial priority resolving
technique could be used between the 8289 Bus Arbiters
(shown in dotted lines). If more than one work station is
desired, it would be necessary to either slow down the
system bus clock to accommodate the additional ar­
biters, or resort to the parallel resolving technique (as
shown).

WHEN TO USE THE DIFFERENT MODES

Single Bus Multi-Master Interface

This mode is the simplest and is sufficient for systems
where a multiprocessing environment exists and the
system bus bandwidth is sufficient to handle the peak
concurrent requirements of a multi-master environment.
This solution can provide an inexpensive solution for
multi-masters to access an expensive I/O device. If,
however, the system bus bandwidth is exceeded, the
lOB or system/resident modes should be considered.

lOB Mode

The lOB mode is ideal when the bus can be separated in­
to an I/O bus and memory or system bus. This mode is
commonly used with the 8089 I/O processor in its
REMOTE configuration to separate the I/O space from
memory space. With the 8089, all instructions operate
on either system or I/O address space. 64K bytes of I/O
space can be accessed by the processors in the 8086
family.

The remaining processors in the 8086 family are con­
strained to using only I/O instructions when referencing
I/O space. If this is a limitation, and it is desirable to
remove some of the processor functions to its private
resources, the resident bus mode should be considered.

Resident Bus Mode

The resident bus mode allows for maximum flexibility
for a CPU device, giving it both access to its own local
resources with full instruction set capability, and the
system resources. The CPU can work from its own local
resources without contention on' the system bus. By
using a PROM for memory mapping, memory space can
be easily altered in this mode. This mode requires the
use of a second 8288 bus controller chip.

CONCLUSION

The 8289 brings a new dimension to microcomputer ar­
chitecture by allowing the advanced 8/16-bit microproc­
essors to play easily in a multi-master, multiprocessing
environment. With the flexible modes of the 8289, a user
can define one of several bus architectures to meet his
cost/performance needs. Modularity, improved system
reliability and increased performance are just a few of
the benefits that designing a multiprocessing system
provides.

A-129

XACK1

CLK 8289

A
MULTIBUS

ARBITER CONTROL
1 So-52

~

SYSB/
AEN RESB

AEN CEN

CLK
MULTIBUS 8288

(COMMANDS CONTROLLER
1 So-52

~

- DEN Dr/A
ALE

l
STB OE

ADDRESS
8283

LATCH
(2 OR 3)

+
I

6 t
OE DTIR

¢ DATA 8287
TRANSCEIVER

(1 OR 2)

AP-51

80881 READY
8284 6066

CPU CLK CLOCK

ADDR/DATA

ROY AEN AEN ROY
SO-S2 1 1 2 2

r-
If L:

eLK 8289

A f.. ARBITER STATUS
2

SO-52

~ V

SYSB/ - - RESB AEN

"' ::>
II>
~

" u I: LATC< I g
CEN AEN -- '-_ elK 8288

;1. t ~
CONTROLLER

2
So-52

"f r
r-- ,-- DT/A DEN

ALE

~

Ii AODRIDATA 1\

~ r

A 1\

~ V

MEMORY MAPPING DECODING IS SHOWN TAKING PLACE DIRECTLY OFF OF
THE PROCESSOR'S LOCAL MULTIPLEXED ADDRESSIDATA BUS.

Figure 17. Using 82895 To Interface To Two Multimaster System Buses.

A-l30

OE STB

8283
LATCH
(2 OR 3)

t 6
DT/R OE

8287
TRANSCEIVER

(1 OR 2)

XACK2

MULTIBUS
~ CONTROL

r

MUL TIBUS
COMMANDS

~
I---

ADDRESS f..
)

I'

y

DATA }..

V

THIS PAGE LEFT INTENTIONALLY BLANK

A-131

AP-51

r--------------------,
I I
I I

I f j 8086 RE~~; I
I I
I SO 51 S2 -=-1
I I

I I
I I I

i i)
I /
I
I
I
I
I

L __________________ _

r-------------------l
~ I

r;;;b;--*" I
I

11 i
I
I
I
I I
I I
V

/

I
I
I L ___________________ J

Figure 18. 8289 Used In Each Of 3 Modes, Single Bus, 110 Bus, and Resident Bus Modes Implementing A Hypothetical Multlmaster Bus System

A-132

10MH.
CLOCK

r------------..,
I I
I I

:======~FF~~$§8!~' ! I 2 PRIORITY I
I ,."." ""."
I , I
I 321 I
i I

==
~
=

==
=~
=

i
- -i

= = - -

= = -- --

¢: =

I PAIORITYRESOLVING 'I
L __ ~-::'E,=,R~~___ _.J

III.;=:L-
I I I I I I I (

IIIIII I ~

IIIII
I I I II I I (

IIIIII I ~

SYSTEM
,~

SYSTEM
MEMORY

r-ji--;-----------·
IlciEN2 ROV2 01lQ1_

OllQ2_

I READY_AEADY ~:-
I .28<1 CLK_...-CLK 8018 fl

W+Ul-I-J-L~i [~~r:'~-"---J'" = J =~ " ii
I ~S.- ~ICK
I ~~ILK ~=

~
L---1AEO m:

r-' N.~=I2H :
--- .//1 ~~:~

I

I-
CLK_ ..
ii ..

DTIA r-----L--- DTIA

"--tJ=;"
~====::: ~ 'U' rr .m

I PRIOAIIV' ~ I
~-----------------~

AP-51

STORAGE DEVICES
HARD. FLOPPY DISKS

MAG.TAPEI
CASIIiIIOTTU

o

~
..!.

MEMORY 4ACK ADDREISMAPPED IIeACK STORAGE DEVICE I
iNTO I/D ADDAUS CONTIIOLLrlt

SPACE aERVICEREaUEST

1r1l1r 1r1l1r
=1--'

INPUTIOUTPUTDE

,~".6:i
~I~'"''''''

IN'~~~~~PUT I
CONTFIOUER

SEAYICEREOUEST

Figure 18. 8289 Used In Each Of 3 Modes, Single Bus, 1/0 Bus, and Resident Bus Modes Implementing A Hypothatlcal Multlma.ter Bus System

A-133/ A-134

© Intel Corporation, 1979

APPLICATION
NOTE

A-135

Ap·59

September 1979

121500-001

Using the 8259A
Programmable

Interrupt Controller

AP-59

Contents

INTRODUCTION

CONCEPTS

MeS80 TM·8259A Overview
MCS85™·8259A Overview
M CS86/88 TM·8259A Overview

FUNCTIONAL BLOCK DIAGRAM

Interrupt Registers and Control Logic
Other Functional Blocks
Pin Functions

OPERATION OF THE 8259A

Interrupt Vectoring
MCS80/85 Mode
MCS86/88 Mode

Interrupt Priorities
Fully Nested Mode
End of Interrupt
Automatic Rotation
Specific Rotation
Interrupt Masking

Interrupt Triggering
Level Triggered Mode
Edge Triggered Mode

Interrupt Status
Reading Interrupt Registers
Poll Command

Interrupt Cascading
Cascade Mode
Special Fully Nested Mode
Buffered Mode

PROGRAMMING THE 8259A

Initialization Command Words (ICWs)
Operational Command Words (OCWs)

APPLICATION EXAMPLES

Power Fail/Auto Start with Battery Back·Up RAM
78 Level Interrupt Structure
Timer Controlled Interrupts

CONCLUSIONS

APPENDIX A

APPENDIX B

A-136

AP·59

INTRODUCTION

The Intel 8259A is a Programmable Interrupt Controller
(PIC) designed for use in real·time interrupt driven
microcomputer systems. The 8259A manages eight
levels of interrupts and has built·in features for expan·
sion up to 64 levels with additional 8259A's. Its versatile
design allows it to be used within MCS·80, MCS·85,
MCS·86, and MCS·88 microcomputer systems. Being
fully programmable, the 8259A provides a wide variety of
modes and commands to tailor 8259A interrupt process·
ing for the specific needs of the user. These modes and
commands control a number of interrupt oriented func·
tions such as interrupt priority selection and masking of
interrupts. The 8259A programming may be dynamically
changed by the software at any time, thus allowing com·
plete interrupt control throughout program execution.

The 8259A is an enhanced, fully compatible revision of
its predecessor, the 8259. This means the 8259A can use
all hardware and software originally designed for the
8259 w.ithout any changes. Furthermore, it provides ad·
ditional modes that increase its flexibility in MCS·80
and MCS·85 systems and allow it.to work in MCS·86 and
MCS·88 systems. These modes are:

• MCS·86/88 Mode
• Automatic End of Interrupt Mode
• level Triggered Mode
• Special Fully Nested Mode
• Buffered Mode

Each of these are covered in depth further in this appli·
cation note.

This application note was written to explain completely
how to use the 8259A within MCS·80, MCS·85, MCS·86,
and MCS·88 microcomputer systems. It is divided into
five sections. The first section, "Concepts", explains
the concepts of interrupts and presents an overview of
how the 8259A works with each microcomputer system
mentioned above. The second section, "Functional
Block Diagram", describes the internal functions of t.he
8259A in block diagram form and provides a detailed
functional description of each device pin. "Operation of
the 8259A", the third section, explains in depth the
operation and use of each of the 8259A modes and com·
mands. For clarity of explanation, this section doesn't
make reference to the actual programming of the 8259A.
Instead, all programming is covered in the fourth sec·
tion, "Programming the 8259A". This section explains
how to program the 8259A with the modes and com·
mands mentioned in the previous section. These two
sections are referenced in Appendix A. The fifth and
final section "Application Examples", shows the 8259A
in three typical applications. These applications are
fully explained with reference to both hardware and soft·
ware.

The reader should note that some of the terminology
used throughout this application note may differ
slightly from existing data sheets. This is done to better
clarify and explain the operation and programming of
the 8259A.

1. CONCEPTS

In microcomputer systems there is usually a need for
the processor to communicate with various Input/Out·

put (I/O) devices such as keyboards, displays, sensors,
and other peripherals. From the system viewpoint, the
processor should spend as little time as possible servic·
ing the peripherals since the time required for these I/O
chores directly affects the amount of time available for
other tasks. In other words, the system should be
designed so that I/O servicing has little or no effect on
the total system throughput. There are two basic
methods of handling the I/O chores in a system: status
polling and interrupt servicing.

The status poll method of I/O servicing essentially in·
volves having the processor "ask" each peripheral if it
needs servicing by testing the peripheral's status line. If
the peripheral requires service, the processor branches
to the appropriate service routine; if not, the processor
continues with the main program. Clearly, there are
several problems in implementing such an approach.
First, how often a peripheral is polled is an important
constraint. Some idea of the "frequency·of·service"
required by each peripheral must be known and any soft·
ware written for the system must accommodate this
time dependence by "scheduling" when a device is
polled. Second, there will obviously be times when a
device is polled that is not ready for service, wasting the
processor time that it took to do the poll. And other
times, a ready device would have to wait until the proc·
essor "makes its rounds" before it could be serviced,
slowing down the peripheral.

Other problems arise when certain peripherals are more
important than others. The only way to implement the
"priority" of devices is to poll the high priority devices
more frequently than lower priority ones. It may even be
necessary to poll the high priority devices while in a low
priority device service routine. It is easy to see that the
polled approach can be inefficient both time·wise and
software·wise. Overall, the polled method of I/O servic·
ing can have a detrimental effect on system throughput,
thus limiting the tasks that can be performed by the
processor.

A more desirable approach in most systems would allow
the processor to be executing its main program and only
stop to service the I/O when told to do so by the I/O
itself. This is called the interrupt service method. In
effect, the device would asynchronously signal the proc·
essor when it required service. The processor would
finish its current instruction and then vector to the
service routine for the device requesting service. Once
the service routine is complete, the processor would
resume exactly where it left off. Using the interrupt ser·
vice method, no processor time is spent testing devices,
scheduling is not needed, and priority schemes are
readily implemented. It is easy to see that, using the in·
terrupt service approach, system throughput would in·
crease, allowing more tasks to be handled by the
processor.

However, to implement the interrupt service method
between processor and peripherals, additional hardware
is usually required. This is because, after interrupting
the processor, the device must supply information for
vectoring program execution. Depending on the proc·
essor used, this can be accomplished by the device tak·
ing control of the data bus and "jamming" an instruc·
tion(s) onto it. The instruction(s) then vectors the pro·

A-137

AP-59

gram to the proper service routine. This of course re­
quires additional control logic for each interrupt re­
questing device. Yet the implementation so far is only in
the most basic form. What if certain peripherals are to
be of higher priority than others? What if certairi inter­
rupts must be disabled while others are to be enabled?
The possible variations go on, but they all add up to one
theme; to provide greater flexibility using the interrupt
service method, hardware requirements increase.

So, we're caught in the middle. The status poll method
is a less desirable way of servicing 1/0 ,in terms of
throughput, but its hardware requirements are minimal.
On the other hand, the interrupt service method is most
desirable in terms of flexibility and throughput, but
additional hardware is required.

The perfect situation would be to have the flexibility and
throughput of the interrupt method in an implementa­
tion with minimal hardware requirements. The 8259A
Programmable Interrupt Controll,er (PIC) makes this all
possible.

The 8259A Programmable Interrupt Controller (PIC) was
designed to function as an overall manager of an inter­
rupt driven system. No additional hardware is required.
The 8259A alone can handle eight prioritized in,terrupt
levels, controlling the complete interface between pe­
ripherals and processor. Additional 8259A's can be
"cascaded" to increase the number of interrupt levels
processed. A wide variety of modes and commands for
programming the 8259A give it enough flexibility for
almost any interrupt controlled structure. Thus, the
8259A is the feasible answer to handling 1/0 servicing in
microcomputer systems.

Now, before explaining exactly how to use the 8259A,
let's go over interrupt structures of the MCS-80, MCS-85,
MCS-86, and MCS-88 systems, and how they interact
with the 8259A. Figure 1 shows a block diagram of the
8259A interfacing with a standard system bus. This may
prove useful as reference throughout the rest of the
"Concepts" section.

I
INTERRUPT
RI!:QUESTS

Figure 1. 8259A Interface to Standard System Bus

1_1 MCS-80™-8259A OVERVIEW

In an MCS-80'-8259A interrupt configuration, as in
Figure 2, a device,may'cause an interrupt by pulling one
of the 8259A's interrupt request pins (IRO-IR7) high. If
the 8259A accepts the irlterruptrequest (this depends
on its programmed condition), the 8259A's INT (inter­
rupt) pin will go high, driving the 8080A's INTpin high.

The 8080A can receive an interrupt request any, time,
since its INT input is asynchronous. The 8080A, how­
ever, doesn't always have to acknowledge an interrupt
request immediately. It can accept or disregard re­
quests under software control using the EI (Enable Inter­
rupt) or 01 (Disable Interrupt) instructions. These in­
structions either set or reset an internal interrupt enable
flip-flop. The output of this flip-flop controls the state of
the INTE (Interrupt Enabled) pin. Upon reset, the 8080A
interrupts are disabled, making INTE low.

At the end of each instruction cycle, the 8080A exam­
ines the state of its INT pin. If an interrupt request is
present and interrupts are enabled, the 8080A enters an
interrupt machine cycle. During the interrupt machine
cycle the 8080A resets the internal interrupt enable flip­
flop, disabling further interrupts until an EI instruction
is executed. Unlike normal machine cycles, the interrupt
machine cycle doesn't increment the program counter.
This ensures that the 8080A can return to the pre­
interrupt program location ,after the interrupt is com­
pleted. The 8080A then issues an INTA (Interrupt
Acknowledge) pulse via the 8228 System Controller Bus
Driver. ThislNTA pulse signals the 8259A that the 8080A
is honoring the request and is ready to process the inter­
rupt.

The 8259A can now vector program execution to the cor­
responding service routine. This is' done during a se­
quence of the three INTA pulses from the 8080A via the
8228. Upon receiving the first INTA pulse the 8259A
places the opcode for a CALL Instruction on the data
bus. This causes the contents of the program counter to
be pushed onto the stack. In addition; the CALL instruc­
tion causes two more INTA pulses to be issued, allow­
ing the 8259A to place onto the data bus the starting
address of the corresponding service routine. This
address is called the interrupt-vector address. The lower
8 bits (LSB) of the interrupt-vector address are released
during the second INTA pulse and the upper 8 bits
(MSB) during the third INTA pulse. Once this sequence
is completed, program execution then vectors to the
service routine at the interrupt-vector address.

If the same registers are used by both the main program
and the interrupt service routine, their contents should
be saved when entering the service routine. This in­
cludes the Program Status Word (PSW) which consists
of the accumulator and flags. The best way to do this is
to "P,USH" each register used onto the stack. The ser­
vice routine can then "POP" each register off the stack
in the reverse order when it is completed. This prevents
any ambiguous operation when returning to the main
program.

Once the service routine is completed, the ma:in
program may be re-entered by using a normal RET
(Return) instruction. This will "POP" the original con-

A-13S

AP-59

tents of the program counter back off the stack to
resume program execution where it left off. Note, that
because interrupts are disabled during the interrupt
acknowledge sequence, the EI instruction must be
executed either during the service routine or the main
program before further interrupts can be processed.

For additional information on the SOSOA interrupt struc·
ture and operation, refer to the MCS·SO User's Manual.

1.2 MCS·8S™_82S9A OVERVIEW

An MCS·S5-S259A configuration processes interrupts
in much the same format as an MCS-SO-S259A config-

uration. When an interrupt occurs, a sequence of three
INTA pulses causes the S259A to release onto the data
bus a CALL instruction and an interrupt·vector address
for the corresponding service routine. Other events that
occur during the SOSOA interrupt machine cycle, such as
disabling interrupts and not incrementing the program
counter, also occur in the SOS5A interrupt acknowledge
machine cycle. Additionally, the instructions for saving
registers, enabling or disabling of interrupts, and return·
ing from service routines are literally the same.

The SOS5A, however, has a different interrupt hardware
scheme as shown in Figure 3. For one, the SOS5A sup·
plies its own INTA output pin rather than using an addi·

AO-1SI---------ADDRESS B-US--------~

Ao

TO MEMORY AND 110

8224

INTf-------------,

8259A

8080A YlA
CE~ECT

cs

Figure 2. MCS·80 8259A Basic Configuration Example

TO MULTIPLEXED
Mesas FAMilY

IRO -

INTERRUPT
REQUEST

INPUTS

riDb L t 'fI' DL-_____ ~===-----------_". TO STANDARD MEMORY

Xl X2 REseT elK - REseT IN OUT

- HOLD

- HLDA

- RDY

- TRAP

- RST7.'

- RST6.'

- RST5.5

,.--- INTR

INTA

WR

808SA

A8-15t-r..,.. ... r-__ , ADDRESS BUS AND OTHER 110

:-l III I AD

I E3 E2 e:
20

:2 A1 AO I
00 01 02 03 04 05 06 07

ALE

j j I j I I !
110 SELeCT

ADo., ~,,_,... __ ..., MULTIPLEXED ADDRESS/DATA BUS TO STANDARD MEMORY
~===:.=:;.=~==="'----~~---y,/ AND OTHER 110

IO/MM ~---I----l I----..J
Ro

TO 1/0 " MEMORY
QUALIFIED BY IOiM

IT

+5

'x

8259A SELECT

Figure 3. MCS-85 ™ 8259A Balle Configuration Exc."pla

A-139

INTERRUPT
REQUEST
INPUTS

TO SLAVE 8259A

AP-59

tional. Chip, as the 8080A uses the 8228 System Con­
troller Bus Driver. Another hardware difference is the
8085A has five hardware interrupt pins: INTR, RST 7.5,
RST 6.5, RST 5.5, and TRAP. The INTR (Interrupt Request)
pin is the equivalent to the 8080A's INT pin. The RST
(Restart) pins and TRAP pin are all restart interrupts
which vector program execution to an individual dedi­
cated address when asserted. The important factor
associating these interrupts is their relative priority, as
shown below:

TRAP Highest Priority
RST 7.5
RST 6.5
RST 5.5
INTR Lowest Priority

The INTR pin has lowest priority among the other 8085A
hardware interrupts. Thus, precautions to prevent inter­
rupting 8259A service routines may be necessary. This,
of course, depends on how the 8085A interrupts are
being used in a particular application. Such precautions
can be implemented, however, by masking the RST pins
using the SIM instruction. The TRAP pin on the other
hand is non-maskable; all interrupt pins but TRAP can
be controlled by the EI (Enable I nterrupt) and DI (Disable
Interrupt) instructions.

For a complete description of the 8085A inter.rupt struc­
ture, refer to the MCS-85 User's Manual.

1.3 MCS·86/88™_8259A OVERVIEW

Operation of an MCS·86/88-8259A configuration has
basic similarities of the MCS·80/S5-8259A configura·

READY
RESET ANi

CSYNe Fie

RESET I!Rl!
READY

A,S·19

ADo_iS'
MULTIPLEXED ADORESSfDATA BUS

LOCK

NMI

INTR

TO J
MEMORY 1

TO 110

tions. That is, a device can cause an interrupt by pulling
one of the S259A's interrupt request pins (lRO-IR7) high.
If the S259A honors the request, its INTpin will go high,
driving the 80S6/S0SS's INTR pin high. Like the S080A
and 8085A, the iNTR pin of the S086/S08S is asynchro·
nous, thus it can receive an interrupt any time. The
SOS6/8088 can also accept or disregard requests on
INTR under software control using the STi (Set Interrupt)
or CLi (Clear Interrupt) instructions. These instructions
set or clear the interrupt·enabled flag IF. Upon
8086/S0S8 reset the IF flag is cleared, disabling exte.rnal
interrupts on INTR. Beside the INTR pin, the S086/S0S8
provides an NMI (Non-Maskable Interrupt) pin. The NMI
functions similar to the SOS5A's TRAP; it can't be dis·
abled or masked. NMI has higher priority than INTR.

Figure 4 shows an MCS·86 MAX Mode system interfac·
ing with an 8259A on the local bus. This MCS·86-8259A
configuration is also representative of an MCS·88-
S259A configuration except for the data bus which is 16
bits for SOS6 and S bits for 8088. In the MCS·S6 system
the 8259A must be on the lower 8 bits of the data bus.
Note that the 8259A could also be interfaced on the
system bus.

Although there are some basic similarities, the actual
processing of interrupts with an 80S6/S088 is different
than an SOSOA or SOS5A. When an interrupt request is
present and interrupts are enabled, the SOS6/S0SS enters
its interrupt acknowledge machine cycle .. The interrupt
acknowledge machine cycle pushes the flag registers
onto the stack (as in a PUSHF instruction). It then clears
the IF flag which disables interrupts. The contents of

r..;;;Y;;;ST;';EM~AD"'D:;;;RE;;;SS;;-;;;BU;;;S--;;."'I!Rl!"'" l~:I~~ORY
A1

/l--'-"SyV.S'"'TE"'M"'D""AT"'A"B"'US'-----"\ TO MEMORY IV---.-=-=====-,/ AND 1/0

8259A SELECT

TO SLAVE 8259A
---V

Figure 4. MSC-8e ™ 8258A B •• 1c ConllllUflltlon Example (8088 In Max. Mode)

A-140

AP-59

both the code segment and the instruction pOinter are
then also pushed onto the stack. Thus, the stack retains
the pre-interrupt flag status and pre-interrupt program
location which are used to return from the service
routine_ The 8086/8088 then issues the first of two INTA
pulses which signal the 8259A that the 8086/8088 has
honored its interrupt request. If the 8086/8088 is used in
its "MIN Mode" the INTA signal is available from the
8086/8088 on its INTA pin. If the 8086/8088 is used in the
"MAX Mode" the INTA signal is available via the 8288
Bus Controller INTA pin. Additionally, in the "MAX
Mode" the 8086/8088 LOCK pin goes low during the in­
terrupt acknowledge sequence. The LOCK signal can be
used to indicate to other system bus masters not to gain
control of the system bus during the interrupt acknowl­
edge sequence. A "HOLD" request won't be honored
while LOCK is low.

The 8259A is now ready to vector program execution to
the'corresponding service routine. This is done during
the sequence of the two INTA pulses issued by the 80861
8088_ Unlike operation with the 8080A or 8085A, the
8259A doesn't place a CALL instruction and the starting
address of the service routine on the data bus. Instead,
the first INTA pulse is used only to signal the 8259A of
the honored request. The second INTA pulse causes the
8259A to place a single interrupt-vector byte onto the
data bus. Not used as a direct address, this interrupt­
vector byte pertains to one of 256 interrupt "types" sup­
ported by the 8086/8088 memory. Program execution is
vectored to the corresponding service routine by the
contents of a specified interrupt type.

All 256 interrupt types are located in absolute memory
locations. 0 through 3FFH which make up the 80861
8088's interrupt-vector table. Each type in the interrupt­
vector table requires 4 bytes of memory and stores a
code segment address and an instruction pOinter ad­
dress. Figure 5 shows a block diagram of the interrupt­
vector table. Locations 0 through 3FFH should be
reserved for the interrupt-vector table alone. Further­
more, memory locations 00 through 7FH (types 0-31) are
reserved for use by Intel Corporation for Intel hardware
and software products. To maintain compatibility with
present and future Intel products, these locations
should not be used_

- -
INTERRUPT TYPE 255

INTERRUPT TYPE 254

•
•
•

INTERRUPT TYPE 2

INTERRUPT TYPE 1

INTERRUPT TYPE 0

Figure 5_ 808618088 Interrupt Vector Table

3FFH

3FCH
3FBH

3F8H

BH

8H
7H

4H
3H

OH

When the 8086/8088 receives an interrupt-vector byte
from the 8259A, it multiplies its value by four to acquire
the address of the interrupt type. For example, if the
interrupt-vector byte specifies type 128 (80H), the vec­
tored address in 8086/8088 memory is 4 x 80H, which
equals 200H. Program execution is then vectored to the
service routine whose address is specified by the code
segment and instruction pOinter values within type 128
located at 200H. To show how this is done, let's assume
interrupt type 128 is to vector data to 8086/8088 memory
location 2FF5FH. Figure 6 shows two possible ways to
set values of the code segment and instruction pointer
for vectoring to location 2FF5FH. Address generation
by the code segment and instruction pOinter is ac­
complished by an offset (they overlap). Of the total
20-bit address capability, the code segment can desig­
nate the upper 16 bits, the instruction pOinter can
designate the lower 16 bits.

CS(MSB)

CS(LSB)

IP(MSB)
IP(LSB)

CS(MSB)
CS(LSB)

IP(MSB)
IP(LSB)

-

-
-

2FH

FOH

DOH

5FH

20H

DOH

FFH

5FH

-
1
1

1
1

-
1
1

FFH

FEH

FDH

FCH

FEH FFH I
~FDH TYPE 128

1 FCH

~

Figure 6. Two Examples 01 8086/8088 Interrupt Type 128 Vectoring
to Location 2FF5FH

When entering an interrupt service routine, those regis­
ters that are mutually used between the main program
and service routine should be saved_ The best way to do
this is to "PUSH" each register used onto the stack im­
mediately. The service routine can then "POP" each
register off the stack in the same order when it is com­
pleted.

Once the service routine is completed the main program
may bere-entered by using a IRET (Interrupt Return) in­
struction. The IRET instruction will pop the pre-interrupt
instruction pointer, code segment and flags off the
stack_ Thus the main program will resume where it was
interrupted with the same flag status regardless of
changes in the service routine_ Note especially that this
includes the state of the IF flag, thus interrupts are re­
enabled automatically when returning from the service
routine_

Beside external interrupt generation from the INTR pin,
the 8086/8088 is also able to invoke interrupts by soft­
ware. Three interrupt instructions are provided: iNT, INT
(Type 3), and INTO. INT is a two byte instruction, the sec­
ond byte selects the interrupt type. INT (Type 3) is a one
byte instruction which selects interrupt Type 3. INTO is
a conditional one byte 'interrupt instruction which
selects interrupt Type 4 if tl:le OF flag (trap on overflow)
is set. All the .software interrupts vector program execu­
tion as the hardware interrupts do_

A-141

AP-59

For further information on 8086/8088 interrupt operation
and internal interrupt structure refer to the MCS-86
User's Manual and the 8086 System Design application
note_

2_ 8259A FUNCTIONAL BLOCK DIAGRAM

A block diagram of the 8259A is shown in Figure 7_ As
can be seen from this figure, the 8259A consists of eight
major blocks: the Interrupt Request Register (IRR), the
In-Service Register (ISR), the Interrupt Mask Register
(I MR), the Priority Resolver (PR), the cascade buffer/
comparator, the data bus buffer, and logic blocks for
control and read/write. We'll first go over the blocks
directly related to interrupt handling, the IRR, ISR, IMR,
PR, and the control logic. The remaining functional
blocks are then discussed.

2_1 INTERRUPT REGISTERS AND CONTROL LOGIC

Basically, interrupt requests are handled by three "cas­
caded" registers: the Interrupt Request Register (IRR) is
use to store all the interrupt levels requesting service;
the In-Service Register (ISR) stores all the levels which
are being serviced; and the Interrupt Mask Register
(IMR) stores the bits of the interrupt lines to be masked.
The Priority Resolver (PR) looks at the IRR, ISR and IMR,
and determines whether an INT should be issued by the
the control logic to the processor.

Figure 8 shows conceptually how the Interrupt Request
(IR) input handles an interrupt request and how the
various interrupt registers interact. The figure repre-

PIN CONFIGURATION

cs Vee

iVA "0
AD INTA

0, IR7

D. IR6

0,; IRS

0, IR4

OJ IR3

O2 IR2

0, IR'

D. IRO

CASO INT

CAS' SP/EN

GND CAS2

PIN NAMES
°7-DO OAT A BUS IBI·DIR ECTIONALI

RD READ INPUT

WR W'RITE INPUT

A. COMMAND SELECT ADDRESS

cs CHIP SELECT CAS 1

CAS'-CASO CASCADE LINES

$P/EN SLAVE PROGRAM/ENABLE BUFFER CAS 2

INT INTERRUPT OUTPUT

sents one of eight "daisy-chained" priority cells, one for
each IR input.

The best way to explain the operation of the priority cell
is to go through the sequence of internal events that
happen when an interrupt request occurs. However,
first, notice that the input circuitry of the priority cell
allows for both level sensitive and edge sensitive IR in­
puts. Deciding which method to use is dependent on the
particular application and will be discussed in more
detai I later.

When the IR input is in an inactive state (LOW), the edge
sense latch is set. If edge sensitive triggering is
selected, the "Q" output of the edge sense latch will
arm the input gate to the request latch. This input gate
will be disarmed after the IR input goes active (HIGH)
and the interrupt request has been acknowledged. This
disables the input from generating any further inter­
rupts until it has returned low to re-arm the edge sense
latch. If level sensitive triggering is selected, the "Q"

output of the edge sense latch is rendered useless. This
means the level of the IR input is in complete control of
interrupt generation; the input won't be disarmed once
acknowledged.

When an interrupt occurs on the IR input, it propagates
through the request latch and to the PR (assuming the
input isn't masked). The PR looks at the incoming re­
quests and the currently in-service interrupts to ascer­
tain whether an interrupt should be .issued to the proc­
essor. Let's assume that the request is the only one in­
coming and no requests are presently in service. The PR
then causes the control logic to pull the INT line to the
processor high.

DATA
BUS

BUFFER

BLOCK DI.AGRAM
INTA

CONTROL lOGIC

INT

INTA INTERRUPT ACKNOWLEDGE INPUT SP/EN ___ ----' ~INTERNAl sus
IRO-IR7 INTERRUPT REQUEST INPUTS

Figure 7. 8259A Block Diagram and Pin Configuration

A-142

AP-59

LTIM BIT
0= EDGE
1 = LEVEL

TO OTHER PRIORITY CELLS
CLR ISA

CLR a ISA BIT

EDGE
SENSE PRIORITY
~LA~T:<:,eH~l-__ l-__ -I-_-+ __ ~l::::1I-~~~1 SET ISA RESOLVER

SET

MesaO/85
MODE

{
INTAG

FREEZE

I~
MeS.6' •• { INTA ~

MODE

FREEZE

NOTES

NON·
MASKED
REO

CONTROL
LOGIC

1. MASTER CLEAR ACTIVE ONLY DURING 'ICW1
2. FREEZE/IS ACTIVE DURING INTAI AND POLL SEQUENCES ONLY
3. TRUTH TABLE FOR D·LATCH

c I 0 I a I OPERATION
1 Oi 01 FOLLOW
o X Qn-1 HOLD

Figure 8. Priority Cell

When the processor honors the INT pulse, it sends a se·
quence of INTA pulses to the 8259A (three for 8080A/
8085A, two for 8086/8088). During this sequence the
state of the request latch is frozen (note the INTA·freeze
request timing diagram). Priority is again resolved by the
PR to determine the appropriate interrupt vectoring
which is conveyed to the processor via the data bus.

Immediately after the interrupt acknowledge sequence,
the PR sets the corresponding bit in the ISR which
simultaneously clears the edge sense latch. if edge sen·
sitive triggering is used, clearing the edge sense latch
also disarms the request latch. This inhibits the
possibility of a still active IR input from propagating
through the priority cell. The IR input must return to an
inactive state, setting the edge sense latch, before
another interrupt request can be recognized. If level sen·
sitive triggering is used, however, clearing the edge
sense latch has no affect on the request latch. The state
of the request latch is entirely dependent upon the IR in·
put level. Another interrupt will be generatedimmedi·
ately if the IR level is left active after its ISR bit has been
reset. An ISR bit gets reset with an End·of·lnterrupt (EOI)
command issued in the service routine. End·of·
interrupts will be covered in more detail later.

2.2 OTHER FUNCTIONAL BLOCKS

Data Bus Buffer

This three·state, bidirectional 8·bit buffer is used to in·
terface the 8259A to the processor system data bus (via

DBO-DB?). Control words, status information, and
interrupt·vector data are transferred through the data
bus buffer.

Read/Write Control Logic

The function of this block is to control the programming
of the 8259A by accepting OUTput commands from the
processor. It also controls the releasing of status onto
the data bus by accepting INput commands from the
processor. The initialization and operation command
word registers which store the various control formats
are located in this block. The RD, WR, AO, and CS
pins are used to control access to this block by the
processor.

Cascade Buffer/Comparator

As mentioned earlier, multiple 8259A's can be combined
to expand the number of interrupt levels. A master·slave
relationship of cascaded 8259A's is used for the expan·
sion. The SP/EN and the CASO-2 pins are used for oper·
ation of this block. The cascading of 8259A's is covered
in depth in the "Operation of the 8259A" section of this
application note.

2.3 PIN FUNCTIONS

Name Pin 1# I/O Function

Vee

GND

28

14

+ 5V supply

Ground

A-143

AP-59

Name Pin # 1/0 Function

2

3

Chip Select: A low on this pin en­
ables RD and WR communication be­
tween the CPU and the 8259A. INTA
functions are independent of CS.

Write: A low on this pin when CS is
low enables the 8259A to accept
command words from the CPU.

Read: A low on this pin when CS is
low enables the 8259A to release
status onto the data bus for the CPU.

D7-DO 4-11 1/0 Bidirectional Data Bus: Control,
status and interrupt-vector informa­
tion is transferred via this bus.

CASO- 12,13, 1/0 Cascade Lines: The CAS lines form a
CAS2 15 private 8259A bus to control a multi­

ple 8259A structure. These pins are
outputs for a master 8259A and in­
puts for a slave 8259A.

SP/EN 16 110 Slave Program/Enable Buffer: This is
a dual function pin. When in the buf­
fered mode it can be used as an out­
put to control buffer transceivers
(EN). When not in the buffered mode
it is used as an input to designate a
master (SP= 1) or slave (SP= 0).

INT 17 0 Interrupt: This pin goes high when-
ever a valid interrupt request is as­
serted. It is used to interrupt the
CPU, thus it is connected to the
CPU's interrupt pin.

IRO- 18-25 I Interrupt Requests: Asynchronous in-
IR7 puts. An interrupt request can be

generated by raising an IR input (low
to high) and holding it high until it is
acknowledged (edge triggered mode),
or just by a high level on an IR input
(level triggered mode).

INTA 26 Interrupt Acknowledge: This pin is
used to enable 8259A interrupt-vector
data onto the data bus. This is done
by a sequence of interrupt acknowl­
edge pulses issued by the CPU.

AO 27 AO Address Line: This pin acts in con­
junction with the CS, WR, and RD
pins. It is used by the 8259A to de­
cipher between various command
words the CPU writes and status the
CPU wishes to read. It is typically
connected to the CPU AO address
line (A 1 for 8086/8088).

3. OPERATION OF THE 8259A

Interrupt operation of the 8259A falls under five main
categories: vectoring, priorities, triggering, status, and
cascading. Each of these categories use various modes
and commands. This section will explain the operation
of these modes and commands. For clarity of explana­
tion, however, the actual programming of the 8259A isn't

covered in this section but in "Programming the 8259A".
Appendix A is provided as a cross reference between
these two sections.

3.1 INTERRUPT VECTORING

Each IR input of the 8259A has an individual interrupt­
vector address in memory associated with it. Designa­
tion of each address depends upon the initial program­
ming of the 8259A. As stated earlier, the interrupt
sequence and addressing of an MCS-80 and MCS-85
system differs from that of an MCS-86 and MCS-88
system. Thus, the 8259A must be initially programmed
in either a MCS-80/85 or MCS-86/88 mode of operation to
insure the correct interrupt vectoring.

MCS·80185™ Mode

When programmed in the MCS-80/85 mode, the 8259A
should only be used within an 8080A or an 8085A
system. In this mode the 8080A/8085A will handle inter­
rupts in the format described in the "MCS-80-8259A or
MCS-85-8259A Overviews."

Upon interrupt request in the MCS-80/85 mode, the
8259A wi II output to the data bus the opcode for a CALL
instruction and the address of the desired routine. This
is in response to a sequence of three INTA pulses
issued by the 8080A/8085A after the 8259A has raised
INT high.

The first INTA pulse to the 8259A enables the CALL
opcode "CDH" onto the data bus. It also resolves IR pri­
orities and effects operation in the cascade mode,
which will be covered later. Contents of the first
interrupt-vector byte are shown in Figure 9A.

During the second and third INTA pulses, the 8259A
conveys a 16-bit interrupt-vector address to the 8080AI
8085A. The interrupt-vector addresses for all eight levels
are selected when initially programming the 8259A.
However, only one address is needed for programming.
Interrupt-vector addresses of IRO-IR7 are automatically
set at equally spaced intervals based on the one pro­
grammed address. Address intervals are user definable
to 4 or 8 bytes apart. If the service routine for a device is
short it may be possible to fit the entire routine within
an 8-byte interval. Usually, though, the service routines
require more than 8 bytes. So, a 4-byte interval is used to
store a Jump (JMP) instruction which directs the aOaOAI
8085A to the appropriate routine. The a-byte interval
maintains compatibility with current 8080A/8085A
Restart (RST) instruction software, while the 4-byte in­
terval is best for a compact jump table. If the 4-byte in­
terval is selected, then the 8259A will automatically
insert bits AO-A4. This leaves A5-A15 to be pro­
grammed by the user. If the 8-byte interval is selected,
the 8259A will automatically insert bits AO-A5. This
leaves only A6-A 15 to be programmed by the user.

The LSB of the interrupt-vector address is placed on the
data bus during the second INTA pulse. Figure 9B
shows the contents of the second interrupt-vector byte
for both 4 and 8-byte intervals.

The MSB of the interrupt-vector address is placed on the
data bus during the third INTA pulse. Contents of the
third interrupt·vector byte is shown in Figure 9C.

A-144

AP-59

CALLCODEi L _' _________ ---.J' I
A. FIRST INTERRUPT VECTOR BYTE, MCsaO/B5 MODE

IR Inl ,=4

D2 0' DO

, °
O----,'........~

"7 A6 A5 _,O'---'---"c:'_..."...j
f--'-+=c---"'A6:........:::A5, __ ~_~_O __ O __ ~

A6 A5 0 1 1 __ ~

_~~ ____ ._ ~_ 0 ~

"'7 A6 A5 1 0 _~

"'7 A6 A5 0 __ .~~

7 ~--;-':-:" .. _o,,'. _0,-,' _'"-,-,' _' _0,,-' _"--:c.' _._OO"--j

"'7 A6

+ +-~i - 1 _::...: ._-::...; ,_. _'-::...~-_'_-::...:'_---"-::...:...j

f-O-' -f-':::": --.C:"---':,'_:: -.-.. -~~~~=-==
~-f-'A::..7~,,---,O~ __ ~O 1 0 0 0

A1 A6 0 0 0 ----
B. SECOND INTERRUPT VECTOR BYTE, MCsaO/B5 MODE

07 01 05 04 D3 02 01 00

I "15 I 1.14 \ "'3 I "12 I All I AID 1 "9 I AS I
C. THIRD INTERRUPT VECTOR BYTE, MCSBO/B5 MODE

Figure 9. SA-C. Interrupt·Vector Bytes for 825SA, MCS 80185 Mode

MCS.86188 ™ Mode

When programmed in the MCS-86/88 mode, the 8259A
should only be used within an MCS-86 or MCS-88
system. In this mode, the 8086/8088 will handle inter­
rupts in the format described earlier in the "8259A-
8086/8088 Overview".

Upon interrupt in the MCS-86/88 mode, the 8259A will
output a single interrupt-vector byte to the data bus.
This is in response to only two INTA pulses issued by
the 8086/8088 after the 8259A has raised INT high.

The first INTA pulse is used only for set-up purposes in­
ternal to-the 8259A. As in the MCS-80/85 mode, this set­
up includes priority resolution and cascade mode oper­
ations which will be covered later. Unlike the MCS-80/85
mode, no CALL opcode is placed on the data bus.

The second INTA pulse is used to enable the single
interrupt-vector byte onto the data bus. The 8086/8088
uses this interrupt-vector byte to select one of 256 inter­
rupt "types" in 8086/8088 memory. Interrupt type selec­
tion for all eight IR levels is made when initially pro­
gramming the 8259A. However, reference to only one in­
terrupt type is needed for programming. The upper 5 bits
of the interrupt vector byte are user definable. The lower
3 bits are automatically inserted by the 8259A depend­
ing upon the IR level.

Contents of the interrupt·vector byte for 8086/8088 type
selection is put on the data bus during the second INTA
pulse and is shown in Figure 10.

IR 07 06 05 4 02 01 DO
7 T7 T6 T5 T4 T3 1 1 1
6 T7 T6 T5 T4 T3 1 1 0
5 T7 T6 T5 T4 T3 1 0 1
4 T7 T6 T5 T4 T3 1 0 0
3 T7 T6 T5 T4 T3 0 1 1
2 T7 T6 T5 T4 T3 0 1 0
1 T7 T6 T5 T4 T3 0 0 1
OT7T6T5T4T3 0 0 0

Figuno 10. Interrupt Vector Byte, MCS ..,..TM Made

3.2 INTERRUPT PRIORITIES

A variety of modes and commands are available for con­
trolling interrupt priorities of the 8259A. All of them are
programmable, that is, they may be changed dynamic­
ally under software control. With these modes and com­
mands, many possibilities are conceivable, giving the
user enough versatility for almost any interrupt con­
trolled application.

Fully Nested Mode

The fully nested mode of operation is a general purpose
priority mode. This mode supports a multilevel-interrupt
structure in which priority order of all eight IR inputs are
arranged from highest to lowest.

Unless otherwise programmed, the fully nested mode is
entered by default upon initialization. At this time, IRO is
assigned the highest priority through IR7 the lowest.
The fully nested mode, however, is not confined to this
IR structure alone. Once past initialization, other IR in­
puts can be assigned highest priority also, keeping the
multilevel-interrupt structure of the fully nested mode.
Figure lIA-C shows some variations of the priority
structures in the fully nested mode.

IR LEVELS IR7 IRs IRS IR4 IR3 IR2 IR1 IRO
PRIORITY 7 6 5 4 3 2 1 0

A

IR LEVELS IR7 IRS IRS IR4 IR3 IR2 IR1 IRO
PRIORITY 4 3 2 1 0 7 6 5

B

I~~I~VR~~~ 11~7 1~6 1~5 1~4 i~3 1~2 1~1 I~O I
C

Figure 11. A-C. Some Variations of Priority Structure in the
Fully Nested Mode

Further explanation of the fully nested mode, in this
section, is linked with information of general 8259A in­
terrupt operations. This is done to ease explanation to
the user in both areas.

In general, when an interrupt is acknowledged, the
highest priority request is determined from the IRR (In­
terrupt Request Register). The interrupt vector is then
placed on the data bus. In addition, the corresponding
bit in the ISR (In-Service Register) is set to designate the
routine in service. This ISR bit remains set until an EOI
(End·Of-lnterrupt) command is issued to the 8259A.
EOI's will be explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all fur­
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor. A
higher priority request, though, can generate an inter­
rupt, thus vectoring program execution to its service
routine. Interrupts are only acknowledged, however, if
the microprocessor has previously executed an "Enable
Interrupts" instruction. This is because the interrupt
request pin on the microprocessor gets disabled auto­
matically after acknowledgement of any interrupt. The
assembly language instructions used to enable inter­
rupts are "EI" for 8080Al8085A and "STI" for 8086/8088.
Interrupts can be disabled by using the instruction "Oi"
for 8080A/ 8085A and "CLI" for 8086/8088. When a
routine is completed a "return" instruction is executed
"RET" for 8080Al8085Aand "IRET" for 8086/8088. '

A-145

AP-59

Figure 12 illustrates the correct usage of interrupt
related instructions and the interaction of interrupt
levels in the fully nested mode.

Assuming the IR priority assignment for the example in
Figure 12 is IRQ the highest through IR7 the lowest. the
sequence is as follows. During the main program, IR3
makes a request. Since interrupts are enabled, the
microprocessor is vectored to the IR~ service routine.
During the IR3 routine, IRI asserts a request. Since IRI
has higher priority than IR3, an interrupt is generated.
However, it is not acknowledged because the micro·
processor disabled interrupts in response to the IR3 in·
terrupt. The IRI interrupt is not acknowledged until the
"Enable Interrupts" instruction is executed. Thus the
IR3 routine has a "protected" section of code over
which no interrupts (except non·maskable) are allowed.
The IHI routine has no such "protected" section since
an "Enable Interrupts" instruction is the first one in its
service routine. Note that in this example the IRI reo
quest must stay high until it is acknowledged. This is
covered in more depth in the "Interrupt Triggering"
section.

IR3
INTERRUPT

IR1
INTER·

RUPT

IR3 SERVICE
ROUTINE

IR1 SERVICE
ROUTINE

Figura 12. Fully Nested Mode Example (MCS 8O/8S™ or MCS 86188™)

What is happening to the ISR register? While in the main
program, no ISR bits are set since there aren't any inter·
rupts in service. When the IR3 interrupt is acknowl­
edged, the ISR3 bit is set. When the IRI interrupt is
acknowledged, both the ISRI and the ISR3 bits are set,
indicating that neither routine is complete. At this time,
only IRQ could generate an interrupt since it is the only
input with a higher priority than those prev.iously in ser·
vice. To terminate the IRI routine, the routine must
inform the 8259A that it is complete by resetting its ISR
bit. It does this by executing an EOI command. A
"return" instruction then transfers execution back to

the IR3 routine. This allows IRQ-IR2 to interrupt the IR3
routine again, since ISR3 is the highest ISR bit set. No
further interrupts occur in the example so the EOI com·
mand resets ISR3 and the "return" instruction causes
the main program to resume at its pre·interrupt location,
ending the example.

A single 8259A is essentially always in the fully nested
mode unless certain programming conditions disturb it.
The following programming conditions can cause the
8259A to go out of the high to low priority structure of
the fully nested mode.

o The automatic EOI mode

o The special mask mode

o A slave with a master not in. the special fully nested
mode

These modes will be covered in more detai I later,
however, they are mentioned now so the user can be
aware of them. As long as these program conditions
aren't inacted, th.e fully nested mode remains undis·
turbed.

End of Interrupt

Upon completion of an interrupt service routine the
8259A needs to be notified so its ISR can be updated.
This is done to keep track of which interrupt levels are in
the process of being serviced and their relative priori·
ties. Three different End·Of·lnterrupt (EOI) formats are
available for the user. These are: the non·specific EOI
command, the specific EOI command, and the auto·
matic EOI Mode. Selection of which EOI to use is depen­
dent upon the interrupt operations the user wishes to
perform.

Non-Specific EOI Command

A non·specific EOI command sent from the microproc·
essor lets the 8259A know when a service routine has
been completed, without specification of its exact inter·
rupt level. The 8259A automatically determines the inter·
rupt level and resets the correct bit in the ISR.

To take advantage of the non·specific EOI the 8259A
must be in a mode of operation in which it can predeter­
mine in·service routine levels. For this reason the non·
specific EOI command should only be used when the
most recent level acknowledged and serviced is always
the highest priority level. When the 8259A receives a
non-specific EOI command, it simply resets the highest
priority ISH bit, thus confirming to the 8259A that the
highest priority routine of the routines in service is
finished.

The main advantage of using the non-specific EOI com·
mand is that IR level specification isn't necessary as in
the "Specific EOI Command", covered shortly.
However, special consideration should be taken when
deciding to use the non·specific EOL Here are two pro·
gram conditions in which it is best not used:

o Using the set priority command within an interrupt
service routi ne.

o Using a special mask mode.

These conditions are covered in more detail in their own
sections, but are listed here for the users reference.

A-146

AP-59

Specific EO' Command

A specific EOI command sent from the microprocessor
lets the 8259A know when a service routine of a particu­
lar interrupt level is completed_ Unlike a non-specific
EOI command, which automatically resets the highest
priority ISR bit, a specific EOI command specifies an
exact ISR bit to be reset. One of the eight IR levels of the
8259A can be specified in the command_

The reason the specific EOI command is needed, is to
reset the ISR bit of a completed service routine when­
ever the 8259A isn't able to automatically determine it.
An example of this type of situation might be if the
priorities of the interrupt levels were changed during an
interrupt routine ("Specific Rotation")_ In this case, if
any other routines were in service at the same time, a
non-specific EOI might reset the wrong ISR bit. Thus the
specific EOI command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
priorities may exist. The specific EOI command can be
used in all conditions of 8259A operation, including
those that prohibit non-specific EOI command usage_

Automatic EO' Mode

When programmed in the automatic EOI mode, the
microprocessor no longer needs to issue a command to
notify the 8259A it has completed an interrupt routine_
The 8259A accomplishes this by performing a non­
specific EOI automatically at the trailing edge of the last
INTA pulse (third pulse in MCS-80/85, second in
MCS-86).

The obvious advantage of the automatic EOI mode over
the other EOI command is no command has to be
issued. In general, this simplifies programming and
lowers code requirements within interrupt routines.

However, special consideration should be taken when
deciding to use the automatic EOI mode because it
disturbs the fully nested mode. In the automatic EOI
mode the ISR bit of a routine in service is reset right
after it's acknowledged, thus leaving no designation in
the ISR that a sevice routine is being executed. If any in­
terrupt request occurs during this time (and interrupts
are enabled) it will get serviced regardless of its priority,
low or high. The problem of "over nesting" may also
happen in this situation. "Over nesting" is when an IR
input keeps interrupting its own routine, resulting in un­
necessary stack pushes which could fill the stack in a
worst case condition. This is not usually a desired form
of operation!

So what good is the automatic EOI mode with problems
like those just covered? Well, again, like the other EOls,
selection is dependent upon the application. If inter­
rupts are controlled at a predetermined rate, so as not to
cause the problems mentioned above, the automatic
EOI mode works perfect just the way it is. However, if in­
terrupts happen sporadically at an indeterminate rate,
the automatic EOI mode should only be used under the
following guideline:

• When using the automatic EOI mode with an inde­
terminate interrupt rate, the microprocessor should
keep its interrupt request input disabled during
execution of service routines.

By doing this, higher priority interrupt levels will be ser­
viced only after the completion of a routine in service.
This guideline restores the fully nested structure in
regards to the IRR; however, a routine in-service can't be
interrupted.

Automatic Rotation - Equal Priority

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority,
such as communications channels. The concept is that
once a peripheral is serviced, all other equal priority
peripherals should be given a chance to be serviced
before the original peripheral is serviced again. This is
accomplished by automatically assigning a peripheral
the lowest priority after being serviced Thus, in worst
case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the non­
specific EOI, "rotate on non-specific EOI command".
The other is used with the automatic EOI mode, "rotate
in automatic EOI mode".

Rotate on Non-Specific EO' Command

When the rotate on non-specific EOI command is
issued, the highest ISR bit is reset as in a normal non­
specific EOI command. After it's reset though, the cor­
responding IR level is assigned lowest priority. Other IR
priorities rotate to conform to the fully nested mode
based on the newly assigned low priority

Figures 13A and B show how the rotate on non-specific
EOI command effects the interrupt priorities. Let's
assume the IR priorities were assigned with IRO the
highest and IR7 the lowest, as in 13A. IR6 and IR4 are
already in service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine
being executed. During the IR4 routine a rotate on non­
specific EOI command is executed. When this happens,
bit 4 in the ISR is reset. IR4 then becomes the lowest
priority and IR5 becomes the highest as in 13B.

157 156 ISS 154 153 152 151 ISO
ISR STATUS I 0 1 0 1 0 0 0 01 BEFORE

A PRIORITY, 7 6 5 4 3 2 1 0 J COMMAND

1
LOWEST PRIORITY HIGHEST PRIORITY

157 156 ISS 154 153 152 151 ISO
ISR STATUS I 0 1 0 0 0 0 0 0 I AFTER

PRIORITY 2 1 0 7 6 5 4 3 COMMAND

I IL-_--,
~ I

HIGHEST PRIORITY LOWEST PRIORITY

Figure 13. A-B. Rolale on Non·specific EOI Command Example

Rotate in Automatic EO' Mode

The rotate in automatic EOI mode works much like the
rotate on non-specific EOI command. The main differ­
ence is that priority rotation is done automatically after

A-147

AP-59

the last INTA pulse of an interrupt request. To enter or
exit this mode a rotate-in-automatic-EOI set command
and rotate-in-automatic-EOI clear command is provided.
After that, no commands are needed as with the normal
automatic EOI mode. However, it must be remembered,
when using any form of the automatic EOI mode, spe­
cial consideration should be taken. Thus, the guideline
for the automatic EOI mode also stands for the rotate in
automatic EOI mode.

Specific Rotation - Specific Priority

Specific rotation gives the user versatile capabilities in
interrupt controlled operations. It serves in those ap­
plications in which a specific device's interrupt priority
must be altered. As opposed to automatic rotation
which automatically sets priorities, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com­
mands are available to the user, the "set priority com­
mand" and the "rotate on specific EOI command."

Set Priority Command

The set priority command allows the programmer to
assign an IR level the lowest priority. All other interrupt
levels will conform to the fully nested mode based on
the newly assigned low priority.

An example of how the set priority command works is
shown in Figures 14A and 14B. These figures show the
status of the ISR and the relative priorities of the inter­
rupt levels before and after the set priority command.
Two interrupt routines are shown to be in service in
Figure 14A. Since IR2 is the highest priority, it is
necessarily the routine being executed. During the IR2
routine, priorities are altered so that IR5 is the highest.
This is done simply by issuing the set priority command
to the B259A. In this case, the command specifies IR4 as
being the lowest priority. The result of this set priority
command is shown in Figure 14B. Even though IR7 now
has higher priority than IR2, it won't be acknowledged
until the IR2 routine is finished (via EOI). This is because
priorities are only resolved upon an interrupt request or
an interrupt acknowledge sequence. If a higher priority
request occurs during the IR2 routine, then priorities are
resolved and the highest will be acknowledged.

157 156 ISS 154 153 152 151 ISO
ISR STATUS I 1 0 0 0 0 1 0 0 I BEFORE

A PRIORITY 7 6 5 4 3 2 1 a COMMAND

1 1
LOWEST PRIORITY HIGHEST PRIORITY

157 156 ISS 154 153 152 151 ISO
ISR STATUS I 1 0 0 0 0 1 0 0 I AFTER

B PRIORITY 2 1 0 7 6 5 4 JJ COMMAND

II L... __ r--- I
HIGHEST PRIORITY LOWEST PRIORITY

Figure 14. A-B. Set Priority Command Example

When completing a service routine in which the set
priority command is used, the correct EOI must be
issued. The non-specific EOI command shouldn't be
used in the same routine as a set priority command.
This is because the non-specific EOI command resets
the highest ISR bit, which, when using the set priority
command, is not always the most recent routine in ser­
vice. The automatic EOI mode, on the other hand, can be
used with the set priority command. This is because it
c1utomaticallyperforms a non-specific EOI before the
set priority command can be issued. The specific EOI
command is the best bet in most cases when using the
set priority command within a routine. By resetting the
specific ISR bit of a routine being completed, confusion
is eliminated.

Rotate on Specific EOI Command

The rotate on specific EOI command is literally a com­
bination of the set priority command and the specific
EOI command. Like the set priority command, a speci­
fied IR level is assigned lowest priority. Like the specific
EOI command, a specified level will be reset in the ISR.
Thus the rotate on specific EOI command accomplishes
both tasks in only one command.

If it is not necessary to change IR priorities prior to the
end of an interrupt routine, then this command is advan­
tageous. For an EOI command must be executed any­
way (unless in the automatic EOI mode), so why not do
both at the same time?

Interrupt Masking

Disabling or enabling interrupts can be done by other
means than just controlling the microprocessor's inter­
rupt request pin. The B259A has an IMR (Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individual IR masking.
The IMR is an B-bit register, bits 0-7 directly correspond
to IRO-IRi. Any IR input can be masked by writing to the
IMR and setting the appropriate bit. Likewise, any IR in­
put can be enabled by clearing the correct IMR bit.

There are various uses for masking off individual IR in­
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabling higher priority interrupts for
a portion of a lower priority service routine. The possi'
bilities are many.

When an interrupt occurs while its IMR bit is set, it isn't
necessarily forgotten. For, as stated earlier, the IMR
acts only on the output of the IRR. Even with an IR input
masked it is still possible to set the IRR. Thus, when
resetting an IMR, if its IRR bit is set it will then generate
an interrupt. This is providing, of course, that other
priority factors are taken into consideration and the IR
request remains active. If the IR request is removed
before the IMR is reset, no interrupt will be acknowl­
edged.

Special Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routine in service. Or, in other
words, allow lower priority devices to generate inter­
rupts. However, in the fully nested mode, alliR levels of

A-148

AP-59

priority below the routine in service are inhibited. So
what can be done to enable them?

Well, one method could be using an EOI command
before the actual completion of a routine in service. But
beware, doing this may cause an "over nesting" prob­
lem, similar to in the automatic EOI mode. In addition,
resetting an ISR bit is irreversible by software control,
so lower priority IR levels could only be later disabled by
setting the IMR.

A much better solution is the special mask mode. Work­
ing in conjunction with the IMR, the special mask mode
enables interrupts from all levels except the level in ser­
vice. This is done by masking the level that is in service
and then issuing the special mask mode command.
Once the special mask mode is set, it remains in effect
until reset.

Figure 15 shows how to enable lower priority interrupts
by using the Special Mask Mode (SMM). Assume that
IRO has highest priority when the main program is inter­
rupted by IR4. In the IR4 service routine an enable inter­
rupt instruction is executed. This only allows higher
priority interrupt requests to interrupt IR4 in the normal
fully nested mode. Further in the IR4 routine, bit 4 of the
IMR is masked and the special mask mode is entered.
Priority operation is no longer in the fully nested mode.
All interrupt levels are enabled except for IR4. To leave
the special mask mode, the sequence is executed in
reverse.

MAIN PROGRAM

EI OR STI

IR4 ___

IR4 SERVICE
ROUTINE

EI OR STI

MASK IR4

SET SMM

RESET SMM

EOI

IRO-3 ENABLED
IR4-7 DISABLED

IRO-3, 5-7 ENABLED
IR4 DISABLED

IRO-3 ENABLED
IR4-7 DISABLED

Figure 15. Special Mask Made Example (MCS 8O/8S™or MCS 8e/88™)

Precautions must be taken when exiting an interrupt
service routine which has used the special mask· mode.
A non-specific EOI command can't be used when in the
special mask mode. This is because a non-specific
won't clear an ISR bit of an interrupt which is masked
when in the special mask mode. In fact, the bit will ap­
pear invisible. If the special mask mode is cleared
before an EOI command is issued a non-specific EOI
command can be used. This could be the case in the ex­
ample shown in Figure 15, but, to avoid any confusion
it's best to use the specific EOI whenever using the
special mask mode.

It must be remembered that the special mask mode ap­
plies to all masked levels when set. Take, for instance,
IR1 interrupting IR4 in the previous example. If this hap­
pened while in the special mask mode, and the IR1
routine masked itself, all interrupts would be enabled
except IR1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter­
rupt request: a level sensitive input or an edge sensitive
input. The 8259A gives the user the capability for either
method with the edge triggered mode and the level trig­
gered mode. Selection of one of these interrupt trigger­
ing methods is done during the programmed initializa­
tion of the 8259A.

Level Triggered Mode

When in the level triggered mode the 8259A will recog­
nize any active (high) level on an IR input as an interrupt
request. If the IR input remains active after an EOI com­
mand has been issued (resetting its ISR bit), another in­
terrupt will be generated. This is providing of course, the
processor INT pin is enabled. Unless repetitious inter­
rupt generation is desired, the IR input must be brought
to an inactive state before an EOI command is issued in
its service routine. However, it must not go inactive so
soon that it disobeys the necessary timing require­
ments shown in Figure 16. Note that the request on the
IR input must remain until after the falling edge of the
first INTA pulse. If on any IR input, the request goes
inactive before the first INTA pulse, the 8259A will
respond as if IR7 was active. In any design in which
there's a possibility of this happening, the IR7 default
feature can be used as a safeguard. This can be accom­
plished by using the IR7 routine as a "clean-up routine"
which might recheck the 8259A status or merely return
program execution to its pre-interrupt location.

Depending upon the particular design and application,
the level triggered mode has a number of uses. For one,
it provides for repetitious interrupt generation. This is
useful in cases when a service routine needs to be con­
tinually executed until the interrupt request goes inac­
tive. Another pos$ible advantage of the level triggered
mode is it allows for "wire-OR'ed" interrupt requests.
That is, a number of interrupt requests using the same
IR input. This can't be done in the edge triggered mode,
for if a device makes an interrupt request while the IR in­
put is high (from another request), its transition will be
"shadowed". Thus the 8259A won't recognize further in­
terrupt requests because its IR input is already high.
Note that when a "wire-OR'ed" scheme is used, the ac-

A-149

AP-59

IR~
\I.....--e.:::-o _______________ -. --_\->--00---'1

INT----+-J

INTA-----r---------~

LATCH'
ARMED

EARLIEST IR
CAN BE REMOVED

808018085

LATCH'
'EDGE TRIGGERED MODE ONLY ARMED

Figure 16. IR Triggering Timing Requirements

tual requesting device has to be determined by the soft­
ware in the service routine.

Caution should be taken when using the automatic EOI
mode and the level triggered mode together. Since in
the automatic EOI mode an EOI is automatically per­
formed at the end of the interrupt acknowledge se­
quence, if the processor enables interrupts while an IR
input is still high, an interrupt will occur immediately. To
avoid this situation interrupts should be kept disabled
until the end of the service routine or until the IR input
returns low.

Edge Triggered Mode

When in the edge triggered mode, the 8259A will only
recognize interrupts if generated by an inactive (low) to
active (high) transition on an IR input. The edge trig·
gered mode incorporates an edge lockout method of
operation. This means that after the riSing edge of an
interrupt request and the acknowledgement of the re­
quest, the positive level of the IR input won'lgenerate
further interrupts on this level. The user needn't worry
about quickly removing the request after acknowledge­
ment in fear of generating further interrupts as might be
the case in the level triggered mode. Before another in­
terrupt can be generated the IR input must return to the
inactive state.

Referring back to Figure 16, the timing requirements for
interrupt triggering. is shown. Like the level triggered
mode, in the edge triggered mode the request on the IR
input must remain active until after the falling edge of
the first INTA pulse for that particular interrupt. Unlike
the level triggered mode, though, after the interrupt
request is acknowledged its IRR latch is disarmed. Only
after the IR input goes inactive will the IRR latch again
become armed, making it ready to receive another inter­
rupt request (in the level triggered mode, the IRR latch is
always armed). Because of the way the edge triggered
mode functions, it is best to use a positive level with a
negative pulse to trigger the IR requests. With this type
of input, the trailing edge of the pulse causes the inter­
rupt and the maintained positive level meets the neces­
sary timing requirements (remaining high until after the
interrupt acknowledge occurs). Note that the IR7 default

feature mentioned in the "level triggered mode" section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge triggered mode has various uses. Because of
its edge lockout operation, it is best used in those
applications where repetitious interrupt generation isn't
desired. It is also very useful in systems where the inter­
rupt request is a pulse (this should be in the form of a
negative pulse to the 8259A). Another possible advan­
tage is that it can be used with the automatic EOI mode
without the cautions in the level triggered mode. Over­
all, in most cases, the edge triggered mode simplifies
operation for the user, since the duration of the interrupt
request at a positive level is not usually a factor.

3.4 INTERRUPT STATUS

By means of software control, the user can interrogate
the status of the 8259A. This allows the reading of the
internal interrupt registers, which may prove useful for
interrupt control during service routines. It also pro­
vides for a modified status poll method of device moni­
toring, by using the poll command. This makes the
status of the internal IR inputs available to the user via
software control. The poll command offers an alterna­
tive to the interrupt vector method, especially for those
cases when more than 64 interrupts are needed.

Reading Interrupt Registers

The contents of each S-bit interrupt register, IRR, ISR,
and IMR, can be read to update the user's program on
the present status of the 8259A. This can be a versatile
tool in the decision making process of a service routine,
giving the user more control over interrupt operations.
Before delving into the actual process of reading the
registers, let's briefly review their general descriptions:

IRR (Interrupt Specifies all interrupt levels re-
Request Register) questing service.

ISR (In-Service Specifies all interrupt levels
Register) which are being serviced.

IMR (Interrupt Specifies all interrupt levels,that
Mask Register) are masked.

A-ISO

AP-59

To read the contents of the IRR or ISR, the user must
first issue the appropriate read register command (read
IRR or read ISR) to the 8259A. Then by applying a RD
pulse to the 8259A (an INput instruction), the contents
of the desired register can be acquired. There is no need
to issue a read register command every time the IRR or
ISR is to be read. Once a read register command is
received by the 8259A, it "remembers" which register
has been selected. Thus, all that is necessary to read
the contents of the same register more than once is the
RD pulse and the correct addressing (AO = 0, explained
in "Programming thll 8259A"). Upon initialization, the
selection of registers defaults to the IRR. Some caution
should be taken when using the read register command
in a system that supports several levels of interrupts. If
the higher priority routine causes an interrupt between
the read register command and the actual input of the
register contents, there's no guarantee that the same
register will be selected when it returns. Thus it is best
in such cases to disable interrupts during the operation.

Reading the contents of the IMR is different than read·
ing the IRR or ISR. A read register command is not
necessary when reading the IMR. This is because the
IMR can be addressed directly for both reading and
writing. Thus all that the 8259A requires for reading the
IMR is a RD pulse and the correct addressing (AO= 1,
explained in "Programming the 8259A").

Poll Command

As mentioned towards the beginning of this application
note, there are two methods of servicing peripherals:
status polling and interrupt servicing. For most applica·
tions the interrupt service method is best. This is
because it requires the least amount of CPU time, thus
increasing system throughput. However, for certain ap­
plications, the status poll method may be desirable.

For this reason, the 8259A supports polling operations
with the poll command. As opposed to the conventional
method of polling, the poll command offers improved
device servicing and increased throughput. Rather than
having the processor poll each peripheral in ,order to
find the actual device requiring service, the processor
polls the 8259A. This allows the use of all the previously
mentioned priority modes and commands. Additionally,
both polled and interrupt methods can be used within
the same program.

To use the poll command the processor must first have
its interrupt request pin disabled. Once the poll com­
mand is issued, the 8259A will treat the next (CS quali­
fied) RD pulse issued to it (an INput instruction) as an in­
terrupt acknowledge. It will then set the appropriate bit
in the ISR, if there was an interrupt request, and enable a
special word onto the data bus. This word shows
whether an interrupt request has occurred and the
highest priority level requesting service. Figure 17
shows the contents of the "poll word" which is read by
the processor. Bits WO-W2 convey the binary code of
the highest priority level requesting service. Bit I desig­
nates whether or not an interrupt request is present. If
an interrupt request is present, bit I will equal 1. If there
isn't an interrupt request at all, bit I will equal 0 and bits
WO-W2 will beset to ones. Service to the requesting
device is achieved by software decoding the poll word
and branching to the appropriate service routine. Each

time the 8259A is to be polled, the poll command must
be written before reading the poll word.

The poll command is useful in various situations. For in­
stance, it's a good alternative when memory is very
limited, because an interrupt-vector table isn't needed.
Another use for the poll command is when more than 64
interrupt levels are needed (64 is the limit when cascad­
ing 8259's). The only limit of interrupts using the poll
command is the number of 8259's that can be addressed
in a particular system. Still another application of the
poll command might be when the INT or INTA signals
are not available. This might be the case in a large
system where a processor on one card needs to use an
8259A on a different card. In this instance, the poll com­
mand is the only way to monitor the interrupt devices
and still take advantage of the 8259A's prioritizing
features. For those cases when the 8259A is using the
poll command only and not the interrupt method, each
8259A must receive an initialization sequence (interrupt
vector). This must be done even though the interrupt
vector features of the 8259A are not used. In this case,
the interrupt vector specified in the initialization
sequence could be a "fake".

~
- - - - W2W1WO

WO·W2 = BINARY CODE OF HIGHEST
PRIORITY LEVEL REQUESTING SERVICE

1=1 IF AN INTERRUpT OCCURRED

Figure 17. Poll Word

3.5 INTERRUPT CASCADING

As mentioned earlier, more than one 8259A can be used
to expand the priority interrupt scheme to up to 64 levels
without additional hardware. This method for expanded
interrupt capability is called "cascading". The 8259A
supports cascading operations with the cascade mode.
Additionally, the special fully nested mode and the buf­
fered mode are available for increased flexibility when
cascading 8259A's in certain applications.

Cascade Mode

When programmed in the cascade mode, basic opera­
tion consists of one 8259A acting as a master to the
others which are serving as slaves. Figure 18 shows a
system containing a master and two slaves, providing a
total of 22 interrupt levels.

A specific hardware set-up is required to establish
operation in the cascade mode. With Figure 18 as a ref­
erence, note that the master is designated by a high on
the SP/EN pin, while the SP/EN pins of the slaves are
grounded (this can also be done by software, see buf­
fered mode). Additionally, the INT output pin of each
slave is connected to an IR input pin of the master. The
CASO-2 pins for all 8259A's are paralleled. These pins
act as outputs when the 8259A is a master and as inputs
for the slaves. Serving as a private 8259A bus, they con­
trol which slave has control of the system bus for inter­
rupt vectoring operation with the processor. All other
pins are connected as in normal operation (each 8259A
receives an INTA pulse).

A-151

AP-59

ADDRESS BUS 116)

\ CONTROL BUS

INT REa

\ DATA BUS 18~

-- -- - - --- - -
-- - - -- -- - -
-- - -- --- - - r------

~
cs Ao 00·7 INTA INT cs Ao 00·7 INTA INT cs A, 00-7 rNTA INT

CAsa !- CAsa CAsa

8259A CAS 1 1- 8259A
CAS 1 CAS 1

8259A

SLAVE A SLAVE B MASTER

CAS2 1- CAS2 CAS2

SPlEiiJ7 • 5 4 3 2 1 0 SPi'El'J 7 • 5 4 3 2 1 0 SPlffi M7 M6 M5 M4 M3 M2 Ml MO

II 1 1 1 1 1 1 1 GID 1 1 1 1 1 1 1 1 I L L 1.1 1 1. ! 1 1
7 • 5 4 3 , 1 0 7 6 5 4 3 , 1 0 5 4 , 0

!
1

I

INTERRUPT REQUESTS

Figure 18. Cascaded 8259A'S 22 Interrupl Levels

Besides hardware set-up requirements, all 8259A's must
be software programmed to work in the cascade mode.
Programming the cascade mode is done during the in­
itialization of each 8259A. The 8259A that is selected as
master must receive specification during its initializa­
tion as to which of its IR inputs are connected to a
slave's INT pin. Each slave 8259A, on the other hand,
must be designated during its initialization with an ID (0
through 7) corresponding to which of the master's IR in­
puts its INT pin is connected to. This is all necessary so
the CASO-2 pins of the masters will be able to address
each individual slave. Note that as in normal operation,
each 8259A must also be initialized to give its IR inputs
a unique interrupt vector. More detail on the necessary
programming of the cascade mode is explained in "Pro·
gramming the 8259A".

Now, with background information on both hardware
and software for the cascade mode, let's go over the
sequence of events that occur during a valid interrupt
request from a slave. Suppose a slave IR input has
received an interrupt request. Assuming this request is
higher priority than other requests and in-service levels
on the slave, the slave's INT pin is driven high. This
signals the master of the request by causing an inter­
rupt request on a designated IR pin of the master. Again,
assuming that this request to the master is higher priori­
ty than other master requests and in-service levels
(pOSSibly from other slaves), the master's INT pin is
pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the
processor the same as the non-cascading interrupt
acknowledge sequence; however, it's different among
the 8259A's. The first INTA pulse is used by all the
8259A's for internal set-up purposes and, if in the
8080/8085 mode, the master will place the CALL opcode
on the data bus. The first INTA pulse also Signals the
master to place the requesting slave's ID code on the
CAS lines. This turns control over to the slave for the
rest of the interrupt acknowledge sequence, placing the

A-152

appropriate pre-programmed interrupt vector on the
data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the cor­
responding ISR bit of both the master and the slave get
set. This means two EOI commands must be issued (if
not in the automatic EOI mode), one for the master and
one for the slave.

Special consideration should be taken when mixed
interrupt requests are assigned to a master 8259A; that
is, when some of the master's IR inputs are used for
slave interrupt requests and some are used for individ­
ual interrupt requests. In this type of structure, the
master's IRO must not be used for a slave. This is
because when an IR input that isn't initialized as a slave
receives an interrupt request, the CASO-21ines won't be
activated, thus staying in the default condition address­
ing for IRO (slave IRO). If a slave is connected to the
master's IRO when a non-slave interrupt occurs on
another master IR input, erroneous conditions may
result. Thus IRO should be the last choice when assign­
ing slaves to IR inputs.

Special Fully Nested Mode

Depending on the application, changes in the nested
structure of the cascade mode may be desired. This is
because the nested structure of a slave 8259A differs
from that of the normal fully nested mode. In the cas­
cade mode, if a slave receives a higher priority interrupt
request than one which is in service (through the same
slave), it won't be recognized by the master. This is
because the master's ISR bit is set, ignoring all requests
of equal or lower priority. Thus, in this case, the higher
priority slave interrupt won't be serviced until after the
master's ISR bit is reset by an EOI command. This is
most likely after the completion of the lower priority
routine.

If the user wishes to have a truly fully nested structure
within a slave 8259A, the special fully nested mode
should be used. The special fully nested mode is pro-

AP-59

grammed in the master only. This is done during the
master's initialization. In this mode the master will
ignore only those interrupt requests of lower priority
than the set ISR bit and will respond to all requests of
equal or higher priority. Thus if a slave receives a higher
priority request than one in service, it will be recognized.
To insure proper interrupt operation when using the
special fully nested mode, the software must determine
if any other slave interrupts are still in service before
issuing an EOI command to the master. This is done by
resetting the appropriate slave ISR bit with an EOI and
then reading its ISA. If the ISR contains all zeros, there
aren't any other interrupts from the slave in service and
an EOI command can be sent to the master. If the ISR
isn't all zeros, an EOI command shouldn't be sent to the
master. Clearing the master's ISR bit with an EOI com·
mand while there are still slave interrupts in service
would allow lower priority interrupts to be recognized at
the master. An example of this process is shown in the
second application in the "Applications Examples" sec·
tion.

Buffered Mode

The buffered mode is useful in large systems where buf·
fering is required on the data bus. Although not limited
to only 8259A cascading, it's most pertinent in this use.
In the buffered mode, whenever the 8259A's data bus
output is enabled, its SP/EN pin will go low. This signal
can be used to enable data transfer through a buffer
transceiver in the required direction.

Figure 19 shows a conceptual diagram of three 8259A's
in cascade, each slave is controlling an individual 8286
8·bit bidirectional bus driver by means of the buffered
mode. Note the pull·up on the SP/EN. It is used to
enable data transfer to the 8259A for its initial program·
mingo When data transfer is to go from the 8259A to the
processor, SP/EN will go low; otherwise, it will be high.

A question should arise, however, from the fact that the
SP/EN pin is used to designate a master from a slave;

II)

" "'
+5V e

1K
c

DO_7

SLAVE
8259A

how can it be used for both master·slave selection and
buffer control? The answer to this is the provision for
software programmable master·slave selection when in
the buffer mode. The buffered mode is selected during
each 8259A's initialization. At the same time, the user
can assign each individual 8259A as a master or slave
(see "Programming the 8259A").

4. PROGRAMMING THE 8259A

Programming the 8259A is accomplished by using two
types of command words: Initialization Command
Words (ICWs) and Operational Command Words
(OCWs). All the modes and commands explained in the
previous section, "Operation of the 8259A", are pro·
grammable using the ICWs and OCWs (see Appendix A
for cross reference). The ICWs are issued from the proc·
essor in a sequential format and are used to set·up the
8259A in an initial state of operation. The OCWs are
issued as needed to vary and control 8259A operation.

Both ICWs and OCWs are sent by the processor to the
8259A via the data bus (8259A CS = 0, WR = 0). The
8259A distinguishes between the different ICWs and
OCWs by the state of its AO pin (controlled by processor
addressing), the sequence they're issued in (lCWs only),
and some dedicated bits among the ICWs and OCWs.
Those bits which are dedicated are indicated so by fixed
values (0 or 1) in the corresponding ICW or OCW pro·
gramming formats which are covered shortly. Note,
when issuing either ICWs or OCWs, the interrupt
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (ICWs)

Before normal operation can begin, each 8259A in a
system must be initialized by a sequence of two to four
programming bytes called ICWs (Initialization Com·
mand Words). The ICWs are used to set·up the neces·
sary conditions and modes for proper 8259A operation.

DTIR

DEN

INT INTR

Figure 19. Cascade-Bullered Mode Example

A-IS3

Ap·59

Figure 20 shows the initialization flow of "the 8259A.
Both ICW1 and ICW2 must be issued for any form of
8259A operation. However, ICW3 and ICW4 are used
only if designated so in ICW1. Determining the neces·
sity and use of each ICW is covered shortly in individual
groupings. Note that, Ohce intialized, if any program­
ming changes within the ICWs are to be made, the entire
ICW sequence must be reprogrammed, not just an indi­
viduallCW.

Certain internal set-up conditions occur automatically
within the 8259A after the first ICW has been issued.
These are:

A. Sequencer logic is set to accept the remain'ng ICWs
as designated in ICW1.

B. The ISR (In-Service Register) and IMR (Interrupt Mask
Register) are both cleared.

C. The special mask mode is reset.

D. The rotate in automatic EOI mode flip-flop is cleared.

E. The IRR (Interrupt Request Register) is selected for
the read register command.

F. If the IC4 bit equals 0 in ICW1, all functions in ICW4
are cleared; 8080/8085 mode is selected by default.

G. The fully nested mode is entered with an initial prior·
ity assignment of IRO highest through IR7 lowest.

H. The edge" sense latch of each IR priority cell is
cleared, thus requiring a low to high transition to
generate an interrupt (edge triggered mode effected
only).

NO (SNGL=1)

NO (IC4=O)

Figura 20. Initialization Flow

The ICW programming format, Figure 21, shows bit
designation and a short definition of each ICW. With the
ICW format as reference, the functions of each ICW will
now be explained individually.

ICWI

1 . leW4 NEEDED
0" NO leW4 NEEDED

1 =SINGLE
o ~ CASCADE MODE

CALL INTERVAL
1 = INTERVAL OF 4
0= INTERVAL OF 8

1 = LEVEL TRIGQERED INPUT
0" EDGE TRIGGERED INPUT

A15 AS Of INTERRUPT VECTOR

'---'-_-'---''-...J.._-'--'_--'-_-! ~~D~~S~:~~~:~·~~~~~~~E

ICWJ IMASTER DEVICE)

8I§. x
I 0 ,- .,

II'IICSSG88MOOEI

.. 3"!j 6 7

010

001100

00001

NOIE 1 SLAVE 10 IS lUUAL TO Hl[COfllll SPONlJINti MASHIlIH INPUI
NOTE ;I X INUICA If S ··DDN'r CARl"

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A
DATA SHEETS. THIS IS DONE TO BmER CLARIFY AND EXPLAIN THE PROGRAM·
MING OF THE 82SSA, THE OPERATIONAL RESULTS REMAIN THE SAME.

Figura 21. Initialization Command Words (ICWS) Programming Format

A-154

AP-59

ICW1 and ICW2

Issuing ICW1 and ICW2 is the minimum amount of pro·
gramming needed for any type of 8259A operation. The
majority of bits within these two ICWs are used to desig·
nate the interrupt vector starting address. The remain·
ing bits serve various purposes. Description of the ICW1
and ICW2 bits is as follows:

IC4: The IC4 bit is used to designate to the 8259A
whether or not ICW4 will be issued. If any of
the ICW4 operations are to be used, ICW4
must equal 1. If they aren't used, then ICW4
needn't be issued and IC4 can equal O. Note
that if IC4 = 0, the 8259A will assume operation
in the MCS·80/85 mode.

SNGL: The SNGL bit is used to designate whether or
not the 8259A is to be used alone or in the cas·
cade mode. If the cascade mode is desired,
SNGL must equal O. In doing this, the 8259A
will accept ICW3 for further cascade mode pro·
gramming. If the 8259A is to be used as the
single 8259A within a system, the SNGL bit
must equal 1; ICW3 won't be accepted.

ADI: The ADI bit is used to specify the address in·
terval for the MCS·80/85 mode. If a 4·byte ad·
dress interval is to be used, ADI must equal 1.
For an 8·byte address interval, ADI must equal
O. The state of ADI is ignored when the 8259A
is in the MCS·86/88 mode.

LTIM: The L TIM bit is used to select between the two
I R input triggering modes. If L TIM = 1, the level
triggered mode is selected. If L TIM = 0, the
edge triggered mode is selected.

A5-A15: The A5-A15 bits are used to select the inter·
rupt vector address when in the MCS·80/85
mode. There are two programming formats
that can be used to do this. Which one is im·
plemented depends upon the selected address
interval (ADI). If ADI is set for the 4·byte inter·
val, then the 8259A will automatically insert
AO-A4 (AO, A1=0 and A2, A3, A4=IRO-7).
Thus A5-A 15 must be user selected by pro·
gramming the A5-A15 bits with the desired ad·
dress. If ADI is set for the 8·byte interval, then
AO-A5 are automatically inserted (AO, A1,
A2=0 and A3, A4, A5=IRO-7). This leaves
A6-A15 to be selected by programming the
A6-A15 bits with the desired address. The
state of bit 5 is ignored in the latter format.

T3-T7: The T3-T7 bits are used to select the interrupt
type when the MCS·86/88 mode is used. The
programming of T3-T7 selects the upper 5
bits. The lower 3 bits are automatically in·
serted, corresponding to the IR level causing
the interrupt. The state of bits A5-A10 will be
ignored when in the MCS-86/88 mode. Estab·
lishing the actual memory address of the inter·
rupt is shown in Figure 22.

1,,1,,1,,1,.1,,1
I I

_UPPER 5 BITS OF 8086/8088
INTERRUPT TYPE (USER PROGRAMMED)

I I
I I

I ~ - ~~~~~~~~gAI~L~~~~'eRTED BY 8259A)
I I
I I
I I
IT71 161151 T41 T31 T21 T, I Tol - COMPLETE 8088J8088 INTERRUPT TYPE

I I
r----l ,_-1

10 ! 0 I 0 I 0 I T71 161 151 T4' T31 T21 TIl Tol 0 I 0 I _~~~~~Jp~DTDy~~S(~~:E8~!~J8088

Figure 22. Establishing Memory Address of 8086/8088 Interrupt Type

ICW3

The 8259A will only accept ICW3 if programmed in the
cascade mode (ICW1, SNGL = 0). ICW3 is used for
specific programming within the cascade mode. Bit
definition of ICW3 differs depending on whether the
8259A is a master or a slave. Definition of the ICW3 bits
is as follows:

SO-7
(Master):

100-102
(Slave):

ICW4

If the 8259A is a master (either when the
SP/EN pin is tied high or in the buffered
mode when MIS = 1 in ICW4), ICW3 bit defi·
nition is SO-7, corresponding to "slave 0-7".
These bits are used to establish which IR in·
puts have slaves connected to them. A 1
deSignates a slave, a a no slave. For exam·
pie, if a slave was connected to IR3, the S3
bit should be set to a 1. (SO) should be last
choice for slave designation.

If the 8259A is a slave (either when the SP/EN
pin is low or in the buffered mode when
MIS = a in ICW4), ICW3 bit definition is used
to establish its individual identity. The 10
code of a particular slave must correspond
to the number of the masters IR input it is
connected to. For example, if a slave was
connected to IR6 of the master, the slaves
100-2 bits should be set to 100 = 0, 101 = 1,
and 102 = 1.

The 8259A will only accept ICW4 if it was selected in
ICW1 (bit IC4= 1). Various modes are offered by using
ICW4. Bit definition of ICW4 is as follows:

,..PM: The ,..PM bit allows for selection of either the
MCS-80/85 or MCS·86/88 mode. If set as a 1 the
MCS·86/88 mode is selected, if a 0, the
MCS-80/85 mode is selected.

AEOI: The AEOI bit is used to select the automatic
end of interrupt mode. If AEOI = 1, the
automatic end of interrupt mode is selected. If
AEOI = 0, it isn't selected; thus an EOI com·
mand must be used during a service routine.

MIS: The MIS bit is used in conjunction with the buf·
fered mode. If in the buffered mode, MIS
defines whether the 8259A is a master or a
slave. When MIS is set to a 1, the 8259A
operates as the master; when MIS is 0, it
operates as a slave. If not programmed in the
buffered mode, the state of the MIS bit is
ignored.

A-I55

AP-59

BUF: The BUF bit is used to designate operation in
the buffered mode, thus controlling the use of
the SP/EN pin. If BUF is set to a 1, the buffered
mode is programmed and SP/EN is used as a
transceiver enable output. If BUF is 0, the buf·
fered mode isn't programmed and SP/EN is
used for master/slave selection. Note if ICW4
isn't programmed, SP/EN is used for master/
slave selection.

SFNM: The SFNM bit designates selection of the
special fully nested mode which is used in
conjunction with the cascade mode. Only the
master should be programmed in the special
fully nested mode to assure a truly fully nested
structure among the slave IR inputs. If SFNM
is set to a 1, the special fully nested mode is
selected; if SFNM is 0, it is not selected.

4.2 OPERATIONAL COMMAND WORD (OCWs)

Once initialized by the ICWs, the 8259A will most likely
be operating in the fully nested mode. At this point,
operation can be further controlled or modified by the
use of OCWs (Operation Command Words). Three
OCWs are available for programming various modes and
commands. Unlike the ICWs, the OCWs needn't be in
any type of sequential order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and short definition of each OCW. With the
OCW format as reference, the functions of each OCW
will be explained individually.

OCW1

OCW1 is used solely for 8259A masking operations. It
provides a direct link to the IMR (Interrupt Mask Regis­
ter). The processor can write to or read from the IMR via
OCW1. The OCW1 bit definition is as fqllows:

MO-M7: The MO-M7 bits are used to control the mask­
ing of IR inputs. If an M bit is set to a 1, it will
mask the corresponding IR input. A 0 clears
the mask, thus enabling the IR input. These
bits convey the same meaning when being
read by the processor for status update.

OCW2

OCW2 is used for end of interrupt, automatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the exception of
AEOI initialization), are selected using the bits of OCW2
in a combined fashion. Selection of a command or
mode should be made with the corresponding table for
OCW2 in the OCW programming tormat(Figure 20),
rather than on a bit by bit basis. However, for com­
pleteness of explanation, bit definition of OCW2 is as
follows:

LO-L2: The LO-L2 bits are used to designate an inter­
rupt level (0-7) to be acted upon for the opera­
tion selected by the EOI, SL, and R bits of
OCW2. The level designated will either be
used to reset a specific ISR bit or to set a
specific priority. The LO-L2 bits are enabled or
disabled by the SL bit.

} END OF INTERRUPT

ROTATE IN MJTOMATIC EOI MODE rCLEAR: } AUTOMATIC ROTATION

} SPECIFIC ROTATION

1 POLL COMMAND

I
o ' NO POLL COMMAND

RESET
SPECIAL SPECIAL

NOTE 1 X l'JllICAHS 'DON T CARE MASt(MASM

I

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTlY FROM EXISTING 8259A
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM·
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME.

Figure 23. Operational Command Words (OCWs) Programming Formal

EOI:

SL:

R:

A-156

The EOI bit is used for all end of interrupt com­
mands (not automatic end of interrupt mode).
If set to a 1, a form of an end of interrupt com­
mand will be executed depending on the state
of the SL and R bits. If EOI is 0, an end of inter·
rupt command won't be executed.

The SL bit is used to select a specific level for
a given operation. If SL is set to a 1, the LO-L2
bits are enabled. The operation selected by the
EOI and R bits will be executed on the
specified interrupt level. If SL is 0, the LO-L2
bits are disabled.

The R bit is used to control all 8259A rotation
operations. If the R bit is set to a 1, a form of
priority rotation will be executed depending on
the state of SL and EOI bits. If R is 0, rotation
won't be executed.

AP-59

OCW3

OCW3 is used to issue various modes and commands to
the 8259A. There are two main categories of operation
associated with OCW3: interrupt status and interrupt
masking. Bit definition of OCW3 is as follows:

RIS: The RIS bit is used to select the ISR or IRR for
the read register command. If RIS is set to 1,
ISR is selected. If RIS is 0, IRR is selected. The
state of the RIS is only honored if the RR bit is
a 1.

RR: The RR bit is used to execute the read register
command. If RR is set to a 1, the read register
command is issued and the state of RIS deter­
mines the register to be read. If RR is 0, the
read register command isn't issued.

P: The P bit is used to issue the poll command. If
P is set to a 1, the poll command is issued. If it
is 0, the poll command isn't issued. The poll
command will override a read register com­
mand if set simultaneously.

SMM: The SMM bit is used to set the special mask
mode. If SMM is set to a 1, the special mask
mode is selected. If it is 0, it is not selected.
The state of the SMM bit is only honored if it is
enabled by the ESMM bit.

ESMM: The ESMM bit is used to enable or disable the
effect of the SMM bit. If ESMM is set to a 1,
SMM is enabled. If ESMM is 0, SMM is dis­
abled. This bit is useful to prevent interference
of mode and command selections in OCW3.

5_ APPLICATION EXAMPLES

In this section, the 8259A is shown in three different ap­
plication examples. The first is an actual design imple­
mentation supporting an 8080A microprocessor system,
"Power Fail/Auto Start with Battery Back-Up RAM". The
second is a conceptual example of incorporating more
than 64 interrupt levels in an 8080A or 8085A system,
"78 Level Interrupt System". The third application is a
conceptual design using an 8086 system, "Timer Con­
trolled Interrupts". Although specific microprocessor
systems are used in each example, these applications
can be applied to either MCS-80, MCS-85, MCS-86, or
MCS-88 systems, providing the necessary hardware and
software changes are made. Overall, these applications
should serve as a useful guide, illustrating the various
procedures in using the 8259A.

5_1 POWER FAIL/AUTO-START WITH BATTERY
BACK-UP RAM

The first application illustrates the 8259A used in an
8080A system, supporting a battery back-up scheme for
the RAM (Random Access Memory) in a microcomputer
system. Such a scheme is important in numerical and
process control applications. The entire microcomputer
system could be supported by a battery back-up
scheme, however, due to the large amount of current
usually required and the fact that most machinery is not
supported by an auxiliary power source, only the state
of calculations and variables usually need to be saved.
In the event of a loss of power, if these items are not
already stored in RAM, they can be transferred there and
saved using a simple battery back-up system.

The vehicle used in this application is the Intel®
SBC-80/20 Single Board Computer. An 8259A is used in
the SBC-80/20 along with control lines helpful in imple­
menting the power-down and automatic restart se­
quence used in a battery back-up system. The SBC-80/20
also contains user-selectable jumpers which allow the
on-board RAM to be powered by a supply separate from
the supply used for the non-RAM components. Also, the
output of an undedicated latch is available to be con­
nected to the IR inputs of the 8259A (the latch is cleared
via an output port). In addition, an undedicated, buffered
input line is provided, along with an input to the RAM
decoder that will protect memory when asserted.

The additional circuitry to be described was con­
structed on an SBC-905 prototyping board. An SBC-635
power supply was used to power the non-RAM section
of the SBC-80/20 while an external DC supply was used
to simulate the back-up battery supplying power to the
RAM. The SBC-635 was used since it provides an open
collector ACLO output which indicates that the AC
input line voltage is below 103/206 VAC (RMS).

The following is an example of a power-down and restart
sequence that introduces the various power fail signals.

1. An AC power failure occurs and the ACLO goes high
(ACLO is pulled up by the battery supply). This indi­
cates that DC power will be reliable for at most 7.5
ms. The power fail circutry generates a Power Fail In­
terrupt (PFI) signal. This signal sets the PFI latch,
which is connected to the IRa input of the 8259A, and
sets the Power Fail Sense (PFS) latch. The state of
this latch will indicate to the processor, upon reset,
whether it is coming up from a power failure (warm
start) or if it is coming up initially (cold start).

2. The processor is interrupted by the 8259A when the
PFI latch is set. This pushes the pre-power-down pro­
gram counter onto the stack and calls the service
routine for the IRa input. The IRa service routine
saves the processor status and any other needed
variables. The routine should end with a HALT
instruction to minimize bus transitions.

3. After a predetermined length of time (5 ms in this ex­
ample) the power fail circuitry generates a Memory
Protect (MPRO) signal. All processing for the power
failure (including the interrupt response delays) must
be completed within this 5 ms window. The MPRO
signal ensures that spurious transitions on the sys­
tem control bus caused by power going down do not
alter the contents of the RAM.

4. DC power goes down.

5. AC power returns. The power-on reset circuitry on the
SBC-80/20 generates a system RESET.

6. The processor reads the state of the PFS line to
determine the appropriate start-up sequence. The
PFS latch is cleared, the MPRO signal is removed,
and the PFI latch driving IRa is cleared by the Power
Fail Sense Reset (PFSR).signal. The system then con­
tinues from the pre-power-down location for a warm
start by restoring the processor status and popping
the pre-power-down program counter off the stack.

Figure 24 illustrates this timing.

A-IS7

AP-59

POWER DOWN RESTART

ACLO
\1..-___ _

~ ___ ~\-_--l/

IRO

PFSR ---+-----------'1-------_.

MPRO ---+---""
.""

DC----~----------, ,------,J 7.5 ms min

POWER UP
ROUTINE

Figure 24. Power Down Aestart Timing

Figure 25 shows the block diagram for the system.
Notice that the RAM, the RAM decoder, and the power·
down circuitry are powered by the battery supply.

The schematic of the power-down circuitry and the
SBC-80/20 interface is shown in Figure 26. The design is
very straightforward and uses CMOS logic to minimize
the battery current requirements. The cold start switch
is necessary to ensure that during a cold start, the PFS
line is indicating "cold start" sense (PFS high). Thus, for

a cold start, the cold start switch is depressed during
power on. After that, no further action is n.eeded. Notice
that the PFI signal sets the on-board PFI latch. The out­
put of this latch drives the 8259A IRO input. This latch is
cleared during the restart routine by executing an OUT­
put D4H instruction. The state of the PFS line may be
read oli the least significant data bus line (DBO) by exe­
cuting an INput D4H instruction. An 8255 port (8255 #1,
port C, bit 0) is used to control the PFSR line.

BATTERY SUPPLY

COLD
~START

CONTROL BUS -t-t---+:---!H-4-'---+--I-..... --++---~H--...J
DATABUS-t~~--'--+-~~~--+--~--++---~~--~

.ADDRESSBUS~~---~-~~---~-----~----~~--~

Figure 25. Block Diagram 01 SBC 80120 with Power Down Circuit

A-15S

AP-59

"'SBATT.

I

I

I

I

8259

'"'

--+----:<=.---------';'1];:, .<' _________ ----"Pf"-I ~-___<C>_--_I>'"
~ CLR

'" LATCH

+5BA!;.TC;-T ------+------"-1

COLD I
I 1_ O.1pF START .J.

5 •

i P2

I"

"" DECODER

RAM CS

'---______________________ --1 f--_____ --'-''''lCO P~~T

Figure 26. Power Down Circuil - SBC 80120 Inlerlace

The fully nested mode for the 8259A is used in its initial
state to ensure the IRO always has the highest priority.
The remaining IR inputs can be used for any other pur·
pose in the system. The only constraint is that the ser·
vice routines must enable interrupts as early as possi·
ble. Obviously, this is to ensure that the power·down in­
terrupt does not have to wait for service. If a rotating
priority scheme is desired, another 8259A could be
added as a slave and be programmed to operate in a
rotating mode. The master would remain in the initial
state of the fully nested mode so that the IRO still re­
mains the highest priority input.

The software to support the power-down circuitry is
shown in Figure 27. The flow for each label will be
discussed.

After any system reset, the processor starts execution
at location OOOOH (STARn. The PFS status is read and
execution is transferred to CSTART if PFS indicates a
cold start (Le., someone is depressing the cold start
switch) or WSTART if a warm start is indicated (PFS
LOW). CSTART is the start of the user's program. The
Stack Pointers (SP) and device initialization were in­
cluded just to remind the reader that these must occur.
The first EI instruction must appear after the 8259A has
received its initialization sequence. The 8259A (and
other devices) are initialized in the INIT subroutine.

When a power failure occurs, execution is vectored by
the 8259A to REGSAV by way of the jump table at
JSTART. The pre-power-down program counter is placed
on the stack. REGSAV saves the processor registers
and flags in the usual manner by pushing them onto the
stack. Other items, such as output port status, program-

mabie peripheral states, etc., are pushed onto the stack
at this time. The Stack Pointer (SP) could be pushed on­
to the stack by way of the register pair H L but the top of
the stack can exist anywhere in memory and there is no
way then of knowing where that is when in the power-up
routine. Thus, the SP is saved at a dedicated location in
RAM. It isn't really necessary to send an EOI command
to the 8259A in REGSAV since power will be removed
from the 8259A, but one is included for completeness.
The final instruction before actually losing power is a
HALT. This minimizes somewhat spurious transitions
on the various busses and lets the processor die
gracefully.

On reset, when a warm start is detected, execution is
transferred to WSTART. WSTART activates PFSR by
way of the 8255 (all outputs go low then the 8255 is ini­
tialized). In the power-down circuitry, PFSR clears the
PFS latch and removes the MPRO signal which then
allows access to the RAM. WSTART also clears the PFI
latch which arms the 8259A IRO input. Then the 8259A is
re-initialized along with any other devices. The SP is
retrieved from RAM and the processor registers and
flags are restored by popping them off the stack. Inter­
rupts are then enabled. Now the power-down program
counter is on top of the stack, so executing a RETurn in­
struction transfers the processor to exactly where it left
off before the power failure.

Aside from illustrating the usefulness of the 8259A (and
the SBC-80/20) in implementing a power failure pro­
tected microcomputer system, this application should
also point out a way of preserving the process0r status
when using interrupts.

A-159

LllC Ur,-,

"'" 00001.@4
lIOOlIF
900][\1'12001

OOI:li1.l(el
tlOOC [dEb
IJ80E[)]t>4
{:I~HI WiDe€!
9013 2flet.C:::
!itl16F9
001~' C1
0(!18Di
1)019[1

OOiAFl
~ijlB FG
tlW;C3

~lC3E16

00lfD?DA
0021][01
~23Mlf!

5 5\'$rl:~ O;'I)I1TE~

~ PT59R Eill) 0[IAf:
7 PT59B UN! !:IDSI'.
SPl'!lU EO!) ttli'll
91'r!lC lOU tl£6H

i~ ~'-SR'1f EQIJ J$e~JH

11 JrT [1)1) 9W
12
E.

825~; f-'ORT WllH flti=0
'd<."5~ PORT wlm ,)3=1

.825511(..OIHr."OLf'OJ<T
,.;25SI1F'~'TC

~,f' ~,TO~:lL[IN PHil
r-!S~ of 82~9 JUllf' mru

14 ,5T~TI!NIJF'OINTI'.rrlR5"'SIEMrlSI:T

" 16
1:' iJ~'G

185TAAT IN
1? ~'At:

2~ JC
21·
22

f:Enr,f'F",'STflTIJS
,'FS/ LIN [1f:i1:1. 1'1I1 IN CIlRI'\'
~'F~(=1, III[H CuLD ::mPT

2.l WSTriliTl!JCAlJON 1>1';','=1:1 I'I'IENW~M 511'1/<1
~4 .
~'S

2C I>/:.TflRT MVI ~~';5 Ii TO l.mrUT WlDE
d7 oor tOlm'OL 1'1.*'1, "r5~',' 1,IJb LUIJ
10
~9 COMf'lfjN[i r'~~~b pr:..J,',' GJJ LOW rJHICK ~lMr.IV[$ I'H'I] liNe,
Je ITS LIlTCIl
Jl

3'!.

J'
~S

4::1,

M~'l ~1, ~i~

OUT I'Hle
uur 004H
c.PU !NIl
LHLD SI'SfIIlE

['Of'
PI>'
POP I:
POP f'$W

H
RET

5~ IN!I HIlI H.16K
5"1 uIJT PT59Ff
52 IWI fj,)rl
~~ our "T598
54

~'£1U"'N pr~,:ti HIGH
8255 11 PO~"I C
I:[SETI"FI U)l[:1I

,Get mInl~LlZ[EI-'lRl'lf:ING
~'f.:l RII/E Si' rRI}M ~fIM

,PUT INTli ~,e

OC
RI:STDI![DE

;,gTIJ~'l elL
.PEsrum: f, r'LU5 nfl(i~
ENf1illEINTEFP!Jt-'I$

,I'R[-PO~EI'"'DDWN /'1; IJN TOP OF SlACk
R[]IJ~N TO n

f'=LS=LH7-I1'5=e !U41
82:5~ POIi'T 'lI1K He={.!

d'lSBOr .lUI1/' TIltH ICj.J~

,$25::rORTW]THrl9=1

AP-59

OO~fj 1"';.

O~27 [J

002~ D~

OO~? I:";
~2f! ~l1;lI;IOI;!

ij~2D

OO2E

lJl-J~l "1:20
~3?[';N:

em:'"

Ina~

~i@@ CS2600

fJ10J
<!1~4

01@73e
~108 C2l:!';~

~100 00
31&lc:ne?,;
aHlFOO
8110 n4~1!.:
3m ~0
M14 C35~A
~11? 00
011"3C36038
3118 ~~
811cm~:>i.l

Bl1roo

912031003F
~m

3126
e1~'8 1'"8

55
56

,liDll f11l',' IJTflEP INIlIALl2P.fIUN::, KEP[

~[T

.,;rlG:,'W F'l:SI'
/::4 rUSH
,;5 ~lI5H

6G PU~.F

(" ~n

OUr i'T59R
,:l,

81:1
t:I OriJ 1~1oJf-:

82 J:TI;PT JMf' If(,:,i1"

~:; N!)P

.'fool ~, ;:'U':: ;IJII'e
,i.','CI-il

L{

;!-',}[CC

JMI' j'-':
'!OF'

J',lP 3~:@H

NOP
.IMP ~8T0H

q7 1M
9>::
':IS

lae .COLD ST~T l(lum(~ ,J~E~'5 i"ROGRflM (NTEf<'S fU'l
101
1<2
1e3cSrr:rT

'" 10:5
1116
lei'
l!:lC

1" 11'

lFILL INlf C\U",'TliiNlj L~,f
UI)T uD~li ,'l:3U Lllll.H
EI w~u !ljTU'~'I.If'T~,

Figure 27. Power Down and Restart Software

5.2 78 LEVEL INTERRUPT SYSTEM

The second application illustrates an interrupt structure
with greater than 64 levels for an 8080A or 808SA sys·
tem. In the cascade mode, the 8259A supports up to 64
levels with direct vectoring to the service routine. Ex·
tending the structure to greater than 64 levels requires
polling, using the poll command. A 78 level interrupt
structure is used as an illustration; however. the prin·
ciples apply to systems with up to 512 levels.

To implement the 78 level structure, 3 tiers of 8259A's
are used. Nine 8259A's are cascaded in the master·slave
scheme, giving 64 levels at tier 2. Two additional
8259A's are connected, by way of the INT outputs, .to
two of the 64 inputs. The 16 inputs at tier 3, combined
with the 62 remaining tier 2 inputs, give 78 total levels.
The fully nested structure is preserved over all levels,
although direct vectoring is supplied for only the tier 2
inputs. Software is required to vector any tier 3 re­
quests. Figure 28 shows the tiered structure used in this
example. Notice that the tier3 8259A's are connected to
the bottom level slave (SA7). The master-slaves are inter­
connected as shown in "Interrupt Cascading", while the
tier 3 8259A's are connected as "masters"; that is, the
SP/EN pins are pulled high and the CAS pins are lett un­
connected. Since these 8259A's are only going to be
used with the poll command, no INTA is required, there­
fore the INTA pins are pulled high.

A-160

CAS Bir.o

IliNTA
IRO

JNTA

MASTER

IRl

INT

IR7

!VIO '

SAl

JNTA

Ml
INT

SA7

INTA

M7
INT

SAOO

SP07

SA10

SA17

SA70

SA76

I---"SA",7C!.7"--lINT

SBl

Figure 28. 78 Level Interrupt Structure

5900

SB07

5810

SB17

AP-59

The concept used to implement the 78 levels is to
directly vector to all tier 2 input service routines. If a tier
2 input contains a tier 3 8259A, the service routine for
that input will poll the tier 3 8259A and branch to the tier
3 input service routine based on the poll word read after
the poll command. Figure 29 shows how the jump table
is organized assuming a starting location of 1000H and
contiguous tables for all the tier 2 8259A's. Note that
"SA35" denotes the IR5 input of the slave connected to
the master IR3 input. Also note that for the normal tier 2
inputs, the jump table vectors the processor directly to
the service routine for that input, while for the tier 2 in­
puts with 8259A's connected to their IR inputs, the proc­
essor is vectored to a service routine (i.e., SBO) which
will poll to determine the actual tier 3 input requesting
service. The polling routine utilizes the jump table start­
ing at 1200H to vector the processor to the correct tier 3
service routi ne.

Each 8259A must receive an initialization sequence
regardless of the mode. Since the tier 1 and 2 8259A's
are in cascade and the special fully nested mode is used
(covered shortly), all ICWs are required. The tier 3
8259A's don't require ICW3 or ICW4 since only polling
will be used on them and they are connected as masters
not in the cascade mode. The initialization sequence for
each tier is shown in Figure 30. Notice that the master is
initialized with a "dummy" jump table starting at OOH
since all vectoring is done by the slaves. The tier 3
devices also receive "dummy" tables since only polling
is used on tier 3.

As explained in "Interrupt Cascading", to preserve a
truly fully nested mode within a slave, the master 8259A
should be programmed in the special fully nested mode.
This allows the master to acknowledge all interrupts at
and above the level in service disregarding only those of
lower priority. The special fully nested mode is pro­
grammed in the master only, so it only affects the im­
mediate slaves (tier 2 not tier 3). To implement a fully
nested structure among tier 3 slaves some special
housekeeping software is required in all the tier-2-with­
tier-3-slave routines. The software should simply save
the state of the tier 2 IMR, mask all the lower tier 2 inter­
rupts, then issue a specific EOI, resetting the ISR of the
tier 2 interrupt level. On completion of the routine the
IMR is restored.

Figure 31 shows an example flow and program for any
tier 2 service routine without a tier 3 8259A. Figure 32
shows an example flow and program for any tier 2 ser­
vice routine with a tier 3 8259A. Notice the reading of the
ISR in both examples; this is done to determine whether
or not to issue an EOI command to the master (refer to
the section on "Special Fully Nested Mode" for further
details).

LOCATION 8259 CODE COMMENTS

1000 H SAO JMP SAnD , SAGO SERVICE ROUTINE

101C H JMP SA07 SA07 SERVICE ROUTINE

1020 H SA1 JMP SA10 SA10 SERVICE ROUTINE

103C H JMP SAl7 SA17 SERVICE ROUTINE

· SA2D-SA67 SERVICE ROUTINES

10EO H SA' JMP SA70 SA70 SERVICE ROUTINE

10F8 H JMP SBO , sso POLL ROUTINE
10FC H JMP SB1 · S8l POLL ROUTINE

1200 H SBO JMP SHOO · S800 SERVICE ROUTINE

121C H JMP S807 S807 SERVICE ROUTINE

1220 H SB1 JMP 5810 ; 5810 SERVICE ROUTINE

123C H JMP SB17 5817 SERVICE ROUTINE

Figure 29. Jump Table Organization

INITIALIZATION SEQUENCE FOR 78 LEVEL INTERRUPT STRUCTURE

INITIALIZE MASTER

MINT: MVI
OUT
MV'
OUT
MV'
OUT
MV'
OUT

A,15H
MPTA
A,OOH
MPTB
A,OFFH
MPTB
A,IOH
MPTB

; leWI, lTM=O, ADt=1, $=0, IC4=1
; MASTER PORT AO=O
; ICW2, DUMMY ADDRESS
; MASTER PORT AO = 1
; ICW3, S7-S0 = 1
; MASTER PORT AO = 1
; ICW4, SFNM = 1
; MASTER PORT AO = 1

; INITIALIZE SA SLAVES - X DENOTES SLAVE 10 (SEE KEY)

SAXINT: MVI
OUT
MV'
OUT
MV'
OUT
MV'
OUT

A,,,
SAXPTA
A,10H
SAXPTB
AOXH
SAXPTB
A10H
SAXPTB

; SEE KEY FOR ICW1, LTM=O, ADI=1, S=O, IC4=1
; SA"X" PORT AO = 0
; ICW2, ADDRESS MSB
; SA"X" PORT AO = 1
; ICW3, SA 10
; SA"X" PORT AO = 1
; ICW4, SFNM = 1
; SA"X" PORT AO = 1

REPEAT ABOVE FOR EACH SA SLAVE

INITIALIZE SB SLAVES - X DENOTES 0 or 1 (DO SBO, REPEAT FOR SB1)

SBXINT MVI
OUT
MV'
OUT

A,16H
SBXPTA
A,OOH
SBXPTB

; ICW1, LTM=O, ADI=1, S=1, IC4=0
; SB"X" PORT AO = 0
; ICW2, DUMMY ADDRESS
; SB"X" PORT AO = 1

SA INITIALIZATION KEY

SA"X" a (ICW1) JUMP TABLE START (H)

0 15 1000
1 35 1020
2 55 1040
3 75 1060
4 95 1080
5 65 10AO
S 05 10CO
7 FS 10EO

Figure 30. Initialization Sequence for 78 Level Interrupt Structure

A-161

AP-59

: SA"X" ROUTINE ~ GENERAL INTERRUPT SEAVICE ROUTINE
; FOR TIER 2 INTERRUPTS WITHOUT TIER 38259A

SAX: PUSH'O
PUSH B
PUSH H
PUSH PSW

"
: SERVICE ROUTINE GOES HERE

01
MVI
OUT
MUI
OUT
IN
ANI
JZN
MVI
OUT

SAXRSR: POP
POP
POP
POP

" RET

20,
SAXPTA
A,OBH
SAXPTA
SAXPTA
OFFf.j
SAXRSR
A,OB H
MASPTA
PSW
H
B
o

; SAVE DE
; SAVE Be
; SAVE Hl
; SAVE A, FLAGS
; ENABLE INTERRUPTS

: DISABLE INTERRUPTS
; aCW2, NON·SPECIFIC Eor
; SA"X" PORT AO=O

; DeW3, READ REGISTER, tSR
; SA"X" PORT AO=O
, SA"X" PORT AO=O, SA"X" tSR
; TEST FOR ZERO
; IF NOT ZERO, RESTORE STATUS
; OCW2, NON·SPECIFIC EOI
; MASTER PORT AO",O
: RESTORE A, FLAGS
; RESTORE HL
; RESTORE Be
: RESTORE DE
; ENABLE INTERRUPTS
; RETURN

Figure 31, Example Service Routine for Tier 2 Interrupt (SA "X") without Tier 3 8259A (SB"X")

(SB"X"REr)
'---r--~

: SB"X" ROUTINE ~ SERVICE ROUTINE FOR TIER 2
; INTERRUPTS WITH TIER 38259AS

SBX: PUSH 0 ; SAVE DE
PUSH B ; SAVE BC
PUSH H ; SAVE HL
PUSH PSW ; SAVE A, FLAGS
IN SAXPTB; READ SA"X" IMR
MOV D,A ; SAVE
MVI A,XXIi ; MASK SA"X" LOWER IR
OUT SAXPTB ; SA"X" PORT AD '" 1
MVI A,6XH ; OCW2 SPECIFIC EOI SA"X"
OUT SAXPTA ; SA"X" PORT AD '" 1
LXI H,12001i ; JUMP TABLE START
MVI B,QOH ; CLEAR B
MVI A,OCH , OCW3, POLL COMMAND
OUT SBXPTA ; SB"X" PORT AO",O
IN SBXPTA; GET POLL WORD
ANI 07H ; LfMIT TO 3 BITS
ADD A ; GET TABLE OFFSET
ADD A
MOV C,A
DAD B
EI

; OFFSET TO C
; HL HAS TABLE ADDRESS
; ENABLE INTERRUPTS

SB"X"RET ROUTINE - FOR EOI AND MASK RESTORE
AFTER SB"X" ROUTINE

SBXRET Of
MVI
OUT
MVI
OUT
IN
ANI
JNZ
MVI
OUT

SBXRSR: MOV
OUT
POP
POP
POP
POP
EI
RET

A,20H
SBXPTA
A,OBH
SAXPTA
SBXPTA
DFFH
SBXRSR
A,20H
MASPTA
A,O
SAXPTB
PSW
H

• o

; DISABLE INTERRUPTS
; OCW2, NON SPECIFIC EOI
; SA"X" PORT AD '" °
: ~;,~~,' :~~~ :DE2~STER rSR

; SA"X" PORT AD == 0, ISR
; TEST FOR ZERO
; IF .. D RESTORE IMR
; OCW2, NON·SPEC1FtC Eat
; MASTER PORT AO = 0
. RESTORE SA"X" tMR
; SA"X" PORT AO=l
; RESTORE A, FLAGS
; RESTORE HL
: RESTORE BC
; RESTORE BC
; RESTORE DE
; RETURN

Figure 32, Example Service Routine for Tier 2 Interrupt (SA "X") with Tier 3 8259A (SB"X")

A-162

AP-59

5.3 TIMER CONTROllED INTERRUPTS

In a large number of controller type microprocessor
designs, certain timing requirements must be imple·
mented throughout program execution. Such time
dependent applications include control of keyboards,
displays, CRTs, printers, and various facets of industrial
control. These examples, however, are just a few of
many designs which require device servicing at specific
rates or generation of time delays. Trying to maintain
these timing requirements by processor control alone
can be costly in throughput and software complexity.
So, what can be done to alleviate this problem? The
answer, use the 8259A Programmable Interrupt Con·
troller and external timing to interrupt the processor for
time dependent device servicing.

This application example uses the 8259A for timer con·
trolled interrupts in an 8086 system. External timing is
done by two 8253 Programmable Interval Timers. Figure
33 shows a block diagram of the timer controlled inter·
rupt circuitry which was bui It on the breadboard area of
an SDK·86 (system design kit). Besides the 8259A and
the 8253's, the necessary 1/0 decoding is also shown.
The timer controlled interrupt circuitry interfaces with
the SDK·86 which serves as the vehicle of operation for
this design.

A short overview of how this application operates is as
follows. The 8253's are programmed to generate inter·
rupt requests at specific rates to a number of the 8259A
IR inputs. The 8259A processes these requests by inter·
rupting the 8086 and vectoring program execution to the
appropriate service routine. In this example, the
routines use the SDK·86 display panel to display the
number of the interrupt level being serviced. These
routines are merely for demonstration purposes to show
the necessary procedures to establish the user's own
routines in a timer controlled interrupt scheme.

let's go over the operation starting with the actual inter·
rupt timing generation which is done by two 8253 Pro·
grammable Interval Timers (8253 #1 and 8253 #2). Each
8253 provides three individual 16·bit counters (counters

0-2) which are software programmable by the proc·
essor. Each counter has a clock input (ClK), gate input
(GATE), and an output (OUT). The output signal is based
on divisions of the clock input signal. Just how or when
the output occurs is determined by one of the 8253's six
programmable modes, a programmable 16·bit count,
and the state of the gate input.

Figure 34 shows the 8253 timing configuration used for
generating interrupts to the 8259A. The SDK·86's PClK
(peripheral clock) signal provides a 400 ns period clock
to ClKO of 8253 #1. Counter 0 is used in mode 3 (square
wave rate generator), and acts as a prescalerto provide
the clock inputs of the other counters with a 10 ms
period square wave. This 10 ms clock period made it
easy to calculate exact timings for the other counters.
Counter 2 of the 8253 #1 is used in mode 2 (rate gener·
ator), it is programmed to output a 10 ms pulse for every
200 pulses it receives (every 2 sec). The output of
counter 2 causes an interrupt on IR1 of the 8259A. All
the 8253 #2 counters are used in mode 5 (hardware trig·
gered strobe) in which the gate input initiates counter
operations. In this case the output of 8253 #1 counter 2
controls the gate of each 8253 #2 counter. When one of
the 8253 #2 counters receive the 8253 #1 counter 2 out·
put pulse on its gate, it will output a pulse (10 ms in
duration) after a certain preprogrammed number of
clock pulses have occurred. The programmed number of
clock pulses for the 8253 #2 counters is as follows: 50
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for
counter 1, and 150 pulses (1.5 sec) for counter 2. The
outputs of these counters cause interrupt requests on
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is
used in mode 0 (interrupt on terminal count). Unlike the
other modes used which initialize operation auto·
matically or by gate triggering, mode 0 allows software
controlled counter initialization. When counter 1 of 8253
#1 is set during program execution, it will count 25
clocks (250 ms) and then pull its output high, causing an
interrupt request on IRO of the 8259A. Figure 35 shows
the timing generated by the 8253's which cause inter·
rupt request on the 8259A IR inputs.

EACH DEVICE Vee = + 5V, GND '" ~

Fig.ure 33. Timer Controlled Interrupt Circuit on SDK 86 Breadboard Area

A-163

AP-59

82~9A

"O"'U'".:.' ___________ IRO

"O"-u'''''O_-t _____ +-___ IR2

eLK1 f=0"'u'c..'_-t ____ '13

CLK2

Figure 34. 8253 Timing Configuration for Timer Controlled Interrupts

8253" \
COUNTER 1

I
IRO

u u IR,

8253lf2 \~
COUNTERO '

ur------'ur------i'd IR2

c~~~~:~, I \-' ----U,..---------,U,..---------,U,..---..... "I IR3

c~a~~~~ 2 \ I-------...,U u r\IR4

I ! I ! ! ! I I I! I I I !!! I ! ! I ! !

250 ms PER DIVISION
(EACH SMALL PULSE IS 10 ms IN DURATION)

Figure 35. 8259A IR Input Signal From 82535

There are basically two methods of timing generation
that can be used in a timer controlled interrupt struc·
ture: dependent timing and independent timing. Depen·
dent timing uses a single timing occurrence as a refer·
ence to base other timing occurrences on. On the other
hand, independent timing has no mutual reference be·
tween occurrences. Industrial controller type applica·
tions are more apt to use dependent timing, whereas in·
dependent timing is prone to individual device control.

Although this application uses primarily dependent tim·
ing, independent timing is also incorporated as an
example. The use of dependent timing can be seen back
in Figure 34, where timing for IR2 through IR4 uses the
IR1 pulse as reference. Each one of the 8253 #2 counters
will generate an interrupt request a specific amount of
times after the IR1 interrupt request occurs. When using
the dependent method, as in this case, the IR2 through
IR4 requests must occur before the next IR1 request.
Independent timing is used to control the IRO interrupt
request. Note that its timing isn't controlled by any of
the other IR requests. In this timer controlled interrupt
configuration the dependent timing is initially set to be
self running and the independent timing is software
initialized. However, both methods can work either way
by using the various 8253 modes to generate the same
interrupt timing.

The 8259A processes the interrupts generated by the
8253's according to how it is programmed. In this appli·
cation it is programmed to operate in the edge triggered
mode, MCS·86/88 mode, and automatic EOI mode. In the
edge triggered mode an interrupt request on an 8259A

IR input becomes active on the rising edge. With this in
mind, Figure 35 shows that IRO will generate an inter·
rupt every half second and IR1 through IR4 will each
generate.an interrupt every 2 seconds spaced apart at
half second intervals. Interrupt vectoring in the
MCS·86/88 mode is programmed so IRO, when activated,
will select interrupt type 72. This means IR1 will select
interrupt type 73, IR2 interrupt type 74, and so on
through IR4. Since IR5 through IR7 aren't used, they are
masked off. This prevents the possibility of any acci·
dental interrupts and rids the necessity to tie the
unused IR inputs to a steady level. Figure 36 shows the
8259A IR levels (IRO-IR4) with their corresponding inter·
rupt type in the 8086 interrupt·vector table. Type 77 in
the table is selected by a software "INT" instruction
during program execution. Each type is programmed
with the necessary code segment and instruction
pointer values for vectoring to the appropriate service
routine. Since the 8259A is programmed in the auto·
matic EOI Mode, it doesn't require an EOI command to
designate the completion of the service routine.

TYPE 77
TYPE 76

TYPE 75
TYPE 74

TYPE 73
TYPE 72

-

SOFTWARE INT

IR4 t
IR3

IR2 J 8259A
IRI

IRO

Figure 36. Interrupt "Type" Designation

A-I64

AP-59

As mentioned earlier, the interrupt service routines in
this application are used merely to demonstrate the
timer controlled interrupt scheme, not to implement a
particular design, Thus a service routine simply displays
the number of its interrupting level on the SDK-86 dis·
play panel, The display panel is controlled by the 8279
Keyboard and Display Controller. It is initialized to
display "Ir" in its two left·most digits during the entire
display sequence. When an interrupt from IR1 through
IR4 occurs the corresponding routine will display its IR
number via the 8279. During each IR1 through IR4 servo
ice routine a software "INT77" instruction is executed.
This instruction vectors program execution to the servo
ice routine designated by type 77, which sets the 8253
counter controlling IRO so it will cause an interrupt in
250 ms. When the IRO interrupt occurs its routine will
turn off the digit displayed by the IR1 through IR4
routines. Thus each IR level (IR1-IR4) will be displayed
for 250 ms followed by a 250 ms off time caused by IRO.
Figure 37 shows the entire display sequence of the
timer controlled interrupt application.

I r I IR1

III r I I J IRO

I'I r I I I 121 I IR2

I'I r I I I I I I IRO

I'I r I I I g I I I IR3

III r I I LLI J IRO

I'I r I I '11 I I I IR4

III r I I I I I I IRO

Figure 37. SDK Display Sequence for Timer Controlled Interrupts
Program (Each Display Block Shown is 250 msec
in Duration)

Now that we've covered the operation, let's move on to
the program flow and structure of the timer controlled
interrupt program. The program flow is made up of an
initialization section and six interrupt service routines.
The initialization program flow is shown in Figure 38. It
starts by initializing some of the 8086's registers for pro·
gram operation; this includes the extra segment, data
segment, stack segment, and stack pointer. Next, by
using the extra segement as reference, interrupt types
72 through 77 are set to vector interrupts to the appro·
priate routines. This is done by moving the code seg·
ment and instruction pointer values of each service
routine into the corresponding type location. The 8253
counters are then programmed with the proper mode
and count to provide the interrupt timing mentioned
earlier. All counters with the exception of the 8253 #1,
counter 1 are fully initialized at this point and will start
counting. Counter 1 of 8253 #1 starts counting when its
counter is loaded during the "INTR77" service routine,
which will be covered shortly. Next, the 8259A is issued
ICW1, ICW2, ICW4, and OCW1. The ICWs program the

8259A for the edge triggered mode, automatic EOI
mode, and the proper interrupt vectoring (I RO, type 72).
OCW1 is used to mask off the unused IR inputs
(IR5-IR7). The 8279 is then set to display "IR" on its two
left·most digits. After that the 8086 enables interrupts
and a "dummy" main program is executed to wait for in·
terrupt requests.

Figure 38. Initialization Program Flow for Timer Controlled Interrupts

There are six different interrupt service routines used in
the program. Five of these routines, "INTR72" through
"INTR76", are vectored to via the 8259A. Figure 39A·C
shows the program flow for all six service routines. Note
that "INTR73" through "INTR76" (IR1-IR4) basicallyuse
the same flow. These four similar routines display the
number of its interrupting IR level on the SDK-86 display
panel, The "INTR77" routine is vectored to by software
during each of the previously mentioned routines and
sets up interrupt timing to cause the "INTR72" (IRO)
routine to be executed. The "INTR72" routine turns off
the number on the SDK-86 display panel.

A. INTERRUPT ON
8259AIRO

(INTR73-76)

RETURN

B. INTERRUPT ON
8259A IR1-IR4

C. SOFTWARE INVOKED
INTERRUPT

Figure 39. A-C. Interrupts Service Routine Flow lor
Timer Controlled Interrupts.

A-165

AP-59

To best explain how these service routines work, let's
assume an interrupt occurred on IR1 of the 8259A. The
associated service routine for IR1 is "INTR73". Entering
"INTR73", the first thing done is saving the pre-interrupt
program status. This isn't really necessary in this pro­
gram since a "dummy" main program is being executed;
however, it is done as an example to show the operation.
Rather than having code for saving the registers in each
separate routine, a mutual call routine, "SAVE", is used.
This routine will save the register status by pushing it
on the stack. The next portion of "INTR73" will display
the number of its IR level, "1", in the first digit of the
SDK-86 display panel. After that, a software INT instruc­
tion is executed to vector program execution to the
"INTR??" service routine. The "INTR??" service routine
simply sets the 8253 #1 counter 1 to cause an interrupt
on IRO in 250 ms and then returns to "INTR73". Once
back in "INTR73", the pre-interrupt status is restored by
a call routine, "RESTORE". It does the opposite of
"SAVE", returning the register status by popping it off
the stack. The "INTR73" routine then returns to the
"dummy" main program. The flow for the "INTR74"
through "INTR76" routines are the same except for the
digit location and the IR level displayed.

After 250 ms have elapsed, counter 1 of 8253 #1 makes
an interrupt request on IRO of the 8259A. This causes
the "INTR72" service routine to be executed. Since this
routine interrupts the main program, it also uses the
"SAVE" routine to save pre-interrupt program status. It
then turns off the digit displaying the IR level. In the
case of the "INTR73" routine, the "1" is blanked out.
The pre-interrupt status is then restored using the
"RESTORE" routine and program execution returns to
the "dummy" main program.

The complete program for the timer controlled inter­
rupts application is shown in Appendix B. The program
was executed in SDK-86 RAM starting at location 0500H
(code segment = 0050, instruction pointer= 0).

CONCLUSION

This application note has explained the 8259A in detail
and gives three applications illustrating the use of some
of the numerous programmable features available. It
should be evident from these discussions that the
8259A is an extremely flexible and easily programmable
member of the Intel'" MCS-80, MCS-85, MCS-86, and
MCS-88 families.

A-166

AP-59

This table is provided merely for reference information between the "Operation of the 8259A" and "Programming the
8259A" sections of this application note. It shouldn't be used as a programming reference guide (see "Programming
the 8259A").

Operational Command
Description Words Bits

MCS·80185™ Mode ICW1,ICW4· IC4,!,PM·

Address Interval for MCS·80/85 Mode ICW1 ADI

Interrupt Vector Address for MCS·80/85 Mode ICW1,ICW2 A5-A15

MCS·86/88 Mode ICW1,ICW4 IC4,!,PM

Interrupt Vector Byte for MCS·86/88 Mode ICW2 T3-T7

Fully Nested Mode OCW-Default

Non·Specific EOI Command OCW2 EOI

Specific EOI Command OCW2 SEOI, EOI,
LO-L2

Automatic EOI Mode ICW1,ICW4 IC4, AEOI

Rotate On Non·Specific EOI Command OCW2 EOI

Rotate In Automatic EOI Mode OCW2 R, SEOI, EOI

Set Priority Command OCW2 LO-L2

Rotate on Specific EOI Command OCW2 R, SEOI, EOI

Interrupt Mask Register OCW1 MO-M7

Special Mask Mode OCW3 ESMM-SMM

Level Triggered Mode ICW1 LTIM

Edge Triggered Mode ICW1 LTIM

Read Register Command, IRR OCW3 ERIS, RIS

Read Register Command, ISR OCW3 ERIS, RIS

Read IMR OCW1 MO-M7

Poll Command OCW3 P

Cascade Mode ICW1,ICW3 SNGL, SO-7,
100-2

Special Fully Nested Mode ICW1,ICW4 IC4, SFNM

Buffered Mode ICW1,ICW4 IC4, BUF,
MIS

·Only needed if ICW4 is used for purposes other than "p mode set.

A-167

AP-59

MCS-B6 f6SEMBLER TCI59f!

ISIS-II MC'S-8G tl551:MBLER III i.l ffSSEMBL Y OF MODULE TCI59ft
OBJECT MODULE PLACEr> IN F1.lCI59A. OS.J
ASSE!'IBLER INI/OKED BY· FUiSM86FITCI59A. 5RC

LOC 08.1

0120
0120 0491
0122 .YC'??
0124 1801
0126 m·J

0128 3001
012f1 n~n
012C 4801
012E m?
91306001
tlD2,????
01:>47801
0B6Tm

0008 ????
9002 ????
0004 ??

9000 B80000
!l803 SECll
0111!5 887000
!l808 SED8
000A 1l11781l8
II89D SEOO
90IlF BCS8OO.

LINE SOURCE

; ******************** TIMER CONTROLLEr> INTeRRUPTS *******************
2
3
4
5 ;
6
7 EXTRA 5t:OMEtfl
g ;

9 ORO
10 TP72IP OW
11 TP72CS DW
12 TP73IP OW
13 TP73CS DIoI
14 TP74IF' OW
15 1"f'74CS DW
16 TF'751F' I)f.I

1l TP75CS OW
18 TP76IP I)f.I

19 TP76CS OW
20 TP77IP DW
21 IP77CS OW
22 ;

23 EXTRA ENDS
24 • ;
25
26 ;
27 DATA
2S
29 STACK1
3{l AXTEl1P
31 DIGIl
32
33 DATIl
34 ;

35 ;

36
37 CODE
38

SEGMENT

DW
DIoI
DB

ENDS

s[GMENT

EXTRA SEGMENT DECLARATIONS

129H
INW72 .i TYPE 72 INSTRUCTION POINTER
'} ; T\'PE 72 CODE SEGMENT
INTla3 .i T\'PE 73 INSl RUCTIUN POINTER
J i TYPE 73 CODE SI:.GI1ENI
INTR74 i H'f'E 74 INSTRUCllON POINTER
? ; TYPE i' 4 CODE SEGMENT
INTR75 ; TYrE 75 INSTRUCTION POINTER
? ; noPE 75 CODE 5I:.Gl'lENl
INH~76 ; lYPE i'6 INSTRUCTION POINTER
? .i TYPE 76 (;ODE SEGMENT
INTR77 ; TYPE 77 INSTRUCTION PUINTI:.R
? i TYPE 77 CODE SEGI'IENl

llATA SEGl'lENT DECLARATI ONS

? ; VARlfIb'lE TO SAllE CALL flIIDRtSS
? ; VARIABLE TO SAVE AX REGISTEk
? ; I/ARIABLE "10 SAVE SELECll:D DIGIT

GOOE SEGMENT DECLARATION

39 ASSIJIE ES : EXTRA, DS: D:lTA, CS : CODE
40
41 INITIflLlZE REGISTERS
42
41 STRRT: HOY AX,9H ; OORA SEGPENT AT 9H
44 I'lOI/ ES,AX
45 I'm AX,79H ; DATA SEGIOT Al 709H
46 HOY {is,AX
47 l'lOy AX, "ISH ; SlACK SEGMENl AT 789H
48 !'lOy 5S,AX
49 HOY SP,88H ; STACK POINTER AT 89H (STflCK=899H)

A-168

AP.-59

t1C5-86 ASSEMBLER TCl59A

LOC 08,] LINE SOURCE

50
51 LOA[) IN'ft~:RUf-'l VECTOR IllBLE
1;;", .)c.

0012 B80401 0:-' ... ':" WPI:S. MOV A>;. OFf SET I.HHR72) . LOAD riP!:. /2
0015 2GiC2801 54 MOV IP72IP. AX
0019 268C0E2201 55 MOV IP72CS, CS
a01E B81801 ~6 1'101/ Ai<.. OFFSET (I NTR7}) ,LOAD TYPE 73
8821 26A32401 57 flO ... TP73IP, Aii
13025 268C8E2601 58 1'10'./ lP73CS, tS
e02A B83:001 59 MOI/ AX, OFFSET WITR(4) ; LO® T','PE 74
002D 26A:l281:11 60 1'1011 TP74IP .. ftX
0031 268C0E2A01 61 MOV TF?4CS .. CS
8036 B84801 62 MOV A:(, OFFSET <INTRi'5) ; LOHD TYPE 75
e0J9 26A32C01 63 t10V TP75IP .. fiX
eS3D 268C0E2E01 6.4 MOil W/5CS .. CS
0042 B86001 65 MOV AX, OFFSl:l (I NTR76) ,LOAD WPE ;'6

. 9045 26A33W1 66 MOil TP76IP, AX
0049 268C0E3201 67 MOil TP76CS, C5
0e4E. 887801 68 MOV AX.. OFFSET (INTR77) ; LOHD riPE n
0051 261133401 69 1'10',' TP77IF', AX
0055 26SC0E36'e1 70 MOV IP77CS, CS

71
~" i~ 8253 INITIALIZATION
73

005A BA0EFF 74 SET531. MOV DK.3FF0EH ; 8253 lI1 CONTROL WORD
0050 B0:$6 75 1'1011 AL 36H ; COUNTER e.. MODE 3.. BlNARY
095F EE 76 OUT I)K.AL
0060 B071 77 MOV AL.71H ,courmR 1.. MODE €I, BCD
9062 EE 78 olJr DX,AL
0063 80B5 79 I'IOV AL9B5H ; COUNTER 2, MODE 2, BCD
0065 EE 80 OUT [)X,AL
0066 BAeBFF 81 MOV [)X, eFFeBH ; LOAD COUNTER 0 (101'15)
8069 BeAS 82 MOIl AL.0ABH ;L~f)

006B EE 83 OUT DX,AL
006CB061 84 Mall AL.61H .:1158
006E EE 85 OIJT DX,AL
006F BAOCFF 86 MOil DX, eFFOCH ; LOA!) COUNTER 2 (2SE.C)
09;'2 B009 87 MOl/ AL,00H ;LSEl
0074 EE 88 OIJT DX,AL
0075 8002 89 MOil AL02H ;MSB
0977 EE 90 OUT [)X,AL
0978 Bfll6Fr 91 SEPl32. MOil DX,eFF16H ; 13253 *2 CONl ROL WORD
0078 B93B 92 1'101/ AL,3BH ; COUNTER 0, MODE S,8CD
W7D EE 93 our DX,AL
007E 1l07B 94 MOIl AL,7BH ; COUNTER 1, MODIO ~, BCD
0080 EE 95 OUT DX,AL
0!l81 B0BB 96 1'10\1 AL, !l88H -' COUNTER 2, I'IODE 5, BCD
0983 EE 97 OUT DX,AL
0984 BA10FF 98 MOV DX,0FF10H ; LOAD COUNTER 0 C 551:0
088i' B050 99 /'10\1 AL,50H ;L:lB
0989 EE 100 OUT DX,AL
IlI!SA Belli! 101 /'10\1 AL,OOH .;1158
008C EE 102 OUT DX,AL
II98D BA12FF 103 1'10\1 DX, eFF12H ; LOAD COUNTER 1 (lSEt)
9090 0000 104 /'I0Il ALOOH iL58

A-169

AP~59

M(;S-86 ASSEMBLER TCI59A

LOC OS'] LINE SOURCE

0092 EE 105 OUT OX .. AL
0093 8001 196 1'1011 AL01H ,lise
0IJ95 EE 107 OUT OX .. AL
0096 BA14rr 108 MOY Ox'.0FF14H i LOAI) COUNTffi 2 (1. 5SEC)
0099 B050 109 i'IOV AL .. 50H , L!!B
0098 1£ WI OUT DX, AI..
009(; 8081 111 MOil AI.. .. 81H iMSB

099E EE 112 OU1 DX .. A1..
113
114 8259fl INITIALIZATION
115 ;

009r BAOOFF 116 SET59A: MOY D;':,8FF00H .'!1259A AIl=0
OOA2 B013 117 1'1011 ALl3H , lCloIl-L TIll=!! .. S=1, IC4=1
00A4 EE 113 OUT DX,AL
OOA5 BA02fT 119 1'1011 OX, !lFF02H i 8259A flO=i
00A8 B048 121.1 1'10',1 AL, 4SH ; ICW2-INTERRUPT TYf'l:: "12 (120H)
00AA EE 121 OUT OX,AL
OOAB B003 122 liOY AL, 0~H ; ICIoI4-SFNI'I=0, BUr=!! .. AEOI=L MPI'I=1
OOAD EE 123 OUT DX .. AL
OOAE B0E0 124 MOY AL,9E0H i 0CI0I1-MASK IRS, 6, 7 (NOT USED)
00B0 EE 125 OUT OX, AI..

126
127 8279 INITIALIZATION
128 ..

0081 BAEAFF 129 ~T79: MOV OX,0FFEAH i 8279 COI'IMAND 1oIOR0S f1N/.l STATUS
O8848000 130 I'IOY AL,0D0H ; CLEAR DISPLAY
0086 EE 131 OUT OX .. AL
0987 EC 132 WAIT79: IN AI. .. OX i REP,o S 1 ATUS
80B8 09C0 11$ ~ AL,1 ; '00" BIT JO CARRY
098A?2FB 134 .JB WAIT79 i.JUMP IF OI5f'LAY IS UIfIYAILABLE
OOBC 808? 135 i'IOY AI.., 87H ;OIGlT 8
09BE EE 136 OUT OX,AL
OOBF BAE8FF 137 HOY OX,8FFESH ,8279 DATA IoMJRO
98C2 8086 138 MOil AI.,86H ; CHARACTER "I •
90C4 EE 139 OUT DX,AL
00C5 BAEAFF 140 110Y OX,9FFEAH ; 8279 COI'IIIAND WORD
119C8 BOS6 141 HOY AL,86H ; DIGIT 7
98CA EE 142 OUT OX, AI.
OOCB BAE8FF 143 I'IOY DX,8FFESH ; 8"'lf9 DATA IoIORD
OOCE 805O 144 I'IOY AI..,50H ; CHARf{;TER "R"
00D0 EE 145 OOT OX, AI.
0001 FB 146 511 .' BflBLE ItlTERRUf'TS

147 ;

143
149 OOMl'lY PROGRAlt
150

00D2EBFE 151 oomrr': JMP DUMI'IY ; WAIT FOR INTERRUPT
152
15J

00D4 A30200 154 SAVE: MOY AXTEMP,AX ; SAVE AX
000758 155 POP AX ; POP CflLL RETURN AOORESS
0008 A39998 156 1'101/ STACK1,AX ; SAVE CALL RETlRN ADDRESS
OODB A10280 157 I'lO\l AX. AXIDIP ;RESTORE AX
000E 50 1~ PUSH AX ; SAVE PROCESSll1 STATUS
000F 53 159 PUSH ax

A-170

AP-59

M(;S-86 A~SEMBLER TCI'S9A

LOC OB..! LINE SOIJRCE

OOEIl)1 161l PUSH C:~

OOE1 52 161 PUSH DX
BBE2 55 162 F1JSH BP
00B 56 163 PUSH 51
01.lE4 57 164 PUSH DI
01.lE5 lE 165 PUSH DS
0I.lE6 06 166 PUSH ES
0I.lE7 Al0000 167 MOV AX, STACK! ,RESTORE CALL RETURN AOORES5
OOEA 50 161] PUSH It, ; PUSH CALL RIO 1 LlRN AOORES5
13I.lEB n 169 RET

170
0I.lEC 58 171 RtSTOR. POP fiX ; POP CALL RETURN AD()R[SS
0I.lED A3e13ee 172 MOil STACKL A;'; ; SAVE CALL RETURN ADDRESS
00Fe 07 173 POP ES ,RESTORE PROCESSOR STATIJ5
00F11F 174 POP DS
OOF2 SF 175 POP DI

··00F3 SE 176 POP 51
OOF4 5D l"(l POP BP
0eF; 5A 178 POP DX
00F6 59 179 POP ex
ooF7 58 180 POP ex
00F8 58 181 POP AX
OOF9 A30200 182 1'101/ AXTEMP .• AX .' SAVE AX
OOFC A10000 183 MOl/ AX, STACK1 ; RESTORE CALL RETURN ADORESS
OOFF 50 184 PUSH ~"< ; PUSH CiU RETURN ADDRESS
0100 AH12131.l 185 MOV AK. AXTEMP ; RESTORE AX
0103 G 186 RET

187
18S ;

189 INTERRUPT 72, CLEAR DISPLfI\" IR0 325911
190

0104 ESCDFF 191 INTR72: CALL SAVE ; ROllT! NE TO SAVf. PROCESSOR Sl ATlJS
a107 BAEAFF 192 MOil D)(,OFFEAH ; 8279 COMMAND WORO
010A A00409 193 MOil AL DIGIT .: SELECTED LED 0 I G Il
0100 EE 194 OUT ox.AL
01eE BAEBfF 195 MOil OK.0FFESB ; 8279 DATA
al11 8000 196 1'101/ ALOOH ; BLANK OUT DIGIT
01B EE 197 OUT DX,AL
0114 E8D5FF 1:38 CALL RESTOR .: ROUTINE TO RES) ORE PROCE5SOk STfn US
0117 CF 199 IRET ; RETURN FkOI'l INTERRUf'l

200
2131
202 INTEkRUPT n, IR1 825911
2133

0118 EB89FF 204 INTR73: CALL SAllE .: ROUTINE 10 SAlit PROCESSOR STAlUS
0118 BflEAFF 205 I'1OV DX,0FFEAH ,8279 COft1ANl) WORD
0UE B13B8 206 1'1011 AL,8!IH i LEO llISPLAY DIGIT 1
0120 A20400 207 MOil DIGIT, AL
13123 EE 2!lB OLiT DX,AL
0124 BAESFF 2139 MOil DX,8FFE8H .' 82(9 DATA
0127 8006 210 1'1011 AL,06fj ; CHARfl(;·'ER "1"
01~ EE 211 OUT DX,AL
91<''11 CD4D 212 INT 77 i 1 IMER DELAY FOR LED ON TIME
012(; EBBDFF 213 CALL RESTOR ; ROUTINE 10 RESTORE PROCI::SSOR STATIJ5
912~ CF 214 IRET ; RETURN FROM INTERRUPT

A-171

AP-59

t1C5-86 ASSEH8ltR TCI59A

LOC 08J LINE SOURCE

215 ;

216
~17 INTERRUPT 74, Ik2 8259F:
218 ;

0130 E8A1FF 219 INTR74: CALL SAVE ; ROUTINE TO SAVE PROCESsOR Sl ATUS
0133 SAEAFF 220 MOY DX,0FFEAH ; 8279 COI'II'IAND WORD
0136 B081 221 I'IOV AL.81H ; LED DISPLAY DIGI"I 2
0138 A20400 222 MOil DIGIT, Al
0138 EE 223 OUT DX,Al
813C IlftESFF 224 MOV DX,0FFE8H ; 8279 DA1A
013FB05B 225 MOil AL,5811 ; CHARACTER "2"
8141 EE 226 OUT DX,Al
8142 CD4I) 227 INT n ; TIMER DELAY FOR LED ON TIME
0144 E9ASFF 229 t'AlL RESTOR ; ROlITIt£ TO RESTORE PROCESSOR SlATU5
0147 cr 229 IRI01 .: RETURN FROM INTERRUPl

238
231 ;

232 ; INTERRUPT 75 .• IR3 8259A
233

8148 E889FF 234 INTR75: CAlL SAVE ; ROUTINE TO SAllE. PROCESSOR STATUS
0148 BAEAFI' 235 I'lO\l D)(,0FFEAH .; 8279 COI'fI1ANI) WORD
914E B082 236 MOil AI., 82H ; LED DISPLAY Dim T 3
9150 A20400 237 110\1 DIGIT, Al
(j153EE 238 OUT DX,Al
9154 SAESFF 239 11011 D)(,0FFESH ; 8279 DATA
015789# 240 MOil AL,4FH ; CHARACTER "3"
9159 EE 241 OUT DX,AL
91~A CD4D 242 INT 77 ; TIMER DELAY FOR LED ON TIME
9151: E88DFF 24~ CAlL RESTOR ; ROUTINE TO RESTORE PROCESSOR STATUS
915F CF 244 IRET ; RE1URN FROM IN1Ek'RUPT

245 ;

246
247 ; INTERRUPT 76, IR4 8259A
248

9169 E871FF 249 INTR76: CALL SAVE ; ROUTINE TO SAVE PROCESSOR 51 ATUS
9163 SAEAFF 259 110\1 D)(,0FFEAH ; 8279 COI'IIfINI) WORD
9166 B983 251 /'IOV fl.,83H ; LED DISPLAY blGIT 4
9168 A20400 252 MOil DIGIT, AL
016B EE 253 OUT D)(,AL
016C SAESFF 254 I'IOY D)(,0FFESH ;82i'9 DATA
016F 8066 255 1'1011 Al,66H ; CHARAtTlR "4"
0171 EE 256 OUT DX,AL
0172 CD4D 257 INT 77 ; lIMER DaAY FOR LEII ON 111'[
0174 E875FF 258 CALL RESTOR ; ROUTINE TO RESTORE PROCESSOR Sl ftTUS
0177 CF 259 IRET ; RETURN FRO/1 I N1 ERRUPT

260
261
262 INTERRUPT 77, mlER bElAY, SOFTWARE CONTROllED
263

81i'8 BA9AFF 264 INTR77: I10Y D)(,0FF9AH ; LOft) COUNTER 1 8253 11 (259 I'ISEC)
9178 8825 265 I10Y Al,25H ; l!!I
0170 EE 266 OUT DX,Al
01lE B909 267 IIJV ALII9H ; I1SB
0180 EE 268 OUT DX,AL
9181 CF 269 IRET ; RETURN FROI'I INlERRUPT

A-ln

AP-59

11C5-86 ASSEt1BLER TCl59A

LOC OB..! LIN:: SOURCE

270
271
272 CODE ENDS .•
",,,,,
~ .. -'

274
0000 275 END START

S't'MBOL TABLE LE.TING
------ ----- -------

NffME TYPE VALUE ATTRIBUTES

??SEG SI:GMENT 5 j ZE =000lJH PARA PIJSLI C
AXTEMP V WORD a002H DATA
CODE. SEGMENT SIZE =0182H PARA
[)ATA SEGMENT SIZE=OOBSH PARA
DIGIT II BYTE 1j0!34H DATA
DUMMY L NEAR B@D2H CODE
EXTRA SEGMENT 51 ZE=9138H PARA
INTR72 L NEAR 91!34H COllE
INn'?:? L NEAR 81181-: CODE
INTR74 L NE.AR 0130H CODE
INTR75 L NEA~' 0l48H CODE
INTR76 L NEAR B160H CODE
INTR?? L NEAR 9l7SH CODE
RESTOR. L NEAR 00ECH CODE
SAVE. L NE'lR OOD4H CODE
SET531 L NEAR 005flH CODE
5ET532 L NEAR 097S}! CODE
SET59A L NEAR 009rH CODE
5ET79 L NEAR 00S1H CODE
STACKl II WORD 009flH DATA
START L NEAR O9OOH CODE
TP72CS V WORD 8l22H EXTRA
TP72IP V WOfi'D 9l2aH EXTRA
TP73CS II WORD 8126H EXTRA
TF'73IP V "'ORD 8124H EXTRA
TP?4CS II WORD 012AH EXTRA
TP741P V WORD 8128H EXTRA
TP75C5 .., WORD 9l2EH EXTRA
TP751P II WORD 012CH EXTRA
TP76(:5 II WORD 0B2H EXTRA
TP761P II WORD 9B0H EXTRA
Trncs II WORD 9B6H EXTRA
TP77IP II WORD flB4H EXTRA
TYPES L NEAR 0fl12H CODE
WAIT79 L NEAR OOB7H CODE

f:SSEMBL \' COMPLETE.. NO ERRORS FOUND

A173/A-174

© Intel Corporation, 1979.

APPLICATION
NOTE

A-175

AP-28A

January 1979

9800587C

AP-28A

Related Intel Publications

MCS-80™ User's Manual, 98-153D

MCS-85TM User's Manual, 98-366C.

MCS-86TM User's Manual, 9800722A.

iSBC 80/20 and iSBC 80/20-4 Single Board Computer Hardware Reference
Manual. 98-317C.

iSBCTM 86/12 Single Board Computer Hardware Reference Manual,
9800645A.

Intel® Multibus™ Specification, 9800683.

A-176

Intel R MUlTIBUS™
Interfacing

AP·28A

Contents

I. INTRODUCTION

II. MULTIBUSTM SYSTEM BUS
DESCRIPTION

OVERVIEW

MULTIBUSTM SIGNAL DESCRIPTIONS

OPERATING CHARACTERISTICS

MULTIBUSTM SLAVE INTERFACE
CIRCUIT ELEMENTS

III. MULTIBUSTM SLAVE DESIGN
EXAMPLE

FUNCTIONAL/PROGRAMMING
CHARACTERISTICS

THEORY OF OPERATION

IV. SUMMARY

A-i77

APPENDIX A
MUL1'IBUSTM PIN ASSIGNMENTS

APPENDIX B
BUS TIMING SPECIFICATIONS

APPENDIXC
BUS DRIVERS, RECEIVERS,
AND TERMINATIONS

APPENDIX D
BUS POWER SUPPLY
SPECIFICATIONS

APPENDIX E
MECHANICAL SPECIFICATIONS

APPENDIX F
MULTIBUSTM SLAVE DESIGN
EXAMPLE SCHEMATIC, 8/16-BIT
VERSION

APPENDIXG
MULTIBUSTM SLAVE DESIGN
EXAMPLE SCHEMATIC, 8-BIT
VERSION

AP-28A

I. INTRODUCTION

A significant measure of the power and flexibility
of the Intel OEM Computer Product Line can be
attributed to the design of the Intel MULTIBUS
system bus. The bus structure provides a common
element for communication between a wide
variety of system modules which include: Single
Board Computers, memory, digital, and analog
I/O expansion boards, and peripheral controllers.

The purpose of this application note is to help you
develop a working knowledge ofthe Intel MULTI­
BUS specification. This knowledge is essential for
configuring a system containing multiple mod­
ules. Another purpose is to provide you with the
information necessary to design a bus interface for
a slave module. One ofthe tools that will be used to
achieve this goal is the complete description of a
MULTIBUS slave design example. Other portions
of this application note provide an in depth
examination of the bus signals, operating charac­
teristics, and bus interface circuits.

This application note was originally written in
1977. Since 1977, the MULTIBUS specification
has been significantly expanded to cover opera­
tion with both 8 and 16-bit system modules and
with an auxiliary power bus. This application
note now contains information on these new
MUL TIBUS specification features.

In addition, a detailed MULTI BUS specification
has also been published which provides the user
with further information concerning MULTIBUS
interfacing. The MULTIBUS specification and
other useful documents are listed in the overleaf of
this note under Related Intel Publications.

II. MULTIBUSTM SYSTEM BUS
DESCRIPTION

Overview

The Intel MULTIBUS signal lines can be grouped
in the following categories: 20 address lines, 16
bidirectional data lines, 8 multilevel interrupt
lines, and several bus control, timing and power
supply lines. The address and data lines are
driven by three-state devices, while the interrupt
and some other control lines are open-collector
driven.

Modules that use the MULTIBUS system bus have
a master-slave relationship. A bus master module
can drive the command and address lines: it can
control the bus. A Single Board Computer is an
example of a bus master.. A bus slave cannot

A-178

control the bus. Memory and I/O expansion
boards are examples of bus slaves. The MULTI­
BUS architecture provides for both 8 and 16-bit
bus masters and slaves.

Notice that a system may have a number of bus
masters. Bus arbitration results when more than
one master requests control of the bus at the same
time. A bus clock is usually provided by one of the
bus masters and may be derived independently
from the processor clock. The bus clock provides a
timing reference for resolving bus contention
among multiple requests from bus masters. For
example, a processor and a DMA (direct memory
access) module may both request control of the
bus. This feature allows different speed masters to
share resources on the same bus. Actual transfers
via the bus, however, proceed asynchronously
with respect to the bus clock. Thus, the transfer
speed is dependent on the transmitting and
receiving devices only. The bus design prevents
slow master modules from being handicapped in
their attempts to gain control of the bus, but does
not restrict the speed at which faster modules can
transfer data via the same bus. Once a bus request
is granted, single or mUltiple read/write transfers
can proceed. The most 0 bvious a pplica tions for the
master-slave capabilities of the bus are multi­
processor configurations and high-speed direct­
memory-access (DMA) operations. However, the
master-slave capabilities of the bus are by no
means limited to these two applications.

MULTIBUS™ Signal Descriptions

This section defines the signal lines that comprise
the Intel MULTIBUS system bus. These signals
are contained on either the PI or P2 connector of
boards compatible with the MULTIBUS specifi­
cation. The PI signal lines contain the address,
data, bus control, bus exchange, interrupt and
power supply lines. The P2 signal lines con tain the
optional auxiliary signal lines. Most signals on
the bus are active-low. For example, a low level on
a control signal on the bus indicates active, while a
low level on an address or data signal on the bus
represents logic "1" value.

NOTE

In this application note, a signal will be
designated active-low by placing a slash (I)
after the mnemonic for the signal.

Appendix A contains a pin assignment list of the
following signals:

AP-28A

MULTIBUS PI Signal Lines-

Initialization Signal Line

INITI

Initialization signal; resets the entire system to
a known internal state. INIT I may be driven by
one of the bus masters or by an external source
such as a front panel reset switch.

Address and Inhibit Lines

ADROI - ADR131

20 address lines; used to transmit the address of
the memory location or I/O port to be accessed.
The lines are labeled ADROI through ADR9/,
ADRAI through ADRF I and ADRlOl through
ADR13/. ADR131 is the most significant bit.
S-bit masters use 16 address lines (ADROI -
ADRF I) for memory addressing and S address
lines (ADROI - ADR7 I) for I/O port selection.
16-bit masters use all twenty address lines for
memory addressing and 12 address lines
(ADROI - ADRB/) for I/O port selection. Thus,
S-bit masters may address 64K bytes of memory
and 256 I/O devices while 16-bit masters may
address 1 megabyte of memory and 4096 1/0
devices. (The SOS6 CPU actually permits 16
address bits to be used to specify I/O devices,
the MULTIBUS specification, however, states
that only the low order 12 address bits can be
used to specify I/O ports.) In a 16-bit system,
the ADROI line is used to indicate whether a low
(even) byte or a high (odd) byte of memory or
I/O space is being accessed in a word oriented
memory or I/O device.

BHENI

Byte High Enable; the address control line
which is used to specify that data will be trans­
ferred on the high byte (DATSI - DATF I) of the
MUL TIBUS data lines. With current iSBC
boards, this signal effectively specifies that a
word (two byte) transfer is to be performed. This
signal is used only in systems which incorporate
sixteen bit memory or I/O modules.

INHlI

Inhibit RAM signal; prevents RAM memory
devices from responding to the memory address
on the system address bus. INHlI effectively
allows ROM memory devices to override RAM
devices when ROM and RAM memory are

assigned the same memory addresses. INHlI
may also be used to allow memory mapped I/O
devices to override RAM memory.

INH21

. Inhibit ROM signal; prevents ROM memory
devices from responding to the memory address
on the system address bus. INH21 effectively
allows auxiliary ROM (e.g., a bootstrap pro­
gram) to override ROM devices when ROM and
auxiliary ROM memory are assigned the same
memory addresses. INH21 may also be used to
allow memory mapped I/O devices to override
ROM memory.

Data Lines

DATOI - DATFI

16 bidirectional data lines; used to transmit or
receive information to or from a memory loca­
tion or I/O port. DATF I being the most signifi­
cant bit. In S-bit systems, only lines DATOI -
DAT7I are used (DAT7I being the most signi­
ficant bit). In 16-bit systems, either S or 16 lines
may be used for data transmission.

Bus Priority Resolution Lines

BCLKI

Bus clock; the negative edge (high to low) of
BCLKI is used to synchronize bus priority re­
solution circuits. BCLKI is asynchronous to the
CPU clock. It has a 100 ns minimum period and
a 35'1l1 to 65% duty cycle. BCLK/ may be slowed,
stopped, or single stepped for debugging.

CCLKI

Constant clock; a bus signal which provides a
clock signal of constant frequency for unspeci­
fied general use by modules on the system bus.
CCLKI has a minimum period of 100 ns and a
35% to 65% duty cycle.

BPRNI

A-179

Bus priority in signal; indicates to a particular
master module th,flt no higher priority module
is requesting use of the system bus. BPRN I is
synchronized with BCLK/. This signal is not
bused on the backplane.

AP~28A

BPROI

Bus priority ollt signal; used. with serial (daisy
chain) bus priority resolution schemes. BPROI
is passed to the BPRNI input of the master
module with the next lower bus priority. BPROI
is synchronized with BCLK/. This signal is not
bused on the backplane.

BUSYI

Bus busy signal; an open collector line driven
by the bus master currently in control to indicate
that the bus is currently in use. BUSY/prevents
all other master modules from gaining control
of the bus. BUSY I is synchronized with BCLKI.

BREQI

Bus request signal; used with a parallel bus
priority network to indicate that a particular
master module r(;)quires use of the bus for one
or more data tran~fers. BREQI is synchronized
with BCLKI. This signal is not bused on the
backplane.

CBRQI

Common bus request; an open-collector line
which is driven by all potential bus masters
and is used to inform the current bus master
that another master wishes to use the bus. If
CBRQi is high, it indicates to the bus master
that no other master is requesting the bus, and
therefore, the present bus master can retain the
bus .. This saves the bus exchange overhead for
the current master.

Information Transfer Protocol Lines

A bus master provides separate read/write
command signals for memory and I/O devices:
MRDC/, MWTC/, lORCI and IOWC/, as ex­
plained below. When a read/writecommand is
active, the address signals must be stabilized at all
slaves on the bus. For this reason, the protocol
requires that a bus master must issue address
signals (and data signals for a write operation) at
least 50 ns ahead of issuing a read/write command
to the bus, initiating the data transfer. The bus
master must keep address signals unchanged until
at least 50 ns after the read/write command is
turned off, terminating the data transfer.

A bus slave must provide an acknowledge signal to

the bus master in response to a read or write
command signal.

MRDCI

Memory read command; indicates that the
address of a memory location has been placed
on the system address lines and specifies that
the contents (8 or 16 bits) of the addressed
location are to be read and placed on the system
data bus. MRDC/ is asynchronous with respect
to BCLKI.

MWTCI

Memory write command; indicates that the
address of a memory location has been placed
on the system address lines and that data (8 or
16 bits) has been placed on the system data bus.
MWTCI specifies that the data is tq be written
into the addressed memory location. MWTCI is
asynchronous with respect to BCLKI.

lORCI

110 read command; indicates that the address
of an input port has been placed on the system
address bus and that the data (8 or 16 bits) at
that input port is to be read and placed on the
system data bus. IORCI is asynchronous with
respect toBCLKI. .

A-I80

lOWCI

I/O write command; indicates that the address
of an output port has been placed on the system
address bus and that the contents ofthe system
data bus (8 or 16 bits) are to be output to the
address port. IOWCI is asynchronous with
respect to BCLKI.

XACKI

Transfer acknowledge signal; the required
response of .a slave board which indicates that
the specified read/write operation has been
completed. That is, data has been placed on, or
accepted from, the system data bus Hnes.
XACKI is asynchronous with respect to BCLKI.

Asynchronous Interrupt Lines

INTOI - INT7 I

8 Multi·level, parallel interrupt request lines;

AP-28A

used with a paralleL interrupt resolution net­
work. INTO. has the highest priority, while
INT7/ has lowest priority. . Interrupt lines
should be driven with open collector drivers.

INTAI

Interrupt acknuwledge; an interrupt acknowl­
edge line (INTA/), driven by the bus master,
requests the transfer of interrupt information
onto the bus from slave priority interrupt con­
trollers (8259s or 8259As). The specific informa­
tion timed onto the bus depends upon the
implementation of the interrupt scheme. In
general, the leading edge of INTAI indicates
that the address bus is active while the trailing
edge indicates that data is present on ~he data
lines.

MULTIBUS P2 Signal Lines - The signals
contained on the MULTIBUS P2 auxiliary con­
nector are used primarily by optional power
back-up circuitry for memory protection. P2
signals are not bused on the backplane, and
therefore, require a separate connector for each
board using the P2 signals. Present iSBC boards
have a slot in the card edge and should be used
with a keyed P2 edge connector. Use of the P2
signal lines is .optional.

ACLO

AC Low; this signal generated by the power
supply goes high when the AC line voltage
drops below a certain voltage (e.g., 103v AC in
115v AC line voltage systems) indicating D.C.
power will fail in 3 msec. ACLO goes low when
all D.C. voltages return to approximately 95%,
of the regulated value. This line must be pulled
up by the optional standby power source, if one
is used.

PFINI

Power fail interrupt; this signal interrupts the
processor when a power failure occurs, it is
driven by external power fail circuitry.

PFSNJ

Power fail sense; this line is the output".of a
latch which indicates that a power failure has
occurred. It is reset by PFSR/. The power fail

A-lSI

sense latch is part of external power fail cir­
cuitry and must be powered by the standby
power source.

PFSRi

Puu'er fail sellse reset; this line is used to reset
the power fail sense latch (PFSNi).

MPRO/

Memory protect; prevents memory operation
during period of uncertain DC power, by in­
hibiting memory requests. MPRO/ is driven
by external power fail circuitry.

ALE

Address latch enable; generated by the CPU
(8085 or 8086) to provide an auxiliary address
latch.

HALT!

Halt; indicates that the master CPU is halted.

AUX RESET!

Auxiliary Reset; this externally generated sig­
nal initiates a power-up sequence.

WAIT!
Bus master wait state; this signal indicates
that the processor is in a wait state.

Reserved - Several· Pi and P2 connector bus
pins are.unused. However, they should be regard­
ed as reserved for dedicated use in future Intel
products,

Power Supplies - The power supply bus pins
are:detailed in Appendix A which contains the
pin assignment of signals on the MULTIBUS
backplane.

It is the designer's res,pousibility to provide
adequate bulk decoupling on the board to avoid
current surges on the power supply lines. It is also
recommended that you provide high frequency

AP .. 28A

deco.upling fur the lo.gic un yo.ur bo.ard .. Values. 0..£

22uF fDr +5v and +I2v pins and lOuFfDr -5v a~d
-I2v pins are typical Dn iSBC bo.ards.

('

. Operating Charac,teristics

BeYDnd the definitio.n Df the MULTIBUS signals
themselves, it is impurtant to. examine the
o.perating characteristics uf the bus. The AC
requirements uutline the timing ufthe bus signals
and in particular, define the relatiunships between
the vario.us bus signals. On the uther hand, the DC
requirements specify the bus driver character­
istics, maximum bus luading per buard, and the
pull-up/do.wn resisto.rs.

The AC requirements are best presented by a
discussio.n o.f the relevant timing diagrams.
Appendix B co.ntains a list uf the MULTIBUS
timing specifications. The full owing sectiDns will
discuss data transfers, inhibit uperatio.ns, inter­
rupt operatio.ns, MULTIBUS multi-master o.pera­
tio.n and pDwer fail co.nsideratio.ns.

Data Transfers - Data transfers on the MULTI­
BUS system bus o.ccur with a maximum band­
width Df 5 MHz fur single 0.1' multiple read/write
transfers. Due to. bus arbitrati,Qn and memo.ry
access time, a typical maximum transfer rate is
Dften Dn the Drder o.f 2 MHz.

Read Data

Figure I sho.ws the read DperatiDn AC timing
diagram. The address must be stable (tAS) fDr a
minimum Df 50 ns befDre cDmmand· (IORC/ Dr
MRDC/). This time is typically used by the bus
interface to' decDde the address and thus prDvide
the required device selects. . The device selects
establish the data' paths un the user system in
anticipatiDn o.f the strDbe signal (cDmmand)
which will fo.llDW. The minimum cDmmand pulse
width is 100 ns. The address must remain stable
fDr at least 50 ns fo.llDwing the co.mmand (tAH): '
Valid data sho.uld nut bedriven unto. the qus prio.r
to. cDmmand, and must nut be remDved until the
co.mmand is cleared. The XACK/ signal, which is
a respDnse indicating the specified read/w:rite
Dperatio.n has been cDmpleted,must cDincide'or
fDllo.w bDth the read access and valid d~ta (fDXL)­
XACK/ must be held until the cDmma:ndis cleared
(tXAH)-

A~182

10RCI

MRDel

-tcMO-----..

Flgur!l1_ .Read AC Timing

Write Data;

The write o.peratiDn AC timing diagram is shDwn
in Figure 2: During a write data transfer, valid
data must be presented simultaneDusly with a
stable address. Thus, the write data setup time
'(tDS) has the same requirement as the address
setup time (tAS)' The requirement fDr stable data
bo.th befo.re and after cQmmand(IOWC/ or
MWTC/) enables the 'bus interface circuitry to.
latch data o.n.either the leading 0.1' trailing edge Df
cDmmand;·· •

Figure 2. Write AC Timing

Data Byte Swapping in 16-bit Systems

MASTER
TO

SLAV!;

A IS-bit master may transfer data un the MULTI­
BUS data lines using 8~bit or IS-bit paths
depending un whether a byte 0.1' wo.rd (2 byte)
o.peratiDn has been specified. (A wo.rd transfer
specified with an Ddd 110 0.1' memo.ry address will
actually be executed as two. single byte transfers.)
An.8:bit master may o.nly perfo.rm byte transfers
un the MULT!BUS data lines DATOI - DAT7I.

In o.rder to. maintain co.mpatibility with Dlder
8·lJitmasters and slaves, a byte sw'apping QUfrer
is included in all new 16-bit masters and IS-bit
slaves. Inthe iSBOpto.duct line, all byte transfers '
will take place un the IDW 8 data·lines DATOI .
DAT7I. Figure 3 co.ntains a example o.f 8/IS·bit

AP-28A

data driver logic for I6-bit master and slave
systems. In the S/16-bit system, there are three
sets of buffers; the lower byte buffer which
accesses DATOI - DAT7I, the upper byte buffer
which accesses DATSI - DATF/, and the swap
byte buffer which accesses the MULTI BUS data
lines DATOI - DAT7I and transfers the data
to/from the on-board data bus lines DS - DF.

Figure 4 summarizes the Sand 16-bit data paths
used for three types of MULTI BUS transfers. Two
signals control the data transfers.

Byte High Enable (BHEN/) active indicates that
the bus is operating in sixteen bit mode, and
Address Bit 0 (ADRO/) defines an even or odd byte
transfer address.

On the first type of transfer, BHENI is inactive,
and ADROI is inactive indicating the transfer of
an even eight bit byte. The transfer takes place
across data lines DATOI - DAT7I.

On the second type oftransfer, BHEN I is inactive,
and ADROI is active indicating the transfer of a
high (odd) byte. On this type of transfer, the odd
(high) byte is transferred through the Swap Byte
Buffer to DATOI - DAT7I. This makes eight bit
and sixteen bit systems compatible.

16-BIT DEVICE MULTIBUS BHENI

DATOI - DAT7!

H

DATFI

H

L

BUFFERED
BHENI

ADRO

ADROI

H

L

H

USER BUS
LOWER
BYTE
BUFFER

00·07 • •

DIRECTION

SWAP
BYTE
BUFI'"ER

08·0> +-------+1

8287

A

OE T

MUL TlBUS

DATO/-DAT7/

DATOI

QATF!

UPPER
BYTE
BUFFER

Figure 3. a/16-Bit Data Drivers

MULTIBUS
TRANSFER
DATA PATH

8-BIT.
DATOI - DAT71

8-BIT.
DATO/- DAT71

16-8IT.
DATOI - DATFI

DEVICE
BYTE

TRANSFERRED

EVEN

ODD

EVEN
AND
ODD

Figure 4. a/16-Bit Device Transfer Operation

A-I83

AP-28A

The third type of transfer is a 16' bit (word)
transfer. This is indicated by BHEN/ being
active, and ADROj being inactive. On this type of
transfer, the low (even) byte is transferred on
DATO/ - DAT7I and the high (odd) byte is
transferred on DATS/ - DATF/.
Note that the condition when both BHEN/ and
ADROI are active is not used with present iSBC
boards. This condition could be used to transfer a
high odd byte of data on DAT8/ - DATF/, thus
eliminating the need for the swap byte buffer.
However, this is not a recommended transfer type,
because it eliminates the capability of communi­
cating with 8-bit modules.

Inhibit Operations - Bus inhibit operations are
required by certain bootstrap and memory mapped
I/O configurations. The purpose of the inhibit
operation is to allow a combination of RAM , ROM,
or memory mapped 110 to. occupy the same
memory address space. In the case of a bootstrap,
it may be desirable to have both ROM and RAM
memory occupy the same address space, selecting
ROM instead of RAM for low order memory only
when the system is reset. A system designed to use

memory mapped I/O, which has actual memory
occupying the memory mapped I/O address
space, may need to inhibit RAM or ROM memory
to perform its functions.

There are two essential requirements for a success­
ful inhibit operation. The first is that the inhibit
signal must be asserted as soon as possible, within
a maximum of 100 ns (tCl), after stable address.
The second requirement for a successful inhibit
operation is that the acknowledge must be delayed
(tXACKB) to allow the inhibited slave to ter­
minate any irreversible timing operations in­
itiated by detection of a valid cornmand prior to its
inhibit.

This situation may arise because a command can
be asserted within 50 ns after stable address (tAS)
and yet inhibit is not required until 100 ns (tID)
after stable address. The acknowledge delay time
(tXACKB) is a function of the cycle time of the
inhibited slave memory. Inhibiting the iSBC 016
RAM board, for example, requires a minimum of
1.5 usec. Less time is typically needed to inhibit
other memory modules. For example, the iSBC 104
board requires 475 ns.

Figure 5 depicts a situation in which both RAM

ADDRESSI ~.. 1---'----------11
. / 1 ,.---- READ DATA

SLAVE A
(RAM)

SLAVE B
(PRO",,)

DATAl llL...-
i
________ --11

COMMAND!

I 1 ~I -------'
DRIVER I I I ----I ENABLE I /" _

!
XACKI

LOCAL
SELECT I

DRIVER
ENABLE!

XACKI

I RAM XACK IF NOT INHIBITED I
f---C------~

---I ~\ I 1---J 'XACKA

\I~I ----~\~(I~--------------

\ 1----- 'xm; \--1

\ 1----'IO-~} I r
INH11 \ ~ ! ---.. ~~~.~------------------I

LOCAL
SELECT I

Figure 5. InhibilTiming

A-184

AP-28A

and PROM memory have the same memory
addresses. In this case, PROM inhibits RAM,
producing the effect of PROM overriding RAM.
After address is stable, local selects are generated
for both the PROM and the RAM. The PROM local
select produces the INHlI signal which then
removes the RAM local select and its driver enable.
Because the slave RAM has been inhibited after it
had already begun its cycle, the PROM XACKI
must be delayed (tXACKB) until after the latest
possible acknowledgement from the RAM
(tXACKA)·

Interrupt Operations - The MULTIBUS inter­
rupt lines INTOI - INT71 are used by a MULTI­
BUS master to receive interrupts from bus slaves,
other bus masters or external logic such as power
fail logic. A bus master may also contain internal
interrupt sources which do not require the bus
interrupt lines to interrupt the master. There are
two interrupt implementation schemes used by
bus interrupts, Non Bus Vectored Interrupts and
Bus Vectored Interrupts. Non Bus Vectored
Interrupts do not convey interrupt vector address
information on the bus. Bus Vectored Interrupts
are interrupts from slave Priority Interrupt Con­
trollers (PICs) which do convey interrupt vector

sUS MASTER

I I
INTX/

MASTER CPU

DATA
BUS SLAVE

INTAI iNTRI
BUS

1

INTERRUPT INTERRUPT

~ REQUEST
FLlP-

I, PROGRAMMABLE INTERRUPT J FLOP

CONTROLLER R

6 5 4 3 2 1 IORCI 1 FROM OR
MASTER lowe!

*4 l __ yoe
-- . . .

- - - -

INTO/

INT1!

INT2I

INTJI

INT7!

address information on the bus.

Non Bus Vectored Interrupts

N on Bus Vectored Interrupts are those interrupts
whose interrupt vector address is generated by the
bus master and do not require the MULTIBUS
address lines for transfer of the interrupt vector
address. The interrupt vector address is generated
by the interrupt controller on the master and
transferred to the processor over the local bus. The
source of the interrupt can be on the master module
or on other bus modules, in which case the bus
modules use the MULTIBUS interrupt request
lines (INTOI - INT7/) to generate their interrupt
requests to the bus master. When an interrupt
request line is activated, the bus master performs it
own interrupt operation and processes the inter·
rupt. Figure 6 shows an example of Non Bus
Vectored Interrupt implementation.

Bus Vectored Interrupts

Bus Vectored Interrupts (Figure 7) are those inter­
rupts which transfer the interrupt vector address
along the MULTIBUS address lines from the
slave to the bus master using the INTAI command
signal for synchronization.

AEMOVED BY BUS
MASTER COMMAND
TO SLAVE

'--I

BUS SLAVE

INTERRUPT INTERRUPT

I--- ~ REQUEST
f-FLlP-

FLOP
R

IORCI t FROM OR
MASTER lowel

l /10e
- . . .

1- - - - -

~

~
~

HI +5 f-a.
::>",
o:w

+5 o:z
~,:::i

~ +5 ~

~ +5

Figure 6. Non Bus Vectored Interrupt Implementation

A-IS5

AP-28A

US MASTER BUS SLAVE

I
INTERRUPT
STROBE . INTERRUPT MASTER CPU

(IORC! REQUEST
FROM OR FLlP-

IAASTER lowe I) . R
FLOP

DATA INTRI

~ BUS

INT

I ~
7654'210J

PROGRAMMABLE INTERRUPT PROGRAMMABLE INTERRUPT .
CONTROL.LER CONTROLLER

DATO/·7/ 0-7 INT DATO/-l/

- - -- --t=- INTERRUPT ACKNOWLtDGE (INTA/)
L-J-

INTERRUPT REQUEST (INTx/)

INTERRUPT CODE (ADRa/· ADRA/)

INTERRUPT VECTOR ADDRESS (DATA BUS)

MUl TIBUS TIMING

INTRI

INTAI

'-__ --------------~r­
-1 L.... ___ ---I

ADR8/A __________________________ ~X~ ______ '_N_TR_X_A_D_D_R_ES_S ____ __J)(~ ________________________ __

DATO/-7 ___________________________________ __Jx RESTARTN)(~ ________________________ _

XACKI u
*-----~\ / BUS LOCKI

~ ____J * NON MUl TIBUS SIGNAL

Figure 7. Bus Vectored Interrupt Logic (With 2 INTAI Timing Diagram)

When an interrupt request from the MULTIBUS
interrupt lines INTOI - INT7 I occurs, the interrupt
control logic on the bus master interrupts its
processor. The processor on the bus master
generates an INTAI command which freezes the
state of the interrupt logic on the MULTIBUS
slaves for priority resolution. The bus master also
locks (retains the bus between bus cycles) the
MULTIBUS control lines to guarantee itself
consecutive bus cycles. After the first INT AI
command, the bus master's interrupt control logic
puts an interrupt code on to the MULTIBUS
address lines ADR81 - ADRA/. The interrupt code
is the address of the highest priority active inter­
rupt request line. At this point in the Bus Vectored

A-186

Interrupt procedure, two different sequences could
take place. The difference occurs, because the
MULTI BUS specification can support masters
which generate one additional INTAI (8086
masters) or two additional INTA/s (8080A and
8085 masters).

If the bus master generates one additional INTA/,
this second INTAI causes the bus slave interrupt
control logic to transmit an interrupt vector 8-bit
pointer on the MULTIBUS data lines. The vector
pointer is used by the bus master to determine the
memory address of the interrupt service routine.

If the bus master generates two additional
INTA/s, these two INTAI commands allow the

AP-28A

bus slave to put a two byte interrupt vector address
. on to the MULTIBUS data lines (one byte for each
INTA/). The interrupt vector address is used by
the bus master to service the interrupt.

The MULTIBUS specification provides for only
one type of Bus Vectored Interrupt operation in a
given system. Slave boards which have an 8259
interrupt controller are only capable of 3 INTAI
operation (2 additional INTA/s after the first
INTAI). Slave boards with the 8259A interrupt
controller are capable of either 2 INTAI or 3
INTAI operation. All slave boards in a given
system must operate in the same way (2 INTA/s or
3 INTA/s) if Bus Vectored Interrupts are to be
used. However, the MULTIBUS specification
does provide for Bus Vectored Interrupts and Non
Bus Vectored Interrupts in the same system.

MULTIBUS Multi-Master Operation - The
MUL TIBUS system bus can accommodate several
bus masters on the same system, each one taking
control of the bus as it needs to affect data trans­
fers. The bus masters request bus control through
a bus exchange sequence.

Two bus exchange priority resolution techniques
are discussed, a serial technique and a parallel
technique. Figures 8 and 9 illustrate these two
techniques. The bus exchange operation dis­
cussed later is the same for both techniques.

Serial Priority Technique

Serial priority resolution is accomplished with a
daisy chain technique (see Figure 8). The priority
input (BPRN/) of the highest priority master is
tied to ground. The priority output (BPRO/) of the

HIGHEST
PRIORITY
MASTER

BPRN!

highest priority master is then connected to the
priority input (BPRNI) of the next lower priority
master, and so on. Any master generating a bus
request will set its BPROI signal high to the next
lower priority master. Any master seeing a high
signal on its BPRNI line will sets its BPROI line
high, thus passing down priority information to
lower priority masters. In this implementation,
the bus request line (BREQ/) is not used outside of
the individual masters. A limited number of
masters can be accommodated by this technique,
due to gate delays through the daisy chain. Using
the current Intel MULTIBUS controller chip on
the master boards up to 3 masters may be accom­
modated if a BCLKI period of 100 ns is used. If
more bus masters are required, either BCLKI must
be slowed or a parallel priority technique used.

Parallel Priority Technique

In the parallel priority technique, the priority is
resolved in a priority resolution circuit in which
the highest priority BREQI input is encoded with
a priority encoder chip (74148). This coded value is
then decoded with a priority decoder chip (74S138)
to activate the appropriate BPRNI line. The
BPROI lines are not used in the parallel priority
scheme. However, since the MULTIBUS back­
plane contains a trace from the BPRNI signal of
one card slot to the BPROI signal of the adjacent
lower card slot, the BPROI must be disconnected
from the bus on the board or the backplane trace
must be cut. A practical limit of sixteen masters
can be accommodated using the parallel priority
technique due to physical bus length limitations.
Figure 9 contains the schematic for a typical
parallel resolution network. Note that the parallel
priority resolution network must be externally
supplied.

LOWEST
PRIORITY
MASTER

Figure 8. Serial Priority Technique

A-187

AP-28A

,,-<

NO ,
PRIORITY
(HIGHESTI

SPRN

BREO;

r<'

0----,-

NO 2
PRIORITY

SPRN/

....
BAEO' 1

BUS

r-<

NO ,
PRIORITY

SPAN}

BREOI ()-----

---c

NO ,
PRIORITY
ILOWESTI

SPANI

BREOI p-

PRIORITY
RESOLVER

, 'I>-
'-<oS

, E
' 0

6 p------
r--c ; AN A E ; 1>-\

OTHER f ---c 4 ' C ' C 4 p-- OTHER
MASTER 00 00 MASTER

INPUTS l--C 3
A 0 A D 3 P-- J OUTPUTS , E

' E 1--< 2
: A : A 2 I>-

'-<' ,
,----- f-<:O l4148 14S U8 0

Figure 9. Parallel Priority Technique

MULTIBUS Exchange Operation - A timing
diagram for the MULTIBUS exchange operation
is shown in Figure 10. This implementation
example uses a parallel resolution scheme, how­
ever, the timing would be basically the same for
the serial resolution scheme.

In this example, master A has been assigned a
lower priority than master B. The bus exchange
occurs because master Bgenerates a bus request
during a time when master A has control of the
bus.

The exchange process begins when master B
req uires the bus to access some resource such as an
110 or memory module while master A controls the
bus. This internal request is synchronized with
the trailing edge (high to low) of BCLKI to
generate a bus request (BREQ/). The bus priority
resolution circuit changes the BPRNI signal from
active (low) to inactive (high) for master A and
from inactive to active for master B. Master A
must first complete the current bus command if
one is in operation. After master A completes the
command, it sets BUSY I inactive on the next
trailing edge ofBCLK/. This allows the actual bus
exchange to occur, because master A has relin­
quished control of the bus, and master B has been
granted its BPRN/. During this time, the drivers

A-188

for master A are disabled. Master B must take
control of the bus with the next trailing edge of
BCLKI to complete the bus exchange. Master B
takes control by activating BUSYI and enabling
its drivers.

It is possible for master A to retain control of the
bus and prevent master B from getting contro!'
Master A activates the Bus Override (or Bus Lock)
signal which keeps BUSY I active allowing con­
trol of the bus to stay with master A. This
guarantees a master consecutive bus cycles for
software or hardware functions which require
exclusive, continuous access to the bus.

Note that in systems with only a single master it is
necessary to ground the BPRN I pin of the master,
if slave boards are to be accessed. In single board
systems which use a CPU board capable of Bus
Vectored Interrupt operation, the BPRN I pin must
also be grounded.

In a single master system bus transfer efficiency
may be gained if the BUS OVERRIDE signal is
kept active continuously. This permits the master
to maintain control of the bus at all times, there­
fore sa ving the overhead of the master reacquiring
the bus each time it is needed.

The CBRQI line may be used by a master in
control of the bus to determine if another master

AP-28A

MASTER A

PRIORITY
RESOLUTION

SHOWN
HERE

M.t.STER B

1

MASTER A

EXCHANGE
OF BUS
SHOWN

HERE

MASTER B

BCLKI

TRANSFER
REOUEST I

BREOI

SPRNI

TRANSFER
REOUEST I

BREDI

SPRN!

• NOTE BUS PRIORITY MUST BE RESOLVED
WITHI'N ONE BCLKI PERIOD

BUSY I

ADDRESSI ACTIVE STATE

COMMAND! ACTIVE

ORIVER
ENABLE!

HIGH IMPEDENCE
ADDRESSI

HIGH IMPEOENCE
COMMAND!

DRIVER
ENABLEI

MASTER B
ON BUS

(LOW I

(LOWI

HIGH IMPEDENCE
STATE

HIGH IMPEDENCE

Figure 10. Bus Control Exchange Operation

requires the bus. If a master cUlTently in control of
the bus sees the CBRQI line inactive, it will
maintain control of the bus between adjacent bus
accesses'. Therefore, when a bus access is required,
the master saves the overhead of reacquiring the
bus. If a current bus master sees the CBRQI line
active, it will then relinquish control of the bus
after the current bus access and will contend for
the bus with the othermaster(s) requiring the bus.
The relative priorities of the masters will deter·
mine which master receives the bus.

A-189

Note that except for the BUS OVERRIDE state, no
single master may keep exclusive control of the
bus. This is true because it is impossible for the
CPU on a master to require continuous access to
the bus. Other lower priority masters will always
be able to gain access to the bus between accesses
of a higher priority master.

Power Fail Considerations - The MULTIBUS
P2 connector signals provide a means of handling
power failures. The circuits required for power

AP-28A

AC LINE

115 VAC

ACLO

+ 5V Vee

PFINI

PFSNI

MPROI

INITI

I(On'MIN ·1....-100n5 MIN~
1\\\\\\\\\\\\\\ . -I -

14---5mSMIN~1

POWER DOWN POWER UP

Figure 11. Power Fail Timing Sequence

failure detection and handling are optional and
must be supplied by the user. Figure 11 shows
the timing of a power fail sequence.

The power' supply monitors the AC power level.
When power drops below an acceptable value, the
power supply raises ACLO which tells the power
fail logic that a minim um of three milliseconds will
elapse before DC power will (all below regulated
voltage levels. The power fail logic sets a sense
latch (PFSN/) and generates an interrupt (PFIN /)
to the processor so the processor can store its
environment. After a 2.5 millisecond timeout, the
memory protect signal (MPRO/) is asserted by the
power fail logic preventing any memory activity.
As power falls, the memory goes on standby
power. Note that the power fail logic must be
powered from the standby source.

As the AC line revives, the logic voltage level is
monitored by the power supply. After power has
been at its operating level for one millisecond
minimum, the power supply sets the signal ACLO
low, beginning the restart sequence. First, the
memory protect line (MPRO/) then the initialize
line (INIT /) become inactive. The bus master now
starts runnin.g; The bus master checks the power
fail latch (PFSN/) and, ifitfinds it set, branches to

A-190

a power up routine which resets the latch (PFSR/),
restores the environment, and resumes execution.

Note that INIT/ is activated only after DC power
has risen to the regulated voltage levels and must
stay low for five milliseconds minimum before the
system is allowed to restart. Alternatively, IN IT /
may be held low through an open collector device
by MPRO/.

How the power failure equipmentis configured is
left to the system designer. The backup power
source may be batteries located on the memory
boards or more elaborate facilities located off­
board. The location of the power- fail logic
determines which MULTI BUS power fail lines are
used. Pins on the P2 connector have been specified
for the power failure functions for use as needed.

To further clarify the location and use ofthe power
fail circuitry, an example of a typical power fail
system block diagram is shown in Figure 12. A
single board computer and a slave memory board
are contained in the system. It is desired to power
the memory circuit elements of the memory board
from auxiliary power. The single board computer
will remain on the main power supply. Toac­
complish this, user supplied. power fail logic and

AP-28A

* USER SUPPLIED

Figure 12. Typical Power Fail System Block Diagram

an auxiliary power supply have been included in
the system.

The single board computer is powered from the PI
power lines and accesses the P2 signal lines
PFIN/, PFSNI and PFSRI (only the P2 signal
lines used by a particular functional block are
shown on the block diagram). The PFSRI line is
driven from two sources: a front panel switch and
the single board computer. The front panel switch
is used during normal power-up to reset the power
fail sense latch. The single board computer uses
the PFSRI line to reset the latch during a power-up
sequence after a power failure. Current single
board computers must access the PFSNI and
PFSRI signals either directly with dedicated
circuitry and a P2 pin connection or through the
parallelliO lines with a cable connection from the
parallel 110 connector to the P2 connector.

The slave memory board uses both the PI and P2
power lines, the P2 power lines are used (at all
times) to power the memory circuit elements and
other support circuits, the PI power lines power all
other circuitry. In addition, the MPROI line is
input and used to sense when memory contents
should be protected.

The power fail logic contains the power fail sense
latch, and uses the PFSR! and ACLOlines for
inputs and the PFINI PFSN/, and MPROI lines
for outputs. The power fail logic must be powered
by the P2 power lines.

A-191

DC Requirements - The drive and load charac­
teristics of the bus signals are listed in Appendix
C. The physical locations of the drivers and loads,
as well as the terminating resistor value for each
bus line, are also specified. Appendix D contains
the MULTIBUS power specifications.

MULTIBUS™ Slave Interface
Circuit Elements

There are three basic elements of a slave bus
interface: address decoders, bus drivers, and
control signal logic. This section discusses each of
these elements in general terms. A description of a
detailed implementation of a slave interface is
presented in a later section of this application note.

Address Decoding - This logic decodes the
appropriate MULTIBUS address bits into.RAM
requests, ROM requests, or 110 selects. Care must
be taken in the design of the address decode logic
to ensure flexibility in the selection of base address
assignments. Without this flexibility, restrictions
may be placed upon various system configura­
tions. Ideally, switches and jumper connections
should be associated with the decode logic to
permit field modification of base address assign­
ments.

The initial step in designing the address decode
portion of a MULTIBUS interface is to determine
the required number of unique address locations.
This decision is influenced by the fact that
address decoding is usually done in two stages.
The first stage decodes the base address, pro­
ducing an enable for the second stage which
generates the actual device selects for the user
logic. A convenient implementation of this two
stage decoding scheme utilizes a pair of decoders
driven by the high order bits of the address for the
first stage and a second decoder for the low order
bits of the address bus. This technique forces the
number of unique address locations to be a power
of two, based at the address decoded by the first
stage. Consider the scheme illustrated in Figure
13.

As shown in Figure 13, the address bits A4 -ABare
used to produce switch selected outputs of the first
stage of decoding. The 1 out of 8 binary decoders

AP-28A

have been used. The top decoder decodes address
lines A4 . A 7, and the bottom decoder decodes
address lines A8' A B. If only address lines AO' A 7
are being used for device selection, as in the case of
I/O port selection in 8-bit systems, the bottom
decoder may be disabled by setting switch S2 to the
ground position. Address lines A7 and A B drive
enable inputs E2 or E3 of the decoders. The
address lines AO - A3 enter the second stage
address decoder to produce 8 user device selects.
The second stage decoder must firstbe enabled by
an address that corresponds to the switch-selected
base address.

Address decoding must be completed before the
arrival of a command. Since the command may
become active within 50 ns after stable address,
the decode logic should be kept simple with a
minimal number of layers of logic. Furthermore,
the timing is extremely critical in systems which
make use of the inhibit lines.

A linear or unary select scheme in which no binary
encoding of device address (e.g., address bit AO
selects device 0, address bit Al selects device 1,
etc.) is performed is not recommended because the
scheme offers no protection in case multiple

AD ----------------1Ao
AT Al
A2 A2
A3 E2 E3

8205
DECODER

Ei

oso
os,
os,

-OS3
os,
g~5
DS~

SECOND STAGE USER
DEVICE, SELECTS

A4-----~AO
AS AT
A6 A2

A7 E2.E3

8205
DECODER

Ei

FIRST STAGE BASE
ADDRESS DECODER

SWITCH
S,

74532

Figure 13. TwoSlage Decoding Scheme

devices are simultaneously selected, and because
the addressing within such a system is restricted
by the extent of the address space occupied by such
a scheme.

Data Bus Drivers - For user designed logic
which simply receives data from the MULTIBUS
data lines, this portion of the bus interface logic
may only consist of buffers. Buffers are required
to ensure that maximum allowable bus loading is
not exceeded by the user logic.

In systems where the user designed logic must
placedata onto the MULTIBUS data lines, three­
state drivers are required. These drivers should be
enabled only when a memory read command
(MRDC/) or an I/O read command (IORC/) is
present and the module has been addressed.

When both the read and write functions are re­
quired, parallel bidirectional bus drivers (e.g., Intel
8226,8287, etc.) are used. A note of caution must be
included for the designer who uses this type of
device. A problem may arise if data hold time
requirements must be satisfied for user logic
following write operations. When bus commands
are used to directly produce both the chip select for
the bidirectional bus driver and a strobe to a latch
in the user logic, removal of that signal may not
provide the. user's latch with adequate data hold
time. Depending on the specifics of the user logic,
this problem may be solved by permanently
enabling the data buffer's receiver circuits and
controlling only the direction of the buffers.

Control Signal Logic - The control signal logic
consists of the circuits that forward the I/O and
memory read/write commands to their respective
destinations, provide the bus with a transfer
acknowledge response, and drive the system
interrupt lines.

Bus Command Lines

The MUL TIBUS information transfer protocol
lines (MRDC/, MWTC/, IORD/. and IOWC/)
should be buffered by devices with very high speed
switching. Because the bus DC requirements
specify that each board may load these lines with
2;0 rnA, Schottky devices are recommended. LS
devices are not recommended due to their poor
noise immunity. The commands should be gated

A-I92

AP-28A

with a signal indicating the base address has been
decoded to generate read and write strobes for the
user logic.

Transfer Acknowledge Generation

The user interface transfer acknowledge genera·
tion logic provides a transfer acknowledge re­
sponse, XACK/, to notify the bus master that write
data provided by the bus master has been accepted
or that read data it has requested is available on
the MULTIBUS data lines. XACK/ allows the bus
master to conclude its current instruction.

Since XACK/ timing requirements depend on both
the CPU of the bus master and characteristics of
the user logic, a circuit is needed which will provide
a range of easily modified acknowledge responses.

The transfer acknowledge signals must be driven
by three-state drivers which are enabled when the
bus interface is addressed and a command is
present.

Interrupt Signal Lines

The asynchronous interrupt lines must be driven
by open collector devices with a minimum drive of
16 mA.

In a typical Non Bus Vectored Inte:r;.rupt system,
logic must be provided to assert and latch-up an
interrupt signal. In addition to driving the
MULTIBUS interrupt lines, the latched interrupt
signal would be read by an I/O operation such as
reading the module's status. The interrupt signal
would be cleared by writing to the status register.

III. MULTIBUSTM SLAVE DESIGN
EXAMPLE

A MULTIBUS slave design example has been
included in this application note to reinforce the
theory previously discussed. The design example
is of general purpose 110 slave interface. This
design example could easily be modified to be used
as a slave memory interface by buffering the
address signals and using the appropriate
MULTIBUS memory commands. In addition, to
help the reader better understand an application
for an 110 slave interface, two Intel 8255A Parallel
Peripheral Interface (PPI) devices are shown con­
nected to the slave interface.

The design example is shown in both 8/16-bit
version and an 8-bit version. The 8/16~bit version

A-193

is an 110 interface which will permit a 16-bit
master to perform 8 or 16 bit data transfers. 8-bit
masters may also use the 8/16-bit version of the
design example to perform 8-bit data transfers.

The 8-bit version of the design example may be
used by both 8 or 16-bit masters, but will only
perform 8-bit data transfers. It does not contain
the circuitry required to perform 16-bit data
transfers.

Both the 8/16-bit version and the 8-bit version of
the design example were implemented on an iSBC
905 prototype board. The schematics for each of
the examples are given in Appendices F and G.

Functional/Programming Characteristics

This section describes the organization of the
slave interface from two points of view, the
functional point of view and the programming
characteristics. First, the principal functions
performed by the hardware are identified and the
general data flow is illustrated. This point of view
is intended as an introduction to the detailed
description provided in the next section; Theory of
Operation. In the second point of view, the
information needed by a programmer to access the
slave is summarized.

Functional Description - The function of this
110 slave is to provide the bus interface logic for
general purpose 110 functions and for two Intel
8255A Parallel Peripheral Interface (PPI) devices.
Eight device selects (port addresses) are available
for general purpose 110 functions. One of these
device select lines is used to read and reset the state
of an interrupt status flip-flop, the other seven
device selects are unused in this design. An
additional eight 110 device port addresses are
used by the two 8255A devices; four 110 port
addresses per 8255A (three 110 port address for
the three parallel ports A, B, and C and the fourth
110 port address for the device control register).

Figure 14 contains a functional block diagram of
the slave design example. This block diagram
shows the fundamental circuit elements of a bus
slave: bidirectional data bus drivers/receivers,
address decoding logic and bus control logic. Also
shown is the address decoding logic for the low
order four bits, the interrupt logic which is selected
by this decoding logic, and the two 8255A devices.

AP-28A

8

:~i~ -<r-~fr"---------

AoRO - ---{-'--~------''''
ADR3,

ADR41 ~ --f-'----".
ADRBI ---iT---.-/

IOADI

IOWRT/--~

XACKI

f----Rol

f----WRTI

f---- SO ENABLE!

16

DO

DATO! •
DATFI

ON-BOARD DATA BUS DO - OF

Figure 14. MUL TIBUS" Slave Design Example
Functional Block Diagram

Programming Characteristics - The slave
design example provides 16 110 port addresses
which may be accessed by user software. The
base address of the 16 contiguous port adq.resses
is selected by wire wrap connections on the proto­
type board. The wire wrap connections specify
address bits ADR4/. - ADRB/. They allow the
selection of a base address on any 16 byte
boundary. Twelve address bits (ADROI -ADRB/)
are used since 16-bit (8086 based) masters use 12
bits to specity 110 port addresses. If an 8 bit (8080
or 8085 based) master is used with this slave board,
the high order address bits (ADRBI -ADRB/) must
not be used by the decoding circuits; a wire wrap
jumper position (ground position) is provided for
this.

The 16 110 port addresses are divided into two
groups of 8 port addresses by decoding address line
ADR3/.Port addresses XXO - XX7 are used for
general 110 functions (XX indicates any hexi~
decimal digit combination). Port address XXO is
used for accessing the interrupt status flip-flop and

port addresses XXI - XX7 are not used in this
example. Port addresses xX8 - XXF are used for
accessing the PPls. If port addresses XX8 - XXF
are selected, then ADROI is used to specify which
of two PPIs are selected. If the address is even
(XX8, XXA, XXC, or XXE) then one PPI is selected ..
If the address is odd (XX9, XXB, XXD, or XXF),
then the other PPI is selected. ADRII andADR2/
are. connected directly to the PPls. Table 1
summarizes the 110 port addresses of the slave
design example. Note that if a 16-bit master is
used, it is possible to access the slave ina byte or
word mode. If word access is used with port
address XX8, XXA, XXC, or XXE, then 16 bit
transfers will occur between the PPIs and the
master. These 16 bit transfers occur because an
even address has be~n specified and the MULTI­
BUS BHENI signal indicates that a 16-bit
transfer is requested.

Theory of Operation

In the preceding section, each of the slave design
example functional blocks was identified and
briefly explained. This section explains how these
functions are implemented. For detailed circuit
information, refer to the schematics in Appendices
F and G. The schematic in Appendix F is on a
foldout page so that the following text may easily
be related to the schematic.

The discussion of the theory of operation is divided
into five segments, each of which discusses a
different function performed by the MULTIBUS
slave design example. The five segments are:

1. Bus address decoding

2. Data buffers

A-194

3. Control signals

4. Interrupt logic

5. PPI operation

Each of these topics are discussed with regard to
the 8/16-bit ver~i~n pf the design example;
followed by a discussion of the circuit elements
which are required by the 8-bit version of the
interface.

Bus Address Decoding ""';-Bus addreSs decoding
is performed by two 82051 out oi8 binary dp.coders.
One decoder (A3) decodes addr~Ss bits ADR81 -
ADRBI and the second decoder (A2) decodes
address bits ADR41 - ADR7 I. The base address

Ap·28A

Table 1

SLAVE DESIGN EXAMPLE PORT ADDRESSES

1/0 PORT ADORESS READ WRITE

BYTE ACCESS

XXO Bit 0 = Iniimupt Status Reset Interrupt Status

XX1 - XX? Unused Unused

XX8 Parallel Port A, Even PPI Parallel Port A, Even PPI

XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI

XXA Parallel Port B; Even PPI Parallel Port B, Even PPI

XXB Parallel Port B, Odd PPI Parallel Port B, Odd PPI

XXC Parallel Port C, Even PPI Parallel Port C, Even PPI

XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI

XXE Illegal Condition Control, Even PPI

XXF Illegal Condition Control, Odd PPI

WORD ACCESS

XXO Bit 0 = Interrupt Status Reset Interrupt Status

XX2 - XX6 Unused Unused

XX8 Parallel Port A, Even and Odd PPls Parallel Port A, Even and Odd PPls

XXA Parallel Port B, Even and Odd PPls Parallel Port B, Even and Odd PPls

XXC . Paraliel Port C, Even and Odd PPls Parallel Port C, Even and Odd PPls

XXE Illegal Condition Control, Even and Odd PPls

XX = Any hex digits, assigned by jumpers; XX defines the base address.

selected is determined by the position of wire wrap
jumpers. The outputs of the two decoders are
ANDed together to form the BASE ADR SELECT/
signal. This signal specifies the base address
for a group of 16110 ports .. Using the wire wrap
jumper positions shown in the schematic, a base
address of E3 has been selected. Therefore, this
MULTIBUS slave board will respond to 110 port
addresses in the E30 . E3F range.

If this slave board is to be used with 8-bit MULTI­
BUS masters, the high order address bits must not
be decoded. Therefore, the wire wrap jumper
which selects the output of decoder A3 must be
placed in the top (ground) po~ition ,(pin 10 of gate
A9 t9 ground).

The low order 4 address lines (ADRW -~DR3/)are
buffered and, inverted, using 74LS04, inverters.
These address lines are input to an 8205 for
decoding a chip select for the interrupt logic; the
address lines are also used directly by the PPls .

. LS-Series logic is required forhuffering to meet the
MULTIBUS specification for IlL (low level input

A-195

current). S-Series or standard series logic will not
meet this specification.

Address decoder A4 is used 'to decode addresses
E30 - E37. The CSO/ output of this decoder is used
to select the interrupt logic, thus 110 port address
E30 is used to read and reset the interrupt latch.
The remaining outputs from decoder A4 (CSlI -'
CS7/) are not used in this example. They would
normally be used to select other functions in a
slave board with more capability. Note that in the
schematic shown in Appendix G for the tl-bit
version of this slave design example, the high
order (ADRtl/ - ADRB/) address decoder is not
included and the BHEN / signal is not used.

Data Buffers - Intel 8287 8-bit parallel bi­
dir.ectional bus drivers are .used for the MULTI·
BUS data lines DATO! . DATF/. In the tl/16-bit
version of the slave board, three 8287 drivers
are used.

When an 8-bit data transfer is requested, either
driverA5, which is connected to on-board data

AP-28A

lines DO - D7, or driver A6, which is connected to ~
on-board data lines D8 - DF, is used. If a byte
transfer is requested from an even address, driver
A5 will be selected. If a byte transfer from an odd
address is requested, driver A6 wili be selected. All
byte transfers take place on MULTIBUS data
lines DATOI - DAT7I. When a word (1S-bit)
transfer is requested from an even address, drivers
A5 and A 7 will be used. Note that if a user program
requests a word transfer from an odd address,
16-bit masters in the iSBC product line will
actually perform two byte transfer requests.

The logic which determines the chip selection
(8287 input signal OE, output enable) signals for
the bus drivers uses the low order address bit
(ADRO/) and the buffered Byte High Enable
signal (BHENBL/). Note that the MULTIBUS
signal BHEN I has been buffered with an 74LS04
inverter. This is done to meet the bus address line
loading specification. The SWAP BYTEI sig~al
which is generated is qualified by the BD ENBLI
signal and used to select the bus drivers.

The steering pin for the 8287 di-ivers is labelled T
(transmit) and is driven by the signal RD. When
an input (read) request is active or when neither a
read or write command is being serviced, the
direction of data transfer of the 8287 will be set for
B to A.

The 8287 drivers are set to point IN (direction.B to
A) when no MULTIBUS 110 transfer command is
being serviced for two reasons. First, if the drivE\r
were pointed OUT (direction A to B) and a write
command occured, it would be necessary to tum
the buffers IN and set the DE (output enable)
signal active before the data could be transferred
to the on-board bus. A possibility of a "buffer­
fight" could occur in some designs if the OE signal
permitted an 8287 to drive the MULTIBUS data
lines momentarily before the steering signal could
switch the direction of the 8287. In this case, both
the MUL TIBUS master and the slave wOllld be
driving the data lines; this is not recommend,ed ..
(In this particular design, the steering signal will
always stabilize before the OE signal becomes
active.)

The second reason the. driver is pointing IN when
no command is;present is due to the "data valid ...
after WRITE" requirements of the 8255As.The .
8255A requires that data remain on its data lines
for 30 ns after the WRITE command (WR at the
8255A) is removed. This requirement will be met if
the direction of the 8287 drivers is not switched

.when the MULTIBUS IOWCI signal is removed
(WRT I could have been used to steer the 8287
instead of RD); and if the capacitance ofthe on­
board data bus lines is sufficient to hold the data
values on the bus after the 8287 OE signai imd the
8255A PPI WRT I signal go inactive. The on-board
data bus may easily be designed such that the
capacitance of the lines is sufficient to meet the 30 .
ns data hold time requirement. In addition, the
current leakage of all devices connected to the on­
board bus must be kept small to meet the 30 ns data
hold time requirement.

The 8-bit version of this design example uses only
one 8287 instead of the three required by the 8/16-
bit version. The logic required to control the swap
byte buffer is also not necessary. The chip select
signal used for the 8287 is the BD ENBLI signal.

Control Signals - The MULTIBUS control
signals used by this slave design example are
IORC/, IOWC/, and XACK/. IORCI and IOWCI
are qualified by the BASE ADR SELECTI signal
to form the signals·RD and WRT. RD and WRT
are used to drive the interrupt logic, the PPI logic
and the XACKI (tr~nsfer acknowledge) logic.

For the XACKI logic RD and WRT are ORed to
form the BD ENBLI signal which is inverted and
used to drive the CLEAR pin of a shift register.
When the slave board is not being accessed, the
CLEAR pin of the shift register will be low (BD
ENBLI is high). This causes the shift register to
remain cleared and all outputs of the shift register
will be low. When the slave board is accessed, the
CLEAR pin will be high, and the A and B inputs
(which are high) will be clocked to the output pins
by CCLK/. To select adelay for the XACKI signal,
a jumper must be installed from one of the shift
registe.r output pins to the. 8089 tri-state driver.
Each of the shift register output pins select an
integer multiple of CCLKI periods for the signal
delay. Since the CCLKI signal is asynchronous,
the· actual delay selected may. Ql1ly be Specified
with a toleranc'e of one CCLKI period: In this
example a delay of 3 - 4 CCLKI periods was
selected; with a CCLKI period of 100 p.s, the
XACKI delaywmHd occur somewhere within the
range of 300 - 400 ns from the time when the
CLEAR signal goes high.

The control signal logic used in the 8-bit version of
the slave design example is identical to the logic
used in the 8/16-bit version..

AP-28A

Interrupt Logic - The interrupt logic uses a
74S74 flip-flop to latch an asynchronous interrupt
request from some external logic. The Q output
of the INTERRUPT REQUEST LATCH is output
through an open collector gate to one of the
MULTIBUS interrupt lines. The state of the
INTERRUPT REQUEST LATCH is transferred
to the INTERRUPT STATUS LATCH when a
read command is performed on I/O port BASE
ADDRESS+O (E30 for the jumper configuration
shown). The Q output of INTERRUPT STATUS
LATCH is used to drive data line DO of the on­
board data bus by using an 8089 tri-state driver.
If a user program performs an INPUT from I/O
port E30, data bit 0 will be set to 1 if the INTER­
RUPT REQUEST LATCH is set.

The purpose of INTERRUPT STATUS LATCH is
to minimize the possibility of the asynchronous
interrupt occuring while the interrupt status is
being read by a bus master. If the latch was not
included in the design and an asynchronous inter­
rupt did occur while a bus master is reading
MUL TIBUS data line DATOI, a data buffer on the
master could go into a meta-stable state. By
adding the extra latch, which is clocked by the
IORDI command for I/O port E30, the possibility
of data line DATOI changing during a bus master
read operation is eliminated.

The INTERRUPT REQUEST LATCH is cleared
when a user program performs an OUTPUT to I/O
port E30.

This interrupt structure assumes that several
interrupt sources may exist on the same MULTI­
BUS interrupt line (for example, INT3/). When the
MULTIBUS master gets interrupted, it must poll
the possible sources of the interrupt received and
after determining the source of the interrupt, it
must clear the INTERRUPT REQUEST LATCH
for that particular interrupt source.

The interrupt logic for the 8-bit version of the
design example is identical to the interrupt logic of
the 8/I6-bit version of the design example.

PPI Operation - Two 8255A Parallel Peripheral
Interface (PPI) devices are shown interfaced to
the slave design example logic. One PPI is con­
nected to the on-board data bus lines DO - D7 and
is addressed with the even I/O port addresses
E38, E3A, E3C, and E3E. The second PPI is
connected to data bus lines D8 - DF and is address­
ed with the odd I/O port addresses E39, E3B,

A-197

E3D, and E3F. The even or odd I/O port selection
is controlled by using the ADRO address line in
the chip select term of the PPIs. In addition, the
odd PPI (All) is selected when the BHENBL
term is high. This occurs when the MULTIBUS
signal BHENI is low indicating that a word
(16-bit) I/O instruction is being executed. When
a word I/O instruction is executed, both PPIs will
perform the I/O operation specified.

The specifications of the 8255A device state that
the address lines AO and Al and the chip select
lines must be stable before the RD or WR lines are
activated. The MULTIBUS specification address
set-up time of 50 ns and the short gate propagation
delays in this design assure that the address lines
are stable before RD or WR are active.

The data hold requirements of the 8255A were
discussed in a previous section. The 8255A speci­
fication states that data will be stable on the data
bus lines a maximum of 250 ns after a READ
command. This specification was used to select
the delay for the XACKI signal.

The PPI operation for the 8-bit version of the
design example is slightly different than that used
for the 8/I6-bit version. The chip select signal for
the bottom PPI does not use the BHENBL term
since I6-bit data transfers are not possible with an
8-bit I/O slave board. Also, the chip select and
address signals have been swapped so the top PPI
occupies I/O address range X8 - XB, and the
bottom PPI occupies I/O address range XC -XF (X
is the base address of the 8-bit version). This
swapping of the address lines was not necessary;
however, it was thought to be more convenient to
access the PPIs in two groups of 4 contiguous I/O
port addresses.

IV. SUMMARY

This application note has shown the structure of
the Intel MUL TIBUS system bus. The structure
supports a wide range of system modules from the
Intel OEM Microcomputer Systems product line
that can be extended with the addition of user
designed modules. Because the user designed
modules are no doubt unique to particular applica­
tions, a goal of this application note has been to
describe in detail the singular common element -
the bus interface. Materiai has also been
presented to assist the systems designer to under­
standing the bus functions so that successful
sy.stems integration can be achieved.

AP-28A

APPENDIX A

PIN ASSIGNMENT OF BUS SIGNALS ON MUL TIBUS BOARD P1 CONNECTOR

(COMPONENT SIDE) (CIRCUIT SIDE)

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION

1 GND Signal GND 2 GND Signal GND
3 +5V +5Vdc 4 +5V +5Vdc

POWER 5 +5V +5Vdc 6 +5V +5Vdc
SUPPLIES 7 +12V + 12Vdc 8 +12V + 12Vdc

9 -5V -5Vdc 10 -5V -5Vdc
11 GND Signal GND 12 GND Signal GND

13 BCLK/ Bus Clock 14 INIT/ Initialize
15 BPRN/ Bus Pri. In 16 BPRO/ Bus Pri. Out

BUS 17 BUSY/ Bus Busy 18 BREO/ Bus Request
CONTROLS 19 MRDC/ Mem Read Cmd 20 MWTC/ Mem WriteCmd

21 10RC/ I/O Read Cmd 22 10WC/ I/OWriteCmd
23 XACK/ XFER Acknowledge 24 INH1/ Inhibit 1 disable RAM

BUS
25 Reserved 26 INH2/ Inhibit 2 disable PROM or ROM

CONTROLS
27 BHEN/ Byte High Enable 28 AD10/

AND
29 CBRO/ Common Bus Request 30 AD11/ Address
31 CCLK/ Constant Clk 32 AD12/ Bus ADDRESS 33 INTA/ Intr Acknowledge 34 AD13/

35 INT6/ Parallel 36 INTl/ Parallel

INTERRUPTS
37 INT4/ Interrupt 38 INT5/ Interrupt
39 INT2/ Requests 40 INT3/ Requests
41 INTO/ 42 INT1/

43 ADRE/ 44 ADRF/
45 ADRC/ 46 ADRD/
47 ADRA! Address 48 ADRB/ Address

ADDRESS
49 ADR8/ Bus 50 ADR9/ Bus
51 ADR6/ 52 ADR7/
53 ADR4/ 54 ADR5/
55 ADR2/ 56 ADR3/
57 ADRO/ 58 ADR1/

59 DATE/ 60 DATF/
61 DATC/ 62 DATD/
63 DATA/ Data 64 DATB/ Data

DATA
65 DfiT8/ Bus 66 DAT9/ Bus
67 DAT6/ 68 DATl/
69 DAT4/ 70 DAT5/
71 DAT2/ 72 DAT3/
73 DATO/ 74 DAT1/

75 GND Signal GND 76 GND SignalGND
77 Reserved 78 Reserved

POWER 79 -12V -12Vdc 80 -12V -12Vdc
SUPPLIES 81 +5V +5Vdc 82 +5V +5Vdc

83 +5V +5Vdc 84 +5V +5Vdc
85 GND SignalGND 86 GND SignalGND

All Mnemonics © Intel Corporation 1978

A-198

AP-28A

APPENDIX A (Continued)

P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS

(COMPONENT SIDE) (CIRCUIT SIDE)

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION

1 GND Signal GND 2 GND Signal GND
3 5 VB +5V Battery 4 5 VB + 5V Battery
5 Reserved 6 VCCPP + 5V Pulsed Power
7 -5 VB -5V Battery 8 -5 VB -5V Battery
9 Reserved 10 Reserved

11 12 VB + 12V Battery 12 12 VB + 12V Battery
13 PFSR! Power Fail Sense Reset 14 Reserved
15 -12 VB -12V Battery 16 -12 VB -12V Battery
17 PFSNI Power Fail Sense 18 ACLO AC Low
19 PFIN! Power Fail Interrupt 20 MPRO! Memory Protect
21 GND Signal GND 22 GND Signal GND
23 +15V +15V 24 +15V +15V
25 -15V -15V 26 -15V -15V
27 PAR1! Parity 1 28 HALT! Bus Master HALT
29 PAR2! Parity 2 30 WAIT! Bus Master WAIT ST A TE
31 32 ALE Bus Master ALE
33 34 Reserved
35 36 Reserved
37 38 AUX RESET! Reset switch
39 40
40 42
43 > Reserved 44
45 46
47 48
49 50 Reserved
51 52
53 54
55 56
57 58
59 60

Notes:

1. PFIN, on slave modules, if possible, should have the option of connecting to INTO! on P1.
2. All undefined pins are reserved for future use.

All Mnemonics © Intel Corporation 1978

A-199

AP-28A

APPENDIX B

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units

tBCY Bus Clock Period 100 D.C. ns

tBW Bus Clock Width 0.35 tBCY 0.65 tBCY

tSKEW BCLK/skew 3 ns

tpD Standard Bus 3
Propagation Delay

tAS Address Set-Up Time 50 ns
(at Slave Board)

tDS Write Data Set· 50 ns
Up Time

tAH Address Hold Time 50 ns

tDHW Write Data Hold Time 50 ns

tDXL Read Data Set 0 ns
Up Time To XACK

tDHR Read Data Hold Time 0 65 ns

tXAH Acknowledge Hold 0 65 ns
Time

tXACK Acknowledge Time 0 tTOUT ns

tCMD Command Pulse 100 tTOUT ns
Width

tiD Inhibit Delay 0 100 ns
(Recommend < 100 ns)

tXACKA Acknowledge Time of t IAD + 50 ns tTOUT
of an Inhibited Slave

tXACKB Acknowledge Time of 1.5 tTOUT IlS
an Inhibiting Slave

tlAD Acknowledge Disable 0 100 ns
from Inhibit (An (arbitrary)
internal parameter on
an inhibited slave;
used to determine
tXACKA Min.)

tAIZ Address to Inhibits 100 ns
High delay

tlNTA INTAI Width 250 ns

tCSEP Command Separation 100 ns

A-200

AP-28A

APPENDIX B (Continued)

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units

tBREQL IBCLKI to BREQI 0 35 ns
Low Delay

tBREQH IBCLKI to BREQI 0 35 ns
High Delay

tBPRNS BPRNI to IBCLKI 22 ns
Setup Time

tBUSY BUSY I delay 0 70 ns
from IBCLKI

tBUSYS BUSY I to IBCLKI 25 ns
Setup Time

tBPRO IBCLKI to BPROI 0 40 ns
(CLK to Priority Out)

tBPRNO BPRNI to BPROI 0 30 ns
(Priority In to Out)

tCBRO IBCLKlto CBRQI 0 60 ns
(CLKto Common

Bus Request)

tCBRQS CBRQI to IBCLKI 35 ns
Setup Time

tCPM Central Priority 0 tBCy-tBREQ
Module Resolution -2tPD
Delay (Parallel -tBPRNS
Priority) -tSKEW

tCCY C-clock Period 100' 110 ns

tcw C-clock Width 0.35 tCCY 0.65tCCY ns

tlNIT INIT/Width 5 ms

tiN ITS INIT I to MPROI 100 ns
Setup Time

tpBD Power Backup 0 200 ns
Logic Delay

tpFINW PFINI Width 2.5 ms

tMPRO MPROI Delay 2.0 2.5 ms

tACLOW ACLOI Width 3.0 ms

tPFSRW PFSRI Width 100 ns

troUT .Timeout Delay 5 00 ms

tDCH D.C. Power Supply
Hold from ALCOI

3.0 ms

tDCS D.C. Power Supply
Setup to ACLOI

5 ms

A-201

AP-28A

APPENDIX C

BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver 1,3 Receiver 2,3 Termination

Bus Signals location Type IOl IOH Co location III IIH CI Location Type R Units

Mlnma Mln"a Maxpf Maxma MaxJ,l8 Maxpf

DATOI-DATFI Masters TRI 16 -2000 300 Masters -0.8 125 18 1 place Pullup 22 KQ

(16Iines) and Slaves and Slaves

ADRO/-ADRB/, Masters TRI 16 -2000 300 Slaves -0.8 125 1S 1 place Pullup 22 KQ

BHENI
(21 lines)

MRDC/,MWTCI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ

(Memory;
memory-
mapped 1/0)

10RC I ,IOWC I Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pull up 1 KQ

(1/0)

XACKI Slaves TRI 32 -2000 300 Masters -2 125 1S 1 place Pullup 510 Q

INH1/,INH21 Inhibiting OC 16 - 300 Inhibited -2 50 1S 1 place Pullup 1 KQ

Slaves Slaves
(RAM, PROM,
ROM, Memory-
Mapped 1/0)

BClKI 1 place TTL 48 -3000 300 Master -2 125 18 Mother- To +5V 220 Q

(Master us) board ToGND 330 Q

BREQI Each TTL 5 -400 60 Central 2 50 18 Central Pullup 1 KQ

Master Priority Priority
Module Module

(not req)

BPROI Each TTL 5 -400 60 Next Master -1.6 50 18 (not reql
Master in Serial

Priority
Chain at
its BPRNI

BPRNI Parallel: TTL 5 -400 300 Master -2 50 (not req)
Central
Priority
Module
Serial:Prev
Masters
BPROI

BU$Y/, CBRO All Masters O.C 32 - 300 All Masters -2 50 1S 1 place Pullup 1 KQ

INITI Master O.C 32 - 300 All -2 50 1S 1 place Puli"p 22 KQ

CCLKI 1 place TTL 48 -3000 300 Any -2 125 18 Mother- To +5V 220 Q
board ToGND 330 Q

INTAI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ
(Interrupting

110)

INTO/-INTlI Slaves O.C. 16 - 300 Masters -1.6 40 18 1 place Pullup 1 KQ
(Sllnes)

PFSRI User's Fron TTL 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 KQ
Panel? Masters

PFSNI Power Back TTL 16 -400 300 Masters -1.6 40 16 t place Pullup 1 KQ
Up Unit

ACLO Power O.C. 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 KQ
Supply Masters

PFINI Power Back- O.C 16 -400 300 Masters -1.6 40 18 1 place Pullup 1 KQ
Up Unit

MPROI Power Back- TTL 16 -400 300 Slaves -1.6 40 18 1 place Pullup 1 KQ
Up Uni1 Masters

A·202

AP-28A

APPENDIX C (Continued)

BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver 1,3 Receiver 2,3 Termination

Bus Signals Location Type IOL IOH Co Location IlL IIH CI Location Type R Units

Minma Mln~a Maxpl Maxma Max~8 Maxpl

Aux Resetl User's Switch - - - Masters -2 50 18 None
Front toGND
Panel?

Notes:

1. Driver Requirements

10H = High Output Current Drive
IOL = Low Output Current Drive
Co = Capacitance Drive Capability
TRI = 3-State Drive
O.C. = Open Collector Driver
TTL = Totem-pole Driver

2. Receiver Requirements

IIH = High Input Current Load
IlL = Low Input Current Load
C, = Caoacitive Load

3. TTL low state must be 2. -0.5v but ,;, 0.8v at the receivers
TTL high state must be2. 2.Ov but ~ 5.5v at the receivers

4. For the iSBC 80/10 and the iSBC 80/10A use only a lK pull-up resistor to +5v for BCLKI and CCLKI termination.

A-203

AP-28A

APPENDIX D

BUS POWER SPECIFICATIONS '.
Standard (P1) Optional (P2) " '. ,

Analog Power Battery Power Backup

Ground +5 +12 -12 +15 -15 +5 +12 -12 ~5 '

Mnemonic GND +5V + 12V -12V +15V -15V +58 + 128 -'128 -58

8us Pins P1 + 1,2, Pl +3,4, P1 + 7,8 P1 + 79, P2+23, P2+25, P2+ 3,4, P2 + 11, P2 + 15, P2-7,8
11,12, 5,6,81, 80 24 26 5,6 12 16
75,76 82,83,
85,86 84

Nominal Output Ref. +5.0V + 12.0V -1'2.0V + 15.0V -15.0V +5.0V + 12.0V -12.0V -5.0V

Tolerance from
Nominal' Ref. ±5% ±5% ±5% ±3% ±3% ±5% ±5% ±5% ±5%

Ripple
(Pk-Pk)' Ref. 50 mV 50 mV 50 mV 10 mV 10 mV 50 mV 50 mV 50 mV 50 mV

Transient
Response 500 JJ.s 500JJ.s 500 JJ.s 100 JJ.s 100 JJ.s 500 JJ.s 500 JJ.s 500 JJ.s 500 JJ.s
Time'

Transient
Deviation' ± 10% ±10% ± 10% ± 10% ±10% ±10% ± 10% ±10% ± 10%

NOTES:

1. Tolerance is worst case, including initial voltage setting line and load effects of power source, temperature drift, and any additional steady
state influences.

2. As measured over any bandwidth not to exceed a to 500 kHz.

3. As measured from the start 01 a load change to the time an output recovers within ± 0.1 % of final voltage.

4. Measured as the peak deviation from the initial voltage.

A-204

0.25 X 45°
2 PLACES

~
IA B.l09 0

3 HQl 'S

0.0
T

GR
yp

/r.-'I

~

I

NOTES:

[j>
B>

AP-28A

APPENDIX E

MECHANICAL SPECIFICATIONS

12.00 to.OOS

11.500

COMPONENT SIDE

D>

D>

6.767 to.OOS

BOARD THICKNESS: 0.062

MUL TiBUS CONNECTOR: as-PIN, 0.156 SPACING

CDC VFBOl E43DOOAl
VIKING 2VH43/1ANES

AUXILIARY CONNECTOR- eO·PIN, 0.100 SPACING

CDC VPB01B30DOOAl
Tl H311130
AMP PE5·14559

I

5.

G.

7.

s.

I-- 0.25

I
i2·~

5,950
!O.O05

6,20

D> I-f -nr

5 REF

L- ,----.J" 0.55 '-- o.
3.080 ~ 0.390

30

4.570 '"

EJECTOR TYPE: SCANBE #$203

CHAMFER All
CONNECTOR EDGES
0.040 X 45°

0.015 ± 0.005 x 45°
2 PLACES

BUS DRIVERS AND RECEIVERS SHOULD BE LOCATED AS CLOSE AS POSSIBLE TO
THEIR RESPECTIVE MUL TIBUS PIN CONNECTIONS

BOARD SPACING: 0.6

COMPONENT HEIGHT: 0.4

CLEARANCE ON CONDUCTOR NEAR EDGES: 0,050

A-205

>
N o
0'1

MUlTIBU':> C.C».INECTOR
PI

~ <.~==~ ~ r-

~
~
~
~
~
~
~
~

[0007-]
~

~
llmLJ

RD--~---~'

>~----D0
(ON-BC/>.RD DI\"Th, ei1S)

A.DR'

'Dn ~~~(N\ => 00-D1
ADR I ~I\~ M05'2.":hA.
I'IDR0 ~c.':J PM·I _ ____________'".
um --~-~f~/~~~--~ IID~(1.4l1~£<.:.)

PPl R\){ _____ ~-;::; 'lu:>

~IWRJ

"DR. '2.
1\ ,t.,DR \

~~~:l ==JI1:~l"M"i-,{,':;;';;__:_:__:_:_-,~ 
14":.0'2. INIT ~~====--=-===:;.;;:;;o=~~=====> 00-D1 

'i¢====> 110 mm (24 UNES) 

~~=='-'====================i==> D8- D' 

MULTIBUSTM SLAVE DESIGN EXAMPLE SCHEMATIC 8/16-BIT VERSION 

~ 
"tI 
"tI 
m 
Z 
C 
X 
" 

l> 
"'D • I\) 
CD 
l> 



~ 
~ 
~ 
~ 

~ ~T7J 

------------~~====-======-=-~-========================================================================v 

-------[>74l504---- ------------ IN,T 

I 

--~_:l 

""""I 
~-------------L----------j 

<: :1E"'" :=========== 0' ===============================:> 00-D7 

RD T DE. W[NBLI 

DPI IJJ'f{T / 

WI RDt 

L-r------------- RD 
L __ L _______________ ~:.'_~ (N~! 

PY'lIi.'.DI --------0 

Wlw~1 -------~~ 

-....J .... / 

A""L~"¢ 
745"454- : NIl" 

JW"ul 

- -----. tx,lI-D1 
'b7.SSIl.. 

__ -.:.... __ ? liD ¥()i<T5. (:'4 LN~S) 

MUL TIBUS'· SLAVE DESIGN EXAMPLE SCHEMATIC 8-BIT VERSION 

» 
"tI 
"tI 
m 
Z 
C 
X 
C) 





©Intel Corporation, 1978 

APPLICATION 
NOTE 

A-209 

Ap·43 

November 1978 

9800816 



AP-43 

I. INTRODUCTION 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package contains the hardware and soft­
ware required to interface an iSBC 86/12 Single 
Board Computer with an Intellec Microcomputer 
Development System. The iSBC 957 package gives 
the 8086 user the capability to develop software on 
an Intellec System and then debug this software on 
an iSBC 86/12 board using a program download 
capability and an interactive system monitor. The 
8086 user has all the capabilities of the Intellec sys­
tem at his disposal and has the powerful iSBC 
86/12 system monitor commands to use for 
debugging 8086 programs. 

The iSBC 86/12 board is an Intel 8086 based proc­
essor board which, in addition to the processor, 
contains 32K bytes of dual port RAM, sockets for 
up to 16K bytes of ROM/EPROM, a serial I/O 
port, 24 parallel I/O lines, 2 programmable 
counters, 9 levels of vectored priority interrupts, 
and an interface to the MULTIBUSTM system bus. 
The iSBC 957 package consists of monitor EPROMs 
for the iSBC 86/12 board, Loader software for the 
Intellec system, four (4) cable assemblies, assorted 
line drivers and terminators, and signal adapters. 
The iSBC 957 package provides the capability of 
downloading and uploading program and data 
blocks between an iSBC 86/12 board and an Intellec 
system. In addition, monitor commands and 
displays may be input and viewed from the Intellec 
system console. The iSBC 957 package, when used 
with the iSBC 86/12 board and an Intellec Micro­
computer Development System, provides the user 
with the capability to edit, compile or assemble, 
link, locate, download, and interactively debug 
programs for the 8086 processor. The iSBC 957 
package and the iSBC 86/12 board form an ex­
cellent "execution vehicle" for users developing 
software for the 8086 processor regardless of 
whether the users are 8086 component users or 
iSBC 86/12 board users. Using the iSBC 957 pack­
age 8086 programs may be debugged at the full 5 
MHz speed of the processor. The recommended 
hardware for the execution vehicle is an iSBC 660 
system chassis with an 8 card slot backplane and 
power supply, an iSBC 032 32K byte RAM memory 
board, the iSBC 957 package, and the iSBC 86/12 
board. 

This application note will describe how the iSBC 
957 package may be used to develop and debug 
8086 programs. First a description of the iSBC 
86/12 board will be presented. Readers familiar 

with the iSBC 86/12 board may want to skip this 
section. Next follows a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. A program example of a 
matrix multiplication routine will then be presented. 
This example will contain both assembly language 
and PL/M-86 procedures. The steps required to 
compile, assemble, link, locate and debug the 
program code will be explained in detail. A typical 
debugging session using the iSBC 86/12 system 
monitor will be presented. 

II. THE iSBC™ 86/12 SINGLE BOARD 
COMPUTER 

The iSBC 86/12 Single Board Computer, which is 
a member of Intel's complete line of iSBC 80/86 
computer products, is a complete computer system 
on a single printed-circuit assembly. The iSBC 86/ 
12 board includes a 16-bit central processing unit 
(CPU), 32K bytes of dynamic RAM, a serial com­
munications interface, three programmable parallel 
I/O ports, programmable timers, priority interrupt 
control, MUL TIBUS control logic, and bus expan­
sion drivers for interface with other MUL TIBUS­
compatible expansion boards. Also included is dual 
port control logic to allow the iSBC 86/12 board 
to act as a slave RAM device to other MUL TIBUS 
masters in the system. Provision is made for user 
installation of up to 16K bytes of read only mem­
ory. Figure 1 contains a block diagram of the iSBC 
86/12 board and in Appendix A is a simplified 
logic diagram of the iSBC 86/12 board. 

Central Processing Unit 

The central processor for the iSBC 86/12 board is 
Intel's 8086, a powerful 16-bit H-MOS device. The 
225 sq. mil chip contains 29,000 transistors and has 
a clock rate of 5MHz. The architecture includes 
four (4) 16-bit byte addressable data registers, two 
(2) 16-bit memory base pointer registers and two (2) 
16-bit index registers, all accessed by a total of 24 
operand addressing modes for complex data han­
dling and very flexible memory addressing. 

Instruction Set - The 8086 instruction repertoire 
includes variable length instruction format (in­
cluding double operand instructions), 8-bit and 16-
bit signed and unsigned arithmetic operators for 
binary, BCD and unpacked ASCII data, and iter­
ative word and byte string manipulation functions. 
The instruction set of the 8086 is a functional 
superset of the 8080A/8085A family and with 

A-210 



AP-43 

MUlTiBUS 

RS232C 
COMP"nSlE 

DEVICE 
24 PROGR"hIIM~BlE 
PARALLEL 110 LINES 

Figure 1. iSBCTM 86/12 Single Board Computer Block Diagram 

available software tools, programs written for the 
8080A/8085A can be easily converted and run on 
the 8086 processor. 

Architectural Features - A 6-byte instruction queue 
provides pre-fetching of sequential instructions and 
can reduce the 1.2/.1 sec minimum instruction cycle 
to 400 nsec by having the instruction already in the 
queue. 

The stack oriented architecture facilitates nested 
sub-routines and co-routines, reentrant code and 
powerful interrupt handling. The memory expan­
sion capabilities offer a 1 megabyte addressing 
range. The dynamic relocation scheme allows ease 
in segmentation of pure procedure and data for 
efficient memory utilization. Four segment registers 
(code, stack, data, extra) contain program loaded 
offset values which are used to map 16-bit addresses 
to 20-bit addresses. Each register maps 64K-bytes at 
a time and activation of a specific register is con­
trolled explicitly by program control and is also 
selected implicitly by specific functions and 
instructions. 

Bus Structure 

The iSBC 86/12 board has an internal bus for 
communicating with on-board memory and I/O 
options, a system bus (the MUL TIBUS) for refer­
encing additional memory and 1/ 0 options, and 
the dual-port bus which allows access to RAM 
from the on-board CPU and the MUL TIBUS Sys­
tem Bus. Local (on-board) accesses do not require 
MUL TIBUS communication, making the system 
bus available for use by other MUL TIBUS masters 
(Le. DMA devices and other single board com­
puters transferring to additional system memory). 
This feature allows true parallel processing in a 
multiprocessor environment. In addition, the MUL­
TIBUS interface can be used for system expansion 
through the use of other 8- and 16-bit iSBC com­
puters, memory and I/O expansion boards. 

RAM Capabilities 

The iSBC 86/12 board contains 32K-bytes of 
dynamic read/write memory. Power for the on­
board RAM and refresh circuitry may be option­
ally provided on an auxiliary power bus, and 

A-211 



AP-43 

memory protect logic is included for RAM battery 
backup requirements. The iSBC 86/12 board con­
tains a dual port controller which allows access to 
the on-board RAM from the iSBC 86/12's CPU 
and from any other MUL TIBUS master via the 
system bus. The dual port controller allows 8- and 
16-bit accesses from the MUL TIBUS System Bus 
and the on-board CPU transfers data to RAM over 
a 16-bit data path. Priorities have been established 
such that memor.y refresh is guaranteed by the on­
board refresh logic and that the on-board CPU has 
priority over MUL TIBUS requests for access to 
RAM. The dual-port controller includes independent 
addressing logic for RAM access from the on-board 
CPU and from the MUL TIBUS system bus. The 
on-board CPU will always access RAM starting 
at location OOOOOH. Address jumpers allow on­
board RAM to be located starting on any 8K-byte 
boundary within a I megabyte address range for 
accesses from the MULTI BUS system bus. In con­
junction with this feature, the iSBC 86/12 board 
has the ability to protect on-board memory from 
MUL TIBUS access to any contiguous 8K-byte 
segments. These features allow multi-processor 
systems to establish local memory for each proces­
sor and shared system (MUL TIBUS) memory con­
figurations where the total system memory size 
(including local on-board memory) can exceed 1 
megabyte without addressing conflicts. 

EPROMIROM Capabilities 

Four sockets are provided for up to 16K-bytes of 
non-volatile read only memory on the iSBC 86112 
board. Configuration jumpers allow read only 
memory to be installed in 2K, 4K, or 8K increments. 

On-board ROM is accessed via 16 bit data paths. 
System memory size is easily expanded by the 
addition of MUL TIBUS compatible memory boards 
available in the iSBC 80/86 family. 

Parallel 110 Interface 

The iSBC 86112 board contains 24 programmable 
parallel I I 0 lines implemented using the Intel 
8255A Programmable Peripheral Interface. The 
system software is used to configure the I/O lines 
in any combination of unidirectional input! output 
and bidirectional ports. 

Therefore, the I/O interface may be customized to 
meet specific peripheral requirements. In order to 
take full advantage of the large number of possible 
I/O configurations, sockets are provided for inter­
changeable I/O line drivers and terminators. 
Hence, the flexibility of the I/O interface is further 

A-212 

enhanced by the capability of selecting the appro­
priate combination of optional line drivers and 
terminators to provide the required sink current, 
polarity, and driveltermination characteristics for 
each application. The 24 programmable I/O lines 
and signal ground lines are brought out to a 50-pin 
edge connector that mates with flat, woven, or 
round cable. 

Serial 1/0 

A programmable communications interface using 
the Intel 8251A Universal Synchronous I Asyn­
chronous Receiver I Transmitter (USART) is con­
tained on the iSBC 86/12 board. A software 
selectable baud rate generator provides the USART 
with all common communication frequencies. The 
USART can be programmed by the system soft­
ware to select the desired asynchronous or syn­
chronous serial data transmission technique (in­
cluding IBM Bi-Sync). The mode of operation (Le., 
synchronous or asynchronous), data format, con­
trol character format, parity, and baud rate are all 
under program control. The 8251A provides full 
duplex, double buffered transmit and receive capa­
bility. Parity, overrun, and framing error detection 
are all incorporated in the USART. The RS232C 
compatible interface on each board, in conjunction 
with the USART, provides a direct interface to 
RS232C compatible terminals, cassettes, and asyn­
chronous and synchronous modems. The RS232C 
command lines, serial data lines, and signal ground 
line are brought out to a 26 pin edge connector that 
mates with RS232C compatible flat or round cable. 
The iSBC 530 teletypewriter adapter provides an 
optically isolated interface for those systems re­
quiring a 20 rnA current loop. The iSBC 530 
adapter may be used to interface the iSBC 86/12 
board to teletypewriters or other 20 rnA current 
loop equipment. 

Programmable Timers 

The iSBC 86/12 board provides three independent, 
fully programmable 16-bit interval timers I event 
counters utilizing the Intel 8253 Programmable In­
terval Timer. Each counter is capable of operating 
in either BCD or binary modes. Two of these 
timers/counters are available to the systems de­
signer to generate accurate time intervals under 
software control. Routing for the outputs and gatel 
trigger inputs of two of these counters is jumper 
selectable. The outputs may be independently 
routed to the 8259A Programmable Interrupt Con­
troller and to the I I 0 line drivers associated with 



the 8255A Programmable Peripheral Interface, or 
may be routed as inputs to the 8255A chip. The 
gate/trigger inputs may be routed to I/O termin­
ators associated with the 8255A or as output con­
nections from the 8255A. The third interval timer 
in the 8253 provides the programmable baud rate 
generator for the iSBC 86/12 RS232C USART 
serial port. In utilizing the iSBC 86/12, the systems 
designer simply configures, via software, each timer 
independently to meet system requirements. When­
ever a given time delay or count is needed, soft­
ware commands to the programmable timers / event 
counters select the desired function. 

The contents of each counter may be read at any 
time during system operation with simple read 
operations for event counting applications, and 
special commands are included so that the contents 
can be ready "on the fly". 

MULTIBUS™ and Multimaster Capabilities 

The MUL TIBUS system bus features asynchronous 
data transfers for the accommodation of devices 
with various transfer rates while maintaining maxi­
mum throughput. Twenty address lines and sixteen 
separate data lines eliminate the need for address / 
data multiplexing / demultiplexing logic used in 
other systems, and allow for data transfer rates up 
to 5 megawords / sec. A failsafe timer is included in 
the iSBC 86/12 board which can be used to gener­
ate an interrupt if an addressed device does not 
respond within 6 msec. 

Multimaster Capabilities - The iSBC 86/12 board 
is a full computer on a single board with resources 
capable of supporting a great variety of OEM sys­
tem requirements. For those applications requiring 
additional processing capacity and the benefits of 
multiprocessing (i.e., several CPUs and/or con­
trollers logically sharing system tasks through 
communication over the system bus), the iSBC 86/ 
12 board provides full MUL TIBUS arbitration 
control logic. This control logic allows up to three 
iSBC 86/12 boards or other bus masters, including 
iSBC 80 family MUL TIBUS compatible 8-bit single 
board computers, to share the system bus in serial 
(daisy chain) priority fashion, and up to 16 masters 
to share the MUL TIBUS with the addition of an 
external priority network. The MUL TIBUS arbitra­
tion logic operates synchronously with a MULTI­
BUS clock (provided by the iSBC 86/12 board or 
optionally provided directly from the MUL TIBUS 
System Bus) while data is transferred via a hand­
shake between the master and slave modules. This 

AP-43 

A-213 

allows different speed controllers to share resources 
on the same bus, and transfers via the bus proceed 
asynchronously. Thus, transfer speed is dependent 
on transmitting and receiving devices only. This 
design prevents slow master modules from being 
handicapped in their attempts to gain control of the 
bus, but does not restrict the speed at which faster 
modules can transfer data via the same bus. The 
most obvious applications for the master-slave 
capabilities of the bus are multiprocessor configur­
ations, high speed direct memory access (DMA) 
operations, and high speed peripheral control, but 
are by no means limited to these three. 

Interrupt Capability 

The iSBC 86/12 board provides 9 vectored interrupt 
levels. The highest level is the NMI (Non-Mask able 
Interrupt) line which is directly tied to the 8086 
CPU. This interrupt cannot be inhibited by soft­
ware and is typically used for signalling catastrophic 
events (e.g., power failure). 

The Intel 8259A Programmable Interrupt Con­
troller (PIC) provides vectoring for the next eight 
interrupt levels. 

The PIC accepts interrupt requests from the pro­
grammable parallel and serial I/O interfaces, the 
programmable timers, the system bus, or directly 
from peripheral equipment. The PIC then deter­
mines which of the incoming requests is of the 
highest priority, determines whether this request is 
of higher priority than the level currently being 
serviced, and, if appropriate, issues an interrupt to 
the CPU. Any combination of interrupt levels may 
be masked, via software, by storing a single byte 
in the interrupt mask register of the PIC. The PIC 
generates a unique memory address for each in­
terrupt level. These addresses contain unique 
instruction pointers and code segment offset values 
(for expanded memory operation) for each interrupt 
level. In systems requiring additional interrupt 
levels, slave 8259A PIC's may be interfaced via the 
MUL TIBUS system bus, to generate additional 
vector addresses, yielding a total of 65 unique 
interrupt levels. 

Interrupt Request Generation - Interrupt requests 
may originate from 16 sources. Two jumper select­
able interrupt requests can be automatically gener­
ated by the programmable peripheral interface. 

Two jumper selectable interrupt requests can be 
automatically generated by the USART when a 
character is ready to be transferred to the CPU or a 
character is ready to be transmitted. 



AP-43 

A jumper selectable request can also be generated 
by each of the programmable timers. Eight addi­
tional interrupt request lines are available to the 
user for direct interface to user designated peripher­
al devices via the system bus, and two interrupt 
request lines may be jumper routed directly from 
peripherals via the parallel 1/ 0 driver / terminator 
section. 

Power-Fail Control 

Control logic is also included to accept a power-fail 
interrupt in conjunction with the AC-Iow signal 
from the iSBC 635 Power Supply or equivalent. 

Expansion Capabilities 

Memory and II 0 capacity may be expanded and 
additional functions added using Intel MUL TIBUS 
compatible expansion boards. High speed integer 
and floating point arithmetic capabilities may be 
added by using the iSBC 310 high speed mathe­
matics unit. Memory may be expanded to I mega­
byte by adding user specified combinations of 
RAM boards, EPROM boards, or combination 
boards. Input! output capacity may be increased by 
adding digital I/O and analog I/O expansion 
boards. Mass storage capability may be achieved 
by adding single or double density diskette con­
trollers. Modular expandable backplanes and card­
cages are available to support multiboard systems. 

III. THE iSBCTM 957 PACKAGE 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package extends the software develop­
ment capabilities of the Intellec Microcomputer 
Development systems to the Intel 8086 CPU. Pro­
grams for the 8086 may be written in PL/M-86 
and/ or assembly language and compiled or as­
sembled on the Intellec system. These programs 
may then be downloaded from an Intellec ISIS-II 
disk file to the iSBC 86/12 board for execution and 
debug. The programs will execute at the full 5 MHz 
clock rate of the 8086 CPU with no speed degrada­
tion caused by the iSBC 957 hardware or software. 
Special communication software allows transparent 
access to the powerful interactive debug commands 
in the iSBC 86/12 monitor from the Intellec con­
sole terminal. These debug commands include 
single-step instruction execution, execution with 
breakpoints, memory and register displays, memory 
searches, comparison of two memory blocks and 
several other commands. After a debugging session, 
the debugged program code may be uploaded from 
the iSBC 86/12 board to an Intellec ISIS-II disk 
file. 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package consists of the following: 

a. Four Intel 2716 EPROMs which contain the sys­
tem monitor program for the iSBC 86/12 board. 

b. An ISIS-II diskette containing loader software 
for execution in the Intellec which provides for 
communications between the user or an Intellec 
ISIS-II file and the iSBC 86/12 board. Also in­
cluded on the diskette are a library of routines 
for system console I/O. 

c. Four cable assemblies used for transmitting com­
mands, code and data between the iSBC 86/12 
board and the Intellec system. 

d. An iSBC 530 adapter assembly which converts 
serial communications signals from current loop 
to RS232C. 

e. Line drivers and terminators used for the iSBC 
86/12 parallel ports. 

f. A small printed circuit board which is plugged 
into an iSBC 86/12 receiver/terminator socket 
and is used when program code is downloaded 
or uploaded using the parallel cable. 

iSBC™-InteIJec ™ Configurations 

There are two distinct functional configurations for 
the iSBC 957 package; one configuration for the 
Intellec Series II, Models 220 or 230 development 
systems and another for the Intellec 800 series 
development systems. 

Intellec Series II System Configurations 

When used with Intellec Series II Model 220 or 
230 systems, a set of cables are used to connect the 
serial 1/ 0 port edge connector on the iSBC 86/ 12 
board and the SERIAL 1 output port on the Intellec 
system. This configuration is shown in Figure 2. 
How this system functions is explained in the fol­
lowing paragraphs. 

A-2l4 

The SERIAL 1 port on the Intellec Series II Model 
220 or 230 system is an RS232 port which is de­
signed for use with a data terminal. This port may 
be used on the Intellec system for interfacing to 
RS232 devices such as CRT terminals or printers. 
The serial ports on the iSBC 86/12 board and the 
Intellec systems are connected as shown in the 
Figure 2. The flat ribbon cable connected to the 
iSBC 86/12 board has an edge connector for con­
necting to the board on one end and a standard 
RS232 connector on the other end. The second 
cable, the RS232 Up/Down Load cable, has an 
RS232 connector on each end. This cable, however, 



AP-43 

INTElLEC SERIES II 
MOOEL 220. 230 

~~~"-/' CABLE 

SERIALI/O
PORT

iSBC86'12

Figure 2. Inteliec™ Series II Model 220, 230-iSBCTM 86/12 Configuration

is not a standard cable with the RS232 signals bussed
between identically numbered pins on each of the
connectors. The schematic for the cable is shown in
Figure 3. Note that the TXD (transmit data) and
the RXD (receive data) and the RTS (ready to send)
and the CTS (clear to send) signals have been
crossed. This is done because both the Intellec system
and the iSBC 86/12 board are configured to act as
data sets which are communicating with data
terminals. Swapping these signals permits the units
to communicate directly with no modifications to
the Intellec or iSBC 86/12 systems themselves.

FGD 1 1---------1 1 FGD IFRAME GROUND)

TXD 2 2 TXD (TRANSMIT OAT AI

RXD 3 3 RXD (RECEIVE DATA)

RTS 4 4 RTS (READY TO SEND)

CTS 5 5 CTS ICLEAR TO SEND)

SGD 7 7 SGD ISIGNAL GROUND)

Figure 3. InteliecTM -iSBCTM 86/12 RS232
UP 1 DOWN LOAD Cable

The software in the Intellec system accepts characters
output from the iSBC 86/12 board through the
Intellec SERIAL 1 port. The software then outputs
these characters on the CRT monitor built into the
Intellec Series II Model 220 or 230. In a similar
fashion, characters input from the Intellec key-

A-215

board are passed down the serial link to the iSBC
86/12 monitor program. The integrated CRT
monitor and keyboard on the Intellec system then
becomes the "virtual terminal" of the iSBC 86/12
monitor program. If this were the only function of
the iSBC 957 package, there would be no real
benefit to the user. However, when the "virtual
terminal" capability is combined with the capa­
bility to download and upload program code and
data fIles between the Intellec ISIS-II fIle system
and the iSBC 86/12 board, a very powerful soft­
ware development tool is realized. The software in
the Intellec system must examine the commands
which are input from the keyboard and in the case
of the LOAD and TRANSFER commands (see
later sections for details on monitor commands),
the software must open and read or write ISIS-II
disk fIles.

Transfer rates using Intellec Series II Model 220 or
230 system are 9600 baud when transferring hexa­
decimal object fIles to or from a disk fIle and 600
baud when transferring commands between the
iSBC 86/12 board and the CRT monitor and key­
board. With a 9600 baud transfer rate, it is pos­
sible to load 64K bytes of memory in about four
minutes.

InteUee 800 System Configurations

The iSBC 957 package may be used with the In­
tellec 800 system in four different conflgurations.
These four configurations are determined by two

Ap·43

variables. The first variable is whether the iSBC
86/12 board is connected to the Intellec 800 TTY
port or to the Intellec 800 CRT port. The second
variable is whether or not a parallel cable is used
for uploading and downloading hexadecimal object
files. Figures 4A and 4B illustrate the four
configurations.

In Figure 4A, the configuration shows the TTY
port of the Intellec 800 system connected to the
iSBC 86/12 serial port using two cables and an
iSBC 530 teletypewriter adapter. The TTY port of
the Intellec 800 system is designed for using a
teletypewriter as the Intellec console device. To use
this port for communication with the iSBC 86/12
board, the current loop TTY signal must be con­
verted to an RS232 compatible voltage signal. This
function is performed by the iSBC 530 adapter.

The cable which connects the Intellec 800 system to
the iSBC 530 adapter performs a function similar
to the RS232 Up/Down Load cable described
above. A schematic for this cable and all other
components of the iSBC 957 package are included
with the delivered product.

The transfer rate for both commands and data
when the TTY port is connected to the iSBC 86/12
board is 110 baud. This means to download even
moderately sized programs would require large
amounts of time, several minutes or even hours.
However, much faster times may be achieved by
using the parallel ports of the iSBC 86/12 board
and the Intellec system for downloading program
files. This parallel port used on the Intellec 800
system is the output port labeled PROM which is
normally used with the Universal Prom Pro-

4A
PROM
PORT

PARAllEL
LOAD CABLE
(OPTIONAU

48

INTElLEC
MDS BOO
SYSTEM

INTElLEC
MOS BOO
SYSTEM

TTY
PORT

I

iSBC 861 t2
BOARD

~~ fo "-.'SBC530
" TIVADAPTEA
TTY UP I DOWNLOAD

CABLE

PARALLEL
LOAD CABLE
(OPTIONAl)

OEM RS232-C
CABLE

SERIAL
1-'0 PORT

TOTTY

---TERMINAL ~ 7
~ OEM RS232·C

'-Rsm UP I DOWNLOAD
CABLE

CABLE

Figure 4A, 4B. Inteliec™ 800- is BCTM 86 / 12 Configurations

A-216

AP-43

grammer. A cable is connected between the In­
tellec PROM port and the parallel 110 port, 11 of
the iSBC 86/12 board. Parallel port B of the iSBC
86112 board is used for the 8-bit byte transfers
from the Intellec system to the iSBC 86112 board,
port A is used for the byte transfers from the iSBC
86112 board to the Intellec system and port C is
used for controlling the byte transfers. A special
status adapter piggyback board must be inserted
into a receiver /terminator socket of the iSBC 86/12
board. This status adapter circuit is required to
provide the necessary handshaking signals from the
iSBC 86112 parallel ports to the Intellec PROM
port.
The transfer rate achieved when downloading and
uploading hexadecimal object files with the parallel
cable is approximately 1,000 bytes per second. The
time required to load 64K bytes of memory is
approximately 2Yz minutes.

Figure 4B shows a configuration with the Intellec
800 CRT port connected to the serial port of the
iSBC 86/12 board. The TTY port of the Intellec
800 system is connected to a teletypewriter or some
other current loop device to act as a system con­
sole. The optional parallel load cable is also shown.
The cables used for this configuration are the same
as those used with the Intellec Series II Configur­
ations. Command transfer rates require 110 baud
because the TTY port of the Intellec 800 system is
used for communicating with the console device.
However, hexadecimal object files can be loaded at
9600 baud since this operation uses only the Intellec
to iSBC 86/12 RS232 link.

It is also possible to download files with the parallel
cable, this mode being somewhat faster than the
serial download mode (2 Yz minutes versus four
minutes for 64K bytes of memory). Table I con­
tains a summary of the command and memory
transfer rates for each of the Intellec-iSBC 86/12
configurations.

Comparing the Intellec 800 configurations shown in
Table 1 and in Figures 4A and 4B it should be
noted:

1. Using the TTY port (Figure 4A) of the Intellec
800 system for communications with the iSBC
86/12 board (essentially) requires installation of
the parallel cable and jumper modifications for
downloading and uploading files, and thus, pre­
vents the use of the parallel ports for other 110
functions.

2. Using the CRT port (Figure 4B) of the lntellec

A-217

800 system for communication with the iSBC
86/12 board provides for a fast serial download
capability, thus freeing the parallel ports for
other uses. However, this configuration requires
a teletypewriter or a CRT capable of accepting
a current loop input signal as the Intellec system
console.

Table 1

COMMAND AND MEMORY TRANSFER RATES FOR
INTELLEC-iSBCTM 88/12 CONFIGURATIONS

Effective
Command Rate

Load / Transfer
Rate

Serial
Parallel

Approximate Time
to load 64K bytes
of memory

Serial
Parallel

INTELLEC
SERIES 11220/230

SERIAL PORT
TO ISBC 861 12

6X) Baud

9600 Baud
N/A

4 minutes
N/A

INTELLEC 800
TTY PORT

TO iSBC 861 12

'10 Baud

110 Baud
1 K bytes I sec'"

5 hours
2.5 minutes

INTELLEC 800
CRT PORT

TO ISIC 86/12

110 Baud"

9600 Baud
, K bytes I sec

4 minutes
2.5 minutes

"The actual baud rate of the InteHec-iSBC 86/12 link is 9600 baud, but the effective
command rate is determined by the slower lntellec- console serial link.

"·Transmission rate over the paraUellink is determined by the speed of the two processors
and is apprQximately 1K bytes per second.

IV. THE iSBC 957-iSBC 86/12 MONITOR
PROGRAM

The iSBC 86/12 monitor program is an EPROM
resident program which facilitates debugging of
user written programs. The monitor program used
in the iSBC 86/12 board with the iSBC 957 pack­
age is the same monitor program written to inter­
face the iSBC 86/12 directly to an RS232C data
terminal. When interfaced directly to a terminal,
the iSBC 86/12 board functions in a stand-alone
environment communicating directly with the user
via the data terminal. A user may use the monitor
for entering small programs in hexadecimal format,
executing a program, examining registers and
memory contents, etc.

To use the monitor program with an Intellec system,
the proper cables must be installed and the iSBC
957 Loader program must be loaded into Intellec
memory and executed. The Loader program is resi­
dent on a file named SBC861, and when executed,
the Loader outputs a sign-on message. Next, the
iSBC 86/12 monitor program must be started and
the baud rate of the iSBC 86/12 to Intellec serial
communications link must be determined. This is
done by pressing the RESET switch on the chassis

AP-43

Table 2
MONITOR COMMAND LIST

COMMAND FUNCTION AND SYNTAX

L Load Hex loads hexadecimal object file from Intellec into iSBC
Object File 86/12 memory using serial (5) or parallel (PI mode.

l {SI p},< filename> [, <: bias addr>]< CP

T Transfer Hex Transfers blocks of iSBC 86112 memory to InteUee as
Object File a hex object file using serial (5) or parallel (P) mode.

TIXI {SIP} ,<start addr >,< end addr>.<filename>

[,<exec lIddpi<.cr>

E Exit Exits the loader program and returns to ISIS.

N Single Step

G Go

E<cr>

Executes one user program instruction.

N[<addp],[[<addr> 1.1*..:;cr>

Transfers control of the 8086 CPU to the user program
with up to 2 optional breakpoints.

G«start addr>] [,<break 1 addr>

[,<break 2 add,>] J<er>

S Substitute Displays/modifies memory locations in byte or word
Memory format.

SIW1<addr::., I [new contents),]* <cr::.

X Examine/Modify Displays/modifies 8086 CPU registers.
Register Xf<reg::.] [[<new contents::.],]*<cr>

D Display Memory Displays coMents of a memory block in byte or word
format.

D[WI<start addr>I,<end addr>]<cr>

M Move Moves contents of a memory block.

M<start addr>, < end addr::',<destination addr><cr>

C Compare Compares two memory blocks.

C-<start addr>,<end addr>, <destination addr>< cr>

F Find Searches a memory block for a byte or word constant.

F[W]<start addr>,< end addr>,<data><cr>

H Hex Arithmetic Performs hexadecimal addition and subtraction.

H<data 1>,<data2><cr>

I Port Input Inputs and displays byte or word data from input
port.

IIW]<port addr>,!.]*<cr::.

o Port Output Outputs byte or word data to output port.

OrW]<port adcV>, <data>{,<data>]* <cr>

Syntax conventions used in the command structure are as follows:

rAJ indicates that" A" is optional

[A]* indicates one or more optional iterations of "A"

<8> indicates that "8" is a variable

{AlB} indicates "A" or "B"
<cr> indicates a carriage return is entered

Numeric arguments can be expressed as a number, the contents of a register,
or the sum or difference of numbers and register contents. Thus, addresses
and data can be expressed as follows:

addr :: = f <expr>: J<expr>

expr :: = <number>l<reglster>l<expr> {+ I-} <number>1

<expr> {+ I-} <register>

register :: = AXIBXICXIDXISPIBPlsllDqCSIDSISSIESPPlfl

number :: = <digit>l<digit><number>

digit :: = 01112131415161718191AIBICIDIEIF

Numeric fields within arguments are entered as hexadecimal numbers. The
valid range of numerical values is from OOOO-FFFF. Larger numbers may be
entered, but only the last four digits (or two in the case of byte values) are
Significant. Leading zeros may be omitted.

An address argument consists of a segment value and an offset value separ­
ated by a colon (:). If a segment value is not specified, the default 'segment
value is the CS register value.

A-21S

containing the iSBC 86/12 board and typing two
"U"s on the Intellec console. The ASCII uppercase
character U has a binary pattern of alternating ones
and zeros, the iSBC 86/12 monitor uses this pattern
to determine the baud rate of the serial link. After
the baud rate has been determined, the monitor
program outputs a sign-on message to the console.
An example of loader program execution and
monitor program initialization is shown below (user
entered characters are underlined).

:Fl:SBC861
ISIS-II iSBC 86/12 LOADER, Vx.x
(user resets iSBC 86/12 board and types two "U"s)
iSBC 86/12 MONITOR, Vy.y

The monitor prompts with a period "." when it is
ready for a command. The user can then enter a
command file, which consists of a one- or two­
character command followed by zero, one, or more
arguments. The command may be separated from
the first argument by an optional single space; a
single comma is required as a delimiter between
arguments. The command line is terminated by a
carriage return or a comma depending on the com­
mand, and no action takes place until the command
terminator is sensed. The user can cancel a com­
mand before entering the command terminator by
pressing any illegal key (e.g., rubout or Control-X).

Table 2 contains a summary of the loader and
monitor commands. These commands will not be
explained in detail; instead, the next section of the
application note will show examples of using these
loader and monitor commands. The iSBC 957
User's Guide referenced at the front of this docu­
ment does, however, contain a complete description
of each of the monitor and loader commands.
Table 3 contains a list of the 8086 hardware registers
and abbreviations used by the monitor program.

Table 3
8086 CPU REGISTERS

REGISTER NAME ABBREVIATION

Accumulator AX
Base BX
Count CX
Data DX
Stack Pointer SP
Base Pointer BP
Source Index SI
Destination Index DI
Code Segment CS
Data Segment DS
Stack Segment SS
Extra Segment ES
Instruction Pointer IP
Flag Fl

ON-BOARD
EPROM MONITOR PROGRAM {

FFFFFH

18K bytes) FEOOJH 1---------1

AVAILABLE
SOOOH ------ ~~~: ------

ON-BOARD
leOH

RAM INITIAL USER STACK
132K bytes) 130H

MONITOR
DATA
AREA

AOH

INTERRUPT
VECTORS

0-39

AP-43

39

38

37

38

35

34

33

32

31

INTR 7 9CH

INTR 6 98H

INTA 5 94H

INTA 4 90H
8259A PIC

INTR 3 8CH
VECTORS

INTR 2 88H

INTA 1 84H

INTR 0 80H

: RESERVED
FOR , FUTURE , USE BY

, INTEL ,

Interrupt on Overflow 10H

One-Byte Intr Instruction CH

Non-Maskable Intr 8H

Single Step 4H

OHL------~ ____________________ _ Divide by Zero °H

Figure 5. Memory Map of iSBCTM 86/12 Memory With Monitor Program

Figure 5 contains a memory map of the iSBC
86/12 memory with the monitor program. Note
that the monitor uses the top 8K bytes of memory
for its program code and the first 384 bytes of
memory (locations 0 hex to 17F hex) for monitor
and user stack, data and interrupt vectors. When
the monitor program is reset, the segment registers,
the IP and the flags are set to 0; and the SP is set
to 01C0H allowing 64 bytes for the user's stack. If
64 bytes is not sufficient for the user's application
program, the SP should be set to some other value.
The monitor program sets the single-step, one-byte
instruction trap and non-maskable interrupt vectors
to monitor entry points. The monitor also sets the
8259A Priority Interrupt Controller to fully nested
mode with level 0 at the highest priority and all
interrupts unmasked. The eight interrupt vector
addresses for the 8259A are also set to addresses in
the monitor. User programs may change the 8259A
interrupt vectors to interrupt service routine ad­
dresses within the user programs; it is not necessary
for users to program the 8259A chip directly. When
an interrupt occurs, control passes to either the
monitor or directly to user code depending on the
address stored in the vector location. When the
monitor responds to an interrupt, it acknowledges
the interrupt and displays the interrupt level, CS
and IP register values and next instruction byte on

A-2l9

the system console (e.g., 1=3 @ lOO:230F F5).

When a user requests a breakpoint with a "G"
command, the monitor inserts the single byte
instruction trap instructions (INT 3) in the location
where the breakpoint is requested. It is also possible
for the user to code an INT 3 instruction in his
program. When a user coded INT 3 instruction is
executed, the monitor will be re-entered and a line
with the format @<CS Value>:<IP Value> <In­
struction byte > will be displayed (e.g., @1200:3F02
F5).

Included on the diskette with the Loader program
are two libraries containing 110 routines for the
console. The library files are named SBCIOS.LlB
and SBCIOL.LlB; they contain similar routines.
The routines in SBCIOS.LlB are written to be
called with intrasegment subroutine calls, a PL/M-
86 module compiled with the "small" control
generates this type of call. The routines in
SBCIOL.LlB are written to be called with interseg­
ment subroutine calls, a PL/M-86 module com­
piled with either the "medium" or "large" control
generates this type of call.

The console input output routines, CI and CO,
contained in the library should be used when per­
forming character input and output on the console.
Example PL/M-86 calls to the two routines are:

CI: PROCEDURE BYTE EXTERNAL;
END CI;

CO: PROCEDURE (X) EXTERNAL;
DECLARE X BYTE;
END CO;

DECLARE INPUT$CHAR,
OUTPUT$CHAR BYTE;

INPUT$CHAR = CI;

CALL CO(OUTPUT$CHAR);

General Comments on Use of the iSBC 957 Package

1. If the iSBC 86/12 board is reset any time after
the initial baud rate search, it is not necessary to
reload the iSBC 957 Loader program or to
download the program code a second time to the
iSBC 86/12 board. It is only necessary to re­
establish the communications link by typing two
"U"s for the baud rate search.

2. The iSBC 86/12 board should not be plugged
into an available card slot in an Intellec chassis;
a separate chassis should be used. There are at
least three reasons for this:

a. There is only one RESET signal available on
the Intellec system bus. Thus, each processor
may not be reset independently. This means
that the iSBC 86/12 board cannot be reset
without re-booting the ISIS-II operating sys­
tem and restarting the iSBC 957 Loader.

b. The Intellec system uses five of the eight avail­
able interrupts on the system bus. This severely
restricts the range of interrupts available to
the iSBC 86/12 board. Also, the iSBC 86/12
board cannot turn-off the interrupt lamps on
the Intellec front panel.

c. The iSBC 86/12 board may address up to 1
Megabyte of memory using a 20 bit address.
Many Intellec systems contain boards which
generate and decode only the low order 16
address bits. For example, the iSBC 016 mem­
ory expansion board and the Intellec 800

AP-43

A-220

monitor PROMs only decode 16 address bits.
Memory expansion above 64K bytes in these
systems is difficult since the boards which de­
code only 16 bits will force "holes" in the
address space above 64K.

3. The iSBC 86/12 board is delivered with two
inputs to the 8259A Priority Interrupt Controller
connected. Interrupt request 2 (IR2) is connected
to the counter ~ output of the 8253 Program­
mable Interval Timer. IR5 is connected to the
INT5/signal of the MULTI BUS System Bus. If
these interrupts are not desired, the wire wrap
jumpers making the connections should be re­
moved from the iSBC 86/12 board. A particular
problem may exist with the counter ~ connection
to IR2. If the 8253 counter ~ is not specifically
initialized with software, a low frequency square
wave output will exist at counter ~'s output. This
may cause unwanted interrupts when interrupts
are enabled by user programs.

4. If the iSBC 86/12 board is used in a system with
expansion boards, it is important that the MUL­
TIBUS bus exchange pins be properly jumpered.
For example, if the iSBC 86/12 board is used
with an iSBC 032 expansion memory board in a
system, the BPRN / MUL TIBUS pin for the
iSBC 86/12 board should be grounded.

In addition, if any interrupts are used with the
iSBC 86/12 board the BPRN/ pin must be
grounded. This is true in both single and mul­
tiple board systems.

5. Certain user systems require more than one single
board computer in the system for performing the
functions required by the application. The MUL­
TIBUS System Bus has been specifically designed
to permit multiple CPU boards to communicate
and to share system resources. However, de­
bugging systems with multiple CPUs has always
posed somewhat of a problem. The iSBC 957
package provides a solution to this problem. The
serial cable which connects the iSBC 86/12
board to the Intellec system may be removed
after the program has been downloaded to the
iSBC 86/12 board. A console CRT may then be
connected directly to the iSBC 86/ 12 board and
the monitor program may be used to debug the
program running on the board. Other iSBC
86/12 boards may also be downloaded from the
Intellec system and then switched to their own
local terminals. An 8-bit processor board, such
as the iSBC 80/30 board, may also be included

in the system and ICE-85™ may be used for
debugging the iSBC 80/30 program concurrently
with the iSBC 86/12 programs. Using this
scheme, it is possible to debug a system which
has several CPU boards by setting breakpoints
and using other debugging features on each of
the individual CPUs.

V. MATRIX MULTIPLICATION EXAMPLE

To illustrate how the iSBC 957 package can be used
to assist in the writing and debugging of 8086 pro­
grams on the iSBC 86/12 board, an example pro­
gram of a matrix mUltiplication will be presented.
The example chosen has been intentionally kept
simple and straightforward. The emphasis of this
section will be to document the steps required to as­
semble, compile, link, locate and debug software
using an Intellec system, the iSBC 957 package and
the iSBC 86/12 board. Part of the example will be
written in 8086 assembly language and part in PLI
M-86.

The main program is written in PLlM-86. The
main program first performs some initialization
and the matrix multiplication, then the program
calls an assembly language procedure (subroutine),
a PL/M-86 procedure and the console output pro­
cedure CO supplied in the 110 library on the iSBC
957 diskette. A flow diagram for the example
program is shown in Figure 6.

Explanation of the Program Code

The program code is contained in three software
modules EXECUTlON$VEHICLE, FIND, and
SBCCO. EXECUTlON$VEHICLE contains the
main program coded in PL/M-86 and the binary
to ASCII conversion procedure BlNDECASC
also coded in PL/M-86. The module FIND con­
tains the assembly language procedure FIND$MX
which searches a matrix for its maximum value.
The module SBCCO resides in the library of con­
sole 110 routines supplied with the iSBC 957 pack­
age. The procedure CO will be used from this
library.

The program code for the EXECUTION$VEHICLE
and FIND modules will be explained in the follow­
ing paragraphs. Appendix B contains compilation
and assembly listings for the two modules; also
contained in Appendix B is a memory and debug
map for the linked modules. The listings contain
circled reference letters (e.g.,@) which are referred
to by the code description below. The listings in the
appendix have been printed on fold-out pages so
that they may easily be seen when reading the text.

AP-43

A-221

Initialize
X$RQW & Y$AQW

Matrices

Multiply
Matrices,

store result in
Z$AOW

Output MAX
value on

terminal using
CO routine

Figure 6.
Flow Diagram of Matrix Multiplication Example

Much of the description given below assumes that
the reader is familiar with the PL/M-86 language
and compiler, the 8086 assembler, and the link and
locate program QRL86. It is recommended that the
reader have at least a cursory knowledge of these
subjects. The Intel literature for these subjects is
listed near the front of this application note.

The EXECUTION$VEHICLE Module

® The first section of the module includes intro­
ductory comments and then statements to de­
clare the matrices, other variables, and pro­
cedures used in the program. Note that the
matrix dimensions are declared using the literals
M, N, and P which are initially set to 6, 5, and
3. Later in this note, other values for M N
and P will be used. ' ,

® The next section of code contains the state­
ments which initialize the two matrices that will
be multiplied X$ROW and Y$ROW.

As a result of this initialization, the two ma­
trices will contain values as shown in Figure 7.

AP-43

0 0 0

[~
-1

'] -1 -2

2 2 -1 -2

-1 -2

4 4 4 -1 -2

X$ROW (6X5) Y$ROW (5X3)

Figure 7.
X$ROW and Y$ROW Matrices After Initialization

© The next program section performs the matrix
multiplication. The algorithm required to mul­
tiply two matrices X and Y, storing the result in
a third matrix Z is:

n

Zmp = L Xmi *Yip
i = I

Assuming X to be 6X5 matrix and Y a 5X3
matrix then

ZII =XIl Y11 +X1'Y'l +XnY31 +X14X.l +X1'YS1

Thus, the upper left term is equal to the sum of
the products of the top row of the X matrix
times the left column of the Y matrix. The re­
sult that is obtained by multiplying the two
matrices X$ROW and Y$ROW after they are
initialized as explained above, is shown in
Figure 8.

-5 -10

-10 -20

-15 -30

-20 -40

-25 -50

Z$ROW (6X3)

Figure 8. Result of Multiplying the Initialized Matrices
X$ROW and Y$ROW

® The external assembly language procedure
FIND$MX is called to determine the maximum
value in the matrix. The procedure is a typed
procedure and returns the maximum value to
the calling program which stores it in the inte­
ger variable MAX.

® The maximum value is then converted to a six
(6) digit ASCII character string by the pro­
cedure BINDECASC. The character string is
stored in the array MAXASCARRA Y, which
contains the sign of the number and five (5)
digits for the magnitude.

® Finally, the characters "MAX VALUE =" are
output on the system console followed by the
6 ASCII characters containing the maximum
value. The PL/M-86 built-in procedure SIZE
returns the number of bytes of the array TEXT
as a word value. The PL/M-86 built-in pro­
cedure SIGNED changes the type of the value
from WORD to INTEGER. This is required so
that the type of the arguments in the DO state­
ment agree. The console output procedure CO
is used to output the characters on the system
console.

@ Also contained in the module MATRIX.PLM
is the binary to ASCII conversion procedure
BINDECASC. The first portion of the code
contains the comments explaining the parl:!­
meters and the calling sequence followed by the
declarations. Note that the address of the array
where the characters are to be stored is passed
to the procedure and that the characters will be
stored in the array using based variables. The
next section of the code stores either a + or -
sign in the first character position of the ASCII
array and stores the absolute value of VALUE
in the variable TEMP. Finally, the binary value
is converted to ASCII using the algorithm
explained in the comments. The MOD operator
returns the remainder of the division by 10. The
UNSIGN built-in procedure is required to
change the type of the expression from INTE­
GER to WORD.

The FIND Module

® The FIND module contains the assembly lan­
guage procedure FINDMX. The calling se­
quence and the parameters are explained in the
comments at the beginning of the listing. Note
that the label FINDMX has been declared
PUBLIC so the link program can fill in its
address in the CALL statement in the main
program of module EXECUTION$VEHICLE.

The FIND module will contain three segments:
a data segment, a stack segment and a code
segment. It will be both convenient and prag­
matic to append these three segments to the
code, data and stack segments created by the

A-222

CD

AP-43

compiler for the EXECUTION$VEHICLE
module. To accomplish this, the three segments
must be given the same SEGMENT and CLASS
names as those given these segments by the
compiler. The SEGMENT and CLASS names
used by the compiler are CODE, DATA, and
STACK. The GROUP statements are used to
place the segments DATA and STACK in the
group DGROUP and the segment CODE in the
group CGROUP. These group definitions con­
form with the group definitions generated by
the PL/M-86 compiler when the SMALL size
control option is used. A group is a collection
of segments which requires less than 64K bytes
of memory.

The ASSUME directive informs the assembler
that the DS and SS registers will contain the
base address of DGROUP and the CS register
will contain the base address of CGROUP.
This information will be used by the assembler
when constructing machine instructions.

since it is desired that the code from this
module be appended directly to the code from
other modules without gaps between the code
modules.

The assembly language code follows next. The
code for the procedure must be enclosed be­
tween a pair of PROC, ENDP statements. The
PROC statement is given the label FINDMX
and specified as a NEAR procedure indicating
it will be called with a near (intra-segment)
CALL instruction and not a far (inter-segment)
CALL instruction.

The comments at the beginning of the module
and adjacent to the program statements ex­
plain the function being performed by the
assembly language code.

The SBCCO Module

@ The console output procedure CO is contained
in the object module SBCCO of the library file
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC
957 package 110 libraries. The calling sequence
and parameters for CO may be seen in the
external procedure declaration in the EXE­
CUTION$VEHICLE module.

Compiling the EXECUTION$VEHICLE
Module

The EXECUTION$VEHICLE module is stored on
a file named MATRIX.PLM on disk device :Fl:.
To compile the module, the following command
line is used:

The first segment appearing in the module is
the data segment. The order of the segments is
arbitrary, although it is recommended that the
data segment precede the code segment to mini­
mize forward references to variables which may
cause the assembler to generate longer instruc­
tion codes. The data segment is declared
PUBLIC, aligned on a WORD boundary and
given both a segment and class name of DATA.
Then follows the contents of the segment. In
this particular example, only one word of stor­
age is required. The ENDS directive indicates
the end of the segment.

- PLM86 :FI :MATRIX.PLM DEBUG

® Next comes the stack segment which is given
the segment name of STACK, the combine­
type attribute of STACK and the class name of
STACK. The combine-type attribute of STACK
assures that the stack storage required in this
module will be appended to the storage re­
quired in the PL/M-86 compiled modules. Two
bytes of stack are required by the code in this
module, however, the monitor uses 13 words of
stack when breakpoints and interrupts are used.
Therefore, 14 words are reserved for the stack.

Finally comes the code segment. The code seg­
ment has been given a segment name and class
name of CODE and a group name of
CGROUP, and has been declared PUBLIC.
The alignment attribute of BYTE is specified

A-223

This command line will cause the module stored in
the file :Fl:MATRIX.PLM to be compiled. The
object code generated will be stored in a file with
the default name :Fl:MATRIX.OBJ and the listing
generated will be stored in a file with the default
name :Fl:MATRIX.LST. To override the default
object and listing files, the NOOBJECT and NO­
LIST compiler control switches can be used. File
names for the listing and object files may also be
specified in the command line. The DEBUG com­
piler control switch causes the compiler to generate
extra symbol and line number information which
will be used during debugging of the program. A
listing of the compiled EXECUTION$VEHICLE
module is contained in Appendix B.

To aid in the debugging of the program, the
module was compiled a second time with the fol­
lowing command line:

AP-43

- PLM86 :Fl:MATRIX.PLM NOOBJECT
CODE DEBUG PRINT (:Fl :MATRIXXLS)

This command line specified that no object file is to
be created and a listing file should be stored in the
file :FI :MATRIXXLS. The CODE compiler con­
trol switch causes the compiler to list the assembly
language statements which the compiler has gener­
ated for each line of PL/M code. The listing stored
in the file MATRIXXLS is contained in Appendix
C.
Assembly of the FIND Module

The assembly language module FIND is stored on a
file named FIND.ASM, to assemble this module
the following command line is used:

ASM86 :Fl:FIND.ASM DEBUG

This command line will cause the FIND module to
be assembled with the object code stored in the
default file :FI :FIND.OBJ and the listing stored in
the default file :FI:FIND.LST. The listing of the
assembled FIND module is contained in Appendix
B.
Linking and Locating the Object Module

To link and locate the object modules, the QRL86
program will be used. The QRL86 program per­
forms both the linking and the locating of the
object modules in a single step. QRL86 is primarily
designed for the debugging stages of program devel­
opment. Some applications may require the extended
capabilities of the separate LINK and LOCATE
programs when the final link and locate is per­
formed. The command line used to invoke the
QRL86 program is:

QRL86 :FI:MATRIX.OBJ, :Fl:FIND.OBJ,
SBCIOS.LIB ORIGIN (lOOOH)

This command line will cause QRL86 to link the
code from the three modules and to locate the
resultant absolute object module starting at location
1000 hexadecimal. The iSBC 86/12 monitor uses
the first 180H bytes of memory for the monitor
stack, data and interrupt vectors, l000H was chosen
as a convenient starting address for the program.
The absolute object code will be stored in a default
file :Fl :MATRIX (note no file name extension is
used). By default, the memory and debug maps
which are generated are stored in the file :Fl:MA­
TRIX.MPQ and are contained in Appendix B.

® The memory map contains the starting ad­
dresses and sizes of the CODE, CONST,
DATA, STACK and MEMORY segments of
the object module. Note that the start address

A-224

for the program is specified as (~I~H, ~2H)
indicating a CS value of ~1~H and an IP
value of ~2H or an absolute value of ~1~2H.
The first two bytes of the code segment contain
address values which the code generated by the
compiler will use for setting up the DS and SS
registers. The memory map shows the code
segments from the three modules collected into
the group CGROUP. The code segment from
the EXECUTION$VEHICLE module is given
the segment and class names of CODE and is
put into CGROUP by the PL/M compiler. To
assure that the code segment from the FIND
module is concatenated with the code segment
from the EXECUTION$VEHICLE module the
identical class, segment and group names were
specified in the SEGMENT and GROUP state­
ments in the FIND module. Next, the group
DGROUP is shown in the memory map.
DGROUP contains 4 segments labelled
CONST, DATA, STACK and MEMORY.
Putting all of these segments in the same group
tells the linker that they will all be in the same
64K block of memory. The SMALL size con­
trol option of the compiler, which was invoked
by default, creates CGROUP, DGROUP, and
the segments contained in them.

® The debug map contains the memory address
of variables, instruction labels and the ad­
dresses of each code line of the PL/M-86
module. Notice that the variable storage labels
have their addresses specified in the format (DS
register value, displacement). For example, the
variable TEMP has an address of DS=~12AH,
displacement = ~CH or an absolute address
of f)136H. Instruction labels and line numbers
use the format (CS register value, IP register
value). Thus, line number six (6) in the module
EXECUTION$VEHICLE has the address
CS=~I~H, IP=~B5H or ~IIB5H.

Object to Hex Conversion

Before downloading the program to the iSBC 86/12,
the format of the object module must be converted
from the absolute object module format which
QRL86 creates to a hexadecimall ASCII representa­
tion of the object module. This is done using the pro­
gram OH86 with the following command line:

OH86 :Fl:MATRIX TO :FI:MATRIX.HEX

Downloading and Debugging the Program

The hardware configuration used for debugging the
matrix multiplication example program code was

AP-43

an Intellec Series II Model 230 development sys­
tem, the iSBC 957 package, an iSBC 86/12 board,
and an iSBC 660 system chassis. What follows is
the system-user dialog for a typical debugging
session.

The first step required is to bootstrap load the
ISIS-II operating system by hitting the RESET
switch of the Intellec. The Intellec resident loader
software is then loaded and executed. Throughout
the dialog which follows operator entered charac­
ters will be underlined:

ISIS-II, 113.4
-~

ISIS-II ISBC 86/12 LOADER, 111.2

To initialize the iSBC 86/12 monitor, the user must
hit the RESET switch on the iSBC 660 chassis and
type two "U"s on the system console. The monitor
program will output a line on the console when it is
properly initialized.

ISBC 86/12 MONITOR, V1.2

The monitor command "X" is typed to check that
the monitor is properly operating and to examine
the contents of the 8086 registers .

• X
AX"'00"" BX"'~000 CX=IHHJ0 DX=0000 SP='HCIIl SF=00"" 81=0000
!)I::00~~ C5=001:10 DS=000~ 55::::0000 85=0000 IP=00"0 FL=0000

To download the hex object file to the iSBC
86/12, the "L" command is used. Because an
Intellec Series II Model 230 is being used, a serial
download is specified. The hex file name is
MATRIX. HEX which is resident on disk device
:Fl:.

.f.S, : FI: MA·rRIX. HEX

The "X" command is used again to examine the
CPU registers. Note that the monitor has changed
the contents of the CS and IP registers to the value
of the starting address of the program.

.X
AX=0000 BX={:trd0B CX='HHHl DX='H"'" SP"'01C0 B~=0000 51=0000
01=0000 CS=0HHt DS=0~"0 55=000" Es=rU00 IP:::111002 FL=0000

The "0" command is next used to display the first
101 bytes of the program code. Unless another seg­
ment register is specified, the display command
assumes all addresses specified are relative to the CS
register. Thus, the code displayed will be from abso­
lute addresses 1000 through 1100. The program code
displayed may be compared with program code gen­
erated by the PLlM-86 compiler shown in Appendix
C, code line 36.

A-225

.00.100
0000 2A 01 FA 2E 8E 16 00 00 Be 00 00 88 Ee 16 IF FB
0010 c7 06 8E 00 00 00 81 3E BE 00 05 ~Hl 7E 03 E9 3C
0020 00 C7 06 90 00 00 00 81 3E 90 00 04 00 7E 03 E9
0030 22 00 88 06 8E 00 89 0A 01:l F7 E9 BB 36 90 00 Dl
IHIU E6 89 C3 8a 0E 8E 00 89 88 HI 00 81 06 90 00 01
"0Sd 00 E9 03 FF ill 06 8E 00 01 00 E9 89 FF e7 1116 8E
0060 00 00 00 81 3E 8E 00 04 00 7E 03 E9 40 00 C7 06
0070 90 00 00 ~13 81 3E 90 0~ 02 00 7E 03 E9 26 013 Be
1.:'080 06 90 00 F7 08 50 8s 06 BE 00 s9 06 00 F7 E9 8s
0090 36 90 00 Dl E6 89 C3 59 89 88 4C 00 Bl 06 90 00
00A.0 01 00 E9 CF FF Bl 06 BE 00 01 00 E9 B5 FF C7 06
"080 92 00 00 00 81 3E 92 00 '112 00 7E 03 E9 Be 00 C7
00C0 06 8E 00 00 00 Bl 3E 8E 00 05 00 7E 03 E9 72 00
00D0 Be 06 BE 'HI 89 06 00 F7 E9 8e 36 92 00 01 E6 89
00E0 e3 C7 80 6A. 00 0111 00 C7 06 90 00 !!I0 00 81 3E 90
00F0 00 04 00 7E 1113 E9 41 00 BB 06 BE U 89 0A. 00 F7
0100 E9

The PL/M-86 compiler ends the main program in
the EXECUTION$VEHICLE module with a halt
instruction. After execution of the program it is
more desirable to return to the monitor. To ac­
complish this, an INT 3 instruction (code=CC)
will be substituted for the halt instruction (code=
F4) at the address of 1 B4H relative to a CS value
of l00H. First the "0" command is used to verify
the address of the halt instruction, then the "S"
command is used to change the instruction to an
INT 3 instruction.

. ruM
01B4 F4
.~ F4- ~

To execute the PL/M-86 main program, the "G"
command is used. After the "G" is typed, the
current contents of the IP are output, followed by
the contents of the byte pointed to by the IP. A
new value for the IP or breakpoint addresses may
be specified before a carriage return <CR> is typed.
In this example, only a <CR> is typed.

.9. 0002- FA.
MAX V<\LUE = -00050
@"Hl0:0185 55

The program executes and outputs the maximum
value of the matrix calculated. The INT 3 instruc­
tion is executed which causes a return to the
monitor. The monitor types out an at-sign (@)
followed by the CS and IP register values and the
first byte of the instruction following the INT 3
instruction.

The "X" command is typed to examine the CPU
registers. Note that the program has set both the SS
and OS registers to ~12A. (~12A~H is the address
of the OGROUP as shown in the memory map.)

.X
A.X"'~030 BX=0005 eX=1!I00A. OX=0000 SP=0000 BP=U100 Sl=0001
01=00'116 CS=0100 OS=012A. SS=IU2A ES=QU"00 IP=01B5 FL"'F202

The three matrices are displayed. Note that a word

AP-43

display has been specified by using the "OW"
Command and that the addresses have been speci­
fied relative to the OS register. The addresses of
XROW, YROW, and Z$ROW may be found in
the debug map given by QRL86. Note that the
values stored in the matrices are the same as those
shown in Figures 8 and 9.

.DW OS.10.4A
BBl0 011iB B00B BBB~ B~B0 0080 BBn 0001 0~Bl
BB20 0BU 0Bn 0002 0002 0BB2 B002 00B2 BBBl
8BlB 0B0l BBBl U0l 0~~l 00B4 ee04 0004 0004
8040 BB04 0005 00B5 0005 08B5 0005
.ow OS;4C.68
004C 0000 FFFF
0850 FFFE 0B~0 FFFF FFFE 0008 FFFF FFFE 000~
0060 FFFF FFFE ~000 FFFF FFFE
.OW OS.6A.BC
~06A 08B0 8~00 00~0
8070 0000 FFFS FFF6 ~~0~ FFF6 FFEC 0008 FFFl
~0B0 FFE2 0000 FFEC FFOB 0000 FFE7 FFCE

The "G" Command is used to reset the IP register
to the start address of the program (f/1Ij2) and to
specify a breakpoint at address ~AEH, which is the
address of statement 57 of the main program.
Statement 57 is the point in the program after the
X$ROW and Y$ROW matrices have been initial­
ized, but before the matrix multiplication is
performed. After the <:CR> is typed, the program
executes until the breakpoint is encountered. At
this point, the monitor outputs a line specifying
the number of the breakpoint, the CS and IP
values and the first byte of the next instruction to
be executed.

.§ 01S5- 55 tH'2,AE

BRI @0100:00AE C7

Next, the single-step capability is used with the
"N" command to execute single instructions. At
any time, CPU registers may be examined or
changed. In this example, the "X" command is
used. Execution of succeeding instructions is caused
by typing a comma (,).

.~ ~"U\E- C7 ..I.

0~s4- Bl ,
00BA- 7E -;
00BF- C7 -

.!
AX"'UI18 BX=0018 CX=FFFE DX='HHHl Sp:c:00D0 8P=00D0 SI=rtHd04
01=0006 CS::0U0 DS=012A SS::012A ES=IiHHI" IP=00BF FL=F293

'~0~~~F~1 c: .!

00C8- 7E-

The contents of the X$ROW and Y$ROW matrices
are examined and changed with the "SW" (sub­
stitute word) command. If a comma (,) is typed
after the contents of memory are displayed, then
the contents are left unchanged and the next word
of memory is displayed. If a value followed by a
comma or <CR.> is entered, then the contents are
changed. If a <CR> is entered, the substitute

A-226

sequence is terminated.

i'V'm~ em-,
ealE 1101- it
.~ FPFF-,
BBSC "P!- , :m ::::: iJ

After the matrices are modified, execution is
resumed with the "G" command. The max value is
output and the INT 3 instruction executed. Finally,
the contents of the 3 matrices are displayed.

.li 0ICB- 7E
MAX VALUE' +00400
U100.llB5 55
• OW os. 10 .BC
0010 0000 0000 0000 0000 0000 0001 0101 0010
0~2B 0001 00U 0eB2 eB02 ~102 00'02 B0e2 00Sl
0010 ae~l 000l ~eBl eB0l 0~04 0·884 0004 B0U
004~ 0eB4 eB05 0005 Bee5 0005 0005 0000 FFFF
0050 FFFE 800B FFFF FFFE B000 FFFF FFFE B000
0060 U64 FFFE sue FFFF FFFE 0I!l00 0o"" 0U0
0070 0800 0051 FFOB 0000 0BCB FFEC 0000 0120
00BB FFE2 0000 01B8 FFOB 0B00 01E0 FFCE

Expanding the Example Program's
Memory Requirements

To illustrate how the iSBC 86/12 board may be
used for executing 8086 programs which require
large amounts of RAM, the example program will
be modified. The matrix dimensions of the example
will be changed from values of 6, 5 and 3 for the
literal symbols of M, N, and P to values of 100,
50, 70. The three matrices will then be of size
lOOX50, 50X70, and lOOX70. The memory re­
quired for these matrices is 15.5K words or 31K
bytes. The data, constant, stack and memory
segments which are contained in the group
OGROUP will now comprise almost 32K bytes of
memory.

The extra memory requirements will be supplied
by using an iSBC 032 board with the iSBC 86/12
board in the iSBC 660 chassis. The iSBC 032 board
is a 32K byte RAM board which is compatible
with both 8- and 16-bit CPU boards. The base
address of the board may be selected anywhere in
a 0 to I megabyte range on any 16K byte boundary.
8- or 16-bit data transfers may be selected. The
iSBC 032 board will be jumpered to respond to
addresses in the 512K or 544K address space (20
bit hex address range to 8~H to 87FFFH). This
will illustrate the capabilities of the 8086 to access
a 20-bit, I megabyte address range.

One other modification is required to the program.
The magnitude of the numbers which would result
from multiplying matrices of this size would great­
ly exceed the capacity of the 16-bit integer storage,
even with the two matrices initialized to the small

AP-43

values they presently contain. To keep the example
simple, the initialization values will be changed so
all elements of the X$ROW matrix are set equal to
2 and all elements of the Y$ROW matrix are set
equal to 3. The result of the multiplication should
make all the elements of Z$ROW equal to 300.

The modified lines of program code are shown
below.

27
28
29

/* MATRIX DIMENSIONS, *;
DECLA.RE M LITERALLY '100 I I
DECLARE N LITERALLY '521',
DECLARE P LITERALLY 170';

36 DO I • ~ TO (M-l),
37 DOJ-BTO(N-l),
38 X$ROW(I).COL(J) - 2,
39 END,
40 END;

41 DO I • 0 TO (N-l),
42 DO J. B TO (P-l),
43 Y$ROW(I).COL(J) • 3,
44 END;
45 END,

The EXECUTION$VEHICLE module must be re­
compiled and then the three program modules must
be linked and located using the QRL86 program.
Specifying the SEGMENTS option of QRL86, the
origin of the CODE segment which is in the group
CGROUP is set at l000H, as in the first example.
However, the origin of the CONST, DATA
STACK and MEMORY segments which make up
the group DGROUP is set at 80000H.

QRL86 :Fl :MATRIX.OBJ, :Fl :FIND.OBJ,
SBCIOS.LIB SEGMENTS (CODE(I000H),
CONST (80000H), DATA STACK, MEMORY)

The memory map generated by QRL86 shows the
CGROUP having a start address of 01000H and
the DGROUP having a start address of 80000H.

INVOKED BY:
QRL86 :Fl:M,I'I,:rRIY.OBJ,:Fl:FINO.OBJ,SBCIOS.LI8 &
SEGMENTS (CODE (100~H) ,CONST (8000f.:lH) , DATA, STACK, MEMORY)

INPUT MODULES INCLUDED:
: Fl: MAT~n" .OBJ (EXECUTIONVEHICLE)
: F 1: FIND. OBJ (FIND)
sec lOS .LIB (sacco)

RESULT WRITTEN TO : Fl: MATRI'f (EXECUTIONVEHICT,E)
START AOORESS IS (Wl100H,0002H)

START LTH ALIGN NAME CLASS

0HJ00H 298H /GS/ CGROUP
0Hl00H 21DH W CODE (EXECUTIONVEH I C LE) CODE
0121DH 41H B CODE (FIND) CODE
0125EH 3AH W CODE (saCCo) CODE

/GE/ CGROUP
800110H 797i'lH /GS/ DGROUP
80000H CH W CONST (EXECUTIONVEHICLE) CONST
8eeeCH 0H w CONST (saCCo) CONST
8eetlCH 792AH w DATA (EXECUTIONVEHICLE) DATA
87936H 2H W DATA(FIND) DATA.
87938H BH W DATA(SBCCO) DATA
87940H 30H sw STACK STACK
8797"H BH W MEMORY MEMORY

/GE/ DGROUP
87971!lH BH ??SEG (FIND) (NULL)

A-227

The object code is then converted to hex format
and downloaded to the iSBC 86/12 board. When
the program is executed, the maximum value is
calculated and output on the console.

-saC661

ISIS-II ISBC 86/12 LOADER, Vl.2

Isse 86/12 MONITOR" Vl. 2
• LS,: FI :MA.TRI'i. HEX

: ~~%i2:4;~ ~
MAX VA.LUE • +00300
@eI01!l:01AD 55

VI. CONCLUSION

This application note has described the iSBC 957
Intellec-iSBC 86/12 Interface and Execution
Package, and how this package may be used to
develop and debug programs for the 8086 processor.
First, the iSBC 86/12 single board computer was
described, followed by a detailed description of the
iSBC 957 package and the iSBC 86/12 system
monitor commands. The power and versatility of
the iSBC 957 package and monitor commands for
developing and debugging programs for the 8086
were illustrated by a program example: In the
example a program which consisted of PL/M-86
and assembly language routines was presented. The
program code was explained, and the steps required
to compile, assemble, link, locate, and debug the
program were illustrated. Finally, a typical de­
bugging session using the iSBC 86/12 system moni­
tor which illustrates the powerful capabilities of the
monitor was presented.

»
N
tv
00

I [}-, RESET.' ,----.. ~,
" '" '" "

""'" t'~'1 .,~, "'~ ... ~ ,

Lr----~I
'OC' '"' - , " ON BO "'ODA c<W A~~~~i~Y r--~ .. ~,
~~~ BUSADE_ 5.0MHZCLK I ., e-}~EL n 

1a.<lJ2MHZ 

~~-
~J , ...... 

REAOY " ,~, 0'''' 9.22 MHZ ""'-or~~R """ 
CLOCK 
CIRCUIT 

" 'OW, LOCM • OVERRIDE ~~ 9.ZlIllHl ,,~ 

~, , 

~ 
" 

P2eSET -~ ,~ 
DllR , 0 

~ m 

PFU ROY 
~ 

I CEN, r-- MADe SEE 
V 'r-- ~ ADV 10 "OR ~ :=:IF~~~ , f!illi.. A016-"'019 . ~ 

INTACYCL£ 
~, ~"" 

D- COMMAND INTAi 
XACKi 

~ 
DECODER 

ADI,I-"'015 " "40/41157 ~ 

L-E JJ;-
'" 

!STACK- AOO-AOF " L-....r2~ . 
AOO·A07 

DP 01<1
4
81 ADR EIII 

AB1(I-ABlJ , " AORC),-AOIW 

of'R ADR10'-ADR11 16 AORa ...... ORl3. 20 .1 AOOflESS '"' 6 DRIVER 

AOV 10 AoR AIJ(I-ABF 16 A~l~ AMO-AMF " "MD.AMI! 1~ A6788 

~-' , .~ 1 A83ABf 

SLAVELMODE A!jIG AUF 4 AOO~ESS AORC AORF 

~ D~~iR , -ru-i .~ , '0 
10 AACK ADDRESS 10 ENABLE 

DECODEIl 

I A~55iS6 , '" . -~ ~ ADQ·ADF " OMO-OIollF ~¥~ OATO··OATF 16 
B.:!:O~ilR 

LOCAL 1N1A DEN 

~ -'j A08-AOA , ". (SEE FlG 4-2) 

BE:r~R es e"'ABLE 

~ 
10 READ,WRITE 

LOCAL INTA DEN ~O"'CE ''''''y BUS INTA OEN 

RESO 
CHIPSELECT 

DBO-DB7 
INTR 

REA[)IWRlTECONTROl BUS tNTA OEN 

CHIPSEl-ECT 

L DATA ~ 
REiEl 

J "I" J j 22_'184 MHZ , 
DATA " :. J I DATA " ··~I 

DATA " "'. 1531KHZ I M" " ,. ,~ 

~~'d 
.!J 

~ '.2:1 MHZ CLOCK 
8255APPlA~ 8251AUSART A.27 62~PITA26 CIRCUIT 82S9APlC ... 2<01 f-/ ,~.~ .0.1&1718 . . '" eLK nCiRXC nco 7 CT1'l2 CTR! 

E 
7 IR(I-IR7 ,~ . ~, . -=-

1 
L,~,~, I I 

INTERRUPT 

~ 

~$W 
JUt,llPER 

~~~R O~RlDE 
-_.

TMAOINTR . ~ . ~
BIDIRECTIONAL Ie OUT Ie

51RXINTR TMRIINTR ~
O:~~R SOCKETS SOCKETS

2_46MHl

'\Jf~~'~,f:J" B 8 EXTrTRO 8 INTR tNTR INTR INTR

0'" PB EXT 51Al TMRI

" " INTR INll'IO IPfJR INTR

iSBCTM 86/12 SIMPLIFIED LOGIC DIAGRAM

INPUT / OUTPUT AND INTERRUPT

'"

~
~
~

l>
-C
-C
m ~ Z "tI 0 I

X ~

l> W

S.
~

·'"
~k, RESET.'

'L RESET

CLOCK
S,OMHlCUl " BUS ADEN_ GEJoIERATOA

~

RU,DY "
" ".

-~
,~

,~

!'--BHEN;

~LOCK

... 016· ... 019

A XACK.

lIACI(i AOO·AOI5 16 ,
"

AOO-AlIF

OllR

"
AOV VO AOR "88-.812 ,

fSEEIG,4"1

• "~ .. F PROM UCI(ADOAESS PROM ENABLE
DECODE;

"'''' 1018/68 ,

DATA PROM ENABLE BUFFER

""""45 ~

.. B,-ABC "
t

I "-~~., j
OBO·06F I

RESET ~..." r--
ce. '"' 'Us.,

"." -" .u. _a

ONM_
(SEERG.4-1~ A~~jH~~Y ~~

~l n rcL-fl~ ~IR~L ~~~
~J

I
K'.

ST,\TUS -, "-"'" 1 [)£CODER .. '" ~ u,
~, 9.2211i1Kl

~ I "
~ o---r-DT1Jj

r-- I ~ I "'~~ j "w ""'" ce' l "." "" ~o

G ~- ~~ SEE
ADDRESS ABO·AB13 '" r ~ ~l"'., LArCH I ~ I 1\4(10'.'-57 ~

~M. L...ri-"9 ASI!)· '3 " '"
I
~ ., AOAO/· ... DA13

"" "" =~ f" ~
SlAVEIIiIOOE BUS ADEN

I I I j" GUJ-ADO·AOF ... BO· ... SF 16 ADDRESS " AMO·I"oIF OMO·_ A.DOfIESS

" BUFFER '"' _.
I ;: ~ " I O:R 5 A[)RIl'

OJ' ON BD ADA EN DP ON 80 ADA EN

~ ..
1.813

PROM ENABLE
ON BD R"M ROT OFF BO RAM AM ROT

I ';'~1'Jd-r::"·'"O 'OM
~"'~

SlAVE MODE. ~=7~ "

4"~ j. "~
BUSDIEN

C~~lLER RAM XACI(;
."PROT,

"
w._

CONTROL f;DDRESS

I ...
-~

"72-19.92-99

" 'DRMO.OO....-

I . '~'J- ~ . DATA
IItlFFER

~
A71!l11

'r u,.

,~ 1 .t---
I' a~;~:R cs I .1 "

,
AOO·ADF " -~ -- OATA8US DAm·DA1T1 -,

1 A6W1>1 ~ I -r.l
SWAPL, ,---

I "
, -- DATA BUS DATIIOATFI

I ~~

iSBCTM 86/12 SIMPLIFIED LOGIC DIAGRAM

ROM / EPROM AND DUAL PORT RAM

i
~

»
" " m
Z ~ 0
X "'D

I

» .C>o
Co)

j\)
~

~
s.
~

r-
~ ;

L--

®

AP-43

APPENDIX B

PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

@

®{

PL/M-86 COMPILER EXECUTIONVEHICLE

ISIS-II PL/M-8fi Vl.£! COMPILATION OF MODULE EXECUTIONVEHICLE
OBJECT MODULE PLACED IN :Fl:MATRIX.OBJ
COMPILER INVOKED BY: PLM86 :Fl:MATRIX.PLM DEBUG

I"
II
12
13
14

15
lfi
17
18
19

" 2l

22

23

24
25
2fi

27
28
29

1* MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL!I'I-86 MAIN PROGRAM WHICH:
A) INITIALIZES TWO INTEGER r-'lATRICES
B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A

THIRD MATRIX
C) CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE.

THIRD MATRIX FOR THE MAXIMUM VALUE
OJ CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE

FROM INTEGER TO ASCII
E) CALLS'" PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON

THE SYSTEM CONSOLE

'j

EXECUTIONSVEHICLE:
DO;

Itt FIND$"r-1X - EXTERNAL ASSEMBLY LANGUAGE PRdCEI)UR~ WHICH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.

PARAMETERS:
MATRIX$!lDR - ADDRESS OF THE !-lATRIX TO BE SEARCHED
ROWS - NUMBER OF ROItI'S IN THE MATRIX
COLS - NUMBER OF COLUMNS IN THE MATRIX

'j
FTND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL,
DECLARE (ROWS, COLS) INTEGER;
DECLARE MATRTX$PTR POINTER;
END FINOSMX;

/* BINSOECSASC - BINARY TO DFCIMAL ASCII CONVERSION PROCEDURE
PARAMETERS:

'j

VALUE - INTEGER VALUE TO 8E CONVERTED TO ASCII
CHARSARRlIY$ADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCI I

STRING CONTAINING THE VALUE \ow'ILL BE STORED

BINSDEC$ASC: PROCEDURE (VALUE, CHARSARRAY$ADR);

DECLARE (VALUE, TEMP, I) INTEGER;
DECLARE CHARSARRAySADR POINTER;
DECLARE (CHARSARRAY BASED CHARSARRAY$ADR) (6) BYTE;

IF VALUE < r. THEN
DO,

CHAR$ARRAY{!1I) '" '-'. /* SIGN CHARACTER */
TEMP -VALUE;

END,
ELSE
DO; \1

CHARSARRAY(IZI) '" '+',
TEMP'" VALUE;

END;
DO J: '" 5 TO 1 BY -1;

CHAR$ARRAY{I) ::: UNSIGN(TEMP MOD un + 30H;
TEMP = TEMP/] 0;
/* ASCII CHARACTERS ~f1 THRU .19 HEX, REPRESENT THE' DIGITS II.' THRU 9. THUS

TO CONVERT AN INTEGER TO ASCI I REPEATED DIVISIONS BY 10 AND ADDING
THE REMATNDER TO 30 HEX WILL ACCOMPLISH THE CONVERSION */

END;

END BINSDEC$ASC;

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE.

'j

THIS PROCEDURE IS PART OF -THE ISBC 957 LIBRARY FOR CONSOLE I/O
PARAMETER:

CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE

CO: PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;
END CO;

/* MATRIX DIMENSIONS */
DECLARE M LITERALLY , 6';
DECLARE N LITERALLY • 5' i
DECLARE P LITERALLY' 3';

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES. XSROW IS COMPOSED
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEfo'IENTS. THUS
XSROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS
A ROW-ORDER MATRI X WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY
LOC':ATIONS. YSROW rs DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */

31!l DECLARE X$ROW(M) STRUCTURE (COL(N) INTEGER);
31 DECLARE Y$ROW(N) STRUCTURE (COL (P) INTEGER);
32 DECLARE Z$ROW(M) STRUCTURE (COL(P) INTEGER);
33 DE:CLARE (I',J,K,MAX) INTEGER;
34 DECLARE MAXSASC$ARRAY(fi) BYTE;
35 DECLARE TEXT (*) BYTe DATA (' MAX VALUE '" .);

A-230

®

©{
©
® ®{

®

36
37

'" 39 '.
41
4>
43
44
, 5

46
47
48
49
5.
5]
52
53

54

55

50
57
58

59
6.
61

62

AP-43

/* INITIALIZE X$ROW SUCH THAT THE F'JRST ROW IS SET EQUAL TO 0, THE SECOND
ROW EQUAL TO 1, THE THIRD RO\<' EQUAL TO 2, ETC. */

DO I =: ~ TO (M-l);

DO J "''' TO (N-I),
XSROW(I) .COL(J) ::: I;

END;
END;

/* INITIALIZE Y$ROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO 0, THE
SECOND COLUMN EQUAL TO -1, AND THE THIRD COLUMN EQUAL TO -7. */

DO I ::: e' TO (N-l);

DO ,J = PI TO (P-l);
YSRDW(I) .(,OL(J) = -J;

END;
END;
/* PERFORM MATRIX MULTIPLICATION */
DO K = ~ TO (P-l)i

DO I = Iil TO (M-I);
Z$RDW{I).COL(I<") = lil; /* SET Z$RQW ELEMENT TO 0 *1
DO J ::: r TO IN-I); /* SUM THE PROOUCT OF XSROW ROW TERMS AND Y$RCW COLUMN TERMS */

Z$RDW(T).COL(K) = ZSRDWrI).COL(K) + (X$RDW(I).COL(J) * Y$ROW(J).COL(K));
END,

END;
END;

MAX", FIND$MX r€!ZSRO\'i, M, P); /* FIND MAX VALUE OF Z$ROW */

CALL BINSDEC$ASC (MAX, i<lMAX$ASC$ARRAY); /* CONVERT 1'0 DECIMAL ASCII */

DO I ==" TO (SIGNSD(SIZi::(TEXT)) - 1); /* OUTPUT HEADER TEXT */
CALL CO (TEXT r I)) ;

END;

DO I '" '" TO 5; /* OUTPUT ASCII MAX VALUE */
CALL CO(MAXASCARRAY (I)) ;

END;

END EXECUTION$VEHICLEj

MODULE INFORMATION:

CODE AREA SIZE e225H 5490
CONSTANT AREA SIZE 01"L1CH 120
VARIABLE AREA SIZE 009f"lH l44D
MAXIMUM STACK SIZE fH:Hl8H 80
137 LINES READ
o PROGRAM ERROR (S)

END OF PL/M-86 COMPILATION

ISIS-II MCS-86 ASSEMBLER ASSEMBLY OF MODULE FIND
OBJECT MODULE PLACED IN :Fl:FIND.OBJ
ASSEMBLER INVOKED BY: ASMa6 :F1:FIND.ASM DEBUG

L OC OBJ LINE SOURCE

1 NAME FIND
2 PUBLIC FINDMX
3
4
5
6 FINDMX
7 ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER
8 MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF THE
9 ELEMENT IS RETURNED IN THE AX REGISTER.

10
11 PL/M CALLING SEQUENCE:
12 MAX$VALUE ::: FIND$MX(ADROFMATRIX, ISOF$ROWS, t$OFSCOLS) j

13
14 PARAMETERS:
15 ADR$OFSMATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED
16 #OFROWS - NUMBER OF ROWS IN THE MATRIX
17 #OFCOLS - NUMBER OF COLUMNS IN THE MATRIX
18
19 PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON
20 THE STACK. ON ENTRY TO THE PROCEDURE SP+6 WILL POINT TO THE FIRST
21 PARAMETER (ADRSOF$MATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND
22 AND THIRD PARAMETERS.
23
24 THE PROCEDURE IS A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE
25 IN THE MATRIX TO A VARIABLE (IN THIS CASE MAX$VALUE) IN A PL/M
26 ASSIGNMENT STATEMENT. TO ACCOMPLISH THIS ASSIGNMENT THE VALUE IS
27 RETURNED IN THE AX REGISTER.
28
29
3fl THE ALGORITHM USED IS SIMILAR TO THE FOLLOWING PL/M CODE:
31 FOR I '" 0 TO (tOFROWS - 1);
32 FOR J '" 0 TO (tSOFSCOLS - 1);
33 IF IABS(MATRIX(I).Y(J» > IABS(MAX) THEN MAX'" MATRIX(I).Y(J);
34 END;
35 END;
36
37 WHERE lABS (XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XYZ
38
39

A-231

0{
0{
®{

©

AP-43

APPENDIX B

PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

LDC aBJ LINE

•• 41
'2
'3
4.
'5
.6
'7
48
'9
5.
51
52
53
5'
55

0000 0000 56
57
58
59
6'
51

0''''0 (I' 62
0P00
)

63
---- 64

55
66
67
68
69
7.

IHH'l6[] 71
IH104f] 72
'HH~8 [] 73

74
09100' 75
!:leee 55 76

""'u BBEe 77
8IIIP3 3302 78
0005 SBrA 79
"'U'17 eBF2 8.
i""!l9 891601HJ0 81
,UlflD 884£04 82
09U DIE! B3

B4
0012 flBSE08 85

86
0fHS 8BI1I0 87
0el7 0'BC0 88
1'1019 7902 89
0018 F708 9'
0010 3BC2 91
1'101F 7ca7 92
0021 8BD~ 93
011123 8B00 94
'H"2S A30fCH!l0 95
0028 83C602 96
0028 38Fl 97
1HJ2D 72£6 9.
002F 8018 99
IHBI BEn00 1 ••
l!'lD'" 47 1.1
0035 3B7Eil6 1.2
00)8 720B 1.3
0IrJ3A AU/iJ1!l0 I ••
0IIl3D 50 105
'''DE C211690 1.6

1.7
1 ••
1.9
11.
111
112

SYMBOL TABLE LISTING

NAME TYPE VALUE

??SEG SEGMENT
ABC L NEAR "''''ISH
ADR OF MATRIX V WORD "''''''8H
CGRQUP-:- GROUP
CODE. SEGMENT
DATA. SEGMENT
DEF L NEAR ~01DH
DGROUP. GROUP
FINOMX. L NEAR £'000H
!"'AX V WORD "'I1I0I'IH
NO OF COLS. V WORD 000§H
NO-OF-RQ\oIS. V WORD "'''068
STACK- SEGMENT
XYZ L NEAR 01'1288

SOURCE

baROUP
CGROUP

DEFINE GROUPS TO CONFORM WITH PL/M-86 CONVENTIONS. DATA, STACK, AND
CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE
PL/M-86 MODULES.
GROUP DATA, STACK
GROUP CODE

INSTRUCT THE ASSEMBLER THAT THE OS, SS, AND CS REGISTERS WILL CONTAIN
THE BASE ADDRESS VALUES FOR THE DGROUP, DGROUP AND CGROUP GROUPS.
ASSUME OS: DGROUP,SS :DGROUP,CS :CGROUP

; ••••••••••••••• DI\TI\ SEGMENT
;
DATA SEGMENT WORD PUBLIC 'DATA'

MAX OW "
DATA ENDS
;
; ••••••••••••••• STACK SEG~ENT

STACK SEGMENT STACK I STACK'
OW 14 OUP (111) ;RESERVE 13 WORDS OF STACK FOR MONITOR

;AND 1 WORD FOR FINDMX PROCEDURE
STACK ENDS

; •• * CODE SEGMENT

CODE SEGMENT BYTE PUBLIC 'CODE'

; PARAMETERS ON STACK,
NO OF ROWS EOU

DISPLACEMENT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH
WORD PTR [BP+6]

NO-OF-COLS EQU WORD PTR [SP+4)
ADR"_OY_MATRIX EOU WORD PTR [BP+8]
;
FINDMX PROC

PUSH
Mav
xaR
Mav
Mav
Mav
Mav
SHL

NEAR
BP
SP,SP
DX,OX
DI,DX

=!~~~X
CX ,NO OF COLS
CX,l - -

;PROCEDURE DECLARATION
;SAVE BP REGISTER
; BP POINTS TO PARAMETERS ON STACK
;SET OX = ASS OF CURRENT MAX .. '"
;01 = I (ROW INDEX) III 0
lSI = J (COLUMN INDEX) .. 0
; MAX '" CURRENT MAX = 0

.CX = (fOFCOLS) • 2

;TERM.INATION FOR J (51) INDEX
SX ,ADR OF MATRIX ;ADROFMATAIX PARAMETER

- - ;BX POINTS TO FIRST ELEMENT OF A GIVEN ROW
Mav

ABC:

DEF:

XYZ:

~INDMX
bODE:

Mav
OR
JNS
NEG
CMP
JL
Mav
Mav
Mav
ADD
CMP
JB
LEA
Mav
INC
CMP

JB
Mav
POP
RET

ENDP

ENDS

END

ATTRIBUTES

AX, [SX] [SI]
AX,AX
DEF

AX,OX
XYZ
DX,AX
AX, [BX] [51]
MAX,AX
SI,2
5I,CX
ABC
BX, rBX+SI)
SI,0
DI
DI,NO OF ROWS

ABC
I\X,MI\X
BP
6

SIZE="""'''H PARA PUBLIC
CODE
[BP)
CODE
SIZE .. ",,41H BYTt PUBLIC 'CODE'

SIZE""'''02H WORD PUBLIC 'DATA'
CODE
DATA STACK
CODE PUBLIC
DATA
(BP)
rBP)
SIZE-t=l" lCH PARA STACK 'STACK'
CODE

;GET ELEMENT OF MATRIX
;SET FLAGS
;JUMP IF SIGN '" "
;NEGATE TO FORM POSITIVE NUMBER
; COMPARE TO CURRENT MAX
;JUMP IF LESS THAN CURRENT MAX
; MOVE TO ABS OF CURRENT MAX
;MOVE MATRIX VALUE TO CURRENT MAX

INCREMENT J INDEX BY TWO
END OF THIS ROW??
IF NO, LOOP SACK FOR NEXT ELEMENT OF THIS ROW
ex := ex + (2 • 'OFCOLS), BX POINTS TO NEXT ROW

J = '" I .. r + 1
LAST ROW ?1

IF NO, DO THE NEXT ROW
RETURN MAX VALUE IN AX REGISTER
RESTORE BP REGISTER
INCREMENT SP BY 6 AND RETURN TO CALLER

ASSEMBLY COMPLETE, NO ERRORS FOUND

A-232

®

®

AP-43

rSIS-II ORL-PIi, Vl. 1

INVOKED BY:
QRLRIIi :FJ:MATRIX.OBJ, :Fl:FIND.OBJ,SBCIOS.LIB ORrGTN{HJP~H)

TNPUT MODULES INCLUDED:
: FI :MATRIX.OBJ (F.XFCUTTONVEHICLF.)
:F 1 :FIND. aBJ (FIND)
see lOS • LIB (SaCCO)

RESULT WRITTEN TO : Fl :MATRIX (EXECUTTQNVEHICLE)
START ADDRESS IS (D100H,re02H)

START LTH ALIGN NA.ME CLASS

fl100P1H :lAB" G /GS/ CGROUP
~Ue0H 225H w CODE (EXEClITIONVEHICLEl COOE

01225H 41H B COOE (FIND) CODE
P1266H :lAH W CODE (secco) COOE

IGE/ CGROUP
012M"8 D0H /GS/ DGROUP
1/ll2A0H CH W CONST (EXECUTIDNVEHICtE) CONST
('II2ACH OH w CONST(secCO) CONST
012ACH 90H W DATA (EXECUTIONVEHICLE) DATA
0133CH 2H W DATAtFIND) DATA
1/l13:lEH 0H W DATA (SBCCO) DATA
01340H :aIllH sw STACK STACK
A 1370H 0H W MEMORY MEMORY

IGE/ DGROUP
PI370H 0H ??SEG (FIND) (NULL)

DEBUG MAP OF : Fl :MATRIX (EXECUTIONVEHICLE)

MODULE: EXECUTrONVEHICLE 0HJ0H,01EIH
£'ll2AH,e0m'lH SYMBOL: MEMORY eHl08,01FBH
01131118,01B5H SYMBOL: BINDECASC IllHH'lH,R213H
~ 121<.8, 0e0CH SYMBOL: TEMP PlHHIH,f"21EH
012A8,0'9111EH SYMBOL: I 0U0H,e221H
(1112A8, ,;aHeH SYMBOL; XRO~ 121100H,IH'!02H
012AH, A94CH SYMBOL: YROW 0100H,0f1'-IH
012AFI,0A6AH SYMBOL: ZROW PURR, I!IR32H
012AH,e0SER SYMBOL: I 0'HJP.H,0004BH
012AR, AI/l91!1H SYMBOL: J 0HJ0H,1ll0511H
0] 2AR, 0(1192H SYMBOL: K ea"H,01lJ5DH
e12AH, r.094H SYMBOL: MAX "le0H,r.0fiEH
012AH,00911H SYMBOL MAXASCARRAY 111 HHJH, 00 7FH
012AH, "eUH SYMBOL TEXT nee'H, {J11I9C8
OH'''H,PIB5H LINE. 6 9lP'0'H,('lI~A5H

n00H,elB8H LINE f 10 0'100'H,"0'AEH
~leP,H,tHC2H LINE f 12 0HH.IH,eeBFH
RueH, ~ICSH LINE f 13 0HJ0H,0'0Dfl8
9lfl'H,elD1H LINE t 14 !lIle"H, "'flE7H
IHoeH,0104H LINE t 16 fl100'H,09F8H
0lA~H,01DAH LINE , 17 PlH~"H,0'13~H

A-233

LINE f'
LINE t
LINE I
LINE I
LINE I
LINE •
LINE I
LINE I
LINE ,
LINE I
LINE I
LINE ,
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

19 l'!UeH,ID39H LINE I, 52

20 IllHI0H,{H42H LINE , 53
21 0100f1,IH4BH LINE , " 22 {l100H,,,"15EH LINE I 55
23 ~1I!!eH,~]r,9H LINE , 50
30 01IH~H,£l17AH LINE I 57
37 I"10€H,01S5H LINE I 58

38 0Hlft'lH, (HSEH LINE • 59
19 ~10I11R.r]9FH LINE ! 60
4. 1'1100H,F."lAAH LINE , 61
41 ~10P.H,{IIIB3H LINE , 02
42 MODULE FIN
43 £l100H,023A8 SYMBOL ABC
44 0100H,02428 SYMBOL DEF
45 0100'8,0225H SYMBOL FINDMX
40 012AH,0'09CH SYMBOL MAX
47 01£10'8,024DH SYMBOL XYZ
'8 OHalH,0225H PUBLIC FINDMX
49 MODULE SBCCO
50 IU0e8,02668 PUBLIC CO
51

AP-43

APPENDIX C

PROGRAM LISTING FOR EXECUTION$VEHICLE MODULE WITH CODE EXPANSION

PL/~-86 COfo!PI LEt EXECUTIONVEHICLE

ISIS-II PL/M-86 Vl.0 COMPILATION OF MODULE EXECUTIONVEHICLE
NO OBJECT MODULE REQUESTED
COMPILER INVOKED BY: PLM8fi :FJ :MATRIX.PLM DEBUG CODE NOOBJECr PRINT(:Fl:MATRIX.XLS)

10

II
12

13

l'

J5
]6

17

18

19

/* MATRIX MULTIPLTCATtDN EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:
A) INITIALIZES TWO INTEGER MATRICES
8) MULTIPLIES THE TWO MATRICES AND STQRE:S THE RESULT IN A

THIRD MATRIX
') CALLS AN ASSEMBLY L~NGUAGE PROCEDURE WHICH SEARCHES THE

THIRD MATRIX FOR THE MAXIMUM VALUE
D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE

FROM INTEGER TO ASCI I
E) ':ALLS A PROCEDURE WHICH OUTPUTS THE AscrI CHARACTERS ON

THE SYSTEM CONSOLE
,/

EXECUTION$VEHTCLE:
DO;

/* FTND$,.,X - EXTERNAL ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.
PARAMETERS:

MATRIX$ADR - ADDRESS OF THE MATRIX TO BE SEARCHED
ROWS - NUMBER OF ROWS IN THE MATRIX
COLS - NUMBER OF COLUMNS IN THE MATRIX

,/
FIND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL;
DECLARE (ROWS, COLS) INTEGER;
DECLARE MATRIXSPTR POtNTER;
END FrND$MX;

/* ~·,INC EC$ASC - BINARY TO DECIMAL ASCII CONVERSION PROCEDURE
l-ARAMETERS:

VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII
CHAR$ARRAY$ADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCI I

STRING CONTAINING THE VALUE WILL BE STORED

'/
BINDECASC: PROCEDURE (VALUE, CHARSARRAY$ADR);

STATEMENT # '5
B INDECASC PROC NEAR

0IB5 55 PUSH BP
0186 BBEC MOV BP,SP

DECLARE (VALUE, TEMP, I) INTEGER;
DECLARE CHARSARRAYSADR POINTER;
DECLARE (CHAR$ARRP.Y BASED CHAR$ARRAY$ADR) (is) BYTE;

IF VALUE < 0" THEN

01BR B17E0600~0 CMP

PlIBD 7C03 JL
31BF E91200 JMP

DO;
CHAR$ARRAY(0) '_I;

IHC2 B85Ee4 Mev
01CS C6072D MOV

TEMP == -VALUE;

01Cf! 8846136
01CB F70B
r'lCD 89~6"'0C0

END;

13101 E91m3!?!

ELSE
DO;

CHAR$ARRAY(!i')

0104 BB5EI"4
~ 107 C6~7 2B

TEMP"" VALUE;

~] DP. 8B41)['6
ell0D 890()l"r~~

END;
@2;

MOV

NEG
MOV

JMP

'+' ;

MOV
MOV

MOV
MOV

DO I '" 5 TO 1 BY -1;

C'llEl C7"'6~20e05"0
131E7 E<;\Lil6r'0

@3:
13]EA 8 U,H;02I?'IH'FFF

MOV
JMP

ADD

; STATEMENT II HI
rBP] .VALUE,,,H

$+5H
@1

1* SIGN CHARP,CTER */
STATEMENT 12

8X, rBP) .CHARARRAYADR
CHARARRAY fex] ,20H

; STATEMENT 13
AX, fep]. VALUE
AX
TEMP ,AX

STATEMENT t 14
@2

; STATEMENT It 1 t5
BX, rBP1. CHARARRAYADR
CHARARRAY rBX1, 7BH

, STATEfo1ENT 17
AX, [BP1. VALUE
TEMP,AX

I,SH
@5

J , 0FFF·FH

A-234

STATEMENT ., 19

2.

21

22

23

2~

25 ,.

27
~~
29

.l3
34
35

36

37

38

39

AP-43

~5,
P]F0 IH3Efli'e0P100 CMP I,lH
elFIS 7013 JGE S+5H
0lF8 £926'" JMP '4

CHAASARRAY(I) = UNSIGN (TEMP MOD III + 3111H;
j STATEMENT • 20

elFB 8BP61UHUJ MaV AX, TEMP
elFF 898AfI. Mav ex, eAH
0212 3102 xaR ox,ox
0'204 F7F9 IDIV cx
1206 AIC;t)S"" ADD OX, 3011
1'28" B85Ef!4 Mav sx, [SP) .CHARARRAYADR
02/i!10 88361281 Mav 51,1
~211 8811' Mav faX). CHARARRAY fSI J, OL

TEMP· TEMPI] 8;
; STATEMENT' 21

/* ASCII CHARACTERS 30 THAU 39 HEX REPRESENT THE DIGITS 1/1 THRU 9. THUS
TO CONVERT AN IN:r£GER TO ASCII REPEATED DIVISIONS BY Ie AND ADDING
THE REMAINDER TO 3e HEX WILL ACCOMPLISH THE CONVERSION "'/

'213 88"6"""" MOV AX,TEMP
1217 99 cwo
0218 F7F9 IDIV ex-
021A 8986""'oUJ MOV TEMP,AX

END;
STATEMENT • 22

02lE E9C9FF JMP @3

END BINSDEC$ASC';
STATEMENT f 23

D221 50 POP SP
"'222 C2"Ur- RET 4H

BINDECASC EHOP

1* co - EXTERNAL PROCEDURE TO OUTPUT A CHARA.C'l'ER TO THE SYSTEM CONSOLE.
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE I/O
PARAMETER:

CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE
*j
('0: PROCEDURE (CHAR) EXTERNAL;
DECL,&,RE CHAR BYTE;
END CO;

/* MATRIX DIMENSIONS * /
DECL.a.RE M LTTERA.LLY '6';
DECLARE N LITERALLY '51;~.
DECLARE P LITERALLY '3';

/* THE THREE MATRICES ARE DECLARED AS ARRAYS Olo' STRUCTURES. X$ROW IS COMPOSED
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS
X$R~ MAY RE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS
A ROW-ORDeR MATRIX WITH THE ELEMENTS OF EACH ROW STORED HI ADJACENT MEMORY
LOCATIONS.' YSROW IS DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */

DECLARE X$ROW(M) STRU('TURE (OOL(N) INTEGER);
DECLARE Y$ROW(N) STRUCTURE (COL (P) INTEGER);
DECL.a.RE Z$ROW(M) STRUCTURE (COL (P) INTEGER);

DECLARE (I,.l,K,M1r.X) INTEGER;
DECLIlRE MAXASCARRAY (Il) BYTE;
DECLARE TeXT (*) BYTE DATA ('1'1AX VALUE'" ');

/* TNITIlILlZE X~ROW SUCH THAT THE FIRST ROW IS SET EQUAL TO PI, THE SECOND
ROW EQUAL TO 1, THE THIRD R~ EQUAL TO 2, ETC. */

DO I'" 0 TO (M-J);
STATEMENT f 36

i'lA02 FA CLI
9003 2E8E16~HI09! Mav 55 ,CS:@@STACKSFRAME
81e8 BC9SA" Mav SP ,@@STACK$OFFSET
"£1108 BaEe Mav BP,SP
"9"0 16 PUSH SS
""eE IF pap os
fleeF F8 STI
"ue C796B2Bfl0fl0111 Mav r,PH

@6,
"t1I16 B13E82fl'''~50e CMP I,5H
I!IA1C 7EP-3 JLE $+5H
~"lE E93erlil JMP '7

DOJ-"TO (N-II;
STATEMENT , 37

9P.21 e706841!10lHH!le Mav J .eH
P8,

IPn B13EB400e4p~ CMP J,4H
111020 '7Er3 .lLE ~+5H
102F E9220[l JMP @9

X$ROW(I).COL(J) '" Ii
gTA.TEMENT f 3B

P'032 .ctBenBUI!0I MaV AX,I
~e3fi 89PA"" MaV CX,0AH
1~39 F7E9 IMUL CX
00'38 8836841P MaV SI,J
I1IB3F DIE6 Sf.lL SI,l
e"41 89C3 Mav 8X,AX
"043 8B£IIE82fJe MaV eX,I
rB47 8ge814A~ Mav fax J. XROW fSI 1 ,CX

END;

A-235

4.

'1

42

'3

4'

45

.7

'B

49

So

AP·43

STATEMENT t 39
flflt!B P.l(ll6E140'A100 ADO J, JH
""51 E9D3FF J"P OR

(119:
END;

STATEMENT f 4"
ens. RUH;S2e""100 ADO I,1H
00SA E9B9FF JMP ~6 ",

/0 INITIALTZE Y$ROW SUCH THAT THE FIRST COLUMN IS S£'r EOUAL TO 0, THE
SECONO COLUMN EQUAL TO -1, AND THE THIRD COLUMN EQUAL TO

DOI=BTO(N-l); ,
, STATEMENT·' 4,1

.850· C78682.888e. MOV I,0R
819,

8063 813E82088.0P CMP I,4K
0069 7E83 JLE $+58
IUH;B E948.0 JMP

DO J = B TO (P-l),
~Il

STATEMENT • 42
,,916E C786841e •• 0. MOV J,fIIH

@12,
187. 813E8488.2.8 CMP J,28
e.7A 7Ee3 JLE $+5H
ee7C E9268f JMP U3

YSROW(I).COL(J) • -J;
STATEMENT , 43

le7F 88.68488 MOV AX,J
1883 F708 NEG AX
eBSS 5. PUSH AX 11
8086 88068218 MOV AX,I
liSA 890680 MOV Cx,6H
1.80 F7£9 IMUL CX
888F 8836848. MOV SI,J
e893 01£6 SHL SI,)
1895 89C3 MOV BX,AX
0897 59 POP CX I I
OP98 89884880 MOV r8X). YROW rSI) ,CX

END;
; STATEMENT • 44

•• 9C 818684880ue ADO J,1H
80A2 E9CFFF JMP ~12

~ll,

END;
STATEMENT t 45

OMS 81068208018r ADO 1,·1H
fl0AB E9B!)FF JMP .10

UI'
1* PERFORM MATRIX MULTIPLICATJQN *1
DO K = , TO CP-J);

(!IAAE C79li8f;IlIf10PfJ0 MOV
~14,

. POB4 e 13£B60~020e CMP
09SA. 7E03 JLE
A~BC EgeC~0 JMP

00 I = 0 TO (M-1) ,

"C!'SF C7{HH12eep.ee€l MOV
@16,

P0CS 813EB?fil0P.5011 c~p

08CB 7E03 .JL!
Aeco E972f1f' JMP

ZSROW(I) .COL (0) • r.;

"9100 PBI:I'682~H'J MOV
0004 B906~0 MOV
0f107 F7E9 IMUL
0009 SB3G861i!fI MOV
"flOC 01E6 SAL
aADF 89C3 MOV
00£1 C7805E00A000 MOV

K,PH

"',2H
$+5H
~1 5

I, PH

I,5H
$+5H
@17

STATEMENT " ., r,

STA'I'EMENT # I! 7

1* SET ZSROW ELEMENT TO P -/
; ST1>.TEMENT # 48.

A.X, I
CX,#iH
CX
BI, K
SI,l
BX,AX
rex] .ZRoWrSI] ,rH

-2. 0/

00 J = Po TO fN-I) ; /0 SUM THE PRODUCT OF XSROW ROW TERMS AND Y$ROW COLUMN TERMS */
; STATEMENt' 49

"AE7 C70';8040P"B9f1 MOV
UBI

finD
IU'F~
80FS

S13ES""'''AUB eMP
7E03 JLE
£94J00 JMP

ZSROW(I) .COL(O) •

98F8 ~886B2e8
I,lIflFC 890A(II0
8eFF F7£9
0ln 88368400
01~S 01£6
0187 58-
0108 8B868488
lleC a90688
9ur F7E9
8111 BB3EB600
ellS DlE7
0117 89C3
0119 BBBI4888
ellD 58
8pa F7A80488
0122 58
8123 08868288
P.l27 F7£9
0129 B9C3

MOV
MOV
IMUL
MOY
SHL
PUSH
MOV
MOV
IMUL
MOV
SHL
MOV
MOV
POP
IMUL
PUSH
MOV
!MUL
MOV

J,0H

J ,48
$+58
fl9

ZSROW(!) .COLfK) + (X$ROW(I) .COL(J)
; STATEMENT t 5A

AX,I
CX,eAH
CX
SI,J
SI,l
AX ; 1
AX,J
CX,6H
CX
DIrK
01,1
BX,AX
AX, rsx] . YROW [01 1
ax I 1
r8X).XROWrSI)

AX ; 1
AX,1
CX
9X,AX

A-236

• YSROW(J) .COL (K));

51

52

53

55

56

57

58

59

~ 12B ~8
A12C e181SE'"

END;

111139 81f1HiSII'IP."0UA
"'13~ E9B4FF

@19,
END;

IH39 8H1IlP2"fl010f1
ADF E983FF

@17:
END;

~142 SH'I68fiAAAU0
~ 148 £9119FF

@15:

POP
ADD

ADD
JMP

ADD
JMP

ADD
JMP

AP-43

AX ; 1
rexJ • ZROW[CI J ,AX

J, IN
~18

r,IH
el~

K,IH
~,.

; STATEMENT f 51

STATEMENT , 52

STATEMENT' S3

MAX = FINOSMX (@Zt,ROW, M, P); /* FINO MAX VALUE OF Z$ROW *1
: !=iTATEMENT , 5 ~

11I14B B85E0f1 Mev AX,OFFSET(ZROW)
9114£ SA PUSH AX 1
1II1J1F Be~fi"f' MOV AX, FiR
P152 59 PUSH ,r..x I 2
0153 SSP-3il1" MOV AX,3H
I'll 56 SP- PUSH AX , J
A157 E8r00p. CALL FINOMX
PJ15A 899J68fHHl MOV fllJAX, AX

CALL B INDECASC (MAX, @MAXSASCSARRAY)j 1* CONVERT TO DECIMAL ASCII */
j STATEMENT' 55

IUSE FF3688A0 MAX ; 1
0162 a8BA'0

PUSH
Mav
PUSH
CALL

AX, OFFSET (MAXASCARRAY)
P165 5. AX ; 2
111166 E84C1H" BINDECASC

DO I = " TO (SIGNED (SIZ E (TEXT» - 1) j /* OUTPUT HEADER TEXT */
; STATEMENT t 56

.169 C7~682"'IIHH"IH' Mav I, ~H
@20,

016F e 13E8 2{l00B~" CMP I, "BH
0175 7£03 JLE $+58
111177 E91409J JMP @21

CALL CO/TEXT{I):
I STATEMENT t 57

C!l17A EtBIE820" Mav ax, I
017E FFB701119J9J PUSH TEXT fBX1 j I
1i!Il82 E8"""" CALL CO

ENO;
STATEMENT t 58

"185 8U6El2tHHU00 ADD I,]H
IUSB E9E1FF JMP @20

@21,

DO I .. til TO 5; /* OUTPUT ASC r I MAX VALUE */
j STATEMENT I 59

P1SE C706A2""''''''''' MOV I, ~H
@22:

0194 813E82""'0=0" CMP I,5H
019A 7E"'3 JLE $+5H
11J19c £9] 4"'~ JMP El23

fil1J CALL CO (fIIAX$ASCSARRAYtI)).

61

62

11l19F 881EA2Q!~ Mav
01A3 FFB78AIlI0 PUSH
P11A7 £8~"'1iI11J CALL

ENO:

1!l'1AA 811i1fi82"~010P ADn
IHB0 E9E1FF JMP

@23,

END EXECUTIONSVEHICLE;

01B3 FB
111184 F4

STI
HLT

MODULE INFORMATION:

CODE AREA SIZE = 0225H 5490
CONSTANT AREA SIZE = "1""eH 120
VARIA:9LE. AREA SIZE" el91H 1440
MAXIMUM STACK SIZE" 011108H 80
137 LINES READ
" PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

; STATEMENT I 6.
BX,l
MAXASCARRAY rax]; I
CO

, !=iTATEMENT t 61
I,lH
@22

STATEMENT t 62

A-237 / A-238

Appendix B
Device Specifications
• 8086 Family

•

'For complete specifications refer to the
Intel MCS-85 User's Manual.

"For complete specifications refer to the
Intel Peripheral Design Handbook.

"'For complete specifications refer to the 1979
Intel Component Data Catalog.

8086/8086·218086·4
16·BIT HMOS MICROPROCESSOR

• Direct Addressing Capability to 1 • Bit, Byte, Word, and Block Operations
MByte of Memory

8-and 16-Bit Signed and Unsigned •
• Assembly Language Compatible with Arithmetic in Binary or Decimal

808018085 Including Multiply and Divide

• 5 MHz Clock Rate (8 MHz for 8086-2)
• 14 Word, By 16-Bit Register Set with (4 M Hz for 8086-4)

Symmetrical Operations

• MULTIBUS™ System Compatible

• 24 Operand Addressing Modes Interface

The Intel@ 8086 is a new generation, high performance microprocessor implemented in N-channel, depletion load,
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to mem­
ory for high performance.

EXECUTION UNIT

REGISTER FILE

DATA.
POINTER. AND

INDEX REGS
(8 WORDS)

BUS INTERFACE UNIT

: RElOCATiON I
REGISTER FilE

SEGMENT
REGISTERS

AND
INSTRUCTION

POINTER
(5 WORDS)

r--""'--,-~ BH'EISl

FLAGS

6·BYTE
INSTRUCTION

aUEUE

~ ___ r------~~------~
INT-_
NMI---

ROI~ 2

HOLO---

CONTROL & TIMING

eLK RESET READY GND

V"

A1g1S6

3 OTlR,DEN.ALE

Figure 1. 8086 CPU Functional Block Diagram

B-1

GND VCC

A014 AD15

A013 A16/53

AD12 A17/54

AD11 A18/55

A010 A191S6

AD9 BHE/57

ADa MN/MX

AD7 RD
AD6 RD/GTO (HOLD)

ADS RO/GT1 (HLDA)

AD4 LOCK (WR)

AD3 52 (M/iO)

AD2 51 (DT/R)

AD1 so (DEN)

ADO aso (ALE)

NMI aS1 (INTA)

INTR TEST

CLK READY

GND RESET

40 LEAD

Figure 2_ 8086 Pin Diagram

8086/8086-2/8086-4

FUNCTIONAL DESCRIPTION

GENERAL OPERATION

The internal functions of the 8086 processor are parti­
tioned logically into two processing units. The first is
the Bus Interface Unit (BIU) and the second is the Exe­
cution Unit (EU) as shown in the block diagram of Figure
1.

These units can interact directly but for the most part
perform as separate asynchronous operational proces­
sors. The bus interface unit provides the functions
related to instruction fetching and queuing, operand
fetch and store, and address relocation. This unit also
provides the basic bus control. The overlap of instruc­
tion pre-fetching provided by this unit serves to increase
processor performance through improved bus band­
width utilization. Up to 6 bytes of the instruction stream
can be queued while waiting for decoding and execu­
tion.

The instruction stream queuing mechanism allows the
BIU to keep the memory utilized very efficiently. When­
ever there is space for at least 2 bytes in the queue, the
BIU will attempt a word fetch memory cycle. This greatly
reduces "dead time" on the memory bus. The queue
acts as a First-In-First-Out (FIFO) buffer, from which the
EU extracts instruction bytes as required. If the queue is
empty (following a branch instruction, for example), the
first byte into the queue immediately becomes available
to the EU.

The execution unit receives pre-fetched instructions
from the BIU queue and provides un-relocated operand
addresses to the BIU. Memory operands are passed
through the BIU for processing by the EU, which passes
results to the BIU for storage. See the Instruction Set
description for further register set and architectural
descriptions.

MEMORY ORGANIZATION
The processor provides a 20-bit address to memory
which locates the byte being referenced. The memory is
logically organized as a linear array of 1 million bytes,
addressed as OOOOO(H) to FFFFF(H). The memory can be
further logically divided into code, data, alternate data,
and stack segments of up to 64K bytes each, with each
segment falling on 16-byte boundaries. (See Figure 3a.)

Word (16-bit) operands can be located on even or odd
address boundaries and are thus not constrained to
even boundaries as is the case in many 16-bit com­
puters. For address and data operands, the least signifi­
cant byte of the word is stored in the lower valued
address location and the most significant byte in the
next higher address location. The BIU automatically per­
forms the proper number of memory accesses, one if
the word operand is on an even byte boundary and two if
it is on an odd byte boundary. Except for the perfor­
mance penalty, this double access is transparent to the
software. This performance penalty does not occur for
instruction fetches, only word operands.

Physically, the memory is organized as a high bank
(01S-0a) and a low bank (07-00) of 512K 8-bit bytes
addressed in parallel by the processor's address lines

B-2

A19 - A1. Byte data with even
on the OrOo bus lines while odd a
(Ao HIGH) is transferred on the 0 15-08
processor provides two enable signals, BH .,
selectively allow reading from or writing into eit~
odd byte location, even byte location, or both.
instruction stream is fetched from memory as words
and is addressed internally by the processor to the byte
level as necessary.

.r---:J. FFFFFH

:CD} CODE SEGMENT

XXXXOH
j

r--

r i==
+OjSET

} STACK SEGMENT

SEGMENT t1 REGISTER FILE

CS .J'--
SS
DS
ES

} DATA SEGMENT

r---
}EXTRA DATA SEGMENT

~OOOOOH

Figure 3a_ Memory Organization

In referencing word data the BIU requires one or two
memory cycles depending on whether or not the start­
ing byte of the word is on an even or odd address,
respectively. Consequently, in referencing word oper­
ands performance can be optimized by locating data on
even address boundaries. This is an especially useful
technique for using the stack, since odd address refer­
ences to the stack may adversely affect the context
switching time for interrupt processing or task multi­
plexing.

Certain locations in memory are reserved for specific
CPU operations (see Figure 3b.) Locations from address
FFFFOH through FFFFFH are reserved for operations
including a jump to the initial program loading routine.
Following RESET, the CPU will always begin execution
at location FFFFOH where the jump must be. Locations
OOOOOH through 003FFH are reserved for interrupt
operations. Each of the 256 possible interrupt types has
its service routine pOinted to by a 4-byte pointer element
conSisting of a 16-bit segment address and a 16-bit off­
set address. The pOinter elements are assumed to have
been stored at the respective places in reserved memory
prior to occurrence of interrupts.

r---------. FFFFFH
RESET BOOTSTRAP

PROGRAM JUMP
~--------I FFFFOH

~--------I3FFH
INTERRUPT POINTER

FOR TYPE 255 1-______ ----1 3FCH

~--------I7H
INTERAUPT POINTER

FOR TYPE 1

~-IN-T-E-RR-U-PT-PO-IN-T-E-R--I;~
FOR TYPE 0

~ ______ ~OH

8086/8086-2/8086-4

""'" ",' l'.
MINIMUM AND MAXIMDt.i~"t
The requirements for supporting min~/h'i't
Imum 8086 systems are sufficiently differ~",
cannot be done efficiently with 40 uniquely
pins. Consequently, the 8086 is equipped with Ii s

Figure 3b. Reserved Memory Locations

pin (MN/MX) which defines the system configuration.
The definition of a certain subset of the pins changes
dependent on the condition of the strap pin. When
MN/MX pin is strapped to GND, the 8086 treats pins 24
through 31 in maximum mode. An 8288 bus controller
interprets status information coded into 80,8,,82 to gen­
erate bus timing and control signals compatible with
the MULTIBUSTIiII architecture. When the MN/MX pin Is
strapped to Vee, the 8086 generates bus control signals
itself on pins 24 through 31, as shown In parentheses in
Figure 2. Examples of minimum mode and maximum
mode systems are shown in Figure 4.

Vee o illl
8284 CLOCK MN/MX -Vee

GENERATOR r- CLK M/fO ,
~ Ii3 f-- READY fiiffii: ,

G

f-- RESET ifij
I 1 ROY VIR

NO r-l--,
I

DTiR r------, I
I I

- r---,I I WAIT
DEN

I STATE I 8086 CPU I I r----I I
I GENERATOR I I I I I

ALE I &a~B
I L ___ ...l I I

GND~ OE 8282 I I

'~'~:::~"~ ~~;; C ADDR

I BHEI--- ~

I I I

II J----, I
IL T---II I

I L----IOE II I
TRAN8~~~IVER I DATA

I 12) I I i!liE bl1 l! TT: 11 I I HE

L ___ f
OPTIONAL CSOH CSOL WE 00 CE OE CS RDWR

FOR INCREASED
DATA BUS DRIVE 2142 RAM 14) 2718·2 PROM (2) MCS·80

PERIPHERAL
12) 12)

1Kx8 I 1Kx8 2Kx8 I 2Kx8

Figure 4a. Minimum Mode 8086 Typical System Configuration

B-3

8086/8086-2/8086-4

Vee

1" ROY

8086
CPU

GND CLK

SO
51
S, 8288

DEN
BUS

CTRLR

DTIFf

ALE

MRDC

MWTC

AMWC N.C.

IORC

IOWC

AIOWC N.C.

INTA
GND r- -...,

I WAIT I
I STATE I
I GENERATOR I

~ N.C. ---:-1

L ___ ...J I
I

8282 I
LATCH r--.nn.;------~L-----------~------~~--~
(2 OR 3)

8286
TRANSCEIVER

(2)

2142 RAM (4)

(21
1Kx8

(2)
1Kx8

2716·2 PROM (2)

2K x 8 2K x 8

MCS·80
PERIPHERAL

Figure 4b. Maximum Mode 8086 Typical System Configuration

BUS OPERATION

The 8086 has a combined address and data bus com·
monly referred to as a time multiplexed bus. This tech·
nique provides the most efficient use of pins on the
processor while permitting the use of a standard 40·lead
package. This "local bus" can be buffered directly and
used throughout the system with address latching pro·
vided on memory and 1/0 modules. In addition, the bus
can also be demultiplexed at the processor with a single
set of address latches if a standard non·multiplexed bus
is desired for the system.

Each processor bus cycle consists of at least four ClK
cycles. These are referred to as T" T 2, T 3 and T 4 (see
Figure 5). The address is emitted from the processor
during T, and data transfer occurs on the bus during T 3
and T4. T2 is used primarily for changing the direction of
the bus during read operations. In the event that a "NOT
READY" indication is given by the addressed device,
"Wait" states (T w) are inserted between T 3 and T 4. Each
inserted "Wait" state is of the same duration as a ClK
cycle. Periods can occur between 8086 bus cycles.
These are referred to as "Idle" states (TI) or inactive ClK
cycles. The processor uses these cycles for internal
housekeeping.

During T, of any bus cycle the ALE (Address latch
Enable) signal is emitted (by either the processor or the
8288 bus controller, depending on the MN/MX strap). At
the trailing edge of this pulse, a valid address and cer·
tain status information for the cycie may be latched.

B-4

Status bits 50, 8;', and S2 are used, in maximum mode,
by the bus controller to identify the type of bus transac·
tion according to the following table:

S2 s:; Sa
o (lOW) 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 (HIGH) 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 0 Write Data to Memory

Passive (no bus cycle)

Status bits S3 through S7 are multiplexed with high·
order address bits and the SHE signal, and are therefore
valid during T2 through T4. S3 and S4 indicate which
segment register (see Instruction Set description) was
used for this bus cycle in forming the address, accord·
ing to the following table:

S4 83

o (lOW) 0
o 1
1 (HIGH) 0
1 1

Alternate Data (extra segment)
Stack
Code or None
Data

S5 is a reflection of the PSW interrupt enable bit. S6 = 0
and 57 is a spare status bit.

8086/8086-2/8086-4

T,

elK

GOES INACTIVE IN THE STATE

:~~'------LJ..//~I/@ft-Z ~ \'----
ADDR STATUS

AODR'DATA -----~~ ____ DA_TA_D_U_T'_D,_,-_DO_' __ ~~-~

READY

-- MEMORY ACCESS TlME--

\'---_----11

Figure 5. Basic System Timing

1/0 ADDRESSING

In the 8086, I/O operations can address up to a max·
imum of 64K 1/0 byte registers or 32K 1/0 word registers.
The 1/0 address appears in the same format as the
memory address on bus lines A15-Ao. The address lines
A19-A16 are zero in 1/0 operations. The variable 1/0 in·
structions which use register OX as a pointer have full
address capability while the direct 1/0 instructions
directly address one or two of the 256 1/0 byte locations
in page 0 of the 1/0 address space.

1/0 ports are addressed in the same manner as memory
locations. Even addressed bytes are transferred on the

B-5

0 7-00 bus lines and odd addressed bytes on 0 15-08,

Care must be taken to assure that each register within
an 8·bit peripheral located on the lower portion of the
bus be addressed as even.

EXTERNAL INTERFACE

PROCESSOR RESET AND INITIALIZATION

Processor initialization or start up is accomplished with
activation (HIGH) of the RESET pin. The 8086 RESET is
required to be HIGH for greater than 4 ClK cycles. The

8086/8086-2/8086-4

8086 will terminate operations on the high·going edge of
RESET and will remain dormant as long as RESET is
HIGH. The low·going transition of RESET triggers an in·
ternal reset sequence for approximately 10 ClK cycles.
After this interval the 8086 operates normally beginning
with the instruction in absolute location FFFFOH (see
Figure 3b). The details of this operation are specified In
the Instruction Set description of the MCS·86 Users'
Manual. The RESET Input is internally synchronized to
the processor clock. At initialization the HIGH·to·lOW
transition of RESET must occur no sooner than 50 ,..s
after power·up, to allow complete initialization of the
8086.

If INTR is asserted sooner than 9 ClK cycles after the
end of RESET, the processor may execute one instruc·
tion before responding to the interrupt. NMI may not be
asserted prior to the 2nd ClK cycle following the end of
RESET.

INTERRUPT OPERATIONS

Interrupt operations fall into two classes; software or
hardware initiated. The software initiated interrupts and
software aspects of hardware interrupts are specified in
the Instruction Set description. Hardware interrupts can
be classified as non·maskable or maskable.

Interrupts result in a transfer of control to a new pro·
gram location. A 256·element table containing address
pointers to the interrupt service program locations
resides in absolute locations 0 through 3FFH (see
Figure 3b), which are reserved for this purpose. Each
element in the table is 4 bytes in size and corresponds
to an interrupt "type". An interrupting device supplies
an 8·bit type number, during the interrupt acknowledge
sequence, which is used to "vector" through the ap·
propriate element to the new interrupt service program
location.

NON·MASKABLE INTERRUP

The processor provides a single non·ma
pin (NMI) which has higher priority than the .
terrupt request pin (INTR). A typical use would be 0tij 1;"

tivate a power failure routine. The NMI is edge.trigger~6:>$.
on a lOW.to·HIGH transition. The activation of this pin
causes a type 2 interrupt. (See Instruction Set descrip­
tion.)

NMI is required to have a duration in the HIGH state of
greater than two ClK cycles, but is not required to be
synchronized to the clock. Any high-going transition of
NMI is latched on-chip and will be serviced at the end of
the current instruction or between whole moves of a
block-type instruction. Worst case response to NMI
would be for multiply, divide, and variable shift instruc·
tions. There is no specification on the occurrence of the
low'going edge; it may occur before, during, or after the
servicing of NMI. Another high-going edge triggers
another response if it occurs after the start of the N M I
procedure. The signal must be free of logical spikes in
general and be free of bounces on the low-going edge to
avoid triggering extraneous responses.

MASKABLEINTERRUPTONT~

The 8086 provides a single interrupt request input (INTR)
which can be masked internally by software with the
resetting of the interrupt enable FLAG status bit. The
interrupt request signal is level triggered. It is internally
synchronized during each clock cycle on the high·going
edge of ClK. To be responded to, INTR must be present
(HIGH) during the clock period preceding the end of the
current instruction or the end of a whole move for a
block-type instruction. During the interrupt response
sequence further interrupts are disabled. The enable bit
is reset as part of the response to any interrupt (INTR,
NMI, software interrupt or single'step), although the

I T1 T2 T3 T4ITI! T1 T2 T3

AlE~~---(ln __

INTA

\\--.---11 I/---I ____ I
\ r' ~I ~ I(

\ FLOAT
ADo-AD'5 ~~~""'------------I/ ,I \r--TYP-EVECTO~R)-

Figure 6. Interrupt Aclmowledge Sequence

B-6

8086/8086-2/8086-4

FLAGS register which is automatically pushed onto the
stack reflects the state of the processor prior to the
interrupt. Until the old FLAGS register is restored the
enable bit will be zero unless specifically set by an
instruction.

During the response sequence (figure 6) the processor
executes two successive (back·to·back) interrupt
acknowledge cycles. The 8086 emits the LOCK signal
from T 2 of the first bus cycle until T 2 of the second. A
local bus "hold" request will not be honored until the
end of the second bus cycle. In the second bus cycle a
byte is fetched from the external interrupt system (e.g.,
8259A PIC) which identifies the source (type) of the
interrupt. This byte is multiplied by four and used as a
pOinter into the interrupt vector lookup table. An INTR
signal left HIGH will be continually responded to within
the limitations of the enable bit and sample period. The
INTERRUPT RETURN instruction includes a FLAGS pop
which returns the status of the original interrupt enable
bit when it restores the FLAGS.

HALT

When a software "HALT" instruction is executed the
processor indicates that it is entering the "HALT" state
in one of two ways depending upon which mode is
strapped. In minimum mode, the processor issues one
ALE with no qualifying bus control signals. In Maximum
Mode, the processor issues appropriate HALT status on
525180 and the 8288 bus controller issues one ALE. The
8086 will not leave the "HALT" state when a local bus
"hold" is entered while in "HALT". In this case, the
processor reissues the HALT indicator. An interrupt
request or RESET will force the 8086 out of the "HALT"
state.

READ/MODIFY/WRITE (SEMAPHORE)
OPERATIONS VIA LOCK

The LOCK status information is provided by the proc·
essor when directly consecutive bus cycles are required
during the execution of an instruction. This provides the
processor with the capability of performing read/modify/
write operations on memory (via the Exchange Register
With Memory instruction, for example) without the
possibility of another system bus master receiving
intervening memory cycles. This is useful in multi·
processor system configurations to accomplish "test
and set lock" operations. The LOCK signal is activated
(forced LOW) in the clock cycle following the one in
which the software "LOCK" prefix instruction is
decoded by the EU. It is deactivated at the end of the
last bus cycle of the instruction following the "LOCK"
prefix instruction. While LOCK is active all interrupts
are masked and a request on a RQ/GT pin will be
recorded and then honored at the end of the LOCK.

EXTERNAL SYNCHRONIZATION VIA TEST

As an alternative to the interrupts and general 110
capabilities, the 8086 provides a single software·
testable input known as the TEST signal. At any time the
program may execute a WAIT instruction. If at that time
the TEST signal is inactive (HIGH), program execution
becomes suspended while the processor waits for TEST

B-7

,b,;'~,'-'.i't(,,,0:.'
to become active. It must remam.
CLK cycles. The WAIT instructl~;'I&.,
repeatedly until that time. This activitY'dge~./
sume bus cycles. The processor remains in·1l-nc· ...
while waiting. All 8086 drivers go to 3·state OFFif,bH·s,.
"Hold"is entered. If interrupts are enabled, they rrilly
occur while the processor is waiting. When this occurs
the processor fetches the WAIT instruction one extra
time, processes the interrupt, and then re·fetches and
re·executes the WAIT instruction upon returning from
the interrupt.

8086 COMPARED WITH 8080/8085
While the 8086 has new instruction coding patterns to
allow for the greatly expanded capabilities, all functions
of the 8080/8085 may be performed by the 8086 with
identical program semantics to their 8080/8085 ver·
sions. For every 8080/8085 instruction there is a corre·
sponding 8086 instruction (or, in rare cases, a short
sequence of instructions). Virtually all 8086 data manip·
ulation instructions may be specified to operate on
either the full set of 16·bit registers or on an 8·bit subset
of them which corresponds to the 8080 register set. This
relationship is shown in Figure 7 where the shaded
registers (names in parentheses) represent the 8080
register set.

BASIC SYSTEM TIMING
Typical system configurations for the processor
operating in minimum mode and in maximum mode are
shown in Figures 4a and 4b, respectively. In minimum
mode, the MN/MX pin is strapped to Vee and the proc·
essor emits bus control signals in a manner similar to
the 8085. In maximum mode, the MN/MX pin is strapped
to Vss and the processor emits coded status informa·
tion which the 8288 bus controller uses to generate
MULTIBUS compatible bus control signals. Figure 5 iI·
lustrates the signal timing relationships.

AX AH ,AL ", (A) ACCUMULATOR

ex >,BH 'BL (HL) BASE

ex CH CL' (BC) COUNT

ox DH DL (DE) DATA

SP) STACK POINTER

BASE POINTER

SOURCE INDEX

DESTINATION INDEX

~~' BP

SI

01

~~~I~( PC) INSTRUCTION POINTER 

: • FlAGSH _!H~~\: I 

cs 
OS 

'---- SS 

ES 

PSW) STATUS FLAGS 

CODE SEGMENT 

DATA SEGMENT 

STACK SEGMENT 

EXTRA SEGMENT 

Figure 7. 8086 Register Model; (8080 Registers Shaded) 



8086/8086-2/8086-4 

SYSTEM TIMING - MINIMUM SYSTEM 
The read cycle begins In Tl with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low· 
going) edge of this signal Is used to latch the address 
information, which Is valid on the local bus at this time, 
Into the 828;,1/8283 latch. The BHE and Ao signals 
address the low, high, or both bytes. From Tl to T4 the 
M/iO signal indicates a memory or 110 operation. At T2 
the address is removed from the local bus and the bus 
goes to a high impedance state. The read control signal 
is also asserted at T 2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to the 
local bus. Some time later valid data will be available on 
the bus and the addressed device will drive the READY 
line HIGH. When the processor returns the read signal 
to a HIGH level, the addressed device will again 3·state 
Its bus drivers. If a transceiver (8286/8287) is required to 
buffer the 8086 local bus, Signals DTiA and DEN are pro· 
vided by the 8086. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The M/iO signal is again 
asserted to indicate a memory or 110 write operation. In 
the T2 immediately following the address emission the 
processor emits the data to be written into the 
addressed location. This data remains valid until the 
middle of T 4. During T 2, T 3, and T w the processor asserts 
the write control signal. The write (WR) signal becomes 
active at the beginning of T2 as opposed to the read 
which is delayed somewhat into T2 to provide time for 
the bus to float. 

The BHE and Ao signals are used to select the proper 
byte(s) of the memoryliO word to be read or written 
according to the following table: 

SHE AO 
0 0 Whole word 

0 Upper byte froml 
to odd address 

0 Lower byte froml 
to even address 

None 

B-8 

t>." c". 
110 ports are addressed In the sa 
location. Even addressed bytes are t 
0 7-00 bus lines and odd addressed bytes 

The basic difference between the interrupt a 
edge cycle and a read cycle is that the interru 
acknowledge signal (lNTA) is asserted in place of the 
read (1m) signal and the address bus Is floated. (See 
Figure 6.) In the second of two successive INTA cycles, 
a byte of information is read from bus lines 07-00 as 
supplied by the interrupt system logic (i.e., 8259A Prior· 
ity Interrupt Controller). This byte identifies the source 
(type) of the interrupt. It is multiplied by four and used 
as a pointer into an interrupt vector lookup table, as 
described ear.lier. 

BUS TIMING - MEDIUM COMPLEXITY SYSTEMS 

For medium complexity systems the MN/MX pin is con· 
nected to Vss and the 8288 Bus Controller is added to 
the system as well as an 8282/8283 latch for latching the 
system address, and a 8286/8287 transceiver to allow for 
bus loading greater than the 8086 is capable of handling. 
Signals ALE, DEN, and DTiA are generated by the 8288 
instead of the processor in this configuration although 
their timing remains relatively the same. The 8086 status 
outputs (S"2, 8 1, and So) provide type·of·cycle information 
and become 8288 inputs. This bus cycle information 
specifies read (code, data, or 110), write (data or 110), 
interrupt acknowledge, or software halt. The 8288 thus 
issues control signals specifying memory read or write, 
110 read or write, or interrupt acknowledge. The 8288 
provides two types of write strobes, normal and 
advanced, to be applied as required. The normal write 
strobes have data valid at the leading edge of write. The 
advanced write strobes have the same timing as read 
strobes, and hence data isn't valid at the leading edge of 
write. The 8286/8287 transceiver receives the usual T 
and DE Inputs from the 8288's DTiFi and DEN. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8259A Priority Interrupt Controller is 
positioned on the local bus, a TTL gate Is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge 
sequence and software "poll". 



8086/8086-2/ 8086-4 

8086 FUNCTIONAL PIN DEFINITION 
The following pin function descriptions are for 8086 
systems In either minimum or maximum mode. The 
"local Bus" In these descriptions Is the direct multi· 
plexed bus Interface connection to the 8086 (without 
regard to additional bus buffers). 

ADwADo (INPUT/OUTPUT 3·STATE) 

These lines constitute the time multiplexed memoryllO 
address (T 1) and data (T 2, T 3, T w, T 4) bus. Ao is analogous 
to BHE for the lower byte of the data bus, pins DrDo. It 
is lOW during T 1 when a byte is to be transferred on the 
lower portion of the bus in memory or 1/0 operations. 
Eight-bit oriented devices tied to the lower half would 
normally use Ao to condition chip select functions. (See 
table on page 8.) These lines are active HIGH and float to 
3-state OFF during interrupt acknowledge and local bus 
"hold acknowledge". 

A1g1Sa, A1a1Ss, A17/S4, A1a1S3 (OUTPUT 3-STATE) 

During T1 these are the four most significant address 
lines for memory operations. During 1/0 operations 
these lines are lOW. During memory and 1/0 operations, 
status information is available on these lines during T2, 
T3, Tw, and T4. The status of the interrupt enable FLAG 
bit (S5) is updated at the beginning of each ClK cycle. 
AdS4 and A1rJS3 are encoded as follows: 

A 17/S4 

o (lOW) 
o 
1 (HIGH) 
1 
S6 is 0 (lOW 

1 
o 
1 

Alternate Data 
Stack 
Code or None 
Data 

This information indicates which relocation register is 
presently being used for data accessing. 

These lines float to 3-state OFF during local bus "hold 
acknowledge" . 

BHE/S7 (OUTPUT 3-STATE) 
During T1 the bus high enable signal (BHE) should be 
used to enable data onto the most significant half of the 
data bus, pins 0 15-08' Eight-bit oriented devices tied to 
the upper half of the bus would normally use BHE to 
condition chip select functions. BHE is lOW during T1 
for read, write, and interrupt acknowledge cycles when a 
byte is to .be transferred on the high portion of the bus. 
(See table on page 8.) The S7 status information is avail­
able during T2, T3, and T4. The signal is active lOW, and 
floats to 3-state OFF in "hold". It is lOW during T1 for 
the first interrupt acknowledge cycle. 

RD (OUTPUT 3-STATE) 

Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 
S2 pin. This signal is used to read devices which reside 

B-9 

_ })Jr.", :r-- oV~ i ~ 
on the 8086 local bus. RD Is actt\;<.efl'eW· 
and T w of any read cycle, and is gli~taii\l!Je9 
HIGH in T 2 until the 8086 local bus has !loa-te 

This signal floats to 3-state OFF in "hold aCk~a~l. 

READY (INPUT) 

READY is the acknowledgement from the addressed 
memory or 1/0 device that it will complete the data 
transfer. The ROY signal from memoryllO is synchro­
nized by the 8284 Clock Generator to form READY. This 
signal is active HIGH. 

INTR (INPUT) 

Interrupt request is a level triggered input which is sam­
pled during the last clock cycle of each instruction to 
determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via 
an interrupt vector lookup table located in system 
memory. It can be internally masked by software reset­
ting the interrupt enable bit. INTR is internally syn­
chronized. This signal is active HIGH. 

TEST (INPUT) 

The TEST input is examined by the "Wait" instruction. If 
the TEST input is lOW execution continues, otherwise 
the processor waits in an "Idle" state. This input is syn­
chronized internally during each clock cycle on the 
leading edge of ClK. 

NMI (INPUT) 

Non-maskable interrupt is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via 
an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A 
transition from a lOW to HIGH initiates the interrupt at 
the end of the current instruction. This input is intern­
ally synchronized. 

RESET (INPUT) 

RESET causes the processor to immediately terminate 
its present activity. The signal must be active HIGH for 
at least four clock cycles. It restarts execution, as 
described in the Instruction Set description, when 
RESET returns lOW. RESET is internally synchronized. 

elK (INPUT) 

The clock provides the basic timing for the processor 
and bus controller. It is asymmetric with a 33% duty 
cycle to provide optimized internal timing. 

Vee 

Vee is the + 5V ± 10% (± 5% on 8086-2, 8086-4) power 
supply pin. 

GND 
GND are the ground pins 



8086/8086-2/8086-4 

The following pin function descriptions are fo!:....!he 
8086/8288 system in maximum mode (I.e., MN/MX = 
Vssl. Only the pin functions which are unique to max· 
Imum mode are described; all other pin functions are as 
described above. 

52,51, So (OUTPUT 3·5TATE) 

These status lines are encoded as follows: 

52 51 50 

o (lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 

0 Write Memory 
Passive 

Status is active during T4• T1• and T2 and is returned to 
the passive state (1,1,1) during T 3 or during T w when 
READY is HIGH. This status is used by the 8288 Bus 
Controller to generate all memory and I/O access con­
trol signals_ Any change by 8;,8" or So during T 4 is used 
to indicate the beginning of a bus cycle, and the return 
to the passive state in T3 or T w is used to indicate the 
end of a bus cycle. 

These signals float to 3-state OFF in "hold acknowl­
edge". 

ROtGTo, ROtGTl (INPUT/OUTPUT) 

The request/grant pins are used by other local bus 
masters to force the processor to release the local bus 
at the end of the processor's current bus cycle. Each pin 
is bidirectional with RQ/GTo having higher priority than 
RQ/GT1. RQ/GT has an internal pull-up resistor so may 
be left unconnected. The request/grant sequence is as 
follows (see Figure 14): 

1. A pulse of 1 ClK wide from another local bus 
master indicates a local bus request ("hold") to 
the 8086 (pulse 1). 

p#,<-&,!>-

2. During the CPU's next T4 ol"V .. 
from the 8086 to the requestinif'tl:li! 
indicates that the 8086 has allowed 
to float and that it will enter 
acknowledge" state at the next ClK . The C . 
bus interface unit is disconnected logically from' 
the local bus during "hold acknowledge". 

3. A pulse 1 ClK wide from the requesting master 
indicates to the 8086 (pulse 3) that the "hold" 
request is about to end and that the 8086 can 
reclaim the local bus at the next ClK. 

Each master-master exchange of the local bus is a 
sequence of 3 pulses. There must be one dead ClK 
cycle after each bus exchange. Pulses are active lOW. 

LOCK (OUTPUT 3-STATE) 
The lOCK output indicates that other system bus 
masters are not to gain control of the system bus while 
lOCK is active lOW. The lOCK signal is activated by 
the "lOCK" prefix instruction and remains active until 
the completion of the next instruction. This signal is 
active lOW, and floats to 3-state OFF in "hold acknowl­
edge". 

aSh OSo (OUTPUT) 

QS1 and QSo provide status to allow external tracking of 
the internal 8086 instruction queue. 

Q51 Q50 

o (lOW) 0 
o 1 
1 (HIGH) 0 
1 1 

No Operation 
First Byte of Op Code from Queue 
Empty the Queue 
Subsequent Byte from Queue 

The queue status is valid during the ClK cycle after 
which the queue operation is performed. 

B-1O 



8086/8086-2/8086-4 

The followIng pIn function descrIptIons are for the 8088 
mInImum mode (I.e., MN/MX = Vcd. Only the pIn func· 
tlons whIch are unIque to mInImum mode are descrIbed; 
all other pIn functions are as descrIbed above. 

MilO (OUTPUT 3·STATE) 

This status line is logically equivalent to S2 in the max· 
imum mode. It is used to distinguish a memory access 
from an 110 access. M/iO becomes valid in the T 4 
preceding a bus cycle and remains valid until the final T 4 
of the cycle (M = HIGH, 10 = LOW). M/iO floats to 3·state 
OFF in local bus "hold acknowledge". 

ViR (OUTPUT 3·STATE) 

Write strobe indicates that the processor is performing 
a write memory or write 110 cycle, depending on the 
state of the M/K5" signal. INA is active forT 2, T 3 and T w of 
any write cycle. It is active LOW, and floats to 3-state 
OFF in local bus "hold acknowledge". 

INTA (OUTPUT) 

INTA is used as a read strobe for interrupt acknowledge 
cycles. It is active LOW during T 2, T 3 and T w of each 
interrupt acknowledge cycle. INTA floats to 3-state OFF 
in '''hold acknowledge". 

ALE (OUTPUT) 

Address latch enable is provided by the processor to 
latch the address into the 8282/8283 address latch. It is 
a HIGH pulse active during T1 of any bus cycle. Note 
that ALE is never floated. 

DT/R (OUTPUT 3·STATE) 

Data transmit/receive Is needed In mini 
desires to use an 8286/8287 data bus trans 
used to control the direction of data flow throu 
transceiver. Logically DT/R is equivalent to 51 In 
maximum mode, and its timing Is the same as for' 
M/IO.(T = HIGH, R = LOW.) This signal floats to 3-state 
OFF in local bus "hold acknowledge". 

DEN (OUTPUT 3·STATE) 

Data enable is provided as an output enable for the 
8286/8287 in a minimum system which uses the 
transceiver. DEN is active LOW during each memory and 
1/0 access and for INTA cycles. For a read or INTA cycle 
it is active from the middle of T2 until the middle of T4, 
while for a write cycle it is active from the beginning of 
T2 until the middle of T4. DEN floats to 3-state OFF in 
local bus "hold acknowledge". 

HOLD (INPUT), HLDA (OUTPUT) 

HOLD indicates that another master is requesting a 
local bus "hold". To be acknowledged, HOLD must be 
active HIGH. The processor receiving the "hold" 
request will issue HLDA (HIGH) as an acknowledgement 
in the middle of T4 or TI. Simultaneous with the 
issuance of HLDA the processor will float the local bus 
and control lines. After HOLD is detected as being LOW, 
the processor will LOWer HLDA, and when the proces­
sor needs to run another cycle, it will again drive the 
local bus and control lines. (See Figure 15.) 

HOLD is not an asynchronous input. External syn­
chronization should be provided If the system cannot 
otherwise guarantee the setup time. 

B-ll 



8086/8086·2/8086·4 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground ..........•....... - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D.C. CHARACTERISTICS 

8086: TA=O·Cto 70·C, Vcc=5V ±10% 
8086·218086·4: T A = O·C to 70 ·C, Vee = 5V ± 5 % 

Symbol Paramet.r Min. 

Vil IAput Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

lee Power Supply Current 
8086/8086·4 
8086·2 

III Input Leakage Current 

IlO Output Leakage Current 

Vel Cloek Input Low Voltage -0.5 

VqH Clock Input High Voltage 3.9 

Capacitance of Input Buffer 
CIN (All input except 

ADo-AD15, ROIGn 

CIO 
Capacitance of 1/0 Buffer 
(ADo-AD15, ROIGn 

B-12 

'COMMENT: Stresses above those listed under "Ab 
Ratings" may cause permanent damage to the device. Thl 
rating only and functional operation of the device at these or a 
conditions above those indicated In the operational sections of t 
specification is not implied. Exposure to absolute maximum rating con· 
ditions for extended periods may affect device reliability. 

Max. Units T.st Conditions 

+0.8 V 

Vee+ 0.5 V 

0.45 V IOl=2.0 rnA 

V IOH= -400,..A 

340 rnA TA=25·C 
350 rnA 

±10 ,..A OV < VIN < Vee 

±10 ,..A 0.45V Et VOUT Et Vee 

+0.6 V 

Vee + 1.0 V 

10 pF fe= 1 MHz 

20 pF fe= 1 MHz 



8086/8086-2/8086-4 

A.C. CHARACTERISTICS 

8086: TA = O·C to 70·C, Vcc = 5V ± 10% 
8086-2/8086-4: TA= O·C to 70·C, Vcc= 5V ± 5% 

8088 MINIMUM COMPLEXITY SYSTEM (Figures 8, 9, 12, 15) 
TIMING REQUIREMENTS 

808818088-4 80811-2 

Symbol Parameter Min. Max. Min. Max. 

TCLCL CLK Cycle Period - 8086 200 500 125 500 
- 8086-4 250 500 

TCLCH CLK Low Time ('h TCLCL) - 15 ('h TCLCL) - 15 

TCHCL CLK High Time ('13 TCLCL) + 2 ('13 TCLCL) + 2 

TCH1CH2 CLK Rise Time 10 10 

TCL2CLI CLK Fall Time 10 10 

TDVCL Data In Setup Time 30 20 

TCLDX Data In Hold Time 10 10 

TRWCL ROY Setup Time into 8284 (See Notes I, 2) 35 35 

TCLRIX ROY Hold Time into 8284 (Sse Notes I, 2) 0 0 

TRYHCH READY Setup Time into 8086 ('h TCLCL)-15 ('h TCLCL)-15 

TCHRYX READY Hold Time Into 8088 30 20 

TRYLCL READY Inactive to CLK (See Note 3) -8 -8 

THVCH HOLD Setup Time 35 20 

TINVCH INTR, NMI, TEST Setup Time (Sse Note 2) 30 15 

TIMING RESPONSES 808818088-4 8088-2 

Symbol Paramaler Min. Mex. Min. Max. 

TCLAV Address Valid Delay 10 110 10 80 

TCLAX Address Hold Time 10 10 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 

TLHLL ALE Width TCLCH-20 TCLCH-l0 

TCLLH ALE Active Delay 80 50 

TCHLL ALE Inactive Delay 85 55 

TLLAX Address Hold Time to ALE Inactive TCHCL-l0 TCHCL-l0 

TCLDV Data Valid Delay 10 110 10 eO 
TCHDX Data Hold Time 10 10 

TWHDX Data Hold Time After WR TCLCH-30 TCLCH-30 

TCVCTV Control Active Delay 1 10 110 10 70 

TCHCTV Control Active Delay 2 10 110 10 80 

TCVCTX Control Inactive Delay 10 110 10 70 

TAZRL Address Float to READ Active 0 0 

TCLRL 1m Active Delay 10 185 10 100 

TCLRH 1m Inactive Delay 10 150 10 80 

TRHAV 1m Inacllve to Next Address Active TCLCL-45 TCLCL-40 

TCLHAV HLDA Valid Delay 10 180 10 100 

TRLRH 1m Width 2TCLCL-75 2TCLCL-50 

TWLWH WRWldth 2TCLCL-80 2TCLCL-40 

TAVAL Address Valid to ALE Low TCLCH-80 TCLCH-40 

NOTES: 1. Signal at 8284 shown for reference only. 
2. Setup requirement for asynchronous Signal only to guarantse recognition at next CLK. 
3. Applies only to T2 slale. (8 ns Into T3) 

B-13 

Unlla Te.1 Condilions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Unll. Ta.1 Condilion. 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns CL = 2()'loo pF for 

ns 
all 8086 Outputs 
(In add Ilion to 

ns 8086 self·load) 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



8086/8086-2/8086-4 
h 

8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) (Figural 10-14) Ji~ 

TIMING REQUIREMENTS 'Yc '$/$ 

808618088-4 80811-2 1;;""11 of 
~ 

Symbol Parameter Min. Max. Min. Max. Units Test C 

TCLCL CLK Cycle Period - 8086 200 500 125 500 ns "4 
- 8086·4 250 500 

TCLCH CLK Low Time (% TCLCL) -15 (% TCLCL)-15 ns 

TCHCL CLK High Time (v.. TCLCL) + 2 (v.. TCLCL) + 2 ns 

TCH1CH2 CLK Aise Time 10 10 ns From .1.0V to 3.5V 

TCL2CLl CLK Fall Time 10 10 ns From 3.5V to 1.0V 

TDVCL Data In Setup Time 30 20 ns 

TCLDX Data In Hold Time 10 10 ns 

TAWCL ADY Setup Time Into 8284 (See Notes 1. 2) 35 35 ns 

TCLA1X ADY Hold Time into 8284 (See Notes 1, 2) 0 0 ns 

TAYHCH AEADY Setup Time into 8086 (2/\ TCLCL) - 15 (% TCLCL) - 15 ns 

TCHAYX AEADY Hold Time into 8086 30 20 ns 

TAYLCL AEADY Inactive to CLK (See Note 4) -8 -8 ns 

TINVCH Setup Time for Aecognition 30 15 ns 
(INTA, NMI, TEST) (See Note 2) 

TGVCH AO/GT Setup Time 30 15 ns 

TCHGX AO Hold Time into 8086 40 30 ns 

TIMING RESPONSES 808618086·4 8086·2 

Symbol Parameter Min. Max. Min. Max. Unll. T •• t Conditions 

TCLML Command Active Delay (See Note 1) 10 35 10 35 ns 

TCLMH Command Inactive Delay (See Note 1) 10 35 10 35 ns 

TAYHSH AEADY Active to Status Passive (See Note 3) 110 65 ns 

TCHSV Status Active Delay 10 110 10 80 ns 

TCLSH Status I nactlve Delay 10 130 10 70 ns 

TCLAV Address Valid Delay 10 110 10 80 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns 

TSVLH Status Valid to ALE High (See Note 1) 15 15 ns 

TSVMCH Status Valid to MCE High (See Note 1) 15 15 ns 

TCLLH CLK Low to ALE Valid (See Note 1) 15 15 ns 

TCLMCH CLK Low to MCE High (See Note 1) 15 15 ns 

TCHLL ALE Inactive Delay (See Note 1) 15 15 ns CL=2()'100 pF for 

TCLMCL MCE Inactive Delay (See Note 1) 15 15 ns 
all 8086 Outputs 
(In addition to 

TCLDV Data Valid Delay 10 110 10 80 ns 8086 self·load) 

TCHDX Data Hold Time 10 10 ns 

TCVNV Control Active Delay (See Note 1) 5 45 5 45 ns 

TCVNX Control Inactive Delay (See Note 1) 10 45 10 45 ns 

T~AL Address Float to Aead Active 0 0 ns 

TCLAL AD Active Delay 10 165 10 100 ns 

TCLAH AD I nactlve Delay 10 150 10 80 ns 

TAHAV AD Inactive to Next Address Active TCLCL-45 TCLCL-40 ns 

TCHDTL Direction Control Active Delay (See Note 1) 50 50 ns 

TCHDTH Direction Control Inactive Delay (See Note 1) 30 30 ns 

TCLGL m Active Delay 0 65 0 50 ns 

TCLGH GT I nactlve Delay 0 65 0 50 ns 

TALAH AD Width 2TCLCL-75 2TCLCL-50 ns 

NOTES: 1. Signal at 8284 or 8286 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns "nto T3). 

B-14 



CLK (8284 Output) 

MliO 

ALE 

ROY (8284 Input) 

SEE NOTE 4 

READY (8088 Input) 

READ CYCLE 

(NOTE ') 

AD'5-ADo 

RD 

(WR,INTA=VOH) DTIR 

8086/8086-2/8086-4 

T, T, T, Tw T. 

V ----"~'-tJ rTCL2CL~~ CH~ v----\ 

r-\-vi,. '------.I - -
- TCHCTV f ~ TCHCL I-TCLCH-

TCLAY--- - - TCLDV 1--' TCHDX- t TCLAX- I--

~HE, A19-A,. 
\ 5,-5, 
/ I 

TCLLH-

f 
TLH~L----::::: I--TLLAX 

TALL 

r--

/_---- ::: tt TCHLL-I -TR1VCL 

V,H""'" \ ..... ~--
VIL ....... - I----'TCLR'X 

TRYlCl- -

1 

- ~ 
7 

-- -TCHRYX 

\ 

- TAVAL - TRYHCH- -
TCLAV-

TLLAX----, 1-1 
r- - !-TCLAZ TDVCL--TCLDX-

V A'5-Ao DATA IN 

f=r FLO:~"-
TAZRL_ TCLRH- ,--I i-TRHAV 

~ 
=~TCHCTV TCLRL I TRLRH 

1 
-TCHCTV 

TCVCTV- { TCVCTX- I 

Figure 8. 8088 Bus Timing - Minimum Mode System 

B-15 



elK (8284 Output) 

M/iO 

ALE 

AD,.-ADo 

WRITE CYCLE 

(NOTE j) 
DEN 

(RD. iID. 
DTII!=VOH) 

WR 

AD1S-ADO 

INTA CYCLE DTIR 

(NOTES 11l3) 

~Wii=VOH 
=VOU 

iNTA 

DEN 

8086/8086-2/8086-4 

TCLAZ 

FLOAT 

TCHCTV 

TCVCTV 

TCVCTX 

INVALID ADDRESS 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF To. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDR/DATA BUS IS 
FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS SHOWN FOR 
SECOND INTA CYCLE. 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 9. 8086 Bus Timing - Minimum Mode System (conl'd) 

B-16 



ClK 

aSo,as, 

s"s"s, (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

SEE NOTE 5 

RDY (8284 INPUT) 

READ CYCLE 

RD 

DT/R 

8288 OUTPUTS 

SEE NOTES 5,6 
MRDCOR iORC 

DEN 

VCl 

8086/8086-2/8086-4 

T, T, 

TCLAV-..j 

TClRH -+--~~-4 

TCHDTL-I 
TRlRH 

TCLMH---

TCVNX-

Figure 10. 8086 Bus Timing - Maximum Mode System (Using 8288) 

B-17 

r-­
/ 



WRITE CYCLE 

8288 OUTPUTS 

SEE NOTES 5,6 

INTA CYCLE 

elK 

52,51,SO (EXCEPT HALT) 

DEN 

AMWC: OR AIOWC 

MWTC OR lowe 

AD1S..'ADO 
(SEE NOTES 3 & 4) 

MCEI 
POEN 

DT/A 

8288 OUTPUTS 

SEE NOTES 5,6 INTA 

DEN 

SOFTWARE HALT -

8086/8086-2/8086-4 

T, T3 

vel 

TCHDX-

DATA 

TCVNX-

TCLMH---

I 
TeVNx-1 

(~= VoURD,MRDC,IOAC,MWfC,AMWC,IOWC,AIOWC,INTA,DTIR = VOH) 

INVALID ADDRESS 

reLAV 

~ ,..---------~\ - -----
\'----~/ \.- -----

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH ANO VOL UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T2, T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETweEN FIRST AND SECOND INTA CYCLE. 
4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8086 LOCAL ADDR/DATA BUS IS 

flOATING DURING BOTH INTA CYCLES. CONTROL FOR POINTER ADDRESS 
IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNAL.S AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONL.Y. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL. SIGNAL.S (MlWC, 
~,AMWC, 10RC, 10WC, AIOWC, INTA AND DEN) L.AGS THE ACTIVE HIGH 
8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO Til. 

Figure 11. 8086 Bus Timing - Maximum Mode System (Using 8288) (cont.) 

B-18 

,-­
I 

TCHDTH 



8086/8086-2/8086-4 

INTR 

TEST 

NOTE: 

1, SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT ClK 

Figure 12. Asynchronous Signal Recognition 

Any elK CYCle---j Any eLK Cycle -_I 
eLK 

Figure 13. Bus Lock Signal Timing (Maximum Mode Only) 

Previous grant 

NOTES: 1. THE COPROceSSOR MAY NOT DRIVE THE BUSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION. 

I-----C COPROCESSOR 

(SEE NOTE 1) 

Figure 14. Request/Grant Sequence Timing (Maximum Mode Only) 

Cl' '"\ ~' , CLK ~ .r-I--' OR 2 CYCLES 

'l1-TH~r-I I~~_THV~ 
HOlD~I\ 

11 r ;;TC\--'HAV_---II-__ -I--. 
HLDA ! 

1----1-' 

AD1S·ADo, 
AI9iSe-Als/S3, 

~SL....MIK), 
DTIJi, WR, OEN 

~_-I'"I--': -----;-I\lj~TClAZ______<I--------, 
,. " COPRO~I-ES-S-OR----_-' 

Figure 15. Hold/Hold Acknowledge Timing (Minimum Mode Only) 

B-19 



8086/8086-2/8086-4 

8086 
INSTRUCTION SET SUMMARY 

DATA TRANSFER 
MOV = Move: 7 654 3 2 1 0 7 6 5 4 3 2 1 0 7 6 S 4 3 2 1 0 7 6 5 4 3 2 1 0 

Register/memory to/lrom register i=ll~O~O~O~' o;,d~w+1 m;;;O;;;d'OO,;;;,g~',:,;lm~ __ -'-'-_-'-_=-;---:-l 

Immediate to register/memory i=11C";=0",0",0~, =' ;,w+1 ;;;mo;;;d;;;O;;;O"O=';;;lm~~=:=",d',;,"~~1 _d='~"~,'~w_'~1 
Immediate 10 register ~ 1 w reg I data data II w 1 I 
Memory to accumulator ~w I addr-Iow addr-hlgh ~ 
Accumulator to memory 11 [) 1 DO [) 1 w I addr·low addr-hlgh I 
Register/memory to segment register ~ 1 1 0 I mod [) reg rim 

Segment register 10 register/memory ~ 00 I mod [) reg rim 

PUSH = Push: 

Register/memory 

Register 

Segment register 

POP = Pop: 

Register/memory 

Register 

Segment register 

XCHG = Exchange: 

Register/memory with register 

Register with accumulator 

IN"'lnput from: 

Fixed porI 

Variable port 

OUT" O'utputto: 

FI~ed port 

1 1 1 1 1 1 1 1 mod 1 1 0 

01010 reg 

1000reg 110 I 

110001 1 II! mod 000 rim 1 

101011 reg I 

~;-;=;-;] 

l' 00001 1 w Imod reg rim I 
[TOTiy=;;Q 

~owl porI 

11 1 1 001 1 w I porI 

11 1 10 1 1 1 w I 
1"010111 I 
110001101 Imod reg rim I 
111000101!modreg~ 
11 10001 00 I mod reg rim I 

110011111 I 
1100111101 

1 00 1 1 1 0 0 

DEC Decrement: 

Reglsterlmemory 

Register 

NEG-'Change Sign 

CMP Compare: 

Reglsterlmemory and register 

Immediate With reglsterlmemory 

Immedlale With accumulator 

AAS ASCII adjust for subtract 

DAS-Declmal adlust for subtract 

MUl Multiply (unsigned) 

IMUl Integer multiply (Signed) 

AAM ASCII adjust lor multiply 

DIY DIvide (unslgnedl 

IDlY Integer divide ISlgnedl 

AAD ASCII adjust for divide 

CBW Convert byte to word 

CWO Convert word to double word 

LOGIC 
HOT Invert 

SilL/SAL ShiH loglcallarlthmetlc left 

SIIR Snlftloglcal right 

SAR Shift arithmetiC right 

AOL Rolate lett 

ADA Rotate right 

ACl Rolate through carry Ilag left 

RC R ~ Rot a te Ihro ugh car ry fig hI 

AND And: 

7 6 543 2 1 0 7 6 5 4 3 2 1 0 

11 I 1 1 1 1 1 W I mod 001 rim 

10100 I reg I 

~10"-IIW imodOll rim 

\001 1 10 d w I mod reg rim 

1100000 s w I mod 1 1 1 rim 

10 0 I 1 1 lOW I data 

100111111 I 

100101111 I 

111 11011 w Imod 100 rim I 
111 11011 w I mod 101 rim I 
11 1 0 1 0 1 00 I 00 0 0 1 a 1 0 I 
liiiii'l w Imodl1~ 
11 1 1 1 0.1 1 W I mod 1 1 1 rim I 

111010101100001010 I 

rT~ 
1'00110011 

11 1 1 1011 w I mod 0 1 0 um 1 
11 1,01 00 v w I mod 100 rl~ 
11 1 0 1 00 v w I mod 101 11m 1 
11 1 a 1 a 0 v w I mod 1 1 1 ,1m 1 
11 1 0 1 00 v w I mod 000 ,1m 1 
1110100 v w ImodO 0 1 1 
11 10100 v w Imod 010 1 
1110100 v w I modO 11 1 

data data Ifsw-Ol I 
data Ilw 1 

Variable port 

XlAT=Translate byte to Al 

lEA "load EA to rt!gister 

lDS=load pointer to OS 

lES=load poinler 10 ES 

LAHf~load AH with flags 

SA"f=Slore AH into ftags 

PUSHF"Push flags 

PDPF"Pop flags 10011,101 Reg Imemory and register to either IF.o;,,;O;;;',,;O,,;O~O;.d;..;;,W+1 m;;;O,,:d,:,,'~'9~',:,;lm~ __ =_--'_==--:-l 
Immediate to reglsterlmemory 1~I;,,;o;,,;o;,,;o;.o;.o;,,;o~w~1 m::;:o~d~' ~O ~0~';;,lm4~~;:;d,:::"~+-,d"-,,,,-,-,,;I-,,W,-,-'----"1 

ARITHMETIC 
ADD 0 Add, 

Reg.lmemory with register to either :.:O;.:O;.:O;.:O;.:O;.:O:.;d:..w~m:;::O~d ~'~'9~i;;;lm9-____ --' ____ --'--' 

Immediate to register/memory F.,~o;.;o;.;o;.;o~o;.,;..w~m:;::o;,d;,O ~O;,O ,:,;';;;lm9~=c""d;;';;;"=c""+--",d,,,,,,,,,;I-,-,-,,w-,,00"-J' 
Immediate to accumulator I 0 a 0 0 0 lOw I data data if w=1 

ADC " Add with carry: 

Reg.lmemory with register to either :.:1 O:.;O:.;O;.';.O;.O;.d;..w~1 m:;::o~d ~'~'9~';;;lm9-_____ -'-_____ --:-l 

Immediate to register/memory F.ll,.;0e;o;;o;;o;;o;",;.w~1 m;;;;O;;,d;.O ,;,' ;;,0 ,:,;';;;lm9~=c""d;;';;;""'7+--",d,,,,,,,,,;I-,-'c:w-,00"-Jl I 
Immediate to accumulator 10 0 0 1 0 lOw I data data II w·l 

INC'" Incrlm.nl: 
Register/memory 

Register 

AAA"ASCIl adjust for add 

DlA,.Decimal adjust for add 

SUB 0 SUb""t, 
Reg.fmemory and register to either 

Immediate from register/memory 

Immediate from accumulator 

.BB 0 SUbtrlCl wHh borrow 
Reg,/memory and register to either 

Immediatelrom register/memory 

Immediate Irom accumulator 

Mnemonics ©Intel, 1978 

1 1 1 1 1 1 1 w mod a 0 0 rim 

o 1 000 reg 

a a 1 1 0 1 1 1 

10010011 1 

100 1 0 1 0 d w I mod reg rim 

1 00000 5 W mod 1 0 1 rim 

0010110w data 

a 0 0 1 1 0 d w mod reg rim 

100000 sw modO II rIm 

I0001110wl data 

data 

data it w-l 

data 

data if w 1 

data if s:w=Ol 

data if s:w-Ol 

Immediate to accumulator 10 0 1 00 law I dala data II w-l 

TEST - And funcllon to lIags, no resule-t, -cc:--:--:--:--.----,-------, 
Reglsterlmemory and register 11 00 00,1 0 w I mod reg rim 
Immediate data and register Imemory F.ll;;;'~';;;';"O~'~' w~1 ;;mO~d':"O ~o"'o;;;';;;lm~---;:d,c:,,----'-1 -d"""''''';I---W---o,''1 

Immediate data and accumulator 11 0 1 0 1 0 0 w I data data~ 

OR ' Or: 
Reg.tmemory arld register to either 10 000 1 0 d W I mod _ reg, ~ 
Immediate to registerimemory Li::£o 0 000 W I modO 01 rim I data 

Immediate to accumulator 100 0 0 1 lOw I data I data If w-l 

XOR = Elclusl"e or: 

Reg,lmemory and register to either 10 0 1 1 00 d w I mod reg i!iiJ 
Immediate to register Imemory 1 0 0 0 0 0 0 w mod 1 1 0 rim data 

Immediate to accumulator 

STRING MANIPULATION 
REP"Repeat 

MOVS=Move byte/word 

CMPS"Compare byte/word 

SCAS"Scan byte/word 

lOOS"load byte/wd to Al/AX 

STOS"Stor byte/wd from ALIA 

0011 0 lOw 

11 1 1 1 00 1 z I 
11010010wl 

1101001 1 w I 
liii:.o:::iii:iJ 
1101 0 1 1 Ow I 
110101O'wi 

data data if w-l 

data II w~ 1 I 

data ifw-l 

B-20 



8086/8086-2/8086-4 

CONTROL TRANSFER 
CAll· C.II, 78543210 18543Z10 111543210 76543210 765432'10 

Direct within segment 11101000 dlsp·low dlsp-hlgh JNB/JAE Jump on not below/above jOl1100111 dlsp -, 
or equal 

Indirect within segment 11111111 moll 010 <1m JNBE/JA Jump on not below or [01110 111 1 dlsp I 
1100110101 I 

equal/above 

10""_0"1 dlS~ I Oirectlntersegment oltseHow olfset-hlgh JNP/JPO Jump on nolpar/par odd 

! seg-Iow seg-hlgh I JIfO-Jump on not overflow 101110001 1 dlsp I 
Indirect mtersegment 111'11111 :mOd 0 11 rim JIB Jump on not Sign 101111001 1 dlsp ] 
JMP = Uncandlllon.1 Jump: 

LOOP Loop CX limes 111100010] dlsp 1 
lDOPlJlOOP£ Loop whllelero/eQual 111100001 I dlsp 1 

Direct wl!hm segment 1'11010 01 1 dlsp-Iow dlsp-hlgh 1 LODP"ZlLOOPNE Loop .... hlle not 11100000 dlsp 
Direct within segment-short 1'11010111 dlsp lero/equal 

JCXZ Jump on ex zero 11100011 dlslJ 
Induect Wlthmsegment 11111111 mod 1 00 <1m 

Dlrectmtersegment 11101010 ollset-Iow ottsel-hl 9h INT Interrupt L -·-Seg-IOw I Seg-h.gh~ Typespecilled 111001101 I lype I 
Indirect mlersegmenl 111111111 !moll 1 a 1 rIm I Type 3 111001100 I 

INTO InlerrUll1 on overfloW 111001110 I 
RET '" Relurn from CALL: IRETlnlerrulllrelurn 111001111 I 
Withinsegmenl 1110000111 
Withm seg. addmg Immed 10 SP 1110000101 data-low data.hlgiiOOO] 

Intersegment 1"0010111 
Intersegmenl. addmg Immediate 10 SP 11001010 data·low data·hlgh PROCESSOR CONTROL 
JE/JZ=JumponeQuallzero 01110100 !lISP CLCClearcarry 111111000 I Jl/JI.E~Jump on less/nol greater 

01111100 dlsp CMC Complement carry 111110101 I or equal 
JLE/JIIS=Jump on less or eQuallnot 

1011111101 !lISP STCSetcarry 111111001 I greater 
JI/JI.E=Jump on below/not above 1011100 10 1 !lISP CLDCleardlrecllOn 111111100 1 or equal 
JIE/JNAn~~~Co~~ below or equal/ 101 110110 1 dlsp STD·SetOlrecllon 111111101 I 
JP/JPE""Jump on panly/paflty even 101111010 1 !lISP eLI Clear mterrupt 111111010 I 
JO=Jumpon overilow 1011100001 dlsp STISeltrlterrupt 11111101!] 

JS"Jump on sign 1011110001 dlsp HLT Hall 111110100 1 
JIE/JIZ=Jump on nol eQualinolzero 01110101 dlsp WAIT Wall 1100110111 
JIIL/JSE"Jump on not less/greater 

01111101 !lISP ESC Escape (to external device) ~~Odx~_:;::Y~~ or equal 
J'lE/J6~Jump on not less or equal/ 1011111111 dlsp LOCK Bus lOCk prefix ["""1i"I1Qo-olil greater 

---------------------------------------_._--------

F'DI1IoIa: 

AL : 8-bit accumulalor 
AX '" 16--bit accumulator 
CX • Count register 
OS : Oala segmenl 
ES : Extra segment 
Above/below reters to unsigned value. 
Greater:. more positive; 
less'" less positive (more negative) signed values 
if d '" 1 then "to" reg; ifd '" o then "from" reg 

if w '" 1 then word Instruction; if w = 0 then byte instruction 

if mod: 11 then r 1m is treated as a REG field 
if mod: 00 then OISP : 0', disp·low and disp-high are absent 
if mod: 01 Ihen OISP • disp-Iow sign-extended to 16-bits, dlsp-high is absenl 
if mod: 10 then OISP : disp·high: disp-Iow 

if rim: 000 then EA : (BXI • (SII • OISP 
if rim: 001 then EA : (BXI • (011 • OISP 
if rim: 010 then EA : (BPI. (SII • OISP 
If rim: 011 then EA : (BPI. (011 • OISP 
if rim: 100 then EA : (SII • OISP 
if rim: 101 then EA : (011 • OISP 
if rim: 110 then EA : (BPI. OISP' 
if rim: 111 then EA : (BXI .0ISP 
DISP follows 2nd byte of instruction (before data if required) 

'except if mod: 00 and rim: 110 then EA : disp·high: disp-Iow. 

Mnemonics© Intel, 1978 

if s:w = 01 then 16 bits of immediate data form the operand. 
if s:W = 11 then an immediate data byte is sign extended to 

form the 16-bit operand. 
if v = 0 then "count" = 1: if v = 1 then "count" in tel) 
x = don't care 
Z IS used for string primitives for comparison WIth l.F FLAG. 

SEGMENT OVERRIDE PREFIX 

10 0 I reg I 01 

REG is aSSigned according to the following table: 

!!Billw" II 8-Blllw·OI 
000 AX 000 AL 
OOt CX Oot CL 
OtO OX OtO ol 
Ot, BX Ott BL 
tOO SP tOO AH 
lOt BP 101 CH 
110 SI 110 OH 
111 01 tIl BH 

~.gmenl 

DO ES 
Ot CS 
to SS 
tt OS 

Inslructions which reference the flag register file as a 16-bit object use Ihe symbol FLAGS 10 
represent the file: 

FLAGS : X:X:X:X:(oFI:(OFI:(lFI:(TF):(SFI:(lF):X:(AF):X:(PF):X:(CF) 

B-21 



M8086 
16·BIT HMOS MICROPROCESSOR 

• Direct Addressing Capability to 1 • 8·and 16·Bit Signed and Unsigned 
MByte of Memory Arithmetic in Binary or Decimal 

Assembly Language Compatible with 
Including Multiply and Divide 

• 
8080/8085 • 5 MHz Clock Rate 

• 14 Word, By 16·Bit Register Set with 
MULTIBUS™ System Compatible Symmetrical Operations • 
Interface 

• 24 Operand Addressing Modes 
• Full Military Temperature Range 

• Bit, Byte, Word, and Block Operations - 55°C to + 125°C 

The Intel® M8086 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package_ The processor has attributes of both 8- and 
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance. 

~~f.CUTION ~1 

REGISTER FILE 

DATA 
POINTER, AND 

INDEX REGS 
18 WORDS) 

FLAGS 

BUS INTERFACE UNIT 

IRMCAT~O~----' 
REGISTER FILE 

I 

'---;-r--' YOTiR.OE"N,Alf: 

! INSTRUCTION .lbou,", 

TEsT--_r------~~-------, 
INT--_ 
NMI---

CONTROL & TIMING 

HOLO--_ 

HLDA_---<--,-__ -. __ ,-__ ..... -:::"" 

ell( RESET DND 
V" 

2 aso.as, 

Figure 1_ M8086 CPU Functional Block Diagram 

B-22 

GND VCC 

AD14 AD15 

AD13 A16/S3 

AD12 AU/54 

AD11 A181SS 

A010 A19fS6 

AD9 BHE/S7 

ADa MNIMX 

AD' RO 
AD6 ~IGTO (HOLD) 

ADS RO/GT1 (HlDA) 

AD' lOCK (WA) 

AD3 52 (Mlie) 

AD2 51 (DTIR) 

AD1 so (DEN) 

ADO eso (ALE) 

NMI OS1 (lNTA) 

INTR TEST 

ClK READY 

GND RESET 

40 LEAD 

Figure 2_ M8086 Pin Diagram 



18086 
16·BIT HMOS MICROPROCESSOR 

• Direct Addressing Capability to 1 • 8·and 16·Bit Signed and Unsigned 
M Byte of Memory Arithmetic in Binary or Decimal 

Assembly Language Compatible with 
Including Multiply and Divide 

• 
808018085 • 5 MHz Clock Rate 

• 14 Word, By 16·Bit Regtster Set with 
Symmetrical Operations • MULTIBUS™ System Compatible 

24 Operand Addressing Modes 
Interface 

• 
• Industrial Temperature Range 

• Bit, Byte, Word, and Block Operations - 40°C to + 85°C 

The Intel® I8086 is a new generation, high performance microprocessor implemented in N·channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40'pin CerDIP package. The processor has attributes of both 8· and 
16·bit microprocessors. It addresses memory as a sequence of 8·bit bytes, but has a 16·bit wide physical path to 
memory for high performance. 

EXECUTION UNIT 

REGISTER FILE 

DATA. 
POINTER, AND 
INDEX REGS 

(8 WORDS) 

16·BIT ALU 

FLAGS 

BUS INTERfACE UNIT 

i-RELOCATK>N-""-1 
REGISTER FILE 

~--_r------~~-------' 
INT--_ 
NMI---

CONTROL & TIMING 

HOLD---
HLOA--....-r __ ... __ .--__ -;---:::~ 

elK RESET READY 

DTiR'D"E'N ALE 

Figure 1. 18086 CPU Functional Block Diagram 

B-23 

GND Vee 
A014 A015 

AD13 A16/S3 

AD12 A17/54 

AD11 AlB/55 

AD10 A19/S6 

AD9 BHE/S7 

AD8 MN/MX 

AD7 AD 
AD6 Ra/GTO (HOLD) 

ADS Ra/GT1 (HLDA) 

AD' LOCK (WR) 

AD3 52 (M/iO) 

AD2 51 (DTIR) 

AD1 so (DEN) 

ADO aso (ALE) 

NM) aS1 (INTA) 

INTR TEST 

elK READY 

GND RESET 

40 LEAD 

Figure 2. 18086 Pin Diagram 



8088 
8-BIT HMPS MICROPROCESSOR 

• 8·Bit Data Bus Interface 

• 16·Bit Internal Architecture 

• Direct Addressing Capability to 1 Mbyte 
of Memory 

• Direct Software Compatibility with 8086 

• 14·Word by 16·Bit Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Byte, Word, and Block Operations 

• 8·Bit and 16·Bit Signed and Unsigned 
Arithmetic in Binary or Decimal, includ· 
ing Multiply and Divide 

• Compatible with 8155·2, 8755A·2 and 
8185·2 Multiplexed Peripherals 

The Intel"'8088 is a new generation, high performance microprocessor implemented in N·channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8 and 
16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals. 

8088 CPU FUNCTIONAL BLOCK DIAGRAM 8088 PIN DIAGRAM 

MEMORY INTERFACE 

MIN ! MAX 1 C·BUS MODE MODE 

GND Vee 

A14 A1S 

A13 A16JS3 
INSTRUCTION A12 A17/S4 
STREAM BYTE 

OUEUE A11 A181SS 

A10 A19/S6 

A9 SSO (HIGH) 

BUS 
CS A8 MN/MX 

INTERFACE SS AD7 Ali 
UNIT 

DS (RQ/GTO) AD6 HOLD 

IP ADS HlDA (Ali/ilfi) 

AD4 Wii (lOCK) 

A·BUS AD3 101M (52) 

AD2 DTIft (51) 

AD1 DEN (SO) 

AH Al ADO ALE (OSO) 
BH Bl NMI INTA (OS1) 
CH Cl 

TEST 
DH Dl 

INTR 
EXECUTION 

UNIT SP ClK READY 

BP GND RESET 

SI 

01 FLAGS 

B-24 



8088 

FUNCTIONAL DESCRIPTION 

Memory Organization 
The processor provides a 20·bit address to memory 
which locates the byte being referenced. The memory is 
logically organized as a linear array of 1 million bytes, 
addressed as OOOOO(H} to FFFFF(H}. The memory can be 
further logically divided into code, data, alternate data, 
and stack segments of up to 64K bytes each, with each 
segment falling on 16·byte boundaries. (See Figure 1.) 

Word (16·bit) operands can be located on even or odd ad· 
dress boundaries. For address and data operands, the 
least significant byte of the word is stored in the lower 
valued address location and the most significant byte in 
the next higher address location. The BIU will auto· 
matically execute two fetch or write cycles for 16·bit 
operands. 

~FFFFFH 

6.1K6 D} CODE SEGMENT 

i·-L XXXXOH 

I. tj lJ STACK SEGMENT 

+ OFFSET H 
SEGMENT l 

REGISTER FILE ( MSB 

~~3;1~~~~==~lW~O_RD~\t:BL;:::E~ J DATA SEGMENT 
OS 
ES 

} EXTRA DATA SEGMENT 

'---4----1 
'C.-..-..:1" OOOOOH 

Figure 1. Memory Organization 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 2.) Locations from ad· 
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system initial· 
ization routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be located. Locations OOOOOH through 003FFH are 
reserved for interrupt operations. Four·byte pointers 
consisting of a 16·bit segment address and a 16·bit off· 
set address direct program flow to one of the 256 possi· 
ble interrupt service routines. The pointer elements are 
assumed to have been stored at their respective places 
in reserved memory prior to the occurrence of inter· 
rupts. 

f~f"~ r: 
Minimum and Maximum M'OQiss 

P'!J:< ~'Ot 

The requirements for supporting mirif~~. 
mum 8088 systems are sufficiently differe'h1,\.: 
cannot be done efficiently with 40 uniquely' ~jt}e~:t 
pins. Consequently, the 8088 is equipped with a st'ra,p'c 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes, 
dependent on the condition of the strap pin. When the 
MN/MX pin is strapped to GND, the 8088 defines pins 24 
through 31 and 34 in maximum mode. When the MN/MX 
pin is strapped to Vee, the 8088 generates bus control 
signals itself on pins 24 through 31 and 34. 

~----------~ FFFFFH 
RESET BOOTSTRAP 

1-__ --'-P"'RO=-G=.:R"'Ac::M-=:J"-'UM"'P ___ --l FFFFOH 

1---------~----l3FFH 
INTERRUPT POINTER 

~---~F~O~R~TY~P~E~25~5---~3FOH 

1--------------l7H 
INTERRUPT POINTER 

FOR TYPE 1 H 
~-----IN-TE~R=-R~UP~T~P=-OI~N-TE-R--~~H 
L-___ ~F_=:O~R~TY~P_=:E~O ___ ~OH 

Figure 2. Reserved Memory Locations 

The minimum mode 8088 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed bus 
configuration is compatible with the MCS·85™ multi· 
plexed bus peripherals (8155, 8156, 8355, 8755A, and 
8185). This configuration (See Figure 3) provides the 
user with a minimum chip count system. This architec· 
ture provides the 8088 processing power in a highly in· 
tegrated form. 

The demultiplexed mode requires one latch (for 64K ad· 
dressability) or two latches (for a full megabyte of ad· 
dressing). A third latch can be used for buffering if the 
address bus loading requires it. An 8286 or 8287 trans· 
ceiver can also be used if data bus buffering is required. 
(See Figure 4.) The 8088 provides DEN and DT/R to con· 
trol the transceiver, and ALE to latch the addresses. 
This configuration of the minimum mode provides the 
standard demultiplexed bus structure with heavy bus 
buffering and relaxed bus timing requirements. 

The maximum mode employs the 8288 bus controller. 
(See Figure 5.) The 8288 decodes status lines SO, Sf, 
and S2, and provides the system with all bus control 
signals. Moving the bus control to the 8288 provides 
better source and sink current capability to the control 
lines, and frees the 8088 pins for extended large system 
features. Hardware lock, queue status, and two request! 
grant interfaces are provided by the 8088 in maximum 
mode. These features allow co·processors in local bus 
and remote bus configurations. 

B-25 



8088 

/' /' Vss Vee 

I I 
5-- CE POR:~ 

WR 

RD POR~~ 
a155 

ALE PORT~ 
"'- DATA C (61 

ADDR 

IN-
10 IVl TIMER 

RESET 
OUT r---

"-
As-A19 ADDR lOW 

RD 

~ ADo - AD7 ADDR/DATA ALE 

~ ,---- ClK 

s-~ 
PORT 

CE A 

t= A A S10 
8088 1/ 8355 '8755A ,-- READY 

MN/MX -Vee DATA 
ADDR 

VCC 

~ 
T 

rD1 ALi - -

~ 
IO,'M PORT 

r- RESET 
- - - - B RI) RESET 

X, X2 
ClK We -

~c 
READY - I 101M -"-- - lOR 

"- RES ! ! I t 8284 

RESET -- Vss Vee VDD PROG 

GND WR 

RD 

CE, 
8185 

ALE 

\-- CS, GEL 

\-- Ag,Ag 

/ ADo) 

I 1 
Vs~ Vee 

Figure 3. Multiplexed Bus Configuration 

B-26 



Vee D 

~ 82" CLOCK 
GENERATOR 

m 

I ROY 
ONO 

T OE~t~~~OR rR3 

I ROY 

ONO 

8088 

eLK "'N/M'X Vee 
READY 101M 
AESET ftlj 

IVA 
8088 

CPU INTA 

L _______ ----------lINT 

¢= IRO-7 

Figure 4. Demultiplexed Bus Configuration 

r---7.M~N'~MX~ __ GNO r--ce~LK~M~Ro~e1--------------~----~------_ 
eLK sof-------lsu MWTC 

READY s;- 5;" AMWC N C 

RESET S; 52 8288 IORC f----------.---------t-If--------II-----.----
~ [ .-e=::': e::=:;l~R A:~~~r---N e -------,--Ji :------t-+--I I -----t

L
----++

l
Li • 

A~~-=-~~;l!'-o.N'"Od±--: ~~B c=::=;::::;=~~==~AOi1iO'ffiRE~s§:s=~1 ~==;--;=== _ _~ 

rln!-l~ INT 

¢===IRO-7 

Figure 5. Fully Buffered System Using Bus Controller 

B-27 



8088 

Bus Operation 
The SOSS address/data bus is broken into three parts -
the lower eight address/data bits (ADO-AD?), the middle 
eight address bits (AS-A15), and the upper four address 
bits (A16-A19). The address/data bits and the highest 
four address bits are time multiplexed. This technique 
provides the most efficient use of pins on the proc­
essor, permitting the use of a standard 40 lead package. 
The middle eight address bits are not multiplexed, i.e. 
they remain valid throughout each bus cycle. In add i-

1--------t4+NwAITI=TCy 

T, T2 I T3 TWAIT 

ClK 

/). 

tion, the bus can be demultiple"~1rCt 
a single address latch if a standaf~fh~ 
bus is desired for the system. ~-1/'''/f' 

'J,~/Ot'f 
Each processor bus cycle consists of at least four 
cycles. These are referred to as T1. T2, T3, and T4. 
Figure 6). The address is emitted from the processor 
during T1 and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 

1
--------(4+NWAIT)::TCY 

T1 I T2 I T3 I TWAIT 

GOES INACTIVE IN THE STATE 1\ n JUST PRIOR TOT4 1\ 
ALE ---.l \'---____________ ~ ____ -.~'-----------+"""'\ __ I L 

\ \I...-..._--1-/...J..J..JUJ/;.u.u..JI mJ \'---
ADDRISTATUS ~~ _____ S_'-_S3 ______ ~,-______ S'_-S_3 _____ >C 

~ .. =* _______ A15._A, ______ X'---___ A_15.A' ___ ><= 
ADDR/DATA ~ __ DA_T_A_O_UT_'D_7_.D_OI __ ~~-~ 

READY 
~\\~\' \. _____ /RE~DV I 
\~\~~- e . 

WAIT 

\\........:.-. '.~\. :---"l~DV 
WAIT 

DTIR \1...-1---1--+----'/ 
I \ 'I 
I--MEMORV ACCESS TIME---_I 

\~------'/ 

\~_---J/ 
Figure 6_ Basic System Timing 

B-28 



8088 

"wait" states (Tw) are inserted between T3 and T4. Each 
inserted "wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8088 driven bus 
cycles. These are referred to as "idle" states (Ti), or inac· 
tive ClK cycles. The processor uses these cycles for in· 
ternal housekeeping. 

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/IVlX strap). At 
the trailing edge of this pulse, a valid address and cer· 
tain status information for the cycle may be latched. 

Status bits SO, 51, and S2 are used by the bus controller, 
in maximum mode, to identify the type of bus transac· 
tion according to the following table: 

52 51 SO 

o (low) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 0 Write 1/0 
0 1 1 Halt 
1 (High) 0 0 Instruction fetch 
1 0 Read data from memory 
1 0 Write data to memory 

Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed wiih high 
order address bits and are therefore valid during T2 
through T4. S3 and S4 indicate which segment register 
was used for this bus cycle in forming the address ac· 
cording to the following table: 

S4 S3 

o (low) 
o 
1 (High) 
1 

o 
1 
o 

Alternate data (Extra Segment) 
Stack 
Code or none 
Data 

S5 is a reflection of the PSW interrupt enable bit. S6 is 
always equal to O. 

I/O Addressing 
In the 8088, 1/0 operations can address up to a maxi· 
mum .of 64K 1/0 registers. The 1/0 address appears in the 
same format as the memory address on bus lines 
A15-AO. The address lines A19-A16 are zero in 1/0 
operations. The variable 1/0 instructions, which use 
register DX as a pointer, have full address capability, 
while the direct 1/0 instructions directly address one or 
two of the 256 1/0 byte locations in page 0 of the 1/0 ad· 
dress space. 1/0 ports are addressed in the same man· 
ner as memory locations. 

Designers familiar with the 8085 or upgrading an 8085 
design should note that the 8085 addresses 1/0 with an 
8·bit address on both halves of the 16·bit address bus. 
The 8088 uses a full 16·bit address on its lower 16 ad· 
dress lines. 

t:~~;! :, 

EXTERNAL INTERFACE'·\~.> 

Processor Reset and Initializatiorl' '~//,~, ,~<;t", 

Processor initialization or start up is accompli~'h'6~'iNlt!;J, 
activation (HIGH) of the RESET pin. The 8088 RES~'r'ji' 
required to be HIGH for greater than four clock cycles'. 
The 8088 will terminate operations on the high·going 
edge of RESET and will remain dormant as long as 
RESET is HIGH. The low·going transition of RESET trig· 
gers an internal reset sequence for approximately 7 
clock cycles. After this interval the 8088 operates nor· 
mally, beginning with the instruction in absolute loca· 
tion FFFFOH. (See Figure 2.) The RESET input is inter· 
nally synchronized to the processor clock. At initializa· 
tion, the HIGH to lOW transition of RESET must occur 
no sooner than 50 p's after power up, to allow complete 
initialization of the 8088. 

If INTR is asserted sooner than nine clock cycles after 
the end of RESET, the processor may execute one in· 
struction before responding to the interrupt. 

All 3·state outputs float to 3·state OFF during RESET. 
Status is active in the idle state for the first clock after 
RESET becomes active and then floats to 3·state OFF. 

Interrupt Operations 
Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the instruction set description found in Chapter 2 of the 
8086 Family User's Manuai. Hardware interrupts can be 
classified as non·maskable or maskable. 

Interrupts result in a transfer of control to a new pro· 
gram location. A 256 element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see Fig· 
ure 2), which are reserved for this purpose. Each ele· 
ment in the table is 4 bytes.in size and corresponds to 
an interrupt "type". An interrupting device supplies an 
8·bit type number, during the interrupt acknowledge se· 
quence, which is used to vector through the appropriate 
element to the new interrupt service program location. 

Non·Maskable Interrupt (NMI) 
The processor provides a single non·maskable interrupt 
(NMI) pin which has higher priority than the maskable in· 
terrupt request (INTR) pin. A typical use would be to actio 
vate a power failure routine. The NMI is edge·triggered 
on a lOW to HIGH transition. The activation of this pin 
causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state of 
greater than two clock cycles, but is not required to be 
synchronized to the clock. Any higher going transition 
of NMI is latched on·chip and will be serviced at the end 
of the current instruction or between whole moves (2 
bytes in the case of word moves) of a block type instruc· 
tion. Worst case response to NMI would be for multiply, 
divide, and variable shift instructions. There is no 
specification on the occurrence of the low·going edge; it 
may occur before, during, or after the servicing of NMI. 
Another high·going edge triggers another response if it 

B-29 



8088 

occurs after the start of the NMI procedure. The signal 
must be free of logical spikes in general and be free of 
bounces on the low·going edge to avoid triggering ex· 
traneous responses. 

Maskable Interrupt (INTR) 
The 8088 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable (IF) flag bit. The in· 
terrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high·going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block type instruction. During interrupt response se· 
quence, further interrupts are disabled. The enable bit is 
reset as 19art of the response to any interrupt (INTR, 
NMI, software interrupt, or single step), although the 
FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the in· 
terrupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an in· 
struction. 

During the response sequence (See Figure 7), the proc· 
essor executes two successive (back to back) interrupt 
acknowledge cycles. The 8088 emits the LOCK signal 
(maximum mode only) from T2 of the first bus cycle until 
T2 of the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle, a byte is fetched from the external in· 
terrupt system (e.g., 8259A PIC) which identifies the 
source (type) of the interrupt. This byte is multiplied by 
four and used as a pOinter into the interrupt vector 
lookup table. An INTR signal left HIGH will be continual· 
Iy responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction in· 
cludes a flags pop which returns the status of the 
original interrupt enable bit when it restores the flags. 

j)~ '0". 
~""J!; . ''''-HALT 'i'trl,,:'''I!;n 

"P!;;i '~()I 

When a software HALT instruction ils~~ 
processor indicates that it is entering the H,8; 
one of two ways, depending upon which m 
strapped. In minimum mode, the processor issues A 
delayed by one clock cycle, to allow the system to latch 
the halt status. Halt status is available on 10/M, DT/R, 
and SSO .. ln maximum mode, the processor issues ap· 
propriate HALT status on S2, S 1, and SO, and the 8288 
bus controller issues one ALE. The 8088 will not leave 
the HALT state when a local bus hold is entered while in 
HALT. In this case, the processor reissues the HALT in· 
dicator at the end of the local bus hold. An interrupt reo 
quest or RESET will force the 8088 out of the HALT 
state. 

Read/Modify/Write (Semaphore) Operations 
via LOCK 
The LOCK status information is provided by the proc· 
essor when consecutive bus cycles are required during 
the execution of an instruction. This allows the proc· 
essor to perform read/modify/write operations on 
memory (via the "exchange register with memory" 
instruction), without another system bus master receiv· 
ing intervening memory cycles. This is useful in multi· 
processor system configurations to accomplish "test 
and set lock" operations. The ~ signal is activated 
(LOW) in the clock cycle following decoding of the 
LOCK prefix instruction. It is deactivated at the end of 
the last bus cycle of the instruction following the LOCK 
prefix. While LOCK is active, all interrupts are masked 
and a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 

External Synchronization via TEST 

As an alternative to interrupts, the 8088 provides a 
single software·testable input pin (TEST). This input is 
utilized by executing a WAIT instruction. The single 

I T1 I T2 T3 T.. T1 I T2 T, 

ALE J'\\...--_-------'n\........-__ 

\\...--_---------/ 

FLOAT 
ADo-AD-, 

Figure 7. Interrupt Acknowledge Sequence 

B-30 



8088 

WAIT instruction is repeatedly executed until the TEST 
input goes active (LOW). The execution of WAIT does 
not consume bus cycles once the queue is full. 

If a local bus request occurs during WAIT execution, the 
8088 3·states all output drivers. If interrupts are enabled, 
the 8088 will recognize interrupts and process them. 
The WAIT instruction is then refetched, and reexecuted. 

Basic System Timing 
In minimum mode, the MN/MX pin is strapped to Vee 
and the processor emits bus control signals compatible 
with the 8085 bus structure. In maximum mode, the 
MN/MX pin is strapped to GND and the processor emits 
coded status information which the 8288 bus controller 
uses to generate MULTIBUS compatible bus control 
signals. 

System Timing - Minimum System 
(See Figure 6.) 

The read cycle begins in T1 with the assertion of the ad­
dress latch enable (ALE) signal. The trailing (lOW going) 
edge of this signal is used to latch the address informa­
tion, which is valid on the address/data bus (ADO-AD7) 
at this time, into the 8282/8283 latch. Address lines A8 
through A 15 do not need to be latched because they reo 
main valid throughout the bus cycle. From T1 to T4 the 
10/M signal indicates a memory or I/O operation. At T2 
the address is removed from the address/data bus and 
the bus goes to a high impedance state. The read con· 
trol signal is also asserted at T2. The read (RD) signal 
causes the addressed device to enable its data bus 
drivers to the local bus. Some time later, valid data will 
be available on the bus and the addressed device will 
drive the READY line HIGH. When the processor returns 
the read signal to a HIGH level, the addressed device 
will again 3·state its bus drivers. If a transceiver 
(8286/8287) is required to buffer the 8088 local bus, 
signals DT/R and DEN are provided by the 8088. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The 101M signal is again 
asserted to indicate a memory or I/O write operation. In 
T2, immediately following the address emission, the 
processor emits the data to be written into the ad­
dressed location. This data remains valid until at least 
the middle of T4. During T2, T3, and Tw, the processor 
asserts the write control signal. The write (WR) signal 
becomes active at the beginning of T2, as opposed to 
the read, which is delayed somewhat into T2 to provide 
time for the bus to float. 

The basic difference between the interrupt acknowl· 
edge cycle and a read cycle is that the interrupt 
acknowledge (INTA) signal is asserted in place of the 
read (RD) Signal and the address bus is floated. (See 
Figure 7.) In the second of two successive INTA cycles, 
a byte of information is read from the data bus, as sup· 
plied by the interrupt system logic (i.e. 8259A priority in­
terrupt controller). This byte identifies the source (type) 
of the interrupt. It is multiplied by four and used as a 
pOinter into the interrupt vector lookup table, as de· 
scribed earlier. 

B-31 

;~ vI 

Bus Timing - Medium .~~~ 
(See Figure 8.) 

\,"~" '~\iP& 
For medium complexity systems, the MN/Mxprl:flS'\oli1J;J: 
nected to GND and the 8288 bus controller is adCi'itd;tf5',) 
the system, as well as an 8282/8283 latch for latching 
the system address, and an 8286/8287 transceiver to 
allow for bus loading greater than the 8088 is capable of 
handling. Signals ALE, DEN, and DT/A" are generated by 
the 8288 instead of the processor in this configuration, 
although their timing remains relatively the same. The 
8088 status outputs (52', S1, and SO) provide type of 
cycle information and become 8288 inputs. This bus 
cycle information specifies read (code, data, or 1/0), 
write (data or I/O), interrupt acknowledge, or software 
halt. The 8288 thus issues control signals specifying 
memory read or write, I/O read or write, or interrupt 
acknowledge. The 8288 provides two types of write 
strobes, normal and advanced, to be applied as required. 
The normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The 8286/8287 trans­
ceiver receives the usual T and OE inputs from the 
8288's DT/R and DEN outputs. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8289A priority interrupt controller is 
positioned on the local bus, a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge se· 
quence and software "poll". 

The 8088 Compared to the 8086 

The 8088 CPU is an 8-bit processor designed around the 
8086 internal structure. Most internal functions of the 
8088 are identical to the equivalent 8086 functions. The 
8088 handles the external bus the same way the 8086 
does with the distinction of handling only 8 bits at a 
time. Sixteen-bit operands are fetched or written in two 
consecutive bus cycles. Both processors will appear 
identical to the software engineer, with the exception of 
execution time. The internal register structure is iden­
tical and all instructions have the same end result. The 
differenceS between the 8088 and 8086 are outlined 
below. The engineer who is unfamiliar with the 8086 is 
referred to the 8086 Family User's Manual, Chapters 2 
and 4, for function description and instruction set 
information. 

I nternally, there are three differences between the 8088 
and the 8086. All changes are related to the 8-bit bus i n­
terface. 

• The queue length is 4 bytes in the 8088, whereas the 
8086 queue contains 6 bytes, or three words. The 
queue was shortened to prevent overuse of the bus by 
the BIU when prefetching instructions. This was re­
quired because of the additional time necessary to 
fetch instructions 8 bits at a time. 



8088 

• To further optimize the queue, the prefetching algo­
rithm was changed. The 8088 BIU will fetch a new in­
struction to load into the queue each time there is a 1 
byte hole (space available) in the queue. The 8086 
waits until a 2-byte space is available. 

• The internal execution time of the instruction set is 
affected by the 8-bit interface. All 16-bit fetches and 
writes from/to memory take an additional four clock 
cycles. The CPU is also limited by the speed of in­
struction fetches. This latter problem only occurs 
when a series of simple operations occur. When the 
more sophisticated instructions of the 8088 are being 
used, the queue has time to fill and the execution pro­
ceeds as fast as the execution unit will allow. 

T, 

elK ~ .I 

aSl. aso 

8088 

52, 51. so 

A19/S6-A161S3 A19-A16 

! 

ALE '\ 

8288 ROY 8284 

READY 8088 

AD7 -ADO A7 AO 
./ 

8088 A15-AB 

! 
RO 

I 
I 

OTIR '\ 

8288 MRoe 

DEN 

T2 

ll#I';:;:Of},- l; 

The 8088 and 8086 are completery9s~ 
by virture of their identical executio 
that is system dependent may not be conir~ 
ferable, but software that is not system deperitre 
operate equally as well on an 8088 or an 8086 . 

The hardware interface of the 8088 contai ns the major 
differences between the two CPUs. The pin assign­
ments are nearly identical, however, with the following 
functional changes: 

• A8-A 15 - These pins are only address outputs on the 
8088. These address lines are latched internally and 
remain valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

T, T, 

J 
,I---

II I I I \~-=-==== 
S6- S3 

,-
j --

i 

DATA IN 

A15-A8 ~ 

Figure 8_ Medium Complexity System Timing 

B-32 



8088 

• BHE has no meaning on the 8088 and has been elimi­
nated. 

• SSO provides the SO status information in the mini­
mum mode. This output occurs on pin 34 in minimum 
mode only. DT/R, 101M, and SSO provide the complete 
bus status in minimum mode. 

• 101M has been inverted to be compatible with the 
MCS-85 bus structure. 

• ALE is delayed by one clock cycle in the minimum 
mode when entering HALT, to allow the status to be 
latched with ALE. 

8088 FUNCTIONAL PIN DEFINITIONS 

The following pin function descriptions are for 8088 
systems in either minimum or maximum mode. The 
"local bus" in these descriptions is the direct multi­
plexed bus interface connection to the 8088 (without 
regard to additional bus buffers). 

AD7-ADO (Input/Output, 3·State) 

These lines constitute the time multiplexed memoryllO 
address (T1) and data (T2, T3, Tw, and T4) bus. These 
lines are active HIGH and float to 3-state OFF during in­
terrupt acknowledge and local bus "hold acknowledge" 

A15-A8 (Output, 3-State) 

These lines provide address bits 8 through 15 for the 
entire bus cycle (T1-T4). These lines do not have to be 
latched by ALE to remain valid. A15-A8 are active HIGH 
and float to 3-state OFF during interrupt acknowledge 
and local bus "hold acknowledge". 

A19/S6, A18/S5, A17/S4, A16/S3 (Output, 
3·State) 
During T1, these are the four most significant address 
lines for memory operations_ During 1/0 operations, 
these lines are LOW. During memory and 1/0 operations, 
status information is available on these lines during 
T2, T3, Tw, and T4. S6 is always low. The status of the 
interrupt enable flag bit (S5) is updated at the beginning 
of each clock cycle. S4 and 53 are encoded as follows: 

54 S3 

o (LOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 Data 
56 is 0 (LOW) 

This information indicates which segment register is 
presently being used for data accessing. 

These lines float to 3-state OFF during local bus "hold 
acknowledge" 

RD (Output, 3·State) 
Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 
101M pin or 52. This signal is used to read devices which 

JJlj,. fCe:. t. 
reside on the 8088 local bus. ~J;}o 
T2. T3 and T w of any read cycle, ana 
main HIGH in T2 until the 8088 local bu 

READY (Input) 
READY is the acknowledgement from the addressed 
memory or 1/0 device that it will complete the data trans­
fer. The ROY signal from memory or 110 is synchronized 
by the 8284 clock generator to form READY. This signal 
is active HIGH. 

INTR (Input) 
Interrupt request is a level triggered input which is 
sampled during the last clock cycle of each instruction 
to determine if the processor should enter into an inter­
rupt acknowledge operation. A subroutine is vectored to 
via an interrupt vector lookup table located in system 
memory. It can be internally masked by software reset­
ting the interrupt enable bit. INTR is internally synchro­
nized. This signal is active HIGH. 

TEST (Input) 

The TEST input is examined by the "wait for test" in­
struction. If the TEST input is LOW, execution con­
tinues, otherwise the processor waits in an "idle" state. 
This input is synchronized internally during each clock 
cycle on the leading edge of CLK. 

NMI (Input) 

Non-maskable interrupt is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via 
an interrupt vector lookup table located in system mem­
ory. NMI is not maskable internally by software. A trans­
ition from a LOW to HIGH initiates the interrupt at the 
end of the current instruction. This input is internally 
synchronized. 

RESET (Input) 
RESET causes the processor to immediately terminate 
its present activity. The signal must be active HIGH for 
at least four clock cycles. It restarts execution, as 
described in the instruction set description, when 
RESET returns LOW. RESET is internally synchronized. 

elK (Input) 
The clock provides the basic timing for the processor 
and bus controller. It is asymmetric with a 33% duty 
cycle to provide optimized internal timing. 

Vee 
Vee is the + 5V ± 10% power supply pin. 

GND 
GND are the ground pins. 

B-33 



8088 

MINIMUM MODE PIN DESCRIPTIONS 

The following pin function descriptions are for the 8088 
minimum mode (i.e., MN/MX = Vee). Only the pin func­
tions which are unique to minimum mode are described; 
all other pin functions are as described above. 

IO/M (Output, 3-State) 
This status line is an inverted maximum mode 52. It is 
used to distinguish a memory access from an 1/0 ac­
cess. 10iM becomes valid in the T4 preceding a bus 
cycle and remains valid until the final T4 of the cycle 
(1/0 = HIGH, M = LOW). 10iM floats to 3-state OFF in 
local bus "hold acknowledge". 

WR (Output, 3-State) 
Write strobe indicates that the processor is performing 
a write memory or write 1/0 cycle, depending on the 
state of the 10iM signal. WR is active for T2, T3, and Tw 
of any write cycle. It is active LOW, and floats to 3-state 
OFF in local bus "hold acknowledge". 

INTA (Output, 3-State) 
INTA is used as a read strobe for interrupt acknowledge 
cycles. It is active LOW during T2, T3, and Tw of each in­
terrupt acknowledge cycle. I NTA floats to 3-state OFF in 
"hold acknowledge". 

ALE (Output) 
Address latch enable (ALE) is provided by the processor 
to latch the address into the 8282/8283 address latch. It 
is a HIGH pulse active during clock low of T1 of any bus 
cycle. Note that ALE is never floated. 

DTiR (Output, 3-State) 
Data transmitlreceive is needed in a minimum system 
that desires to use an 8286/8287 data bus transceiver. It 
is used to control the direction of data flow through the 
transceiver. Logically, DTiA is equivalent to 51 in the 
maximum mode, and its timing is the same as for 101M 
(T = HIGH, R = LOW). This signal floats to 3-state OFF in 
local "hold acknowledge". 

DEN (Output, 3-State) 
Data enable is provided as an output enable for the 
828618287 in a minimum system which uses the trans­
ceiver. DEN is active LOW during each memory and 110 
access, and for INTA cycles. For a read or INTA cycle, it 
is active from the middle of T2 until the middle of T4, 
while for a write cycle, it is active from the beginning of 
T2 until the middle of T4. DEN floats to 3-state OFF dur­
ing local bus "hold acknowledge". 

HOLD (Input), HLDA (Output) 
HOLD indicates that another master is requesting a 
local bus "hold". To be acknowledged, HOLD must be 
active HIGH. The processor receiving the "hold" re­
quest will issue HLDA (HIGH) as an acknowledgement, 
in the middle of T4 or TI. Simultaneous with the is-

P# 
suance of HLDA, the processor 
and control lines. After HOLD is dete 
the processor lowers HLDA, and when 
needs to run another cycle, it will again dri 
bus and control lines. 

SSO 
This status line is logically equivalent to SO in the max­
imum mode. The combination of 550, 101M and DTIR 
allows the system to completely decode the current bus 
cycle status. 

101M oTiA" 550 

1 (HIGH) 0 0 Interrupt Acknowledge 
1 0 1 Read 110 port 

0 Write 110 port 
1 1 1 Halt 
o (LOW) 0 0 Code access 
0 0 1 Read memory 
0 0 Write memory 
0 Passive 

MAXIMUM MODE PIN DESCRIPTICNS 

The following pin function descriptions are for the 8088, 
8228 system in maximum mode (i.e., MNIMX = GND. 
Only the pin functions which are unique to maximum 
mode are described; all other pin functions are as 
described above. 

S2, S1, SO (Output, 3-State) 

These status lines are encoded as follows: 

52 51 50 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 110 port 
0 1 0 Write 110 port 
0 1 1 Halt 
1 (HIGH) 0 0 Code access 
1 0 0 Read memory 

0 Write memory 
Passive 

Status is active during clock high of T4, T1, and T2, and 
is returned to the passive state (1,1,1) during T3 or dur­
ing Tw when READY is HIGH. This status is used by the 
8288 bus controller to generate all memory and 110 ac­
cess control signals. Any change by 52, ST, or SO during 
T4 is used to indicate the beginning of a bus cycle, and 
the return to the passive state in T3 or Tw is used to in­
dicate the end of a bus cycle. 

These signals float to 3-state OFF during "hold 
acknowledge". During the first clock cycle after RESET 
becomes active, these signals are active HIGH. After 
this first clock, they float to 3-state OFF. 

RQ/GTO, RQ/GT1 (Input/Output) 

The requestlgrant pins are used by other local bus 
masters to force the processor to release the local bus 
at the end of the processor's current bus cycle. Each pin 

B-34 



is bidirectional with RQ/GTO having higher priority than 
RQ/GT1. RQ/GT has an internal pull-up resistor, so may 
be left unconnected. The request/grant sequence is as 
follows (See Figure 6): 

1. A pulse of one ClK wide from another local bus 
master indicates a local bus request ("hold") to the 
8088 (pulse 1). 

2. During the CPU's next T4 or TI, a pulse one clock 
wide from the 8088 to the requesting master (pulse 2), 
indicates that the 8088 has allowed the local bus to 
float and that it will enter the "hold acknowledge" 
state at the next ClK. The CPU's bus interface unit is 
disconnected logically from the local bus during 
"hold acknowledge". 

3. A pulse one ClK wide from the requesting master in­
dicates to the 8088 (pulse 3) that the "hold" request 
is about to end and that the 8088 can reclaim the 
local bus at the next ClK. The CPU then enters T4. 

Each master-master exchange of the local bus is a se­
quence of three pulses. There must be one idle ClK 
cycle after each bus exchange. Pulses are active lOW. 

8088 

LOCK (Output, 3·5tate) 
The lOCK output indicates 
masters are not to gain control of the system 
lOCK is active (lOW). The lOCK Signal is act iva 
the "lOCK" prefix instruction and remains active un 
the completion of the next instruction. This signal is ac­
tive lOW, and floats to 3-state off in "hold acknowl­
edge". 

a51, a50 (Output) 
QS1 and QSO provide status to allow external tracking of 
the internal 8088 instruction queue. 

QS1 QSO 

o (lOW) 
o 
1 (HIGH) 
1 

o 
1 
o 

No operation 
First byte of opcode from queue 
Empty the queue 
Subsequent byte from queue 

The queue status is valid during the ClK cycle after 
which the queue operation is performed. 

PIN 34 (Output) 
Pin 34 is always high in the maximum mode. 

B-35 



8088 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 0.3 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D.C. CHARACTERISTICS 
8088: TA=0·Ct070·C, V.cc=5V ±10% 

Symbol Parameter Min. 

VIL Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

ILO Output Leakage Current 
t---.-------- ------_._------ .-

vCL Clock Input Low Voltage - 0.5 

VCH Clock Input High Voltage 3.9 

Capacitance of Input Buffer 
CIN (All input except 

ADo-AD? RQ/GT) 

CIO 
Capacitance of I/O Buffer 
(ADo-AD? RQ/GT) 

Ratings" may cause permanent damage to the device. 
rating only and functional operation of the device at these or 
conditions above those indicated in the operational sections 
specification is not implied. Exposure to absolute maximum rating con· 
ditions for extended periods may affect device reliability. 

Max. Units Test Conditions 

+0.8 V 

Vcc + 0.5 V 

0.45 V 10L = 2.0 mA 

V IOH = 4OOl'A 

340 mA 

± 10 I'A VIN = Vcc 

± 10 I'A 0.45V " VOUT " V cc 
.~ --"-- ... ----------- ---

+0.6 V 

Vcc + 1.0 V 

10 pF fc = 1 MHz 

20 pF fc = 1 MHz 

-

B-36 



8088 

A.C. CHARACTERISTICS ~~~t~~~~ 8088: TA=O°C to 70°C, Vcc=5V± 10% 

8088 MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter Min. Max. Units Test Conditions 
-

TCLCL eLK Cycle Period 200 500 ns 

TCLCH elK Low Time (2hTCLCL)-15 ns 

TCHCL CLK High Time ('hTCLCL)+ 2 ns 

TCH1CH2 elK Rise Time 10 ns From 1.0V to 3.5V 

TCL2CLI CLK Fall Time 10 ns From 3.5V to 1.0V 

TDVCL Data In Setup Time 30 ns 

TCLDX Data In Hold Time 10 ns 

TR1VCL ROY Setup Time into 8284 (See Notes 1, 2) 35 ns I 
TCLR1X ROY Hold Time Into 8284 (See Notes 1, 2) 0 ns I 
TRYHCH READY Setup Time Into 8088 (2iJTCLCL)-15 ns 

TCHRYX READY Hold Time Into 8088 30 ns 

TRYLCL READY Inactive to eLK (See Note 3) -8 ns 

THVCH HOLD Setup Time 35 L ns 

TINVCH INTR, NMI. TEST Setup Time (See Note 2) 30 ns 

TIMING RESPONSES 
, .--.. -~--.. -- --~~--

Symbol Parameter Min. Max Units Test Conditions 
-- '-f---------

TCLAV Address Valid Delay 15 110 ns 
. ----- -_ . --------

TCLAX Address Hold Time 10 ns 
--

TCLAZ Address Float Delay TCLAX 80 ns 
----- .- .------~--.. -.-----f--. .-f-----

TLHLL ALE Width TCLCH-20 ns 
~ .. -. --r---'-~-

TCLLH ALE Acllve Delay 80 ns 
._._----- ---- c--------

TCHLL ALE Inactive Delay 85 ns 
-----~-.-.---. 

TLLAX Address Hold Time to ALE Inactive TCHCL-l0 ns 
-----~------.. ------- ._--1---

TCLDV Data Valid Delay 10 110 ns CL = 20·100 pF for 
.--~ .-~---~ .. - - all 8088 Outputs 

TCHDX Data Hold "time 10 ns 
._. ,,---- in addition to 

TWHDX Data Hold Time After WR TCLCH-30 ns internal loads 
------- _. --r------

TCVCTV Control Active Delay 1 10 110 ns 
-- -_.- -----

TCHCTV Control Active Delay 2 10 110 ns 
------ c----

TCVCTX Control Inactive Delay 10 110 ns 
----- "-r---~--------" 

TAZRL Address Float to READ Active 0 ns ---_._--_. f---. f---'-~--
TCLRL RD Active Delay 10 165 ns 

-- ----
TCLRH RD Inactive Delay 10 150 ns 

- TRHAV~ RD Inactive 10 Next Address Active TCLCL-45 ns 

TCLHAV HLDA Valid Delay 10 160 ns 

TRLRH RD Width 
.c-. 

2TCLCL-75 ns 

TWLWH WR Width 2TCLCL-60 ns 

TAVAL Address Valid to ALE Low TCLCH-60 ns 

NOTES: 1. Signal at 8284 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies onty to T2 state (8 ns into T3 state). 

B-37 



CLK (8284 Output) 

101M, SSO 

ALE 

R DY (8284 tnput) 
SEE NOTES 

READY (8088 tnput) 

READ CYCLE 

(NOTE 1) 

(WR, INTA=VOH) 

AD7-ADo 

DTfA 

8088 

T1 T, T, Tw T, 

.'"~~ ::HC~~ L-Ir'L-vic 
- TCHCTV TCHCL _TCLCH_ 

A1S- As (Float during INTA) / 
TCLAV- - TCLAX- ~TDV TCHDX-- -

A19-A16 
1\ 57-53 

TCLLH-f TLH~L--=::: I-- T~LAX r--

TCHLL-I 

l ___ 
- _TR1VCl 

-TAVAL- vr~~ ~ ~~~~*'~ :~~ ~~ '\ \ v",:.:.::, _ 
!-TCLR1X 

I 

TRYLCL- -
f 

- h 

1 - -TCHRYX 

TRYHCH- -
- I 

~TCLAZ TDVCl_ !-TCLDX-

A7- AO DATA tN 

;:{ FLOA:J' 

TAZRL- TCLRH- I~ -TRHAV 

~ 
=~TCHCTV TCLRL I TRLRH TCHCTV 

I 
TCVCTV- f TCVCTX- I 

Figure 9. 8088 Bus Timing - Minimum Mode System 

B-38 



elK (8284 Output) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 
NOTES 1,3 

(RD, WR=VOH) 

SOFTWARE HALT - (DEN: 
Vodm.WR,INTA DT/A = VOH: 

AD7-ADo 

AD7-ADO 

DTiA 

AD7 - ADo 

8088 

T, 

~ 
I I 

TCLAV-

DATA OUT 

__ +-____ ~-------T-C-V-C-TV---~~I------_T------

-TCLAZ 

FlOAT 

TCHCTV 

TCVCTV-

~)k' INVALID ADDRESS 

TCLAV=:i 'I~~-
NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH ANO VOl UNLESS OTHERWISE 

SPECIFIED. 
2. ROY IS SAMPLED NEAR THE END OF 12, T3, Tw TO DETERMINE IF Tw 

MACHINES STATES ARE TO BE INSERTED. 
3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 80B8 LOCAL ADDRIDATA 

BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS 
ARE SHOWN FOR THE SECOND INTA CYCLE. 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

TCVCTX 

Figure 10. 8088 Bus Timing - Minimum Mode System (cont.) 

B-39 



8088 

8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 

eLK Cycle Period +- ~~:. Max. 

500 

('hTClCl)-15 elK Low Time 
------.~------------------------------------r_--~----_r------r_--~ 

TClCl 

TClCH ns 

TCHCl ClK High Time ('hTClCl) + 2 ns 

TCH1CH2 ClK Rise Time ns From 1.0Vt03.5V 10 
-----------------------+--------+-----+----T-~~~~--

TCl2Cl1 ClK Fall Time ns From 3.5V to 1.0V 10 

30 

10 

TDVCl Data In Setup Time 
------_r---------------------------------+----------+------+-----+ 

reLDX Data In Hold Time 

ns 

ns 

TR1VCL ROY Setup Time into 8284 (See Noles 1, 2) 35 ns 

TClR1X ROY Hold Time into 8284 (See Notes t. 2) ns 

TRYHCH READY Selup Time Inlo 8088 ('hTClCl)-15 ns 

TCHRYX READY Hold Time Into 8088 30 ns 

TRYlCl READY Inaclive 10 ClK (See Nole 4) -8 ns 

30 

30 

1--1 N-V-C-H-- Setup Ti me for Recognition (I NTR, N M-,.""Cr--=E=S=nc-(-S-e-e-N-o-le-2-)---t--------------t---------t---n-s---1 

-T-G-V-C-H----+-~R=Q/GT Selup Time 
---------~i__=-----------------------------t---

RQ Hold Time inlo 8086 . __ . ________ L_~ ____ _ 
ns 

TCHGX 

TIMING RESPONSES 
---~-i---- -,- -- P~~am~-t;;""---'--'------ ---Mi-;-~-I-----M-a-x-. ---'---U-n-i-t-s---'---Te-s-t -C-on-d-j-tio-n-s-

TClMl Command Active Delay (See Note 1) 10 35 ns 
.-----_._- -------

TClMH Command Inactive Delay (See Note 1) 10 35 ns 
_.-----

ns 
-.. --... - -.--. -.----.-.----- --c------.. -

TRYHSH READY Active 10 Status Passive (See Note 3) t 10 
------.--- -I- ---. -. - --I- -.-----.. . -- --.--

TCHSV Sialus Active Delay 10 110 ns 
---------- 1---.-.-- --.-.-----.. - .. ----.-.. -- ---.-.------c--------

TCLSH Status Inactive Delay 10 130 ns ---- -.------------ -- ---.-----t-------
TClAV Address Valid Delay 15 110 ns 

------.---f-------.-----------------.---- - -t- -- -.-.---.-- . -------- -----
TClAX Address Hold Time 10 ns 

----------- ---- -----j-------------r----------------j--------
TClAZ Address Float Delay TClAX 80 ns 

----------------- --f---------- f-------
Stalus Valid to ALE High (See Note 1) 15 ns 

-----------+---------------------- ---j--------
TSVlH 

TSVMCH Slatus Valid to MCE High (See Note 1) 15 ns 
----- j-------------

TCllH ClK low to ALE Valid (See Note 1) 15 
--------- 1----- --------------------------- j----------- f---------

TClMCH ClK low to MCE High (See Note 1) 15 

ns 
--------

ns 

TCHll 
-------------------------------- ----------+----------+-----

ALE Inactive Delay (See Note 1) 
-----------+­

MCE Inactive Delay (See Note 1) 

15 ns 

TClMCl 15 ns 
--

TCLOV Data Valid Delay 15 110 ns 
--------------------- ---t-------------j----------t----

TCHDX Data Hold Time 10 ns 
------------------------1-----------

TCVNV Control Active Delay (See Note 1) 5 45 ns 

TCVNX Control Inactive Delay (See Note 1) 
-------,~------t_------

10 45 ns 

TAZRl Address Float to Read Active o ns 

TCLRl RD Active Delay 10 165 ns 
-----------+---------- ---------------------t------- ----------1-----

TClRH RD Inactive Delay 10 150 ns 
----------+--------- --------------------1----------+---------+--------.., 

TRHAV RD Inactive to Next Address Active TClCL-45 ns 
-----------1-----------------------------------1---------
___ TC __ H_D_Tl____ Direction Control Active Delay (See Note 1) 

-------- ------
50 ns 

___ TC __ H_D_T_H ___ + __ ~D=i~re-c-ti-o-n-C-ontrollnac1ive Delay (See Note 1) 30 ____ +-____ ns __ --1 
TClGL GT Active Delay 110 

----------+---=------------------------------t------ ---------------_r--------j 
____ T_C_lG __ H ____ +-__ GT Inactive Delay B5 

ns 

ns 

TRlRH RD Width 2TCLCL-75 ns 

Cl = 20·100 pF for 
all BOBB Outputs 
in addition to 
internal loads 

_________ ~ _____________________________ L_ _________ ~ ________ ~ _______ L-___________ _ 

NOTES: 1_ Signal at 8284 or 82B8 shown for reference only_ 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T3 and wait states. 
4_ Applies only to T2 state (8 ns into T3 state)_ 

B-40 



CLK 

s"s"SO (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

SEE NOTE 5 

ROV (8284 INPUT) 

READ CYCLE 

8288 OUTPUTS 

SeE NOTES 6,6 

AD7-ADO 

RO 

8088 

f------< TCHSV i-TCLSH 

\-----­
\.._----

\ 

- !-TCLAV aCLOV TCHOX~ I-------It-...,. TCLAX - ,--+---+-+---+--+---+--,. r----
!\. A19-A16' 57-53 

----~~ ~----
TSVLH~ - _ r- TCHLL 
TCLLH-, 

TCLAV-I 

Ao,-AO 

TAZRL 

TCHOTL 

I----+-+----TRLRH---+--~ 

TCLMH 

TCVNV-

TCVNX 

,-­
I 

Figure 11. 8088 Bus Timing - Maximum Mode System (Using 8288) 

B-41 



8088 

1 2 13 14 

ClK "'~''IL---..J_' r--'I '--' r-\J~f'----If\.-
82.81, So (eXCEPT HAL 1) 

WRITE CYCLE 

AD7-ADO 

DEN 

8288 OUJPUTS 

see NOTES 5,6 AMWC OR Alowe 

SOFTWARE 

INTA CYCLE 

A1s-Aa 
(SEE NOTES 3,4) 

8200 OUTPUTS 
see NOTES 5,6 

AD7-ADo 

MCE! 
i>OEN 

Dr/A" 

INTA 

DEN 

J////// 
TCLAV-- 1- - .I-TC'DV ~ I--rCLSH TCHDX-

A DATA 

TCVNV-- t- TCVNX-

- -TCLML TClMH- ~ 

______ ~_r----_+----_+------_r------~~TClMl - -TCLMH 

FlOAT 

I 
I 

I 
RESERVED FOR 
CASCADE ADDR FLOAT 

__ TCVNV 

\ 

}-
\ 

-- {1MH 

TCVNX--
HALT - (DEN = vOL;RD,JliIDC,TO"AC,MWfC,AMWC,TOWC,AiOWC,INTA,DT/R = VOH. 

S;,s"Sij 

INVALID ADDRESS 

. TeLAY 

~ jr---------"""'T\ ------­
\'-------' \.------

NOTES: 1. ALL SIGNALS SWITCH BeTweEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF 12. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BeTweEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO·SACK. THE 8088 LOCAL ADDRIDATA 
BUS IS FlOATING DURING 80TH INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(I.IlIIle, NIWTC, .uawe, tllRe, rowe, 1mlWl:, TfITA AND DENI lAGS THE 
ACTIVE HIGH 8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO T 4. 

Figure 12. 8088 Bus Timing - Maximum Mode System (Using 8288) 

B-42 

----_. 
t-

t--

r--
/ ---

TCHDTH 



8088 

CLK~ 

INTR 

I . -i 1-- TlNVC" '''' ,,10 11 

I ;,ge.I:=J{ : 
TEST 

NOTE: 
1 SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT eLK 

Figure 13. Asynchronous Signal Recognition 

Figure 14. Bus Lock Signal Timing (Maximum Mode Only) 

- Any eLK Cycle -:. --- 'OClKCycle-i 

~~ ~ ~ r-l 

Previous grant 

Alt1S6A1~1~1!: /-_______________ --/ 

AD7-ADo eo" 
~:~ F-----------------/ 

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION. 

PULSE ::> 
8088Gl 

..-TCLGH 

"---J ~ "----, 
I 

1 

~----------~~ ~: .--C-OP-RO-CE-SS-O-R---------~ 
(SEE NOTE I) 

Figure 15. Request/Grant Sequence Timing (Maximum Mode Only) 

F--------~,~--
8088 

Figure 16. Hold/Hold Acknowledge Timing (Minimum Mode Only) 

B-43 



8088 

8086/8088 
INSTRUCTION SET SUMMARY 

DATA TRANSFER 
MOV Moy,; 76543210 7654321 n 76543210 76543210 

Register/memory loilrom reg,ster [Tfoo", 0 d w~~ 
Immeolateto reglste'/memory ~,~~~-----data _l_~'~;~~~~ 

Irnmedlate 10 register ~~ala I datal!wtj 

Memory to accumulalOI ~O 0 w I dddr-iow I add. high J 
Accumulalo' to memory li:OL1 0 0 0 1 w I addr-Iow I ~ 
Aeglster/mrmol'/ 10 segment register Li::iE~_ t.,' ~ I mod 0 leg i 
Segment register 10 reglster.'memo'y [i~01--1'oo I moci [) leg i/m~ 

PUSH PUlh: 

Register/memory 

Register 

Segment register 

POP POp 

Register/memory 

Register 

Segme'ot register 

XCHG ~ Exch.nge 

Register/memory with reg,s!e! 

Reglsler with accumulator 

IN=lopu!irom 

F,~ed port 

Variable port 

OUT'O Output 10 

FI~ed port 

Variable port 

11 a a 0 1 1 II! mod a 0-0 ' ffi] 
101011 reg I 
liiGi:iiiJ 

11 1 1 00 1 Ow ] port 

11 1 100 1 1 w ] port 

tl110 11 1 w I 
11 1 a 1 a 11 1 I 
110 0 a 1 10 1 I mod '~g rim I 
lila 0 0101 ]mod reg:iii] 

111000100 ImOd reg rim I 

1,00 1 11 IIi 

110011110 I 
I I 0011 I 00 I 

DEC Decrement 

Reglster.'memory 

ReglSler 

NEG Change Sign 

I CMP Compare 

Reql~!rr merno1y and register 

1m media Ie With reqlsler 'memo,y 

Irnmrdlate wllIl Mellr'lillator 

AAS ASCII adlust tor subtract 

OAS Dec,mal ildJust IQr s\Jbl,aCi 

MUl Multiply iunslQred: 

IMUl integer multiply ISlgned', 

AAM ASC!I adlvSI lOr m·,J!llolv 

OIV OlvldelJnSlgned\ 

IOIV Integrrd'YlderSlgned' 

~~O ASCII ad,usttor drvlde 

CBW Cooyer! byte IG word 

CWO Convert word TO double wo.'d 

LOGIC 
.aT 
SHL:SAl Shltllog,cal arithmeTIC Irtl 

SHII Shltl logical 'Ighl 

S~R S~ltl arithmeTiC rrq,ht 

RDl ROlalelett 

RllR Rotaterrght 

RCL ROlate through carry Ilag left 

RCR Rotale Through ,allY rlgl;1 

AND And 

7654 3 2 1 0 76 fI 4 3 2 I 0 76 fI 4 3 2 ! 0 7 

G'l1-'-'-'l;I~~-d~~O' r'm J 
10 tOOl reg I 
Q~.~_'_O_l_1 w :mOdO 11 rim I 

~ 110 dw lmod reg rim I 

I, 00000 s w ! mod' 1 1 r'm I data 

liIiii::iiil __ d'_la __ ~ data II wI 

r00111'1~ 

liii~ 
~~Od' oliii:] 
~~Od~ 
Ll 'GIO 100 IOOO()I01()J 

II I : , 0 ' 1 w IIrT'Od \ 1 0 ' m l 

~~~ 
I ~ I () I 0 , 0 I I 0 0 0 0 ~_o_'_o_1

~GI:OOO
.~~

data If 5 w 01 I

IlAT- Translate byte to AL

LEA=Load EA!o register

lDS=Load pOinter to OS

LES=load pOll1ter to ES

LANF"load AH with Hags

SAIIF,SlOre AH 111\0 ftags

PUINF=Push flags

POPF.Pop lIags liQiiiiiiJ Reg, memory and register to either ~I O~O~' O~O~O ~d ;;,w+1 m;;,O;;d~',;"9~';;,'"~ ____ ,-___ -c---,---;

Imrwdlateloreglsterln1emorv 11000000w[mod100 rim data ~

ARITHMETIC
ADD = Add:

Reg /memory With register 10 either 10 0 0 a 6 a d w I mod '_~g ~
Immediate to register/memory 1"1000 a as w jmodO 0 Q r'm r----d~~- L _~_~~
Immediate 1o accumulator LQ 0 0 0 0 law I data I dil~a I w' I

ADC Add with carry

Reg Imemory With register to either 10 a 0 1 a a d w I ~Od~~
Immediate to register/memory I.' a 0 a 0 Os w I mod a , a ~-~-,,-To;';~--'L~_!i!J
Immediate to accumulator 10 0 0 1 0 law L.__ data I ~!' __ ~J

UIC ,Incrlmlnl:

Register/memory l' 1 1 1 1 1 1 w I mod 0 ? 0 rilT' J

Regrster 101000 reg I
W=ASCII adJusl tor add lE'iiiiiLiJ
DAA·OeClmal adlust for add 10 a 1 0 a 1 1 1 I

SUB = SUbtr.e!:
Reg Imemory and reg ISler to either

Immediate from reglsterlmemory

Immediate/rom accumulator

[10000oswlmodl01rim data ~
~~~O~'~O~'~'~O~w~I~~d~"~'~~~"~"~'~'w~iJ~'~ 

.11 = lubtnct wllh borrow 

Reg Imemory and register 10 either 

Immediate from register/memory 

Immediate/rom accumulator 

Mnemonics ©Intel, 1978 

"0 a a 1 1 0 d W mod reg rim 

1 00 000 s W modO 1 1 rim data data Jf s w 01 

100 a 1 1 1 0 w \ data data If w 1 

1m media Ie 10 accumulator ~~ _-,d,,",,' _--'----"d:::'''=-'=-, w=---'-" 

TEST And function 10 flags. no reSUI;:-'· ____ ,--___ --, 

Reglster1memo,y and register 11000 a lOw I moo reg rl~ 
Irnmedlate data and register/memory 11 1 1 1 a 1 1 w I mod a a 0 rim I data 

Immediate data and accumulator l' 0 1 0 1 0 0 w I data I data If w 1 

OR Or 

Reg Imemory and register to ell~er 10 0 a 0 lad w I ~~d reg ~ 
Immediate 10 register/memory lii::~ 0000 w I modO a 1 rim I data 

Immediate 10 accumulator ~O 1 10 w I data ~ta It w 1 

XDR Exclusive or 

ReQ imemory and register 10 either 10 a 1 1 ODd w I mod reg ~ 
Immediate to register/memory 110 a 0 0 0 a w imOd 1 1 0 rim I ~ 
Immediate to accumulator 10 0 1 1 0 lOw I data ~,;-y] 

STRING MANIPULATION 
REP~ Repeat 

MOVS~Mo~e byTe/word 

CMPS~Compar€ byTe/word 

SCAS=$can byte/word 

lODS~load byte/wd to Al!AX 

STOS=Stor byte/wd from Al!A 

111 ; 1 0011 I 
11 a 1 001 a w I 
11 a 1 001 t w I 
l' 0 1 0 1 1 1 w I 
110 t a 11 a w I 

Q 010 tOt wi 

B-44 

data rl w' I 

data It w 1 I 

data Ilw 1 I 



COITROL TRANSFER 
CALL C.II: 
Direct Wllhm segment 

Indirect wrlhm segment 

Dlrectlntersegment 

IndlreCllnlersegment 

JMP - Unclndilltnil Jump: 

76543210 16543210 

1 1 101000 dlsp-Iow 

11111111 mod 010 rim 

~ol Ol1sel-low 

I seg-Iow 

111111 I I 1 Imod 0' I 

1111010111 dlsp 

Liiiiiil 1 Imod 100 rim 

76&43210 
dlsp·hlgh 

oflset·hlgh 

seg-hlgh 

1 dlsp-hlgh 1 

1 

1 

Direct wllhm segmenl 

Direct wllhm segmenl-shorl 

Indirect Wllhln segment 

DlrecllnTersegmenl ~10101 o!lsel-Iow 1 O!fsetohlgh--.J 

[ seg-Iow T seg.~ 
Indirect Inlersegmen! ~llll11lmodl01 rim 1 

RET fIIIurn fram CAll: 
Wllhlnsegment 111000011 I 
Within seg addmgImmedto SP 1110000 I 0 I 
Intersegmenl 1110010111 

Inlersegmenl. adding Immediate 10 SP ic11""',,,,0,=0,=:;=' 0,=:;=' 0~1 ~~d;:;";:;";;I'W;;"""=r----,d="",.-,-h,,,-gh----,1 
JE/JZ·Jumpon equallzero [ 01 I I 0 I 00 I dlSp 
JL/J.6E~~ue~~a~n less/not greater ~[ 0:"':"':"';;;" ;., 0::0~1 ~~d;;;"~P ~=I 
JLElJ.ag~~~~ron less or equal/no! F.I o"":""""""",,~,;.o~1 ~~d~"",p ~=I 
J'/JIAE~~~~ea~n below/no! abovej ~ o:..,:",,:..';.O;.O~' 0~1 ~~d;;;"~P~~=I 
J'E/JIA~~~~~o~ne below or equal! ~I 0",,',,';,.';,.0,=',=:;=' 0~1 ~~d;;;"~p ~=l1 
JP/JPE=Jump on parity/panty even F,I O='='='='""o~, 0~1 ~~d;;;"~P ~=lJ 
JO=Jump on ovedlow ~I o:..,;,.,;,.,;.o;.o;.o:::o~1 ~~d;;;"~P ~=l1 
JS·Jumponslgn 1011 11000 I dlsp I 
JIElJIZ=Jump on not eQuallnotzero F.o"",;",;",,,,,o~, o~, l==~~d;;;"~P ~=I 
J.L/JaE~~ue~~a~n nolless/grealer ~o:..';,.';,.';,,;,.';.' 0:;.;.' l==~~d;;;"~P ~=I 
JILElJIi~~~~~ron not less Of eQuall lii 1 1 1 1 I 1 I dlSP-=oJ 

fillI .. ,.: 

Al = 8-bit accumulator 
AX '" 16-bit accumulator 
ex = Count register 
OS " Oala segment 
Es " Extra segment 
Above/below refers to unsigned value_ 
Greater = more positive, 
less = less positive (more negative) Signed values 
Itd= 1 then"to"reg;ifd=Othen"from"reg 
it w = 1 then word instruction; if w = 0 then bvte instruction 

il mod" 11 then rim is treated as a REG lield 
il mod" 00 then OlsP " 0', disp-Iow and dlSp-high are absenl 
il mod" 01 then OIsP " disp-Iow sign-extended to 16-bits, disp-high IS absent 
il mod" 10 then OIsP " disp-high: disp-Iow 

il rim" 000 then EA " (BX) • (51) • OIsP 
il rim" 001 then EA " (BX) • (01) • OlsP 
il rim" 010 then EA • (BP) • (51) • OIsP 
il rim" 011 then EA " (BP) • (01) • OIsP 
il rim" 100 then EA " (51) .01SP 
il rim" 101 then EA " (01) • OIsP 
il rim" 110 then EA " (BP) • OlsP' 
il rim· llllhen EA· (BX) .00SP 
OIsP lollows 2nd byle 01 inslruclion Ibelore oala il required) 

'excepl il mod" 00 and rim" 110 Ihen EA "disp-high: disp-Iow 

Mnemonics© Inlel, 1978 

8088 

78543210 76543210 
J.'/JAE Jump on n01 below/above I:E!TIn, , 1 dlsp 1 or equal 
JIIE/JA Jump on not below or [0 11 101111 dlsp 1 equal/above 
JNP/JPO Jump on nol par/par adel ~ll'Ol'! dlsp 1 
JIO Jump on ncloverllOw 101110001[ dlsp 1 
JIB Jumpon nol Sign [0·',11001 I dlsp -] 
LOOP loopCX times 1 11 100010] dlsp 

LODPlIlOOPE Loop while zero/eQual 11100001 dlsp 
lOOP.Z/LDOP.ELoop .... hllenat 11100000 dlsP 

zerolequ~~ 

Jell Jurnpcn CX zero 1110o0t 1 dlSp 

INT .Interrupt 
Typesoecilled liliiOI, 0' 1 IV~'~ 
Type 3 

linD Inlerruptan overtlow 

IRET Interrupt relllrn 

PROCESSOR CONTROL 
ClCClearcarry 

eMt Gomplementcarry 

STCSetcarry 

CLDCleardHectlon 

STDSetduecllOn 

CLlClellrmterrupt 

STISelmler rupl 

HLTHalt 

WAIT Wall 

ESC Escape 110 e~!ernal devlcel 

LOCK Bus lock prell x 

1110011001 

111001110 I 
111001111 1 

If s:w = 01 then 16 bits of Immediate data form the operand_ 
,f s:w = 11 then an Immediate data byte is Sign extended to 

form the 16-M operand 
II v = 0 then "count" = 1. It v = 1 then "count" in (el) 
x = don't care 
Z IS used lor siring primitives lor comparison With Z.F FLAG 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

REG is aSSIgned ~ccording 10 the following table 

16-8111. - I) 6-8111. 01 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 DL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
110 51 110 DH 
111 DI 111 BH 

Segmlnt 

00 Es 
01 Cs 
10 55 
11 OS 

Instructions which reference the flag register file as a 160bit object use the symbol FLAGS to 
represent the tile: 

FLAGS" X:X:X:X:IOFJ(DF):(IF).ITF):(sFIIZFI X:IAF)'X IPF) X:(CF) 

B-45 



8089 
8/16·811 HMOS 1/0 PROCESSOR 

• High Speed DMA capabilities including 
I/O to memory, memory to I/O, memory 
to memory and I/O to I/O 

• MCS·SO™, MCS·SS™, MCS·S6™ and 
SOS8 compatible, removes I/O 
overhead 

• Allows mixed interface of S/16·bit 
peripherals, to S/16·bit processor busses 

• 1 Mbyte addressability 

• Memory based communication with 
CPU 

• Supports LOCAL or REMOTE I/O 
processing 

• Flexible, intelligent DMA functions 
including Translation, Search, Word 
Assembly/Disassembly 

• MULTIBUS™ compatible system 
interface 

The Intel® 8089 is a revolutionary concept in microprocessor input/output processing. Packaged in a 40-pin DIP 
package, the 8089 is a high performance processor implemented in N·channel, depletion load silicon gate technology 
(HMOS). The 8089's instruction set and capabilities are optimized for high speed, flexible and efficient 110 handling. It 
allows easy interface of Intel's 16-bit 8086 and 8-bit 8088 microprocessors with 8/16·bit peripherals. In the REMOTE 
mode, the 8089 bus is user definable allowing it to be compatible with any 8/16-bit Intel microprocessor, interfacing 
easily to the Intel multiprocessor system bus standard MULTIBUSTM. 

The 8089 performs the function of an intelligent DMA controller for the Intel MCS-86 family and with its processing 
power, can remove 110 overhead from the 8086 or 8088. It may operate completely in parallel with a CPU, giving 
dramatically improved performance in 110 intensive applications. The 8089 provides two 110 channels, each supporting 
a transfer rate up to 1.25 mbyte/sec at the standard clock frequency of 5 MHz. Memory based communication between 
the lOP and CPU enhances system flexibility and encourages software modularity, yielding more reliable, easier to 
develop systems. 

OMA REO, 

DMA 
TERMINATE. 

DMA REO, 

DMA 
TERMINATE, 

1/0 CHANNEL 1 

CPU 

'---"I 
I I 
I I 
I 1 

11"":1 1 
I~I 
L_ =.J 

ASSEMBLY / 
DISASSEMBLY 

INSTRUCTION 
FETCH UNIT 

Figure 1. 8089110 Processor Block Diagram 

B-46 

V .. 

A141D14 

A17/54 

STATUS 

ABID9 

ADDRESS/ A~" EXT 1 

DATA A7/D7 

..,06 DRQ1 

DRQ2 

A3ID3 

51 
!!O 

SEl 

SINTR·2 eA 
elK 

Figure 2. 8089 Pin Diagram 



8089 

FUNCTIONAL DESCRIPTION 
The 8089 lOP has been designed to remove I/O proces­
sing, control and high speed transfers from the central 
processing unit. Its major capabilities include that of in­
itializing and maintaining peripheral components and 
supporting versatile DMA. This DMA function boasts 
flexible termination conditions (such as external termi­
nate, mask compare, single transfer and byte count ex­
pired). The DMA function of the 8089 lOP uses a two cy­
cle approach where the information actually flows 
through the 8089 lOP. This approach to DMA vastly sim­
plifies the bus timings and enhances compatibility with 
memory and peripherals, in addition to allowing opera­
tions to be performed on the data as it is transferred. 
Operations can include such constructs as translate, 
where the 8089 automatically vectors through a lookup 
table and mask compare, both on the "fly". 

The 8089 is functionally compatible with Intel's 8086, 
8088 family. It supports any combination of 8/16-bit 
busses. In the REMOTE mode it can be used to comple­
ment other Intel processor families. Hardware and com­
munication architecture are designed to provide simple 
mechanisms for system upgrade. 

The only direct communication between the lOP and 
CPU is handled by the Channel Attention and Interrupt 
lines. Status information, parameters and task pro­
grams are passed via blocks of shared memory, simpli­
fying hardware interface and encouraging structured 
programming. 

The 8089 can be used in applications such as file and 
buffer management in hard disk or floppy disk control. It 
can also provide for soft error recovery routines and 

h4!'$. e, 
scan control. CRT control, such ~ 
auto scrolling, is simplified with the 
control, communication control and generat'tl 
a few of the typical applications for the 8089. 

Remote and Local Modes 
Shown in Figure 3 is the 8089 configured in a LOCAL 
mode. The 8086 (or 8088) is used in its maximum mode 
configuration. The 8089 and 8086 reside on the same 
local bus, sharing the same set of system buffers. 
Peripherals located on the system bus can be ad­
dressed by either the 8086 or the 8089. The 8089 
requests the use of the LOCAL bus by means of the 
RQ/GT line. This performs a similar function to that of 
HOLD and HLDA on the Intel 8085A, 8080A and 8086 
minimum mode, but is implemented on one physical 
line. When the 8086 relinquishes the system bus, the 
8089 uses the same bus control, latches and transceiver 
components to generate the system address, control 
and data lines. This mode allows a more economical 
system configuration at the expense of reduced CPU 
thruput due to lOP bus utilization. 

A typical REMOTE configuration is shown in Figure 4. In 
this mode, the lOP's bus is physically separated from 
the system bus by means of system buffers/latches. The 
lOP maintains its own local bus and can operate out of 
local or system memory. The system bus interface con­
tains the following components: 

• Up to three 8282 buffer/latches to latch the address to 
the system bus 

• Up to two 8286 devices bidirectionally buffer the 
system data bus 

MNIMX -GND so elK :''''''''~CI-=:-=======:==ri====!=========: 
~~iSt===~ES1 ~~: ="""7 N.C. 

8088, .... 
CPU 

r- elK 
READY 
RESET 

fi 52 CON. ;'O~R~C~===:;::::=====+~===+===+;==+:;===: ~ ~~,~ TROLLER A= _ N.C. L ALE INTA 

l§D 
.... 

CLOCK T GENERATOR 

r------, r-------, 
~ STO I : I GND OE 8282 I I 

r- LATCH rt~~~===::::;-·~AO!QjOR¢~;;::::;-;:--=~::::;:=~:::;:=::~=;::::;:~ 
~ (1,20R3) Y BHE 

NO 
~---' 

AQlGl 

:~~~ : - r-------, 
L. elK 8089 J: =- >- ~ I 

lOP ,.......DRI~ TRA"~~'VER f.-~"~j~IA:lT~A[ ~~~~~~ 
r----Ir~TT1f r r "OR~ I I~ ~j n I~ 2718.2 1'1 ~ .C~; I!:c~ ~ -r-ra--' I I I I .. I~ 2142 RAM (4) I EPROM (2) PERIPHERAL PERIPHERAL 

(2) (2) INT tNT 
i5WC 1KIC8 1Kx8 2Klt8 2Kx8 DUQ DMAC OMQ QMAe, 

1581T UO ADDR II II I 
DeCODe 

NOTE: ONLY ONE LATCH IS NEEDED IF CONFIGURED.WITH 8088 AND ONLY 84K 
ADDRESSING IS USED. DNU ONE TRANSCEIVER IS NEEDED IF USING A 
PHYSICAL. 8-81T DATA BUS (8088). 

Figure 3. Typical 8088, 8086/8089 Configuration with 8089 In LOCAL Mode, 8088, 8086 in MAX Mode 

B-47 



8089 

An 8288 bus controller supplies the control signals 
necessary for buffer operation as well as MRDC 
(Memory Read) and MWTC (Memory Write) signals. 

• An 8289 bus arbiter performs all the functions 
necessary to arbitrate the use of the system bus. This 
is used in place of the RQ/GT logic in the LOCAL 
mode. This arbiter decodes type of cycle information 
from the 8089 status lines to determine if the lOP 
desires to perform a transfer over the "common" or 
system bus. 

The peripheral devices P1 and P2 are supported on their 
own data and address bus. The 8089 communicates with 
the peripherals without affecting system bus operation. 
Optional buffers may be used on the local bus when 
capacitive loading conditions so dictate. 1/0 programs 
and RAM buffers may also reside on the local bus to fur­
ther reduce system bus utilization. 

COMMUNICATION MECHANISM 
Fundamentally, communication between the CPU and 
lOP is performed through messages prepared in shared 
memory. The CPU can cause the 8089 to execute a pro­
gram by placing it in the 8089's memory space andlor 
directing the 8089's attention to it by asserting a hard­
ware Channel Attention (CA) signal to the lOP, ac­
tivating the proper 1/0 channel. The SEL Pin indicates to 

the lOP which channel is being a 
tion from the lOP to the processor cart 
similar manner via a system interrupt (SI 
CPU has enabled interrupts for this purpose' . 
ally, the 8089 can store messages in memory reg~r 
its status and the status of any peripherals. This com' 
munication mechanism is supported by a hierarchial 
data structure to provide a maximum amount of flexi­
bility of memory use with the added capability of handl­
ing multiple lOP's. 

Illustrated in Figure 5 is an overview of the communica­
tion data structure hierarchy that exists for the 8089 1/0 
processor. Upon the first CA from RESET, 5 bytes of in­
formation are read into the 8089 starting at location 
FFFF6 (FFFF6, FFFF8-FFFFB) where the type of 
system bus (16-bit or 8-bit) and pointers to the system 
configuration are obtained. This is the only fixed loca­
tion the 8089 accesses. The remaining addresses are 
obtained via the data structure hierarchy. The 8089 
determines addresses in the same manner as does the 
8086; i.e., a 16-bit relocation pointer is offset left 4 bits 
and added to the 16-bit address offset, obtaining a 20-bit 
address. Once these 20-bit addresses are formed, they 
are stored as such, as all the 8089 address registers are 
20-bits long. After the system configuration pointer ad­
dress is formed, the 8089 lOP accesses the system con­
figuration block. 

lOW 

T~J~~~L I 1I0R lOR 

INTA 

8089 
LOCAL 

BUS 

E LOCAL 
MEMORY I 
ROM/RAM 

7'::--; J (OPTIONAL-IF 
NEEDED TO REDUCE 
LOADING ON BOS9) 

\ r;==.:,;!.,C-_'OJ, 

~i OEDTI~~ , , 
I 8286 

Lt ______ j 

r: ~ ~ 
~=~ 8282 i I 

5, 5, S. 

--- ORal 

i;L-
: IPERIPHERAL 

PI 

l\r EXT1 
,~ 

8089 ADDRESSIDATA 

DRQ2 eLK I : I PERIPHERAL READY 
P2 RO,RESET I--

l EXT2 GT 

'-- lJ · 1 · · TO ANOTHER 
lOP 

52 eLK 

8289 
51 'us 

ARBITRATION 

so AEN 

} 

MULTI BUS 
ARBITRATION 
SIGNALS 

--------1 
POEN At:N r---- DEN 
DllR 8288 f--
52 'us f----
51 CON· 

~MEMRD so TROLLER 
ALE eLK !----MEMW --R 

... ::::==-:'-:-:]"1 
STB : I 

L 
OE I ~19-AO, BH1 

~ 
8282/83 
LATCH 

- '"I" " I' jJ 

---------1 07-00 

>: T , OR 
DE I k 015·00 

;L---~ 8286187 

~ TRANC. 

~ 
I 

AEN 

!-READY 

8284 

I--RESET 

YDf-l 

CPU 
SYSTEM 

BUS 

Figure 4_ Typical REMOTE Configuration 

B-48 



SYSTEM 
CONFIGURATION 
BLOCK 

LOCATION 
I---.L:-:"::"::.::..::...j- FFFF6 

I--=.:=:..:.-J Il 
SOC J 

L ---=.::..CB;.::A:.:D::DR:::E:.:.SS:.:..:.......J II l 
CB RELOCATION J 

I ,~:.a 
..... n .. II I CHA~NEL 
BLOCK I 

CONTROL 
BLOCK 

BUSY I ccw 

I PB ADDRESS 

PB RELOCATION 

BUSY I ccw 
PB ADDRESS 

PB RELOCATION 

I-----'-'==------jl----~ 
TASK BLOCK J 

T T 
1..------.1' 

lOP TASK T PROGRAM T 

Figure 5. Communication Data Structure Hierarchy 

The System Configuration Block (SCB), used only duro 
ing startup, points to the Control Block (CB) and provides 
lOP system configuration data via the SOC byte. The 
SOC byte initializes lOP 1/0 bus width to 8/16, and 
defines one of two lOP RQ/GT operating modes. For 
RQ/GT mode 0, the lOP is typically initialized as SLAVE 
and has its RQ/GT line tied to a MASTER CPU (typical 
LOCAL configuration). In this mode, the CPU normally 
has control of the bus, grants control to the lOP as need· 
ed, and has the bus restored to it upon lOP task comple­
tion (lOP request-CPU grant-lOP done). For RQ/GT 
mode 1, useful only in remote mode between two lOPs, 
MASTERISLAVE designation is used only to initialize 
bus control: from then on, each lOP requests and grants 
as the bus is needed (IOP1 request-IOP2 grant-IOP2 
request-'IOP1 grant). Thus, each lOP retains bus con· 
trol until the other requests it. The completion of in· 
itialization is signalled by the lOP clearing the BUSY 
flag in the CB. This type of startup allows the user to 
have the startup pointers in ROM with the SCB in RAM. 
Allowing the SCB to be in RAM gives the user the flex· 
ibility of being able to initialize multiple lOPs. 

The Control Block furnishes bus control Initialization for 
the lOP operation (CCW or Channel Control Word) and 
provides pointers to the Parameter Block or "data" 
memory for both channels 1 and 2. The CCW is retrieved 
and analyzed upon all CA's other than the first after a 
reset. The CCW byte is decoded to determine channel 
operation. 

The Parameter Block contains the address of the Task 
Block and acts as a messge center between the lOP and 
CPU. Parameters or variable information is passed from 
the CPU to its lOP in this block to customize the soft· 
ware interface to the peripheral device. It is also used 
for transferring data and status information between the 
lOP and CPU. 

The Task Block contains the instructions for the respec· 
tive channel. This block can reside on the local bus of 

8089 

the lOP, allowing the lOP to ope 
the CPU, or reside in system memory.,* 
The advantage of this type of communicai 
the processor, lOP and peripheral, is that it allo 
very clean method for the operating system to ha 
1/0 routines. Canned programs or "Task Blocks" allow' 
for execution of general purpose 1/0 routines with the 
status and peripheral command information being 
passed via the Parameter Block ("data" memory). Task 
Blocks (or "program" memory) can be terminated or 
restarted by the CPU, if need be. Clearly, the flexibility 
of this communication lends itself to modularity and ap· 
plicability to a large number of peripheral devices and 
upward compatibility to future end user systems and 
microprocessor families. 

Register Set 

The 8089 maintains separate registers for its two 1/0 
channels as well as some common registers (see Figure 
6). There are sufficient registers for each channel to sus· 
tain its own DMA transfers, and process its own instruc· 
tion stream. The basic DMA pointer registers (GA, GB -
20 bits each), can point to either the system bus or local 
bus, DMA source or destination, and can be autoincre· 
mented. A third register set (GC) can be used to allow 
translation during the DMA process through a lookup 
table it pOints to. Additionally, registers are provided fora 
masked compare during the data transfer and can be set 
up to act as one of the termination conditions. Other 
registers are also provided. Manyof these registers can be 
used as general purpose registers during program execu· 
tion, when the lOP is not performing DMA cycles. 

USER PROGRAMMABLE 

TAG19 0 

G.P. ADDRESS A (GAl 

G.P. ADDRESS B (GB) 

G.P. ADDRESS C (Ge) 

TASK POINTER (TP) 

"--1·811 POINTER TO EITHER 110 OR SYSTEM MEMORY SPACE 
15 

INDEX (IX) 

BYTE COUNT (BC) 

MASK COMPARE (Me) 

CHANNEL CONTROL (ec) 

NON USER PROGRAMMABLE 
(ALWAYS POINTS TO SYSTEM MEMORY) 

191 o~ 
I PARAMETER POINTER (PP) r 

CHANNEL CONTROL POINTER (CP) 

(PHANTOM REGISTERS DENOTE 1 FOR EACH CHANNEL) 

Figure 6. Register Model 

Bus Operation 
The 8089 utilizes the same bus structure as the 
8086/8088 in their maximum mode configurations (see 
Figure 7). The address is time multiplexed with the data 
on the first 16/8 lines. A16 through A19 are time multi· 
plexed with four status lines S3·S6. For 8089 cycles, S4 
and S3 determine what type of cycle (DMA versus non· 
DMA) is being performed on channels 1 or 2. S5 and S6 

B-49 



8089 

are a unique code assigned to the 8089 lOP, enabling 
the user to detect which processor is performing a bus 
cycle in a multiprocessing environment. 

The first three status lines, 80·82, are used with an 8288 
bus controller to determine if an instruction fetch or 
data transfer is being performed in 1/0 or system 
memory space. 

DMA transfers require at least two bus cycles with each 
bus cycle requiring a minimum of four clock cycles. Ad· 
ditional clock cycles are added if wait states are reo 
qUired. This two cycle approach simplifies considerably 
the bus timings in burst DMA. The 8089 optimizes the 
transfer between two different bus widths by using 
three bus cycles versus four to transfer 1 word. More 
than one read (write) is performed when mapping an 
8·bit bus onto a 16·bit bus (vice versa). For example, a 
data transfer from an 8·bit peripheral to a 16·bit physical 
location in memory is performed by first dOing two 
reads, with word assembly within the lOP assembly 
register file and then one write. 

As can be expected, the data bandwidth of the lOP is a 
function of the physical bus width of the system and 1/0 
busses. Table 1 gives the bandwidth, latency and bus 
utilization of the 8089. The system bus is assumed to be 

16·bits wide with either an 8·bit 
column) or 16·bit peripheral (word colu 

The latency refers to the worst case respon 
the lOP to a DMA request, without the bus arbitr 
times. Notice that the word transfer allows 50% mor 
bandwidth. This occurs since three bus cycles are reo 
quired to map 8·bit data into a 16·bit location, versus two 
for a 16·bit to 16·bit transfer. Note that it is possible to 
fully saturate the system bus in the LOCAL mode 
whereas in the REMOTE mode this is reduced to a max· 
imum of 50%. 

Local Remote 

Byte Word Byte Word 

Bandwidth 830 KB/S 1250 KB/S 830 KB/S 1250 KB/S 

Latency 1.0/2.4 "sec' 1.0/2.4 "sec' 1.0/2.4 "sec' 1.0/2.4 "sec' 

System Bus 
2.4 jJsec 1.6 jJsec 0.8 jJsec 0.8 jJsec 

PER PER PER PER 
Utilization 

TRANSFER TRANSFER TRANSFER TRANSFER 

Table 1. 5 MHz 8089 Operation - With 1G·Bit BUS 

*2.4 ilsec if interleaving with other channel and no wait states. 1J1.sec if 
channel is waiting for request. 

!-____ (4+ NWAIT) = Tcv----_ ----(4+ NwAn)=Tov----­

" " TWAIT I T. 

GOES INACTIVE IN THE STATE 1\ n JUST PRIOR TOT. 1\ 
,'" -...l \L..-__ ~ '-----~--~~~-r--. _I L 

ADDR/OATA 
(16·8IT 

PHYSICAL BUSj 

DTIR 

DEN 

\ 
\ 

'-----p 

NOTE 1: !R! IS STABLE (I •• ., NON MULTIPLEXEDITHROUGHOUT EACH TRANSFER 
CYCLE. A8-A,~ ARE ALSO STABLE ON TRANSFERS TO A PHYSICAl8·BIT 
.os 

\L.-_-----'/ 

Figure 7. 8089 Bus Operation 

B-50 

\~-



PIN DESCRIPTION 
Pin Name(s) I/O Description 

AO-A15/ 
DO-D15 

A16-A19/ 
S3-S6 

BHE 

so,81,s;; 

READY 

I/O Multiplexed address and data bus. The 
function of these lines are defined by 
the state of SO, S1 and 52 lines. The 
pins are floated after reset and when 
the bus is not acquired. A8-A 15 are 
stable on transfers to a physical 8-bit 
data bus (same bus as 8088), and are 
multiplexed with data on transfers to a 
16-bit physical bus. 

a Multiplexed most significant address 
lines and status information. The ad­
dress lines are active only when ad­
dressing memory. Otherwise, the 
status lines are active and are encoded 
as shown below. The pins are floated 
after reset and when the bus is not 
acquired. 

56555453 

o 0 
o 

DMA cycle on CHI 
DMA cycle on CH2 

o Non-DMA cycle on CH1 
1 Non-DMA cycle on CH2 

a The Bus High Enable signal is used to 
enable data operations on the most 
significant half of the data bus (D8-
D15). The signal is active low when a 
byte is to be transferred on the upper 
half of the data bus. The pin is floated 
after reset and when the bus is not 
acquired. BHE does not have to be 
latched. 

a These are the status pins that define 
the lOP activity during any given cycle. 
They are encoded as shown below: 

525150 
o 0 0 Instruction fetch; I/O space 
o 0 1 Data fetch; I/O space 
o 1 0 Data store; I/O space 
o 1 1 Not used 
1 0 0 Instruction fetch; System 

Memory 
o 1 Data fetch; System Memory 
1 0 Data store; System Memory 
1 Passive 

The status lines are utilized by the bus 
controller and bus arbiter to generate 
all memory and I/O control signals. The 
signals change during T4 if a new 
cycle is to be entered while the return 
to passive state in T3 or T w indicates 
the end of a cycle. The pins are floated 
after system reset and when the bus is 
not acquired. 

The ready signal received from the ad­
dressed device indicates that the 
device is ready for data transfer. The 
signal is active high and is synchro­
nized by the 8284 clock generator. 

8089 

Pin Name(s) I/O Description 

B-51 

RESET 

a The lock output signal indi'cates"t 
bus controller that the bus iSneed'e 
for more than one contiguous cycle., It>., 
is set via the channel control register,' 
and during the TSl instruction. The pin 
floats after reset and when the bus is 
not acquired. This output is active low. 

The receipt of a reset signal causes 
the lOP to suspend all its activities and 
enter an idle state until a channel at­
tention is received. 

ClK System clock which provides all timing 
needed for internal lOP operation. 

CA Channel Attention. Used to get the at­
tention of the lOP. Upon the falling 
edge of this signal, the SEl input pin is 
examined to determine Master/Slave or 
CH1/CH2 information. This input is ac­
tive high. 

SEl The first CA received after system 
reset informs the lOP via the SEl line, 
whether it is a Master or Slave (0/1 for 
Master/Slave respectively) and starts 
the initialization sequence. During any 
other CA the SEl line signifies the 
selection of CH1/CH2. (0/1 re­
spectively) 

DRQ1-2 DMA request inputs which signal the 
lOP that a peripheral is ready to trans­
fer/receive data using channels 1 or 2 
respectively. The signals are active 
high. 

RQ/GT I/O The ReQuest GranT pin implements 
the communication dialogue required 
to arbitrate the use of the system bus 
(between lOP and CPU, lOCAL mode) 
or I/O bus when two lOPs share the 
same bus (REMOTE mode). The RQ/GT 
signal is active low. An internal pull-up 
permits RQ/GT to be left floating if not 
used. 

SINTR1-2 a Interrupt outputs from channels 1 and 
2 respectively. The interrupts may be 
sent directly to the CPU or through the 
8259A interrupt controller. They are 
used to indicate to the system the oc­
currence of user defined events. 

EXT1-2 External terminate inputs for channels 
1 and 2 respectively. The EXT Signals 
will cause the termination of the cur­
rent DMA transfer operation if the 
channel is so programmed by the 
channel control register. The signals 
are active high. 

Vee + 5 volt power input. 

Vss Ground pins. 



8089 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O°C to 70'C 
Storage Temperature ............. - 65'C to + 150'C 
Voltage on Any Pin with 

Respect to Ground. . . . .... - 0.3 to + 7V 
Power Dissipation. . . . . . . . . . . . . . . . ... 2.5 Watt 

D.C. CHARACTERISTICS 

Symbol Parameter 

Vil Input Low Voltage 

VIH Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

Icc Power Supply Current 

III Input Leakage Current(1) 

Ilo Output Leakage Current 

VCl Clock Input Low Voltage 

VCH Clock Input High Voltage 

Capacitance of Input Buffer 
CIN (All input except 

ADo- AD 15, RQ/GT) 

CIO 
Capacitance of I/O Buffer 
(ADo- AD 15, RQ/GT) 

NOTES: 1. Except RO/GT. 
2. Test Circuits: 

ALL OUTPUTS EXCEPT: RQ/GT 

20/150 pf 

Min. 

-0.5 

2.0 
-

2.4 

-0.5 

3.9 

1 
DEPENDING ON WHICH IS 
WORST CASE 

-::-

·COMMENT: Stresses above those listed under 
Ratings" may cause permanent damage to the device. This 
rating only and functional operation of the device at these or any ~ 
conditions above those indicated in the operational sections of 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Max. Units Test Conditions 

+0.8 V 

Vcc+ 1.O V 

0.45 V IOl = 2.0 mA(2) 

V IOH = - 400 I-'A 

350 mA TA= 25'C 

± 10 I-'A VIN = Vcc 

±10 I-'A 0.45V '" VOUT '" Vcc 

+0.6 V 

Vcc + 1.0 V 

10 pF Ie = 1 MHz 

20 pF fc = 1 MHz 

I 
~ 

30 pf 

I 
-::-

B-52 



8089 
'" 

A.C. CHARACTERISTICS /Jf#r:;~;~'i 
8089: TA =O'Cto70'C, Vcc=5V ± 10% 

i} 

8089/8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS 

Symbol Parameter Min. Max. Units Test Condillons" 

TCLCL CLK Cycle Period 200 500 ns 

TCLCH elK Low Time ('IJTCLCL)-15 ns 
-

TCI1CL CLK High Time ('IJTCLCL)+ 2 ns 

TCH1CH2 CLK Rise Time 10 ns From 1.0V to 3.5V 

TCL2CLl CLK Fall Time 10 ns From 3.5V to 1.0V 

TDVCL Data In Setup Time 30 ns 
----

TCLDX Data In Hold Time 10 ns 

TR1VCL ROY Setup Time into 8284 (See Notes 1, 2) 35 ns 

TCLR1X ROY Hold Time into 8284 (See Notes 1, 2) 0 ns 

TRYHCH READY Setup Time into 8089 ('IJTCLCL) - 15 ns 

TCHRYX READY Hold Time into 8089 30 ns 

TRYLCL READY Inactive to CLK (See Note 4) -8 ns 

TINVCH Setup Time Recognition (ORa 1.2 RESET. Ext 1,2) (See Note 2) 30 ns 
-

TGVCH RalGT Setup Time 30 ns 

TCAHCAL CA Width 95 ns 

TSLVCAL SEL Setup Time 75 ns 

TCALSLX SEL Hold Time 0 ns 

TCHGX 1'ill' Hold Time into 8089 40 ns 

TIMING RESPONSES 
Min. Max. Units Test Conditions Symbol Parameter 

---'-_ .. _-'----_._----_._._----- ------+------+---+----+--------
TCLML Command ActIVe Delay (See Note 1) 10 CL = 80 pF 

.-.-----.-r-------.-------.c..'-------'--------+------+----j---+----=---'-------
35 ns 

TCLMH Command Inaclive Delay (See Note 11 10 35 ns 

TRYHSH READY Active to Status Passive (See Note 3) 110 ns 

110 ns 

130 ns 
_ TCHS_V ____ ~~s ActiV':.~':'.".~ ___________________ I_---ll00,----+---:-c-+----I 

TCLSH Status Inactive Delay 
-------- - - --.------------.---------- ------- ----+-----

110 ns TCLAV Address Valid Delay 10 ------_._-_._------+-------+---+---j 
TCLAX Address Hold Time 10 ns 

- .. --------------.-.- .. _._--------+------+----+-----1 
80 ns 

15 ns 

15 ns 

Address Float Delay TCLAX 
--.--.------------.---------+-------t---+-----

Status Valid to ALE High (See Note 1) 
-----ct:Ki:-ow-to-A-L-E-v~lid(S-;;;;N~-te--·l-I-----------I-------+-----+----

TCLAZ 

TSVLH 

TCLLH 
----.---.. - ------.-------------.-------.--.------+------t-----j--

TCHLL 

TCLDV 

TCHDX 

TCVNV 

ALE Inactive Delay (See Note 1) 15 ns 

110 
-_.,------_ .. --._---. -, 

Data Valid Delay 10 
-----------.------------j------+------t------1 

ns 

Data Hold Time' 10 ns 
-----------------------------+-----+----t-----

45 ns 
-~ 

__ C_o_nt_r~_~~ive Delay (See N.o_t_e_l_I _________ + _______ f-___ +-._ 
TCVNX Control Inactive Delay (See Note 11 10 45 ns 

- --.-- --- -- -----------+------+---+-_.---1 
TCHDTL Direction Control Active Delay (See Note 1) 50 ns 

--

CL = 150 pI 

30 ns TCHDTH Direction Control Inacti_ve.:....cD.ce.cla.'..y..:(.~Se~e'_'_N.c0'_te'-l..:I ______ +------+_-...:....._+----+--------

~ ,eeoc ~~-iIT 'c'" '"'' C, ~"oC 85 ns 

85 ns TCLGH 1IT Inactive Delay CL = 30 pF 

150 ns ___ !~_L~~___ SINTR Valid Delay __ . _____________ .L-_____ --'-____ '--___ .L-_CL = 100 pF 

NOTES: 1 Signal at 8284 or 8288 shown for reference only. 
2 Setup requirement for asynchronous signal only to guarantee recognition at next elK 

B-53 

3, Applies only to T3 and TW states. 
4, Applies only to T2 state 



ClK 

1 Aa-A15 ON TRANSFERS 
see NOTE 7 TO AN 8·BIT PHYSICAL BUS 

AND BHE 

52,51,So (EXCEPT HAL 1) 

SEE NOTE 4 

I ALE (8288 OUTPUTI 

1 RDY (8284 INPUTI 

READY (8089 INPUT) 

READ - (MWTC,AMWC,IOWC,AIOWC = VOH) 

see NOTE 7 I AD1S-ADo 
ANDA~.&~ 1 

8288 OUTPUTS 

SEE NOTES 4, 5 

DT/A 

11 MRDC OR 10RC 

DEN 

WRITE - (RD,MRDC,IORC,DT/R = VOH) 

SEE NOTE 7 I 
AND A~BOHVE~ \ AD1S-ADo 

8288 OUTPUTS 

see NOTES 4,5 

DEN 

MWTCOR lowe 

VCl 

, .o.LLSIG'IALSSWITCH8erWEENVOH ANDVOL UNlESSOTHERWISESPECIFIED 

TClLH 

I TCHDTL-I 

I 

TCLAV-- 1-
X 

, 
; 

2. fillY IS SAMPLED NEAR H'E END OFT2.TJ TW TO DETERMINE 1FT'll MACHINE ST/l.TESAFlE TO BE INSERTED 

8089 

TCLMl--

-
A15"AO 

TCVNV-

-

3 FOLLOWING A WAITE CYCLE DATA REMAINS VALID ON THE 60119 LOCAL BUS UNTIL A LOCAL BUS MASTER Of.CIDES TO RUN ANOTHER BUS 
CYCLE THE LOCAL BUS IS FLOATED BY THE B069 WHEN THEBOII9 ENTERS A REQUEST BUSA CKNOWLEOGESTATE 

4SIONALSATa2840R82Il8ARESHOWNFOAREFERENCEONLY ______ _ 

5 :~~I~SES~~NHC:2~ ~~;. B28B COMMAND AND CONTROL SIONAl.S (MROC. MWTC. AMWC. 10RC. 10WC AIOWC. INTA AND DEl'll LAGS nil'. 

6 "LL TlMlNG MEASUREMENTS ARE MADE "T 1 5V UNLESS OTHERWISE NOTED 
I A.-",\ ARE STABLE ON TRANSFERS TO AN e BIT PHYSICAL DATIl. BUS, a t.~."" 

DON·T FlOAT ON A READ fROM "N e BIT PHYSICAL BUS OR MULTIPLEX WITH 
DATA ON A WRITE TO AN 881T PHYSICAL BUS "i"iit IS STABLE 'NON 
MULTIPLEXEDI FOR All TRANSFERS 

TCHRYX 

-I 
i 

: I 
I 

i ! 
I 

~ I I 
TClMH-i r 

I ! 
I 

TCVNV ---- I--
I 1 ! i 

I 

TCVNX-I -
TClDVI- TCHDX-

DATA OUT 

- TCVNX--

-TCLML TCLMH- ~ 

- _TClML - -TClMH 

, I 

Figure 8. 8089 Bus Timing - (Using 8288) 

B-54 

FLOAT 

i r- ~CHDTH 

11 

i 

r-FLOAT 
(SeE 

NOTE 3) 

{ 



8089 

elK 

ORO 1,2 

RESET 

NOTES, 
1. SETUP AEQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO'GUARANTEE 

RECOGNITION AT NEXT elK. 
NEGATIVE EDGE TRIGGERED. 

3. ORO BECOMING ACTIVE GREATER THAN 30 ns AFTER THE RISING EDGE OF elK 
WilL GUARANTEE NON·RECOGNITION UNTIL THE NEXT RISING CLOCK EDGE. 2. ALL INPUTS EXCEPT CA ARE LATCHED ON A elK EDGE. THE CA INPUT IS 

Figure 9. Asynchronous Signal Recognition 

CLK 

LOCK 

, __ TClSRVJ~ 
SlNT"'~ ~ 

Figure 10. Bus Lock Signal Timing and SINTR Timing 

''''''vw ~r- .. j I;:H/-TClCl-

I~ 

ClK 

PREVIOUS RELEASE - ___ I TCLAZ 

~--------------------------------------~ v-----------~~ 
CPU 

NOTES, 

8089 
(SEE NOTE 1) 

1. THE CPU MAY NOT DRIVE THE BUSES INSIDE THE REGION SHOWN WITHOUT 
RISKING CONTENTION. 

2. IN THE REMOTE CONFIGURATION, THE 6089 lOP CAN EITHEA ISSUE OR 
RESPOND TO F[QiGT, THUS ALLOWING THE USER TO TIE 2 8089's TOGETHER. THe 
PROTOCOL OF RQIGT IN THIS CONFIGURATION CONSISTS OF ONLY ONE PULSE 
TO TRANSFER THE BUS 

Figure 11. Request/Grant Sequence Timing 

elK 

EXT 1,2 

Figure 12. External Terminate Setup Timing 

CA 

Figure 13. SEL Setup and Hold Timing 

B-55 



8089 

8089 INSTRUCTION SET SUMMARY 

Data Transfers 

LPD P,M 
LPD! P,I 
MOVP M,P 
MOVP P,M 

MOV M,M 

MOV R,M 
MOV M,R 
MOVI R 
MOVI M 

POINTER INSTRUCTIONS 

Load POinter PPP from Addressed Location 
Load POinter PPP Immediate 4 Bytes 
Store Contents of Pointer PPP in Addressed Location 
Restore Pointer 

MOVE DATA 

Source­Move from Source to Destination 
Destination­

Load Register RRR from Addressed Location 
Store Contents of Register RRR in Addressed Location 
Load Register RRR Immediate (Byte) Sign Extend 
Move Immediate to Addressed Location 

Control Transfer 
CALLS 

'CALL 

JMP 
JZ M 
JZ R 
JNZ M 
JNZ R 
JBT 
JNBT 
JMCE 
JMCNE 

Call Unconditional 

JUMP 

Unconditional 
Jump on Zero Memory 
Jump on Zero Register 
Jump on Non-Zero Memory 
Jump on Non-Zero Register 
Test Bit and Jump if True 
Test Bit and Jump if Not True 
Mask/Compare and Jump on Equal 
Mask/Compare and Jump on Non-Equal 

Arithmetic and Logic Instructions 
INCREMENT, DECREMENT 

INC M Increment Addressed Location 
INC R Increment Register 
DEC M Decrement Addressed Location 
DEC R Decrement Register 

ADD 

ADD I M,I ADD Immediate to Memory 
ADDI R,I ADD Immediate to Register 
ADD M,R ADD Register to Memory 
ADD R,M ADD Memory to Register 

AND 

AND! M,I AND Memory with Immediate 
AND! R,I AND Register with Immediate 
AND M,R AND Memory with Register 
AND R,M AND Register with Memory 

OR 

ORI M,I OR Memory with Immediate 
ORI R,I OR Register with Immediate 
OR M,R OR Memory with Register 
OR R,M OR Register with Memory 

B-56 

OPCODE 
7 0 7 

P P P 0 o A A 1 1 000 
P P P 1 000 1 000 0 
P P P 0 o A A 1 1 001 
P P P 0 o A A 1 1 0 0 0 1MM 

o 0 0 0 OAAW 1 001 OOMM 
000 0 OAAW 1 100 11M M 
R R R 0 OAAW 1 000 OOMM 
R R R 0 OAAW 1 000 o 1 M M 
R R R wb OOW 001 1 o 0 0 0 
000 wb A AW o 1 0 0 11M M 

11 0 0 wb A A W 11 0 0 1 11M M 1 

1 0 0 wb DOW 001 0 o 0 0 0 
000 wb AAW1 1 1 0 o 1 M M 
R R R wb o 0 0 0 1 o 0 o 1 0 0 
000 wb AAW1 1 1 0 OOMM 
RR R wb 000 0 1 o 0 o 0 0 0 
B B B wb A A 0 1 0 1 1 1 1MM 
B B B wb A A 0 1 0 1 1 1 OMM 
000 wb A A 0 1 0 1 1 0 OMM 
000 wb A A a 1 a 1 1 a 1MM 

a a a a OAAW 1 1 1 0 1 OMM 
R R R a 000 a a a 1 1 1 a a a 
a a a a a A AW 1 1 1 0 1 1 MM 
R R R a a a a a o 0 1 1 1 100 

a a a wb A AW 1 1 a a OOMM 
R R R wb OOW a a 1 a a a a a 
R R R a OAAW 1 1 a 1 OOMM 
R R R a a A AW 101 a OOMM 

a a a wb A AW 1 1 a a 1 OMM 
R R R wb OOW a a 1 a 1 000 
R R R a OAAW 1 1 a 1 1 OMM 
R R R a OAAW 1 a 1 a 1 OMM 

a a a wb A A 0 1 100 a 1MM 
R R R wb A A a a a 1 a a 100 
R R R a OAAW 1 1 0 1 a 1MM 
R R R a OAAW 101 a a 1MM 



8089 

Arithmetic and Logic Instructions (cont.) 

NOT R 
NOT M 
NOT R,M 

NOT 

Complement Register 
Complement Memory 
Complement Memory, Place in Register 

Bit Manipulation and Test Instructions 

SET 
CLR 

TSL 

Control 

BIT MANIPULATION 

Set the Selected Bit 
Clear the Selected Bit 

TEST 

Test and Set Lock 

Halt Channel Execution 
Set Interrupt Service Flip Flop 
No Operation 
Enter DMA Transfer 

7 
OPCODE 

o 7 

R R ROO 0 0 0 001 0 
----~.--,~- -,-.-------.. ----~ 

OOOOOAAW 10 
RRRO OAAW1010 11MM 

~-_O A A 0 01MM1 

~IOAAO 1~ 
.~----

1 A A 0 J100101M}Al 

001 0 o 0 0 0 o 1 0 0 1 0 0-0-

~_O 0 o 0 0 0 o 0 0 0 00--0-0-
000 0 o 0 0 0 o 0 0 0 o 0 0 0 

0 o 0 0 0 o 0 0 0 0-000 

HLT 
SINTR 
Nap 
XFER 
WID Set Source, Destination Bus Width; S,D 0 = 8, 1 = 16 

c9. 1 1 
1 S D 0 o 0 0 0 o 0 0 0 o 0 0 0 

NOTES: 

'1\ field in call instruction can be 00,01,10 only. 
"OPCODE is second byte fetched. 
All instructions consist of at least 2 bytes, while some 
instructions may 'use up to 3 additional bytes to specify 
literals and displacement data. The definition of the 
various fields within each instruction is given below: 

o 7 

I R R R I W b I A A I w I OPCODE 

PPPBBB 

M M Base Pointer Select 

00 GA 
01 GB 
10 GC 
11 PP 

RRR Register Field 

The RRR field specifies a 16-bit register to be used in 
the instruction. If GA, GB, GC or TP, are referenced by 
the RRR field, the upper 4 bits of the registers are load­
ed with the sign bit (Bit 15). PPP registers are used as 
20-bit address pointers. 

RRR 

000 rO GA 
001 r1 GB 
010 r2 GC 
011 r3 BC ; byte count 
100 r4 TP ; task block 
101 r5 IX ; index register 
110 r6 CC ; channel control (mode) 
111 r7 MC ; mask/compare 

MNEMONICS i9 1979 INTEL CORP. 

ppp 

000 pO GA 
001 p1 GB 
010 p2 GC 
100 p4 TP ; task block pointer 

BBB Bit Select Field 

The bit select field replaces the RRR field in bit manipu­
lation instructions and is used to select a bit to be oper· 
ated on by those instructions. Bit 0 is the least signifi· 
cant bit. 

wb 

01 1 byte literal or 1 byte displacement 
10 2 byte (word) literal or 2 byte (word) displacement 

AA Field 

00 The selected pointer contains the operand address. 

01 The operand address is formed by adding an 8-bit, 
unsigned, offset contained in the instruction to the 
selected pointer. The contents of the pointer are un­
changed. 

10 The operand address is formed by adding the con­
tents of the Index register to the selected pointer. 
Both registers remain unchanged. 

11 Same as 10 except the Index register is post auto· 
incremented (by 1 for 8-bit transfer, by 2 for 16-bit 
transfer). 

W Width Field 

o The selected operand is 1 byte long. 

The selected operand is 2 bytes long. 

B-57 



Additional Bytes 

OFFSET: 8-bit unsigned offset. 

SDISP : 8/16-bit signed displacement. 

LITERAL: 8/16-bit literal. 

The order in which the above optional bytes appear in 
lOP instructions is given below: 

Offsets are treated as unsigned numbers. Literals and 
displacements are sign extended (2's complement). 

8089 

B-58 



8282/8283 
OCTAL LATCH 

• Fully Parallel 8-Bit Data Register and 
Buffer 

• Transparent during Active Strobe 

• Supports 8080, 8085, 8048, and 8086 
Systems 

• High Output Drive Capability for 
Driving System Data Bus 

• 3-State Outputs 

• 20-Pin Package with 0_3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers, 
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal periph· 
eral and input/output functions of a microcomputer system can be implemented with these devices. 

PIN CONFIGURATIONS 

Vee 
000 

DO, 

002 

003 

DO, 

005 

006 

007 

STB 

PIN NAMES 

010-017 OATA IN 
000-007 OATA OUT 

OE OUTPUT ENABLE 
STB STROBE 

LOGIC DIAGRAMS 

L ______ _ L ______ _ 

B-59 



828218283 

PIN DEFINITIONS 
Pin Description 

STB STROBE (Input). STB is an input control 
pulse used to strobe data at the data input 
pins (Ao-A7) into the data latches. This 
signal is active HIGH to admit input data. 
The data Is latched at the HIGH to LOW 
transition of STB. 

OUTPUT ENABLE (Input). i5E is an input 
control signal which when active LOW 
enables the contents of the data latches 
onto the data output pin (Bo-B7). OE being 
Inactive HIGH forces the output buffers to 
their high impedance state. 

DATA INPUT PINS (Input). Data presented 
at these pins satisfying setup time reo 
quirements when STB is strobed and 
latched into the data input latches. 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias ................. 0 DC to 70 DC 
Storage Temperature ............. - 65 DC to + 150 DC 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. -1.0V to + 5.5V 
Power Dissipation .......................... 1 Watt 

D.C. CHARACTERISTICS FOR 828218283 
Conditions: Vcc= 5V:t: 5%, TA= ODC to 70 DC 

Symbol Parameter Min 

Vc Input Clamp Voltage 

Icc Power Supply Current 

IF Forward Input Current 

IR Reverse Input Current 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

IOFF Output Off Current 

VIL Input Low Voltage 

VIH Input High Voltage 2.0 

CIN Input Capacitance 

Nol •• : 1. Output Loading IOL = 32 mA, 10H" - 5 mAo CL = 300 pF 

000-007 
(8282) 

000-007 
(8283) 

true, the data in the 
sented as inverted (8283) 
(8282) data onto the data output' 

OPERATIONAL DESCRIPTION 

The 8282 and 8283 octal latches are 8·bit latches with 
3·state output buffers. Data having satisfied the setup 
time requirements is latched into the data latches by 
strobing the STB line HIGH to LOW. Holding the STB 
line in its active HIGH state makes the latches appear 
transparent. Data is presented to the data output pins by 
activating the OE input line. When OE is inactive HIGH 
the output buffers are in their high impedance state. 
Enabling or disabling the output buffers will not cause 
negative·going transients to appear on the data output 
bus. 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those Indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Max Units Test Conditions 

-1 V Ic = -5 mA 

160 mA 

-0.2 mA VF = 0.45V 
.. 

50 ,..A VR = 5.25V 

0.50 V IOL = 32 mA 

V 10H = ~5 mA 

± 50 ,..A VOFF = 0.45 to 5.25V 

O.B V Vcc =5.0V See Note 1 

V VCc= 5.0V See Note 1 

F-1 MHz 
12 pF VBIAS=2.5V, Vcc=5V 

TA=25 DC 

8-60 



828218283 

A.C. CHARACTERISTICS FOR. 8282/8283 

Conditions: Vee = 5V ± 5%, T A = 0 'C to 70 'C 

Loading: Outputs - 10L = 32 mA, 10H = - 5 mA, CL = 300 pF 

Symbol Parameter Min 
------

TIVOV Input to Output Delay 
-Inverting 
- Non-Inverting 

TSHOV STS to Output Delay 
-Inverting 
-Non-Inverting 

TEHOZ Output Disable Time 

TElOV Output Enable Time 10 

TIVSl Input to STS Setup Time o 
TSLIX Input to STS Hold Time 25 

----
TSHSl STS High Time 15 

NOTE: 1. See waveforms and test load circuit on following page. 

8282/8283 TIMING 

Max Units 

(See Note 1) 
25 ns 
35 ns 

45 ns 
55 ns 

25 ns 

50 ns 

ns 

ns 

ns 

INPUTS f 1: 
------ ~TlVSL-----+TSLI:~ ,'------------------------

STB J~-lTsHSL--l~----

OUTPUTS 
r------1.l_~ec';~~_t= t-"",, __ 'f-s~E:-E-N--:-O--TE-,-----------

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION. 

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED 

B-61 



8282/8283 

OUTPUT DELAY VS. CAPACITANCE 

50 50 

8283 8282 

40 

30 30 

20 20 

10 

200 400 200 400 600 800 1000 

pF LOAD pF LOAD 

OUTPUT TEST LOAD CIRCUITS 

1.5V 1.5V 2.14V 

33Q 180Q ~"" OUT OUT OUT 

1300 pF 

3·STATE TO VOL 3·STATE TO VOH SWITCHING 

B-62 



8284 
CLOCK GENERATOR AND DRIVER 

FOR 8086, 8088, 8089 PROCESSORS 

• Generates the System Clock for the 
8086, 8088 and 8089 

• Generates System Reset Output from 
Schmitt Trigger Input 

• Uses a Crystal or a TTL Signal for Fre· 
quency Source 

• Provides Local Ready and MULTIBUS™ 
Ready Synchronization 

• Single + 5V Power Supply • Capable of Clock Synchronization with 
other 8284's • 18·Pin Package 

The 8284 is a bipolar clock generator / driver designed to provide clock signals for the 8086, 8088 & 8089 and 
peripherals. It also contains READY logic for operation with two MUL TIBUS™ systems and provides the processors 
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided. 

8284 PIN CONFIGURATION 8284 BLOCK DIAGRAM 

CYSNe 

PCLK 

AEN1 

ROY' 

READY 

RDY2 

AEN2 

ClK 

GNO 

RESET 

x, 
VCC 

X, 
X2 Mr------ii>'r--i----OSC 

X2 TANK 
j---_ClK 

TNK 

EFI 

Fie 
Fie --.---[;><>-----L~ 

OSC EFI-':======l::J 
RES 

RESET 
PCLK 

CSyNC--------------<--+----' 

X'I 
X21 

RDY1----~ 

AEN1------j 

AEN2 ====~~=:C) ROY2 

8284 PIN NAMES 

CONNECTIONS FOR CRYSTAL 

TANK USED WITH OVERTONE CRYSTAL 
FIe CLOCK SOURCE SELECT 
EFI EXTERNAL CLOCK INPUT 
CSYNC CLOCK SYNCHRONIZATION INPUT 
ROY1 I 
RDY2 I 

A'E"N1 I 
AEN21 

RES 
RESET 
OSC 
elK 
PClK 

READY StGNAL FROM TWO MULTIBUS™ SYSTEMS 

ADDRESS ENABLED QUALIFIERS FOR RDY1,2 

RESET INPUT 
SYNCHRONIZED RESET OUTPUT 
OSCillATOR OUTPUT 
MOS CLOCK FOR THE PROCESSOR 
TTL CLOCK FOR PERIPHERALS 

READY SYNCHRONIZED READY OUTPUT 
Vee +5 VOLTS 
GND 0 VOLTS 

B-63 

CK 

READY 



8284 

PIN DEFINITIONS 
Pin 

AEN1, 
AEN2 

RDY1, 
RDY2 

I/O Definition 

ADDRESS ENABLE. AEN is an active 
lOW signal. AEN serves to qualify its 
respective Bus Ready Signal (RDY1 or 
RDY2). AEN1 validates RDY1 while AEN2 
validates RDY2. Two AEN signal inputs 
are useful in system configurations 
which permit the processor to access 
two Multi-Master System Busses. In non 
Multi-Master configurations the AEN 
signal inputs are tied true (lOW). 

BUS READY (Transfer Complete). ROY is 
an active HIGH signal which is an indica­
tion from a device located on the system 
data bus that data has been received, or 
is available. RDY1 is qualified by AEN1 
while RDY2 is qualified by AEN2. 

READY 0 READY. READY is an active HIGH signal 

X1, X2, 
TNK 

F/C 

EFI 

ClK 

PClK 

which is the synchronized ROY signal in­
put. Since ROY occurs asynchronously 
with respect to the clock (ClK) it 
may be necessary for them to be syn­
chronized before being presented to the 
8284. READY is cleared after the 
guaranteed hold time to the processor 
has been met. 

CRYSTAL IN. X1 and X2 are the pins to 
which a crystal is attached with TNK 
(TANK) serving as the overtone input. 
The crystal frequency is 3 times the 
desired processor clock frequency. 

FREQUENCY/CRYSTAl SELECT. Fie is 
a strapping option. When strapped lOW, 
FIC permits the processor's clock to be 
generated by the crystal. When FIC is 
strapped HIGH, ClK is generated from 
the EFI input. 

EXTERNAL FREQUENCY IN. When FIC 
is strapped HIGH, ClK is generated from 
the input frequency appearing on this 
pin. The input Signal is a square wave 3 
times the frequency of the desired ClK 
output. 

o PROCESSOR CLOCK. ClK is the clock 
output used by the processor and all 
devices which directly connect to the 
processor's local bus (I.e., the bipolar 
support chips and other MOS devices). 
ClK has an output frequency which is 
1/3 of the crystal or EFI inpiJt frequency 
and a 1/3 duty cycle. An output HIGH of 
4.5 volts (Vce =5V) is provided on this 
pin to drive MOS devices. 

o PERIPHERAL CLOCK. PClK is a TTL 
level peripheral clock signal whose out­
put frequency is 1/2 that of ClK and has 
a 50% duty cycle. 

Pin 1/0 

OSC 0 
level output of the interna"ii:>$< 
cuitry. Its frequency is equal tlf" 
the crystal. 

RESET IN. RES is an active lOW signal 
which is used to generate RESET. The 
8284 provides a Schmitt trigger input so 
that an RC connection can be used to 
establish the power-up reset of proper 
duration. 

RESET 0 RESET. Reset is an active HIGH signal 
which is used to reset the 8086 family 
processors. Its timing characteristics 
are determined by RES. 

CSYNC CLOCK SYNCHRONIZATION. CSYNC is 
an active HIGH signal which allows mul­
tiple 8284's to be synchronized to pro­
vide clocks that are in phase. When 
CSYNC is HIGH the internal counters are 
reset. When CSYNC goes lOW the in­
ternal counters are allowed to resume 
counting. CSYNC needs to be externally 
synchronized to EFI. When using the in­
ternal oscillator CSYNC should be hard­
wired to ground. 

GND Ground 

Vee + 5V supply 

FUNCTIONAL DESCRIPTION 

GENERAL 

The 8284 is a single chip clock generator I driver for the 
8086, 8088 & 8089 processors. The chip contains a 
crystal controlled oscillator, a "divide by three" 
counter, complete MULTIBUS™ "Ready" synchroniza­
tion and reset logic. 

OSCillATOR 

The oscillator circuit of the 8284 is designed primarily 
for use with an external series resonant, fundamental 
mode, crystal from which the basic operating frequency 
is derived. However, overtone mode crystals can be 
used with a tank circuit as shown in Figure 1. 

The crystal frequency should be selected at three times 
the required CPU clock. X1 and X2 are the two crystal 
input crystal connections. 

The output of the oscillator is buffered and brought out 
on OSC so that other system timing signals can be 
derived from this stable, crystal-controlled source. 

B-64 



8284 

x, ose 

0 eLK 

~l x, PCLK 
3 TO 10 pF 8284 

Vee 

I 
RES RESET 

TANK 

L I 

~~~~~d~~~ ~, 

1= 2n)rcr I: USED WITH OVERTONE
CRYSTALS ONLY

eBP r eTr :
L_~~_~~~~~~7~_~~

The tank inp-ut to the oscillator allows the use of overtone mode crys­
tals. The tank circuit shunts the crystal's fundamental and high overtone
frequencies and allows the third harmonic to oscillate. The external LC
network is connected to the TANK input and is AC coupled to ground.

Figure 1

CLOCK GENERATOR

The clock generator consists of a synchronous divide­
by-three counter with a special clear input that inhibits
the counting. This clear input (CSYNC) allows the out­
put clock to be synchronized with an external event
(such as another 8284 clock)_ It is necessary to syrichro­
nize the CSYNC input to the EFI clock external to the
8284_ This is accomplished with two Schottky flip-flops.
(See Figure 2.) The counter output is a 33% duty cycle
clock at one-third the input frequency.

The FIG input is a strapping pin that selects either the
crystal osci lIator or the EFI input as the clock for the -;- 3
counter. If the EF'I input is selected as the ClOCK source,
the oscillator section can be used independently for
another clock source. Output is taken from OSC.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias_ . _'" _. _ _ .. 0·Ct070·C
Storage Temperature. _'" _ .. __ . _. ~65·C to + 150·C
All Output and Supply Voltages .. ___ . _ . ~ 0.5V to + 7V
All Input Voltages _ . _ ... _ . _ . __ .. ~ 1_0V to + 5.5V
Power Dissipation __ . ______ ... _ . _ . __ . __ ... _ .1 Watt

CLOCK
0 SYNCHRONIZE

EFI>--4 >1

(TO OTHER 82845)

Figure 2_ CSYNC Synchronization

CLOCK OUTPUTS

The ClK output is a 33% duty cycle MaS clock driver
designed to drive the 8086 processor directly. PClK is a
TTL level peripheral clock signal whose output fre­
quency is 1/2 that of ClK. PClK has a 50% duty cycle.

RESET lOGIC

The reset logic provides a Schmitt trigger input (RES)
and a synchronizing flip-flop to generate the reset tim­
ing. The reset signal is synchronized to the falling edge
of ClK_ A simple RC network can be used to provide
power on reset by utilizing this function of the 8284.

READY SYNCHRONIZATION

Two READY inputs (RDY1, RDY2) are provided to
accomomodate two Multi-Master system busses. Each
input has a qualifier (AEN1 and AEN2, respectively). The
AEN signals validate their respective RDY signals_ If a
Multi-Master system is not being used the AEN pin
should be tied law.

Synchronization is required for all asynchronous active
going edges of either RDY input to guarantee that the
RDY setup and hold times are met. Inactive going edges
of RDY in normally ready systems do not require syn­
chronization but must satisfy RDY setup and hold as a
matter of proper system design. Synchronization may
be accomplished by inserting a D flip flop between an
asynchronous RDY source and the 8284 and clocking
the flip flop on the rising edge of ClK. The 8284 READY
logic guarantees the required 8086 READY hold time
before clearing the READY signal.

·COMMENT: Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specificatioQ is not implied, Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability.

B-65

8284

D.C. CHARACTERISTICS FOR 8284
Conditions: TA = O·C to 70·C; Vcc= 5V ± 10%

Symbol Parameter Min Max Units

IF Forward Input Current -0.5 mA V F =0.45V

IR Reverse Input Current 50 ,.,A V R= 5.25V

Vc Input Forward Clamp Voltage -1.0 V Ic= -5 mA

Icc Power Supply Current 140 mA

V il Input LOW Voltage 0.8 V VCC= 5.0V

V IH Input HIGH Voltage 2.0 V Vcc= 5.0V

V IHR Reset Input HIGH Voltage 2.6 V Vcc= 5.0V

VOL Output lOW Voltage 0.45 V 5mA

V OH Output HIGH Voltage ClK 4 V -1 mA

Other Outputs 2.4 V -1 mA

VIHR-VllR RES Input Hysteresis 0.25 V Vcc= 5.0V

A.C. CHARACTERISTICS FOR 8284
Conditions: TA = O°C to 70·C; Vee = 5V ± 10%

TIMING REQUIREMENTS
Symbol Parameter Min Max Units Test Conditions

TEHEl External Frequency High Time 13 ns 90% - 90% VIN

TElEH External Frequency Low Time 13 ns 10% - 10% VIN

TElEl EFI Period TEHEl + TElEH + d ns (Note 1)

XTAl Frequency 12 25 MHz
t---

TRtVCl ROYI. ROY2 Set·Up to ClK 35 ns

TClR1X ROY1, ROY2 Hold to ClK 0 ns

TA1VRtv AEN1, AEN2 Set·Up to ROY1, ROY2 15 ns

TClA1X AEN1, AEN2 Hold to ClK 0 ns

TYHEH CSYNC Set·Up to EFI 20 ns

TEHYL CSYNC Hold to EFI 20 ns

TYHYl CSYNC Width 2·TElEl ns

TllHCl RES Set·Up to ClK 65 ns (Note 2)

TCLllH RES Hold to ClK 20 ns (Note 2)

TIMING RESPONSES

Symbol Parameter Min Max Units Test Conditions
--T-C'-lC-l---+--C-l-K-C-y-C-le--p-e-rio-d-------c------1-2-5 ----+------t---n-s---t---------------

-------!-----'--------------t-------------t-------t---- - -- ------------
TCHCl ClK High Time ('!JTClCl)+ 2.0 n5 Fig. 3 & Fig. 4

------t-----=----------f---'-----------r-------t----------t-----::--c--c----
__ T_C_lC_H __ -+-__ C_l_K_lO_w_Ti_m_e _________ -+ __ --'--W_'T_ClC_l_)_-_15_.0 ___ r--____ t-_n_s __ t- Fig. 3 & Fig. 4

TCH1CH2
TCl2Cll

ClK Rise or Fall Time 10

--------!----------------t-----------f----
ns 1.0V to 3.5V

TPHPl PClK High Time TClCl- 20 ns ______ + ___ --'C _________ +-________ +-____ --+ __________ . ________________ __
TPlPH PClK low Time TClCl - 20 ns

------+----------------+-------- ----t------------- --- --------
TRYlCl Ready Inactive to ClK_(_S_ee_N_o_t_e_4)_--t-____ -s ________________ n_s __ _ __ Fi_g._5~_F_ig_.~_

TRYHCH Ready Active to ClK (See Note 3) ('!JTClCl)-15.0 ns Fig. 5 & Fig. 6

TCLIl ClK to Reset Oelay 40
------1-----------------+------- -------

TCLPH ClK to PClK High Oelay 22 ns
-------+-------=------'------ t------------- ------ ---- ---------
__ T_C_LP_L __ -+ ___ C_L_K~t~o_P __ C_L_K_ Low Delay + __ 2_2 __ +-____ n_s__ __ _ _______________ _

ns

_ -'--T:c,0:c,LC:c,H--'--_-+ __ 0=-S=--C=-:.:to'--C=cL::.cK'--H:.ci"'9:.:.h-=O:c,e:::la"-y ______ t--__ -_5 _____ ~ ___ 1_2_ ns

__ T_O_L_C_L __ .L.-_O_S_C_tO_C_L __ Kc.. . ..:.lo'--w....c:.oc..elccay'----____ .L.-_____ 2 _____ ~ ___ 2_0 _______ n"- ______________ _

Notes: 1. /j = EFI rise (5 ns max) + EFI fall (5 ns max).
2. Set up and hold only necessary to guarantee recognition at next clock.
3. Applies only to T3 and TW states_
4. Applies only to T2 states.

B-66

8284

NAME 110 n n.
EFI I -J LJ \..

osc oJlJ\ ..
ClK

PCLK 0

ROY ,2 I ---1,---

READyol=:ci ""~::
CSYNC I

RES I _TYHYL_

_TClI'H_I_TI1HCl_

TEHYL

\

RESET 0 I
ALL TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED

A.C. TEST CIRCUITS

ClKr---------1
r--:-:---1EFI ClK r-----1

5 pF

...r:::-1 X,
FIe!

24 MHzc:::J

X,

Fie

CSYNC

Figure 3. Clock High and Low Time Figure 4. Clock High and Low Time

B-67

Vee

nm
5 pF

~ X,
24 MHz c:::::]

X,

RDY2
Fie
AE1i12

ClK

READY

OSC

8284

I--.,--;EFI

Fie
AEN1

1----;RDY2

CSYNC

":"

Figure 5. Ready to Clock

CSYNC READY't------t

Figure 6. Ready to Clock

FROM OUTPUT
UNDER TEST

TEST
POINT Vee

r
800~J

LOAD

ALL DIODES 1 N3064
OR EOUIVALENT

CL I (SEE NOTE 3)

NOTES: 1. CL = 100 pF
2. CL=30 pF
3, CL INCLUDES PROBE AND JIG CAPACITANGE

B-68

M8284
CLOCK GENERATOR AND DRIVER

FOR 8086, 8088, 8089 PROCESSORS

• Generates the System Clock for the
8086, 8088 and 8089

• Generates System Reset Output from
Schmitt Trigger Input

• Uses a Crystal or a TTL Signal for Fre·
quency Source

• Provides Local Ready and MULTIBUS™
Ready Synchronization

• Single + 5V Power Supply

• 18·Pin Package

• Capable of Clock Synchronization with
other 8284'5

• Full Military Temperature Range
-55° to + 125°C

The MB2B4 is a bipolar clock generator/driver designed to provide clock signals for the BOB6, BOBB & BOB9 and
peripherals. It also contains READY logic for operation with two MUL TIBUSTM systems and provides the processors
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided.

M8284 PIN CONFIGURATION M8284 BLOCK DIAGRAM

PClK

AENi
RDYl

READY

RDY2

AEN2

ClK

GND

Vcc

Xl

X2

TNK

EFI

Fie

OSC

RES
RESET

Xli
X21
TANK
Fie
EFI
CSYNC
RDYl I
RDY21

AENi I
AEN21
RES
RESET
OSC
ClK
PClK
READY

VCC
GNO

RES--~-=-=-~==~--------ILZ>---~ Q RESET

X1 CK

XTAl
X, OSCIL· 1--1---------c>O----+------osc

LATOR

TANK

Fie

EF!

CSYNC----------------------J~_+--.J

RDY'=====l AEN1

AEN2====~ RDY2

M8284 PIN NAMES

CONNECTIONS FOR CRYSTAL

USED WITH OVERTONE CRYSTAL
CLOCK SOURCE SELECT
EXTERNAL CLOCK INPUT
CLOCK SYNCHRONIZATION INPUT

READY SIGNAL FROM TWO MULTI BUS'· SYSTEMS

ADDRESS ENABLED QUALIFIERS FOR RDV1.2

RESET INPUT
SYNCHRONIZED RESET OUTPUT
OSCillATOR OUTPUT
MOS CLOCK FOR THE PROCESSOR
TTL CLOCK FOR PERIPHERALS
SYNCHRONIZED READY OUTPUT
+5 VOLTS
o VOLTS

B-69

-eLK

PCLK

READY

18284
CLOCK GENERATOR AND DRIVER

FOR 8086, 8088, 8089 PROCESSORS

• Generates the System Clock for the
8086,8088 and 8089

• Generates System Reset Output from
Schmitt Trigger Input

• Uses a Crystal or a TTL Signal for Fre·
quency Source

• Provides Local Ready and MULTIBUS™
Ready Synchronization

• Single + 5V Power Supply • Capable of Clock Synchronization with
other 8284's

• 18·Pin Package
• Industrial Temperature Range

-40° to + 85°C

The 18284 is a bipolar clock generator/driver designed to provide clock signals for the 8086, 8088 & 8089 and
peripherals. It also contains READY logic for operation with two MULTIBUSTM systems and provides the processors
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided.

18284 PIN CONFIGURATION 18284 BLOCK DIAGRAM

PCLK

AEN1
ROYl

READY

RDY2

AEN2

ClK

GND

RESET

Xl

VCC

Xl
x, I-----t-----i:>o-~-+---osc

X2 TANK l-----CLK

EFI

FIG

OSC

RES

RESET PCLK

CSYNC-----------~_-+-_~

ROY1 =====1001\
'EN' po-----t-J

'EN' ===jt>~<>-------f'"""\ RDY2 ---LJ

18284 PIN NAMES
Xl'
X2I CONNECTIONS FOR CRYSTAL

TANK USED WITH OVERTONE CRYSTAL
FIG CLOCK SOURCE SElECT
EFI EXTERNAL CLOCK INPUT
CSYNC CLOCK SYNCHRONIZATION INPUT
RDY1 I
ROY2 I

AEN11
AEN2 I

RES

READY SIGNAL FROM TWO MULTIBUS™ SYSTEMS

ADDRESS ENABLED aUALIFIERS FOR RDY1,2

RESET INPUT
RESET SYNCHRONIZED RESET OUTPUT
OSC OSCillATOR OUTPUT
ClK MOS CLOCK FOR THE PROCESSOR
PCLK TTL CLOCK FOR PERIPHERALS
READY SYNCHRONIZED READY OUTPUT
Vee +5 VOLTS

GND 0 VOLTS

B-70

CK

READY

8286/8287
OCTAL BUS TRANSCEIVER

• Data Bus Buffer Driver for MCS·8S™,
MCS.80™, MCS.8S™, and MCS·48™
Families

• High Output Drive Capability for
Driving System Data Bus

• Fully Parallel 8·Bit Transceivers

• 3·State Outputs

• 20·Pin Package with 0.3" Center

• No Output Low Noise when Entering
or Leaving High Impedance State

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

PIN CONFIGURATIONS LOGIC DIAGRAMS

8287 r--------,
I I

PIN NAMES

B-71

8286/8287

PIN DEFINITIONS
Pin Description

T TRANSMIT (Input). T is an input control
signal used to control the direction of the
transceivers. When HIGH, it configures the
transceiver's Bo-B7 as outputs with Ao-A7
as inputs. T LOW configures AO-A? as the
outputs with Bo-B7 serving as the inputs.

OUTPUT ENABLE (Input). OE is an input
control signal used to enable the appropri­
ate output driver (as selected by T) onto its
respective bus. This signal is active LOW.

LOCAL BUS DATA PINS (Input/Output).
These pins serve to either present data to
or accept data from the processor's local
bus depending upon the state of the T pin.

D.C. AND OPERATING CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS*
Temperature Under Bias O·C to 70·C
Storage Temperature -65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to + 5.5V
Power Dissipation 1 Watt

D.C. CHARACTERISTICS FOR 828618287
Conditions: Vee = 5V ±5%, TA = D·C to 70·C

Symbol Parameter

Vc Input Clamp Voltage

Icc Power Supply Current-8287
-8286

IF Forward Input Current
-

IR Reverse Input Current

VOL Output Low Voltage -B Outputs
-A Outputs

VOH Outpu1 High Voltage -B Outputs
-A Outputs

IOFF Output Off Current
IOFF Output Off Current

VIL Input Low Voltage -A Side
-B Side

V1H Input High Voltage

CIN Input Capacitance

BO-B7
(8286)

Bo-B7
(8287)

4:

SYSTEM BUS DATAc'f'fN
These pins serve to either '!Jr~€\nt
or accept data from the sysiWmh
pending upon the state of the T Pi~'~"'<j,u~

"0l!-/}$&-,

OPERATIONAL DESCRIPTION
The 8286 and 8287 transceivers are 8-bit transceivers
with high impedance outputs. With T active HIGH and
OE active LOW, data at the Ao-A7 pins is driven onto the
Bo-B7 pins. With T inactive LOW and OE active LOW,
data at the Bo-B7 pins is driven onto the Ao-A7 pins. No
output low glitching will occur whenever the trans­
ceivers are entering or leaving the high impedance
state.

·COMMENT: Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability.

Min Max Units Test Conditions

-1 V le=-5 mA

130 mA
160 mA

-0.2 mA VF = 0.45V

50 flA VR=5.25V

0.5 V IOL=32 mA
0.5 V IOL= 10 mA

2.4 V IOH=-5 mA
2.4 V IOH=-1 mA

IF VoFF = 0.45V
IR VOFF = 5.25V

0.8 V Vee = 5.0V, See Note 1
0.9 V Vee= 5.0V, See Note 1

2.0 V Vee= 5.0V, See Note 1

F= 1 MHz
12 pF VSIAS=2.5V, Vee=5V

TA=25·C

Note: 1. S Outputs - IOL ~ 32 rnA. IOH ~ -5 rnA. eL ~ 300 pF A Outputs - IOL ~ 10 rnA, IOH ~ -1 rnA, eL ~ 100 pF

B-72

8286/8287

A.C. CHARACTERISTICS FOR 8286/8287
Conditions: Vee = EN ± 5%, TA = O'C to 70'C

Loading: B Outputs - 10L = 32 rnA, 10H = - 5 rnA, CL = 300 pF
A Outputs I - 10 rnA I 1 rnA C - 100 pF - OL - , OH - - L - "\

Symbol Parameter Min Max Units Test Conditions'"

TIVOV Input to Output Delay
Inverting 25 ns (See Note 1)
Non-Inverting 35 ns

TEHTV Transmit/Receive Hold Time TEHOZ ns

TTVEL Transmit/Receive Setup 30 ns
-

TEHOZ Output Disable Time 25 ns

TELOV Output Enable Time 10 50 ns

Note: 1. See waveforms and test load circuit on following page.

8286/8287 TIMING

INPUTS ___________ ~--
I

OUTPUTS

I {~~ __ _

i·""·i--'--+-------~I' ""}"'~~,:O~-t' ~ __ ;- _
--- - TEHTV --- , _______ I TTVEL

______ f~-
NOTE: 1, ALL TIMJNG MEASUREMENTS ARE MADE AT 1,5V UNLESS OTHERWISE NOTED,

8-73

8286/8287

OUTPUT DELAY VS. CAPACITANCE

50 50

8281

40

10

200 400 600 800 1000 200 400 600 800 1000

OF LOAD pF lOAD

TEST LOAD CIRCUITS

1.5V 1.5V 2.14V

~"O 66Q ~""
OUT OUT OUT

1300 of r 300 pF

3·STATE TO VOL 3·STATE TO VOL SWITCHING

B OUTPUT A OUTPUT B OUTPUT

1.SV 1.5V 2.28V

180Q 900Q 114Q

OUT OUT OUT

3·STATE TO VOH 3·STATE TO VOH SWITCHING

B OUTPUT A OUTPUT A OUTPUT

B-74

8288
BUS CONTROLLER

FOR 8086, 8088, 8089 PROCESSORS

• Bipolar Drive Capability • 3·State Command Output Drivers

• Provides Advanced Commands • Configurable for Use with an 110 Bus

• Provides Wide Flexibility in System
Configurations

• Facilitates Interface to One or Two
Multi·Master Busses

The Intel'" 8288 Bus Controller is a 20-pin bipolar component for use with medium-to-Iarge 8086 processing systems_
The bus controller provides command and control timing generation as well as bipolar bus drive capability while
optimizing system performance.

A strapping option on the bus controller configures it for use with a multi-master system bus and separate 1/0 bus.

{
SO-

8086 -
STATUS ~--

'2--

{

ClK-

CONTROL AEN-­
INPUT CEN--

108--

BLOCK DIAGRAM

STATUS
DECODER

CONTROL
LOGIC

+5V

COM·
MAND

SIGNAl.
GENER­
ATOR

CONTROL
SIGNAL
GENER·

ATOR

GND

AMWC

""iO'"RC
lowe
AIOWC

INTA

MULTIBUSTr.1

COMMAND
SIGNALS

DTIA } ADDRESS LATCH, DATA
DEN TRANSCEIVER, AND
MCEIPDEN INTERRUPT CONTROL

SIGNALS
ALE .

B-75

PIN CONFIGURATION

lOB VCC

ClK so
51 52

DTiii MCElPDEN

ALE DEN

AEN CEN

MRDC INTA

AMWC 10RC

MWTC AIOWC

GND 10WC

FUNCTIONAL PIN-OUT

PROCESSOR {
STATUS

CONTROL {
INPUT

GND VCC

COMMAND
BUS

8288

PIN DEFINITIONS Name 1/0

Name 1/0 Function AiOWC "", 'J"j
0 Advanced 1/0 Write Com~

Vee +5V supply. AIOWC issues an 1/0 Write'f
mand earlier In the machine cycle

GND Ground. give I/O devices an early indication
SQ,s"S; Status Input Pins: These pins are the of a write Instruction. Its timing is

status Input pins from the 8086, 8088 the same as a read command signal.
or 8089 processors. The 8288 de· Ai5WC is active LOW.
codes these Inputs to generate com·

10WC 0 I/O Write Command: This command mand and control signals at the ap·
proprlate time. When these pins are line instructs an I/O device to read

not in use (passive) they are all HIGH. the data on the data bus. This signal
(See chart under Command and Con- is active LOW.
trol Logic.) iORC 0 I/O Read Command: This command

CLK Clock: This is a clock signal from the line instructs an I/O device to drive
8284 clock generator and serves to its data onto the data bus. This
establish when command and con- signal is active LOW.
trol signals are generated.

ALE 0 Address Latch Enable: This signal AMWC 0 Advanced Memory Write Command:
serves to strobe an address into the The AMWC issues a memory write
address latches. This signal is active command earlier in the machine cy·
HIGH and latching occurs on the fall· cle to give memory devices an early
ing (HIGH to LOW) transition. ALE is indication of a write instruction. Its
intended for use with transparent D timing is the same as a read com-
type latches. mand signal. AMWC is active LOW.

DEN 0 Data Enable: This signal serves to MWi'C 0 Memory Wri.te Command: This com-enable data transceivers onto either
the local or system data bus. This mand line Instructs the memory to

record the data present on the data signal is active HIGH.
bus. This signal is active LOW.

DT/R 0 Data Transmit/Receive: This signal
establishes the direction of data MR5C 0 Memory Read Command: This com-
flow through the transceivers. A mand line instructs the memory to
HIGH on this line Indicates transmit drive Its data onto the data bus. This
(write to I/O or memory) and a LOW signal is active LOW.
indicates Receive (Read).

iNi'A 0 Interrupt Acknowledge: This com-
AEN Address Enable: AEN enables com- mand line tells an Interrupting device

mand outputs of the 8288 Bus Con- that its interrupt has been acknowl-
troller at least 105 ns after it be-

edged and that It should drive vector·
comes active (LOW). AEN going Inac-

ing information onto the data bus.
tive immediately 3·states the com-

This signal is active LOW.
mand output drivers. AEN does not
affect the I/O command lines if the MCElPDEN 0 This is a dual function pin.
8288 Is In the I/O Bus mode (lOB tied MCE (lOB is tied LOW): Master Cas-
HIGH). cade Enable occurs during an inter-

CEN Command Enable: When this signal rupt sequence and serves to read a
is LOW all 8288 ~and outputs Cascade Address from a master PIC
and the DEN and PDEN control out- (Priority Interrupt Controller) onto
puts are forced to their inactive the data bus. The MCE signal Is ac·
state. When this signal is HIGH, tive HIGH.
these same outputs are enabled. fi6EN (lOB Is tied HIGH): Peripheral

lOB Input/Output Bus Mode: When the Data Enable enables the data bus
lOB is strapped HIGH the 8288 func- transceiver for the 110 bus during 110
tlons In the 110 Bus mode. When it is Instructions. It performs the same
strapped LOW, the 8288 functions in function for the 110 bus that DEN per-
the System Bus mode. (See sections forms for the system bus. PDEN is
on 110 Bus and System Bus modes). active LOW.

B-76

COMMAND AND CONTROL LOGIC
The command logic decodes the three 8086, 8088 or 8089
CPU status lines (So. 51, S2l to determine what command
is to be issued.

This chart shows the meaning of each status "word".

s; s, So Processor State 8288Command

0 0 0 Interrupt Acknowledge INTA
0 0 1 Read I/O Port 10RC
0 1 0 Write I/O Port i6WC,AIOWC
0 1 1 Halt None
1 0 0 Code Access MRi5C
1 0 1 Read Memory MRDC
1 0 Write Memory MWTC,AMW(5
1 1 Passive None

The command is issued in one of two ways dependent
on the mode of the 8288 Bus Controller.

I/O Bus Mode - The 8288 is in the I/O Bus mode if the
lOB pin is strapped HIGH. In the I/O Bus mode all I/O
command lines (IORC, 10WC, AIOWC, INTA) are always
enabled (I.e., not dependent on ~). When an I/O com·
mand is initiated by the processor, the 8288 immediately
activates the command lines using PDEN and DT/R to
control the I/O bus transceiver. The I/O command lines
should not be used to control the system bus in this
configuration because no arbitration is present. This
mode allows one 8288 Bus Controller to handle two ex·
ternal busses. No waiting is involved when the CPU
wants to gain access to the I/O bus. Normal memory ac·
cess requires a "Bus Ready" signal (AEN LOW) before it
will proceed. It is advantageous to use the lOB mode if
I/O or peripherals dedicated to one processor exist in a
multi-processor system.

System Bus Mode - The 8288 is in the System Bus mode
if the lOB pin is strapped LOW. In this mode no command
is Issued until 105 ns after the AEN Line Is activated
(LOW). This mode assumes bus arbitration logic will In­
form the bus controller (on the AEN line) when the bus is
free for use. Both memory and I/O commands walt for bus
arbitration. This mode is used when only one bus exists.
Here, both I/O and memory are shared by more than one
processor.

Command Outputs
The advanced write commands are made available to in­
itiate write procedures early in the machine cycle. This
signal can be used to prevent the processor from enter­
Ing an unnecessary wait state.

The command outputs are:

MROC - Memory Read Command
MWTC - Memory Write Command
iORC - 110 Read Command
10WC - I/O Write Command
AMWC - Advanced Memory Write Command
AIOWC - Advanced I/O Write Command
INTA - Interrupt Acknowledge

8288

INTA (Interrupt Acknowledge) a6t~,~
an interrupt cycle. Its purpose Is to"
rupting device that its interrupt is being a
and that it should place vectoring information
data bus.

Control Outputs

The control outputs of the 8288 are Data Enable (DEN),
Data Transmit/Receive (DT/Fi) and Master' Cascade
Enable/Peripheral Data Enable (MCE/PDEN). The DEN
signal determines when the external bus should be
enabled onto the local bus and the DT/R determines the
direction of data transfer. These two signals usually go
to the chip select and direction pins of a transceiver.

The MCE/PDEN pin changes function with the two
modes of the 8288. When the 8288 is in the lOB mode
(lOB HIGH) the ~ signal serves as a dedicated data
enable signal for the I/O or Peripheral System bus.

Interrupt Acknowledge and MCE
The MCE signal is used during an interrupt acknowl­
edge cycle if the 8288 is in the System Bus mode (lOB
LOW). During any interrupt sequence there are two inter­
rupt acknowledge cycles that occur back to back. Dur­
ing the first interrupt cycle no data or address transfers
take place. Logic should be provided to mask off MCE
during this cycle. Just before the second cycle begins
the MCE signal gates a master Priority Interrupt Con­
troller's (PIC) cascade address onto the processor's
local bus where ALE (Address Latch Enable) strobes it
into the address latches. On the leading edge of the
second interrupt cycle the addressed slave PIC gates an
interrupt vector onto the system data bus where It is
read by the processor.

If the system contains only one PIC, the MCE signal is
not used. In this case the second Interrupt Acknowledge
signal gates the interrupt vector onto the processor bus.

Address Latch Enable and Halt

Address Latch Enable (ALE) occurs during each machine
cycle and serves to strobe the current address into the
address latches. ALE also serves to strobe the status (so.
51, S2llnto a latch for halt state decoding.

Command Enable

The Command Enable (CEN) input acts as a command
qualifier for the 8288. If the CEN pin is high the 8288
functions normally. If the CEN pin is pulled LOW, all
command lines are held in their Inactive state (not
3-state). This feature can be used to Implement memory
partitioning and to eliminate address conflicts between
system bus devices and resident bus devices.

B-77

8288

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O'C to 70'C
Storage Temperature -65'C to + 150'C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages -1.0V to + 5.5V
Power Dissipation 1.5 Watt

D.C. CHARACTERISTICS FOR THE 8288
Conditions: Vcc=5V ±10%, TA=O·Cto70·C

Symbol Parameter

Vc Input Clamp Voltage

ICC Power Supply CUrrent

IF Forward Input CUrrent

IR Reverse Input Current

VOL Output Low Voltage-Command Outputs
Control Outputs

VOH Output High Voltage- Command Outputs
Control Outputs

Vil Input low Voltage

VIH Input High Voltage

10FF Output Off Current

A.C. CHARACTERISTICS FOR THE 8288
Conditions: Vcc=5V ±10%, TA=O·Cto 70·C

TIMING REQUIREMENTS

Symbol Parameter Min

TClCl ClK Cycle Period 125

TClCH ClK low Time 66

TCHCl ClK High Time 40

TSVCH Status Active Setup Time 65

TCHSV Status Active Hold Time 10

TSHCl Status Inactive Setup Time 55

TClSH Status Inactive Hold Time 10

TIMING RESPONSES
Symbol Parameter

TCVNV Control Active Delay

TCVNX Control Inactive Delay

TCllH, TClMCH ALE MCE Active Delay (from ClK)

TSVlH, TSVMCH ALE MCE Active Delay (from Status)

TCHll ALE Inactive Delay

TCLML Command Active Delay

TClMH Command Inactive Delay

TCHDTL Direction Control Active Delay

TCHDTH Direction Control Inactive Delay

TAELCH Command Enable Time

TAEHCZ Command Disable Time

TAELCV Enable Delay Time

TAEVNV iiENtoDEN

TCEVNV CEN to DEN, PO EN

TCELRH CEN to Command

·COMMENT: Stresses above those listed under "Absolute Ma
Ratings" may cause permanent damage to the device. This is a 5

rating only and functional operation of the device at these or any other
conditions above those Indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating can·
dltlons for extended periods may affect device reliability.

Min Max Unit Test Conditions

-1 V IC- -5 mA

230 mA

-0.7 mA VF=0.45V

50 ~A VR=VCC

0.5 V IOl =32 mA
0.5 V IOl=16 mA

2.4 V IOH= -5 mA
2.4 V 10H= -1 mA

0.8 V

2.0 V

100 ~ VOFF = 0.4 to 5.25V

Max Unit loading

ns

ns

ns

ns

ns

ns

ns

Min Max Unit loading

5 45 ns

10 45 ns

15 ns

15 ns

.,~ } 15 ns
10RC

10 35 ns MWTC IOL=~mA
10 35 ns 10WC 10H= -5 mA

50 ns INTA CL=300 pF

30 ns AMWC

40
AiOWC

ns

40 ns

{
IOL=16 mA

105 275 ns Other 10H= -1 mA
20 ns CL=60 pF

20 ns

TCLML ns

B-78

8288

8288 TIMING DIAGRAM

STATE ~T4- ---- .-.-~ T 1 - T2----------- T3----- T4~

In
---TCLCL~-

I--TCLCH-h /'\ V\ " 1\ J r\ / r-... / '\
CLK

TCHSV- I- - TSVCH - TCHCL-

~r -TSHCL -- TCLS~
\ \ V
1\ 1\

AD DR WRITE CD VALID DATA VALID
ADDRESSIDATA

TCLLH_ F F-i-SVLI\"'-TCHLL

ALE ! ®¥
j

- r-TCLMH

\ V
1\ J

~ -TCLML ~ I--TCLML

\ V
1\ j

~ I--TCVNV

) V \
) J 1\

TCVNX- l-

) \ V
)

1\ j

TCVNV- l-

DEN (WRITE) V \
j 1\

~ !--TCVNX

'\ V)

1\ j
PDEN(WRITE

TCHDTH- . -J::;.' ----
) J \ V

1\ / ----
DTIR (READ

- I- TCHDTL

:f V@ \ TCHDTH- I--
/

MCE

TCLMCH- r--- ~TSVMC-;- ~TCVNX

......
1. ADDAESS/DATA BUS IS SHOWN ONLY FOR REFERENCE PURPOses.
2. LEADING EDGE OJ: ALE AND MCE IS DETERMINED BY THE FAWNG EDGE OF eLK OA STATUS GOING ACTIVE, WHICHEVER OCCURS LAST.
3. ALL TIMING MEASUREMENTS ARE MADE. AT 1,5V UNLESS SPECIFIED OTHERWISE.

B-79

8288

DEN, PDEN QUALIFICATION TIMING

CEN

TAEVNV--

DEN

8288 ADDRESS ENABLE (AEN) TIMING (3·STATE ENABLE/DISABLE)

____ TAELCV~

1.SV 1.5V

I TAElCH~1 'TAEHCZ

I VOH 1--1 or
¥Ir-~~\+-------,/'---~~--~

co~u,;:~6----------------,'/'1 /1\ / ,,--------' -1--------

.TCELRH-

I
CEN----------------=TC~E~LR~H~--

\
1\

NOTE: CEN MUST BE LOW OR VALID PRIOR TO T2 TO PREVENT THE COMMAND FROM BEING GENERATED.

TEST LOAD CIRCUITS

OUT

1.5V

180Q

1.5V

J 33Q

OUTi

1300 pF

3·STATE TO HIGH 3·STATE TO LOW

3·STATE COMMAND OUTPUT
TEST LOAD

B-80

2.14V

J 52.7Q

OUTi

1300 pF

COMMAND OUTPUT
TEST LOAD

2.28V

I'14Q

OUT~
I BOpF

CONTROL OUTPUT
TEST LOAD

8289
BUS ARBITER

• Provides Multi-Master System Bus
Protocol

• Synchronizes 8086/8088 Processors
With Multi-Master Bus

• Provides Simple Interface With
8288 Bus Controller

• Four Operating Modes For Flexible
System Configuration

• Compatible with Intel Bus Standard
MULTIBUS™

• Provides System Bus Arbitration For
8089 lOP In Remote Mode

The Intel 8289 Bus Arbiter is a 20-pin, 5-volt-only bipolar component for use with medium to large 8086/8088 multi­
master/multiprocessing systems. The 8289 provides system bus arbitration for systems with multiple bus masters,
such as an 8086 CPU with 8089 lOP in its REMOTE mode, while providing bipolar buffering and drive capability.

I lOCK
ClK

PROCESSOR CROlCK
CONTROL RESB

ANYROST

lOB

PIN DIAGRAM

52 VCC

lOB 51

So
RESB ClK

BClK roCK

INIT CRlm:K

ANYROST

BPRO AEN

BPRN CBiiQ

GND lIUSY

Figure 2. Pin Diagram.

BLOCK DIAGRAM

MULTIBUS™
COMMAND
SIGNALS

AEN } SYSTEM

L~=!;~~=~;;;;;;~l-- SIGNALS SYSB/RESB

+5V

Figure 1. Block Diagram.

FUNCTIONAL PINOUT

GND Vee

{
So

PROCESSOR _ 51
STATUS _

-S2

_ elK 8289

CONTROLI _ CROlCK
STRAPPING

-INIT

- i!CiJ(
BRED

BPRN
IiJiRO
BUlfy

- CBiiQ

MUlTiBUS
INTERFACE

OPTIONS - RESB
- ANYRQST
-lOB

SYSB/lIESil } SYSTEM
AEN SIGNALS

Figure 3. Functional Pinout.

B-81

8289

FUNCTIONAL DESCRIPTION
The 8289 Bus Arbiter operates in conjunction with the
8288 Bus Controller to interface 8086/8088/8089 proces­
sors to a multi-master system bus (both the 8086 and
8088 are configured in their max mode). The proc­
essor is unaware of the arbiter's existence and issues
commands as though it has exclusive use of the system
bus. If the processor does not have the use of the multi­
master system bus, the arbiter prevents the Bus Con­
troller (8288), the ·data transceivers and the address lat­
ches from accessing the system bus (e.g. all bus driver
outputs are forced into the high impedance state). Since
the command sequence was not issued by the 8288, the
system bus will appear as "Not Ready" and the proc­
essor will enter wait states. The processor will remain in
Wait until the Bus Arbiter acquires the use of the multi­
master system bus whereupon the arbiter will allow the
bus controller, the data transceivers, and the address
latches to access the system. Typically, once the com­
mand has been issued and a data transfer has taken
place, a transfer acknowledge (XACK) is returned to the
processor to indicate "READY" from the accessed slave
device. The processor then completes its transfer cycle.
Thus the arbiter serves to multiplex a processor (or bus
master) onto a multi-master system bus and avoid con~
tention problems between bus masters.

ARBITRATION BETWEEN BUS MASTERS
In general, higher priority masters obtain the bus when a
lower priority master completes its present transfer
cycle. Lower priority bus masters obtain the bus when a
higher priority master is not accessing the system bus.
A strapping option (ANYRQSl) is provided to allow the
arbiter to surrender the bus to a lower priority mast.er as
though It were a master of higher priority. If there are no
other bus masters requesting the bus, the arbiter main­
tains the bus so long as its processor has not entered
the HALT State. The arbiter will not voluntarily surrender
the system bus and has to be forced off by another
master's bus request, the HALT State being the only ex-

ceptlon. Additional strapping
modes of operation wherein the m
bus is surrendered or requested under di
conditions.

PRIORITY RESOLVING TECHNIQUES
Since there can be many bus masters on a multi-master
system bus, some means of resolving priority between
bus masters simultaneously requesting the bus must be
provided. The 8289 Bus Arbiter provides several resolv­
ing techniques. All the techniques are based on a priori­
ty concept that at a given time one bus master will have
priority above all the rest. There are provisions for using
parallel priority resolving techniques, serial priority
resolving techniques, and rotating priority techniques.

Parallel Priority Resolving
The parallel priority resolving technique uses a separate
bus request line (mlm) for each arbiter on the multi­
master system bus, see Figure 4. Each BREQ line enters
into a priority encoder which generates the binary ad­
dress of the highest priority BREQ line which is active.
The binary address is decoded by a decoder to select
the corresponding BPRN (Bus Priority In) line to be
returned to the highest priority requesting arbiter. The
arbiter receiving priority (§i5Riij true) then allows its
associated bus master onto the multi-master system
bus as soon as it becomes available (Le., the bus is no
longer busy). When One bus arbiter gains priority over
another arbiter it cannot immediately seize the bus, it
must wait until the present bus transaction is complete.
Upon completing its transaction the present bus occu­
pant recognizes that it no longer has priority and sur­
renders the bus by releasing BUSY. BDSY is an active
low "OR" tied signal line which goes to every bus arbiter
on the system bus. When BUSY goes inactive (high), the
arbiter which presently has bus priority (BPRN true) then
seizes the bus and pulls BUSY low to keep other arbiters
off of the bus. See waveform timing diagram, Figure 5.

74148
PRIORITY
ENCODER

74138
3 TOB

DECODER

Figure 4. Parallel Priority Resolving Technique.

B-82

8289

BCLK~

\ (
0~~~r-________ ~1 ______ ~---------------------------

)

BUSY

\
\
\
01

\
\4) 0

\'---------
CD HIGHER PRIORITY BUS ARBITER REQUESTS THE MUlTI·MASTER SYSTEM BUS.

@) ATTAINS PRIORITY.

® LOWER PRIORITY BUS ARBITER RELEASES BUSY.

@ HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PUllS BUSY DOWN.

Figure 5. Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter.

Note that all multi·master system bus transactions are
synchronized to the bus clock (BCLK). This allows the
parallel priority resolving circuitry or any other priority
resolving scheme employed to settle.

Serial Priority Resolving
The serial priority resolving technique eliminates the
need for the priority encoder-decoder arrangement by
daisy·chaining the bus arbiters together, connecting the
higher priority bus arbiter's BPRO (Bus Priority Out) out·
put to the BPRN of the next lower priority. See Figure 6.

Rotating Priority Resolving
The rotating priority resolving technique is similar to
that of the parallel priority resolving technique except
that priority is dynamically re-assigned. The priority en·
coder is replaced by a more complex circuit which roo
tates priority between requesting arbiters thus allowing
each arbiter an equal chance to use the multi·master
system bus, over time.

WHICH PRIORITY RESOLVING
TECHNIQUE TO USE

There are advantages and disadvantages for each of the
techniques described above. The rotating priority
resolving technique requires substantial external logic
to implement while the serial technique uses no exter·
nallogic but can accommodate only a limited number of
bus arbiters before the daisy·chain propagation delay

B-83

exceeds the multi·master's system bus clock (BCLK).
The parallel priority resolving technique is in general a
good compromise between the other two techniques. It
allows for many arbiters to be present on the bus while
not requiring too much logic to implement.

THE NUMBER OF ARBITERS THAT MAY BE DAISY CHAINED TOGETHER IN THE
SERIAL PRIORITY RESOLVING SCHEME IS A FUNCTION OF BCLK AND THE PROPA·
GATION DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz ONLY 3 ARBI·
TER MAY BE DAISY·CHAINED.

Figure 6. Serial Priority Resolving.

8289

8289 MODES OF OPERATION
There are two types of processors in the 8086 family. An
Input/Output processor (the 8089 lOP) and the 8086/8088
CPUs. Consequently, there are two basic operating
modes in the 8289 bus arbiter. One, the lOB (I/O Peri­
pheral Bus) mode, permits the processor access to both
an I/O Peripheral Bus and a multi·master system bus.
The second, the RESB (Resident Bus mode), permits the
processor to communicate over both a Resident Bus
and a multi-master system bus. An I/O Peripheral Bus is
a bus where all devices on that bus, including memory,
are treated as I/O devices and are addressed by I/O com·
mands. All memory commands are directed to another
bus, the multi-master system bus. A Resident Bus can
issue both memory and I/O commands, but it is a dis­
tinct and separate bus from the multi-master system
bus. The distinction is that the Resident Bus has only
one master, providing full availability and being
dedicated to that one master.

The lOB strapping option configures the 8289 Bus Ar·
biter into the lOB mode and the strapping option RESB
configures it into the RESB mode. It might be noted at
this point that if both strapping options are strapped
false, the arbiter interfaces the processor to a multi·
master system bus only (see Figure 7). With both op­
tions strapped true, the arbiter interfaces the processor

j}1f>'~,!'r,:iS;< r
to a multi·master system bus, a Ff!lCSi):jl
Bus, Y!,;//"hA

In the lOB mode, the processor communi2~~
trois a host of peripherals over the Peripheral Bus,wfT'
the I/O Processor needs to communicate with sysf'/§'!J&,,'i
memory, it does so over the system memory bus. Figure'"
8 shows a possible I/O Processor system configuration.

The 8086 and 8088 processor can communicate with a
Resident Bus and a multi·master system bus. Two bus
controllers and only one Bus Arbiter would be needed in
such a configuration as shown in Figure 9. In such a
system configuration the processor would have access
to memory and peripherals of both busses. Memory
mapping techniques are applied to select which bus is
to be accessed. The SY8B/RESB input on the arbiter
serves to instruct the arbiter as to whether or not the
system bus is to be accessed. The signal connected to
SYSB/RESB also enables or disables commands from
one of the bus controllers.

A summary of the modes that the 8289 has, along with
its response to its status lines inputs, is summarized in
Table 1.

*In some system configurations it is possible for a non-I/O Processor to
have access to more than one Multi·Master System Bus, see 8289
Application Note.

Single
Bus Mos!!

Status Lines From lOB Mode RESB (Mode) Only lOB Mode RESB Mode lOB = High

8086 or 8088 or 8089

52 51 SO
r;~0_n~IY~-r.~~~IO~B==_H~i9~h~R~ES~B~=~H~i~9h~~~~~~~IO~B~=_L_O_W __ RE_S~B_=~H~i;9h=-__ -}R~E=SB=LOW

iOii = Low SYSBIAESii = High SYSBJRESB = Low SYSBJRESB = High SYSBJRESB = Low

110 I ~ 0

COMMANDS

HALT 0

MEM I ~ COMMANDS

IDLE

NOTES:

1. x= Multi-Master System Bus is allowed to be Surrendered.
2. V" = Multi·Master System Bus is Requested.

Mode

Single Bus
Multi·Master Mode

RESB Mode Only

lOB Mode Only

Pi
Strap

n
ping

10B= H
RESB=

10B= H
RESB=

-.

igh
Low

igh
High

ow 10B= L
RESB= Low

-------------~-----

ow

Multi·Master System Bus
- --,---- - ----- ---_ .. _._---

Requested" • Surrendered"

Whenever the processor's
HLT+TI. CBRQ+ HPBRQt status lines go active

--,------ --- --------_._---------
SYSB/RESB = High· (SYSB/RESB = Low + TI) •
ACTIVE STATUS CBRQ + HLT + HPBRQ

--------- - .. ----.--- --- ---

Memory Commands
(I/O Status + TI) • CBRQ +
HLT + HPBRQ

---" ---

(Memory Command) •
((I/O Status Commands) +

lOB Mode RESB Mode 10B= L
RESB= High (SYSB/RESB = High)

SYSB/RESB = LOW)) • CBRQ
+ HPBRQt + HLT

NOTES:

• LOCK prevents surrender of Bus to any other arbiter, CROLCK prevents surrender of Bus to any lower priority arbiter.
··Except for HALT and Passive or IDLE Status.

t HPBRO, Higher priority Bus request or BPRN = 1.
1. lOB Active 'Low. 4. TI = Processor Idle Status 82, Si, SO = 111
2. RESB Active High. 5. HLT= Processor Halt Status 52, Si, SIi=OII
3, + is read as "OR" and. as "AND,"

Table 1. Summary of 8289 Modes, Requesting and Relinquishing the Multi·master system bus.

B-84

D,
8284 ROY2 -::.l.. T

CLOCK AEN2 .~ ___ -=
READY ROY1 --_.

8289

-------,--.. ~---.---,--------,-,-----------_< XACK MUL nMASTER SYSTEM BUS

8289
BUS

ARBITER
-------------.--.~,

-------~--~~-v CONTROL BUS

READY t-

,
---~--- elK ANYRQST

lOB .--l---------vcc
SO·52 AEN RESS -~

80S6
CPU

i
PROCESSOR

LOCAL BUS i

elK -1

AEN
8288 -..J\ MULTI-MASTER _= __ ~_'-'> ~~S~~~ND

~ BUS

I, MULTl.MASTER
TRANSCEIVER l/~------ _ .. ----------~~-.~~~-__________\ SYSTEM

828618287 ---~~-~--~-~~--~---v' DATA
BUS

Figure 7. Typical Medium Complexity CPU System.

MULTl.MASTER
SYSTEM BUS

XACK 11'0 BUSI / - --!. XACK MULTi-MASTER SYSTEM BUS

READY
CCK

8EADY eLK--1

ADO-AD15 SO
52

, TRANSCEIVER
--" 8211618287

V (2)

8289
BUS

ARBITER

SO-52

VC~~:~ ANYROSTR~~~
"N

~ MULTI-MASTER
- lSYSTEM

-V ~~~A

Figure 8. Typical Medium Complexity lOB System.

B-85

MUl HMASTER
SYSTEM BUS

XACK
RESIOENT BUS

0'
DECODER

8289

o
AEN2 AEN11>-----

8284
CLOCK

READY

READY

8086
CPU

RDY11------ ------ XACK MUL HMASTER SYSTEM BUS

-----\ MULTI-MASTER SYSTEM
/ COMMAND BUS

RESIDENT ADDRESS!~ ,--~--,-----"
BUS \---------1

ADDA
LATCH

828218283
(2 OR 3)

MULTI-MASTER SYSTEM
ADDRESS BUS

RESIDENT DATA /'--------J\I "------AJ TR:2~~~;~~ER
eos

12'

'BY ADDING ANOTHER 6289 ARBITER AND CONNECTING ITS AEN TO THE 8288
WHOSE AEN IS PRESENTLY GROUNDED, THE PRoceSSOR COULD HAve ACCESS
TO TWO MULTI·MASTER BUSES.

MULTI·MASTER SYSTEM
DATA BUS

Figure 9. 8289 Bus Arbiter Shown in System· Resident Bus Configuration.

B-86

MULTI-MASTER
SYSTEM BUS

8289

PIN DEFINITIONS

Name

Vee
GND

SO,51,S2

ClK

RESB

ANYRQST

I/O Function

+ 5V supply ± 10%

Ground

STATUS INPUT PINS: These pins are
the status input pins from an 8086,
8088 or 8089 processor. The 8289
decodes these pins to initiate bus re­
quest and surrender actions. (See
Table 1)

CLOCK: This is the clock from the
8284 clock chip and serves to
establish when bus arbiter actions are
initiated.
lOCK: lOCK is a processor generated
signal which when activated (low)
serves to prevent the arbiter from sur·
rendering the multi-master system bus
to any other bus arbiter, regardless of
its priority.

COMMON REQUEST lOCK: CRQlCK
is an active low signal which serves to
prevent the arbiter from surrendering
the multi·master system bus to any
other bus arbiter requesting the bus
through the CBRQ input pin.

RESB: RESIDENT BUS is a strapping
option to configure the arbiter to
operate in systems having both a
multi-master system bus and a Resi·
dent Bus. When it is strapped high the
multi·master system bus is requested
or surrendered as a function of the
SYSB/RESB input pin. When it is
strapped low the SYSB/RESB input
is ignored.

ANY REQUEST: ANYRQST is a strap­
ping option which permits the multi­
master system bus to be surrendered
to a lower priority arbiter as though it
were an arbiter of higher priority (i.e.,
when a lower priority arbiter requests
the use of the multi-master system
bus, the bus is surrendered as soon as
it is possible). Strapping CBRQ low
and ANYRQST high forces the 8289 ar­
biter to surrender the multi-master
system bus after each transfer cycle.
Note that when surrender occurs
BREQ is driven false (high).

10 BUS: lOB is a strapping option
which configures the 8289 Arbiter to
operate in systems having both an 10
Bus (Peripheral Bus) and a multi­
master system bus. The arbiter reo
quests and surrenders the use of the
multi-master system bus as a function
of the status line, S2. The multi-master
system bus is permitted to be sur­
rendered while the processor is perfor-

C''>-h/,
<',:;'

Name I/O Function ,.,.,. 3".,.

B-87

ming 10 commands and is reques
whenever the processor performs a
memory command. Interrupt cycles
are assumed as coming from the
peripheral bus and are treated as
would be an 10 command.

AEN a ADDRESS ENABLE. AEN is the output
of the 8289 Arbiter to the processor's
address latches, to the 8288 Bus Con­
troller and 8284 Clock Generator. AEN
serves to instruct the Bus Controller
and address latches when to tri-state
their output drivers.

SYSB/RESB SYSTEM BUS/=R-=E-=S""'ID=-E=Nc="T BUS:
SYSB/RESB is an input signal when
the arbiter is configured in the S.R.
Mode (RESB is strapped high) which
serves to determine when the multi­
master system bus is requested and
when the multi-master system bus sur­
rendering is permitted. The signal is in­
tended to originate from some form of
address mapping circuitry such as a
decoder or PROM attached to the resi­
dent address bus. Signal transitions
and glitches are permitted on this pin
from 01 of T 4 to 0 1 to T2 of the pro­
cessor cycle. During the period from
01 of T2 to 01 of T4 only clean transi­
tions are permitted on this pin (no
glitches). If a glitch does occur the ar­
biter may capture or miss it, and the
multi-master system bus may be re­
quested or surrendered, depending
upon the state of the glitch. The arbiter
requests the multi-master system bus
in the S.R. Mode when the state of the
SYSB/RESB pin is high and permits
the bus to be surrendered when this
pin is low.

I/O COMMON BUS REQUEST: CBRQ is an
input signal which serves to instruct
the arbiter if there are any other ar­
biters of lower priority requesting the
use of the multi-master system bus.

The CBRQ pins (open-collector output)
of all the 8289 Bus Arbiters which are
to surrender the multi-master system
bus upon request are connected
together.

The Bus Arbiter running the current
transfer cycle will not itself pull the
CBRQ line low. Any other arbiter con­
nected to the CBRQ line can request
the multi-master system bus. The ar­
biter presently running the current
transfer cycle drops its BREQ signal
and surrenders the bus whenever the

PIN DEFINITIONS (Cont'd)

Name ________ I/_O _____________ F_u_nc_t_io~n __________ _

proper surrender conditions exist.
Strapping CBREQ low and ANYRQST
high allows the multi-master system
bus to be surrendered after each
transfer cycle. See the pin definition of
ANYRQST.

INITIALIZE: 'iNTf is an active low multi­
master system bus input signal which
is used to reset all the bus arbiters on
the multi-master system bus. After in­
itialization, no arbiters have the use of
the multi-master system bus.

BUS CLOCK: BClK is the multi-master
system bus clock to which all multi­
master system bus interface signals
are synchronized.

o BUS REQUEST: BREQ is an active low
output signal in the parallel Priority
Resolving Scheme which the arbiter
activates to request the use of the
multi-master system bus.

BUS PRIORITY IN: BPRN is the active
low signal returned to the arbiter to in­
struct it that it may acquire the multi­
master system bus on the next falling

8289

Name

B-88

1/0
__ £>c/ f ,""

edge of BClK. BPRN indicates toe
arbiter that it is the highest priority r
questing arbiter presently on the bus.
The loss of BPRN instructs the arbiter
that it has loss priority to a higher
priority arbiter.

o BUS PRIORITY OUT: BPRO is an active
low output signal which is used in the
serial priority resolving scheme where
BPRO is daisy chained to BPRN of the
next lower priority arbiter.

110 BUSY: BUSY is an active low open col­
lector multi-master system bus inter­
face signal which is used to instruct
all the arbiters on the bus when the
multi-master system bus is available.
When the multi-master system bus is
available the highest requesting ar­
biter (determined by BPRN) seizes the
bus and pulls BUSY low to keep other
arbiters off of the bus. When the ar­
biter is done with the bus it releases
the BUSY signal permitting it to go
high and thereby allowing another ar­
biter to acquire the multi-master
system bus.

8289

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O'C to 70'C
Storage Temperature. - 65 'C to + 150'C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages... -1.0V to + 5.5V
Power Dissipation 1.5 Watt

D.C. CHARACTERISTICS FOR THE 8289

COMMENT: Stresses above those listed under
Ratings" may cause permanent damage to the device.
rating only and functional operation of the device at these
conditions above those indicated in the operational sections
specification is not implied. Exposure to absolute maximum rating
dltions for extended periods may affect device reliability.

Symbol Parameter Min. Max. Units Test Condition

Ve Input Clamp Voltage - 1.0 V Vee=4.50V, le= -5 rnA

IF Input Forward Current -0.5 rnA Vee=5.50V, V F =0.45V

IR Reverse Input Leakage Current 60 I'A Vee = 5.50, V R = 5.50

VOL Output Low Voltage
BUSY,CBRQ 0.45 V IOl = 20 rnA, Cl = 250 pF 1)
AEN 0.45 V IOl= 16 rnA, Cl= 100 pF 2)
BPRO,BREQ 0.45 V 10l= 10 rnA, Cl= 60 pF 3)

VOH Output High Voltage
BUSY,CBRQ Open Collector

All Other Outputs 2.4 V IOH= 400 I'A

Icc Power Supply Current 165 rnA

V1l Input Low Voltage .8 V

V1H Input High Voltage 2.0 V

Cin Status Input Capacitance 25 pF

Cin (Others) Input Capacitance 12 pF

TEST CIRCUITS:

1) BUSY. CBRa 2) AEN 3) BPRO, BREO

2.3V 2.3V 2.3V

92.5Q 110Q 170Q

1100PF

B-89

8289

A.C. CHARACTERISTICS FOR THE 8289

CONDITIONS: Vcc=5V ± 10%, TA=O·C to 70·C

Timing Requirements

Symbol Parameter

TClCl ClK Cycle Period

TClCH ClK low Time

TCHCl ClK High Time

TSVCH Status Active Setup

TSHCl Status Inactive Setup

THVCH Status Active Hold

THVCl Status Inactive Hold

TBYSBl BUSYNSetup to BClK~

TCBSBl CBRONSetup to BClK~

TBlBl BClK Cycle Time \

TBHCl BClK High Time

TClll1 lOCK Inactive Hold

TClll2 lOCK Active Setup

TPNBl BPRN~tto BClK Setup Time

TClSR1 SYSB/~ Setup

TClSR2 SYSB/11Em:! Hold

TIVIH Initialization Pulse Width

Timing Responses

Symbol Parameter

TBlBRl BClK to BREO DelayH

TBlPOH BClK to BPROH (See Note 1)

TPNPO BPRNHto BPROHDelay
(See Note 1)

TBlBYl BClK to BUSY low

TBlBYH BClK to BUSY Float (See Note 2)

TClAEH ClK to AEN High

TBlAEl BClK to AEN low

TBlCBl BClK to CBRO low

TBlCBH BClK to CBRO Float (See Note 2)

It Denotes that spec applies to both transitions of the signal.

Min.

125

65

35

65

50

10

10

20

20

100

30

20

40

15

0

20

3 TBlBl+
3 TClCl

Min.

Max. Unit

ns

ns

ns

TClCl·10 ns

TClCl·10 ns

ns

ns

ns

ns

ns

.65[TBlBlJ ns

ns

ns

ns

ns

ns

ns

Max. Unit

35 ns

40 ns

25 ns

60 ns

35 ns

65 ns

40 ns

60 ns

35 ns

NOTE 1: BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRN.
NOTE 2: Measured at .5V above GND.

INITIALIZATION: (lNIT can be either pulsed or held low through power up)

------~->-------f. OPERATION

Vee AT sv ::t10%~ _

TNff

r---TIVIH

B-90

loading

8289

8289 TIMING DIAGRAM
STATE --T4---r--- T1------ T2-------T,

r---TClCL CLK

LOCK
(SEE NOTE 1)

SYSBIRESB

ill
(SEE NOTE 3)

PROCESSOR ClK RELATED

BUS ClK RELATED

BCLKJ)J
TBlBRl -~I 1-

BPRN #2
(BPRO #1)

1Il'11O #2
(BPRN #3)

CBRQ

NOTES:
1. lOCK ACTIVE CAN OCCUR DURING ANY T STATE, AS lONG AS THE RELATIONSHIPS

SHOWN ABOVE WITH RESPECT TO THE CLK ARE MAINTAINED. LOCK INACTIVE HAS
NO CRITICAL TIME AND CAN BE ASYNCHRONOUS.
-CRQlCK HAS NO CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS INPUT
SIGNAL

2. GLITCHING OF SYSBIRESB PIN IS PERMITTED DURING THIS TIME. AFTERI2l2 OF T1,
AND BEFORE 01 OF T4, ONLY CLEAN TRANSITIONS ARE ACCEPTED.

3. AE"KI lEADING EDGE IS RELATED TO iJC[R", TRAILING EDGE TO ClK. THE TRAILING
EDGE OF AEN OCCURS AFTER BUS PRIORITY IS LOST.

ADDITIONAL NOTES:
The signals related to ClK are typical processor signals, and do not relate to the depicted sequence of events of the
signals referenced to BClK. The signals shown related to the BClK represent a hypothetical sequence of events for
illustration. Assume 3 bus arbiters of priorities 1,2 and 3 configured in s,erial priority resolving scheme as shown in
Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detects its processor wants the bus and
puils low BREO#2. If BPRN#2 is high (as shown), arbiter #2 will pull low CBRO line. CBRO signals to the higher priority
arbiter #1 that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when it makes
the bus request rather than having to wait for another arbiter to release the bus through~.'· Arbiter#1 will relin­
quish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its BPRO#1 (tied to
BPRN#2) and releasing BUSY_ Arbiter #2 now sees that it has priority from BPRN#2 being low and releases CBRO. As
soon as BUSY signifies the bus is available (high), arbiter #2 pulis BUSY low on next falling edge of BClK_ Note that if
arbiter #2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by
lowering its BPRO #2 [TPNPO],

""Note that even a higher priority arbiter which is acquiring the bus through BPAN will momentarily drop CBAQ until it has acquired the bus.

B-91

•

•
•

•
•
•

8237/8237·2
HIGH PERFORMANCE

PROGRAMMABLE DMA CONTROLLER
Enable/Disable Control of Individual • High Performance: Transfers up to 1.6M
DMA Requests Bytes/Second with 5 MHz 8237-2

Four Independent DMA Channels • Directly Expandable to any Number of
Channels

Independent Autoinitialization of all
Channels • End of Process Input for Terminating

Transfer,s
Memory-to-Memory Transfers

• Software DMA Requests
Memory Block Initialization

• Independent Polarity Control for DREQ
Address Increment or Decrement and DACK Signals

The 8237 Multimode Direct Memory Access (DMA) Controller is a peripheral interface Circuit for microprocessor sys­
tems. It is designed to improve system performance by allowing external devices to directly transfer information to or
from the system memory. Memory·to-memory transfer capability is also provided. The 8237 offers a wide variety of pro­
grammable control features to enhance data throughput and system optimization and to allow dynamic reconfigura­
tion under program control.

The 8237 is designed to be used in conjunction with an external 8-bit address register such as the 8282. It contains
four independent channels and may be expanded to any number of channels by cascading additional controller chips.

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be
individually programmed to Autoinitialize to its original condition following an End of Process (EOP).

Each channel has a full 64K address and word count capability.

The 8237-2 is a 5 MHz selected version of the standard 3 MHz 8237.

BLOCK DIAGRAM

B-92

COMMAND
CONrROt

__ D~._~~

'--__ -' .----- v

iOA 1:: 1 40 I A7

lOW [2

MEMR i" 3
r.U:'MW I q

AU:;T(!: il

AfN; 9

HRQ r 10

cs r~ 11

eLK I. ,?

R£Sf:1 f ri

I)A(;I(:.< L 1~

DACK3 l lS

OAE03 r 16

39 J AS

38.1 AS

37 J A4

36:J t-()j'

3::' J Aj

34 I A'i

3J I Al

oa,

OIl.CKO

DB,

(GNDIVss "'------,

Figu", Pill Configuration

8237/8237-2

PIN DEFINITIONS
Vee: + 5 volt supply

Vss: Ground

ClK (Clock, Input)

This input controls the internal operations of the 8237
and its rate of data transfers. The input may be driven at
up to 3 MHz for the standard 8237 and up to 5 MHz for
the 8237-2.

CS (Chip Select, Input)

Chip Select is an active low input used to select the
8237 as an I/O device during the Idle cycle. This allows
CPU communication on the data bus.

RESET (Reset, Input)

Reset is an asynchronous active high input which clears
the Command, Status, Request and Temporary regis­
ters. It also clears the first/last flip/flop and sets the
Mask register. Following a Reset the device is in the Idle
cycle.

READY (Ready, Input)

Ready is an input used to extend the memory
read and write pulses from the 8237 to accommodate
slow memories or I/O peripheral devices.

HlDA (Hold Acknowledge, Input)

The active high Hold Acknowledge from the CPU Indi­
cates that control of the system buses have been relin­
quished.

DREQO-DREQ3 (DMA Request, Input)

The DMA Request lines are individual asynchronous
channel request inputs used by peripheral circuits to
obtain DMA service. In Fixed Priority, DREQO has the
highest priority and DREQ3 has the lowest priority. A
request is generated by activating the DREQ line of a
channel. DACK will acknowledge the recognition of
DREQ signal. Polarity of DREQ is programmable. Reset
initializes these lines to active high. DREQ must be
maintained until the corresponding DACK goes active.

DBO-DB7 (Data Bus, Input/Output)

The Data Bus lines are bidirectional three-state signals
connected to the system data bus. The outputs are
enabled in the Program Condition during the I/O Read to
output the contents of an Address register, a Status
register, the Temporary register or a Word Count
register to the CPU. The outputs are disabled and the in­
puts are read during an I/O Write cycle when the CPU is
programming the 8237 control registers. During DMA
cycles the most significant 8 bits of the address are out­
put onto the data bus to be strobed into an external
latch by ADSTB. In memory-to-memory operations, data
from the memory comes into the 8237 on the data bus
during the read-from-memory transfer. In the write-to­
memory transfer, the data bus outputs place the data in­
to the new memory location.

lOR (1/0 Read, Input/Output)

I/O Read is a bidirectional active low three-state line. In
the Idle cycle, it is an input control signal used by the
CPU to read the control registers. In the Active cycle, it
is an output control signal used by the 8237 to access
data from a peripheral during a DMA Write transfer.

lOW (I/O Write, Input/Output)

I/O Write is a bidirectional active low three-state line. In
the Idle cycle, it is an input control signal used by the
CPU to load information into the 8237. In the Active
cycle, it is an output control signal used by the 8237 to
load data to the peripheral during a DMA Read transfer.

EOP (End of Process, Input/Output)

EOP is an active low bidirectional signal. Information
concerning the completion of DMA services is available
at the bidirectional EOP pin. The 8237 allows an external
signal to terminate an active DMA service. This is ac­
complished by pulling the EOP input low with an exter­
nal EOP signal. The 8237 also generates a pulse when
the terminal count (TC) for any channel is reached. This
generates an EOP signal which is output through the
EOP Line. The reception of EOP, either internal or exter­
nal, will cause the 8237 to terminate the service, reset
the request, and, if Autoinitialize is enabled, to write the
base registers to the current registers of that channel.
The mask bit and TC bit in the status word will be set for
the currently active channel by EOP unless the channel
is programmed for Autoinitialize. In that case, the mask
bit remains clear. During memory-to-memory transfers,
EOP will be output when the TC for channel 1 occurs.
EOP should be tied high with a pull-up resistor if it is not
used to prevent erroneous end of process inputs.

AO-A3 (Address, Input/Output)

The four least significant address lines are bidirectional
three-state signals. In the Idle cycle they are inputs and
are used by the 8237 to address the control register to
be loaded or read. In the Active cycle they are outputs
and provide the lower 4 bits of the output address.

A4-A7 (Address, Output)

The four most significant address lines are three-state
outputs and provide 4 bits of address. These lines are
enabled only during the DMA service.

B-93

HRQ (Hold Request, Output)

This is the Hold Request to the CPU and is used to re­
quest control of the system bus. If the corresponding
mask bit is clear, the presence of any valid DREQ
causes the 8237 to issue the HRQ. After HRQ goes
active at least one clock cycle (TCY) must
occur before HLDA goes active.

DACKO-DACK3 (DMA Acknowledge, Output)

DMA Acknowledge is used to notify the individual
peripherals when one has been granted a DMA cycle.
The sense of these lines is programmable. Reset initial­
izes them to active low.

8237/8237-2

AEN (Address Enable, Output)

This output enables the 8-bit latch containing the upper
8 address bits onto the system address bus_ AEN can
also be used to disable other system bus drivers during
DMA transfers. AEN is active HIGH.

ADSTB (Address Strobe, Output)

The active high Address Strobe is used to strobe the up­
per address byte into an external latch.

MEMR (Memory Read, Output)

The Memory Read signal is an active low three-state out­
put used to access data from the selected memory loca­
tion during a DMA Read or a memory-lo-memory trans­
fer.

MEMW (Memory Write, Output)

The Memory Write signal is an active low three-state
output used to write data to the selected memory loca­
tion during a DMA Write or a memory-to-memory trans·
fer.

FUNCTIONAL DESCRIPTION
The 8237 block diagram includes the major logic blocks
and all of the internal registers. The data interconnec­
tion paths are also shown. Not shown are the various
control signals between the blocks. The 8237 contains
344 bits of internal memory in the form of registers.
Figure 2 lists these registers by name and shows the
size of each. A detailed description of the registers and
their functions can be found under Register Descrip­
tion.

Name Size Number

8ase Address Registers 16 bits 4
Base Word Count Registers 16bits 4
Current Address Registers 16bits 4
Current Word Count Registers 16 bits 4
Temporary Address Register 16 bits 1
Temporary Word Count Register 16bits 1
Status Register 8bits 1
Command Register 8 bits 1
Temporary Register 8 bits 1
Mode Registers 6bits 4
Mask Register 4 bits 1
Request Register 4bits 1

Figure 2_ 8237 Internal Registers

The 8237 contains three basic blocks of control logic.
The Timing Control block generates internal timing and
external control signals for the 8237. The Program Com­
mand Control block decodes the various commands
given to the 8237 by the microprocessor prior to servic­
ing a DMA Request. It also decodes the Mode Control
word used to select the type of DMA during the servic­
ing. The Priority Encoder block resolves priority conten­
tion between DMA channels requesting service simul­
taneously.

The Timing Control block derives internal timing from
the clock input. In 8237 systems this input will usually
be the +2 TTL clock from an 8224 or ClK from an 8085A.
However, any appropriate system clock will suffice.

DMA OPERATION
The 8237 is designed to operate in two major cycles.
These are called Idle and Active cycles. Each device
cycle is made up of a number of states. The 8237 can
assume seven separate states, each composed of one
full clock period. State I (SI) is the inactive state. It is
entered when the 8237 has no valid DMA requests pend­
ing. While in SI, the DMA controller is inactive but may
be in the Program Condition, being programmed by the
processor. State a (SO) is the first state of a DMA ser­
vice. The 8237 has requested a hold but the processor
has not yet returned an acknowledge. An acknowledge
from the CPU will signal that transfers may begin. SI,
S2, S3 and S4 are the working states of the DMA service.
If more time is needed to complete a transfer than is
available with normal timing, wait states (SW) can be in­
serted between S2 or S3 and S4 by the use of the Ready
line on the 8237.

Memory-to-memory transfers require a read-from and a
write-to-memory to complete each transfer. The states,
which resemble the normal working states, use two
digit numbers for identification. Eight states are re­
quired for a single transfer. The first four states (SII,
S12, S13, S14) are used for the read-from-memory half
and the last four states (S21, S22, S23, S24) for the write­
to-memory half of the transfer.

IDLE CYCLE

When no channel is requesting service, the 8237 will
enter the Idle cycle and perform "SI" states. In this
cycle the 8237 will sample the DREQ lines every clock
cycle to determine if any channel is requesting a DMA
service. The device will also sample CS, looking for an
attempt by the microprocessor to write or read the inter­
nal registers of the 8237. When CS is low and HRQ is
low, the 8237 enters the Program Condition. The CPU
can now establish, change or inspect the internal defini­
tion of the part by reading from or writing to the internal
regilOters. Address lines AO-A3 are inputs to the device
and select which registers will be read or written. The
lOR and lOW lines are used 10 select and time reads or
writes. Due to the number and size of the internal regis­
ters, an internal flip-flop is used to generate an addi­
tional bit of address. This bit is used to determine the
upper or lower byte of the 16-btl Address and Word
Count registers. The flip-flop is reset by Master Clear or
Reset. A separate software command can also reset this
flip-flop.
Special software commands can be executed by the
8237 in the Program Condition. These commands are
decoded as sets of addresses with the CS and lOW. The
commands do not make use of the data bus. Instruc­
tions include Clear First/Last Flip-flop and Master Clear.

ACTIVE CYCLE

When the 8237 is in the Idle cycle and a channel re­
quests a DMA service, the device will output an HRQ to
the microprocessor and enter the Active cycle. It is in
this cycle that the DMA service will take place, in one of
four modes:

Single Transfer Mode - In Single Transfer mode the
device is programmed to make one transfer only. The

B-94

8237/8237-2

word count will be decremented and the address decre·
mented or incremented following each transfer. When
the word count goes to zero, a Terminal Count (TC) will
cause an Autoinitialize if the channel has been program·
med to do so.

DREQ must be held active until DACK becomes active in
order to be recognized. If DREQ is held active through·
out the single transfer, HRQ will go inactive and release
the bus to the system. It will again go active and, upon
receipt of a new HLDA, another single transfer will be
performed. In 8080A/8085A systems this will ensure one
full machine cycle execution between DMA transfers.
Details of timing between the 8237 and other bus con·
trol protocols will depend upon the characteristics of
the microprocessor involved.

Block Transfer Mode - In Block Transfer mode the
device is activated by DREQ to continue making trans·
fers during the service until a TC, caused by word count
going to zero, or an external End of Process (EOP) is en·
countered. DREQ need only be held active until DACK
becomes active. Again, an Autoinitialization will occur
at the end of the service if the channel has been pro·
grammed for it.

Demand Transfer Mode - I n Demand Transfer mode the
device is programmed to continue making transfers un·
til a TC or external EOP is encountered or until DREQ
goes inactive. Thus transfers may continue until the 1/0
device has exhausted its data capacity. After the 1/0
device has had a chance to catch up, the DMA service is
re·established by means of a DREQ. During the time
between services when the microprocessor is allowed
to operate, the Intermediate values of address and word
count are stored in the 8237 Current Address and Cur·
rent Word Count registers. Only an EOF can cause an
Autoinitialize at the end of the service. EOP is generated
either by TC or by an external signal.

Cascade Mode - This mode is used to cascade more
than one 8237 together for simple system expansion.
The HRQ and HLDA signals from the additional 8237
are connected to the DREQ and DACK signals of a chan·
nel of the Initial 8237. This allows the DMA requests of
the additional device to propagate through the priority
network circuitry of the preceding device. The priority
chain Is preserved and the new device must wait for its
turn to acknowledge requests. Since the cascade chan·
nel in the initial device is used only for prioritizing the
additional device, it does not output any address or con·
trol signals of its own. These would conflict with the
outputs of the active channel in the added device. The
823iwill respond to DREQ and DACK but all other out·
puts except HRQ will be disabled.

Figure 3 shows two additional devices cascaded into an
initial device using two of the previous channels. This
forms a two level DMA system. More 8237s could be
added at the second level by using the remaining chan·
nels of the first level. Additional devices can also be
added by cascading into the channels of the second
level devices, forming a third level.

TRANSFER TYPES

Each of the three active transfer modes can perform
three different types of transfers. These are Read, Write

and Verify. Write transfers move data from an 1/0 device
to the memory by activating MEMW and lOR. Read
transfers move data from memory to an 1/0 device by ac·
tivating MEMR and lOW. Verify transfers are pseudo
transfers. The 8237 operates as in Read or Write trans·
fers generating addresses, and responding to EOP, etc.
However, the memory and I/O control lines all remain
inactive.

MICROPROCESSOR
1ST LEVEL

!-- HRO DREQ

'--- HLDA DACK

8237

DREQ

DACK

INITIAL DEVICE

Figure 3. Cascaded 8237s

--

2ND LEVEL

8231

HRO

HlDA

HRO

HLDA

8237

ADDITIONAL
DEVICES

Memory·to·Memory - To perform block moves of data
from one memroy address space to another with a mini·
mum of program effort and time, the 8237 includes a
memory·to·memory transfer feature. Programming a bit
in the Command register selects channels 0 and 1 to
operate as memory·to·memory transfer channels. The
transfer is initiated by setting the software DREQ for
channel O. The 8237 requests a DMA service in the nor·
mal manner. After HLDA is true, the device, using eight·
state transfers in Block Transfer mode, reads data from
the memory. The channel 0 Current Address register is
the source for the address used and is decremented or
incremented in the normal manner. The data byte read
from the memory is stored in the 8237 internal Tempo·
rary register. Channel 1 then writes the data from the
Temporary register to memory using the address in its
Current Address register and incrementing or decre·
menting it in the normal manner. The channel 1 Current
Word Count is decremented. When the word count of
channel 1 goes to zero, a TC is generated causing an
EOP output, terminating the service.
Channel 0 may be programmed to retain the same ad·
dress for all transfers. This allows a single word to be
written to a block of memory.

The 8237 will respond to external EOP signals during
memory·to·memory transfers. Data comparators in
block search schemes may use this input to terminate
the service when a match is found. The timing of
memory·to·memory transfers is found in Diagram 4.
Memory·to-memory operations can be detected as
an active AEN with no DACK outputs.

B-95

Autoinitialize - By programming a bit In the Mode reg·
ister, a channel may be set up as an Autoinitialize

8237/8237-2

channel. During Autoinitialize initialization, the original
values of the Current Address and Current Word Count
registers are automatically restored from the Base Ad·
dress and Base Word Count registers of that channel
following EOP. The base registers are loaded simultane·
ously with the current registers by the microprocessor
and remain unchanged throughout the DMA service. The
mask bit is not set when the channel is in Autoinitialize.
Following Autoinitialize the channel is ready to perform
another service without CPU intervention.

Priority - The 8237 has two types of priority encoding
available as software selectable options. The first is
Fixed Priority which fixes the channels in priority order
based upon the descending value of their number. The
channel with the lowest priority is 3 followed by 2, 1 and
the highest priority channel, O. After the recognition of
anyone channel for service, the other channels are pre·
vented from interferring with that service until it is com·
pleted.

The second scheme is Rotating Priority. The last chan·
nel to get service becomes the lowest priority channel
with the others rotating accordingly.

highest

lowest

1st
Service

2nd
Service

3rd
Service

o 2 -.- service \3 -...- service
1......-service\. 3-..-request 0

2 ,0 1
3 1 2

With Rotating Priority in a single chip DMA system, any
device requesting service is guaranteed to be recog·
nized after no more than three higher priority services
have occurred. This prevents anyone channel from
monopolizing the system.

Compressed Timing - In order to achieve even greater
throughput where system characteristics permit, the
8237 can compress the transfer time to two clock
cycles. From Timing Diagram 3 it can be seen that state
S3 is used to extend the access time of the read pulse.
By removing state S3, the read pulse width is made
equal to the write pulse width and a transfer consists
only of state S2 to change the address and state S4 to
perform the read/write. S1 states will still occur when
A8-A 15 need updating (see Address Generation). Tim·
ing for compressed transfers is found in Diagram 6.

Address Generation - In order to reduce pin count, the
8237 multiplexes the eight higher order address bits on
the data lines. State S1 is used to output the higher
order address bits to an external latch from which they
may be placed on the address bus. The falling edge of
Address Strobe (ADSTB) is used to load these bits from
the data lines to the latch. Address Enable (AEN) is used
to enable the bits onto the address bus through a three·
state enable. The lower order address bits are output by
the 8237 directly. Lines AO-A7 should be connected to
the address bus. Timing Diagram 3 shows the time rela·
tionships between ClK, AEN, ADSTB, DBO-DB7 and
AO-A?

During Block and Demand Transfer mode services,
which include multiple transfers, the addresses gener·
ated will be sequential. For many transfers the data held
in the external address latch will remain the same. This
data need only change when a carry or borrow from A7
to A8 takes place in the normal sequence of addresses.
To save time and speed transfers, the 8237 executes S1
states only when updating of A8-A15 in the latch is
necessary. This means for long services, S1 states may
occur only once every 256 transfers, a savings of 255
clock cycles for each 256 transfers.

REGISTER DESCRIPTION

Current Address Register - Each channel has a 16·bit
Current Address register. This register holds the value
of the address used during DMA transfers. The address
is automatically incremented or decremented after each
transfer and the intermediate values of the address are
stored in the Current Address register during the
transfer. This register is written or read by the micro·
processor in successive 8·bit bytes. It may also be reo
initialized by an Autoinitialize back to its original value.
Autoinitialize takes place only after an EOP.

Current Word Register - Each channel has a 16·bit Cur·
rent Word Count register. This register holds the num·
ber of transfers to be performed. The word count is
decremented after each transfer. The intermediate value
of the word count is stored in the register during the
transfer. When the value in the register goes to zero, a
TC will be generated. This register is loaded or read in
successive 8·bit bytes by the microprocessor in the Pro·
gram Condition. Following the end of a DMA service it
may also be reinitialized by an Autoinitialization back to
its original value. Autoinitialize can occur only when an
EOP occurs.

Base Address and Base Word Count Registers - Each
channel has a pair of Base Address and Base Word
Count registers. These 16·bit registers store the original
value of their associated current registers. During Auto·
initialize these values are used to restore the current
registers to their original values. The base registers are
written simultaneously with their corresponding current
register in 8·bit bytes in the Program Condition by the
microprocessor. These registers cannot be read by the
microprocessor.

Command Register - This 8·bit register controls the
operation of the 8237. It is programmed by the micro·
processor in the Program Condition and is cleared by
Reset. The following table lists the function of the com·
mand bits. See Figure 6 for address coding.

Mode Register - Each channel has a 6·bit Mode regis·
ter associated with it. When the register is being written
to by the microprocessor in the Program Condition, bits
o and 1 determine which channel Mode register is to be
written.

B-96

Request Register - The 8237 can respond to requests
for DMA service which are initiated by software as well
as by a DREQ. Each channel has a request bit associ·
ated with it in the 4·bit Request register. These are non·

8237/8237 -2

maskable and subject to prioritization by the Priority En­
coder network. Each register bit Is set or reset sepa·
rately under software control or Is cleared upon genera·
tlon of a TC or external EOP. The entire register is
cleared by a Reset. To set or reset a bit, the software
loads the proper form of the data word. See Figure 4 for
address coding.

Command Register
7 8 5 4 3 2 1 0 _Bit Number

I I I I I I I I I
0 Memory·to-memory disable
1 Memory.to.memory enable

---1 0 Channel 0 address hold disable
1 Channel 0 address hold enable
X If bit 0=0

0 Controller enable
1 Controller disable

0 Normal timing
1 Compressed timing
X If bit 0=1

0 Fixed priority
I Rotating priority

J
I °

Late write selection
1 Extended write selection
X If bit 3=1

, DREO sense active high , DREO sense active low

, 0 OACK sense active low
I DACK sense active high

Mode Register

r-"":""'-r--,r--,::.,...:l.,..O-,~ Bit Number

Channel 0 select
Channell select
Channel 2 select
Channel 3 select

00 Verify transfer
01 Write transfer

'----~ 10 Read transfer
11 Illegal
XX If bits 6 and 7= 11

0 Autoinitialization disable
1 Autoinitialization enable

0 Address I ncrement select
1 Address decrement select

00 Demand mode select
01 Single mode select
10 Block mode select
11 Cascade mode select

Request Register

,...:...,::...,=-r...:..,-=-.-=...,.:l.,..O:., ~Blt Number

Don·t Care

'--__ -I 0 Reset request bit
1 Set request bit

B-97

Software reql,lests will be serviced only If the channel Is
In Block mode. When Initiating a memory·to-memory
transfer, the software request for channel 0 should be
set.

Mask Register - Each channel has associated with It a
mask bit which can be set to disable the Incoming
DREQ. Each mask bit is set when Its associated channel
produces an ~ If the channel Is not programmed for
Autoinitialize. Each bit of the 4·bit Mask register may
also be set or cleared separately under software control.
The entire register Is also set by a Reset. This disables
all DMA requests until a clear Mask register Instruction
allows them to occur. The Instruction to separately set
or clear the mask bits is similar in form to that used with
the Request register. See Figure 4 for Instruction ad·
dressing.

7 8 5 4 3 2 1 0 _ Bit Number

Don't Care
Select channel 0 mask bit
Select channell mask bit
Select channel 2 mask bit
Select channel 3 mask bit

'--__ -(0 Clear mask bit
1 Set mask bit

All four bits of the Mask register may also be written
with a single command.

Register

Command
Mode
Request
Mask
Mask
Temporary
Status

o Clear channel 0 mask bit
1 Set channel 0 mask bit

o Clear channell mask bit
1 Set channell mask bit

Clear channel 2 mask bit
1 Set channel 2 mask bit

'-___ -{ 0 Clear channel 3 mask bit
1 Set channel 3 mask bit

Operation
Signals

CS lOR lOW A3 A2 A1

Write 0 1 0 1 0 0
Write 0 1 0 1 0 1
Write 0 1 0 1 0 0
Set/Reset 0 1 0 1 0 1
Write 0 1 0 1 1 1
Read 0 0 1 1 1 0
Read 0 0 1 1 0 0

Figure 4. Definition of Register Codes

AD

0
1
1
0
1
1
0

Status Register - The Status register is available to
be read out of the 8237 by the microprocessor. It con­
tains information about the status of the devices at this
point. This information includes which channels have
reached a terminal count and which channels have
pending DMA requests. Bits 0-3 are set every time a TC
is reached by that channel or an external EOP
is applied. These bits are cleared upon Reset
and on each Status Read. Bits 4-7 are set when­
ever their corresponding channel is requesting service.

8237/8237 -2

Channel 0 has reached TC
Channell has reached TC
Channel 2 has reached TC
Channel 3 has reached TC

Channel 0 request
Channell request
Channel 2 request
Channel 3 request

Temporary Register - The Temporary register is used
to hold data during memory-to-memory transfers_ Fol­
lowing the completion of the transfers, the last word
moved can be read by the microprocessor in the Pro­
gram Condition_ The Temporary register always con­
tains the last byte transferred in the previous memory­
to-memory operation, unless cleared by a Reset.

Software Commands - These are additional special
software commands which can be executed in the Pro­
gram Condition. They do not depend on any specific bit
pattern on the data bus. The two software commands
are:

Clear First/Last Flip-Flop: This command is executed
prior to writing or reading new address or word count
information to the 8237. This initializes the flip-flop to
a known state so that subsequent accesses to regis­
ter contents by the microprocessor will address up­
per and lower bytes in the correct sequence.

Channel Reglst.r Operation
CS lOR

0 Base and Current Address Write 0 1
0 1

Current Address Read 0 0
0 0

Base and Current Word Count Write 0 1
0 1

Current Wold Count Read 0 0
0 0

1 Base and Current Address Write 0 1
0 1

Current Address Read 0 0
0 0

Base and Current Word Count Write 0 1
0 1

Current Word Count Read 0 0
0 0

2 Base and Current Address Write 0 1
0 1

Current Address Read 0 0
0 0

Base and Current Word Count Write 0 1
0 1

Current Word Count Read 0 0
0 0

3 Base and Current Address Write 0 1
0 1

Current Address Read 0 0
0 0

Base and Current Word Count Write 0 1
0 1

Current Word Count Read 0 0
0 0

lOW

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

I
I

Master Clear: This software instruction has the same
effect as the hardware Reset. The Command, Status,
Request, Temporary, and Internal First/Last Flip-Flop
registers are cleared and the Mask register is set. The
8237 will enter the Idle cycle.

Figure 5 lists the address codes for the software com­
mands:

Signals

A3 A2 A 1 AO lOR lOW Operation

Read Status Register

Write Command Register

Illegal

Write Request Register

Illegal

Write Single Mask Register Bit

Illegal

Write Mode Register

Illegal

Clear Byte Pointer Flip I Flop

Read Temporary Register

Maater Clear

Illegal

Illegal

Illegal

Write All Mask Register Bits

Figure 5. Software Command Codes

Signals
Intemal Flip-Flop Data Bus DBO-DB7

A3 A2 Al AO

0 0 0 0 0 AQ-A7
0 0 0 0 1 AB-AI5

0 0 0 0 0 AQ-A7
0 0 0 0 1 A8-A15

0 0 0 1 0 WO-W7
0 0 0 1 1 W8-W15

0 0 0 1 0 W)O-W7
0 0 0 1 I W8-W15

0 0 1 0 0 AO-A7
0 0 1 0 1 AB-AI5

0 0 1 0 0 AQ-A7
0 0 1 0 1 AB-AI5

0 0 1 1 0 WO-W7
0 0 1 1 1 W8-W15

0 0 1 1 0 WfJ-W7
0 0 1 1 1 W8-W15

0 1 0 0 0 AQ-A7
0 1 0 0 1 A8-A15

0 1 0 0 0 AO-A7
0 1 0 0 1 AB-A15

0 1 0 1 0 WQ-W7
0 1 0 1 1 W8-W15

0 1 0 1 0 W)Q-W7
0 1 0 1 1 W8-W15

0 1 1 0 0 AO-A7
0 1 1 0 1 AB-A15

0 1 1 0 0 AQ-A7
0 1 1 0 1 AB-AI5

0 1 1 1 0 WQ-W7
0 1 1 1 1 WB-WI5

0 1 1 1 0 WfJ-W7
0 1 1 1 1 W8-W15

Figure 6. Word Count and Address Register Command Codes

B-98

8237/8237-2

APPLICATION INFORMATION

Figure 7 shows a convenient method for configuring a
DMA system with the 8237 controller and an 8080AI
8085A microprocessor system. The multimode DMA
controller issues a HRQ to the processor whenever
there is at least one valid DMA request from a
peripheral device. When the processor replies with a
HLDA signal, the 8237 takes control of the address bus,
the data bus and the control bus. The address for the

first transfer operation comes out in two bytes - the
least significant 8 bits on the eight address outputs and
the most significant 8 bits on the data bus. The contents
of the data bus are then latched into the 8282 8-bit latch
to complete the full 16 bits of the address bus. The 8282
is a high speed, 8-bit, three-state latch in a 20-pin
package. After the initial transfer takes place, the latch
is updated only after a carry or borrow is generated In
the least significant address byte. Four DMA channels
are provided when one 8237 is used.

ADDRESS BUS AO-A15 >
~ ~

-y

A8-A15

I---
......

I

OE
8282

r
STB

... 7- 8·BIT LATCH

AO-A15 AEN AO-A3 A4-A7 CS ADSTB ~ ;>..
BUSEN

A •
HLDA HLDA 8237 DBO-

~ ~ DB7

Ii
,

~ ~ y
HOLD HRQ Ii;

I~
15

~ '" e l~
w " w '" ..

" '" Q Q

CPU ! I t t CLOCK

RESET

MEMR

MEMW l~~"" iOR BUS

lOW

DBO-DB7

"'" r--

""" ".. ".

SYSTEM DATA BUS

Figure 7

B-99

8237/8237-2

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature under Bias O·C to 70·C

Storage Temperature - 65·C to + 150·C
Voltage on any Pin with

Respect to Ground - 0.5 to 7V
Power Dissipation 1.5 Watt

'COMMENT: Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS
TA=O·Cto 70·C, Vcc=5.0V ±5%, GND=OV

Symbol Parameter Min. Typ'(1) Max. Unit Test Conditions

2.4 V IOH= - 2OO IJA
VOH Output HIGH Voltage

3.3 V IOH = -100 IJA (HRQ Only)

VOL Output LOW Voltage 0.4 V IOL=3.2 mA

VIH Input HIGH Voltage 2.0 Vcc+ 0.5 V

V IL Input LOW Voltage -0.5 0.8 V

'll Input Load Current ±10 IJA VSS~VI~VCC

ILO Output Leakage Current ±10 IJA Vcc~Vo~Vss + 0.40

65 130 mA TA= +25·C
Icc Vcc Supply Current

75 150 mA TA=O·C

Co Output Capacitance 4 8 pF

C I Input Capacitance 8 15 pF Ic = 1.0 MHz, Inputs = OV

CIO I/O Capacitance 10 18 pF

Noles:
1. Typical values are for T A:;;: 25°C, nominal supply voltage and nominal processing parameters.

2. Input timing parameters assume transition times of 20 ns or less. Waveform measurement pOints for both input and output signals are 2.0V for HIGH
and O.BV for LOW, unless otherwise noted.

3. Output loading is 1 TIL gate plus 50 pF capacitance, unless otherwise noted.
4. The net lOW or M'E'MiiV Pulse width for normal write will be TCY-l00 ns and for extended write will be 2TCY-100 ns. The net lOR or MEMR pulse

width for normal read will be 2TCY-50 ns and for compressed read will be TCY-50 ns.

5. TOQ is specified for two different output HIGH levels. TOQ1 is measured at 2.0V. TOQ2 is measured at 3.3V. The value forTOQ2 assumes an external
3.3 kQ pull·up resistor connected from H RQ to V CC.

6. OREQ should be held active until OACK is returned.
7. OREQ and OACK signals may be active high or active low. Timing diagrams assume the active high mode.
B. Output loading on the data bus is 1 TIL gate plus 100 pF capacitance.
9. Successive read and/or write operations by the external processor to program or examine the controller must be timed to allow at least 600 ns forthe

8237 and at least 400 ns for the 8237·2 as recovery time between active read or write pulses.

10. Parameters are listed in alphabetical order.

11. Pin 5 is an input that should always be at a logic high level. An internal pull·up resistor will establish a logic high when the pin is left floating. Aller·
natively, pin 5 may be tied to VCC'

A.C. TEST WAVEFORM

2.4V---------_........ ,..-----------HIGH "1" X2.0V

0.45V--------__J. "'O:;.;.8:..:V __________ LOW "0"

B-lOO

8237/8237-2

A.C. CHARACTERISTICS: DMA (MASTER) MODE
TA=O·C to 70·C, Vcc=5.0V ±50/0, GND=OV

8237 8237·2
Unit Symbol Parameter

Min. Max. Min. Max.

TAEL AEN HIGH from CLK LOW (51) Delay Time 300 200 ns

TAET AEN LOW from CLK HIGH (51) Delay Time 200 130 ns

TAFAB ADR Active to Float Delay from CLK HIGH 150 90 ns

TAFC READ or WRITE Float from CLK HIGH 150 120 ns

TAFDB DB Active to Float Delay from CLK HIGH 250 170 ns

TAHR ADR from READ HIGH Hold Time TCY-100 TCY-100 ns

TAHS DB from ADSTB LOW Hold Time 50 30 ns

TAHW ADR from WRITE HIGH Hold Time TCY-50 TCY-50 ns

DACK Valid from CLK LOW Delay Time 250 170 ns

TAK EOP HIGH from CLK HIGH Delay Time 250 170 ns

EOP LOW to CLK HIGH Delay Time 250 100 ns

TASM ADR Stable from CLK HIGH 250 170 ns

TASS DB to ADSTB LOW Setup Time 100 100 ns

TCH Clock High Time (Transitions <0;10 ns) 120 70 ns

TCL Clock LOW Time (Transitions <0;10 ns) 150 50 ns

TCY CLK Cycle Time 320 200 ns

TDCL CLK HIGH to READ orWRITE LOW Delay (Note 4) 270 190 ns

TDCTR READ HIGH from CLK HIGH (54) Delay Time 270 190 ns
(Note 4)

TDCTW WRITE HIGH from CLK HIGH (54) Delay Time 200 130 ns
(Note 4)

TDQ1 160 120 ns

TDQ2
HRQ Valid from CLK HIGH Delay Time (Note 5)

250 120 ns

TEPS EOP LOW from CLK LOW Setup Time 60 40 ns

TEPW EOP Pulse Width 300 220 ns

TFAAB ADR Float to Active Delay from CLK HIGH 250 170 ns

TFAC READ or WRITE Active from CLK HIGH 200 150 ns

TFADB DB Float to Active Delay from CLK HIGH 300 200 ns

THS HCDA Valid to CLK HIGH Setup Time 100 75 ns

TIDH Input Data from MEMR HIGH Hold Time 0 0 ns

TIDS Input Data to MEMR HIGH Setup Time 250 170 ns

TODH Output Data from MEMW HIGH Hold Time 20 10 ns

TODV Output Data Valid to MEMW HIGH 200 130 ns

TQS DREQ to CLK LOW (51, 54) Setup Time 0 0 ns

TRH CLK to READY LOW Hold Time 20 20 ns

TRS READY to CLK LOW Setup Time 100 75 ns

TSTL ADSTB HIGH from CLK HIGH Delay Time 200 130 ns

TSTT ADSTB LOW from CLK HIGH Delay Time 140 90 ns

B-101

8237/8237-2

A.C. CHARACTERISTICS: PERIPHERAL (SLAVE) MODE
TA=0·Ct070·C, Vcc=5.0V ±5%, GND=OV

8237
Symbol Parameter

Min.

TAR ADR Valid or CS LOW to READ LOW 50

TAW ADR Valid to WRITE HIGH Setup Time 200

TCW CS LOW to WRITE HIGH Setup Time 200

TOW Data Valid to WRITE HIGH Setup Time 200

TRA ADR or CS Hold from READ HIGH 0

TRDE Data Access from READ LOW (Note 8)

TRDF DB Float Delay from READ HIGH 20

TRSTO Power Supply HIGH to RESET LOW Setup Time 500

TRSTS RESET to First IOWR 2TCY

TRSTW RESET Pulse Width 300

TRW READ Width 300

TWA ADR from WRITE HIGH Hold Time 20

TWC CS HIGH from WRITE HIGH Hold Time 20

TWD Data from WRITE HIGH Hold Time 30

TWWS Write Width 200

TIMING DIAGRAM #1 - SLAVE MODE WRITE TIMING

~
Tew

-
I, TWWS ~

-TAW

AO-A3 ~ ---1 INPUT VALID

-TDW

DBO-DB7 =::) INPUT VALID

TIMING DIAGRAM #2 - SLAVE MODE READ TIMING

8237·2
Unit

Max. Min. Max.

50 ns

160 ns

160 ns

160 ns

0 ns

200 140 ns

100 0 70 ns

500 j.!s

2TCY ns

300 ns

200 ns

0 ns

0 ns

10 ns

160 ns

-i
I-Twe

I
_TWA

-TWO

K

./

AO-A3 ~ ADDRESS MUST BE VALID ~

IOR_-~_"·"1t---1==-_-TRDE--=TRW~_ -t-t--':"3-
DBO-DB7 { DATA OUT VALID

B-102

8237/8237-2

TIMING DIAGRAM #3 - DMA TRANSFER TIMING

eLK

DREQ

1-
HRC ______ ~~r--+~~~-+---+---r-r-r--~--~~~----------

HLDA

.EN

ADSTB

-TAHW

AO-A7

DACK

INTW

EXT'ElfP

B-103

8237/8237·2

TIMING DIAGRAM #4 - MEMORY TO MEMORY TRANSFER TIMING

ADSTB

AO-A7 ADDRESS VALID

DBO-DB7 OUT

TOCV I---+--j.----I

TIMING DIAGRAM #5 - READY TIMING

B-104

8237/8237·2

TIMING DIAGRAM #6 - COMPRESSED TRANSFER TIMING

CLK

AO-A7

TDCL--i--I--I

_ ~TRH
- _ _ TRH

READY _~TRSJ ',----,TRs J ~\'----
TIMING DIAGRAM #7 - RESET TIMING

Vee ______ -J;frl~~~~~~~~~~~~~~~~~-T-R-S-TD--------------------_-_-_-_-_-_-_-_--=---------tI~I---------------

_________________ ~ I'========_T_RS_T_W~~_-_-_-_-_-_
RESET t

lOR OR lOW

B-105

8259A/8259A-2/8259A-8
PROGRAMMABLE INTERRUPT CONTROLLER

• 808618088 Compatible • Programmable Interrupt Modes

• MCS-8018S™ Compatible • Individual Request Mask Capability

• Eight-level Priority Controller • Single + SV Supply (No Clocks)

• Expandable to 64 levels • 28·Pin Dual·ln·line Package

The Intel'" 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is
cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28·pin DIP, uses
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input.

The 8259A is designed to minimize the software and realtime overhead in handling multi-level priority interrupts. It has
several modes, permitting optimization for a variety of system requirements.

The 8259A is fully upward compatible with the Intel'" 8259. Software originally written for the 8259 will operate the
8259A in all 8259 equivalent modes (MCS·80185, Non-Buffered, Edge Triggered).

PIN CONFIGURATION

cs vee
WR "0
AD INTA

0, IR7

D. IR6

0. IR5

0, IRO

0, IR3

0, IR2

0, IRI

D. IRO

CASO INT

CAS1 SPIEN
GND CAS 2

PIN NAMES

°1- 0 0 DATA BUS (SI-DiRECTIONAl!

RO READ INPUT

WR WRITE INPUT

A. COMMAND SELECT ADDRESS

CS CHIP SELECT

CAS2CASO CASCADE LINES
~mil SLAVE PROGRAM IENABLE BUFFER

INT INTERRUPT OUTPUT
INTA INTERRUPT ACKNOWLEDGE INPUT

IRO-IR7 INTERRUPT REQUeST INPUTS

DATA
BUS

BUFFER

cs---------'

CAS 1

CAS 2

SPIEN---··-

B-106

BLOCK DIAGRAM

CONTROllOGtC

~ INTERNAL BUS

82S9A/82S9A-2/82S9A-8

INTERRUPTS IN MICROCOMPUTER
SYSTEMS
Microcomputer system design requires that 110 devices
such as keyboards, displays, sensors and other com­
ponents receive servicing in an efficient manner so that
large amounts of the total system tasks can be assumed
by the microcomputer with little or no effect on through­
put.

The most common method of servicing such devices is
the Polled approach. This is where the processor must
test each device in sequence and in effect "ask" each
one if it needs servicing. It is easy to see that a large por­
tion of the main program is looping through this con­
tinuous polling cycle and that such a method would
have a serious, detrimental effect on system through­
put, thus limiting the tasks that could be assumed by
the microcomputer and reducing the cost effectiveness
of using such devices.

A more desirable method would be one that would allow
the microprocessor to be executing its main program
and only stop to service peripheral devices when it is
told to do so by the device itself. In effect, the method
would provide an external asynchronous input that
would inform the processor that it should complete
whatever instruction that is currently being executed
and fetch a new routine that will service the requesting
device. Once this servicing is complete, however, the
processor would resume exactly where it left off.

This method is called Interrupt. It is easy to see that
system throughput would drastically increase, and thus
more tasks could be assumed by the microcomputer to
further enhance its cost effectiveness.

The Programmable Interrupt Controller (PIC) functions
as an overall manager in an Interrupt-Driven system
environment. It accepts requests from the peripheral
equipment, determines which of the incoming requests
is of the highest importance (priority), ascertains
whether the incoming request has a higher priority value
than the level currently being serviced, and issues an
interrupt to the CPU based on this determination.

Each peripheral device or structure usually has a special
program or "routine" that is associated with its specific
functional or operational requirements; this is referred
to as a "service routine". The PIC, after issuing an Inter­
rupt to the CPU, must somehow input information into
the CPU that can "point" the Program Counter to the
service routine associated with the requesting device.
This "pOinter" is an address in a vectoring table and will
often be referred to, in this document, as vectoring data.

8259A BASIC FUNCTIONAL DESCRIPTION
GENERAL

The 8259A is a device specifically designed for use in
real time, interrupt driven microcomputer systems. It
manages eight levels or requests and has built-in fea­
tures for expandability to other 8259A's (up to 64 levels)_
It is programmed by the system's software as an 1/0
peripheral. A selection of priority modes is available to
the programmer so that the manner In which the re­
quests are processed by the 8259A can be configured to

match his system requirements. The priority modes can
be changed or reconfigured dynamically at any time dur­
ing the main program. This means that the complete
interrupt structure can be defined as required, based on
the total system environment.

CPU

Polled Method

CPU .NT

Interrupt Method

CPU·DRIVEN
MULTIPLEXOR

--, ,

B-107

8259A/8259A-2/8259A-8

INTERRUPT REQUEST REGISTER (IRR) AND
IN-SERVICE REGISTER (lSR)

The interrupts at the IR input lines are handled by two
registers in cascade, the Interrupt Request Register
(IRR) and the In-Service Register (ISR). The IRR is used
to store all the interrupt levels which are requesting ser­
vice; and the ISR is used to store all the interrupt levels
which are being serviced.

PRIORITY RESOLVER

This logic block determines the priorities of the bits set
in the IRR. The highest priority is selected and strobed
into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (lMR)

The IMR stores the bits which mask the interrupt lines
to be masked. The IMR operates on the IRR. Masking of
a higher priority input will not affect the interrupt
request lines of lower priority.

INT (INTERRUPT)

This output goes directly to the cru interrupt input. The
VOH level.on this line is designed to be fully compatible
with the 8080A, 8085A, 8086 and 8088.

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses w;1I cause the 8259A to release vectoring
information onto the data bus. The format of this data
depends on the system mode ("PM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter·
face the 8259A to the system Data Bus. Control words
and status information are transferred through the Data
Bus Buffer.

READIWRITE CONTROL LOGIC

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command
Word (OCW) registers which store the various control
formats for device operation. This function block also
allows the status of the 8259A to be transferred onto the
Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or
writing of the chip will occur unless the device is
selected.

WR (WRITE)

A LOW on this input enables the CPU to write control
words (lCWs and OCWs) to the 8259A.

RD (READ)

A LOW on this input enables the 8259A to send the
status of the Interrupt Request Register (IRR), In Service
Register (ISR), the Interrupt Mask Register (IMR), or the
Interrupt level onto the Data Bus.

8259A Block Diagram

8259A Block Diagram

Ao

This input signal is used in conjunction with WR and RD
signals to write commands into the various command
registers, as well as reading the various status registers
of the Chip. This line can be tied directly to one of the ad­
dress lines.

B-108

82S9A/82S9A-2/82S9A-8

THE CASCADE BUFFER/COMPARATOR

This function block stores and compares the IDs of all
8259A's used in the system. The associated three I/O
pins (CASO-2) are outputs when the 8259A is used as a
master and are inputs when the 8259A is used as a
slave. As a master, the 8259A sends the ID of the inter·
rupting slave device onto the CASO-2 lines. The slave
thus selected will send its preprogrammed subroutine
address onto the Data Bus during the next one or two
consecutive INTA pulses. (See section "Cascading the
8259A".)

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer
system are its programmability and the interrupt routine
addressing capability. The latter allows direct or indirect
jumping to the specific interrupt routine requested
without any polling of the interrupting devices. The nor·
mal sequence of events during an interrupt depends on
the type of CPU being used.

The events occur as follows in an MCS·80/85 system:

1. One or more of the INTERRUPT REQUEST lines
(IR7-0) are raised high, setting the corresponding IRR
bit(s).

2. The 8259A evaluates these requests, and sends an
INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds with an
INTA pulse.

4. Upon receiving an INTA from the CPU group, the
highest priority ISR bit is set, and the corresponding
IRR bit is reset. The 8259A will also release a CALL in·
struction code (11001101) onto the 8·bit Data Bus
through its 07-0 pins.

5. This CALL instruction will initiate two more INTA
pulses to be sent to the 8259A from the CPU group.

6. These two INTA pulses allow the 8259A to release its
preprogrammed subroutine address onto the Data
Bus. The lower 8·bit address is released at the first
INTA pulse and and the higher 8·bit address is reo
leased at the second INTA pulse.

7. This completes the 3·byte CALL instruction released
by the 8259A. In the AEOI mode the ISR bit is reset at
the end of the third INTA pulse. Otherwise, the ISR bit
remains set until an appropriate EOI command is
issued at the end of the interrupt sequence.

The events occuring in an 8086/8088 system are
the same until step 4.

4. Upon receiving an INTA from the CPU group, the high·
est priority ISR bit is set and the corresponding IRR
bit is reset. The 8259A does not drive the Data Bus
during this cycle.

5. The 8086/8088 CPU will initiate a second
INTA pulse. During this pulse, the 8259A releases an
8-bit pointer onto the Data Bus where it is
read by the CPU.

6. This completes the interrupt cycle. In the AEOI mode
the ISR bit is reset at the end of the second INTA
pulse. Otherwise, the ISR bit remains set until an
appropriate EOI command is issued at the end of the
interrupt subroutine.

If no interrupt request is present at step 4 of either
sequence (i.e., the request was too short in duration) the
8259A will issue an interrupt level 7. Both the vectoring
bytes and the CAS lines will look like an interrupt level 7
was requested.

8259A Block Diagram

I
INTERRUPT
REQUESTS

8259A Interface to Standard System Bus

B-109

8259A/8259A-2/8259A-8

INTERRUPT SEQUENCE OUTPUTS
MeS-SO/S5 MODE

This sequence is timed by three INTA pulses. During the
first iNfA pulse the CALL opcode is enabled onto the
data bus.

Content of First Interrupt
Vector Byte

D7 De D5 D4 D3 D2 D1 DO

CALLCODE LI_1 ________ a _________________ a ____ 1-J1

During the second iNTA pulse the lower address of the
appropriate service routine is enabled onto the data bus.
When Interval = 4 bits A5-A7 are programmed, while Aa-

A. are automatically inserted by the 8259A. When Inter­
val = 8 only A6 and A7 are programmed, while Aa-A5 are
automatically inserted.

IR
D7

7 A7
6 A7

5 A7

• A7
3 A7
2 A7
1 A7
a A7

IR
D7

7 A7
6 A7
5 A7
4 A7

3 A7
2 A7

1 A7
a A7

Content 01 Second Interrupt
Vector Byte

InlerYal-4

De DS D4 D3 D2

A6 AS 1 1 1
A6 A5 1 1 a
A6 A5 1 a 1
A6 A5 1 a a
A6 A5 a 1 1
A6 A5 a 1 a
AS A5 a a 1
A6 A5 a a a

Inlervll = 8
De D5 D4 D3 D2
AS 1 1 1 a
A6 1 1 a a
A6 1 a 1 a
A6 1 a a a
A6 a 1 1 a
A6 a 1 a a
A6 a a 1 a
A6 a a a a

D1 DO

a a
a a
a a
a a
a a
a a
a a
a a

Dl DO

a 0

a a
a 0

a a
0 a
a a
a a
a a

During the third INTA pulse the higher address of the
appropriate service routine, which was programmed as
byte 2 of the initialization sequence (A8 - A 15), is
enabled onto the bus.

D7 D8
A15 A14

Content of Third Interrupt
Vector Byte

DS D4 D3 D2

A13 I A12 I All Ala

SOS6/S0SS Mode

Dl DO

A9

8086/8088 mode is similar to MCS80/85 mode
except that only two Interrupt Acknowledge cycles are
issued by the processor and no CALL opcode is sent
to the processor. The first interrupt acknowledge cycle
is similar to that of MCS-80 1 85 systems in that the
8259A uses it to internally freeze the state of the inter­
rupts for priority resolution and as a master it
issues the interrupt code on the cascade lines at the
end of the INTA pulse. On this first cycle it does not
issue any data to the processor and leaves its data bus
buffers disabled. On the second interrupt acknowledge
cycle in 8086/8088 mode the master (or slave if so
programmed) wi~1 send a byte of data to the processor
with the acknowledged interrupt code composed
as follows (note the state of the ADI mode control
is ignored and A5-All are unused in 8086/8088 mode):

D7 D6 D5 D4 D3 D2 D1 DO

IR7 T7 T6 T5 T4 T3 1 1 1

IR6 T7 T6 T5 T4 T3 1 1 0

IR5 T7 T6 T5 T4 T3 1 0 1

IR4 T7 T6 T5 T4 T3 1 0 0

IR3 T7 T6 T5 T4 T3 0 1 1

IR2 T7 T6 T5 T4 T3 0 1 0

IRl T7 T6 T5 T4 T3 0 0 1

IRO T7 T6 T5 T4 T3 0 0 0

B-1 10

82S9A/82S9A-2/82S9A-8

PROGRAMMING THE 8259A

The 8259A accepts two types of command words gen­
erated by the CPU:

1. Initialization Command Words (JCWs): Before normal
operation can begin, each 8259A in the system must
be brought to a startin~int - by a sequence of 2
to 4 bytes timed by WR pulses. This sequence
is described in Figure 1.

2. Operation Command Words (OCWs): These are the
command words that are sent to the 8259A for var­
ious forms of operation, such as:

• Interrupt Masking
• End of Interrupt
• Priority Rotation
• Interrupt Status

The OCWs can be written into the 8259A anytime after
initialization.

INITIALIZATION

GENERAL

Whenever a command is issued with AO=O and D4= I,
this is interpreted as Initialization Command Word 1
(lCW1). ICWI starts the initialization sequence during
which the following automatically occur.

a. The edge sense circuit is reset, which means that
following initialization, an interrupt request (IR) input
must make a low-to-high transition to generate an in­
terrupt.

b. The Interrupt Mask Register is cleared.
c. R7 input is assigned priority 7.

d. The slave mode address is set to 7.
e. Special Mask Mode is cleared and Status Read is

set to IRR.
f. If IC4=O, then all functions selected in ICW4 are set

to zero. (Non-Buffered mode', no Auto-EOI, MCS-
80/85 system).

'Note: Master J Slave in ICW4 is only used in the buffered mode.

Ao D~ 0 3 RD WR CS INPUT OPERATION (READ)

0 0 1 0 IRR, ISR or Interrupting Level_DATA BUS (Note 1)
1 0 1 0 IMR ___ DATA BUS

OUTPUT OPERATION (WRITE)

0 0 0 1 0 0 DATA BUS -OCW2
0 0 1 1 0 0 DATA BUS -OCW3
0 1 X 1 0 0 DATA BUS--ICWI
1 X X 1 0 0 DATA BUS--OCW1, ICW2, ICW3, ICW4 (Note 2)

DISABLE FUNCTION

X X X 1 1 0 DATA BUS - 3-STATE (NO OPERATION!
X X X X X 1 DATA BUS - 3-STATE (NO OPERATION!

Not'.: 1, Selection oIIAA, ISA or Interrupting Le\lel is based on the content 01 OCW3 written before the READ operation.

2. On-chip sequencer logic queues these commands into proper sequence.

!l259A Basic Operation

B-11l

8259A/8259A-218259A-8

INITIALIZATION COMMAND WORDS 1 AND 2
(ICW1,ICW2)

A5-A.5: Page starting address of service routines. In an
MCS 80/85 system, the 8 request levels will generate
CALLs to 8 locations equally spaced in memory. These
can be programmed to be spaced at intervals of 4 or 8
memory locations, thus the 8 routines will occupy a
page of 32 or 64 bytes, respectively.

The address format is 2 bytes long (Ao-A.s). When the
routine interval is 4, Ao-A4 are automatically inserted by
the 8259A, while A5-A'5 are programmed externally.
When the routine interval is 8, Ao-A5 are automatically
inserted by the 8259A, while A6-A.5 are programmed
externally.

The 8-byte interval will maintain compatibility with cur­
rent software, while the 4-byte interval is best for a com­
pact jump table.

In an MCS-86 system T7-T3 are inserted in the five
most significant bits of the vectoring byte and the
8259A sets the three least significant bits according to
the interrupt level. A lO-A5 are ignored and ADI (Ad­
dress Interval) has no effect.

L TIM: If LTIM = 1, then the 8259A will operate in the
level interrupt mode. Edge detect logic on the
interrupt inputs will be disabled.

ADI: CALL address interval. ADI = 1 then Interval = 4;
ADI = 0 then interval = 8.

SNGL: Single. Means that this is the only 8259A in the
system. If SNGL = 1 no ICW3 will be issued.

IC4: If this bit is set - ICW4 has to be read. If ICW4
is not needed, set IC4 = O.

AO D7 De D5 D4

I 0 A7 AI A5

I

L • A15/T7 A14/T6 A13/TS A12/T4

INITIALIZATION COMMAND WORD 3 (ICW3)

This word is read only when there is more than one
8259A in the system and cascading is used, in which
case SNGL = O. It will load the 8-bit slave register. The
functions of this register are:

a. In the master mode (either when SP = 1, or in buf­
fered mode when MIS = 1 in ICW4) a "1" is set for
each slave in the system. The master then will re­
lease byte 1 of the call sequence (for MCS-80/85
system) and will enable the corresponding slave to
release bytes 2 and 3 (for 8086/8088 only
byte 2) through the cascade lines.

b. In the slave mode (either when SP = 0, or if BUF = 1
and M / S = 0 in ICW4) bits 2-0 identify the slave. The
slave compares its cascade input with these bits
and if they are equal, bytes 2 and 3 of the call
sequence (or just byte 2 for 8086/8088)
are released by it on the Data Bus.

INITIALIZATION COMMAND WORD 4 (ICW4)

SFNM: If SFNM = 1 the special fully nested mode is
programmed.

BUF: If BUF = 1 the buffered mode is programmed. In
buffered mode SP/EN becomes an enable output
and the masterlslave determination is by MIS.

MIS: If buffered mode is selected: MIS = 1 means the
8259A is programmed to be a master, MIS = 0
means the 8259A is programmed to be a slave. If
BUF = 0, MIS has no function.

AEOI: If AEOI = 1 the automatic end of interrupt mode
is programmed.

IlPM: Microprocessor mode: "PM = 0 sets the 8259A
for MCS-80/85 system operation, "PM = 1 sets
the 8259A for MCS-86 system operation.

D3 D2 D. DO

LTIM ADI SNQl le4 fleW1

All/T3 A.O A. AI I'CW2

~--------------------.;:'.~ ... , ..
I • 57 se 55 54 53 521102 51/101 SOliDO (leW3

I

r--------------------(-.::~ ~."
I 1 5FNM aUF MIS AEOI ~PM (lew ..

t
I

READY TO ACCEPT INTERRUPTS

Figure 1. Initialization Sequence

B-1 12

82S9A/82S9A-2/82S9A-8

ICWI

ICW'

leW3 jMASTER DEVICE)

1 lew" NEEDED
o ~ NO lew .. NEEDED

1 = SINGLE
o '" CASCADE MODE

CALL A[,ORESS INTERVAL
1 ~ INTERVAL OF"
o ~ INTERVAL OF 8

1 "" LEVEL TRIGGERED MODE
o "" EDGE TRIGGERED MODE

A7-A5 01 INTERRUPT
VECTOR ADDRESS

(MeS-BO 185 MODE ONLY)

A 15 -Aa OF INTERRUPT
VECTOR ADDRESS

(MCsaD/55 MODE)
T 7-T 3 OF INTERRUPT
VECTOR ADDRESS

(808618088 MODE)

1 = IR INPUT HAS A SLAVE
"--L-----'----'-----'----'----L--'-------I 0" IR INPUT OOES NOT HAVE

A SLAVE

ICW31SlAVE DEVICE I

SLAVE 10111

1 = 80861B088 MODE
a = Mes-So! 85 MODE

1 AUTO EOI
o ~ NORMAL EOI

EliEx .- NON BUFFERED MODE
1 0 - BUFFERED MODE/SLAVE
1 1 - BUFFERED MODE/MASTER

1 = SPECIAL FULLY NESTED

'----------1 0 = ~g~~PECIAL FULLY
NESTED MODE

NOTE 1· SLAVE 10 IS EQUAL TO THE CORRESPONDING MASTER IR INPUT.

Initialization Command Word Format

B-l13

82S9A/82S9A-2/82S9A-8

OPERATION COMMAND WORDS (OCWs)
After the Initialization Command Words (ICWs) are pro­
grammed into the 8259A, the chip Is ready to accept
Interrupt requests at its input lines. However, during the
8259A operation. a selection of algorithms can com­
mand the 8259A to operate in various modes through
the Operation Command Words (OCWs).

OPERATION CONTROL WORDS (OCWs)

OCWI

AO 07 De 05 04 03 02 01 DO

GJ I M7 M6 M5 M4 M3 M2 MI MO I

OCW2

0 I A SL EOI 0 0 L2 L1 LO I

OCW3

0 I 0 ESMM SMM 0 P AA AIS I

OPERATION CONTROL WORD 1 (OCW1)

OCW1 sets and clears the mask bits in the interrupt
Mask Register (IMR). M7 - Mo represent the eight mask
bits. M = 1 indicates the channel is masked
(inhibited), M = 0 indicates the channel is enabled.

OPERATION. CONTROL WORD 2 (OCW2)

R, SL, EOI ~ These three bits control the Rotate and
End if Interrupt modes and combinations of the two. A
chart of these combinations can be found on the Opera­
tion Command Word Format.

L2, L" Lo - These bits determine the interrupt level
acted upon when the SEOI bit is active.

OPERATION CONTROL WORD 3 (OCW3)

ESMM - Enable Special Mask Mode. When this bit is
set to 1 it enables the SMM bit to set or reset the Special
Mask Mode. When ESMM = 0 the SMM bit becomes a
"don't care".

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1
the 8259A will enter Special Mask Mode. If ESMM = 1
and SMM = 0 the 8259A will revert to normal mask mode.
When ESMM = 0, SMM has no effect.

B-114

8259A/8259A-2/8259A-8

1
0 " I sc I EO' I 0 i 0 I " I '. I '0 I

l
IR lEVEL TO BE

ACTED UPON

0 , 2 3 4 5 6 ,
0 , 0 , 0 , 0 ,
0 0 , , 0 0 , ,
0 0 0 0 , , , ,

) r
rt 0-+ Non-specifiC EOI Command } t-;;- 0-;-, • Specific EOI Command

END OF INTERRUPT

f-i- fa, Rotate On Non-Specific EOI Command

} r,-roo Rotate In Automatic EOI Mode (SET) AUTOMATIC ROTATION to r,o Rotate In Automatic EOI Mode (CLEAR) r,- r-;-, 'Rotate On Specific EOI Command } r,-c'o • Set Priority Command SPECIFIC ROTATION

~~o No operation
'lO-L2 are used

QCW3

I 0-1 - 1"""1 SM" I 0 I ' I ' I "" I ""
IN'

I
l_ READ REGISTER COMMAND

CARE 0 I , 0 ,
0 I 0 , ,

READ READ

NO ACTION
IR REG IS REG
ON NE'i.T ON NEXT
ROf>ULSE RDPULSE

1 '" POLL COMMAND

a =: NO POLL COMMAND

SPECIAL MASK MODE

0 I , 0 ,
0 I 0 , ,

RESET SET
NO ACTION SPECIAL SPECIAL

MASK MAS'

Operation Command Word Format

B-115

82S9A/82S9A-2/82S9A-8

INTERRUPT MASKS

Each Interrupt Request input can be masked indivIdu­
ally by the Interrupt Mask Register (IMR) programmed
through OCWI. Each bit in the IMR masks one interrupt
channel if it is set (1). Bit 0 masks IRO, Bit 1 masks IRI
and so forth. Masking an IR channel does not affect the
other channels operation.

SPECIAL MASK MODE

Some applications may require an interrupt service
routine to dynamically alter the system priority struc­
ture during its execution under software control. For
example, the routine may wish to inhibit lower priority
requests for a portion of its execution but enable some
of them for another portion.

The difficulty here is that if an Interrupt Request is
acknowledged and an End of Interrupt command did not
reset its IS bit (i.e., while executing a service routine),
the 8259A would have inhibited all lower priority
requests with no easy way for the routine to enable
them

That is where the Special Mask Mode comes in. In the
special Mask Mode, when a mask bit is set in OCW1, it
inhibits further interrupts at that level and enables inter­
rupts from al/ other levels (lower as well as higher) that
are not masked.

Thus, any interrupts may be selectively enabled by
loading the mask register.

The special Mask Mode is set by OCW3 where:
SMM = 1, SMM = 1, and cleared where SMM = 1,
SMM = O.

BUFFERED MODE

When the 8259A Is used In a large system where bus
driving buffers are required on the data bus and the cas­
cading mode is used, there exists the problem of enabl­
ing buffers.

The buffered mode will structure the 8259A to send an
enable signal on SPIEN to enable the buffers. In this
mode, whenever the 8259A's data bus outputs are ena­
bled, the SPIEN output becomes active.

This modification forces the use of software program­
ming to determine whether the 8259A is a master or a
slave. Bit 3 in ICW4 programs the buffered mode, and bit
2 in ICW4 determine.s whether it is a master or a slave.

FULLY NESTED MODE

This mode is entered after initialization unless another
mode is programmed. The interrupt requests are
ordered in priority form 0 through 7 (0 highest). When an
interrupt is acknowledged the highest priority request is
determined and its vector placed on the bus. Additional­
ly, a bit of the Interrupt Service register (ISO-7) is set.
This bit remains set until the microprocessor issues an
End of Interrupt (EOI) command immediately before
returning from the service routine, or if AEOI (Automatic
End of Interrupt) bit is set, until the trailing edge of the
last INTA. While the IS bit is set, all further interrupts of
the same or lower priority are inhibited, while higher
levels will generate an interrupt (which will be
acknowledged only if the microprocessor internal Inter­
rupt enable flip-flop has been re-enabled through soft­
ware).

After the initialization sequence, IRO has the highest
priority and IR7 the lowest. Priorities can be changed,
as will be explained, by priority rotation.

THE SPECIAL FULLY NESTED MODE

This mode will be used in the case of a big system
where cascading is used, and the priority has to be con­
served within each slave. In this case the special fully
nested mode will be programmed to the master (using)
ICW4). This mode is similar to the normal fully nested
mode with the foliowing exceptions:

a. When an interrupt request from a certain slave is in
service this slave is not locked out from the master's
priority logic and further interrupt requests from
higher priority IR's within the slave will bf! recognized
by the master and will initiate interrupts to the proc­
essor. (In the normal nested mode a slave is masked
out when its request is in service and no higher
requests from the same slave can be serviced.)

b. When exiting the Interrupt Service routine the soft­
ware has to check whether the interrupt serviced was
the only one from that slave. This is done by sending
a non-specific End of Interrupt (EOI) command to the
slave and then reading its In-Service register and
checking for zero. If it is empty, a non-specific EOI
can be sent to the master too. If not, no EOI should be
sent.

B-116

82S9A/82S9A-2/82S9A-8

POLL
In this mode the microprocessor internal Interrupt
Enable flip·flop is reset, disabling its interrupt input.
Service to devices is achieved by programmer initiative
using a Poll command.

The Poll command is issued by setting P = "1" in OCW3.
The 8259A treats the next RD pulse to the 8259A (i.e.,
RD = 0, CS = 0) as an interrupt acknowledge, sets the
appropriate IS bit if there is a request, and reads the
priority level. Interrupt is frozen from WR to RD.

The word enabled onto the data bus during RC5 is:

07 De 05 04 03 02 01 DO
~ - ----------w-2---w-,---W-.ol

WO-W2: Binary code of the highest priority level
requesting service.
Equal to a "1" if there is an interrupt.

This mode is useful if there is a routine command comm­
mon to several levels so that the INTA sequence is not
needed (saves ROM space). Another application is to
use the poll command to expand the number of priority
levels to more than 64.

END OF INTERRUPT (EOI)

The In Service (IS) bit can be reset either automatically
following the trailing edge of the last in sequence INTA
pulse (when AEOI bit in ICW1 is set) or by a command
word that must be issued to the 8259A before returning
from a service routine (EOI commllnd). An EOI command
must be issued twice, once for themaster and once for
the corresponding slave if slaves are in use.

There are two forms of EOI command: Specific and Non·
Specific. When the 8259A iR operated in modes which
preserve the fully nested structure, it can determine
which IS bit to reset on EOI. When a "lon·Specific EOI
command is issued the 8259A will automatically reset
the highest IS bit of those that are set, since in the
nested mode the highest IS level was necessarily the
last level acknowledged and serviced.

However, when a mode is used which may disturb the
fully nested structure, the 8259A may no longer be able
to determine the last level acknowledged. In this case a
Specific End of Interrupt (SEOI) must be issued which
includes as part of the command the IS level to be reset.
EOI is issued whenever EOI = 1, in OCW2, where LO-L2
is the binary level of the IS bit to be reset. Note that
although the Rotate command can be issued together
with an EOI where EOI = 1, it is not necessarily tied to it.

It should be noted that an IS bit that is masked by an
IMR bit will not be cleared by a non·specific EOI if the
8259A is in the Special Mask Mode.

AUTOMATIC END OF INTERRUPT (AEOI) MODE

If AEOI = 1 in ICW4, then the 8259A will operate in AEOI
mode continuously until reprogrammed by ICW4. In this
mode the 8259A will automatically perform a non·
specific EOI operation at the trailing edge of the last
interrupt acknowledge pulse (third pulse in MCS·80185,

second in MCS·86). Note that from a system standpoint,
this mode should be used only when a nested multilevel
interrupt structure is not required within a single 8259A.

To achieve automatic rotation within AEOI, there
is a special rotate flip·flop. It is set by OCW2 with
R = 1, SL = 0. EOI = 0, and cleared with R = 0,
SEOI = 0, EOI = 0.

AUTOMATIC ROTATION
(Equal Priority Devices)

In some applications there are a number of interrupting
devices of equal priority. In this mode a device, after
being serviced, receives the lowest priority, so a device
requesting an interrupt will have to wait, in the worst
case until each of 7 other devices are serviced at Illost
once. For example, if the priority and "in service" status
is:

Belore Rotete (IR4 the highest priority requiring service)

157 lSI IS5 154 153 152 151 ISO

"'s" Status 101,101,101010101
Low •• 1 P~o~'y High ••• Prlo~'y

Priority Statu! 1 716 1 5 1 4 1 3 1 2 1 ho 1

After Rotate (IR4 was serviced, all other priorities
rotated corresp(lndingly)

157 lSI IS5 154 153 152 151 ISO

"IS" Status 101'lololololiJiJ

Priority Status

High ... Prlo~'y Low ••• Prlo~'y

I 2 1 1)0 1 7f1JD 4 I 3 1

There are two ways to accomplish Automatic Rotation
using OCW2, the Rotate on Non-Specific EOI Command
(R = 1, SL = 0, EOI = 1) and the Rotate in
Automatic EOI Mode which is set by (R = 1, SL = 0,
EOI = 0) and cleared by (R = ° SL = 0, EOI = 0).

SPECIFIC ROTATION
(Specific Priority)

The programmer can change priorities by programming
the bottom priority and thus fixing all other priorities;
i.e., if IR5 is programmed as the bottom priority device,
then IR6 will have the highest one.
The Set Priority command is issued in OCW2 where:
R = 1, SEOI = 1; LO-L2 is the binary priority level code
of the bottom priority device.

Observe that in this mode internal status is updated by
software control during OCW2. However, it is independ­
ent of the End of Interrupt (EOI) command (also exe­
cuted by OCW2). Priority changes can be executed dur­
ing an EOI command by using the Rotate on Specific
EOI Command in OCW2 (R = 1, SL = 1, EOI = 1 and
LO-L2 = IR level to receive bottom priority).

B-l17

8259A/8259A-2/8259A-8

lTlM 81T
0:;: EDGE
1::: lEVEL

TO OTH£" "uaAn CELLS

EDGE
SENSE

eLA ""

elA Q ISft lIT

SET

~LA~TE!CH:'-.-+-__ + ___ +_--+ __ -<~t-tt-t-:::;!:::::--ti sn IS" ''''DRITY
RESOLVIER

MGSaD/as J 1NTl~
MODE l

I'IIl!'H

{ INTAn ~~g~8088 __

FREEZE ~r-----

I~

NOTES

REOUEST
LATCH

C a

NON·
MASKED .,a

CONTROL
LOGIC

1. MAlTER CLEAR ACTIVE ONLY OURING ICW1

2. fAEEZE/'S ACTIVE DURING iNTAl AND POLL SEQUENCES ONLY

1 TRUTH TAllLE FOR D·LATCH

OPEftATION
FOLLOW

HOLD

Priority Cell - Simplified Logic Diagram

LEVEL TRIGGERED MODE

This mode is programmed using bit 3 in ICW1.

If L TIM = '1,' an interrupt request will be recognized by a
'high' level on IR Input, and there is no need for an edge
detection. The interrupt request must be removed
before the EOI command is issued or the CPU interrupt
is enabled to prevent a second interrupt from occurring.

The above figure shows a conceptual circuit to give the
reader an understanding of the level sensitive and edge
sensitive input circuitry of the 8259A. Be sure to note
that the request latch is a transparent D type latch.

READING THE 8259A STATUS

The input status oj several internal registers can be
read to update the user information on the system.
The following registers can be read via OCW3
(IRR and ISR or OCWI (lMR).

Interrupt Request Register (lRR): 8-bit register which
contains the levels requesting an interrupt to be
acknowledged. The highest request level is reset from
the IRR when an interrupt is acknowledged. (Not
affected by IMR).

In-Service Register (ISR): 8-bit register which contains
the priority levels that are being serviced. The ISA is
updated when an End 01 Interrupt command is issued.

Interrupt Mask Register: 8-bit register which contains
the interrupt request lines which are masked.

The IRR can be read when, prior to the RD pulse, a
Read Register Command is issued with OCW3 (RA = 1,
RIS = 0).

The ISR can be read when, prior to the RD pulse.
a Read Register Command is issued with OCW3 (RR =
1. RIS = 1).

There is no need to write an OCW3 before every status
read operation, as long as the status read corresponds
with the previous one; i.e., the 8259A "remembers"
whether the IAA or ISA has been previously selected by
the OCW3. This is not true when poll is used.

After initialization the 8259A is set to IAA.

For reading the IMR, no OCW3 is needed. The output
data bus will contain the IMR whenever RD is active and
AO = 1 (OCW1).

Polling overrides status read when P = I, RR = 1 in
OCW3.

B-1l8

In

4

5

8

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30
31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Mnemonic

ICWI A

ICWI B

ICWI C

ICWI 0

ICWI E

ICWI F

ICWI G

ICWI H

ICWI

ICWI

ICWI K

ICWI

ICWI M
ICWI N

ICWI 0

ICWI P

ICW2

ICW3 M

ICW3 S

ICW4 A

ICW4 B

ICW4 C

ICW4 0
ICW4 E

ICW4 F

ICW4 G

ICW4 H

ICW4

ICW4

ICW4 K

ICW4 L

ICW4 M

ICW4 N

ICW4 0
ICW4 P

ICW4 NA

ICW4 NB

ICW4 NC

ICW4 NO

ICW4 NE

ICW4 NF

ICW4 NG

ICW4 NH

ICW4 NI

ICW4 NJ

ICW4 NK

ICW4 NL

ICW4 NM

ICW4 NN

ICW4 NO

ICW4 NP

OCWI

OCW2 E

OCW2 SE

OCW2 RE

OCW2 RSE
OCW2 R

OCW2 CR

OCW2 RS

OCW3 P

OCW3 RIS

8259A/8259A-2/8259A-8

SUMMARY OF 8259A INSTRUCTION SET

o A7 A6 A5 1 0

o A7 AS A5 1 0
o A7 AS A5 o 0
o A7 AS A5 1 1 0 0

o A7 AS 0 o 0 0

A7 AS 0 1 0 1 0

A7 AS 0 o 0 0 0

o A7 A6 o 0 0

o A7 A6 A5

A7 A6 A5

A7 A6 A5

o
1

o 0

o A7 AS A5 1 1 0

o A7 A6 0 o 0
o A7 A6 0 1 0

o A7 AS 0 o 0
o A7 AS 0 o 0

1

o
o
o
o
o
o
o
o
o

A15 At4 A13 A12 All Al0 AS AS

S7 sa S5 S4 S3 S2 SI SO

o 0 0 0 0 S2 SI SO

o 0 0 0 0 0 0 0

00000001

0000000

o 0 0 0 0 1

o 0 0 0 0

o 0 0 0 0 1

o 0 0 0 0

o 0 o 0 1 1

o 0 o 0 o 0
o 0 o 0 o 0 1

o 0 o 0 o 0

o 0 o 0 o 1 1

o 0 o 0 o 0

o 0 o 0 o
o 0 o 0
o 0 o 0 1 1 1

o

1

o
1

o o 0 o 0 0

o 0 0

o 0 0

o
o

o 0 0

o 0 0

o 0 0

o
o 0

o 0 0

o
o 0 0

o 0 0

o

o 0 0

o 0

o 1

o 0

o 1

o 0
o 1 1

o 0
o 0 l'

o 0
o 1

o
o 1

o
o 0 0 1 1

M7 M6 M5 M4 M3 M2 Ml MO

000009 0
0100L2L1LO

1

o

o Q 0 0 0

1 OOL2L1LO

o 0 0 0 0 0

o 0 o 0 0 0

o 0 o L2 Ll LO

o 0 1 0
o 0 o 0 o

B-119

I
}

}

O lIon Dncrlptlon

Format = 4, single, edge triggered

Format = 4, single, level triggered

Byte 1 Initi.IlZlllon Format = 4, not single, edge triggered

Format = 4, not. single, level trig{'ered

No ICW4 Required Format = 8, single, edge triggered

Format = 8, single, level triggered

Formll = 8, not lingle, edge triggered

Format = 8, not lingle, 1 ... 1 triggered

Format = 4, lingle, edge triggered

Format = 4, single, I •• el triggered
Byte 1 Inltiallzellon Format. 4, not lingle, edge triggered

Format = 4, not lingle, le •• 1 triggered
ICW4 Required Format = 8, lingle, edge triggered

Byte 2 initialization

Format = 8, lingle, 1 ••• 1 triggered

Format = 8, not single, edge Irlggered

Format = 8, not lingle, I •• el triggered

Byte 3 initialization - master

Byte 3 initialization - slave

No actio", redundant
Non-buffered mode, no AEOI, 8086/8088

Non-buffered mode, AEOI, MCS-80/85

Non-buffered mode, AEOI, 8086/808B

No action, redundant

Non-buffered mode, no AEOI, B086/8088

Non-buffered mode, AEOI, MCS-80 I B5

Non-buffered mode, AEOI, B086/8088

Buffered mode, slave, no AEOI, MCS-80/85

Buffered mode, slave, no AEOI, BOB6/B088

Buffered mode, slave, AEOI, MCS-80/85

Buffered mode, slave, AEOI, 8086/8088

Buffered mode, master, no AEOI, MCS-BO/85

Buffered mode, master, no AEOI, 808618088

Buffered mode, master, AEOI, MCS-BO/85

Buffered mode, master AEOI, B086, 8088

Fully nested mode, MCS-BO, non buffered, no AEOI

ICW4 N6 through ICW4 NO are identical to
ICW4 B through ICW4 0 with the addition 01
Fully Nested Mode

FUlly Nested Mode, MCS-SO/85, non-bullered, no AEOI

ICW4 NF through ICW4 NP are idenlical to
ICW4 F through ICW4 P with the addition 01
Fully Nested Mode

Load mask register, read mask register

Non-specific EOI

Specific EOI, LO-L2 code of IS FF to be reset

Rotate on Non-Specific EOI

Rotate on Specific EOI LO-L2 code of line

Rotate in Auto.EOI (set)

Rotate in Auto EOI (clear)

Set Priority Command

Poll mode

Read IS .reglster

82S9A/82S9A-2/82S9A-8

SUMMARY OF 8259A INSTRUCTION SET (Cont.)

Ina ... Mnamonlc AO D7 De D5 D4 D3 D2 Dl DO

46 OCW3 RR 0 0 0 0 0 0 1

47 OCW3 SM 1 0 0
46 OCW3 RSM 0 0

Nol.: 1. In the master mode SP pin = 1, In slave mode SP = 0

Clscldlng

The 8259A can be easily interconnected in a system of
one master with up to eight slaves to handle up to 64
priority levels.

A typical MCS-80/85 system is shown in Figure 2. The
master controls, through the 3 line cascade bus, which
one of the slaves will release the corresponding
address.

As shown in Figure 2, the slave interrupt outputs are
connected to the master interrupt request inputs. When
a slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave

0

0

Operallon D.acrlpllon

Read request register

Set special mask modi

Reset special mask mode

to release the device routine address during bytes 2
and 3 of INTA. (Byte 2 only for 8086/8088).

The cascade bus lines are normally low and will contain
the slave address code from the trailing edge of the first
INTA pulse to the trailing edge of the third pulse. It is
obvious that each 8259A in the system must follow a
separate initialization sequence and can be pro­
grammed to work in a different mode. An EOI command
must be issued twice: once for the master and once for
the corresponding slave. An address decoder is required
to activate the Chip Select (CS) input of each 8259A.

The cascade lines of the Master 8259A are activated for
any interrupt input, even if no slave is connected to that
input.

ADDRESS 8US (161

\

\

-- - - - - ---
-- - - f-- ---
--I- - -- --- I-

1----'
cs ... 00·7 tNTA INT

CASe

8259A 1-SLAVE A
CAS 1 t-

CAS 2 1-
SPIEN7 6 5 4 3 2 1 0

GL I I I I I 1 1 I
76543210 l

CONTROL BUS

DATA BUS III

f-- t-
t--t-
f-- f-- r----

CS Ao 00-7 INTA IN!

CASO

8259A
SLAVE 8 CAS 1

CAS 2

SilIEN' 6 5 4 3 2 1 0

G!O 1 1 111111
16543210

I
INTERRU'T REQUESTS

Figure 2. Clscldlng the 8259A

B-120

INT REa

\

:;-
CS ... 00-7 INTA INT

CASO

8259A
CASl MASTER

CASZ

SPIENM7 M6 M5 M. M3 M2 Ml MO

I L L tIl I 1 1 .. I. 2 1 0

8259A/8259A-2/8259A-8

PIN FUNCTIONS
NAME 1/0 PIN# FUNCTION

Vcc I 28 +5v supply

GNO 14 Ground

CS Chip Select
A low on this pin enables RO
and WR communication be-
tween the CPU and the 8259A.
INTA functions are independent
ofCS.

WR 2 Write:
A low on this pin when CS is
low, enables the 8259A to ac·
cept command words from the
CPU.

Ri5 3 Read:
A low on this pin when CS is low
enables the 8259A to release
status onto the data bus for the
CPU.

0 7-00 I/O 4-11 Bidirectional Data Bus:
Control, status and interrupt-
vector information is trans-
ferred via this bus.

CASo-CAS2 110 12,13,15 Cascade Lines:
The CAS lines form a private
8259A bus to control a multiple
8259A structure. These pins
are outputs for a master 8259A
and inputs for a slave 8259A.

SP/EN 110 16 Slave Program/Enable Buffer:
This is a dual function pin.
When in the Bufferad Mode it
can be used as an output to
control buffer transceivers
(EN). When not in the buffered
mode it is used as an input to
designate a master (SP = 1) or
slave (SP =0).

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias ... ,. - 40·C to 85·C
Storage Temperature -65·C to + 150·C

Voltage On Any Pin

With Respect to Ground. - 0.5V to + 7V
Power Dissipation 1 Watt

D.C. CHARACTERISTICS

INT 0 17 Interrupt:
This pin goes high whenever a
valid interrupt request is as-
serted. 11 is used to interrupt
the CPU, thus it is connected to
the CPU's interrupt pin.

IRo-IR7 18-25 Interrupt Requests:
Asynchronous inputs. An inter-
rupt request can be generated
by raising an IR input (low to
high) and holding it high until it
is acknowledged (Edge Trig-
gered Mode), or iust by a high
level on an IR input (Level Trig·
gered Mode).

INTA 26 Interrupt Acknowledge:
This pin is used to enable
8259A interrupt-vector data
onto the data bus. This is done
by a sequence of interrupt ac·
knowledge pulses issued by
the CPU.

Ao 27 AO Address Line:
This pin acts in conjunction with
the CS, WR, and Ri5 pins. It is
used by the 8259A to decipher
between various Command
Words the CPU writes and sta·
tus the CPU wishes to read. It
is typically connected to the
CPU AO address line (A 1 for
8086/8088).

·COMMENT
Stresses above those listed under "Absolute Maximum Ratings" may
cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification Is not
implied.

T A = o·c to 70·C, Vce= 5V ± 10% (8259-A), Vee = 5V ± 10% (8259A)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage -.5 V

V IH Input High Voltage 2.0 Vcc + .5V V

VOL Output Low Voltage .45 V IOL=2.2 mA

VOH Output High Voltage 2.4 V IOH=-400j.tA

VOH(INT)
Interrupt Output High 3.5 C IOH= -100 j.tA
Voltage 2.4 V IOH = - 400,.A

III Input Load Current 10 j.tA VIN=VCC to OV

ILOL Output Leakage Current -10 j.tA VouT =0.45V

lec Vee Supply Current 85 mA

ILiR IR Input Load Current
-300 j.tA VIN=O

10 j.tA VIN=VCC

B-121

82S9A/82S9A-2/82S9A-8

8259A A.C. CHARACTERISTICS
T..,=O·Cto70·C Vcc=5V±5%(8259A·8) VCC =5V±10%(8259A)

TIMING REQUIREMENTS

Symbol Parameter
8259A·8 8259A

Min. Max. Min. Max.

TAHRL AD / CS Setup to RD / INTAj 50 0

TRHAX AO / CS Hold after RD IINTA 1 5 0

TRLRH RD Pulse Width 420 235

TAHWL AO/CS Setup to WRj 50 0

TWHAX AO/CS Hold after WRj 20 0

TWLWH WR Pulse Width 400 290

TDVWH Data Setup to WRj 300 240

TWHDX Data Hold after WRj 40 0

TJLJH Interrupt Request Width (Low) 100 100

TCVIAL
Cascade Setup to Second or Third

55 55
INTAj (Slave Only)

TRHRL End of RD to Next Command 160 160

TWHRL End of WR to Next Command 190 190

Note: This is the low time required to clear the input latch In the edge triggered mode.

TIMING RESPONSES

Symbol Parameter 8259A·8 8259A

Min. Max. Min. Max.

TRLDV Data Valid from RDIINTAj 300 200

TRHDZ Data Float after RD liNT A 1 10 200 100

8259A·2

Min. Max.

0

0

160

0

0

190

160

0

100

40

160

190

8259A·2

Min. Max.

120

85

Units Test Conditions

ns

ns

ns

ns

ns

ns

ns

ns

ns See Note 1

ns

ns

ns

Units Test Conditions

-
ns C of Data Bus =

100 pF

ns C of Data Bus

TJHIH Interrupt Output Delay 400 350 300 ns
Max text C = 100 pF
Min. test C = 15 pF

TlAHCV
Cascade Valid from First INTAj

565 565 360 ns C'NT = 100 pF
(Master Only)

TRLEL Enable Active from RD j or INTAj 160 125 100 ns CeAseADE = 100 pF

TRHEH Enable Inactive from RDj or INTAj 325 150 d150 ns

TAHDV Data Valid from Stable Address 350 200 200 ns

TCVDV Cascade Valid to Valid Data 300 300 200 ns

CAPACITANCE
T..,= 25·C; VCC= GND= OV

Symbol Parameter Min. Typ. Max. Unit Test Conditions

C'N Input Capacitance 10 pF fe = 1 MHz

Crlo I/O Capacitance 20 pF Unmeasured pins returned to V ss

Input and Output Waveforms for A.C. Tests

2.4

___ JX:: > "" ~'N" < :: X
0.45 '-----

B-122

WRITE MODE

Ci

ADDRESS IUS

82S9A/82S9A-2/82S9A-8

---TWLWH

\
- TAHWL -
}

- TWHAX -
~

-TDVWH- -TWHDX

DATA IUS

READ/INTA MODE

ADDRESS

Ao

IUS

\

-
-
)

) L
TRLRH

i
\ I-- TRLEL - iJLTRHEH

t--TAHRL - t--TRHAX

K

b, ... ·----------------9~_____'r-----
--TRLDY -~ TRHDZ --

!----TAHDY

OTHER TIMING
1IDIIIITl----___.

!----TWHRL·---_I

INTA SEQUENCE

IR

INT------..J

INTA---------~

D8--------____ _ -- -0--
_TCVIAL

CO.2-------------------r-------L1------~----~~--------------~-
-TlALCV------­

IlIOn. '-.... __ ft MIGM 1M _,'w"", -... """'IIIU. IIIIICI_-.-...,. ill c.c .. , ... IIIICt ... __ _. ... ,

B-123

Appendix B
Device Specifications

•
• 8085 Peripherals·
•
•
•
•

inter
8155/8156/8155-2/8156-2

2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER

• 256 Word x 8 Bits • 1 Programmable 6-Bit I/O Port

• Single +5V Power Supply • Programmable 14-Bit Binary Counter/

• Completely Static Operation Timer

• Internal Address Latch • Compatible with 8085A and 8088 CPU

• 2 Programmable 8 Bit I/O Ports • Multiplexed Address and Data Bus

• 40 Pin DIP

The 8155 and 89156 are RAM and I/O chips to be used in the 8085A and 8088 microprocessor systems. The
RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns
to permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use
with the 8085A-2 and the full speed 5 MHz 8088 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status
pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter /timer is jalso included on chip to provide either a square wave or terminal count pulse
for the CPU system depending on timer mode.

PIN CONFIGURATION BLOCK DIAGRAM

PC, Vee

PC, PC,

~
TIMER IN PC, 101M

RESET PC. PAO- 7

PCs PB,
ADO- 7 256 X 8

TIMER OUT PBs STATIC

101M PBs RAM

~ PB, *
AD PB,

PBo'7
ALE

WR PB,

ALE PB, R5

G
AD. PB. W.
AD, PA, pea - s

RESET TIMER AD, PAs

AD, PAs

Lvcc ~+5V) AD, PA,
TIMER elK

ADs PA,

ADs
TIMER OUT Vss (OV)

PA,

AD, PA,

Vss PA.
': 8155/8155·2 = CE. 8156/8156·2 = CE

B-124

inter
8185/8185-2

1024 x 8-BIT STATIC RAM FOR MCS-85™

• Multiplexed Address and Data Bus • Low Standby Power Dissipation

• Directly Compatible with 808SA
and 8088 Microprocessors

• Low Operating Power Dissipation

• Single +SV Supply

• High Density 18-Pin Package

The Intel'" 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using
N-channel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly
to the 8085A and 8088 microprocessors to provide a maximum level of system integration.

The low standby power dissipation minimizes system power requirements when the 8185 is disabled.

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085A-2 and the full speed
5 MHz 8088.

PIN CONFIGURATION

ADD Vee

AD, RD

AD, WR

AD, ALE

AD4 es

ADs eE,

AD, eE,

AD, Ag

Vss A,

PIN NAMES

ADO·AD7
As, Ag
es
cr,
eE,
ALE
RO
WR

ADDRESS/DATA LINES
ADDRESS LINES
CHIP SELECT
CHIP ENABLE (101M)
CHIP ENABLE
ADDRESS LATCH ENABLE
READ ENABLE
WRITE ENABLE

B-125

BLOCK DIAGRAM

cs----·I
eE,----.J
c~----.J
fli)----.J
WR---~-I
ALE---~-I

A,.Ag---~·1

R!W
LOGiC

DATA
BUS

BUFFER

ALE-----L ______ ~

1K x 8
RAM

MEMGRY
ARRAY

8355/8355-2
16,384-BIT ROM WITH 1/0

• 2048 Words x 8 Bits

• Single + 5V Power Supply

• Directly compatible with 8085A
and 8088 Microprocessors

• 2 General Purpose 8·Bit 110 Ports

• Each 110 Port Line Individually
Programmable as Input or Output

• Multiplexed Address and Data Bus

• Internal Address Latch

• 40·Pin DIP

The Intel@ 8355 is a ROM and I/O chip to be used in the 8085A and 8088 microprocessor systems. The ROM por­
tion is organized as 2048 words by 8 bits. It has a maximum acess time of 400 ns to permit use with no wait states in
the 8085A CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines and each I/O port line is
individually programmable as input or output.

The 8355-2 has a 300ns access time for compatibility with the 8085A-2 and full speed 5 MHz 8088 microprocessors.

PIN CONFIGURATION BLOCK DIAGRAM

Vee

elK

PB,

N.C. (NOT CONNECTED) 5 PB,

PB,
ADO_ 7

PB,

G
PORT A

PB,
As- lO PAO--7

R1l PBo

lOW PA, eE, B PA, CE1 ROM

G
PA,

101M
ALE PBO- 7

PA,
R1l

PA,
lOW

PA,
RESET

PA, iOR
AD, PAo

A10 ~vee 1+5VI A,

Vss Vss (OV)

B-126

inter
8755A 18755A-2

16,384-8IT EPROM WITH 1/0

• 2048 Words x 8 Bits

• Single + 5V Power Supply (Vee>

• Directly Compatible with 8085A
and 8088 Microprocessors

• U.V. Erasable and Electrically
Reprogrammable

• Internal Address Latch

• 2 General Purpose 8·Bit 1/0 Ports

• Each 1/0 Port Line Individually
Programmable as Input or Output

• Multiplexed Address and, Data Bus

• 40·Pin DIP

The Intel'" 8755A is an erasable and electrically reprogram mabie ROM (EPROM) and 110 chip to be used in the 8085A
and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum
access time of 450 ns to permit use with no wait states in an 8085A CPU.

The 1/0 portion consists of 2 general purpose 1/0 ports. Each 1/0 port has 8 port lines, and each 1/0 port line is
individually programmable as input or output.

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the full speed 5
MHz 8088.

PIN CONFIGURATION BLOCK DIAGRAM

Vee

PB, ClK

PBs

RESET PIIs
READY

Voo PB,

PB,

101M PB,

PB,

PlIo

lOW PA,

A"o_,

G AS--10 PAO-7

CE,
2K x 8

ALE PAs

AD. PA,

AD, PA,

AD,

101M EPROM

G
ALE

PBO-7
AD

lOW

AD, PA, RESET

AD, PA, lOR
AD, PAD

AD. A,.

AD,

lis.

PROG/CE, ~veel+5V)
Voo Vss IOV)

B-127

Appendix B
Device Specifications
III~ .1

• Standard Peripherals··

• For complete specifications refer to the
Intel MCS-85 User's Manual.

"For complete specifications refer to the
Intel Peripheral Design Handbook.

"'For complete specifications refer to the 1979
Intel Component Data Catalog.

8041 AJ8641 AJ8741 A
UNIVERSAL PERIPHERAL INTERFACE

8·BIT MICROCOMPUTER

• 8·Bit CPU plus ROM, RAM, 110, Timer • Fully Compatible with MCS·48™,
and Clock in a Single Package MCS.80™, MCS·85™, and MCS·86™

• One 8·Bit Status and Two Data Regis·
Microprocessor Families

ters for Asynchronous Slave·to·Master • Interchangeable ROM and EPROM
Interface Versions

DMA, Interrupt, or Polled Operation • 3.6 MHz 8741A·8 Available
•

Supported • Expandable I/O

1024 x 8 ROM/EPROM, 64 x 8 RAM, • RAM Power· Down Capability •
8·Bit Timer/Counter, 18 Programmable • Over 90 Instructions: 70% Single Byte
110 Pins • Single 5V Supply

The Intel'" 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8-bit
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O
ports, timer/counter, and clock in a single 40·pin package. Interface registers are included to enable the UPI device to
function as a peripheral controller in MCS-48™, MCS-80™, MCS-85™, MCS-86™, and other 8-bit systems.

The UPI_41A™ has 1 K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the
program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A
and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641A is a
one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The
substitution of 8641A's for 8041A's allows for very fast turnaround for initial code verification and evaluation results.

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either in­
puts or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has
·,6 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041 A).
single-step mode for debug (in the 8741A), and dual working register banks.

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI inter­
face devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include key­
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral
devices to microprocessor systems.

PIN CONFIGURATION

TESTQ

XTAL1

XTAL2

Vss

P" .10
Voo

[go. •

:::::= 11 '
INTEAFACE W'II"-_ .. -­

C<-_ .. ~-
SYNC
H-_

PROG

""'--
CRYSTAL r XTAL1~_.--L
~~o~:l XTAL2-.-l::J

B-128

BLOCK DIAGRAM

~-_ ~~_J~ '"
MEMO"' ~,

'--~::::;;;;i;';:;:;;:-r'

RESIDENT
64_8

RANDOM
ACCESS
MEMORY

inter
8202

DYNAMIC RAM CONTROLLER

• Provides All Signals Necessary to· • Provides Transparent Refresh Capability
Control 2104A, 2117, or 2118 Dynamic
Memories • Fully Compatible with Intel® 8080A,

• Directly Addresses and Drives Up to 8085A and 8086 Microprocessors
128K Bytes Without External Drivers

• Decodes SOS5A Status for Advanced • Provides Address Multiplexing
Read Capability and Strobes

• Provides a Refresh Timer and a • Provides System Acknowledge and
Refresh Counter Transfer Acknowledge Signals

• Refresh Cycles May be Internally or
Externally Requested • Internal or External Clock Capability

The 8202 is a Dynamic RAM System Controller designed to provide all signals necessary to use 2104A, 2117, or 2118
Dynamic RAMs in microcomputer systems. The 8202 provides multiplexed addresses and address strobes, as well as
refresh/access arbitration. Refresh cycles can be started internally or externally.

AH4

AH3

AH2

AH,

1:o. Ho
ALo

OUTO

AL,

OUT,

AL2

OUT2

AL3

OUT3

AL4

OUT4

ALs

OUTs

ALslOP3

OUTS

VSS

PIN CONFIGURATION

vcc
AHS

AHS

X,ICLK

Xo'OP2

TNK

REFRQIALE

PCS

RDIS'

WR

SACK

XACK

WE

CAS

AAll3

B,IOP,

BO

RAS2

AAll,

RASo

AH06

BO

8,/OP,

RD/S'
WR
PCS

REFRQ/ALE

XO/OP2
X,/eLK

TNK

B-129

8202 BLOCK DIAGRAM

~

v MULTIPLEXER

REFRESH I
COUNTER L

t 1 .
TIMING

ARBITER AND

I- CONTROL

t
REFRESH

TIMER

.
OSCILLATOR

~

I----

I----
I----
I----

f--
r--
r--
r--

OUT06

WE

CAS

RASa

RAS,

RAS2

RAS3

XACK

SACK

inter
8205

HIGH SPEED 1 OUT OF 8 BINARY DECODER

• I/O Port or Memory Selector

• Simple Expansion - Enable Inputs

• High Speed Schottky Bipolar
Technology - 18ns Max. Delay

• Directly Compatible with TTL Logic
Circuits

• Low Input Load Current - .25 mA
max., 1/6 Standard TTL Input Load

• Minimum Line Reflection - Low
Voltage Diode Input Clamp

• Outputs Sink 10 mA min.
• 16-Pin Dual-In-Line Ceramic or

Plastic Package

The 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and mem­
ory components with active low chip select input. When the 8205 is enabled, one of its eight outputs goes
"low", thus a single row of a memory system is selected. The 3 chip enable inputs on the 8205 allow easy
system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive
eight other decoders for arbitrary memory expansions.

The Intel@8205 is packaged in a standard 16 pin dual-in-line package; and its performance is specified over
the temperature range of O°C to + 75°C, ambient. The use of Schottky barrier diode clamped transistors to
obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffu­
sion process.

PIN CONFIGURATION LOGIC SYMBOL

Ao 16 V·cc Ao

Al 15 0;; Al

A, 14 G,' A2

E;' 4 13 0;
8205 8205

E;- 12 0;

E3 6 11 0; E,

0; 10 Os E2

GRD 8 9 0 6 E3

ADDRESS ENABLE OUTPUTS

PIN NAMES Ao A, A, E, E, " 0 , ,. 3' 4' 5 ii 7

L L L L L H L H H H H H H H
H L L L L H H L H H H H H H

ADDRESS INPUTS L H L L L H H H L H H H H H

ENABLE INPUTS
H H L L L H H H H L H H H H
L L H L L H H H H H L H H H

DECODED OUTPUTS H L H L L H H H H H H L H H
L H H L L H H H H H H H L H
H H H L L H H H H H H H H L
X X X L L L H H H H H H H H
X X X H L L H H H H H H H H
X X X L H L H H H H H H H H
X X X H H L H H H H H H H H
X X X H L H H H H H H H H H
X X X L H H H H H H H " H H
X X X H H H H H H H H H H H

B-130

inter '$>/", '

8251 A OO!CO%?}}fSao O~ry

COMMUNICATION INTERFAtit::" PROGRAMMABLE
• Synchronous and Asynchronous • Asynchronous Baud Rate - DC to '0 &'ZtrB

Operation 19.2K Baud

• Synchronous 5·8 Bit Characters;
Internal or External Character Synchro·
nization; Automatic Sync Insertion

• Asynchronous 5·8 Bit Characters;
Clock Rate-1, 16 or 64 Times Baud
Rate; Break Character Generation; 1,
11/2, or 2 Stop Bits; False Start Bit
Detection; Automatic Break Detect
and Handling.

• Synchronous Baud Rate - DC to 64K
Baud

• Full Duplex, Double Buffered, Trans·
mitter and Receiver

• Error Detection - Parity, Overrun and
Framing

• Fully Compatible with 8080/8085 CPU

• 28·Pin DIP Package

• All Inputs and Outputs are TTL
Compatible

• Single + 5V Supply

• Single TTL Clock
The Intel'" 8251A is the enhanced version of the industry standard, Intel'" 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter (USART), designed for data communications with Intel's new high performance family of
microprocessors such as the 8085. The 8251A is used as a peripheral device and is programmed by the CPU to operate
using virtually any serial data transmission technique presently in use (including IBM "bi·sync"). The USART accepts
data characters from the CPU in parallel format and then converts them into a continuous serial data stream for
transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the
CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has
received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data
transmission errors and control signals such as SYNDET, TxEMPTY. The chip is constructed using N·channel silicon
gate technology.

PIN CONFIGURATION

0, 0,

0, On

R.D Vcr

GND R.e

0, DTR

De RTS

D, DSR

D7 RESET

he eLK

We hD

CS TKEMPTY

c/o eTS

RD SYNDET/BO

R)(RDY T"RDY

PIN NAMES
0/ Do Data Bus (8 bltsi DSR Data Set Ready

CID Control or Data IS 10 be Wrillen or Read DTR Data Terminal Ready

SYNDET/SD Sync Detect!
Break Detect

RD Read Data Cornmand

WR Write Data or Control Command

RTS Request to Send Data
CS Chip Enable
eLK Clock Pulse (TTLI

RESET Reset CTS Clear to Send Data

hl Transmitter Clock T,' Transmitter Empty

Vee +5 Volt Supply

GND Ground

TICD Transmitter Data
FGC Receiver Clock

RxD Receiver Data

R"RDY Receiver Ready (has character for 80801

T"RDY Transmitter Ready {ready for char from 80801

B-131

BLOCK DIAGRAM

DATA
BUS

I I BUFFER

/'
'of

oJ ~rl

-1 -V

RESET

eLK

C'D

1
READ/WRITE

CONTROL
LOGIC

/'-
"

f--
j
I I
, I

:1
DSR _r------, I '

- I DTR ___ D MOD'M I

cTI __ -. CONTROL ~J I

RTS - O--<OL--------I "1
/:

INTE HNAL I
IlATABtiS l,

r-~-

I

TRANSMIT
BUFFER ~ hD

(P - 5)

1 I
-hRDY

TRANSMIT !--CONTROL h'

- hC

R~RDY

RECEIVE R:C
CONTROL

•• SYNOE T

8253/8253·5
PROGRAMMABLE INTERVAL TIMER

• MCS_85™ Compatible 8253·5 • Count Binary or BCD

• 3 Independent 16·Bit Counters
• Single + 5V Supply

• DC to 2 MHz

• Programmable Counter Modes • 24·Pin Dual In· Line Package

The Intell!l 8253 is a programmable counterltimer chip designed for use as an Intel microcomputer peripheral. It uses
nMOS technology with a single +5V supply and is packaged In a 24-pin plastic DIP.

It is organized as 3 Independent l6-bit counters, each with a count rate of up to 2 MHz. All modes of operation are soft­
ware programmable.

PIN CONFIGURATION

GATE 0

GND

°7"00
elK N

GATE N

DUTN

liD

WR

es
A·A

V

GND

OUT 1 L--__ .J

PIN NAMES
DATA BUS (8·BIT)

COUNTER CLOCK INPUTS

COUNTER GATE INPUTS
COUNTER OUTPUTS

READ COUNTER

WRITE COMMAND OR DATA

CHIP SELECT

COUNTER SELECT

+5 VOLTS

GFtOUND

Rii---q
WR-

AO---~

A,---~

DATA
BUS

BUFFER

READI
WRITE
lOGIC

BLOCK DIAGRAM

cs------'

B-132

CONTROL
WORD

REGISTER

INTERNAL BUS /

COUNTER
·2

elK 0

GATEO

DUTO

elK 1

GATE 1

OUT 1

eLK 2

GATE 2

OUT 2

inter

8255A/8255A·5
PROGRAMMABLE PERIPHERAL INTERFACE

• MCS_85™ Compatible 8255A-5

• 24 Programmable 1/0 Pins

• Completely TTL Compatible

• Fully Compatible with Intel® Micro­
processor Families

• Improved Timing Characteristics

• Direct Bit SetlReset Capability Easing
Control Application Interface

• 40-Pin Dual In-Line Package

• Reduces System Package Count

• Improved DC Driving Capability

The Intel'" 8255A is a general purpose programmable 1/0 device designed for use with Intel'" microprocessors. It has
241/0 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first
mode (MODE 0), each group of 12 1/0 pins may be programmed in sets of 4 to be input or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand·
shaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION 8255A BLOCK DIAGRAM

S~~:l~;S {-- +"
-_GNO 1'0

PA7-PAO

PIN NAMES

°7.:-DO OATA BUS (BI·DIRECTIONAL)

RESET RESET INPUT

CHIP SELECT

AD REAO INPUT

WR W"ITE INPUT

AG,.' PORT ADDRESS
'A1·PAG PORT A (BITI

P111·P80 PORT B (BIT)

PC7-PCO PORT C (BIT)

Vee +5VDLTS
GND 'VOLTS

8-133

inter
8271/8271·6/8271·8

PROGRAMMABLE FLOPPY DISK CONTROLLER

• IBM 3740 Soft Sectored Format Compatible • Internal CRC Generation and Checking

• Programmable Record Lengths • Programmable Step Rate, Settle· Time, Head

Multl·Sector Capabill~y
Load Time, Head Unload Index COllnt

•
Maintain Dual Drives with Minimum Software • Fully MCS·SOTM and MCS·SSTM Compatible •
Overhead Expandable to 4 Drives

Single + SV Supply •
• Automatic ReadlWrite Head Positioning and

Verification • 40·Pin Package

The Intel"" 8271 Programmable Floppy Disk Controller (FDC) is an LSI component designed to interface one to 4 floppy
disk drives to an 8-bit microcomputer system, Its powerful control functions minimize both hardware and software
overhead normally associated with floppy disk controllers,

PIN CONFIGURATION

FAULT RESET/OPO Vee

SELECT 0 LOW CURRENT

4 MHz eLK LOAD HEAD

RESET DIRECTION

'R'EA'5"YT SEEK/STEP

SELECT 1 WR ENBlE

5ACi(iNi5"EX
ORa ~

RD AEAOv"'O
WR" ffiO
INT EC5ij"NT UPI

DSO WR DATA

OBI FAULT

DB2 ~
DB3 DATA WINDOW

DB. PlO/55

DBS cs
DBS IN SYNC

087 A,

GND A,

PIN NAMES

ci~- DIG DATAIU5111D1RECflO,. ... LI 'LOllS PlOiSINGUSHOl
~ DAtA WINDOW
UNSI'O ... TA UNSE'ARAT!DDAfA

F"UURUUIOPO 'AULTIIIIlTII)IITIQNALOU'PUT nurr fAULT
Run C"IPRUET .ROAU ""."\'. COUNT/OPI COUNTIOI'TIOtoIAL ""'UT OM ... ACKNOWLEDGE !lin'
~. DMARIClUUT WIIPROTECT WII!lEPROTIC' ... CPUIIEAOINflUT iiI!Itt INDEX .. CI'UWRITEINPUT WltnEENAIU

IUIlIIfE'
Al,O "tOllfUI.ELECT DIRECTION
INIYNC IlIAO DATA Hd'fflC LOADMEAO .. LOWCUIIRENt

ORa

i5ACK
INT

Ali
w-

RESET

cs----.J

CPU INTERFACE

B-134

BLOCK DIAGRAM

INTERNAL
DATA BUS

inter
8273

PROGRAMMABLE HDLC/SDLC PROTOCOL
CONTROLLER

• HOLC/SOLC Compatible • Programmable NRZI Encode/Decode

• Frame Level Commands • N·Blt Reception Capability

• Full Duplex, Half Duplex, or Loop • Digital Phase Locked Loop Clock
SOLC Operation Recovery

• Up to 64K Baud Transfers • Minimum CPU Overhead

• Two User Programmable Modem • Fully Compatible with 8080/8085 CPUs
Control Ports

• Automatic FCS (CRC) Generation and • Single + 5V Supply

Checking • 40·Pin Package

The Intell> 8273 Programmable HOLC/SOLC Protocol Controller is a dedicated device designed to support the ISO/C­
CITT's HOLC and IBM's SOLC communication line protocols. It is fully compatible with Intel's new high performance
microcomputer systems such as the MCS-85™. A frame level command set is achieved by a unique microprogrammed
dual processor chip architecture. The processing capability supported by the 8273 relieves the system CPU of the low
level real-time tasks normally associated with controllers.

PIN CONFIGURATION

FLAG DET Vee

Tx INT PB4
elK PB3

RESET PI!2
TxDACK PB,
TxDRa ATS

RxDACK PA,

RxDAQ PA,

RD PA2
WR eD

Rx tNT rn
DBO T,D

DB' 'FXC

DB, RiC

DB3 R,D

DB4 32xCLK

DB5 cs
DB. OPLL

DB' A,

GND Ao

PIN NAMES

OBO-OB7 DATA BUS (8 BITS)
~ FLAG DETECT
TxlNT
elK
RESET
Tx DACK
TxORQ
ilii
WR
RxDACK
RxORQ
Rx INT
Al>-A'
liPIT

TRANSMITTER INTERRUPT
CLOCK INPUT
RESET
TRANSMITTER DMA ACKNOWLEDGE
TRANSMITTER DMA REQUEST
READ INPUT
WRITE INPUT
RECEIVER DMA ACKNOWLEDGE
RECEIVER DMA REQUEST
RECEIVER INTERRUPT
COMMAND REGISTER SELECT ADDRESS
DIGITAL PHASE LOCKED LOOP

CS CHIP SELECT
32xCLK 32 TIMES CLOCK
Rx 0 RECEIVER DATA
Rx C RECEIVER CLOCK
Tx C TRANSMITTER CLOCK
Tx 0 TRANSMITTER DATA
rn CLEAR TO SEND
CD CARRIER DETECT
PA2-PA4 GP INPUT PORTS

~-PB4 ~:g~~:~~6~~~~
Vee +5 VOLT SUPPLY
GNO GROUND

BLOCK DIAGRAM

060_ 7

hD

TxC

TKDRQ
DPLi.
32X elK

R;5"A"C'K
RTS

PB'_4

hiNT ffi
RKINT co

Rci PA2_4
WR

Ao

A,

RESET R,D

R;C

cs
FLAG OET

CPU INTERFACE MOOEM INTERFACE

B-135

•

8275
PROGRAMMABLE CRT CONTROLLER

Programmable Screen and Character • Fully MCS.80 ™ and MCS.85 ™
Format Compatible

• 6 Independent Visual Field Attributes • Dual Row Buffers
• 11 Visual Character Attributes Programmable DMA Burst Mode (Graphic Capability) •
• Cursor Control (4 Types) • Single + 5V Supply

• Light Pen Detection and Registers • 40·Pin Package

The Intelll> 8275 Programmable CRT Controller is a single chip device. to interface CRT raster scan displays with
Intelll> microcomputer systems. Its primary function is to refresh the display by buffering the information from main
memory and keeping track of the display position of the screen. The flexibility designed into the 8275 will allow simple
interface to almost any raster scan CRT display with a minimum of external hardware and software overhead.

PIN CONFIGURATION

LC3 vcc
LC2 LAO
LC, LA,
LCO LTEN

DRQ RVV
DACK VSP
HRTC GPA,
VRTC GPAo

RD HLGT
WR IRQ

LPEN CCLK
DBa CCe
DB, CCs
DB2 CC4
DB3 CC3
DB4 CC2
DBS CC,
DBe CCo
DB7 cr
GND AO

PIN NAMES

DIIO , B1 DIRECTIONAL DATA BUS LCo_3 LINE COUNTER OUTPUll
DRQ DMA REQUEST OUTPUT , LINE ATTRIBUTE OUTPUTS

"""" DMA ACKNOWLEDGE INPUT HRTe HORIZONTAL RETRACE OUTPUT

IRQ INTERRUPT REQUEST OUTPUT VAle VERTICAL RETRACE OUTPUT

III! READ STROBE INPUT HLGT HIGHlIQHT OUTPUT --
ii1I WRITE STROBE INPUT RVV REVERSE VIDEO OUTPUT

AD REGISTER ADDRESS INPUT LTEN LIGHT ENABLE OUTPUT
C$ CHIP SELECT INPUT V .. VIDEO SUPPRESS OUTPUT

CCLK CHARACTER CLOCK INPUT GPAo 1 GENERAL. PURPOSE ATTRIBUTE OUTPUTS

CCo_6 CHARACTER CODE OUTPUTS LPEN LIGHT PEN INPUT

B-136

OBo-7

ORQ ___ -,

DACK

IRQ

AD

BLOCK DIAGRAM

eeL.

CCO-6

LCO_3

LAO_l

HRTt
VRle
HLGT
RW
LTEN
VS.
GPAO_l

LPEN

inter
8279/8279·5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

• MCS·85™ Compatible 8279·5

• Simultaneous Keyboard Display
Operations

• Scanned Keyboard Mode

• Scanned Sensor Mode

• Strobed Input Entry Mode

• 8·Character Keyboard FIFO

• 2·Key Lockout or N·Key Rollover with
Contact Debounce

• Dual 8· or 16·Numerical Display

• Single 16·Character Display

• Right or Left Entry 16·Byte Display
RAM

• Mode Programmable from CPU

• Programmable Scan Timing

• Interrupt Output on Key Entry

The Intel<!> 8279 is a general purpose programmable keyboard and display I/O interface device designed for use with
Intel<!> microprocessors. The keyboard portion can provide a scanned interface to a 64-contact key matrix. The
keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as the hall effect and
ferrite variety. Key depressions can be 2·key lockout or N·key rollover. Keyboard entries are debounced and strobed in
an 8-character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output
line to the CPU.

The display portion provides a scanned display interface for LED, incandescent, and other popular display
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279
has 16X8 display RAM which can be organized into dual 16x4. The RAM can be loaded or interrogated by the CPU. Both
right entry, calculator and left entry typewriter disPlay formats are possible. Bath read and write of the display RAM
can be done with auto-increment of the display RAM address.

PIN CONFIGURATION

PIN NAMES

Olio, DATA BUS (81 DIRECTIONALI

I CLOCK INPUT

_I RE~ET INP~ __ • __ ~~_.

IW-_+-'C+'~~~M-'--'-----
wAiTeINiil.iT·----­
BUfFER ADDRESS

INTERRUPT REQUESTOtiYPuT
E:---t-""o r.;:SCAT.N;li~-·--

I RETURN LINES

I SHIFT INPUT ._ -==~­
CONTROLfSTROBE INPUT
OISl'LAV (A! OUTPUTS

o OTsP'LAV"iBi-OUTPUTS­

O' BLANKOISPlAY OUTPUT

B-137

CPU
INTERFACE

LOGIC SYMBOL

,RQ

AD

Viii

cs

AD

RESET

ClK

Vss

Vee

RLO·1

SHIFT

CNTLlSTB

SLo.J

OUT Ao.]

OUTB!)'J

1---- - KEV DATA

SCAN

DISPLAV
DATA

8291
GPIB TALKER/LISTENER

• Designed to Interface Microprocessors iI 1 - 8 MHz Clock Range
(e.g., 8080, 8085, 8086, 8048) to an • 16 Registers (8 Read, 8 Write), 2 for
IEEE Standard 488 Digital Interface Data Transfer, the Rest for Interface
Bus Function Control, Status, etc.

• Programmable Data Transfer Rate • Directly Interfaces to External Non-

• Complete Source and Acceptor Inverting Transceivers for Connection
Handshake to the GPIB

• Complete Talker and Listener • Provides Three Addressing Modes,
Functions with Extended Addressing Allowing the Chip to be Addressed

• Service Request, Parallel Poll, Device Either as a Major or a Minor Talker/

Clear, Device Trigger, Remote/Local Listener with Primary or Secondary

Functions Addressing

• Selectable Interrupts • DMA Handshake Provision Allows for
Bus Transfers without CPU Intervention • On-Chip Primary and Secondary

Address Recognition • Trigger Output Pin

• Automatic Handling of Addressing and • On-Chip EOS (End of Sequence)

Handshake Protocol Message Recognition Facilitates

• Provision for Software Implementation
Handling of Multi-Byte Transfers

of Additional Features

The 8291 GPIB Talker/Listener is a microprocessor-controlled chip designed to interface microprocessors (e.g., 8048,
8080,8085,8086) to an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface
functions except for the controller.

PIN CONFIGURATION BLOCK DIAGRAM

18291

GPIB DATA

INTERFACE

FUNCTIONS I~===""",

SH GPIB CONTROL JTO NON·INVERTING
AH BUS TRANSCEIVERS
TE
LE

~~ I
pp T/R CONTROL

B-138

inter
8292

GPIB CONTROLLER

FEATURES:

• Complete IEEE Standard 488 Controller
Function.

• Interface Clear (IFC) Sending Capability
Allows for Seizure of Control and/or
Initialization of the Bus.

• Responds to Service Requests (SRC).

• Sends (REN), Allowing Instruments to
Switch to Remote Control.

• Complete Implementation of Transfer
Control Protocol.

• Synchronous Control Seizure Prevents
the Destruction of any Data
Transmission in Progress.

• Connects with the 8291 to Form a
Complete IEEE Standard 488 Interface
Talker /Listener /Controller.

The 8292 GPIB CONTROLLER is a microprocessor-controlled chip designed to connect with the 8291
GPIB TALKER/LISTENER to implement the full IEEE Standard 488 controller function, including transfer
control protocol. The 8292 is a pre-programmed UPI-41A:M

PIN CONFIGURATION

IFCR VCC

Xl COUNT

X2 REN

RESET OAV

NC IBFI

Cs OBFI

GND EOI

RD SPI

AO TCI

WR CIC

SYNC NC

DO ATNO

01 NC

D2 CLTH

03 NC

04 NC

D5 SYC

De IFC

07 p;'fNi

VSS SRQ

B-139

8291,8292 SYSTEM DIAGRAM

8292
GPIB

CQNTROLLfR

GENERAL PURPOSE INTERFACE BUS

8293
GPIB TRANSCEIVER

• Nine Open-collector or Three-state
Line Drivers

• 48 mA Sink Current Capability on
Each Line Driver

• Nine Schmitt-type Line Receivers

• High Capacitance Load Drive
Capability

• Single 5V Power Supply

• 28-Pin Package

• Low Power HMOS Design

• On-chip Decoder for Mode
Configuration

• Power Up/Power Down Protection to
Prevent Disrupting the IEEE Bus

• Connects with the 8291 and 8292 to
Form an IEEE Standard 488 Interface
Talker/Listener/Controller with no
Additional Components

• Only Two 8293's Required per GPIB
Interface

The Intel@ 8293 GPIB Transceiver is a high current, non-inverting buffer chip designed to interface the 8291 GPIB
Talker/Listener or the 8292 GPIB Controller with the 8291 to the IEEE Standard 488-1978 Instrumentation Interface
Bus. Each GPIB interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used as a general
purpose bus driver.

PIN CONFIGURATION 8291,8292, 8293 SYST~M DIAGRAM

TR' Vee

8257 ORO 829' 8292
OPTB

GPIB GPIB
TALKERI

LISTENER
CONTROLLER

DATA8

BUS9

DATA4

DATA5

BUS8
TIR',

GENERAL PURPOSE INTERFACE BUS

B-140

8294
DATA ENCRYPTION UNIT

• Certified by National Bureau of • 7·Bit User Output Port
Standards

• Single 5V :t 10% Power Supply

• 80 Byte/Sec Data Conversion Rate

• Peripheral to MCS·86™, MCg-85™,
• 64·Bit Data Encryption Using 56· Bit MCS·80™ and MCS·48™ Processors

Key

• DMA Interface • Implements Federal Information
Processing Data Encryption Standard

• 3 Interrupt Outputs to Aid in Loading
and Unloading Data • Encrypt and Decrypt Modes Available

DESCRIPTION

The Intel@ 8294 Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt
64-bit blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard.
The DEU operates on 64-bit text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation
is reversible: if the cipher word is operated upon, the original text word is produced. The algorithm itself is perma­
nently contained in the 8294; however, the 56-bit key is user-defined and may be changed at any time.

The 56-bit key and 64-bit message data are transferred to and from the 8294 in 8-bit bytes by way of the system data
bus. A DMA interface and three interrupt outputs are available to minimize software overhead associated with data
transfer. Also, by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system
conversion rates which are virtually any multiple of 80 bytes/second. The 8294 also has a 7-bit TTL compatible output
port for user-specified functions.

Because the 8294 implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer
applications as well as other electronic banking and data handling applications where data must be encrypted.

PIN
CONFIGURATION

Ne Vee
X1 Ne

DACK
DRO

SRO
es OAV

GND Ne
P.

AO P5
ViR P4

P3

PO
VDD
Ne

D5 ceMP
D6 Ne
D7 Ne

GND

PIN NAME

07- 0 0
RD,WR
cs
A,
RESET
X"X2
SYNC
DRQ,DACK
SRQ,OAV,CCMP
Ps'Po
vcc,vOD,GND
NC

PIN NAMES

FUNCTION

DATA BUS
READ,WRITE STROBES
CHIP SELECT
CONTROL/DATA SELECT
RESET INPUT
FREQUENCY REFERENCE INPUT
HIGH FREQUENCY OUTPUT
DMA REOUEST,DMA ACKNOWLEDGE
INTERRUPT REQUEST OUTPUTS
OUTPUT PORT LINES
+ SV POWER,GND
NO CONNECTION

DATA
BUS

A,

SRa
QAV

ceMP

BLOCK DIAGRAM

RESET~ SYNC

X,
X2 TIMING

+5V-­
POWER-­

GND--

INTERNAL
BUS

B-141

8295
DOT MATRIX PRINTER CONTROLLER

• Interfaces Dot Matrix Printers to
MCS.48™, MCS.8018S™, MCS·86™
Systems

• 40 Character Buffer On Chip

• Serial or Parallel Communication with
Host

• DMA Transfer Capability

• Programmable Character Density (10 or
12 Chararctersllnch)

• Programmable Print Intensity

• Single or Double Width Printing

• Programmable Multiple Line Feeds

• 3 Tabulations

• 2 General Purpose Outputs

The Intel@ 8295 Dot Matrix Printer Controller provides an Interface for microprocessors to the LAC 7040 Series dot
matrix impact printers. It may also be used as an Interface to other similar printers.

The chip may be used in a serial or parallel communication mode with the host processor. In parallel mode, data
transfers are based on polling, interrupts, or DMA. Furthermore, it provides internal buffering of up to 40 characters
and contains a 7 x 7 matrix character generator accommodating 64 ASCII characters.

PIN
CONFIGURATION

PIN NAME

IRQ/SEA
81-87
PFEED
HOME, fOF
STB
GP1,GP2
Vee. VOD, GND

PIN NAMES

FUNCTION

DATA 8US
READ, WRITE STROBES
CHIP SELECT
RESET INPUT
FREQUENCY AEFERENCE INPUTS
HIGH FREQUENCY OUTPUT
MAIN, PAPER FEED MOTOR DAIVES
DMA REQUEST, ACKNOWLEDGE
SERIAL INPUT, CLEAR·TO·SEND
INTERRUPT REQUEST, SERIAL GROUND
SOLENOID DRIVE OUTPUTS
PAPER FEED INPUT
HOME, TOp·Of·FORM INPUTS
SOLENOID STROBE OUTPUT
GENERAL PURPOSE OUTPUTS
+ 5V POWER, OND

B-142

BLOCK DIAGRAM
INTERNAL

BUS

Appendix B
Device Specifications

• RAM Memories···

'For complete specifications refer to the
Intel MCS-85 User's Manual.

"For complete specifications refer to the
Intel Peripheral Design Handbook.

'" For complete specifications refer to the 1979
Intel Component Data Catalog.

inter
2114A

1024 X 4 BIT STATIC RAM

2114AL-2 2114AL-3 2114AL-4 2114A-4 2114A-5

I Max. Access Time (ns) 120 150 200 200 250

I Max. Current (rnA) 40 40 40 70 70

• HMOS Technology • Completely Static Memory - No Clock

• Low Power, High Speed
or Timing Strobe Required

• Directly TTL Compatible: All Inputs

• Identical Cycle and Access Times and Outputs

• Common Data Input and Output USing • Single +5V Supply ±10% Three-State Outputs

• High Density 18 Pin Package • 2114 Replacement

The Intel 2ll4A is a 4096-bil static Random Access Memory organized as 1024 words by 4-bits using HMOS. a high performance
MOS technology. It uses fully DC stable (static) circuitry throughout. in both the array and the decoding. therefore it requires no
clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read
out nondestructively and has the same polarity as the input data. Common input/output pins are provided.

The 2l14A is designed for memory applications where the high performance and high reliability of HMOS. low cost. large bit
storage. and simple interfacing are important design objectives. The 2ll4A is placed in an l8-pin package for the highest
possible density.

It is directly TTL compatible in all respects: inputs. outputs. and a single +5V supply. A separate Chip Select (CS) lead allows
easy selection of an individual package when outputs are or-tied.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM

A,
~4~ @

""
Vee

~Vcc
A. ~ ~GND A4

A5 A, A, I/O, 2':
A ~ MEMORY ARRAY

A4

""
A, 5'1) ROW

64 ROWS SELECT

A, As 64 COLUMNS
A, Ag 1/°2 @

A4
A,-

A. I/O, @
A5 As

A, 110,
As

1/03

110, @ .., 1/03 A,

CS 1/°4 As 1/°4

GND WE A,

WE es

PIN NAMES

AO-Ag ADDRESS INPUTS Vee POWER (+5VI WE~-L-.'" 0= PIN NUMBERS

WE WR ITE ENABLE GND GROUND

CS CHIP SELECT

110,-1/04 DATA INPUT/DUTPUT

B-143

2142
1024 X 4 BIT STATIC RAM

2142-2 2142-3 2142 2142L2 2142L3 2142L

I Max. Access Time (ns) 200 300 450 200 300 450

I Max. Power Dissipation (mw) 525 525 525 370 370 370

• High Density 20 Pin Package • No Clock or Timing Strobe Required

• Access Time Selectlans From 200-450ns • Completely Static Memory

• Identical Cycle and Access Times • Directly TTL Compatible: All Inputs

• Low Operating Power Dissipation and Outputs

.1mW/Bit Typical • Common Data Input and Output Using

• Single +5V Supply Three-State Outputs

The Intel@ 2142 is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits using N-channel Silicon­
Gate MOS technology. It uses fully DC stable (static) circuitry throughout - in both the array and the decoding - and
therefore requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not
required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are
provided.

The 2142 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing
are important design objectives. It is directly TTL compatible in all respects: inputs, outputs, and a Single +5V supply.

The 2142 is placed in a 20-pin package. Two Chip Selects (CS1 and CS2) are provided for easy and flexible selection of
individual packages when outputs are OR-tied, An Output Disable is included for direct control of the output buffers.

The 2142 is fabricated with Intel's N-channel Silicon-Gate technology - a technology providing excellent protection
against contamination permitting the use of low cost plastic packaging.

PIN CONFIGURATION LOGIC SYMBOL

AS Vee AO

AS A, A, I/O,

A4 AS A,

A3 A, A3
1/02

es, 00 A4

AO liD, AS

A, 1/02 AS
1/03

A, 1103 A,

ES1 1/04 AS 1/04

DND WE

PIN NAMES

Ao-Ag ADDRESS INPUTS 00 OUTPUT DISABLE

WE WRITE ENABLE Vee POWER1+5V)

CS;,CS2 CHIP SELECT GND GROUND

I{O,- 1/04 OAT A INPUT/OUTPUT

A3
@)

®
A4---

AS
®

AS
CD
@)

A,

@)
AS

® "0,---
@

1102

@
If 03

@
110 4

00

B-144

BLOCK DIAGRAM

ROW
SELECT

MEMORY ARRAY
64 ROWS

64 COLUMNS

COLUMN I/O CIRCUITS

o "PIN NUMBERS

~vcc
~-o GNO

2148
1024 X 4 BIT STATIC RAM

2148·3 2148 2148·6

Max. Access Time (ns) 55 70 85

Max. Active Current (rnA) 125 125 125

Max. Standby Current (rnA) 30 30 30

• HMOS Technology • Automatic Power· Down

• Completely Static Memory • High Density 18·Pin Package
- No Clock or Timing Strobe • Directly TTL Compatible
Required - All Inputs and Outputs

• Equal Access and Cycle Times • Common Data Input and Output

• Single +5V Supply • Three·State Output

The Intel'" 2148 is a 4096·bit static Random Access Memory organized as 1024 words by 4 bits using HMOS, a high­
performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features
associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static
memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold
times, nor reduced data rates due to cycle times that are longer than access times.

es controls the power·down feature. In less than a cycle time after es goes high - disabling the 2148 - the part
automatically reduces its power requirements and remains in this low power standby mode as long as es remains high.
This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are
disabled.

The 2148 is assembled in an 18-pin package configured with the industry standard 1 K x 4 pinout. It is directly TTL
compatible in all respects: inputs, outputs, and a single +5V supply. The data is read out nondestructively and has the
same polarity as the input data.

PIN CONFIGURATION LOGIC SYMBOL

'6 Vee - '0

'5 '7
- A,

liD, t-
A,

- A,
A,

- A3

'3 A9 1I02r
- " '0 liD, - A5

A, 1102
- A6

11031--

A, 1103
- A7

cs 1104
- A,

1/041-

GND WE
~ Ages WE

Y Y

PIN NAMES

Ao-Ag ADDRESS INPUTS
WE WRITE ENABLE
Cs' CHIP SELECT
1/01-1104 DATA INPUT/OUTPUT

Vee POWER (+5V)
GND GROUND

TRUTH TABLE

CS WE MODE 1/0 POWER

H X NOT SELECTED HIGH·Z STANDBY
L L WRITE DIN ACTIVE
L H READ DOUT ACTIVE

A7

A,
@

A,
@

1/01
@

1102
@

1/03
@

1104

B-145

BLOCK DIAGRAM

ROW
SELECT

MEMORY ARRAY
64 ROWS

64 COLUMNS

COLUMN 110 CIRCUITS

~vcc
~GND

o '" PIN NUMBERS

Appendix B
Device Specifications

• EPROM Memories···

* For complete specifications refer to the
Intel MCS-85 User's Manual.

• *For complete specifications refer to the
Intel Peripheral Design Handbook.

** * For complete specifications refer to the 1979
Intel Component Data Catalog.

2716
16K (2K)(8) UV ERASABLE PROM

• Fast Access Time
350 ns Max. 2716·1
390 ns Max. 2716·2
450 ns Max. 2716

- 650 ns Max. 2716·6

• Single + 5V Power Supply

• Low Power Dissipation
525 mW Max. Active Power

- 132 mW Max. Standby Power

• Pin Compatible to Intel® 2732 EPROM

• Simple Programming Requirements
Single Location Programming

- Programs with One 50 ms Pulse

• Inputs and Outputs TTL Compatible
during Read and Program

• Completely Static

The Intel® 2716 is a 16,384·bit ultraviolet erasable and electrically programmable read·only memory (EPROM). The 2716
operates from a single 5·volt power supply, has a static standby mode, and features fast single address location program·
mingo It makes designing with EPROMs faster, easier and more economical.

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high performance
+5V microprocessors such as Intel's 8085 and 8086. The 2716 is also the first EPROM with a static standby mode which
reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the
maximum standby power dissipation is only 132 mW, a 75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs - single pulse TTL level programming.
No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any
time-either individually, sequentially or at random, with the 2716's single address location programming. Total programming
time for all 16,384 bits is only 100 seconds.

PIN CONFIGURATION

2716

'6'

06 00

0, a'
GND 12

t Refer to 2732
data sheet for
specifications

PIN NAMES

AO-.AlO ADDRESSES

CE/PGM CHIP ENABLE/PROGRAM

DE OUTPUT ENABLE
0-0 OUTPUTS

B-146

MODE SELECTION

~
CE/PGM DE Vpp Vee OUTPUTS

(1S) (20) (21) (24) (9-11,13·17)

MODE

Read V'L V'L ., ., Dour
Standby V'H Don't Care ., ., High Z

Program Pulsed Vil to VIH V'H '2' ., D'N
Program Verify

Program Inhibit

Vee 0---

AO-Al0
ADDRESS

INPUTS

V'L V'L '2' .,
V'L V'H '2' .,

BLOCK DIAGRAM

UATAOUTPUTS

00 01 ----

DOUT

High Z

inter
2732

32K (4K x 8) UV ERASABLE PROM

• Fast Access Time: • Pin Compatible to Intel® 2716 EPROM
450 ns Max. 2732

- 550 ns Max. 2732·6 • Completely Static

• Single +5V ± 5% Power Supply

Output Enable for MCS-85™ and • Simple Programming Requirements • Single Location Programming
MCS-86™ Compatibility - Programs with One 50ms Pulse

• Low Power Dissipation:
150mA Max. Active Current • Three-State Output for Direct Bus
30mA Max. Standby Current Interface

The Intel® 2732 is a 32,768-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2732
operates from a single 5-volt power supply, has a standby mode, and features an output enable control. The total program­
ming time for all bits is three and a half minutes. All these features make designing with the 2732 in microcomputer systems
faster, easier, and more economical.

An important 2732 feature is the separate output control, Output Enable (OE), from the Chip Enable control (CE). The OE
control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-30 describes the
microprocessor system implementation of the OE and CE controls on Intel's 2716 and 2732 EPROMs. AP-30 is available
from Intel's Literature Department.

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maximum active
current is 150mA, while the maximum standby current is only 30mA, an 80% savings. The standby mode is achieved by
applying a TTL-high signal to the CE input.

PIN CONFIGURATION

A7 Vee

A. As

As Ag

A. A11 .

A3 OElVpp

A, A,.

A, CE

Ao 0 7

a. a.
0, o.
0, O.

GND 0 3

PIN NAMES

Ao-A11 ADDRESSES

CE CHIP ENABLE

~ OUTPUT ENABLE

°0 .07 OUTPUTS

B-147

MODE SELECTION

~ MODE

Read

Standby

Program

Program Verify

Program Inhibit

Vee 0--­

GNOo---
Vppo---

OE
CE-

-AO-A11 -
ADDRESS

INPUTS =

CE OE/Vpp Vcc OUTPUTS
(18) (20) (24) 19·11,13·17)

VIL VIL +5 DOUT

VIH Don't Care +5 High Z

VIL Vpp +5 DIN

VIL VIL +5 DOUT

VIH Vpp +5 High Z

BLOCK DIAGRAM

OE AND 1= ce LOGIC

Y I.-
DECODER P-

F.
X · DECODER · · r.:.

DATA OUTPUTS
00-07

LLl t Ul!
OUTPUT BUFFERS

Y·GATING

32,768·BIT
CELL MATRIX

2758
8K (1K x 8) UV ERASABLE LOW POWER PROM

• Single + 5V Power Supply • Fast Access Time: 450 ns Max. in
Active and Standby Power Modes

• Simple Programming Requirements
- Single Location Programming • Inputs and Outputs TTL Compatible
- Programs with One 50 ms Pulse during Read and Program

• Low Power Dissipation • Completely Static
525 mW Max. Active Power
132 mW Max. Standby Power • Three·State Outputs for OR·Ties

The Intel® 2758 is a 8192-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2758
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program­
ming. It makes designing with EPROMs faster, easier and more economical. The total programming time for all 8192 bits
is 50 seconds.

The 2758 has a static standby mode which reduces the power dissipation without increasing access time. The maximum
active power dissipation is 525 mW, while the maximum standby power dissipation is only 132 mW, a 75% savings. Power­
down is achieved by applying a TTL-high signal to the CE input.

A 2758 system may be designed for total upwards compatibility with Intel's 16K 2716 EPROM (see Applications Note
30). The 2758 maintains the simplest and fastest method yet devised for programming EPROMs - single pulse TTL­
level programming. There is no need for high voltage pulsing because all programming controls are handled by TTL
signals. Program any location at any time - either individually, sequentially, or at random, with the single address
location programming.

PIN CONFIGURATION MODE SELECTION

~ CE/PGM AR BE V,, Vee OUTPUTS

1181 1191 (201 (211 (241 (9-11.13-17)

MODE

Vee A,
A,

A, V" A, DE

Read V,L V,L V,L +5 +5 DOUT

Standby V,H V,L
Don't

+5 +5 High Z
Care 05

Program Pulsed V Il to V IH V,L V'H +25 +5 D,N

Program Verify V,L V,L V,L +25 +5 DOUT

Program Inhibit V,L V,L V,H +25 +5 High Z

PIN NAMES BLOCK DIAGRAM

Ao---A9 ADDRESSES

C"E/PGM CHIP ENABLE/PROGRAM

OE OUTPUT ENABLE

0 0, OUTPUTS

AR
SELECT REFERENCE
INPUT LEVEL

B-148

Appendix B
Device Specifications

•

• Development Tools

"For complete l?pecifications refer to the
Intel MCS-85 User's Manual.

"" For complete specifications refer to the
Intel Peripheral Design Handbook.

"""For complete specifications refer to the 1979
Intel Component Data Catalog.

inter MODEL 230
INTELLEC SERIES II

MICROCOMPUTER DEVELOPMENT SYSTEM
Complete microcomputer development
center for Intel MCS·86, MCS·80, MCS·85
and MCS·48 microprocessor families

LSI electronics board with CPU, RAM,
ROM, I/O, and interrupt circuitry

64K bytes RAM memory

Self· test diagnostic capability

Eight·level nested, maskable priority
interrupt system

Built·in interfaces for high speed paper
tape reader/punch, printer, and universal
PROM programmer

Integral CRT with detachable upper/
lower case typewriter·style full ASCII
keyboard

Powerful ISIS·II Diskette Operating
System software with relocating
macroassembler, linker, and locater

1 million bytes (expandable to 2.5M
bytes) of diskette storage

Supports PL/M and FORTRAN high level
languages

Standard MULTIBUS with multiprocessor
and DMA capability

Compatible with standard Inteliec/iSBC
expansion modules

Software compatible with previous
Intellec systems

The Model 230 Intellec Series II Microcomputer Development System is a complete center for the development of
microcomputer-based products. It includes a CPU, 64K bytes of RAM, 4K bytes of ROM memory, a 2000-character CRT,
a detachable full ASCII keyboard, and dual double density diskette drives providing over 1 million bytes of on-line data
storage. Powerful ISIS-II Diskette Operating System software allows the Model 230 to be used quickly and efficiently
for assembling and/or compiling and debugging programs for Intel's MCS-S6, MCS-SO, MCS-S5, or MCS-4S microproc­
essor families without the need for handling paper tape. ISIS-II performs all file handling operations, leaving the user
free to concentrate on the details of his own application. When used in conjunction with an optional in-circuit
emulator (ICE) module, the Model 230 provides all the hardware and software development tools necessary for the
rapid development of a microcomputer-based product.

B-149

MODEL230

FUNCTIONAL DESCRIPTION

Hardware Components

The Intellec Series II Model 230 is a packaged, highly
integrated microcomputer development system consist­
ing of a CRT chassis with a 6-slot cardcage, power sup­
ply, fans, cables, and five printed circuit cards. A
separate, full ASCII keyboard is connected with a cable.
A second chassis contains two floppy disk drives capa­
ble of double-density operation along with a separate
power supply, fans, and cables for connection to the
main chassis. A block diagram of the Model 230 is
shown in Figure 1.

CPU Cards - The master CPU card contains its own
microprocessor, memory, 1/0, interrupt and bus inter­
face circuitry fashioned from Intel's high technology LSI
components. Known as the integrated processor board
(IPB), it occupies the first slot in the cardcage. A second
slave CPU card is responsible for all remaining 1/0 con­
trol including the CRT and keyboard interface. This card,
mounted on the rear panel, also contains its own micro­
processor, RAM and ROM memory, and 1/0 interface
logic, thus, in effect, creating a dual processor environ­
ment. Known as the 1/0 controller (IOC), the slave CPU

card communicates with the IPB over an 8-bit bidirec­
tional data bus.

Memory and Control Cards - In addition, 32K bytes of
RAM (bringing the total to 64K bytes) is located on a
separate card in the main cardcage. Fabricated from
Intel's 16K RAMs, the board also contains all necessary
address decoding and refresh logic. Two additional
boards in the cardcage are used to control the two
double-density floppy disk drives.

Expansion - Two remaining slots in the cardcage are
available for system expansion. Additional expansion of
4 slots can be achieved through the addition of an Intel­
lec Series II expansion chassis.

System Components
The heart of the IPB is an Intel NMOS 8-bit microproces­
sor, the 8080A-2, running at 2.6 MHz. 32K bytes of RAM
memory are provided on the board using Intel 16K
RAMs. 4K of ROM is provided, preprogrammed with sys­
tem bootstrap "self-test" diagnostics and the Intellec
Series II System Monitor. The eight-level vectored prior­
ity interrupt system allows interrupts to be individually
masked. Using Intel's versatile 8259A interrupt con­
troller, the interrupt system may be user programmed to
respond to individual needs.

----------------~?

Figure 1. Intellec Series II Model 230 Microcomputer Development System Block Diagram

B-150

MODEL 230

Input/Output
IPB Serial Channels - The I/O subsystem in the Model
230 consists of two parts: the 10C card and two serial
channels on the IPB itself. Each serial channel is RS232
compatible and is capable of running asynchronously
from 110 to 9600 baud or synchronously from 150 to 56K
baud. Both may be connected to a user defined data set
or terminal. One channel contains current loop
adapters. Both channels are implemented using Intel's
8251A USART. They can be programmatically selected
to perform a variety of I/O functions. Baud rate selection
is accomplished programmatically through an Intel 8253
interval timer. The 8253 also serves as a real-time clock
for the entire system. I/O activity through both serial
channels is signaled to the system through a second
8259 interrupt controller, operating in a polled mode
nested to the primary 8259.

IOC Interface - The remainder of system I/O activity
takes place in the 10C. The 10C provides interface for
the CRT, keyboard, and standard Intellec peripherals
including printer, high speed paper tape reader/punch,
and universal PROM programmer. The 10C contains its
own independent microprocessor, also an 8080A-2. The
CPU controls all I/O operations as well as supervising
communications with the IPB. 8K bytes of ROM contain
all I/O control firmware. 8K bytes of RAM are used for
CRT screen refresh storage. These do not occupy space
in Intellec Series II main memory since the 10C is a
totally independent microcomputer subsystem.

Integral CRT
Display - The CRT is a 12-inch raster scan type monitor
with a 50/60 Hz vertical scan rate and 15_5 kHz horizontal
scan rate. Controls are provided for brightness and con­
trast adjustments. The interface to the CRT is provided
through an Intel 8275 single chip programmable CRT
controller. The master processor on the IPB transfers a
character for display to the 10C, where it is stored in
RAM. The CRT controller reads a line at a time into its
line buffer through an Intel 8257 DMA controller and
then feeds one character at a time to the character gen­
erator to produce the video signal. Timing for the CRT
control is provided by an Intel 8253 interval timer. The
screen display is formatted as 25 rows of 80 characters.
The full set of ASCII characters are displayed, including
lower case alphas.

Keyboard - The keyboard interfaces directly to the 10C
processor via an 8-bit data bus. The keyboard contains
an Intel UPI-41 Universal Peripheral Interface, which
scans the keyboard, encodes the characters, and buf­
fers the characters to provide N-key rollover. The key­
board itself is a high quality typewriter style keyboard
containing the full ASCII character set. An upper/lower
case switch allows the system to be used for document
preparation. Cursor control keys are also provided.

Peripheral Interface
A UPI-41 Universal Peripheral Interface on the 10C board
performs similar functions to the UPI-41 on the PIO
board in the Model 210. It provides interface for other
standard Intellec peripherals including a printer, high
speed paper tape reader, high speed paper tape punch,

and universal PROM programmer. Communication
between the IPB and 10C is maintained over a separate
8-bit bidirectional data bus. Connectors for the four
devices named above, as well as the two serial chan­
nels, are mounted directly on the 10C itself.

Control
User control is maintained through a front panel, con­
sisting of a power switch and indicator, reset/boot
switch, run/halt light, and eight interrupt switches and
indicators. The front panel circuit board is attached
directly to the IPB, allowing the eight interrupt switches
to connect to the primary 8259A, as well as to the Intellec
Series II bus.

Diskette System
The Intellec Series II double density diskette system
provides direct access bulk storage, intelligent control­
ler, and two diskette drives. Each drive provides V2 mil­
lion bytes of storage with a data transfer rate of 500,000
bits/second. The controller is implemented with Intel's
powerful Series 3000 Bipolar Microcomputer Set. The
controller provides an interface to the Intellec Series II
system bus, as well as supporting up to four diskette
drives. The diskette system records all data in soft sec­
tor format. The diskette system is capable of performing
seven different operations: recalibrate, seek, format
track, write data, write deleted data, read data, and verify
CRC.

Diskette Controller Boards - The diskette controller
consists of two boards, the channel board and the inter­
face board. These two PC boards reside in the Intellec
Series II system chassis and constitute the diskette
control1er. The channel board receives, decodes and
responds to channel commands from the 8080A-2 CPU
in the Model 230. The interface board provides the
diskette controller with a means of communication with
the diskette drives and with the Intellec system bus. The
interface board validates data during reads using a
cyclic redundancy check (CRG) polynomial and gener­
ates CRC data during write operations. When the disk­
ette controller requires access to Intellec system mem­
ory, the interface board requests and maintains DMA
master control of the system bus, and generates the
appropriate memory command. The interface board also
acknowledges I/O commands as required by the Intellec
bus. In addition to supporting a second set of double
density drives, the diskette controller may co-reside
with the Intel single density controller to allow up to 2.5
million bytes of on-line storage.

MULTIBUS Capability

All Intellec Series II models implement the industry
standard MULTIBUS. MULTIBUS enables several bus
masters, such as CPU and DMA devices, to share the
bus and memory by operating at different priority levels.
Resolution of bus exchanges is synchronized by a bus
clock signal derived independently from processor
clocks. Read/write transfers may take place at rates up
to 5 MHz. The bus structure is suitable for use with any
Intel microcomputer family.

B-151

MODEL230

SPECIFICATIONS

Host Processor (IPB)
RAM - 64K (system monitor occupies 62K through 64K)
ROM - 4K (2K in monitor, 2K in boot/diagnostic)

Diskette System Capacity (Basic Two Drives)

Unformatted
Per Disk: 6.2 megabits
Per Track: 82.0 kilobits
Formatted
Per Disk: 4.1 megabits
Per Track: 53.2 kilobits

Diskette Performance
Diskette System Transfer Rate - 500 kilobits/sec
Diskette System Access Time
Track·to-Track: 10 ms
Head Settling Time: 10 ms
Average Random Positioning Time - 260 ms
Rotational Speed - 360 rpm
Average Rotational Latency - 83 ms
Recording Mode - M2FM

Physical Characteristics
Width - 17.37 in. (44.12 cm)
Height - 15.81 in. (40.16 cm)
Depth - 19.13 in. (48.59 cm)
Weight - 73 Ib (33 kg)

Keyboard
Width - 17.37 in. (44.12 cm)
Height - 3.0 in. (7.62 cm)
Depth - 9.0 in. (22.86 cm)
Weight - 6 Ib (3 kg)

Dual Drive Chassis
Width - 16.88 in. (42.88 cm)
Height - 12.08 in. (30.68 cm)
Depth - 19.0 in. (48.26 cm)
Weight - 64 Ib (29 kg)

Electrical Characteristics
DC Power Supply

Volts Amps Typical
Supplied Supplied System Requirements

+ 5±5% 30 14,25
+ 12±5% 2.5 0,2
-12±5% 0.3 0,05
-10±5% 1.5 15
+1S±S% 1.5 1,3
+24±5% 1.7

• Not available on bus.

ORDERING INFORMATION
Part Number Description
MDS-230

MDS-231

Intellec Series II Model 230
microcomputer development system
(110V/60 Hz)

Intellec Series II Model 230
microcomputer development system
(220V/50 Hz)

AC Requirements - 50/60 Hz, 115/230V AC

Environmental Characteristics
Operating Temperature - 0° to 35°C (95°F)

Equipment Supplied
Model 230 chassis
Integrated processor board (IPB)
110 controller board (lOC)
32K RAM board
CRT and keyboard
Double density lIoppy disk controller (2 boards)
Qual drive lIoppy disk chassis and cables
2 floppy disk drives (512K byte capacity each)
ROM-resident system monitor

ISIS-II system diskette with MCS-80/MCS-85
macroassembler

Reference Manuals
9800558 - A Guide to Microcomputer Development
Systems (SUPPLIED)

9800550 - Intellec Series II Installation and Service
Guide (SUPPLIED)

9800306 - ISIS-II System User's Guide (SUPPLIED)

9800558 - Intellec Series II Hardware Reference Man­
ual (SUPPLIED)

9800301 - 8080/8085 Assembly Language Program­
ming Manual (SUPPLIED)

9800292 - ISIS-II 8080/8085 Assembler Operator's Man­
ual (SUPPLIED)

9800605 - Intellec Series II Systems Monitor Source
Listing (SUPPLIED)

9800554 - Intellec Series II Schematic Drawings
(SUPPLIED)

Reference manuals are shipped with each product only
if deSignated SUPPLIED (see above). Manuals may be
ordered from any Intel sales representative, distributor
office or from Intel Literature Department, 3065 Bowers
Avenue, Santa Clara, California 95051 .

B-152

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

PL/M·86 high level programming Ian·
guage

ASM86 macro assembler for 8086/8088
assembly language programming

LINK86 and LOC86 linkage and
relocation utilities

CONV86 converter for conversion of
8080/8085 assembly language source
code to 8086/8088 assembly language·
source code

OH86 obJect·to·hexadecimal converter

LlB86 library manager

The 808618088 software development package provides a set of software development tools for the 8086 and the 8088
microprocessors and ISsC 86112 single board computer. The package operates under the ISIS·II operating system on
Intellec Microcomputer Development Systems-Model 800 or Series II-thus minimizing requirements for additional
hardware or training for Intel Microcomputer Development System users.

The package permits 808018085 users to efficiently convert existing programs into 808618088 object code from either
8080/8085 assembly language source code or PLlM-80 source code.

For the new Intel Microcomputer Development System user, the package operating on an Intellec Model 230 Micro·
computer Development System provides total 8086/8088 software development capability.

B-153

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

PL/M·86 HIGH LEVEL PROGRAMMING LANGUAGE

Sophisticated new complier design
allows user to achieve maximum benefits
of 808618088 capabilities

Language Is upward compatible from
PL/M·80, assuring MCS·80/8S deSign
portability

Supports 16·bit signed Integer and 32·bit
floating point arithmetic

Produces relocatable and linkable object
code .

Supports full extended addressing
features of the 8086 and the 8088
microprocessors

Code optimization assures efficient code
generation and minimum application
memory utilization

Like its counterpart for MCS-80/85 program development, PLlM-86 Is an advanced structured high level programming
language. PLlM-86 is a new compiler created specifically for performing software development for the Intel 8086 and
8088 Microprocessors.

PLlM-86 has significant new capabilities over PLlM-80 that take advantage of the new facilities provided by the 8086
and the 8088 microprocessors, yet the PLlM-86 language remains upward compatible from PL/M-80.

With the exception of Interrupts, hardware flags, and time-critical code sequences, PLlM-80 programs may be recom­
piled under PLM-86 with little or no conversion required. PLlM-86, like PLlM-80, is easy to learn, facilitates rapid pro­
gram development, and reduces program maintenance costs.

PLiM is a powerful, structured high level algorithml.c language In which program statements can naturally express the
program algorithm. This frees the programmer to concentrate on the system Implementation without concern for bur­
densome details of assembly language programming (such as register allocatlon,meanlngs of assembler mnemonics,
etc.).

The PL/M-86 compiler effiCiently converts free-form PLiM language statements into equivalent 8086/8088 machine in­
structions. Substantially fewer PLiM statements are necessary for a given application than if it were programmed at
the assembly language or machine code level.

Since PLiM programs are implementation problem oriented and more compact, use of PLiM results in a high degree of
engineering productivity during project development. This translates Into significant reductions in initial software
development and follow-on maintenance costs for the user.

FEATURES

Major features of the Intel PLlM-86 compiler and pro­
gramming language include:

• Supports Five Data Types

- Byte: 8-bit unsigned number
- Word: 16-bit unsigned number

Integer: 16-bit signed number
- Real: 32-bit floating pOint number
- Pointer: 16-blt or 32-blt memory address indicator

• Block Structured Language

- Permits use of structured programming tech­
niques

• Two Data Structuring Facilities

- Array: Indexed list of same type data elements
- Structure: Named collection of same or different

type data elements
- Combinations of Each: Arrays of structures or

structures of arrays

• Relocatable and Linkable Object Code

- Permits PLlM-86 programs to be developed and
debugged in small modules. These modules can
be easily linked with other PLlM-86 or ASM86 ob­
ject modules and/or library routines to form a com­
plete application system.

• Bullt·ln String Handling Facilities

- Operates on byte strings or word strings
- Six Functions: MOVE, COMPARE, TRANSLATE,

SEARCH, SKIP, and SET

• Automatic Support for 8086 Extended Addressing

- Three compiler options offer a separate model of
computation for programs up to 1-Megabyte In
size

- Language transparency for extended addressing

• Support for ICE-86 Emulator and Symbolic Debugging

- Debug option for Inclusion of symboi table in ob­
ject modules for In-Circuit Emulation with sym­
bolic debugging

8-154

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

• Numerous Complier Options

A host of 26 compiler options including:

• Conditional compilation
• Included file or copy facility
• Two levels of optimization
• Intra-module and inter-module cross reference
• Arbitrary placement of compiler and user files

on any available combination of disk drives

• Reentrant and Interrupt Procedures

- May be specified as user options

BENEFITS

PLlM-86 is designed to be an efficient, cost-effective
solution to the special requirements of 8086/8088
Microcomputer Software Development, as illustrated by
the following benefits of PL/M-86 use:

• Reduced Learning Effort - PLlM-86 is easy to learn
and to use, even for the novice programmer.

• Earlier Project Completion - Critical projects are
completed much earlier than otherwise possible
because PLlM-86, a structured high-level language, in­
creases programmer productivity.

• Lower Development Cost - Increases in programmer
productivity translate immediately into lower soft­
ware development costs because less programming
resources are required for a given programmed func­
tion.

• Increased Reliability - PLlM-86 is designed to aid in
the development of reliable software (PLlM-86 pro­
grams are simple statements of the program
algorithm). This substantially reduces the risk of cost­
ly correction of errors in systems that have already
reached full production status, as the more simply
stated the program is, the more likely it is to perform
its intended function.

• Easler Enhancements and Maintenance - Programs
written in PLiM tend to be self~documenting, thus
easier to read and understand. This means it is easier
to enhance and maintain PLiM programs as the
system capabilities expand and future products are
developed.

• Simpler Project Development - The Intellec Develop­
ment Systems offer a cost-effective hardware base

for the development of 8086 and 8088 designs.
PLlM-86 and other elements of ISIS-II and the 80861
8088 Software Development Package are all that Is
needed for development of software for the 8086 and
the 8088 microcomputers and iSBC 86/12 single board
computer. This further reduces development time and
costs because expensive (and remote) time sharing of
large computers is not required. Present users of Intel
Intellec Development Systems can begin to develop
8086 and 8088 designs without expensive hardware
reinvestment or costly retraining.

SAMPLE PROGRAM

STATISTICS: DO;

I*The procedure in this module computes the mean and
variance of an array of data, X, of length N + 1, according
to the method of Kahan and Parlett (University of Cali­
fornia, Berkeley, Memo no. UCB/ERL M77/21.*1

STAT: PROCEDURE(X$PTR,N,MEAN$PTR,
VARIANCE$PTR) PUBLIC;

DECLARE
(X$PTR,MEAN$PTR,VARIANCE$PTR)
POINTER,X BASED X$PTR (1) REAL,
N INTEGER,
MEAN BASED MEAN$PTR REAL,
VARIANCE BASED VARIANCE$PTR REAL,
(M,Q,DIFF) REAL,
I INTEGER;

M=X(O);
M=O.O;

DO 1=1 TO N;
DIFF=X(I)- M;
M = M + DIFF/FLOAT(I + 1);
Q= Q+ DIFF*DIFF*FLOAT(I)/FLOAT(I + 1);

END;

MEAN=M;
VARIANCE = Q/FLOAT(N);

END STAT;

END STATISTICS;

B-155

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

ASM86 MACRO ASSEMBLER

Powerful and flexible text macro facility
with three macro listing options to aid
debugging

Highly mnemonic and compact
language, most mnemonics represent
several distinct machine instructions

"Strongly typed" assembler helps detect
errors at assembly time

Hlgh·level data structuring facilities
such as "STRUCTUREs" and
"RECORDs"

Over 120 detailed and fully documented
error messages

Produces relocatable and linkable object
code

ASMas Is the "high-level" macro assembler for the 8086/8088 assembly language. ASM86 translates symbolic
8066/8088 assembly language mnemonics into 8086/8088 machine code.

AS Mas should be used where maximum code efficiency and hardware control is needed. The 808618088 assembly
language includes approximately 100 instruction mnemonics. From these few mnemonics the assembler can generate
over 3,800 d.lstinct machine Instructions. Therefore, the software development task is simplified, as th!! programmer
need know only 100 mnemonics to generate all possible 8086/8088 machine instructions. ASM86 will generate the
shortest machine Instruction possible given no forward referencing or given explicit information as to the
characteristics of forward referenced symbols.

ASM86 offers many features normally found only In hlgh·levellanguages. The 8086/8088 assembly language is strong­
ly typed. The assembler performs extensive checks on the usage of variables and labels. The assembler uses the at·
tributes which are derived explicitly when a variable or label Is first defined, then makes sure that each use of the sym·
bolln later Instructions conforms to the usage defined for that symbol. This means that many programming errors will
be detected when the program is assembled, long before It is being debugged on hardware.

FEATURES

Major features of the Intel 8086/8088 assembler and
assembly language include: .

• Powerful and Flexible Text Macro Facility
- Macro calls may appear anywhere
- Allows user to define the syntax of each macro

Bu IIt-i n functions
• conditional assembly (IF-THEN-ELSE, WHILE)
• repetition (REPEAn
• string processing functions (MATCH)
• support of assembly time I/O to console (IN,

OUT)
- Three Macro Listing Options include a GEN mode

which provides a complete trace of all macro calls
and expansions

• High-Level Data Structuring Capability

- STRUCTURES: Defined to be a template and then
used to allocate storage. The familiar dot notation
may be used to form instruction addresses with
structure fields.

- ARRAYS: Indexed list of same tyP!! data !!I!!ments.
RECORDS: Allows bit-templates to b!! defln!!d and
used as instruction operands andlor to allocate
storage.

• Fully Supports 808618088 Addressing Modes

- Provides for compl!!x address expressions Involv­
ing base and indexing regist!!rs and (structure)
field offsets.

- Powerful EQU facility allows complicated expres­
sions to be named and the name can be used as a
synonym for the expression throughout the
mOdule.

• Powerful STRING MANIPULATION INSTRUCTIONS

- Permit direct transfers to or from memory or the
accumulator.

- Can be prefixed with a repeat operator for
repetitive execution with a count·down and a con­
dition test.

• Over 120 Detailed Error Me •• age.

- Appear both In regular list file and error print file.
- User documentation fully explains the occurrence

of each error and sUggests a method to correct It.

B-156

SOS6/S0SS SOFTWARE DEVELOPMENT PACKAGE

• Generate. Relocatable and Linkable Object Code­
Fully Compatible with LINK88, LOC8S and LlB8S

- Permits ASM86 programs to be developed and
debugged in small modules. These modules can
be easily linked with other ASM86 or PLlM-86 ob­
ject modules andlor library routines to form a com­
plete application system.

• Support for ICE-86 Emulation and Symbolic Debug­
ging

- Debug options for inclusion of symbol table in
object modules for In-Circuit Emulation with sym­
bolic debugging.

BENEFITS

The 8086/8088 macro assembler allows the extensive
capabilities of the 8086/8088 to be fully exploited. In any
application, time and space critical routines can be
effectively written in ASM86. The 8086/8088 assembler
outputs relocatable and linkable object modules. These
object modules may be easily combined with object
modules written in PLlM-86-lntel's structured, high­
level programming language. ASM86 compliments
PLM-86 as the programmer may choose to write each
module In the language most appropriate to the task
and then combine the modules into the complete appli­
cations program using the 8086/8088 relocation and
linkage utilities.

CONV86

MCS·80/85 to MCS·86 ASSEMBLY LANGUAGE
CONVERTER UTILITY PROGRAM

Translates SOS01S0S5 Assembly
Language Source Code to SOS61S0SS
Assembly Language Source Code

Provides a fast and accurate means to
convert SOS01S0S5 programs to the SOS6
and the SOSS, facilitating program
portability

Automatically generates proper ASM·S6
directives to set up a "virtual SOSO"
environment that Is compatible with
PLM·86

In support of Intel's commitment to software portability, CONV86 Is offered as a tool to move 8080/8085 programs to
the 8086 and the 8088. A comprehensive manual, "MCS-86 Assembly Language Converter Operating Instructions for
ISIS-II Users" (9800642), covers the entire conversion process. Detailed methodology of the conversion process is fully
described therein.

CONV86 will accept as input an error-free 8080/8085 assembly-language source file and optional controls, and produce
as output, optional PRINT and OUTPUT files.

The PRINT file Is a formatted copy of the 8080/8085 source and the 8086/8088 source file with embedded caution
messages.

The OUTPUT file Is an 8086/8088 source file.

CONV86 issues a caution message when It detects a potential problem in the converted 8086/8088 code.

A transliteration of the 8080/8085 programs occurs, with each 8080/8085 construct mapped to Its exact 808618088
counterpart:

-Registers
-Condition flags
-Instructions
-Operands
-Assembler directives
-Assembler control lines
-Macros

B·IS7

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

Because CONV86 is a transliteration process, there is the possibility of as much as a 15%-20% code expansion over
the 8080/8085 code. For compactness and efficiency it is recommended that critical portions of programs be re-coded
in 8086/8088 assembly language.

Also, as a consequence of the tranSliteration, some manual editing may be required for converting instruction se­
quences dependent on:

-instruction length, timing, or encoding
-interrupt processing } mechanical editing procedures
-PLIM parameter passing conventions for these are suggested in the converter manual.

The accompanying diagram illustrates the flow of the conversion process. Initially, the abstract program may be repre­
sented in 8080/8085 or 808618086 assembly language to execute on that respective target machine. The conversion
process is porting a source destined for thE! 8080/8085 to the 8086 or the 8088 via CONV86.

SOURCE CODE ABSTRACT PROGRAM SOURCE CODE
IN 8080/8085 ---- IN 8086/8088

ASSEMBLY LANG ALGORITHM ASSEMBLY LANG

II II
ASSEMBLE ASSEMBLE

FOR CONva6 . FOR
808018085 8086/8088

EXECUTE 1-------- EOUIVALENT 1-------- EXECUTe
ON 1-------- FUNCTION ON

8080/8085 1-------- 808618088

PORTING 808018085 SOURCE CODe TO THE 808618088

B-158

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

LINK86

Automatic combination of separately
compiled or assembled 8086/8088
programs into a relocatable module
Automatic selection of required modules
from specified libraries to satisfy
symbolic references
Extensive debug symbol manipulation,
allowing line numbers, local symbols,
and public symbols to be purged and
listed selectively

Automatic generation of a summary map
giving results of the LlNK86 process

Abbreviated control syntax

Relocatable modules may be merged
into a single module suitable for
inclusion in a library

Supports "incremental" linking

Supports type checking of public and
external symbols

LlNK86 combines object modules specified in the LlNK86 input list into a single output mOdule. LlNK86 combines
segments from the input modules according to the order in which the mOdules are listed.

Support for incremental linking is provided since an output module produced by LlNK86 can be an input to another
link. At each stage in the incremental linking process, unneeded public symbols may be purged.

LlNK86 supports type checking of public and external symbols reporting an error if their types are not conSistent.

LlNK86 will link any valid set of input modules without any controls. However, controls are available to control the out­
put of diagnostic information in the LlNK86 process and to control the content of the output module.

LlNK86 allows the user to create a large program as the combination of several smaller, separately compiled modules.
After development and debugging of these component modules the user can link them together, locate them using
LOC86, and enter final testing with much of the work accomplished.

LOC86

Automatic and independent relocation
of segments. Segments may be
relocated to best match users memory
configuration

Extensive debug symbol manipulation,
allowing line numbers, local symbols,
and public symbols to be purged and
listed selectively

Automatic generation of a summary map
giving starting address, segment
addresses and lengths, and debug
symbols and their addresses

Extensive capability to manipulate the
order and placement of segments in
8086/8088 memory

Abbreviated control syntax

Relocatabllity allows the programmer to code programs or sections of programs without having to know the final ar­
rangement of the object code in memory.

LOC86 converts relative addresses in an input module to absolute addresses. LOC86 orders the segments in the input
module and assigns absolute addresses to the segments. The sequence in which the segments in the input module
are assigned absolute addresses is determined by their order in the input module and the controls supplied with the
command.

LOC86 will relocate any valid input module without any controls. However, controls are available to control the output
of diagnostic information in the LOC86 process, to control the content of the output module, or both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read-only
memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your program affects both
cost and performance in your application. The relocation feature allows you to develop your program on the Intellec
development system and then simply relocate the object code to suit your application.

B-159

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

Converts an 8086/8088 absOlute object
module to symbolic hexadecimal format

Facilitates preparing a file for later
loading by a symbolic hexadecimal
loader, such as the ISBC Monitor or
Universal PROM Mapper

OH86

Converts an absolute module to a more
readable format that can be displayed
on a CRT or printed for debugging

The OH86 command converts an 8086/8088 absolute object module to the hexadecimal format. This conversion may
be necessary to format a module for later loading by a hexadecimal loader such as the iSSC 86/12 monitor or Universal
Prom Mapper. The conversion may also be made to put the module In a more readable format that can be displayed or
printed.

The module to be converted must be In absolute format; the output from LOC86 is in absolute format.

LlB86 is a library manager program
which allows you to:

Create specially formatted files to
contain libraries of object modules

Maintain these libraries by adding or
deleting modules

Print a listing of the modules and
public symbols in a library file

LlB86

Libraries can be used as input to LlNK86
which will automatically link modules
from the library that satisfy external
references in the modules being linked

Abbreviated control syntax

Libraries aid in the Job of building programs. The library manager program, L1S86, creates and maintains flies contain·
ing object modules. The operation of L1S86 is controlled by commands to indicate which operation L1S86 is to per·
form. The commands are:

CREATE - creates an empty library file
ADD - adds object modules to a library file
DELETE - deletes modules from a library file
LIST - lists the module directory of library files
EXIT - terminates the L1S86 program and returns control to ISIS·II

B-160

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

ISIS·II t- PLlM·86 f--8- ~,~" .. " USER SDK·86 TEXT EDITOR SOURCE COMPILER OBJECT MODULE SYSTEM

LINK86
I- AND I- OH86 iSBC 86112

LOC86

ISIS·II r-- ASM66
ASM66 RELOCATABLE ICE·66 UPM TEXT EDITOR SOURCE OBJECT MODULE

ASM80/85
CONVa6 SOURCE

B-161

8086/8088 SOFTWARE DEVELOPMENT PACKAGE

SPECIFICATIONS

Operating Environment
Required Hardware

InteHec Microcomputer Development System

- MDS-800, MDS-888
- Series II MDS-220 or MDS-230
64K Bytes of RAM Memory

Dual Diskette Drives

- Single or Double· Density

System Console

- CRT or Hardcopy Interactive Device

Optional Hardware

Universal PROM Programmer
Line Printer·
ICE-86™.

Required Software

ISIS-II Diskette Operating System

- Single or Double· Density

·Recommended

ORDERING INFORMATION

Part Number Description
MDS-311 808618088 Software Development

Package

Also available in the following development support
packages:

Part Number Description
SP86A-KIT

SP86B-KIT

SP86A Support Package (for Intellec
Model 800)

Includes ICE-86 In-Circuit Emulator
(MDS-86-ICE) and 808618088 Software
Development Package (MDS-311)

SP86B Support Package (for Series II)

Includes ICE-86 In-Circuit Emulator
(MDS-86-ICE), 808618088 Software
Development Package (MDS-311),
and Series II Expansion Chassis
(MDS-201)

B-162

Documentation Package

PlIM-86 Programming Manual (9800466)
ISIS-II PlIM-86 Compiler Operator's Manual (9800478)
MCS-86 User's Manual (9800722)
MCS-86 Software Development Utilities Operating

Instructions for ISIS-II Users (9800639)
MCS-86 Macro Assembly Language Reference Manual

(9800640)
MCS-86 Macro Assembler Operating Instructions for

ISIS-II Users (9800641)
MCS-86 Assembly Language Converter Operating

Instructions for ISIS-II Users (9800642)
Universal PROM Programmer User's Manual

(9800819A)

Flexible Diskettes

- Single and Double· Oensity

inter
8089 ASSEMBLER SUPPORT PACKAGE

8089 1/0 processor program generation
on the Intellec Microcomputer
Development System.

Relocatable object module compatible
with the 8086 and 8088 Microprocessors.

Supports 8089-based addressing modes
with a structure facility that enables easy
access to based data.

Fully detailed set of error messages.

Includes software development utilities
to facilitate 8089 design.

-LlNK86: Combines 8086 or 8088 object
modules with 8089 object
modules and resolves
external references.

-LOC86: Assigns absolute memory
addresses to 8089 object
modules.

-OH86: Converts 8086/8088/8089
object code to symbolic
hexadecimal format.

-UPM86: A PROM programming aid
which has been updated to
support PROM programming
for 8086, 8088 and 8089
applications.

The 8089 Assembler Support Package extends Intellec microcomputer development system support to the 8089 ilO
Processor. The assembler translates 8089 assembly language source instructions into appropriate machine opera­
tion codes. The 8089 Assembler Support Package allows the programmer to fully utilize the capabilities of the 80891/0
Processor.

B-163

8089 ASSEMBLER SUPPORT PACKAGE

FUNCTIONAL DESCRIPTION

The 8089 Assembler Support Package contains the 8089
assembler (ASM89) as well as LlNK86 and LOC86-
relocation and linkage utilities, OH86-8086/8088/8089
object code to hexadecimal converter, and UPM86-
PROM programming software updated to program object
code in the 8086 formats. ASM89 translates symbolic
8089 assembly language instructions into the appro­
priate machine operation codes. The ability to refer to
program addresses with symbolic names eliminates the
errors of hand tranSI.ation and makes it easier to modify
programs when adding or deleting instructions.

ASM89 provides relocatable object module compat­
ibility with the 8086 and 8088 microprocessors. This
object module compatibility, along with the 8086/8088
relocation and,linkage utilities, facilitates the designing
of the 8089 into an 8086 or 8088 system.

ASM89 fully supports the based addressing modes of
the 8089. A structure facility in the assembler provides
easy access to based data. The structure facility allows
the user to define a template that enables accessing of
based data symbolically.

SPECIFICATIONS

Operating Environment

Required Hardware

Intellec Microcomputer Development System

-MDS-8oo, MDS-888

-Series II Models 220 or 230

64K Bytes of RAM Memory

Minimum One Diskette Drive

-Single or Double" Density

System Console

-CRT or Hardcopy Interactive Device

Optional Hardware

Universal PROM Programmer"
Line Printer"

ORDERING INFORMATION:

Part Number
MDS-312

Description
8089 Assembler Support Package

A sample assembly listing is shown in table 1.

18)1-11 "" II$UMllU VII IUIU.LV OF MODULE COHSOL
a.JEer MODULE "LUlD IN ,n,CONSOL o.~
USU'LU [nOICED IV UIIU CQNUl.$RC

1 CONSOLE SEGMENT .
3 , IHITULI~E U~$,U ~IIO e27f kUlllliIU (al!TROLLERS .
5 CONTROL
, ; aus POATSU,

11.2

? PARU5' os I ,PARilMUn pon
8 "lIUII, OS I
, ST/IIT?5, OS I ; sro,TuSlCa""IiINO PUT

" g ~u~~~:: PO:!S 3 lin
'11' ".7 13 STAT?" os I ; ST~TUS!CO""/IIHD PORT

I4CONTROj,. ENDS

" 11311141
.114 JUC U II

U NOVI G/II.41II11 , SET POtT SASE RODItESS
17 110"1' IGAI iUPS.. ; INITIAliZE 8275
18 MOYaIICA1PItiI1I75,4FH
19 MOVIIIGII] '1I/lA7S.I0311 :::~ :::~:::~

1111 Ilut II U 2B MD'I8IIGIilIPAIIA75.'AII
11101 IUt II" 21 "01181 I Glil I P~I!A75. I illi

" 1111 IUt u .. U MOYIIIC'" Sf1IITH,1 ; INITULIZE U7t
"It 1114t 16 31 24 "OYIIIGAI STIIT7',UH ..

26 COHSOLE ENDS

" ..
OEFHVIILllf TYPE -_ ..

, IIII m COHSOLf · IIII m COHUOL · .1'1 '" HULLII

" IIU m HULLII , 1 .. 1 m PII.,.15 · I .. a '" SUT7S

" II .. '" STnn

Table 1. Sample 8089 Assembly Lisling

Required Software

ISIS-II Diskette Operating System

-Single or Double" Density

Documentation Package
8089 Assembler User's Guide (9800938)

8089 Assembler Pocket Reference (9800936)

MCS-86 Software Development Utilities
Operating Instructions for ISIS-II User's (9800639)

MCS-86 Absolute Object File Formats (9800821)

Universal PROM Programmer User's Manual (9800819)

Flexible Diskettes
-Single and Double" Density • Recommended

B-164

ICE·86lM

8086 IN·CIRCUIT EMULATOR

Hardware in-circuit emulation

Full symbolic debugging

Breakpoints to halt emulation on a wide
variety of conditions

Comprehensive trace of program execu­
tion, both conditional and unconditional

Disassembly of trace or memory from
object code into assembler mnemonics

2K bytes of high speed ICE-86 mapped
memory

Software debugging with or without user
system

Handles full 1 megabyte addressability of
8086

Compound commands

Command macros

lhe ICE-86 module provides In-Circuit Emulation for the 8086 microprocessor and the iSBC 86/12 Single Board Com­
puter. It Includes three circuit boards which reside In Intelle~ Microcomputer Development Systems. A cable and
buffer box connect the Intellec system to the user system by replacing the user's 8086. Powerfullntellec debug func­
tions are thus extended into the user system. Using the ICE-86 module, the designer can execute prototype software
in continuous or single-step mode and can substitute blocks of Intellec system memory for user equivalents. Break­
points allow the user to stop emulation on user-specified conditions, and the trace capability gives a detailed history
of the program execution prior to the break. All user access to the prototype system software may be done symbolically
by referring to the source program variables and labels.

B-165

ICE-86™

INTEGRATED HARDWARE/SOFTWARE
DEVELOPMENT

The ICE-86 emulator allows hardware and software
development to proceed interactively. This is more ef­
fective than the traditional method of independent hard­
ware and software development followed by system in­
tegration. With the ICE-86 module, prototype hardware
can be added to the system as it is designed. Software
and hardware testing occurs while the product is being
developed.

Conceptually, the ICE-86 emulator assists three stages
of development:

1. It can be operated without being connected to the
user's system, so ICE-86 debugging capabilities can
be used to facilitate program development before any
of the user's hardware is available.

2. Integration of software and hardware can begin when
any functional element of the user system hardware
is connected to the 8086 socket. Through ICE-86
mapping capabilities, Intellec memory, ICE memory,
or diskette memory can be substituted for missing
prototype memory. Time-critical program mOdules
are debugged before hardware implementation by us­
ing the 2K-bytes of high-speed ICE-resident memory.
As each section of the user's hardware is completed,
it is added to the prototype. Thus each section of the
hardware and software is "system" tested as it
becomes available.

3. When the user's prototype is complete, it is tested
with the final version of the user system software.
The ICE-86 module is then used for real time emula­
tion of the 8086 to debug the system as a completed
unit.

Thus the ICE-86 module provides the user with the abil­
ity to debug a prototype or production system at any
stage in its development without introducing
extraneous hardware or software test tools.

SYMBOLIC DEBUGGING
Symbols and PLIM statement numbers may be
substituted for numeric values in any of the ICE-86 com­
mands. This allows the user to make symbolic refer­
ences to 110 ports, memory addresses, and data in the
user program. Thus the user need not remember the ad­
dresses of variables or program subroutines.

Symbols can be used to reference variables, proce­
dures, program labels, and source statements. A vari­
able can be displayed or changed by referring to it by
name rather than by its absolute location in memory.
Using symbols for statement labels, program labels, and
procedure names simplifies both tracing and breakpoint
setting. Disassembly of a section of code from either
trace or program memory into its assembly mnemonics
is readily accomplished.

Furthermore, each symbol may have associated with it
one of the data types BYTE, WORD, INTEGER,
SINTEGER (for short, 8-bit integer) or POINTER. Thus
the user need not remember the type of a source pro­
gram variable when examining or modifying it. For
example, the command "!VAR" displays the value in
memory of variable VAR in a format appropriate to its
type, while the command "!VAR= !VAFf+ 1" increments
the value of the variable.

The user symbol table generated along with the object
file during a PUM-86 compilation or an ASM-86
assembly is loaded into memory along with the user pro­
gram which is to be emulated. The user may add to this
symbol table any additional symbolic values for memory
addresses, constants, or variables that are found useful
during system debugging.

The ICE-86 module provides access through symbolic
definition to all of the 8086 registers and flags. The
READY, NMI, TEST, HOLD, RESET, INTR, and MN/MX
pins of the 8086 can also be read. Symbolic references
to key ICE-86 emulation information are also provided.

PLUG INTO
USER
8088 SOCKET

r------------- ------------------------ --, 1.-____ ., T·CABLE I
I I I I
I I I I
I I I I
I I IN~~~TEC I :
I I I I
I I I
I I I I I L ____l I
L ______________________________!N~L~CJ

Figure 1. ICE-86 Block Diagram

B-166

ICE-86™

A typical ICE-88 development configuration. It Is based on a Model 230 Development System, which also Includes a
Double Density Diskette Operating System and a Model 201 Expansion Chassis (which holds the ICE·88 emulator). The
ICE·88 module Is shown connected to a user prototype system, In this case an SDK·88.

MACROS AND COMPOUND COMMANDS
The ICE·86 module provides a programmable diagnostic
facility which allows the user to tailor its operation us·
ing macro commands and compound commands.

A macro Is a set of ICE-B6 commands which is given a
Single name. Thus, a sequence of commands which is
executed frequently may be invoked Simply by typing in
a single command. The user first defines the macro by
entering the entire sequence of commands which he
wants to execute. He then names the macro and stores
it for future use. He executes the macro by typing its
name and passing up to ten parameters to the com­
mands in the macro. Macros may be saved on a disk file
for use in subsequent debugging sessions.

Compound commands provide conditional execution of
commands(lF), and execution of commands until a con­
dition is met or until they have been executed a
specified number of times (COUNT, REPEAn.

Compound commands and macros may be nested any
number of times.

MEMORY MAPPING
Memory for the user system can be resident in the user
system or "borrowed" from the Intellec System through
ICE-86's mapping capability.

The ICE-86 emulator allows the memory which is ad­
dressed by the BOB6 to be mapped in 1 K-byte blocks to:

1. Physical memory in the user's system,

2. Either of two 1 K-byte blocks of ICE-B6 high speed
memory,

3. Intellec memory,
4. A random-access diskette file.

The user can also designate a block of memory as non­
existent. The ICE·B6 module issues an error message
when any such "guarded" memory is addressed by the
user program.

Command Description

GO Initializes emulation and allows the
user to spt;;cify the starting point
and breakpoints. Example:

GO FROM .START TILL .DELAY
EXECUTED

where START and DELAY are state-
ment labels.

STEP Allows the user to single-step
through the program.

Table 1. Summary of ICE·86 Emulation Commands

OPERATION MODES
The ICE-86 software is a RAM-based program that pro­
vides the user with easy-to-use commands for initiating
emulation, defining breakpoints, controlling trace data
collection, and displaying and controlling system
parameters. ICE-B6 commands are configured with a
broad range of modifiers which provide the user with
maximum flexibility in describing the operation to be
performed.

Emulation
Emulation commands to the ICE-B6 emulator control the
process of setting up, running and halting an emulation
of the user's 8OB6. Breakpoints and tracepoints enable
ICE·B6 to halt emulation and provide a detailed trace of
execution in any part of the user's program. A summary
of the emulation commands is shown in Table 1.

Breakpoints - The ICE-B6 module has two breakpoint
registers that allow the user to halt emulation when a
specified condition is met. The breakpoint registers may
be set up for execution or non-execution breaking. An
execution breakpoint consists of a Single address
which causes a break whenever the BOB6 executes from
its queue an instruction byte which was obtained from

B-167

ICE-86™

the address. A non-execution breakpoint causes an
emulation break when a specified condition other than
an instruction execution occurs. A non-execution break­
point condition, using one or both breakpoint registers,
may be specified by anyone of or a combination of:

1. A set of address values. Break on a set of address
values has three valuable features:

a. Break on a single address.

b. The ability to set any number of breakpoints within
a limited range (1024 bytes maximum) of memory.

c. The ability to break in an unlimited rar,ge. Execu­
tion is halted on any memory access to an address
greater than (or less than) any 20-bit breakpoint ad­
dress.

2. A particular status of the 8086 bus (one or more of:
memory or 110 read or write, instruction fetch, halt, or
interrupt acknowledge).

3. A set of data values (features comparable to break on
a set of address values, explained in pOint one).

4. A segment register (break occurs when the register is
used in an effective address calculation).

An external breakpoint match output for user access is
provided on the buffer box. This allows synchronization
of other test equipment when a break occurs.

Tracepoints - The ICE-86 module has two tracepoint
registers which establish match conditions to condi­
tionally start and stop trace collection. The trace infor­
mation is gathered at least twice per bus cycle, first
when the address signals are valid and second when the
data signals are valid. If the 8086 execution queue is
otherwise active, additional frames of trace are col·
lected.

Each trace frame contains the 20 addressldata lines and
detailed information on the status of the 8086. The trace
memory can store 1,023 frames, or an average of about
300 bus cycles, providing ample data for determining
how the 8086 was reacting prior to emulation break. The
trace memory contains the last 1,023 frames of trace
data collected, even if this spans several separate
emulations. The user has the option of displaying each
frame of the trace data or displaying by instruction in ac·
tual ASM-86 Assembler mnemonics. Unless the user
chooses to disable trace, the trace information is
always available after an emulation.

Interrogation and Utility
Interrogation and utility commands give the user con·
venient access to detailed information about the user
program and the state of the 8086 that is useful in
debugging hardware and software. Changes can be
made in both memory and the 8086 registers, flags, in·
put pins, and I/O ports. Commands are also provided for
various utility operations such as loading and saving
program files, defining symbols and macros, displaying
trace data, selling up the memory map, and returning
control to ISIS-II. A summary of the basic interrogation
and utility commands is shown in Table 2.

Memory/Register Commands

Display or change the contents of:

• Memory
• 8086 Registers
• 8086 Status flags
• 8086 Input pins
• 8086 I/O ports
• ICE·B6 Pseudo-Registers (e.g. emulation timer)

Memory Mapping Commands

Display, declare, set. or reset the ICE·86 memory mapping.

Symbol Manipulation Commands

Display any or all symbols, program modules, and program
line numbers and their aSSOCiated values (locations in
memory).

Set the domain (choose the particular program module) for
the line numbers.

Define new symbols as they are needed in debugging.

Remove any or all symbols, modules, and program
statements.

Change the value of any symbol.

TYPE

Assign or change the type of any symbol in the symbol table.

ASM

Disassemble user program memory into ASM·86 Assembler
mnemonics.

PRINT

Display the specified portion of the trace memory.

LOAD

Fetch user symbol table and object code from the input file.

SAVE

Send user symbol table and object code to the output file.

LIST

Send a copy of all output (including prompts, input line
echos, and error messages) to the chosen output device (e.g.
disk, printer) as well as the console.

EVALUATE

Display the value of an expression in binary, octal, decimal,
hexadecimal, and ASCII.

SUFFIX/BASE

Establish the default base for numeric values in input
text/output display (binary, octal, decimal, or hexadecimal).

CLOCK

Select the internal (ICE·a6 provided, for stand·alone mode
only) or an external (user·provided) system clock.

RWTIMEOUT

Allows the user to time out READ/WRITE command signals
based on the time taken by the 8086 to access Intellec
memory or diskette memory.

ENABLEIDISABLE ROY

Enable or disable logical AND of ICE·86 Ready with the user
Ready signal for accessing Intellec memory, tCE memory, or
diskette memory.

Table 2. Summary of Basic ICE·S6 Interrogation and
Utility Commands

B-168

ICE-86™

DIFFERENCES BETWEEN ICE·86
EMULATION AND THE 8086
MICROPROCESSOR

The ICE·86 module emulates the actual operation of the
8086 microprocessor with the following exceptions:

o The ICE·86 module will not respond to a user system
NMI or RESET signal when it Is out of emulation.

o Trap is ignored in single step mode and on the first in·
struction step of an emulation.

o The MIN/MAX line, which chooses the "minimum" or
"maximum" configuration of the 8086, must not
change dynamically in the user system.

o In the "minimum" mode, the user HOLD signal must
remain active until HLDA Is output by the ICE·86
emulator.

o The RO/GT lines in the "maximum" configuration are
not supported.

The speed of run emulation by the ICE·86 module
depends on where the user has mapped his memory. As
the user prototype progresses to include memory,
emulation becomes real time.

Memory
Mapped To Estimated Speed

User System 100% of real time*, up to 4 MHz
clock

ICE 2 wait states per 8086·controlled
bus cycle

Intellec Approximately 0.02% of real time
at 4 MHz clock

Diskette **

"100% of real time Is emulation at the user system clock rate with
no walt states.

""The emulation speed from diskette is comparable to Inteliec
memory, but emulation must walt when a new page is accessed
on the diskette.

DC CHARACTERISTICS OF ICE·86
USER CABLE
1. Output Low Voltages [VoLlMax)= O.4y]

IOL(Mln)

ADO·AD15 8mA
(24 mA @ 0.5V)

8mA A16/S3·A19/S7, SHE/57, RD,
LOCK, 050, 051, SO, 51, 52,
WR, M/iO, DT/R, DEN, ALE,
INTA

(16 mA @ 0.5V)

HLDA

MATCHO OR MATCH1 (on
buffer box)

7mA

16 mA

2. Output High Voltages [YOH (Min) = 2.4VJ
IOH(Mln)

ADO·AD15 -2mA

A16/S3·A19/S7, SHE/57, RD, -1 mA
LOCK, 050, 051, SO, 51, 52,
WR, M/iO, DT/R, DEN, ALE,
INTA, HLDA

MATCHO OR MATCH1 (on
buffer box) - 0.8 mA

3. Input Low Voltages [YIL(Max) = O.By]

ADO·AD15
NMI, CLK
READY
INTR, HOLD, TEST, RESET
MN/MX (0.1I-'f to GND)

4. Input High Voltages [VIH(Mln)= 2.0VJ

ADO·AD15
NMI, CLK
READY
INTR, HOLD, TEST, RESET
MN/MX (0.1I-'F to GND)

IlL (Max)

-0.2 mA
-0.4 mA
-0.8 mA
-1.4mA
-3.3 mA

IIH(Max)

80l-'A
20,..A
40l-'A

-0.4 mA
-1.1 mA

5. RO/GTO, RO/GT1 are pulled up to + 5V through a 5.6K
ohm resistor. No current is taken from user circuit at
Vee pin.

B-169

ICE-86™

SPECIFICATIONS

ICE·86 Operating Environment
Required Hardware
Intellec microcomputer development system with:
1. Three. adjacent slots for the ICE-86 module (Series II

requires Model 201 Expansion Chassis.)
2. 64K bytes of Intellec memory. If user prototype pro­

gram memory is desired, additional memory above
the basic 64K is required.

System console
Intellec dis~ette operating system
ICE·86 module

Required Software
System monitor
ISIS·II, version 3.4 or subsequent
ICE·86 software

Equipment Supplied
Printed circuit boards (3)
Interface cable and emulation buffer module
Operator's manual
ICE-86 software, diskette-based

ORDERING INFORMATION

Part. Number Description
MDS·86-ICE 8086 CPU in-circuit emulator

Emulation Clock
User system clock up to 4 MHz or 2 MHz ICE-86 internal
clock in stand-alone mode

Physlc~1 Characteristics
Printed Circuit Boards
Width: 12.00 in (30.48 cm)
Height: 6.75 in (17.15 cm)
Depth: 0.50 in (1.27 cm)
Packaged Weight: 9.00 Ib (4.10 kg)

Elec.trical Characteristics
DC Power

Vcc = +5V +5% -1%
Icc = 15A maximum; llA typical
Voo = + 12V ±5%
100 = 120 mA maximum; 80 mA typical
Vss = -10V ± 5% or -12V ± 5% (optional)
Iss = 15 mA maximum; 12 mA typical

Environmental Characteristics
Operating Temperature: O· to 40·C
Operating Humidity: Up to 95% relative humidity with­
out condensation.

B-170

iSBC 86/12A
SINGLE BOARD COMPUTER

808616 bit HMOS microprocessor
central processor unit

32K-bytes of dual-port read/write
memory expandable on-board to 64K­
bytes with on-board refresh

Sockets for up to 16K-bytes of read only
memory expandable on-board to 32K­
bytes

System memory expandable to
1 megabyte

24 programmable parallel 1/0 lines with
sockets for interchangeable line drivers
and terminators

Programmable synchronous 1
asynchronous RS232C compatible serial
interface with software selectable baud
rates

Two programmable 16-bit BCD or binary
timers/event counters

9 levels of vectored interrupt control,
expandable to 65 levels

Auxiliary power bus and power fail
interrupt control logic for read/write
memory battery backup

MULTIBUS interface for multimaster
configurations and system expansion

Compatible with iSBC 80 family single
board computers, memory, digital and
analog 110, and peripheral controller
boards

The iSBC 86/12A Single Board Computer is a member of Intel's complete line of OEM microcomputer systems which take
full advantage of Intel's LSI technology to provide economical self-contained computer based solutions for OEM
applications. The iSBC 86/12A board is a complete computer system on a single 6.75 x 12.00-inch printed circuit
card. The CPU, system clock, read/write memory, nonvolatile read only memory, I/O ports and drivers, serial
communications interface, priority interrupt logic and programmable timers, all reside on the board. Full MUL TIBUS
interface logic is included to offer compatibility with the Intel OEM Microcomputer Systems family of Single Board
Computers, expansion memory options, digital and analog I/O expansion boards and peripheral controllers.

B-171

iSBC 86/12ATM

FUNCTIONAL DESCRIPTION

Central Processing Unit
The central processor for the iSSC 86/12A board is Intel's
8086, a powerful 16-bit HMOS device. The 225 sq. mil
chip contains 29,000 transistors and has a clock rate of
5MHz. The architecture includes four (4) 16-bit byte
addressable data registers, two (2) 16-bit memory base
pointer registers and two (2) 16-bit index registers, all
accessed by a total of 24 operand addressing modes for
complex data handling and very flexible memory
addressing.

Instruction Set - The 8086 instruction repertoire includes
variable length instruction format (including double
operand instructions), 8-bit and 16-bit signed and
unsigned arithmetic operators for binary, SCD and
unpacked ASCII data, and iterative word and byte string
manipulation functions. The instruction set of the 8086 is
a superset of the 8080Al8085A family and with available
software tools, programs written for the 8080Al8085A can
be easily converted and run on the 8086 processor.

Architectural Features - A 6-byte instruction queue
provides pre-fetching of sequential instructions and can
reduce the 1.2!"sec minimum instruction cycle to 400 nsec
for queued instructions. The stack oriented architecture
facilitates nested subroutines and co-routines, reentrant
code and powerful interrupt handling. The memory

expansion capabilities offer a 1 megabyte addressing
range. The dynamic relocation scheme allows ease in
segmentation of pure procedure and data for efficient
memory utilization. Four segment registers (code, stack,
data, extra) contain program loaded offset values which
are used to map 16-bit addresses to 20-bit addresses.
Each register maps 64K-bytes at a time and activation of a
specific register is controlled explicitly by program
control and is also selected implicitly by specific functions
and instructions.

Bus Structure
The iSSC 86/12A microcomputer has three buses: an
internal bus for communicating with on-board memory
and 110 options, the MUL TISUS system bus for referenc­
ing additional memory and 1/0 options, and the dual-port
bus which allows access to RAM from the on-board CPU
and the MUL TISUS system bus. Local (on-board)
accesses do not require MUL TISUS communication,
making the system bus available for use by other
MUL TISUS masters (i.e. DMA devices and other single
board computers transferring to additional system
memory). This feature allows true parallel processing in a
multiprocessor environment. In addition, the MUL TISUS
interface can be used for system expansion through the
use of other 8- and 16-bit iSSC computers, memory and
1/0 expansion boards.

Figure 1. ISBC 86/12A Single Board Computer Block Diagram

B-l72

iSBC 86/12ATM

RAM Capabilities
The iSBC 86/12A microcomputer contains 32K bytes of
dynamic read/write memory using 16K-bit 2117 RAMs. In
addition, the on-board RAM complement may be ex­
panded to 64K bytes with the iSBC 300 32K-byte RAM
expansion module. Power for the on-board RAM and
refresh circuitry may be optionally provided on an aux­
iliary power bus, and memory protect logic is included
for RAM battery backup requirements. The iSBC 86/12A
board contains a dual port controller which allows
access to the on-board RAM (32K bytes or 64K bytes
when the iSBC 300 module is included with the iSBC
86/12A board) from the iSBC 86/12A CPU and from any
other MULTI BUS master via the system bus. The dual
port controller allows 8- and 16-bit accesses from the
MUL TIBUS system bus, and the on-board CPU transfers
data to RAM over a 16-bit data path. Priorities have been
established such that memory refresh is guaranteed by
the on-board refresh logic and that the on-board CPU
has priority over MUL TIBUS system bus requests for
access to RAM. The dual port controller includes in­
dependent addressing logic for RAM access from the
on-board CPU and from the MULTIBUS system bus. The
on-board CPU will always access RAM starting at loca­
tion OOOOOH' Address jumpers allow on-board RAM to be
located starting on any 8K-byte boundary within a 1
megabyte address range for accesses from the MUL TI­
BUS system bus. In conjunction with this feature, the
iSBC 86/12A microcomputer has the ability to protect
on-board memory from MUL TIBUS access to any contig­
uous 8K-byte segments (or 16K-byte segments with
iSBC 300 module). These features allow multiprocessor
systems to establish local memory for each processor
and shared system (MULTIBUS) memory configurations
where the total system memory size (including local on­
board memory) can exceed 1 megabyte without address­
ing conflicts.

EPROM/ROM Capabilities
Four sockets are provided for up to 16K-bytes of
nonvolatile read only memory on the iSBC 86/12A
board. EPROM/ROM may be added in 2K-byte incre­
ments up to a maximum of 4K-bytes by using Intel 2758

electrically programmable ROMs (EPROMs); in 4K-byte
increments up to 8K bytes by using Intel 2716 EPROMs
or Intel 2316E masked ROMs; or in 8K-byte increments
up to 16K bytes by using Intel 2732 EPROMs or 2332A
ROMs. On-board EPROM/ROM is accessed via 16-bit
data paths. On-board EPROM/ROM capacity may be ex­
panded to 32K bytes with the addition of the iSBC 340
16K-byte EPROM expansion module. It provides an addi­
tional four sockets for Intel 2732 EPROMs or Intel 2332A
ROMs. With user modification of the iSBC 86/12A's on­
board memory and MUL TIBUS address decode, Intel
2758 and 2716 EPROMs or 2316E ROMs may be option­
ally supported. System memory size is easily expanded
by the addition of MULTI BUS system bus compatible
memory boards available in the iSBC product family.

Parallel I/O Interface
The iSBC 86/12A single board computer contains 24
programmable parallel I/O lines implemented using the
Intel 8255A Programmable Peripheral Interface. The
system software is used to configure the I/O lines in any
combination of unidirectional input/output and bidirec­
tional ports indicated in Table 1. Therefore, the I/O
interface may be customized to meet specific peripheral
requirements. In order to take full advantage of the large
number of possible I/O configurations, sockets are
provided for interchangeable I/O line drivers and
terminators. Hence, the flexibility of the I/O interface is
further enhanced by the capability of selecting the
appropriate combination of optional line drivers and
terminators to provide the required sink current, polarity,
and drive/termination characteristics for each applica­
tion. The 24 programmable I/O lines and Signal ground
lines are brought out to a 50-pin edge connector that
mates with flat, woven, or round cable.

Serial I/O
A programmable communications interface using the
Intel 8251A Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) is contained on the iSBC
86/12A board. A software selectable baud rate generator
provides the USART with all common communication

Mode of Operation

Unidirectional

Port
Lines

Input Output Bidirectional Control
(qty)

Latched & Latched &
Latched Latched

Strobed Strobed

1 8 X X X X X

2 8 X X X X

3 4 X X X1

4 X X X1

~O~~rt of port 3 must be used as a control port when either port 1 or port 2 are used as a latched and strobed input or a latched and strobed output
port or port 1 is used as a bidirectional port.

Table 1. Input/Output Port Modes of Operation

B-173

iSBC 86/12ATM

frequencies. The USART can be programmed by the
system software to select the desired asynchronous or
synchronous serial data transmission technique (includ­
ing IBM Bi-Sync). The mode of operation (i.e., synchro­
nous or asynchronous). data format, control character
format, parity, and baud rate are all under program
control. The 8251A provides full duplex, double buffered
transmit and receive capability. Parity, overrun, and
framing error detection are all incorporated in the
USART. The RS232C compatible interface on each
board, in conjunction with the USART, provides a direct
interface to RS232C compatible terminals, cassettes, and
asynchronous and synchronous modems. The RS232C
command lines, serial data lines, and signal ground line
are brought out to a 26 pin edge connector that mates with
RS232C compatible flat or round cable. The iSBC 530
Teletypewriter Adapter provides an optically isolated
interface for those systems requiring a 20 mA current
loop. The iSBC 530 unit may be used to interface the iSBC
86/12A board to teletypewriters or other 20 mA current
loop equipment.

Programmable Timers
The iSBC 86/12A board provides three independent, fully
programmable 16-bit interval timers/event counters
utilizing the Intel 8253 Programmable Interval Timer.
Each counter is capable of operating in either BCD or
binary modes. Two of these timers/counters are available
to the systems designer to generate accurate time
intervals under software control. Routing for the outputs
and gate/trigger inputs of two of these counters is jumper
selectable. The outputs may be independently routed to
the 8259A Programmable Interrupt Controller and to the
I/O line drivers associated with the 8255A Programmable
Peripheral Interface, or may be routed as inputs to the
8255A chip. The gate/trigger inputs may be routed to I/O
terminators associated with the 8255A or as output
connections from the 8255A. The third interval timer in
the 8253 provides the programmable baud rate generator
for the iSBC 86/12A board RS232C USART serial port. In
utilizing the iSBC 86/12A board the systems deSigner
simply configures, via software, each timer independently
to meet system requirements. Whenever a given time
delay or count is needed, software commands to the
programmable timers/event counters select the desired
function. Seven functions are available, as shown in
Table 2. The contents of each counter may be read at any
time during system operation with simple read operations
for event counting applications, and special commands
are included so that the contents can be read "on the fly".

MUL TIBUS System Bus and
Multimaster Capabilities
The MUL TIBUS system bus features asynchronous data
transfers for the accommodation of devices with v.arious
transfer rates while maintaining maximum throughput.
Twenty address lines and sixteen separate data lines
eliminate the need for address/data multiplexing/demul­
tiplexing logic used in other systems, and allow for data
transfer rates up to 5 megawords/sec. A failsafe timer is
included in the iSBC 86/12A board which can be used to
generate an interrupt if an addressed device does not
respond within 6 msec.

Function

Interrupt on
terminal count

Programmable
one-shot

Rate
generator

Square-wave
rate generator

Software
triggered
strobe

Hardware
triggered
strobe

Event counter

Operation

When terminal count is reached,
an interrupt request is generated.
This function is extremely useful
for generation of real-time clocks.

Output goes low upon receipt of
an external trigger edge or soft­
ware command and returns high
when terminal count is reached.
This function is retriggerable.

Divide by N counter. The output
will go low for one input clock
cycle, and the period from one low
going pulse to the next is N times
the input clock period.

Output will remain high until one­
half the count has been completed,
and go low for the other half of
the count.

Output remains high until soft­
ware loads count (N). N counts af­
ter count is loaded, output goes
low for one input clock period.

Output goes low for one clock
period N counts after rising edge
counter trigger input. The counter
is retriggerable.

On a jumper selectable basis, the
clock input becomes an input
from the external system. CPU
may read the number of events
occurring after the counting "win­
dow" has been enabled or an
interrupt may be generated after N
events occur in the system.

Table 2_ Programmable Timer Functions

Multimaster Capabilities - The iSBC 86/12A board is a
full computer on a single board with resources capable of
supporting a great variety of OEM system requirements.
For those applications requiring additional processing
capacity and the benefits of multiprocessing (i.e., several
CPUs and/or controllers logically sharing system tasks
through communication over the system bus), the iSBC
86/12A board provides full MULTIBUS arbitration control
logic. This control logic allows up to three iSBC 86/12A
boards or other bus masters, including iSBC 80 family
MUL TIBUS compatible 8-bit single board computers, to
share the system bus in serial (daisy chain) priority
fashion and up to 16 masters to share the MUL TIBUS
system bus with the addition of an external priority
network. The MUL TIBUS arbitration logic operates
synchronously with a MUL TIBUS clock (provided by the
iSBC 86/12A board or optionally provided directly from
the MUL TIBUS) while data is transferred via a handshake
between the .master and slave modules. This allows
different speed controllers to share resources on the same
bus, and transfers via the bus proceed asynchronously.
Thus, transfer speed is dependent on transmitting and

B-174

iSBC 86/12ATM

receiving devices only. This desigf'l prevents slow master
modules from being handicapped in their attempts to gain
control of the bus, but does not restrict the speed at which
faster modules can transfer data via the same bus. The
most obvious applications for the master-slave capabili­
ties of the bus are multiprocessor configurations, high
speed peripheral control, but are by no means limited to
these three.

Interrupt Capablity

The iSBC 86/12A board provides 9 vectored interrupt
levels. The highest level is the NMI (Non-maskable
Interrupt) line which is directly tied to the 8086CPU. This
interrupt cannot be inhibited by software and is typically
used for signalling catastrophic events (i.e., power
failure). On servicing this interrupt, program control will
be implicitly transferred through location 00008H. The
Intel 8259A Programmable Interrupt Controller (PIC)
provides vectoring for the next eight interrupt levels. As
shown in Table 3, a selection of four priority processing
modes is available to the systems designer for use in
designing request processing configurations to match
system requirements. Operating mode and priority
assignments may be reconfigured dynamically via
software at any time during system operation. The PIC
accepts interrupt requests from the programmable
parallel and serial I/O interfaces, the programmable
timers, the system bus, or directly from peripheral
equipment. The PIC then determines which of the
incoming requests is of the highest priority, determines
whether this request is of higher priority than the level
currently being serviced, and, if appropriate, issues an
interrupt to the CPU. Any combination of interrupt levels
may be masked, via software, by storing a single byte in
the interrupt mask register of the PIC. The PIC generates
a unique memory address for each interrupt level. These
addresses are equally spaced at 4 byte intervals. This
32-byte block may begin at any 32-byte boundary in the
lowest 1K-bytes of memory: and contains unique
instruction pointers and code segment offset values (for
expanded memory operation) for each interrupt level.
After acknowledging an interrupt and obtaining a device
identifier byte from the 8259A PIC, the CPU will store its
status flags on the stack and execute an indirect CALL
instruction through the vector location (derived from the
device identifier) to the interrupt service routine. In
systems requiring additional interrupt levels, slave 8259A
PIC's may be interfaced via the MUL TIBUS system bus,
to generate additional vector addresses, yielding a total
of 65 unique interrupt levels.

Interrupt Request Generation - Interrupt requests may
originate from 17 sources. Two jumper selectable
interrupt requests can be automatically generated by the
programmable peripheral interface when a byte of

"Note: The Ii rst 32 vector locations are reserved by Intel
for dedicated vectors. Users who wish to maintain
compatibility with present and future Intel products
should, not use these locations for user-defined vector
addresses.

Mode Operation

Fully nested Interrupt request line priorities
fixed at 0 as highest, 7 as lowest.

Auto-rotating Equal priority. Each level, after
receiving service, becomes the
lowest priority level until next in-
terrupt occurs.

Specific System software assigns lowest
priority priority level. Priority of all other

levels based in sequence numeri-
cally on this assignment.

Polled System software examines priori-
ty-encoded system interrupt status
via interrupt status register.

Table 3. Programmable Interrupt Modes

information is ready to be transferred to the CPU (i.e.,
input buffer is full) or a byte of information has been
transferred to a peripheral device (i.e., output buffer is
empty). Two jumper selectable interrupt requests can be
automatically generated by the USART when a character
is ready to be transferred to the CPU (i.e., receive channel
buffer is full, or a character is ready to be transmitted (i.e.,
transmit channel data buffer is empty). A jumper
selectable request can be generated by each of the
programmable timers. An additional interrupt request
line may be jumpered directly from the parallel I/O driver
terminator section. Eight prioritized interrupt request
lines allow the iSBC 86/12A board to recognize and
service interrupts originating from peripheral boards
interfaced via the MUL TIBUS system bus. The MUL TI­
BUS fail safe timer also can be selected as an interrupt
source.

Power-Fail Control

Control logic is also included to accept a power-fail
interrupt in conjunction with the AC-Iow Signal from the
iSBC 635 and iSBC 640 Power Supply or equivalent.

Expansion Capabilities

Memory and I/O capacity may be expanded and
additional functions added using Intel MUL TlBUS
compatible expansion boards. Memory may be expanded
by adding user specified combinations of RAM boards,
EPROM boards, or combination boards. Input/output
capacity may be increased by adding digital I/O and
analog I/O expansion boards. Mass storage capability
may be achieved by adding Single or double density
diskette controllers, or hard disk controllers. Modular
expandable backplanes and cardcages are available to
support multi board systems.

Note: Certain system restrictions may be incurred by the
inclusion of some of the iSBC 80 family options in an iSBC
86/12A system. Consult the Intel OEM Microcomputer
System Configuration Guide for specific data.

B-175

iSBC 86/12ATM

System Development Capabilities

The development cycle of iSBC 86/12A products can be
significantly reduced by using the Intellec® series
microcomputer development systems. The Assembler,
Locating Linker, Library Manager, Text Editor and system
monitor are all supported by the ISIS-II disk based
operating system. A minimum of 64K-bytes of RAM is
needed in the Intellec system to support program
development for the iSBC 86/12A board. To facilitate
conversion of 8080A/8085A assembly language programs
to un on the iSBC 86/12A board CONV-86 is available
under the ISIS-II operating system.

In-Circuit Emulator-ICE-86 in-circuit emulator provides
the necessary link between the software development
environment provided by the Intellec system and the
"target" iSBC 86/12A execution system. In addition to
providing the mechanism for loading executable code and
data into the iSBC 86/12A board, ICE-86 in-circuit
emulator provides a sophisticated command set to assist
in debugging software and final integration of the user

SPECIFICATIONS

Word Size
Instruction - 8, 16, 24, or 32 bits
Data - 8,16 bits

Cycle Time
Basic Instruction Cycle

Note:

1.2l1 sec
400 nsec (assumes
instruction in the queue)

Basic instruction cycle is defined as the fastest instruction time (Le.,
two clock cycles)

Memory Capacity
On-Board Read Only Memory - 16K bytes (sockets
only); expandable to 32K bytes with iSBC 340 EPROMI
ROM expansion module.

On-Board RAM - 32K bytes; expandable to 64K bytes
with iSBC 300 RAM expansion module.

Off-Board ExpanSion - Up to 1 megabyte in user
specified combinations of RAM, ROM, and EPROM.
Note:
Read only memory may be added in 2K, 4K, or 8K·byte increments.

Memory Addressing
On-Board EPROM/ROM - FFOOO-FFFFFH (using 2758
EPROMs); FEOOO-FFFFFH (using 2716 EPROMs or 2316
ROMs); FCOOO-FFFFFH (using 2732 EPROMs or 2332A
ROMs); F8000-FFFFFH (with iSBC 340 EPROM option
and four additional 2732 EPROMs).

On-Board RAM - 32K bytes of dual port RAM. Option­
ally expandable to 64K bytes with iSBC 300 RAM option.

CPU Access - 32K bytes: 00000-07FFFH; 64K bytes:
OOOOO-OFFFFH·

hardware and software. ICE-86 in-circuit emulator
maximizes the use of available development resources by
allowing Intellec resident resources (e.g., memory and
peripherals) to be accessed by software running on the
target iSBC 86/12A system. In addition, software can be
executed without an iSBC 86/12A execution vehicle, in 2K
bytes of RAM resident in the ICE-86 system itself. Sym­
bolic references to instruction and data locations can be
made through ICE-86 in-circuit emulator to allow the user
to reference memory locations with assigned names.

PL/M-86 - Intel's high level programming language,
PL/M-86, is also available as an Intellec Microcomputer
Development System option. PL/M-86 provides the
capability to program in a natural, algorithmic language
and eliminates the need to manage register usage or
allocate memory. PLlM-86 programs can be written in a
much shorter time than assembly language programs for a
given application. PLlM-86 includes byte and word,
integer, pointer and floating point (32-bit) data types and
also includes conditional compilation and macro features.

MULTIBUS Access - Jumper selectable for any 8K-byte
boundary, but not crossing a 128K-byte boundary. Ac­
cess for 8K, 16K, 24K or 32K (16K, 32K, 48K, 64K with
iSBC 300 option) bytes may be selected for on-board
CPU use only.

1/0 Capacity
Parallel - 24 programmable lines using one 8255A.
Serial - 1 programmable line USing one 8251A.

1/0 Addressing
On-Board Programmable 110

Port
8255A

1 I 2 I 3 I Control

Address C81 CA I CC I CE

USART

Data I Control

08 or I DA or
DC DE

Serial Communications Characteristics
Synchronous - 5-8 bit characters; internal or exter­
nal character synchronization; automatic sync insertion.

Asynchronous - 5-8 bit characters; break character
generation; 1, 1 V2, or 2 stop bits; false start bit
detection.

Baud Rates

Frequency (kHz) Baud Rate (Hz)

(Software Selectable) Synchronous Asynchronpus

+ 16 + 64

153.6 - 9600 2400
76.8 - 4800 1200
38.4 38400 2400 600
19.2 19200 1200 300
9.6 9600 600 150
4.8 4800 300 75
2.4 2400 150 -
1.76 1760 110 -

Note:
Frequency selected by 110 write of appropriate 16-bit frequency factor
to baud rate register (8253 Timer 2).

B-176

iSBC 86/12ATM

Interrupts
Addresses for 8259A Registers (Hex notation I/O ad·
dress space)

CO or C4 Write: Initialization Command Word 1 (ICW1)
and Operation Control Words 2 and 3
(OCW2 and OCW3)

Read: Status and Poll Registers

C2 or C6 Write: ICW2, ICW3, ICW4, OCWI (Mask
Register)

Read: OCWI (Mask Register)

Note:
Several registers have the same physical address; sequence of access
and one data bit of control word determine which register will respond.

Interrupt Levels - 8086 CPU includes a non-maskable
Interrupt (NMI) and a maskable interrupt (INTR). NMI
interrupt is provided for catastrophic events such as
power failure. NMI vector address is 00008. INTR interrupt
is driven by on-board 8259A PIC, which provides 8-bit
identifier of interrupting device to CPU. CPU multiplies
identifier by four to derive vector address. Jumpers select
interrupts from 17 sources without necessity of external
hardware. PIC may be programmed to accommodate
edge-sensitive or level-sensitive inputs.

Timers
Register Addresses (Hex notation, I/O address space)

DO Timer 0
D2 Timer 1
D4 Timer 2
D6 Control register

Note:
Timer counts are loaded as two sequential output operations to same
address 85 given.

Input Frequencies
Reference: 2.46 MHz ± 0.1 % (0.041I-'s period, nominal);
1.23 MHz ±0.1% (0.81 I-'s period, nominal); or 153.60
kHz ±0.1% (6.51I-'s period nominal).

Note:
Above frequencies are user selectable.

Event Rate: 2.46 MHz max

Output Frequencies/Timing Intervals

Single Timer/Counter Dual Timer/Counter

Function (Two Timers Cascaded)

Min Max Min Max

Real-time 1.63f1s 427.1 ms 3.26 S 466.50 min
interrupt

Programmable 1.63 ~s 427.1 ms 3.26 S 466.50 min
one-shot

Rate generator 2.342 Hz 613.5 kHz 0.000036 Hz 306.8 kHz

Square-wave 2.342 Hz 613.5 kHz 0.000036 Hz 306.8 kHz
rate generator

Software 1.63 flS 427.1 ms 3.26 S 466.50 min
triggered
strobe

Hardware 1.63 fls 427.1 ms 3.26 S 466.50 min
triggered
strobe

Event - 2.46 MHz - -
counter

Interfaces
MULTIBUS - All signals TTL compatible
Parallel I/O - All signals TTL compatible
Interrupt Requests - All TTL compatible
Timer - All signals TTL compatible
Serial I/O - RS232C compatible, data set configuration

System Clock (8086 CPU)
5.00 MHz ± 0.1%

Auxiliary Power
An auxiliary power bus is provided to allow separate
power to RAM for systems requiring battery backup of
read/write memory. Selection of this auxiliary RAM
power bus is made via jumpers on the board.

Connectors

Interface
Pins Centers

Mating Connectors
(qty) (in.)

Bus 86 0.156 VIKING 3KH43/9AMK12

Parallel 110 50 0.1 3M 3415·000

Serial 110 26 0.1 3M 3462·000

Memory Protect
An active low TTL compatible memory protect signal is
brought out on the auxiliary connector which, when
asserted, disables read/write access to RAM memory
on the board. This input is provided for the protection
of RAM contents during system power down sequences.

Line Drivers and Terminators
1/0 Drivers - The following line drivers are all compatible
with the 110 driver sockets on the iSBC 86/12A board.

Driver Characteristic Sink Current (mA)

7438 I,OC 48
7437 I 48
7432 NI 16
7426 I,OC 16
7409 NI,OC 16
7408 NI 16
7403 I,OC 16
7400 I 16

Note:
I ;;; inverting; NI = non-inverting; DC = open collector.

Port 1 of the 8255A has 20 mA totem·pole bidirectional
drivers and 1 kQterminators.

I/O Terminators - 220Q/330Qdivider or 1 kQ piJllup

220n/330n (Isac 901 OPTION)

220Q

+5V--------~~ __ ----~

1:

1 K n (Isac 902 OPTION)

1 kQ
+5V--------~~ ____________ ___

B-l77

iSBC 86/12ATM

Bus Drivers

Function Characteristic Sink Current (rnA)

Data Trl-state
Address Tri-state
Commands Tri-state

Physical Characteristics
Width - 12.00 in. (30.48 cm)
Height - 6.75 in. (17.15 cm)
Depth - 0.70 in. (1.78 cm)
Weight - 19 oz. (539 gm)

Electrical Characteristics
DC Power Requirements

CUrrent Requirements

Configu- VCC = + 5V VOO = + 12V VBB = -5V
ration ±S% (max) ±5% (max) ±S% (max)

Without 5.2A 350 mA -
EPROM'

RAM Only3 390 mA 40 mA 1.0 mA

With
5.2A 450 mA -

iSSC 530.

With4K
EPROM5 5.5A 350 mA -
(using 2758)

With8K
ROM5 6.1A 350 mA -
(using 2316E)

With 8K
EPROM5 5.5A 350 mA -
(using 2716)

With 16K
ROM5 (using 5.4A 350 mA -
2732or2332A)

Notes:

50
50
32

VAA = - 12V
±S% (max)

40 mA

-
140 mA

40 mA

40 mA

40 rnA

40 rnA

1. Does not include power for optional AOM/EPROM, 1/0 drivers, and
1/0 terminators.

2. Does not include power required for optional ROMIEPROM, 1/0
drivers and 1/0 terminators.

3. RAM chips powered via auxiliary power bus.

4. Does not include power for optional ROM/EPROM, 1/0 drivers, and
1/0 terminators. Power for iSBC 530 is supplied via serial port
connector.

S. Includes power required for four ROM/EPROM chips, and 110
terminators installed for 161/0 lines; all terminator inputs low.

ORDERING INFORMATION

Part Number Description
SBC 86/12A Single Board Computer

with 32K bytes RAM

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051
Tel: (408) 987-8088""
TWX: 910·338·0026
TELEX: 34·6372

Environmental Characteristics
Operating Temperature - O°C to 55°C
Relative Humidity - to 90% (without condensation)

Reference Manual
9803074-01 - iSBC 896/12A Single Board Computer
Hardware Reference Manual (NOT SUPPLIED)

Reference manuals are shipped with each product only if
designated SUPPLIED (see above). Manuals may be
ordered from any Intel Literature Department, 3065
Bowers Avenue, Santa Clara, California 95051.

B-178

iSBC 957
INTELLEC ,'- iSBC 86/12A INTERFACE

AND E}{ECUTION PACKAGE

Establishes communication between the
iSBC 86/12A and the Intellec Develop·
ment Systems to aid in MCS·86™ soU·
ware development

Allows full speed execution of MCS·86:rM
programs

Includes EPROM resident system monitor
for iSBC 86/12A

Allows Intellec ISIS·II files to be trans·
ferred between iSBC 86/12A and Intellec
Microcomputer Development System

Offers "Virtual Terminal" capability which
permits the Intellec console to access the
iSBC 86/12A Monitor

Provides powerful console commands for
software debug

Allows access to all iSBC 86/12A memory,
registers, flags and 110 ports

Includes all necessary hardware, soft·
ware and documentation

The iSBC 957 Intellec-iSBC 86/12A Interface and Execution Pa,ckage contains all the necessary hardware, software
cables and documentation required to interface an iSBC 86/12A Single Board Computer to an Intellec Microcomputer
Development System for software development and full speed ex,ecution.

B·179

iSBC 957™

FUNCTIONAL DESCRIPTION

Overview
The iSBC 957lntellec-iSBC 86/12A Interface and Execu­
tion Package extends the software development capa­
bilities of the Intellec Microcomputer Development Sys­
tems to the iSBC 86/12 and iSBC 86/12A Single Board
Computers. It allows software modules developed
under the Intellec resident ISIS-II Operating Systems to
be down loaded to the iSBC 86/12A for full-speed execu­
tion and debug. In addition, the iSBC 957 allows seg­
ments of iSBC 86/12A memory to be saved on floppy
disk files. Special communication software allows
transparent access to the powerful debug commands in
the iSBC 86/12A monitor from the Intellec console ter­
minal.

Software Capabilities
The software included in the iSBC 957 package consists
of. the iSBC 86/12A monitor residing on four Intel
EPROMs whkh are inserted into sockets on the iSBC
86/12A board. A diskette is also included which contains
the Intellec resident communications software that
links the iSBC 86/12A with the Intellec Microcomputer
Development System. The EPROM resident software
creates em execution environment in which object mod­
ules may be loaded into the iSBC 86/12A memory, exe­
cuted <I,t full speed, modified if necessary and saved on
the Intf~lIec system floppy disk. The monitor provides
the ability to execute selected program segments with
breahpoints or by single stepping, examine and modify
registers and memory, perform port 110, move a block of
memory, compare blocks of memory, search for a wordl

PARALLEL - PARALLEL 110
PORT

PROM
PORT

LOAD GABLE ? ~~~

I~ " SERiALifO
PORT

iNTELLEC
MDS BOO
SYSTEM

Al0 All A12 A13
(SEE NOTE)

TO RS232·C /

C~0 "~~~~==)
~ fo " iSBC530

OEM RS232·C
CABLE

TTY
PORT

, TTY TTY ADAPTER

CABLE

Figure 1a. Intellec MDS·80rJ Series System Using RS232·C Compatible Terminal

INTELLEC
MDS80D
SYSTEM

Note: A10, A12, A13 -lnsertTe,rminator Pack (supplied)
A11 - Insert Status Adapter Ass'y (supplied)

CRT
PORT

PARALLEL
LOAD CABLE

/
iSBC 86112

OR iSBC 86/12A

~ TOITY ~J
TERMINAL ~. c-i
~~I

OEM RS232·C
CABLE

Figure 1b. Intellec MDS·800 Series System with TTY Terminal

B-180

SERIAL
110 PORT

iSBC 957™

byte value, and perform hex arithmetic. In addition, the
monitor provides for the recognition of interrupts via a
user·defined table. The program on the diskette con­
tains communication software which passes appropri­
ate console commands to the iSBC 86/12A residen't
monitor and also interfaces with the ISIS-II operating
system to transfer files between the development sys­
tem diskettes and the iSBC 86/12A.

System Interfacing
The physical interface between the Intellec Microcom·
puter Development System and the iSBC 86/12A is
accomplished with cables supplied with the iSBC 957
package. The cabling arrangement varies depending on
whether the system is a member of the Intellec MDS-800
family or one of the Intellec Series II family.

Intellec MDS·800 Interface - In the case of the Intellec
MDS-800 family, cables connect the serial I/O port of the

INTELLEC
SERIES II

MODEl210

iSBC 86/12A to the available serial port on the Intellec
system (if the TIY port is used for the iSBC 86/12A inter­
face, the iSBC 530 TTY adapter is inserted into the line).
(See Figure 1.) This serial port implements the commu­
nication link from the Intel lee console terminal to the
iSBC 86/12A resident monitor via the Intellec based
communication software and is used to pass com­
mands to the iSBC 86/12A. Additionally, a cable is run
from the Universal PROM Programmer (UPP) port on the
Intellec system to the parallel I/O port on the iSBC
86/12A. The necessary terminators/line drivers and a
status adapter assembly are also included to complete
this parallel interface on the iSBC 86/12A. This inter­
connection is used for transferring the ISIS-II disk files
between the development system and the iSBC 86/12A.

Intellec Series II Interface - For Intellec Series II Devel­
opment Systems the connection between it and the
iSBC 86/12A is accomplished with a single serial line in·

SERIAL ;;/J
~"'" j" -?O ~ - ~ RS232·C

~ ~ CABLE

RS232·C
CABLE

SERIAL 1/0
PORT

1-- iSBC 86/12 OR
iSBC 86/12A

Figure 2a. Intellec Series II Model 210

INTELLEC SERIES II
MODel 220, 230

/
_.3: ~~!J" .- ~ OEM RS232·C

CABLE

Figure 2b. Intellec Series Models 220, 230

B-181

SERIAL 110
PORT

iSBC 86/12 OR
iSBC 86112A

iSBC 957™

terconnecting the iSBC 86/12A serial port with an avail·
able serial port on the Intellec system. All communica·
tion including command and data transfer occurs over
this serial line. Development systems based on the In·
tellec Model 210 can use either one of. the two available
serial ports. (See Figure 2a.) On Models 220 and 230,
Serial Port 1 is specified. (See Figure 2b.)

Intellec Environment
An Intellec Microcomputer Development System to be
used in conjunction with the iSBC 957 package and an
iSBC 86/12A must have the following necessary func·
tionality to support program development and storage:

1. Intellec Development System with 64K bytes of RAM.

2. Console CRT or TTY terminal.

3. Intellec MDS·DDS Dual Double Density Diskette
Drive and ISIS·II Operating System or Intellec MOS·
2DS Dual Single Density Diskette Drive and ISIS·II
Operating System.

4. User·selected language translators.

Note: The Intellee Series II Model 230 Microcomputer Development
System and the Intel lee MDS-888 Microcomputer Development Center

SPECIFICATIONS

Hardware
Cables
(1) OEM RS232·C cable - Mates with serial 1/0 port on

iSBC 86/12A

(1) RS232·C port cable - Mates with RS232·C port on
Intellec system

(1) TTY port cable - Mates with TIY port on Intellec
system

(1) Parallel load cable - Mates with UPP port on In·
tellec system and parallel 1/0 port on iSBC 86/12A
(only used on Intellec MDS·800 series systems)

All cables allow separation of Intellec system and iSBC
86/12A of up to 6 feet.

110 Drivers and Terminators
(1) 743748 mA open collector drivers
(4) iSBC 901 2200l330f! terminator packs
(4) iSBC 902 1 kf! terminator packs
Drivers and terminators needed when parallel load cable
is required

Interface Adapters
(1) iSBC 530 TIY adapter - Used when serial 1/0 line

connects with TTY port on Intellec system
(1) Parallel port status adapter - Mounts on iSBC

86/12A when parallel load cable is required

Miscellaneous - Attachment screws for Intellec
mounted connectors

Software
(4) EPROMs with iSBC 86/12A system monitor
(1) Single density floppy diskette with iSBC 86/12A ISIS·

II communication software

contain all necessary hardware and operating system software to be
used with the iSBC 957 package and the iSBC 86112A.

Execution Environment
A full capability iSBC 86/12A execution environment
should include the following components for effective
utilization:

1. An iSBC 86/12A Single Board Computer.

2. An iSBC 957 Intellec-iSBC 86/12A Interface and Exe·
cution Package.

3. An iSBC 655 or iSBC 660 System Chassis for power
and MUL TIBUS expansion.

4. One or more iSBC 032, 048, or 064 RAM boards for
programs requiring more than 32K bytes of RAM.

Note: The iSBC 86/12A cannot be mounted in the Intellee system and re­
quires a separate operating environment.

Additional memory boards, analog and digital 1/0
boards, and peripheral controllers can be included in the
iSBC 660 System Chassis with the iSBC 86/12A to allow
the execution environment to be equivalent to the ex·
pected final product configuration.

(1) Double density floppy diskette with iSBC 86/12A
ISIS·II communication software

System Monitor
Addresses: RAM: 00000-00180H; ROM: FEOOO-FFFFH

Commands
.----

Basic Commands
... - .. ----.--... -~-----------__l

N (Next)

G (Go)

S (Substitute)

X (Examine)

D (Display)

M (Move)

C (Compare)

F (Find)

H (Hex Arithmetic)

I (Port Input)

o (Port Output)

R (Read Tape)

Single stepped program execution

Program start with optional breakpoints

Examine and modify memory

Examine and modify registers

Display blocks of memory

Moves (duplicates) blocks of memory

Compare two blocks of memory

Searches for byte/word value

Performs hexadecimal add and subtract

Reads an 110 port

Writes to an 1/0 port

Reads and loads paper tape object file

~~~.~~~_e) ___ . ~~ites memory block to paper tape 

Intellee Mode Commands 

T (Transfer File) Wntes memory block to ISIS·1i file 

E (Exit) Return to ISIS (BaSIC Command Mode) 

L (Load F'le) J Loads ISIS·11 file to ISBC 86112A 

-_. __ .. _--

Transfer Rates 

Intellec MDS·800 Family 
Serial transfer: 110 baud 
Parallel transfer: 1 K byteslsec 

Intellec Series II Family 
Serial transfer: Determined by system console (up to 
9600 baud) 

B-182 



iSBC 957™ 

Reference Manuals 
9800645 - iSSC 86/12 Hardware Reference Manual 
9803074-01 - iSSC 86/12A Hardware Reference Manual 

, ' 

ORDERING INFORMATION 

Part Number Description 
SSC 957 Inteliec-iSSC 86/12A Interfacing and 

Execution Package 

9800743 - iSSC 957 Intellec-iSSC 86/12 Interface and 
Execution Package User's Guide 

9800640 - 8086 Assembly Language Manual 

B-183 



intel 
iSBC 300 32K·BYTE RAM EXPANSION MODULE 

iSBC 340 16K·BYTE EPROM/ROM EXPANSION MODULE 

On·board memory expansion for iSSC 
86/12A Single Soard Computer 

iSSC 300 module provides 32K bytes of 
dual port dynamic RAM and plugs directly 
into the iSSC 86/12A board 

iSSC 340 module provides sockets for up 
to 16K bytes of additional EPROM/ROM 
and plugs directly into the iSBC 86/12A 
board 

On·board memory expansion eliminates 
MULTIBUS system bus latency and 
increases system throughput 

Low power requirements 

Simple, reliable mechanical and electrical 
interconnection 

The iSSC 300 32K·byte RAM expansion module and the iSSC 340 16K·byte EPROM/ROM expansion module provide 
simple, low cost expansion of the memory complement available on the iSSC 86/12A single board computer. Each 
module utilized individually or together can double the iSSC 86/12A board's on·board RAM and EPROM memory 
capacity. The iSSC 300 32K·byte RAM expansion module and the iSSC 340 16K·byte EPROM/ROM expansion module 
options for the iSSC 86/12A board offer system designers a new level of flexibility in defining and implementing Intel@ 
single board computer systems. These options allow the systems designer to double the-memory complement of an 
iSSC 86/12A board with a minimum of system implications. Secause they expand the memory configuration on·board, 
they can be accessed as quickly as the existing iSSC 86/12A memory by eliminating the need for accessing the addi· 
tional memory via the MULTISUS system bus. With the iSSC 86/12A board mounted in the top slot of an iSSC 604 or 
iSSC 614 cardcage, sufficient clearance exists for mounting both the iSSC 300 and/or the iSSC 340 expansion module 
option(s). If the iSSC 86/12A board is inserted into some other slot, the combination of boards will physically (but not 
electrically) occupy two cardcage slots. Incremental power required by the options is minimal; for instance, only 305 
mW is needed for the iSSC 300 RAM expansion module. 

B-184 



iSBC 3001340™ 

FUNCTIONAL DESCRIPTION 

iSBC 300 32K-Byte Expansion Module 

The iSBC 300 board measures 7.75" by 2.35" and mounts 
above the RAM area on the iSBC 86/12A single board 
computer. It expands the iSBC 86/12A board's on-board 
dual port RAM capacity from 32K bytes to 64K bytes. 
The iSBC 300 module contains sixteen 16K-byte dynam­
ic RAM devices, sockets for the Intel'" 8202 Dynamic 
RAM Controller and memory interface latching. To in· 
stall the iSBC 300 module, the latches and controller 
from the iSBC 86/12A board are removed and inserted 
into the sockets on the iSBC 300 module. The add-on 
board is then mounted onto the iSBC 86/12A board. Pins 
extending from the controller's and latches' sockets 
mate with the devices' sockets underneath (see Figure 
1). Additional pins mate to supply power and other sig· 
nals to complete the electrical interface. The module is 
then secured at three additional points with nylon hard­
ware to insure the mechanical security of the assembly. 

To complete the installation, two socketed PROMs are 
replaced on the iSBC 86/12A board with those supplied 
with the iSBC 300 kit. These are the on-board memory 
and MUL TIBUS address decode PROMs which allow the 
iSBC 86/12A board logic to recognize its expanded 
on-board memory complement. 

DYNAMIC 
RAM CONTROLLER 
(FROM iSBC 86/12A) ---. iSBC 86/12A 

REPLACEMENT 
MEMORY ADDRESS 

DECODE PROMS 
(SUPPLIED WITH 

i$BC 300 OPTION) 

iSBC 340 16K-Byte Expansion Module 

The iSBC 340 module expands the iSBC 86/12A Single 
Board Computer's on-board EPROM capacity from 16K 
bytes to 32K bytes. It measures 3.3" by 2.8" and consists 
of a PC board with six 24-pin special sockets. Two of the 
sockets have extended pins which mate with two of the 
EPROM sockets on the iSBC 86!12A board. Two of the 
EPROMs which would have been inserted on the iSBC 
86/12A board are then reinserted in the iSBC 340 
module. Additional pins also mate for bringing chip 
selects for the remaining EPROM devices (see Figure 2). 
The mechanical interface is similar to that used on the 
iSBC 300 RAM module and consists of two additional 
mounting holes and the necessary mounting hardware. 

The iSBC 340 module supports Intel'" 2732 EPROM or 
2332A ROMs as supplied by Intel. One section of the 
iSBC 86/12A on-board memory and MULTIBUS address 
decode PROMs (the same decode PROMs mentioned 
for the iSBC 300 module) is already preprogrammed to 
support the iSBC 340 module with Intel'" 2732 
EPROMs. This section is selected through the EPROM 
configuration switches on the iSBC 86/12A board. The 
iSBC 340 board can optionally be configured by the user 
to support Intel'" 2758 or 2716 EPROMs or 2316E ROMs 
by programming new iSBC 86/12A decode PROMs to 
support these devices. Necessary documentation and 
PROM map listings are in the iSBC 86/12A Harware 
Reference Manual (order number 9803074-01). 

MEMORY LATCHES 
(FROM ;SBC 86/12A) 

NYLON MOUNTING HARDWARE 
(3 PLACES) 

(SUPPLIED WITH iSBC 300 OPTION) 

Figure 1. Installation of iSBC 300 RAM Expansion Module on iSBC 86/12A Single Board Computer 

B-185 



iSBC 3001340™ 

SPECIFICATIONS 

Word Size 
8 or 16 bits (16-bit data paths) 

Memory Size 
iSBC 300 Module - 32,768 bytes of RAM 
iSBC 340 Module - 16,384 bytes (max) of EPROM/ROM 

Access Time 
iSBC 300 Module - Read: 1 !,sec, write: 1.2 !,sec 
iSBC 340 Module - Standard EPROMs (450 nsec): 1 
!,sec, fast EPROMs (350 or 390 nsec): 800 nsec 

Interface 
The interface for the iSBC 300 and iSBC 340 module op· 
tions is designed only for Intel's iSBC 86/12A Single 
Board Computer. 

Memory Addressing 
On-board RAM 

CPU Access 
Isac 86/12A board only (32K bytes) - 00000-07FFFH. 
Isac 86/12A board + Isac 300 module (64K bytes) -
OOOOO-OFFFFH. 
MUL TlaUS Access - Jumper selectable for any 8K­
byte boundary, but not crossing a 128K-byte boundary. 

On-board EPROM/ROM 
Isac 86/12A board only (16K-bytes max.) - FFOOO­
FFFFFH (using 2758 EPROMs); FEOOO-FFFFFH (using 
2316E ROMs or 2716 EPROMs); and FCOOO-FFFFFH 
(using 2332A ROMs or 2732 EPROMs). 

iSBC 86/12A 

iSBC 340 
OPTION . 

NYLON HARDWARE 
(SUPPLIED WITH OPTION) 

~ 

~' 

Isac 86/12A board + Isac 340 module (32K-bytes 
max.) - FEOOO-FFFFFH (using 2758 EPROMs); FCOOO­
FFFFFH (using 2316E ROMs or 2716 EPROMs); F8000-
FFFFFH (using 2332A ROMs or 2732 EPROMs). 

On-board EPROM/ROM is not accessible via the 
MUL TIBUS interface. 

Auxiliary Power/Memory Protection 
The low power memory protection option included on 
the iSBC 86/12Aboards supports the iSBC 300 RAM 
module. 

"Local Only" Memory Protection 
The iSBC 86/12A Single Board Computer supports 
dedication of on-board RAM for on-board CPU access 
only in 8K, 16K, 24K, or 32K-byte segements. Installation 
of the iSBC 300 option allows protection of 16K, 32K, 48K, 
or 64K-byte segments. 

Physical Characteristics 

iSSC 300 iSSC 340 

Width 5.75" 3.3" 

Length 2.35" 2.8" 

Height of iSBe 86/12A .718 .718' 
plus mounted option 

Weight 13 oz. 5 oz. 

"Includes EPROM/ROM's 

All necessary mounting hardware (nylon, screws, 
spacers, nuts) are supplied with each kit. 

Figure 2. Installation of iSBC 340 EPROM/ROM Option on iSaC 86/12A Single Board Computer 

B-186 



iSBC 300/340™ 

Electrical Characteristics 

DC power requirements: 

Voltage iSBC 300 iSBC 340 

+5 ±5% 1 mA 120 mA' 

+12 ±5% 24 mA -

-12 ±5% 1 mA -

Note: 
1. Loaded with Intel 2732 EPROMs. 

ORDERING INFORMATION 

Description Part Number 
SBC 300 
SBC 340 

32K-byte RAM Expansion Module 
16K-byte EPROM Expansion Module 

Environmental Characteristics 
Operating Temperature - 0° to +55°C 
Relative Humidity - to 90% (without condensation) 

Reference Manuals 
All necessary documentation for the iSBC 300 module 
and iSBC 340 module is included in the iSBC 86/12A 
Hardware Reference Manual; order #9803074-01. (NOT 
SUPPLIED) 

Manuals may be ordered from any Intel sales representa­
tive distributor office or from Intel Literature Department, 
3065 Bowers Avenue, Santa Clara, CA 95051. 

B-187 



SDK·a6 
Mes·a6 SYSTEM DESIGN KIT 

Complete single board microcomputer 
system including CPU, memory, and I/O 

Easy to assemble kit form 

High performance 8086 16·bit CPU 

Interfaces directly with TTY or CRT 

Interactive LED display and keyboard 

Wire wrap area for custom interfaces 

Extensive system monitor software in 
ROM 

Comprehensive design library included 

The SDK-86 MCS-86 System Design Kit is a complete single board 8086 microcomputer system in kit form. It contains 
all necessary components to complete construction of the kit, including LED display, keyboard, resistors, caps, crys­
tal, and miscellaneous hardware. Included are preprogrammed ROMs containing a system monitor for general soft­
ware utilities and system diagnostics. The complete kit includes an 8-digit LED display and a mnemonic 24-key key­
board for direct insertion, examination, and execution of a user's program. In addition, it can be directly interfaced 
with a teletype terminal, CRT terminal, or the serial port of an Intellec system. The SDK-86 is a high performance proto 
type system with designed-in flexibility for simple interface to the user's application. 

B·188 



SKD-86 

FUNCTIONAL DESCRIPTION 

The SDK-86 is a complete MCS-86 microcomputer sys­
tem on a single board, in kit form_ It contains all neces­
sary components to build a useful, functional system_ 
Such items as resistors, caps, and sockets are included: 
Assembly time varies from 4 to 10 hours, depending on 
the skill of the user. The SDK-86 functional block dia­
gram is shown in Figure 1_ 

8086 Processor 
The SDK-86 is designed around Intel's 8086 microproc­
essor. The Intel 8086 is a new generation, high perform­
ance microprocessor implemented in N-channel, deple­
tion load, silicon gate technology (HMOS), and pack­
aged in a 40-pin CerDIP package_ The processor 
features attributes ot both 8-bit and 16-bit micro­
processors in that it addresses memory as a sequence 
of 8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance_ Additional features of 
the 8086 include the following: 

• Direct addressing capability to one megabyte of 
memory 

• Assembly language compatibility with 8080/8085 
• 14 word x 16-bit register set with symmetrical oper-

ations 

• 24 operand addressing modes 
• Bit, byte, word, and block operations 
• 8 and 16-byte signed and unsigned arithmetic in 

binary or decimal mode, including multiply and divide 
• 5 MHz clock rate 
• MULTIBUS compatible system interface 

A block diagram of the 8086 microprocessor is shown in 
Figure 2_ 

System Monitor 
A compact but powerful system monitor is supplied 
with the SDK-86 to provide general software utilities and 
system diagnostics_ It comes in preprogrammed read 
only memories (ROMs). 

Communications Interface 
The SDK-86 communicates with the outside world 
through either the on-board light emitting diode (LED)' 
display/keyboard combination or the user's TTY or CRT 
terminal (jumper selectable), or by means of a special 
mode in which an Intellec development system 
transports finished programs to and from the SDK-86. 
Memory may be easily expanded by simply soldering in 
additional devices in locations provided for this pur­
pose. A large area of the board (22 square inches) is laid 
out as general purpose wire-wrap for the user's custom 
interfaces. 

Assembly 
Only a tew simple tools are required for assembly: sol­
dering iron, cutters, screwdriver, etc. The SDK-86 
assembly manual contains step-by-step instructions for 
easy assembly with a minimum of mistakes. Once cor.­
struction is complete, the user connects his kit to a 
power supply and the SDK-86 is ready to go. The monitor 
starts immediately upon power-on or reset. 

Commands - Keyboard mode commands, serial port 
commands, and Intellec slave mode commands are 
summarized in Table 1, Table 2, and Table 3, respec· 
tively. The SDK·86 keyboard is shown in Figure 3: 

~========~~=====------------D 

Figure 1. SDK·86 System DeSign Kit Functional Block Diagram 

B-189 

CONTROL 
LINES 

CONNECTOR 

AODRESS 
BUS EXPANSION 

CONNECTOR 



SDK-a6 

Documentation 
In addition to detailed information on using the moni­
tors, the SDK-86 user's manual provides circuit dia­
grams, a monitor listing, and a description of how the 
system works. The complete design library for the 
SDK-86 is shown in Figure 4 and listed in the specifica­
tions section under Reference Manuals. 

EXECUTION UNIT 

REOISTER FILE 

DATA, 
POINTER, AND 
INDEX REOS 
(SWORDS) 

FLAGS 

BUS INTERFACE UNIT 

I A~~~~;~I~~E 1 

SEGMENT 
REOISTERS 

AND 
INSTRUCTION 

POINTER 
(5 WORDS) 

r-""::""-'--iHtlSr 
A,~ 

A,etS, 

3 DfIR,DEN,ALE 

HOLD 

a-BYTE 
INSTRUCTION 

QUEUE 

HLD'--,,--._ ... _ .. _-._~ 

elK RESET READY 

Figure 2_ 8086 Microprocessor Block Diagram 

+ 8 9 A 
IW/CS OW/OS /ISS 

REG 
4 5 6 

IB/SP OB/BP MV/SI 

0 1 2 
EB/AX ER/BX GO/CS 

Figure 3_ SDK-86 Keyboard 

B 
IES 

7 
EW/OI 

3 
STIDX 

Figure 4_ SDK-86 Design Library 

Command 

Reset 

Go 

Single step 

Substitute 
memory 

Examine 
register 

Block move 

Input or output 

Operation 

Starts monitor. 

Allows user to execute user 
program, and causes it to halt 
at predetermined program 
stop. Useful for debugging. 

Allows user to execute user 
program one instruction at a 
time. Usefui for debugging. 

Allows user to examine and 
modify memory locations in 
byte or word mode. 

Allows user to examine and 
modify 8086 register contents. 

Allows user to relocate pro­
gram and data portions in 
memory. 

Allows direct control of 
SDK-86 I/O facilities in byte or 
mode. 

Table 1. Keyboard Mode Commands 

Command Operation 

Dump memory Allows user to print or display 
large blocks of memory infor-
mation in hex format than 
amount visible on terminal's 
CRT display. 

Start/continue Allows user to display blocks 
display of memory information larger 

than amount visible on ter-
minal's CRT display. 

Punch/read Allows user to transmit fin-
paper tape ished programs into and out of 

SDK-86 via TIV paper tape 
punch. 

Table 2_ Serial Mode Commands 

B-190 



SDK.;86 

8086 INSTRUCTION SET. 

Table 4 contains a summary of processor instructions 
used for the 8086 microprocessor. 

Mnemonic and 
Description Instruction Code 

Data Transfer ",,,._, 
Reglsllr1memory lollrom register 

Immidtaitlor,glsl,rlmemory 

Imm,d.al'lo reglSllr 

71141210 71543210 71S4U1Q 711541210 

110001 Od _[mod reo rim I 
1100011 w moei 0 0 0 rim 

101 I w reg dala 

Memory 10 aeeumul'lof 10' 0000 w addr.low 

Accumulator 10 memory 1 0 1 0 0 0 1 'OIl addr-IOIr 

Rellisier/memory 10 segment ItglSI.r F.'~O~OjO:r':r' '[' to tm~'tdOt'~"::ttJ 
Segment rlll,st" 10 relister/memory IJ 000 1 100 Irn:ld 0 reo rim 

fllglster/memory 

Regl"er 
Segment reg,s'" 

fleglslef/memory 

Regisllr 

Segmentregls'I' 

XC!II=Elcllug.: 

Register/memory wllllfIllISI., 

AeglSter willi accumulator 

I.~I­
F'lIdpor1 

Vilflilbl.porl 

aUT· OUtput 

Filldport 

V'riableporl 

IUT-Translate by1.toAL 

LU=load EAto register 

LlI=lold pOlA,er to OS 

LEI-loadpotnllrloES 

WF-LoldAHwitl'lflags 

IAIIf=StoreAHlnlollllls 

'UIIIF"PushHIIIS 

PIIPf"Popllalls 

Arithmetic 

ADI=" 

',11' , " mod " 0 rim 

01010 rell 

000relll10 

, 000' , " modO 0 0 rim 

0' 0" rell 

OOO,ell"1 

1,0000' , 'III Imod fell rim 

110010 reg I 

1"'00'0'111 I 
11 I 10' lOw 1 

1110011 w 

1110111W 

11 0 1 0 1 I 1 

par' 

port 

1000110 I mod r!!ll 

11 000101 mod reg 

11000' 0 0 mod reg rim 

100" I 11 

10011 11 0 

10011 100 

, 0011 101 

dalallw" 

data Ilw·' 

addr·hlllh 

addr-hlgh 

RIg lmamoty 'IIIittl r~iSler to elthll ~O~O~O~O~O~O~' !:.pm~.~' ~'''i;:~'/mq-----,:-:--.-:-:,,"-:-'7.1 
Immedlale to regislerlmemory 1 0 000 0 s w mad 0 0 0 rim data dala " s:w~OI 

Immediale 10 accumulator 0 0 0 0 0 lOw dala dala " w·' 

ADC = ..... IUta",: 

RIg.lmemory wrlh relllS!1I 10 lither ~O~O~O~'~O~O r' :::.pm~.~' ~''':i;:~'/m;::!_-:=-_.-==:-;;;-, 
:::::::: :~:~;a::~ory F.;,.:,.:';;': ... : ... : .. ; ;;':-Fm;;;';;;dO;.'~,::",,;;;"m9_7.,,:;!,:;;~,ta;., •• =;,+--"'-""=-' ::..ih:.:.:..:-O:.:..J' 

111: ....... I\I1II: 

Rllli'terimemory 

RlIlII11r 

W.ASCliadjull fOr add 

W .. Dlclmaladjustforadd 

IUI· .. _ 

Reg./lIIIIIIotyandregist.tolrlhlr 

Immedilte Irom flllllllrimemory 

Immadillllromactumulltor 

II(C._ .. , 
Regllili/memory 

Refil'er 

1E.=ctrangesilln 

1111111 w modO 0 0 rim 

01000 rill 

00110111 

00100111 

001010 d 'III mod rID rim 

100000 I W modI 0 1 rim 

001011 0'111 dill 

,1',111. modO 01 rim 

0'1001 reg 

" , 10,,'111 modO " rim 

25 d~1a 
IIl:IIlallw=1 

dill ils:'III=OI 

Mnemonic and 
Description Instruction Code 

CI' - Celllplf.: 

Reglsterlmemoryand relllS'lr 

lmmelilal, wlttlleglster Imemory 

Immeehate wlttlaccumulator 

A.I·ASCUad,U$llorsubiracl 

DAI,Declmalad,ustlorsubtratl 

IUl·Multlply (unSlllnedl 

IIUL·lntelier multiply (SIlInedl 

"'I,ASCII adJuSI lor multiply 

OIV,Dlvldl(t,Jnslgnedj 

tlllV-lnteger dlYtde (sllInedj 

AAD,ASCII adJust 101 dlvtc!e 

CIW=Convert byte 10 word 

1114321D 7114UID 71143tl' 11141111 

001 I I Od w modr_~ rim 

1000005111 modi 1 I rim 

00' I I , 0 w da'i 

1001111111 

00 I 0 11 11 

1 1 1 101 I w mod' 0 0 rim 

I 1 , 1011 III modI 0 i rJm 

1101010000001010 

I 1 1 1011 W mod 110 rim 

1 1 1 101 I w mod' 1.1 rim 

11010101 00001010 

10011000 

CWI,Conver' word 10 doubll word 1001 1001 

Logic 
IOT'lnverT 1111011 w modO 1 0 rim 

SHL/SAL,Shllt 10glcaiJartthmelrcielt ,,0' 00 v III mod 10 ° rim 

SHI·Shll1loglcal flghl 1 10100 Y W modi 0 1 rim 

SA'=ShlltlrrthmeltCl1ghl 

IDL,Rolatetell 

IDI,Rotatefighl 

110100 Y W mod 111 rim 

, 10 I 0 ° v III modO 0 0 rim 

110 I 0 0 v w modO 0 I rim 

RCl-Rotatethrough carry l1ag lell , 10 I 0 0 v w modO 1 0 rim 

RCR·Rotatelhroullh carry "gtlt 110'OOyw modO" rim 

AID And: 

dala dalllflw=O! 

dlla II w-l 

Reglmemory and "lIlsterto IIIher 00' 0 0 0 d w mod reg 

Immediate to "glsterlmemOIY ~'~O~O~O~O!O~O ~.~m~'~d1!:lo~owt"mt4=::::l'i.!".!::+:J:"!!'''~''c!.!:]·'D 
Immedlale to accumulalor 0 0 I 0 0 lOw data dalll' w·l 

TEST· AntIllinCUlnlOlll."nl ... IUIr::":-:-:-::-::-:-:----r-:-_---,-, 

:~::~::::;t:r:n:n:e~::;::~~emory F.:~:~:~:';;':.,.:.,.: ;;.:+:§:~: o,;':~o,..;;;;;:9---:,,,.,,,---r---:,,",,..,",--• ..,_,,-, 

Immedhde data and accumuialor 

DR ~ Dr: 
Reglmemory and reglsler to eilher 

Immediate to register/memory 

Immedlatetoatcumulator 

JOII ~ helulh,. If: 

'0'0' 00 w dal. 

000010 d w mod reg rim 

1000000 w modO 0 1 rim 

000011 0 w dal. 

dllaifw-l 

"" dalailw-l 

dal1 11.~1 

Reg.lmemory and register to eitner FO~O";''''''''O'''O'''' ;;..+m;::.~' ,;"~',..'~/m9_--:"",---,_=="""" 

::::::::::: ::~t;:~:;:~ory Fi;",:':::':::'::':.,.:.,.: ;:.:fm;::.;:.d1~':.,:,::,.,,'~/m~_~,,~t:a~i:I:..._~, +-="::::":.::;'..:: • .:..:.,--' 

String Manipulation 
.,=Repeat 1111001z 

MOVS",MoV8 byte/word 1 0 1 0 0 1 0 w 
CMPS,., Compare byte/word 1 0 1 0 0 , 1 'III 

SCAS", Scan bytelword 1 0 , 0 , 1 1 W 

LOBS", Load byteJwd to AUAX , 0 1 0 1 1 0 'III 

STDS", Stor bytelwd Irm AUA 

Control Transfer 
CAlL-Cal', 

1" 0 1 0 0 0 dlSp·low Directwilllin segment 

Indirlct wlthtn segment 

Directlnterstgment 

",',111 modO 1 0 rim 

1 (1011 0 1 0 011111-10. 

SIll-low 

Indirl(tinlersegmenl 1,' , 11 " mod 01' rIm 

dlSp·hlgh 

ollset-hlgh 

seg-hlgh 

continued 

B-191 



SDK-86 

Mnemonic and 
Description Instruction Code 

... , = 1IIIcIIII11lln1f"'Mp: 

DIrect wllhrn sigmeni 

Direclwlthlns~mlnl·sho'l 

Ind,rlctw,lI'unsegmenl 

Dilict mlersellmen! 

71141210 '110412'1' 111143110 

\' 1101001 I dllll-iow I dlsp-hlgh' I 
11101011 dlSII 

1111 I 11 t mod 1 00 rim 

11 101010 011511-10. ollset-h,gh 

sell-low 

IndiflCtmlerseoment 1,11 11111\mOd 1 0 1 

In = """'. Ire. CAll: 
Wlllllnsegment 11000011 

Within HI. ackhnllimmed 10 SP 11000010 data·low data-high 

data-low dala-hlgh :::;::::::, addlnllimmediale 10 SP F.:~:C::C::~:~:-:-:":'; t-----===--r----===-, 
Jf./oIl~Jump on equal/lifO 0 1 I 10 100 dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

.Il/J"~~u::~~n IessinOlllreattf 0 I , 1 1 1 0 0 

.IL1/I11~~::ronleSSOleqUallnot 0 I 1 1 1 110 

J"JIAl;~U:~lynbeIOW/nOllbove 0 1 I '0010 

"/JIIA~~~~~~~ below or equilll 0 1 , 1 0 1 1 0 

,w/oll'E=Jumpon partly/panlyeven 01111010 dlsp 

.Nt-Jump onovlrllow 01110000 dlsp 

.. 1=Jump on Stan 0 I 111000 dlSp 

dlsp 

dlsp ~:~~:::~~: :~ :::: ~~~~~r:!~::ro F.oO~:-:-: -:-: '=':.;-: :-00 :-: I--~~_-I 
or ,quill 

"IU/.tIG~~:~r on nollKs or equill! I 0 1 1 1 1 1 1 1 I 
""/JAl~~u~ea~n nOI below/ilbove 0 1 I , 0 0 1 1 

"IIE/".~~~~iI~~:t below or 0 1 1 1 0 1 I 1 

JI"oI"=Jump on nOI pilr/pilf odd 01111011 

"IO=Jumpon OOlOVlrllow 01110001 

NotlS 
Al '" 8-bit accumulator 
AX '" 16-bit accumulator 
CX '" Count register 
OS '" Data segment 
ES'" Extra segment 
Above/be/ow refers to unSigned value. 
Greater = more positive; 
le$s = less positive (more negative) signed values 
II d= 1 than "to" rag; II d=O than "from" feg 

dlsP 

dlill 

dlsp 

dlsp 

dlsp 

if w = 1 then word instruction; if w = 0 then byte instruction 

if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0·, disp-Iow and disp-high are absent 
it mod'" 01 then DlSP = disp-Iow sign-extended to 16-bits, disp-high is absent 
it mod = 10 then DISP = disp-high: disp-Iow 

il rim - 000 then EA - (BX) • (51) ·DI5P 
If rim -1101 then EA - (BX) • (01) .DI5P 
if rim· 010 thIn EA -(BP) • (51) • DI5P 
" rim - 011 thon EA - (BP) • (01) • DI5P 
if rim· 1110 then EA - (51) • DI5P 
if rim - tOl then EA -(01) • DI5P 
if rim - 110 then EA - (ep) • DI5P' 
it rim = 111 then EA = (BX) + DISP 
DISP follows 2nd byte of instruction (before data if re!luired) 

·except if mod" 00 and rim = 110 then EA = disp-high: disp-Iow 

Table 4. 8086 Instruction Set Summary 

SPECIFICATIONS 

Central Processor 
CPU - 8086-4 
Note 
May be operated at 2.5 MHz or 5 MHZ, jumper selectable, for use with 
8086. 

Memory 

ROM - 8K bytes 2316/2716 

RAM - 2K bytes (expandable to 4K bytes) 2142 

Mnemonic and 
Instruction Code Description 

116412'10 115412'10 
JIII=Jumpon nolSlan 101111 001 I dilP 
LOOP Loop CX limes "' 000' 0 dlsp 
lOGPULaePE=Loopwhlle ulo/eQuill "10000' dlsp 
LOO,IULOOPIIE·LooplllollilenOI 

" 100000 dlsp zero/equal 
JCll·Jumpon CX zero 111 00011 dlsp 

lIT Inllrrupl 
Typespecilled I" 0011 0' I .yp. 
Type 3 11 001100 

IIITO=lnlelluplon ovelllow 11 0011 10 

IIIET=lnllrrupllelurn 11001111 

PrIM;ISSO,Ca_ 
CLC'Clearcarry 111 1 1000 

CIII: Complement carry " 11 0 101 

STCSelcarry 111 11 001 

CLO·CleardlfectlQn 11 11 1 '00 

STD·5eldlfeellon 
CLI=Clearlnlerrupl 11 1 11 0 1 0 

ST!·Sellnlerrupl 11111011 

HLTHalt 11 11 0 1 0 0 

.A'T Wall 100 II 0 11 

ESC Escape Ho e~lernal deVice) 11 0' 'II II II mod 111111 rim 
lOCI Bus lock preh 11 11 0 0 0 0 

If s:w = 01 then 16 bits 01 immediate data form the operand. 
i! s:w = 11 then an imme(liate data byte is sign extended to 

form the t6-bIt operand 
if v = 0 then "count" = 1; if v = 0 then "count" '" (Cl) 
x=don'tcare 

I 

If v = 0 then "count" = 1; if v = 1 then "count" '" (Cl) register 
z is used for string pnmltlves for comparison With ZF FlAG. 

SEGMENT OVERRIDE PREFIX 

~fegll0 

REG is assigned according to the following table 

tl-all (. - I) 6-8111. -0) ~ 
000 AX 000 AL 110 ES 
001 CX DOt CL 01 C5 
010 OX 010 OL 10 S5 
Otl BX Otl BL tI OS 
tOO SP tOO AH 
tOt BP 101 CH 
tlO 51 tiD DH 
til 01 tit BH 

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to 
represent the file: 

FLAGS - X: X :XX: (OF): (OF): (I F): (TF)· (SF): (ZF): X: (AF): X ·(PF): X: (CF) 

Mnemonics (e") Intel, 1978 

Addressing 
ROM - FEOOO-FFFFF 
RAM - 0-7FF (800-FFF available with additional 
2142's) 

Note 
The wire·wrap area of the SDK-86 PC board may be used for additional 
custom memory expansion, 

Input/Output 
Parallel - 48 lines (two 8255A's) 
Serial - RS232 or current loop (8251 A) 

Baud Rate - selectable from 110 to 4800 baud 

8-192 



SDK-86 

Interfaces 
Bus - All signals TTL compatible 
Parallel 110 - All signals TTL compatible 
Serial 110 - 20 mA currer,t loop TTY or RS232 
Note 
The user has access to all bus signals which enable him to design cus­
tom system expansions into tbe kit's wire-wrap area. 

Interrupts (256 ver.:tored) 
Maskable 
Non·maskable 
TRAP 

DMA 
Hold Request - Jumper selectable. TTL compatible 
input. 

Software 
System Moni'.or - Preprogrammed 2716 or 2316 ROMs 
Addresses -- FEOOO-FFFFF 
Monitor 110 - Keyboard/display or TTY or CRT (serial 
110) 

Physic:al Characteristics 
Width .- 13.5 in. (34.3 cm) 
Heighfj - 12 in. (30.5 cm) 
Depth - 1.75 in. (4.45 cm) 

Wei'ght - approx. 24 oz. (3.3 kg) 

ORDERING INFORMATION 

Part Number Description 
SDK·86 MCS·86 system design kit 

Electrical Characteristics 

DC Power Requirement 

(Power supply not included in kit) 

f--. Voltage._ 

VCC5V± 5% 

Current 

3.5A 

VTTY - 12V ± 10% 0.3A 

~ ______ L(,,-V.'..2..nY required ~nly if teletype is connected) 

Environmental Characteristics 

Operating Temperature - 0-50'C 

Reference Manuals 

9800697A - SDK·86 MCS·86 System Design Kit 
Assembly Manual 
9800722 - MCS·86 User's Manual 

9800640A - 8086 Assembly Language Programming 
Manual 
8086 Assembly Language Reference Card 

Reference manuals are shipped with each product only 
if designated SUPPLIED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051. 

B-193 



inter 
SDK-C86 

MCS-86'· SYSTEM DESIGN KIT 
SOFTWARE AND CABLE INTERFACE '''0 

INTELLEC® DEVELOPMENT SYSTEM 

• Provides the Software and Hardware 
Communications Link Between an 
Intellec® Development System and the 
SDK-86 

• Intellec® System Files can be Accessed 
and Down loaded to the SDK-86 
Resident Memory 

• Data in SDK-86 Memory can be 
Uploaded and Saved in Intellec® 
System Files 

• Enhances and Extends the Power and 
Usefulness of the SDK-86 

• Allows the SDK-86 to Become an 
Execution Vehicle for ISIS-II 
Developed 8086 Object Code Using 
the MDS-311 Software Cross 
Development Package 

• All SDK-86 Serial Port Mode 
Commands Become Available at 
Console of the Intellec® System 

The SDK-C86 product provides the software and hardware link for using the SDK-86 monitor in conjunction will', an 
Intellec® Development System while adding features of data transfer between SDK-86 memory and Intellec® System fil'es. 
The user may enter programs and data into the SDK-86 and then save them on a diskette. Also, programs and data may be 
created on the Intellec® System using the MDS-311 cross development software package, then loaded into the SDK-86 for 
testing and checkout. This provides a real time execution environment of the SDK-86 as a peripheral to the Intellec® 
System. 

B-J94 



SDK-8S 

HARDWARE 

There are two·serial ports on the Intellec® System back 
panel. TTY and CRT. Assuming that one of the ports is 
used for the Intellec® console. the SDK-C86 cable can 
plug into the unused port. The SDK-86 is jumper 
selectable to accept either the CRT (RS232) orTTY (20mA 
current loop I signals. 

The edge connector on the SDK-86 has the MUL TIBUS'· 
form factor. No signals are connected to the fingers 
except the power supply traces. Therefore, the SDK-86 
can plug directly into the Intellec® motherboard to obtain 
power while using the SDK-C86 cable as the communi­
cation link. 

SOFTWARE 

Two programs must be invoked to operate in the SDK-86 
slave mode. One program runs on the SDK-86, and 
another runs in any ISIS-II environment that includes a 
diskette drive. 

The serial 1/0 monitor is installed on the SDK-86 and 
operates as though it was talking to a terminal. The 
software in the Intellec® allows the Intellec®, with a 
console device, to behave as if it were a terminal to the 
SDK-86. 

The SDK-C86 software program in the Intellec reads the 
console input device, then passes the character to the 
SDK-86 through the serial port. It also receives the 
characters from the SDK-86 and displays them at the 
console output device. Besides the basic transfer 
function, this program also recognizes and performs the 
Upload and Download functions. 

COMMAND MODES 

• Transparent: In this mode, the SDK-C86 software 
passes all characters through without any processing. 
All the commands of the SDK-86 monitor (except paper 
tape commands) are available and will function in 
exactly the same manner as if the terminal were 
attached directly to the serial port of the SDK-86. 

• Upload/Download: In this mode the SDK-C86 software, 
in the Intellec®, recognizes the mnemonic for Upload or 
Download from the terminal. It "translates" the 
Download command to an R (Read hexadecimal tape) 
command and the Upload command to a W (Write 
hexadecimal tape). The Rand W commands are then 
passed on to the SDK-86 monitor. Using these paper 
tape commands allows for a checksummed transfer of 
data between the Intellec® and the SDK-86 memory. 

COMMAND SUMMARY 

• Reset - starts the SDK-86 monitor. 

• Execute with Breakpoint IG I - Allows you to exe­
cute a user program and cause it to halt at a predeter­
mined program step - useful for debugging. 

• Single Step (N) - allows you to execute a user program 
one instruction at a time - useful for debugging. 

• Substitute Memory IS, SWI - allows you to examine 
and modify memory locations in byte or word mode. 

• Examine Register (X) - allows you to examine and 
modify the 8086's register contents. 

• Block Move (M) - allows you to relocate program and 
data portions in memory. 

• Input or Output (I, IW, 0, OW)- allows direct control of 
the SDK-86's 1/0 facilities in byte or word mode. 

• Display Memory (D) - allows you to print or display 
large blocks of memory information in HEX format. 

• Load (L) - allows you to load hex format object files 
into SDK-86 memory from an Intellec. 

• Transfer IT) - allows you to save contents of SDK-86 
memory in a hex format object file in the Intellec. 

PORTS CABLE SERIAL~ 

4~====:::::;:::::===="'" SERIAL 
~ ______ ~~ PORT 

CRTOR TTY 

INTELLEC® 
DEVELOPMENT 

SYSTEM 

G·,mm 
SDK-86/lntellec@ Slave Mode Configuration 

B-195 

-
SDK-a6 



inter 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

ALABAMA 
tHamilton/ Avnet Electronics 
4692 Commercial Drive N.W. 
Huntsville 35805 
Tel: (205) 837-7210 
Pioneer 
1207 Putman Drive NW 
Huntsville 35805 
Tel: (205) 837-9033 
TWX: 810-726-2197 

ARIZONA 
tHamiiton/ Avnet Electronics 
2615 South 21st Street 
Phoenix 85034 
Tel: (602) 275-7851 
tLiberty / Arizona 
8155 N. 24th Avenue 
Phoenix 85021 
Tel: (602) 249-2232 
TWX: 910-951-4282 

CALIFORNIA 
tAvnet Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754-6111 
Hamilton/ Avnet 
1175 Bordeaux Dr. 
Sunnyvale 94086 
Tel· (408) 743-3300 
TWX: 910-339-9332 
tHamiltonl Avnet Electronics 
8917 Complex Drive 
San Dieqo 92123 
Tel: (714) 279-2421 
TWX: 910-335-1216 
Hamilton/ Avnet 
10912 W. Washington Blvd, 
Culver City 90230 
Tel: (213) 558-2809 (2665) 
TWX: 910-340-6364 or 7073 
tHamilton Electro Sales 
10912 W. Washington Boulevard 
Culver City 90230 
Tel: (213) 558-2121 
tLiberty Electronics 
124 Maryland Street 
EI Segundo 90245 
Tel: (213) 322-3826 
TWX: 910-348-7140 or 7111 
tLiberty/San Diego 
9525 Chesapeake Dr. 
San Diego 92123 
Tel: (714) 565-9171 
TWX: 910-335-1590 
tElmar Electronics 
3000 Bowers Avenue 
Santa Clara 95052 
Tel: (408) 727-2500 
TWX: 910-338-0451 or 0296 
Hamilton/Avnet Electronics 
17312 Eastman Street 
Irvine 92714 
Tel: (714) 979-6864 

COLORADO 
tElmar/Denver 
6777 E. 50th Avenue 
Commerce City 80022 
Tel: (303) 287-9611 
TWX: 910-931-0510 
tHamilton/ Avnet Electronics 
5921 No. Broadway 
Denver 80216 
Tel: (303) 534-1212 
TWX: 910-931-0510 

CONNECTICUT 
tCramer /Connecticut 
P.O. Box 5003 
12 Beaumont Road 
Wallingford 06492 
Tel: (203) 265-7741 
TWX: 710-476-0162 
tHamilton/ Avnet Electronics 
643 Danbury Road 
Georpetown 06829 
Tel: (203762-0361 
tHarvey Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
TWX: 710-468-3373 

U.S. AND CANADIAN DISTRIBUTORS 

FLORIDA 
Arrow Electronics 
1001 N.W. 62nd Street 
Suite 108 
Ft. Lauderdale 33309 
Tel: (305) 776-7790 
Arrow Electronics 
115 Palm Bay Road, NW 
Suite 10. Bldg. 200 
Palm Bay 32905 
Tel: (305) 725-1480 
TWX: 510-959-6337 
tHamilton/ Avnet Electronics 
6800 Northwest 20th Ave. 
Ft. Lauderdale 33309 
Tel: (305) 971-2900 
TWX: 510-955-3097 
tpioneer 
6220 S. Orange Blossom Trail 
Suite 412 
Orlando 32809 
Tel: (305) 859-3600 
TWX: 810-850-0177 
Hamilton/Avnet 
3197 Tech. Drive N. 
St. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863-0374 

GEORGIA 
Arrow Electronics 
3406 Oak Cliff Road 
Doraville 30340 
Tel: (404) 455-4054 
TWX: 810-757-4213 
tHamilton/ Avnet Electronics 
6700 1-85 Access Road, #11 
Norcross 30071 
Tel: (404) 448-0800 

ILLINOIS 
Arrow Electronics 
492 Lunt Avenue 
P.O. Box 94248 
Schaumburg 60193 
Tel: (312) 593-8230 
TWX: 910-222-1807 
tHamliton/ Avnet Electronics 
3901 No. 25th Ave. 
Schiller Park 60176 
Tel: (312) 678-6310 
TWX: 910-227-0060 
Pioneer/Chicago 
1511 Carmen Drive 
Elk Grove 60006 
Tel: (312) 437-9680 
TWX: 910-222-1834 

INDIANA 
tPioneer/lndiana 
6408 Castleplace Drive 
Indianapolis 46250 
Tel: (317) 849-7300 
TWX: 810-260-1794 

KANSAS 
t Hami Iton/ Avnet Electronics 
9219 QUivira Road 
Overland Park 66215 
Tel: (913) 888-8900 

MARYLAND 
tHamilton Avnet 
P.O. Box 647. 
BWI Airport 
7235 Standard Drive 
Hanover 21076 
Tel: (301) 796-5684 
TWX: 710-862-1861 
tPioneer /Washington 
9100 Gaither Road 
Gaithersburg 20760 
Tel: (301) 948-0710 
TWX: 710-828-0545 

MASSACHUSETTS 
tCramer Electronics Inc. 
85 Wells Avenue 
Newton 02159 
Tel: (617) 969-7700 

August 1979 

MASSACHUSETTS (continued) 
tHamilton/Avnet Electronics 
100 East Commerce Way 
Woburn 01801 
Tel: (617) 273-7500 

MICHIGAN 
tArrow Electronics 
3921 Varsity Road 
Ann Arbor 48140 
Tel: (313) 971-8220 
TWX: 810-223-6020 
t Pioneer/Michigan 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
TWX: 810-242-3271 
tHamilton/Avnet Electronics 
32487 Schoolcraft Road 
Livonia 48150 
Tel: (313) 522-4700 
TWX: 810-242-8775 

MINNESOTA 
tlndustrial Components 
5280 West 74th Street 
Minneapolis 55435 
Tel: (612) 831-2666 
TWX: 910-576-3153 
Arrow Electronics 
5251 73rd Street 
Edina 55435 
Tel: (612) 835-7811 
TWX: 910-576-2726 
tHamilton/ Avnet Electronics 
7449 Cahill Road 
Edina 55435 
Tel: (612) 941-3801 
TWX: 910-576-2720 

MISSOURI 
tHamilton/ Avnet Electronics 
396 Brookes Drive 
Hazelwood 63042 
Tel: (314) 731-1144 
TWX: 910-762-0606 

NEW JERSEY 
Arrow/Philadelphia 
Pleasant Valley 
Moorestown 08057 
Tel: (201) 239-0800 
TWX: 710-897-0829 
Arrow Electronics 
285 Midland Avenue 
Saddlebrook 07662 
Tel: (201) 797-5800 
TWX: 710-988-2206 
Hamilton/Avnet 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-3390 
TWX: 710-734-4338 
tHarvey Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 227-1262 
TWX: 710-734-4382 
tHamiiton/Avnet Electronics 
113 Gaither Drive 
East Gate Industrial Park 
Mt. Laurel 08057 
Tel: (609) 424-0100 
TWX: 710-897-1405 

NEW MEXICO 
tAlliance ElectroniCS Inc. 
11721 Central Ave. 
Albuquerque 87123 
Tel: (505) 292-3360 
TWX: 910-989-1151 
tHamilton/Avnet Electronics 
2524 Baylor Drive, S.E. 
Albuquerque 87119 
Tel: (505) 765-1500 

tMicrocomputer System Technical Demonstrator Centers 



inter 
3065 Bowers Avonue U.S. AND CANADIAN DISTRIBUTORS 
Santa Clara. California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

NEW YORK 
Harvey Electronics 
P.O. Box 1208 
Blnghampton 13902 
Tel: (607) 748-8211 
TWX: 510-252-0893 
Arrow Electronics 
900 Broad Hollow Road 
Farmingdale 11735 
Tel: (516) 894-6800 
TWX: 510-224-6494 
tCramer/Aochester 
3000 South Winton Road 
Rochester 14623 
Tel: (716) 275-0300 
TWX: 910-338-0026 
tHamilton/Avnet Electronics 
167 Clay Road 
Rochester 14623 
Tel: (716) 442-7820 
TWX: 910-340-6364 
tCramer/Syracuse 
7705 Maltlage Drive 
Liverpool 13088 
Tel: (315) 652-1000 
TWX: 710-545-0230 
Arrow Electronics 
399 Conklin Street 
Farmingdale 11735 
Tel: (516) 694-6800 
TWX: 510-224-6494 
tHamilton/Avnet Electronics 
16 Corporate Circle 
E. Syracuse 13057 
Tel: (315) 437-2641 
tHamilton/Avnet Electronics 
70 State Street 
Westbury, L.I. 11590 
Tel: (516) 333-5413 
TWX: 510-252-0893 
tHarvey Electronics 
60 Crossways Park West 
Woodbury 11797 
Tel: (516) 921-8700 
TWX: 510-221-2184 

NORTH CAROLINA 
Pioneer/Carolina 
106 Industrial Ave. 
Greensboro 27406 
Tel: (919) 273-4441 
TWX: 510-925-1114 
tHamiiton/Avnet Electronics 
2803 Industrial Drive 
Raleigh 27609 
Tel: (919) 829-8030 
Arrow Electronics 
P.O. Box 989 
Kernersville 27284 
Tel: (919) 996-2039 
TWX: 510-922-4765 

OHIO 
Arrow Electronics 
3100 Plainfield Road 
Kettering 45432 
Tel: (513) 253-9176 
TWX: 810-459-1611 
Arrow Electronics 
6238 Cochran Rd. 
Solon 44139 
Tel: (216) 248-3990 
tHamilton/Avnet Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 433-0610 
TWX: 910-340-2531 
IPloneer /Dayton 
1900 Troy Street 
Dayton 45404 
Tel: (513) 236-9900 
TWX: 810-459-1622 
Arrow Electror:llcs 
10 Knollcrest Dr. 
Reading 44139 
Tel: (513) 761-5432 
TWX: 810-461-2870 
IPloneer/Cleveland 
4800 E. 1310t Street 
Cleveland 44105 
Tel: (216) 587-3800 
TWX: 810-422-2210 

OHIO (oaollnued) 
tHamiiton/ Avnet Electronics 
4588 Emory Industrial Parkway 
Warrensville Heights 44128 
Tel: (216) 831-3500 

OKLAHOMA 
tComponents Specialties, Inc. 
7920 E. 40th Street 
Tulsa 74145 
Tel: (918) 664-2820 
TWX: 910-845-2215 

OREGON 
tAlmac/Stroum ElectroniCS 
8022 S.W. Nimbos, Bldg. 7 
Beaverton 97005 
Tel: (503) 641-9070 

PENNSYLVANIA 
Pioneer/Pittsburgh 
560 Alpha Drive 
Pittsburgh 15238 
Tol: (412) 782-2300 
TWX: 710-795-3122 
Pioneer/Delaware Valley 
141 Gibraltar Road 
Horsham 19044 
Tel: (215) 674-4000 
TWX: 510-665-6778 

TENNESSEE 
Arrow ElectroniCS 
6900 Office Park Circle 
Knoxville 37919 
Tel: (615) 588-5836 

TEXAS 
Component Specialties Inc. 
8222 Jamestown Drive 
Suite 115 
Austin 78758 
Tel: (512) 837-8922 
TWX: 910-874-1320 
tHamjlton/Avnet Electronics 
4445 Sigma Road 
Dallas 75240 
Tel: (214) 661-8661 
TWX: 910-860-5371 
tHamilton/Avnet Electronics 
3939 Ann Arbor 
Houston 77063 
Tel: (713) 780-1771 
tComponent Specialties, Inc. 
10807 Shady Trail, Suite 101 
Dallas 75220 
Tel: (214) 357-6511 
TWX: 910-861-4999 
tComponent Specialties, Inc. 
8585 Commerce Park Drive, Suite 590 
Houston 77036 
Tel: (713) 771-7237 
TWX: 910-881-2422 
Arrow ElectroniCS 
13715 Gamma Road 
Dallas 75234 
Tel: (214) 661-9300 
TWX: 910-861-5495 

UTAH 
tHamilton/ Avnet Electronics 
1585 West 2100 South 
Salt Lake City, 84119 
Tel: (801) 972-2800 

WASHtNGTON 
tHamiiton/Avnet Electronics 
14212 N.E. 21st 
Bellevue 98005 
Tel: (206) 746-8750 
fAlmac/Stroum ElectroniCS 
5811 Sixth Ave. South 
Seattle 98108 
Tel: (206) 763-2300 
TWX: 910-444-2067 

August 1979 

WASHINGTON (coollnued) 
tLiberty Electronics 
1750 132nd Avenue NE 
Bellevue 98005 
Tel: (206) 453-8300 
TWX: 910-443-2526 

WISCONSIN 
Arrow Electronics 
434 W. Rausson Avenue 
Oak Creek 53154 
Tel: (414) 764-6600 
TWX: 910-338-0026 
tHamilton/Avnet 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784-4510 
TWX: 910-262-1182 

CANADA 

ALBERTA 
tL. A. Varah Ltd. 
4742 14th Street N.E. 
Calgary T2E 6L7 
Tel: (403) 230-1235 
TWX: 018-258-97 

BRITISH COLUMBIA 
I L.A. Varah Ltd. 
2077 Alberta Street 
Vancouver V5Y 1 C4 
Tel: (604) 873-3211 
TWX: 610-929-1068 

Zentronics 
8325 Fraser Street 
Vancouver V5X 3X8 
Tel: (604) 325-3292 
TWX: 04-5077-89 

MANITOBA 
L. A. Varah 
1~1832 King Edward Street 
Winnipeg R2R ON1 
Tel: (204) 633-6190 
TWX: 07-55-365 

ONTARIO 
tL.A. Varah, Ltd. 
505 Kenora Avenue 
Hamilton L8E-3P2 
Tet: (416) 561-9311 
TWX: 061-8349 
tHamiiton/Avnet Electronics 
3688 Nashua Drive, Units G & H 
Mississauga L4V IM5 
Tel: (416) 677-7432 
TWX: 610-492-8860 
tHamilton/Avnet Electronics 
1735 Courtwood Cresco 
Ottawa K2C 3J2 
TeL (613) 226-1700 
tZentronlcs 
141 Catherine Street 
Ottawa, OntariO K2P lC3 
Tel: (613) 238-6411 
TWX: 053-3636 
tZentronics 
1355 Meyerside Drive 
Mississauga, Ontario L5T IC9 
Tel: (416) 676-9000 
Telex: 06~983-657 

QUEBEC 
tHamilton/Avnet Electronics 
2670 Paulus Street 
st. Laurent H4S 1 G2 
Tel: (514) 331-3731 
TWX: 610-421-3731 
Zentronics 
5010 Pare Street 
Montreal H4P 1 P3 
Tel: (514) 735-5361 
TWX: 05-827-535 

tMicrocomputer System Technical Demonstrator Centers 



3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

ALABAMA 
Intel Corp. 
3322 S. Parkway, Sle. 71 
Holiday Office Center 
Huntsville 35802 
Tel: (205) 883-2430 
Glen White Associates 
3502 9th Avenue 
Huntsville 35805 
Tel: (205) 533-5272 
tPen-Tech Associates, Inc. 
Holiday Office Center 
3322 S. Memorial Pkwy. 
Huntsville 35801 
Tel: (205) 533·0090 

ARIZONA 
Intel Corp. 
8650 N. 35th Avenue, Suite 101 
Phoenix 85021 
Tel: (802) 242-7205 

tBFA 
4426 North Saddle Bag Trail 
Scottsdale 85251 
Tel: (602) 994-5400 

CALIFORNIA 
Intel Corp. 
7670 Opportunity Rd. 
Suite 135 
San Diego 92111 
Tel: (714) 268-3563 
Intel Corp.-
1651 East 4th Streel 
Suite 105 
Santa Ana 92701 
Tel: (714) 835-9642 
TWX: 910-595-1114 
Intel Corp: 
15335 Morrison 
Suite 345 
Sherman Oaks 91403 
(213) 986-9510 
TWX: 910-495-2045 
Intel Corp: 
3375 Scott Blvd. 
Santa Clara 95051 
Tel: (408) 987-80B6 
TWX: 910-339-9l79 
TWX: 910-338-0255 
Earle Associates, Inc. 
4617 Ruffner Street 
Suite 202 
Son Diego 92111 
Tel: (714) 278-5441 
Mac-I 
2576 Shattuck Ave. 
Suite 4B 
Berkeley 94704 
Tel: (415) 843-7625 
Mac-I 
P.O. Box 1420 
Cupertino 95014 
Tel: (40B) 257-9880 
Mac-I 
P.O. Box B763 
Fountain Valley 92708 
Tel: (714) B39-3341 
Mac-I 
20121 Ventura Blvd., Suile 240E 
Woodland Hills 91364 
Tel: (213) 347-5900 

COLORADO 
Intel Corp.* 
6000 East Evans Ave. 
Bldg. 1, Suite 260 
Denver 80222 
Tel: (303) 758-8086 
TWX: 910-931-2289 
tWestek Data Products, Inc. 
27972 Meadow Drive 
P.O. Box 1355 
Evergreen 80439 
Tel: (303) 674-5255 
Westek Data Products, Inc. 
1322 Ar~pahoe 
Boulder 80302 
Tel: (303) 449-2620 

CONNECTICUT 
Intel Corp. 
Peacock Alley 
1 Padanaram Road, Suite 146 
Danbury 06810 
Tel: (203) 792.-8366 
TWX: 710-456-1199 

FLORIDA 
Intel Corp. 
1001 N.W. 62nd Street, Suite 406 
FI. Lauderdale 33309 
Tel: (305) 771-0600 
TWX: 510-956-9407 
Intel Corp. 
5151 Adanson Street, Sulle 203 
Orlando 32804 
Tel: (305) 628-2393 
TWX: 810-853-9219 
tpen-Tech Associates, Inc. 
201 S.E. 15th Terrace, Suite F 
Deerfield Beach 33441 
Tel: (305) 421-4989 

u.s. AND CANADIAN SALES OFFICES 

FLORIDA (conI.) 
tPen-Tech ASSOCiates, Inc. 
111 So. Maittand Ave .. Suite 202 
Maitland 32751 
Tel: (305) 645-3444 

GEORGIA 
tPen-Tech Associates, Inc. 
Sulle 305 C 
2101 Powers Ferry Road 
Allanta 30339 
Tel: (404) 955-0293 

ILLINOIS 
Intel Corp.· 
900 Jone Boulevard 
Suite 220 
Oakbrook 60521 
Tel: (312) 325-9510 
TWX: 910-651-5881 
First Rep Company 
9400-9420 W. Foster Avenue 
Chicago 60656 
Tel: (312) 992-0830 

INDIANA 
Electro Reps Inc. 
941 E. B6th Street, Suite 101 
Indlanapohs 46240 
Tel (317) 255-4147 
TWX: 810-341-3217 
Electro Reps Inc. 
3601 Hobson Rd. 
Suite 106 
Ft. Wayne 46815 
Tel: (219) 483-0518 

IOWA 
Technical Representatives, Inc. 
51. Andrews Building 
193051. Andrews Drive N.E. 
Cedar Rapids 52405 
Tel: (319) 393-5510 

KANSAS 
Intel Corp. 
9393 W. 110th 51., Ste. 265 
Overland Park 66210 
Tel: (913) 642-8080 
Technical Representatives. Inc. 
8245 Nieman Road, Suite ;;114 
Lenexa 66214 
Tel: (913) 888-0212, 3. & 4 
TWX: 910-749-6412 

KENTUCKV 
tLowry & Associates, Inc. 
3351 Commodore 
Lexington 40502 
Tel: (606) 269-6329 

MARYLAND 
Intel Corp." 
7257 Parkway Drive 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 
Glen White Associstes 
57 W. Timonium Road. Suite 307 
Timonium 21093 
Tel: (301) 252-6360 
tMesa Inc. 
11900 Parklawn Drive 
Rockville 20852 
Tel: Wash. (301) 861-8430 

8alto. (301) 792-0021 

MASSACHUSETTS 
Intel Corp." 
27lndustria\ Ave. 
Chelmsford 01824 
Tel: (617) 667-8126 
TWX: 710-343-6333 
tComputer Marketing, Inc. 
257 Crescent Street 
Waltham 02154 
Tel: (617) 894-7000 

MICHIGAN 
Intel Corp." 
26500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353-0920 
TWX: 910-420-1212 
TELEX: 2 31143 
j'Lowry & Associates, Inc. 
135W. North Street 
Suite 4 
Brighton 48116 
Tel: (313) 227-7067 

MINNESOTA 
Intel Corp. 
8200 Normandale Avenue 
5ulte422 
Bloomington 55437 
Tel: (612) 835-6722 
TWX: 910-576-2867 
tDytek North 
1821 University Ave. 
Room 163N 
St. Paul 55104 
Tei: (612) 645-5816 

MISSOURI 
Technical Representatives, Inc. 
320 Brookes Drive, Suite 104 
Hazelwood 63042 
Tef: (314) 731-5200 
TWX: 910-762-0618 

NEW JERSEY 
Intel Corp.· 
1 Metroplaza Office Bldg. 
505 Thornall SI. 
Edison 08817 
Tel: (201) 494-5040 
TWX: 710-480·6238 

NEW MEXICO 
BFA Corporation 
P.O. Box 1237 
Las Cruces B8001 
Tel. (505) 523-0601 
TWX: 910-983-0543 
BFA Corporation 
3705 Westerfield, N.E. 
Albuquerque 87111 
Tel: (505) 292-1212 
TWX: 910-989-1157 

NEW YORK 
Intel Corp.-
350 Vanderbilt Motor Pkwy. 
Suite 402 
Hauppauge 11787 
Tel: (516) 231-3300 
TWX: 510-227-6238 
Intel Corp. 
80 Washington 51. 
Poughkeepsie 12601 
Tel: (914) 473-2303 
TWX. 510-248-0060 
Intel Corp. 
2255 Lyell Avenue 
Lower Floor East Suite 
Rochester 14606 
Tel: (716) 328-7340 
TWX: 510-253-3841 
tMeasurement Technology, Inc. 
159 Northern Boulevard 
Great Neck 11021 
Tel: (516) 482-3500 
T-Squared 
4054 Newcourt Avenue 
Syracuse 13206 
Tel: (315)463-8592 
TWX: 710-541-0554 
T-Squared 
2 E. Main 
Victor 14564 
Tel: (718) 924-9101 
TWX: 510-254-8542 

NORTH CAROl.INA 
tPen-Tech Associates, Inc. 
1202 Eastchester Dr. 
HighpOint 27260 
Tel: (919) 883-9125 
Glen While Associates 
4021 Barrett Or. 
Suite 12 
Raleigh 27609 
Tel: (919) 787-7016 

OHIO 
Inlel Corp." 
8312 North Main Street 
Dayton 45415 
Tel: (513} 890-5350 
TWX: 810-450-2528 
Intel Corp.· 
Chagrin-Brainard Bldg. #201 
28001 Chagrin BlVd. 
Cleveland 44122 
Tel: (216} 464-2736 
Lowry & Associates, Inc. 
24200 Cha9rin Blvd. 
Suite 320 
Cleveland 44122 
Tel: (216) 464-8113 
tLowry & Associates, Inc. 
1524 Marsella Drive 
Dayton 45432 
Tel: (513) 429-9040 
tLowry & Associates, Inc. 
1050 Freeway Dr., N. 
SUite 209 
Columbus 43229 
Tel: (614) 436-2051 

OREGON 
Intel Corp. 
10700 S.W. Beaverton 
Hillsdale Highway 
Suite 324 
Beaverton 97005 
Tel: (503) 641-8086 
ES/Chase Company 
4095 SW 144th St. 
Beaverton 97005 
Tel: (503) 641-4111 

PENNSYLVANIA 
Intel Corp.* 
275 Commerce Or. 
200 Office Center 
Suite 300 
Fort Washington 19034 
Tel: (215) 542-9444 
TWX: 510-661-2077 

Augusl1979 

PENNSYLVANIA (conI) 
t Lowry & Associates, Inc. 
Seven Parkway Center 
Suite 455 
Pittsburgh 15520 
Tel: (41<!) 922-5110 
tQ.E.D. Electronics 
300 N. York Road 
Hatboro 19040 
Tel: (215) 674-9600 

TENNESSEE 
Glen White Associates 
Rt. ;;12, Norwood S/D 
Jonesboro 37659 
Tel: (615) 477-8850 
Glen White Associates 
2523 Howard Road 
Germantown 38138 
Tel: (901) 754-0483 
Glen White Associates 
6446 Ridge Lake Road 
Hixon 37343 
Tel: (615) 842-7799 

TEXAS 
Inlel Corp." 
2925 L.B.J. Freeway 
Suite 175 
Dallas 75234 
Tel: (214) 241-9521 
TWX: 910-860-5487 
Intel Corp.· 
6776 S.W. Freeway 
Suite 550 
Houston 77074 
Tel: (713) 784-3400 
Mycrosystems Marketing Inc. 
13777 N. Central ExpresswAV 
Suite 405 
Daltas 75243 
Tel: (214) 238-7157 
TWX: 910-867-4763 
Mycrosystems Marketing Inc. 
6610 Harwin Avenue, Suite 125 
Houston 77036 
Tel: (713) 783·2900 
Mycrosystems Marketing Inc. 
Koger Executive Center 
SUite 207 
San Antonio 78228 
Tel' (512) 735-5073 

VIRGINIA 
Glen White Associates 
P.O. Box 1104 
Lynchburg 24505 
Tel: (804) 384-6920 
Glen White Associates 
Rt. ;1, Box 322 
Colonial Beach 22443 
Tel: (804) 224-4871 

WASHINGTON 
Intel Corp. 
Campus Office Park, Bldg. 3 
1603 116th Ave. N.E. 
Believue 98005 
Tel: (206) 453-8086 
E.S./Chase Co. 
P.O. Box B0903 
Seattle 98108 
Tel: (206} 762-4824 
TWX: 910-444-2298 

WISCONSIN 
Intel Corp. 
4369 S. Howell Ave. 
Milwaukee 53207 
Tel: (414) 747-0789 

CANADA 
Intel Semiconductor Corp.· 
Suite 233, Belt Mews 
39 Highway 7, Belts Corners 
Ottawa. Ontario K2H BR2 
Tel: (613} 829-9714 
TELEX: 053-4115 
Intel Semiconductor Corp. 
6205 Ai rport Rd. 
Bldg. B, Suite 205 
Mississauga. Ontario 
L4V lE3 
Tel: (416) 671-0611 
TELEX: 06983574 
Multilek. Inc.-
15 Grenfell Crescent 
Ottawa. Ontario K2G OG3 
Tel: (613) 226-2365 
TELEX: 053-4585 
Mullilek, Inc. 
Toronto 
Tel: (4l6) 245-4622 
Multilek, Inc. 
Montreal 
Tel: (514) 481-1350 

• Field application location 
'!'These representatives do nol offer Intel Components, 
only boards and systems. 



inter 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-6080 

INTERNATIONAL SALES AND MARKETING OFFICES 
TWX: 910-338-0026 
TELEX: 34-6372 

EUROPEAN MARKETING OFFICES 

BELGIUM 
Intet Corporation, S,A." 
Rue du Moulin a Papier 51 
Bolte 1 
B-1160Brussels 
Tel: (02) 660 30 10 
TELEX: 24814 

DENMARK 
Intel Denmark A/S' 
Lyngbyvej 32 2nd Floor 
DK-2100 Copenhagen East 
Tel: (Ol) 16 2000 
TELEX: 19567 

ORIENT MARKETING OFFICE 

JAPAN 
Intel Japan K.K." 
flower Hill-Shlnmachi East Bldg, 
1-23-9, Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: (03) 426-9261 
TELEX: 781-28426 

HONG KONG 
Intel Trading Corporation 
99-105 Des Voeux Rd., Central 
laF, Ul'lit B 
Hong Kong 

ENGL.AND 
Intel Corporation (U.K.) Ltd," 
Broad/ield House 
4 Between Towns Road 
Cowley, Oxford OX4 3NB 
Tel: (08BS) 7714 31 
TELEX: 837203 
tr.tel Corporation (U.K.) Lid. 
S Hospital Street 
Nantwich. Cheshire CW5 5RE 
Tel: (0270) 62 65 60 
TELEX: 36620 
FINLAND 
Intel Sweden AS 
P.O.Box1? 
Senlnerikuje,3 
SF-00400 
Helsinki, Finland 
Tel: 358 a/55 85 31 
TELEX: 123332 

FRANCE 
InteICorporation,SAR.L." 
S Place de Ie Balance 
Sllie 223 
94528 Rungis Codex 
Tel: (Ol) 687 22 21 
TELEX: 270475 

GERMANY 
Intel Semiconductor GmbH· 
Seidlstrasse 27 
aoooMuenchen2 
Tel: (089) 55 81 41 
TELEX: 523177 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 

AUSTRALIA 
A.J.f. Systems & Components 
PTY. LTD. 
44 Prospect Rd. 
Prospect 
South Australia 5082 
Tel: 269-1244 
TELEX: 82635 
A.J.F. Systems & Components 
PTY. LTD. 
29 Devlin SI. 
Ryde, N.S,W, 
Tel: 807-6676 
TELEG: 24906 
A.J,f. Systems 5. Components 
PTY. LTD. 
3tO Queen St. Melbourne, 
Victoria 3000 
Tel: 678-702 
TELEX: 30270 
Warburton franki (Sydney) Pty. Ltd 
199 Parramatta Road 
Auburn. N,g,W. 2114 
Tel: 648-1711, 648-1381 
TELEX: WARFRAN AA 22265 
Warburton Franki Industries 
(Melbourne) Pty, Ltd. 
220 Park Street 
South Melbourne, Victoria 3205 
Tel: 699-4999 
TELEX: WARFRAN AA 31370 
Warburtol'l Franki. Pty, lid, 
322 Grange Road, Kidman Park 
South Australia 5025 
Tel: 356-7333 
TELEX: WARFAAN AA 92908 
Warburton Franki (Perth) Pty. lid. 
96-102 Belgravia SI., Belmont 
Western Australia 6104 
Tel: 356-7000 
TELEX: WAAFAAN AA 92908 
Warburton Frankl (Brisbane) Pty. Ltd. 
13 Chester St" Fortitude Valley 
Queensland 4006 
TELEX: WARFRAN AA 41052 
Warburton O'Donnell Limited 
Corporale Headquarters 
372 Easlern Valley Way 
Chalswood, Nel!' South Wales 2067 
Tel: 407-3261 
TELEX: AA 21299 

AUSTRIA 
Bacher Eleklronlsche Geraete GmbH 
Rotenmulgasse26 
A 1120 Vienna 
Tel: {0222} 836396 
TELEX: (OI) 1532 
Reklrsch Eleklronik Geraete GmbH 
liohtensteinstrasse 97 
Al090 Vienna 
Tel; (222) 347646 
TELEX: 74759 

BELGIUM 
Ineloo Belgium SA 
Avenue Val Duchesse, 3 
B-1160 Srussals 
Tel: (02) 660 00 12 
TELEX: 25441 

BRAZIL 
Icotron S.A, 
05110-Av, Mutinga 3650 
6 Ander 
Plrituba-Sao Paulo 
Tel: 261-0211 
TELEX: (OIl) 2221CO BR 

COLOMBIA 
Ipternational Computer Machines 
Diagonal 34, No, 5-62 
Apartado Aereo 27599 
Bogota 
Tal: 232-6635 
TELEX: 43439 

DENMARK 
Lyngso Komponent A/S 
Ostmllrken 4 
OK-2660 Soborg 
Tel: (01) 67 00 77 
TELEX: 22990 

DENMARK (cant) 
Scandinavian Semiconductor 
Supply A/S 
Nannasgade 18 
OK-2200 Copenhagen N 
Tel: (01) 83 50 90 
TELEX: 19037 

FINLAND 
01' FinlronicAB 
Loannrotinka!u35D 
SF00180 
HelSinki 18 
Tel: (80) 601155 
TELEX: 123107 

FRANCE 
Celdis 
53, Rue Chsrles Frerot 
94250 Genlilly 
Tel: 581,00.20/581.04,69 
TELEX: 200485 F 
Metrologie 
La Tour d'Asnitlres 
4, Avenue Laurent Cell' 
92606-Asniares 
Tel: 791 4444 
TELEX:611448 F 
Tekelec Airtronic' 
Cile des Bruyeres 
Rue Carle Vernet 
92310 Sevres 
Tel: (1) 027 75 35 
TELEX: 204552 
Tekelec Airtronlc 
69 Rue 6ataille 
69008 Lyon 
Tel: (78)-74-37-40 
Tekelec Airtronic 
12 Rue Gabriel Faure 
35000 Rennes 
Tel: (99)-50-62-35 
Tekelec AirlroniC 
Allee des liles 
13100 Ai~ en Pro~ence 
Tel: (91j-27-66-45 
Tekelec Alrtronic 
4 Rue Fischart 
87000 Strasbourg 
Tel: (88)-61-06-43 
Tekelec Airtronic 
281 Roule d'Espagne 
31076 Toulouse 
Tel: (61}-40-24-90/40-38-77 

GERMANY 
Allred Neye Enatechnik GmbH 
Schillerstrasse 14 
0-2085 Quickborn-Hamburg 
Tel: (04106) 6121 
TELEX: 02-13590 
Electronic 2000 Vertriebs GmbH 
Neumarkter Strasse 75 
0-8000 Muenchen 80 
Tel: {089} 434061 
TELEX: 522561 
Jarmyn GmbH 
Postfach 1180 
0-6271 Kamberg 
Tel: (06434) 231 
TELEX: 484426 
Kontron Eleklronlk Gmbh 
8reslauerstresse 2 
8057 Echting B 
0-8000 Munchen 
Tel: (89) 319.011 
TELEX: 522122 

HONG KONG 
Schmidt & Co, 
28/F Wing on Center 
Conneughl Road 
Hong Kong 
Tel: 5-455-644 
TELEX: 74766 Schmc Hx 

INDIA 
Micro Electronics Internatlonal 
10-2-289/114A 
Shantlnager 
Hyderabad 500026 
CABLE: MELECTRO-HYDERBAD 

GERMANY (cont) 
Inlel Semiconductor GmbH 
Abraham Lincoln Strasse30 
6200Wiesbaden 1 
Tel: (06121) 74855 
TELEX: 04186183 
Intel Semiconductor GmbH 
Wernerstrssse 87 
P,O. Bo~ 1460 
7012 Fellbach 
Tel: (0711)580082 
TELEX: 7254826 
Intel Semiconductor GmbH 
Hindenburgar Strassa 28/29 
3000 Hannover 
Tel: (0511) 852051 
TELEX: 923625 

ISRAEL 
Intel Semiconductor Ltd." 
P.O. Bo~ 2404 
Haifa 
Tel: 972/4524261 
TELEX: 92246511 

ITALY 
Intel Corporalion Iialia. s.p,a 
Corso Sempione 39 
1-20145 Milano 
Tel: 2/34,93287 
TELEX: 311271 

ISRAEL 
Eastronics Ltd." 
11 Rozanis Street 
P.O, Box 39300 
Tel-Aviv 61390 
Tel: 475151 
TELEX: 33638 

ITALY 
Eledra 3S S.P.A.' 
Viale Elvezia, 18 
20154 Milan, 
Tel: (02) 3493041 
TELEX: 332332 
Eledra 3S S,P,A." 
Via Paolo Gaidano, 141 0 
10137Tor;no 
TEL: (all) 30 97 097 -30 97 114 
TELEX: 210632 
Eledra 3SS,PA 
Via Zaccherini Atvisi 6 
40100 Bologna 
Tel. (051) 307781 
Eledra3S S.P.A.' 
Via Giuseppe Valmarana, 63 
00139 Rome, Italy 
Tel: (06) 81 27290 -8127 324 
TELEX: 612051 

JAPAN 
Tokyo Electron Labs. Inc, 
No,l Higashikala-Machi 
Midori-Ku. YOkohama 226 
Tel: (045) 471-8811 
TELEX: 781-4773 
Ryoyo ElectriC Corp 
Konwa Bldg 
1_12_22, Tsukiji. 1-Chome 
Chuo-Ku, Tokyo 104 
Tel: (03) 543·7711 
Nippon Micro Computer ~o. Ltd 
Mutsumi Bldg. 4-5-21 KO)lmachl 
Chiyoda-ku, Tokyo 102 
Tel: (03) 230·0041 
Asahi Electronics Co. Ltd. 
KMM Bldg. Room 407 
2-14-1 Asano, Kokura 
Kita-Ku, Kitokyushu City 802 
Tel: (093) 511-6471 
TELEX: AECKY 7126-16 

KOREA 
Koram DigitBI 
Room 411 Ahil Bld9. 
49-4 2-GA Hoehyun-Don9 
Chung-Ku Seoul 
Tel: 23-8123 
TELEX: HANSINT K23542 
Leewood International, Inc. 
C,P.O. Bo~ 4048 
112-25. Sokong-Dong 
Chun9-Ku, Seoul 100 
Tel: 28-5927 
CABLE: "LEEWOOD" Seoul 

NETHERLANDS 
Nether, Comp. Sys. BV 
Turfstekerstraat 63 
Aalsmeer 1431 GO 
Tel: (2977) 28855 
TELEX: 14622 
Kornig & Hartman 
Koperwerf 30 
2544 EN Den Haag 
Holland 
Tel: (70) 210,101 
TELEX: 31528 

NEW ZEALAND 
W. K. McLean Ltd 
103-5 Felton Mathew Avenue 
Glenn Innes, Auckland, 6 
Tal: 587-037 
TELEX: NZ2763 KOSFY 

NORWAY 
Nordisk Elaktronik (Norge) A/S 
MustadsVei 1 
N-DsIO' 
Tel: (02) 55 24 85 
TELEX: 18963 

PORTUGAL 
Dltram 
Componentes E Electronlca LOA 
A~, Miguel Bombarda, 133 
LllSboal 
Tel; (19) 545313 
TELEX: 14347 

AugUSI1979 

NETHERLANDS 
Intel Semiconductor Nederland a.v. 
Cometongebouw 
Westblaak 106 
3012 Km Rotterdam 
Tel: (10) 149122 
TELEX: 22283 

NORWAY 
Inlel Norway A/S 
P,O. Bo~ 158 
N-2040 
Klona, Norway 
Tel: 47 2/981068 
TELEX: 16018 

SWEDEN 
Inlel Swaden AB" 
Bo~ 20092 
Enlghelsvagen.5 
S-16120 Bromma 
Swaden 
Tel: (08) 98 53 90 
TELEX: 12261 

SWITZERLAND 
Intel Semiconductor AG 
Forchastrasse 95 
CH 8032 Zurich 
Tel: 00-31-1-55 4502 
TELEX: 557 89 ich ch 

SINGAPORE 
General Eng'neers Associates 
Blk 3.1003-1008. 10th Floor 
P,S.A, Multi-Storey Complex 
Telok Blangah/Pasir Panjan9 
Singapore 5 
Tel: 271-3163 
TELEX: AS23987 GENEACO 

SOUTH AFRICA 
Electronic Building Elements 
Pine Square 
18th Street 
Hazelwood, Pretoria 
Tel: (12) 789 221 
TELEX: 30181SA 

SPAIN 
Interlace" 
Ronda San Pedro 22 
Barcelona 10 
Tel: 3017851 
TELEX: 51508 IFCE E 
Interlace 
Av, Generaiis,mo 519 
E-Madrid 16 
Tel: 456 3151 
Interface 
Calle Bailen 9 
Appt. 7 
Bilbao 
Tel: 4/415-0893 
ITT SESA 
Miguel Angel 16 
Madrid 10 
Tel: 410 2354 
TELEX: 27707/27461 

SWEDEN 
Nordisk Electronik Ail 
Sandhamnsgatan 71 
S-102 54 Siockholm 
Tel: (08) 635040 
TELEX: 10547 

SWITZERLAND 
induslradeAG 
l3emsenstrasse 2 
Postcheck 80 - 21190 
CI-I'8021 Zurich 
Tel; (01) 60 2230 
TELEX: 56788 

TAIWAN 
Taiwan Aulomation Co.-
2nd Floor 
224 Nanking East Road 
Section 3 
Taipei 
Tel: 771-0949 
TELEX; 11942 TAIAUTO 

UNITED KINGDOM 
G.E,C, Semiconductors Ltd 
East Lane 
North Wamble~ 
Middlesex HA9 7PP 
Tel: (01) 904-9303/908-4111 
TELEX: 28817 
Jermyn Industries 
Vestry ESlata 
Sevenoaks, Kent 
Tel: (0732) 501.44 
TELEX: 95142 
Sintrom ElectroniCs Ltd.' 
Arkwright Road 2 
Readin9, Berkshire RG2 OLS 
Tel: (0734) 85464 
TELEX: 847395 
Rapid Recall, Ltd, 
6 Soho Mills Ind. Park 
Woburn Green 
Bucks, England 
Tel: (6285) 270.72 
TELEX: 849439 

VENEZUELA 
Componentes y Circuilos 

Electronlcos TTLCA C.A, 
Apartado 3223 
Caracas 101 
Tel: 239-0820 
TELEX: 21795 TELETIPOS 

• Field Appllcallon Location 



.-- . 

inter 
.r 

INTEL CORPORATION , 3065 Bowers Avenue , Santa Clara, CA 95051 (408) 987-8080 

Printed in U.S.A./T-l08/1079/80K UP 


	000
	001
	002
	003
	004
	005
	006
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-000
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	A-000
	A-001
	A-002
	A-003
	A-004
	A-005
	A-006
	A-007
	A-008
	A-009
	A-010
	A-011
	A-012
	A-013
	A-014
	A-015
	A-016
	A-017
	A-018
	A-019
	A-020
	A-021
	A-022
	A-023
	A-024
	A-025
	A-026
	A-027
	A-028
	A-029
	A-030
	A-031
	A-032
	A-033
	A-034
	A-035
	A-036
	A-037
	A-038
	A-039
	A-040
	A-041
	A-042
	A-043
	A-044
	A-045
	A-046
	A-047
	A-048
	A-049
	A-050
	A-051
	A-052
	A-053
	A-054
	A-055
	A-056
	A-057
	A-058
	A-059
	A-060
	A-061
	A-062
	A-063
	A-064
	A-065
	A-066
	A-067
	A-068
	A-069
	A-070
	A-071
	A-072
	A-073
	A-074
	A-075
	A-076
	A-077
	A-078
	A-079
	A-080
	A-081
	A-082
	A-083
	A-084
	A-085
	A-086
	A-087
	A-088
	A-089
	A-090
	A-091
	A-092
	A-093
	A-094
	A-095
	A-096
	A-097
	A-098
	A-099
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	A-107
	A-108
	A-109
	A-110
	A-111
	A-112
	A-113
	A-114
	A-115
	A-116
	A-117
	A-118
	A-119
	A-120
	A-121
	A-122
	A-123
	A-124
	A-125
	A-126
	A-127
	A-128
	A-129
	A-130
	A-131
	A-132
	A-133
	A-134
	A-135
	A-136
	A-137
	A-138
	A-139
	A-140
	A-141
	A-142
	A-143
	A-144
	A-145
	A-146
	A-147
	A-148
	A-149
	A-150
	A-151
	A-152
	A-153
	A-154
	A-155
	A-156
	A-157
	A-158
	A-159
	A-160
	A-161
	A-162
	A-163
	A-164
	A-165
	A-166
	A-167
	A-168
	A-169
	A-170
	A-171
	A-172
	A-173
	A-174
	A-175
	A-176
	A-177
	A-178
	A-179
	A-180
	A-181
	A-182
	A-183
	A-184
	A-185
	A-186
	A-187
	A-188
	A-189
	A-190
	A-191
	A-192
	A-193
	A-194
	A-195
	A-196
	A-197
	A-198
	A-199
	A-200
	A-201
	A-202
	A-203
	A-204
	A-205
	A-206
	A-207
	A-208
	A-209
	A-210
	A-211
	A-212
	A-213
	A-214
	A-215
	A-216
	A-217
	A-218
	A-219
	A-220
	A-221
	A-222
	A-223
	A-224
	A-225
	A-226
	A-227
	A-228
	A-229
	A-230
	A-231
	A-232
	A-233
	A-234
	A-235
	A-236
	A-237
	A-238
	B-000
	B-001
	B-002
	B-003
	B-004
	B-005
	B-006
	B-007
	B-008
	B-009
	B-010
	B-011
	B-012
	B-013
	B-014
	B-015
	B-016
	B-017
	B-018
	B-019
	B-020
	B-021
	B-022
	B-023
	B-024
	B-025
	B-026
	B-027
	B-028
	B-029
	B-030
	B-031
	B-032
	B-033
	B-034
	B-035
	B-036
	B-037
	B-038
	B-039
	B-040
	B-041
	B-042
	B-043
	B-044
	B-045
	B-046
	B-047
	B-048
	B-049
	B-050
	B-051
	B-052
	B-053
	B-054
	B-055
	B-056
	B-057
	B-058
	B-059
	B-060
	B-061
	B-062
	B-063
	B-064
	B-065
	B-066
	B-067
	B-068
	B-069
	B-070
	B-071
	B-072
	B-073
	B-074
	B-075
	B-076
	B-077
	B-078
	B-079
	B-080
	B-081
	B-082
	B-083
	B-084
	B-085
	B-086
	B-087
	B-088
	B-089
	B-090
	B-091
	B-092
	B-093
	B-094
	B-095
	B-096
	B-097
	B-098
	B-099
	B-100
	B-101
	B-102
	B-103
	B-104
	B-105
	B-106
	B-107
	B-108
	B-109
	B-110
	B-111
	B-112
	B-113
	B-114
	B-115
	B-116
	B-117
	B-118
	B-119
	B-120
	B-121
	B-122
	B-123
	B-123a
	B-124
	B-125
	B-126
	B-127
	B-127a
	B-128
	B-129
	B-130
	B-131
	B-132
	B-133
	B-134
	B-135
	B-136
	B-137
	B-138
	B-139
	B-140
	B-141
	B-142
	B-142a
	B-143
	B-144
	B-145
	B-145a
	B-146
	B-147
	B-148
	B-148a
	B-149
	B-150
	B-151
	B-152
	B-153
	B-154
	B-155
	B-156
	B-157
	B-158
	B-159
	B-160
	B-161
	B-162
	B-163
	B-164
	B-165
	B-166
	B-167
	B-168
	B-169
	B-170
	B-171
	B-172
	B-173
	B-174
	B-175
	B-176
	B-177
	B-178
	B-179
	B-180
	B-181
	B-182
	B-183
	B-184
	B-185
	B-186
	B-187
	B-188
	B-189
	B-190
	B-191
	B-192
	B-193
	B-194
	B-195
	C-01
	C-02
	C-03
	C-04
	xBack

