The
8086 Family

User's Manual

October 1979

©Intel Corporation 1978, 1979
9800722-03/$7.50

The
8086 Family

User's Manual

October 1979

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this do

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX

Intel Micromap UPI
Intelevision Multibus uScope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

Table of Contents

CHAPTER 1
INTRODUCTION PAGE
Manual Organization 1-1
8086 Family Architecture..................... 1-1
Functional Distribution. 1-1
MiCroprocessors. . ..o vvvviieennnnneennn. 1-2
Interrupt Controller....................... 1-3
Bus Interface Components 1-3
Multiprocessingccovveeurenneeeninn. 1-3
Bus Organization..............coviiieennn.. 1-4
LocalBus ..., 1-4
SystemBus ... 1-5
Processing Modules.................. ..., 1-6
Bus Implementation Examples.............. 1-6
Development Aidsocnunna... 1-12
CHAPTER 2
THE 8086 AND 8088 CENTRAL
PROCESSING UNITS
ProcessorOverview.oovveeeennn.. 2-1
Processor Architecture....................... 2-3
ExecutionUnit..........couuiiiiiinnnnn.. 2-5
Bus InterfaceUnitccooviiiiat, 2-5
General Registers.cooviiivieennennn.. 2-6
Segment Registerscooivennieennn.. 2-7
Instruction Pointer, 2-7
Flags 2-7
8080/8085 Register and Flag Correspondence ... 2-8
Mode Selection.ot 2-8
1 (5311 T o 2-8
Storage Organization............coveeevunn.. 2-8
Segmentationooiuiiiiiiieiien.n 2-10
Physical Address Generation 2-11
Dynamically Relocatable Code 2-13
Stack Implementation...................... 2-14
Dedicated and Reserved Memory Locations. ... 2-14
8086/8088 Memory Access Differences........ 2-15
Inmput/Outputcooiiiiiiiiiinnean.. 2-15
Input/OutputSpaceccoovnnnn. 2-16
Restricted I/0 Locations 2-16
8086/8088 Memory Access Differences........ 2-16
Memory-Mapped I/O, 2-16
Direct Memory AcCess.vovvveuennneennn. 2-17
8089 Input/Output Processor (IOP) 2-17
Multiprocessing Features 2-17
BusLock......oooiiviiniiiiiiiiiin, 2-17
WAITand TEST ... 2-18
Escape....ooviiiiiiii it 2-19
Request/GrantLines.................couut. 2-20
Multibus™ Architecture.................... 2-21

PAGE

8289 Bus Arbiter i 2-22
Processor Control and Monitoring 2-22
Interrupts ..ot 2-22
External Interrupts 2-22
Internal Interrupts.............oooviit.. 2-24
Interrupt Pointer Table................... 2-25
Interrupt Procedures..................... 2-26
Single-Step (Trap) Interrupt............... 2-28
Breakpoint Interrupt 2-28
SystemReset.ovviiiiiii i 2-29
Instruction Queue Status. 2-29
ProcessorHaltt 2-29
StatusLinesooiiiiiiiiiiiiiia... 2-30
InstructionSet il 2-30
Data Transfer Instructions 2-31
General Purpose Data Transfers 2-31
Address Object Transfers 2-32
Flag Transfersooooiiiin.. 2-32
Arithmetic Instructions..................... 2-33
Arithmetic Data Formats 2-33
Arithmetic Instructionsand Flags 2-34
Additiono i 2-35
Subtraction..........c.oiiiiiiiiiiaaan.. 2-36
Multiplication.o ool 2-36
Division........ooviiiiiiiiiiii i 2-37
Bit Manipulation Instructions 2-38
Logicalooiviiiiiiiii i 2-38
Shifts. ..o 2-39
Rotatesovvieiiiiiiiiiiiie i, 2-39
String Instructionsoooiiiiia. 2-40
Program Transfer Instructions. 2-43
Unconditional Transfers.................. 2-43
Conditional Transfers.................... 2-45
IterationControl 2-45
Interrupt Instructions e 2-46
Processor Control Instructions 2-47
FlagOperationsooiiienn. 2-47
External Synchronization................. 2-48
NoOperation........ooovvviiiinnnnn... 2-48
Instruction Set Reference Information 2-48
AddressingModes 2-68
Register and Immediate Operands............ 2-68
Memory AddressingModes 2-68
The Effective Address............coouu... 2-68
Direct Addressingcoiiiin. 2-69
Register Indirect Addressing. 2-69
Based Addressing. ..., 2-70
Indexed Addressing..................o..n 2-70

iii

PAGE
Based Indexed Addressing 2-71
String Addressing.t 2-72
I/O Port Addressingcovvnnn. 2-72
Programming Facilities 2-72
Software Development Overview. 2-73
PL/M-86. .\ eiieieieee e 2-75
Statements and Comments................ 2-75
Data Definitioncooi.t. 2-75
Assignment Statement. 2-717
Program Flow Statements................. 2-79
Procedurescovviiiiineneeneennnn. 2-81
ASM-86.. ..o\ttt 2-83
Statementscovveenneeeennnenennnann 2-83
ConStaNtS . .ovvvneeriien e 2-84
DefiningData.............ccoivvieenn... 2-85
Records.......ovvvviininniinnennnne. . 2-85
StrUCLUIES « vt v et iie e iiieeianeeenns 2-87
AddressingModes, 2-87
SegmentControlc.. ... 2-88
Procedurescooiiiiiiiiiiit, 2-90
LINK-86 ..ot 2-90
LOC-86. ...ttt 2-90
LIB-86. .. ittiiiiiiiiiiee i 2-91
(0] 5 1 A 2-91
CONV-86 . oiieeiieeeeiiiiiiiiaaeann. 2-92
Sample Programs.cooovunivennnn.. 2-92
Programming Guidelines and Examples. 2-96
Programming Guidelines 2-96
Segments and Segment Registers 2-96
Self-ModifyingCode................c.... 2-96
Input/Output.......cooviiiiiiiiinnn.. 2-97
Operating Systemscovvevinennnnn. 2-97
Interrupt Service Procedures 2-99
Stack-Based Parameters 2-100
Flaglmages.........ccovviiiiinenennn.. 2-100
Programming Examples 2-100
Procedurescoiiiiiiiinnnn.. 2-100
JumpsandCalls........................ 2-105
Records......covvvveiiniiiiiennnnnnnn. 2-110
Dynamic Code Relocation 2-113
Memory-Mapped I/O 2-115
Breakpointsoiiiiiiiiiian.. 2-117
Interrupt Procedures.................... 2-119
String Operations.coovveeueenn... 2-125
CHAPTER 3
THE 8089 INPUT/OUTPUT
PROCESSOR
ProcessorOverview.............coovveeven... 3-1
Evolutionooviiiiiiiiiniinnnnnn. 3-1
Principles of Operation...................... 3-2
CPU/IOP Communications. 3-2
Channels.........ooviiiiiiniinnennnnn. 3-4
Channel Programs (Task Blocks)............ 34

DMA Transferscccovvivviiinnnnnn. 3-5

Bus Configurationsoouun.. 35

A Sample Transaction.................... 3-10
Applications..........covviiiiiiiin e 3-12
Processor Architecture....................... 3-13
Common Control Unit (CCU) 3-13
Arithmetic/Logic Unit (ALU) 3-13
Assembly/Disassembly Registers............. 3-14
Instruction FetchUnit...................... 3-14
Bus Interface Unit (BIU).................... 3-16
Channels........c.ooviiviiiiiiiinnnnnnn., 3-16
I[/OControlcoiiviiiiiiii.., 3-16
Registersoovvveeenienenneeenennnn. 3-17
Program Status Word 3-18
TagBits.ovveiiiiiiiiiiiaaaeaann 3-19
Concurrent Channel Operation 3-20

1% (5 111) PP 3-21
Storage Organization....................... 3-22
Dedicated and Reserved Memory Locations. ... 3-23
Dynamic Relocation e 3-23
MeEMOTY ACCESS v vvvve e e eeneeeneenenns 3-24
Input/Output ..., 3-25
Programmed I/O...........coooiiiiiiiin., 3-25
I/0 Instructions.cvvvveneiennennn. 3-25
Device Addressingoovvvinnann. 3-26

~ I/OBusTransferscoovveevnnn.. 3-26
DMA Transferscoovvviiniinennnn. 3-27
Preparing the Device Controller............ 3-27
Preparing the Channel.................... 3-27
Beginning the Transfer 3-31
DMA TransferCycle..................... 3-32
Following the Transfer 3-33
Multiprocessing Features.................... 3-34
Bus Arbitrationo, 3-34
Request/GrantLine...................... 3-35
8289 Bus Arbiter ..., 3-36

Bus Arbitration for IOP Configurations. 3-36
BusLoad Limitc.oovieinnnnnn. 3-36
BusLock......oviiiiiiiiiiiiiiiiinennns 3-37
Processor Control and Monitoring 3-37
Initialization.........covvieiininennnnn.n 3-37
Channel Commandscovvveevnnn. 3-40
DRQ(DMARequest)ovvvvvnvnnnnnnnnn. 3-43
EXT (External Terminate) 3-43
Interruptsoviiieiniiiiii i i 3-43
Status Linescooiiiiiiiennninn. 3-43
InstructionSet, 3-44
Data Transfer Instructions 3-44
Arithmetic Instructions..................... 345
Logical and Bit Manipulation Instructions.. ... 3-46
Program Transfer Instructions............... 3-48
Processor Control Instructions 3-49
Instruction Set Reference Information 3-51

iv

PAGE
AddressingModesol 3-59
Register and Immediate Operands............ 3-59
Memory Addressing Modes 3-59
The Effective Address.................... 3-60
Based Addressing.iiiin... 3-60
Offset Addressing 3-60
Indexed Addressing 3-60
Indexed Auto-Increment Addressing. 3-61
Programming Facilities 3-63
ASM-89. .. it 3-63
Statementsvueeetneerinneeenaannn 3-63
Constantsvveiitieiii i 3-66
DefiningData...............coiiia.t. 3-66
SEIUCLUIES ..t v et iit i iie e eieennnnnnn 3-67
AddressingModesciiiiiiiia.... 3-68
Program Transfer Targets 3-68
Procedurescooiiiiiiiiii... 3-69
SegmentControlciii.... 3-69
Intermodule Communication.............. 3-70
Sample Program 3-73
Linking and Locating ASM-89 Modules....... 3-76
Programming Guidelines and Examples....... 3-79
Programming Guidelines 3-79
SEgMENTS. .ottt iie it 3-79
Self-ModifyingCode..................... 3-79
I/0System Design............ccovvenn.. 3-79
Programming Examples 3-81
Initialization and Dispatch 3-81
Memory-to-Memory Transfer 3-85
Saving and Restoring Registers 3-85
CHAPTER 4
HARDWARE REFERENCE
INFORMATION
Introduction, 4-1
8086znd8088CPUsoovvvninnnnnn.. 4-1
CPU Architectureoviuieennnenann. 4-1
BusOperationccoiveieinennnnnnnn. 4-5
Clock Circuit ...ovvnineie i iie i ienenns 4-10
Minimum/Maximum Mode 4-10
MinimumMode...........cooiiiiiiia... 4-11
MaximumMode.iiiiiiiiaa... 4-11
External Memory Addressing................ 4-14
I/OInterfacing.cccoiiiiiiiia.., 4-15
Interrupts .. oovvviei i e 4-16
Machine Instruction Encoding and Decoding .. 4-18
8086 Instruction Sequence 4-37
8089 I/O Processorveeeeeeeennnnnn. 4-38
System Configuration...................... 4-39
LocalMode........coovviiiiinniennnn., 4-39
RemoteMode..........oovviiiiinnn... 4-40
BusOperationc.ooviuiiieunnnenn.. 4-41
Initialization...........coiiiiiiiinennnn. 4-44

I/ODispatching.........ccoiiiiinieeean.. 4-46

DMA Transferscovivevnnnenn.. 4-47
DMA Termination...........ccovvevuneennn. 4-50
Peripheral Interfacing...................... 4-50
Instruction Encoding. 4-52
APPENDIX A
APPLICATION NOTES
AP-67 8086 System Design A-3
AP-61 Multitasking for the 8086............... A-67
AP-50 Debugging Strategies and
Considerations for 8089 Systems A-85

AP-51 Designing 8086, 8088, 8089
Multiprocessing Systems with the 8289

BusArbitercooiiiiiiiiia., A-111
AP-59 Using the 8259A Programmable

Interrupt Controller A-135
AP-28A Intel®Multibus™ Interfacing A-175

AP-43 Using the iSBC-957™ Execution
Vehicle for Executing 8086

ProgramCode................ooount. A-209
APPENDIX B
DEVICE SPECIFICATIONS
8086 Family
8086/8086-2/8086-4 16-Bit HMOS
MiCroprocessoroeeeuunnn.. B-1
M8086 16-Bit HMOS Microprocessor B-22
18086 16-Bit HMOS Microprocessor. B-23
8088 8-Bit HMOS Microprocessor B-24
8089 8/16-Bit HMOS 1/0 Processor. B-46
8282/8283 OctalLatch B-59
8284 Clock Generator and Driver for
8086, 8088, 8089 Processors........... B-63
M8284 Clock Generator and Driver for
8086, 8088, 8089 Processors........... B-69
18284 Clock Generator and Driver for
8086, 8088, 8089 Processors........... B-70
8286/8287 Octal Bus Transceiver B-71
8288 Bus Controller for 8086, 8088,
8089 Processors......cooevvuneennnnn B-75
8289 Bus Arbiterco i, B-81
8237/8237-2 High Performance Programmable
DMAController B-92
8259A/8259A-2/8289A-8 Programmable
Interrupt Controller B-106
8085 Peripherals

8155/8156/8155-2/8156-2 2048 Bit Static
MOS RAM with 170 Ports and Timer ... B-124
8185/8185-2 1024 x 8-Bit Static

RAM forMCS-85™ B-125
8355/8355-2 16,384-Bit ROM with 1I/0 B-126
8755A/8755A-2 16,384-Bit EPROM

withl/O......oooiiiii B-127

PAGE PAGE

Standard Peripherals 2148 1024 x 4 Bit Static RAM............... B-145

8041A/8741A Universal Peripheral Interface EPROM Memories
8-Bit Microcomputer B-128 2716 16K (2K x 8) UV Erasable PROM. B-146

8202 Dynamic RAM Controller............. B-129 © 2732 32K (4K x 8) UV Erasable PROM....... B-147

8205 High Speed 1 Out of 8 Binary Decoder .. B-130 2758 8K (1K x 8) UV Erasable Low

8251A Programmable Communication PowerPROM, B-148
Interface.............coooveii i, B-131 Development Tools

8253/8253-5 Programmable Interval Timer... B-132 Model 230 Intellec® Series 11

8255A/8255A-5 Programmable Peripheral Microcomputer Development System. ... B-149
Interface.........coovviiiiiiin, B-133 8086/8088 Software

8271/8271-6/8271-8 Programmable Floppy Development Package B-153
Disk Controllercoooott. .. B-134 8089 Assembler Support Package........... B-163

8273 Programmable HDLC/SDLC Protocol ICE-86™ 8086 In-Circuit Emulator B-165
Controller. . . vovvvveii et B-135 iSBC 86/12ATM Single Board Computer B-171

8275 Programmable CRT Controller B-136 iSBC 957™ Intellec®-iSBC 86/12AT Interface

8279/8279-5 Programmable Keyboard/Display and Execution Package................ B-179
Interface........covvvvneeiinnn, B-137 iSBC 300/340™ iSBC 300T™ 32K-Byte RAM

8291 GPIB Talker/Listener feeeees B-138 Expansion Module iSBC 340T™ 16K-Byte

8292 GPIB Controller.............cccvvnnn. B-139 EPROM/ROM Expansion Module B-184

8293 GPIB Transceiver...........oovvunnn. B-140 SDK-86 MCS-86™ System Design Kit B-188

8294 Data Encryption Unit B-141 SDK-C86 MCS-86™ System Design Kit B-194

8295 Dot Matrix Printer Controller B-142 '

RAM Memories
2114A 1024 x4 Bit StaticRAM B-143
21421024 x4 Bit StaticRAM............... B-144

vi

Chapter 1
Introduction

CHAPTER 1
INTRODUCTION

This publication describes the Intel® 8086 family
of microcomputing components, concentrating
on the 8086, 8088 and 8089 microprocessors. It is
written for hardware and software engineers and
technicians who understand microcomputer
operating principles. The manual is intended to
introduce the product line and to serve as a refer-
ence during system design and implementation.

Recognizing that successful microcomputer-based
products are judicious blends of hardware and
software, the User’s Manual addresses both sub-
jects, although at different levels of detail. This
publication is the definitive source for informa-
tion describing the 8086 family components. Soft-
ware topics, such as programming languages,
utilities and examples, are given moderately
detailed, but by no means complete, coverage.
Additional references, available from Intel’s
Literature Department, are cited in the program-
ming sections.

1.1 Manual Organization

The manual contains four chapters and three
appendices. The remainder of this chapter
describes the architecture of the 8086 family, and
subsequent chapters cover the individual com-
ponents in detail.

Chapter 2 describes the 8086 and 8088 Central
Processing Units, and Chapter 3 covers the 8089
Input/Output Processor. These two chapters are
identically organized and focus on providing a
functional description of the 8086, 8088 and
8089, plus related Intel hardware and software
products. Hardware reference information—
electrical characteristics, timing and physical
interfacing considerations—for all three pro-
cessors is concentrated in Chapter 4.

Appendix A is a collection of 8086 family applica-
tion notes; these provide design and debugging
examples. Appendix B contains complete data
sheets for all the 8086 family components and
system development aids; summary data sheets
covering compatible components from other Intel
product lines are also reproduced in Appendix B.

1.2 8086 Family Architecture

Considered individually, the 8086, 8088 and 8089
are advanced third-generation microprocessors.
Moreover, these processors are elements of a
larger design, that of the 8086 family. This
systems architecture specifies how the processors
and other components relate to each other, and is
the key to the exceptional versatility of these
products.

The components in the 8086 family have been
designed to operate together in diverse combina-
tions within the systematic framework of the
overall family architecture. In this way a single
family of components can be used to solve a wide
array of microcomputing problems. A compo-
nent mix can be tailored to fit the performance
needs of an application precisely, without having
to pay for unneeded capabilities that may be
bundled into more monolithic, CPU-centered
architectures. Using the same family of com-
ponents across multiple systems limits the learn-
ing curve problem and builds on past experience.
Finally, the modular structure of the family
architecture provides an orderly way for systems
to grow and change.

The 8086 family architecture is characterized by
three major principles:

1. System functions are distributed among
specialized components.

2. Multiprocessing capabilities are inherent in
the hardware.

3. A hierarchical bus organization provides for
the complex data flows required by high-
performance systems without burdening
simpler systems with unneeded capabilities.

Functional Distribution

Table 1-1 lists the components that constitute the
8086 microprocessor family. All components are
contained in standard dual in-line packages and
require single +5V power sources.

1-1

INTRODUCTION

Table 1-1. 8086 Component Family

Microprocessor

Technology Pins

Description

8086 Central Processing Unit (CPU)

8088 Central Processing Unit (CPU)

8089 Input/Output Processor (IOP)

HMOS

HMOS

HMOS

40 |8/16 bit general-purpose micro-
processor; 16-bit external data path.

40 |8/16 bit general-purpose micro-
processor; 8-bit external data path.

40 | 8/16 bit microprocessor optimized for

high-speed 1/O operations; 8-bit and
16-bit external data paths.

Support Component

Technology Pins

Function

8259A Programmable Interrupt Controller (PIC) NMOS 28 |ldentifies highestQpriority interrupt
request.]

8282 Octal Latch Bipolar 20 |[Demultiplexes and increases drive of

8283 Octal Latch (Inverting) address bus.

8284 Clock Generator and Driver Bipolar 18 |Provides time base.

8286 Octal Bus Transceiver Bipolar 20 |Increasesdrive on data bus.

8287 Octal Bus Transceiver (Inverting)

8288 Bus Controller Bipolar 20 |Generates bus command signals.

8289 Bus Arbiter Bipolar 20 |Controls access of microprocessors
to multimaster system bus.

Microprocessors The 8086 and 8088 are third-generatioh central

At the core of the product line are three
microprocessors that share these characteristics:

* Standard operating speed is 5 MHz (200 ns
cycle time); a selected 8 MHz version of the
8086 CPU is also available.

® Chips are housed in reliable 40-pin packages.

* Processors operate on both 8- and 16-bit data
types; internal data paths are at least 16 bits
wide.

e Up to 1 megabyte of memory can be
addressed, along with a separate 64k byte
1/0 space.

® The address/data and status interfaces of the
processors are compatible (the address and
data buses are time-multiplexed at the pro-
cessor, i.e., an address transmission is
followed by a data transmission over a subset
of the same physical lines).

processing units (CPUs) that differ primarily in
their external data paths. The 8088 transfers data
between itself and other system components 8 bits
at a time. The 8086 can transfer either 8 or 16 bits
in one bus cycle and is therefore capable of
greater throughput. Both processors have two
operating modes, selectable by a strapping pin. In
minimum mode, the CPUs emit the bus control
signals needed by memory and I/0-peripheral
components. In maximum mode, an 8288 Bus

~ Controller assumes responsibility for controlling

devices attached to the system bus. CPU pins no
longer needed for bus control are then redefined
to provide signals that support multiprocessing
systems. .

The 8089 Input/Output Processor (IOP) is an
independent microprocessor whose- design has
been optimized for transferring data. The 8089

1-2

INTRODUCTION

typically runs under the direction of a CPU, but it
executes a separate instruction stream and can
operate in parallel with other system processors.
The IOP contains two independent 1/0 channels
that combine attributes of both -CPUs and
advanced DMA (direct memory access) con-
trollers. The channels can execute programs and
perform programmed 1/O operations similar to
CPUs. They may also transfer data by DMA, at
rates up to 1.25 megabytes per second (5 MHz
version). The channels can support mixes of 8-
and 16-bit 1/0 devices and memory. Combining
speed with programmable intelligence, the 8089
can assume the bulk of 170 processing overhead
and thereby free a CPU to perform other tasks.

Interrupt Controller

The 8259A Programmable Interrupt Controller
(PIC) is a new, 8086 family-compatible version
of the familiar 8259 that has been enhanced to
operate with the advanced interrupt facilities of
the 8086 and 8088 CPUs. The 8259A accepts
interrupt requests from up to eight sources; up
to 64 sources may be accommodated by
‘“‘cascading’’ additional 8259As. Each interrupt
source is assigned a priority number that typi-
cally reflects its ‘‘criticality’’ in the system. The
8259A has several built-in; priority-resolving
mechanisms that are selectable by software com-
mands from the CPU. These modes operate
somewhat differently, but in general the 8259A
continuously identifies the highest-priority active
interrupt request and generates an interrupt
request to the CPU if this request has higher
priority than the request currently being pro-
cessed. When the CPU recognizes the interrupt
request, the 8259A transfers a code to the CPU
that identifies the interrupt source.

Bus Interface Components

Components may be selected from this modular
group to implement different system bus con-
figurations. Except for the 8284, all components
are optional; their inclusion in a system is based
on the needs of the application. All of the bus
interface components are implemented using
bipolar technology to provide high-quality, high-
drive signals and very fast internal switching.

The 8284 Clock Generator and Driver provides
the time base for the 8086 family micro-
processors. It divides the frequency signal from

an external crystal or TTL signal by three and
outputs the 5 MHz or 8 MHz processor clock
signal. It also provides the microprocessors with
reset and ready signals.

8282 or 8283 Octal Latches may be added to a
system to demultiplex the combined address/data
bus generated by the 8086 family micro-
processors. A demultiplexed bus provides
separate stable address and data lines required by
many peripheral components. Two latches
demultiplex 16 bits of the bus to provide an
address space of up to 64k bytes, while three
latches generate the full 20-bit (megabyte) address
space. The latches also provide the high drive on
the address lines needed in larger systems.

8286 and 8287 Octal Bus Transceivers are used to
provide more drive on data lines than the pro-
cessors themselves are capable of providing. One
or two transceivers may be used depending on the
width of the data bus (8 or 16 bits).

The 8288 Bus Controller decodes status signals
output by an 8089, or a maximum mode 8086 or
8088. When these signals indicate that the pro-
cessor is to run a bus cycle, the 8288 issues a bus
command that identifies the bus cycle as memory
read, memory write, I/0 read, 1/0 write, etc. It
also provides a signal that strobes the address into
8282/83 latches. The 8288 provides the drive
levels needed for the bus control lines in medium
to large systems.

The 8289 Bus Arbiter controls the access of a pro-
cessor to a multimaster system bus. A multi-
master bus is a path to system resources (typically
memory) that is shared by two or more
microprocessors (masters). Arbiters for each
master may use one of several priority-resolving
techniques to ensure that only one master drives
the shared bus.

Multiprocessing

Employing multiple processors in medium to
large systems offers several significant advantages
over the centralized approach that relies on a
single CPU and extremely fast memory:

e gystem tasks may be allocated to
special-purpose processors whose designs are
optimized to perform certain types of tasks
simply and efficiently;

INTRODUCTION

e very high levels of performance can be
attained when multiple processors can
execute simultaneously (parallel processing);

¢ robustness can be improved by isolating
system functions so that a failure or error in
one part of the system has a limited effect on
the rest of the system;

e the natural partitioning of the system
promotes parallel development of sub-
systems, breaks the application into smaller,
more manageable tasks, and helps isolate the
effects of system modifications.

The 8086 family architecture is explicitly designed
to simplify the development of multiple processor
systems by providing facilities for coordinating
the interaction of the processors.

The architecture supports two types of pro-
cessors: independent processors and
coprocessors. An independent processor is one
that executes its own instruction stream. The
8086, 8088 and 8089 are examples of independent
processors. An 8086 or 8088 typically executes a
program in response to an interrupt. The 8089
starts its channels in response to an interrupt-like
signal called a channel attention; this signal is
typically issued by a CPU.

The 8086 architecture also supports a second type
of processor, called a coprocessor. Coprocessor
“hooks’’ have been designed into the 8086 and
8088 so that this type of processor can be
accommodated in the future. A coprocessor dif-
fers from an independent processor in that it
obtains its instructions from another processor,
called a host. The coprocessor monitors instruc-
tions fetched by the host and recognizes certain of
these as its own and executes them. A
coprocessor, in effect, extends the instruction set
of its host processor.

The 8086 family architecture provides built-in
solutions to two classic multiprocessing coordina-
tion problems: bus arbitration and mutual exclu-
sion. Bus arbitration may be performed by the
bus request/grant logic contained in each of the
processors, by 8289 Bus Arbiters, or by a com-
bination of the two when processors have access
to multiple shared buses. In all cases, the arbitra-
tion mechanism operates invisibly to software.

For mutual exclusion, each processor has a
LOCK (bus lock) signal which a program may
activate to prevent other processors from obtain-
ing a shared system bus. The 8089 may lock the
bus during a DMA transfer to ensure that both
the transfer completes in the shortest possible
time and that another processor does not access
the target of the transfer (e.g., a buffer) while it is
being updated. Each of the processors has an
instruction that examines and updates a memory
byte with the bus locked. This instruction can be
used to implement a semaphore mechanism for
controlling the access of multiple processors to
shared resources. (A semaphore is a variable that
indicates whether a resource, such as a buffer or a
pointer, is ‘‘available’’ or ‘‘in use’’; section 2.5
discusses semaphores in more detail).

Bus Organization

Figure 1-1 summarizes the 8086 family bus struc-
ture. There are two different types of buses:
system and local. Both buses may be shared by
multiple processors, i.e., both are multimaster
buses. Microprocessors are always connected to a
local bus, and memory and I/O components
usually reside on a system bus. The 8086 family
bus interface components link a local bus to a
system bus.

Local Bus

The local bus is optimized for use by the 8086
family microprocessors. Since standard memory
and 170 components are not attached to the local
bus, information can be multiplexed and encoded
to make very efficient use of processor pins (cer-
tain MCS-85™ peripheral components can be
directly connected to the local bus). This allows
several pins to be dedicated to coordinating the
activity of multiple processors sharing the local
bus. Multiple processors connected to the same
local bus are said to be local to each other; pro-
cessors on different local buses are said to be
remote to each other, or configured remotely.
Both independent processors and coprocessors
may share a local bus; on-chip arbitration logic
determines which processor drives the bus.
Because the processors on the local bus share the
same bus interface components, the local con-
figuration of multiple processors provides a com-
pact and inexpensive multiprocessing system.

1-4

INTRODUCTION

-
r=———"="77
| |
e ol
I |
7T [——
L | |
|} s e |
| S
L bl | | J s
I k’l BUS |
INTERFACE PROCESSOR] | INTERFACE H
| o= ——— I GROUP GROUP |
|1 | | j |
| PRIVATE | PUBLIC
N " y #‘Tﬁ P U
| 1 LOCAL BUS I;
w
|I I-———.I r—!—-l r—=--= ‘E
| IR
| PROCESSING [PROCESSOR, | PROCESSORy I 2 | I
i MODULE | i1 " } a .M PROCESSING |
: Leeed L4 | I I
I
- |
Figure 1-1. Generalized 8086 Family Bus Structure
System Bus The system bus design is modular and subsets

A full implementation of an 8086 system bus con-
sists of the following five sets of signals:

address bus,

data bus,

control lines,

interrupt lines, and

u.:hwp.—-

arbitration lines.

These signals are designed to meet the needs of
standard memory and I/O devices; the address
and data buses are demultiplexed and traditional
control signals (memory read/write, 1/0
read/write, etc.) are provided on the system bus.

may be implemented according to the needs of the
application. For example, the arbitration lines are
not needed in single-processor systems or in
multiple-processor systems that perform arbitra-
tion at the local-bus level.

A group of bus interface components transforms
the signals of a local bus into a system bus. The
number of bus interface components required to
generate a system bus depends on the size and
complexity of the system; reduced application
needs translate directly into reduced component
counts. These main variables determine the con-
figuration of a bus interface group: address space
size (number of latches), data bus width (number
of transceivers), and arbitration needs (presence
of a bus arbiter).

1-5

INTRODUCTION

The 8086 family system bus is functionally and
electrically compatible with the Multibus™
multimaster system bus used in Intel’s iSBC™
line of single board computing products. This
compatability gives system designers access to a
wide variety of computer, memory, communica-
tions and other modules that may be incorporated
into products, used for evaluation or for test
vehicles.

Processing Modules

The processor(s) and bus interface group(s) that
are connected by a local bus constitute a process-
ing module. A simple processing module could
consist of a single CPU and one bus interface
group. A more complex module would contain
multiple processors, such as two IOPs, or a CPU
and one or two IOPs. One bus interface group
typically links the processors in the module to a
public system bus. If there are multiple processing
modules in the system, all memory or I/0 con-
nected to the public bus is accessible to all pro-
cessing modules on the public bus. 8289 Bus
Arbiters in each processing module control the
access of the modules to the public bus and hence
to the public memory and I/0.

A second bus interface group may be connected
to a processing module’s local bus, generating a
second bus. This bus can provide the processing
module with a private address space that is not
accessible to other processing modules. Distri-
buting memory and 1/0 resources in this manner
can improve system robustness by isolating the
effects of failures. It can also increase system
throughput dramatically. If processor programs
and local data are placed in private memory, con-

tention for use of the public system bus can be
held to a minimum to ensure that shared
resources are quickly available when they are
needed. In addition, processors in separate
modules can simultaneously fetch instructions
from private memory spaces to allow multiple
system tasks to proceed in parallel.

Bus implementation Examples

This section summarizes the 8086 family bus
organization by showing how components from
the family can be combined to implement diverse
bus configurations. The first two examples
illustrate special cases that extend the applicabil-
ity of the 8086 family to smaller systems. The
remaining examples add and recombine the same
basic components to form progressively more
complex bus configurations. Note that these
examples are intended to be illustrative rather
than exhaustive; many different combinations of
components can be tailored to fit the needs of
individual applications.

In its minimum mode configuration, the 8088
time-multiplexes its 8-bit data bus with the lower
eight bits of its 20-bit address bus (figure 1-2).
This multiplexed address/data bus, and the bus
control signals emitted by the 8088, are directly
compatible with the multiplexed bus components
of Intel’s 8085 family. These peripherals contain
on-chip logic that demultiplexes a combined
address/data bus. In addition, many of these
devices are multifunctional, combining, for
example, RAM, 1/0 ports and a timer on a single
chip. By using these components, it is possible to
build small (as few as four chips) economical
systems that are nonetheless capable of perform-
ing significant computing tasks. '

8284

cLOCK »| 8088
GENERATOR

CPU

CONTROL LINES

ADDRESS/
DATALINES

8088 MULTIPLEXED
BUS

Figure 1-2. 8088 Multiplexed Bus

1-6

INTRODUCTION

Combining 8282/83 latches with a minimum
mode 8086 or 8088 produces a minimum mode
system bus (figure 1-3). Two latches provide an
address space of up to 64k bytes; adding a third
latch provides access to the full megabyte of
memory. An 8288 Bus Controller is not required
for this implementation as the CPUs themselves
emit the bus control signals when they are con-
figured in the minimum mode. This demulti-
plexed bus structure is compatible with the wide
array of memory and I/0 components that have

been developed for the industry-standard 8080A
CPU. Eight-bit peripherals may be connected to
both the upper and lower halves of the 8086’s
16-bit data bus. 8286/87 transceivers may be
added to provide additional drive on the data
lines, where required. Including an 8259A gives
the CPU the ability to respond to multiple inter-
rupt sources without polling. The minimum mode
system bus configuration is well-suited to a
variety of systems whose computational require-
ments can be met by a single 8086 or 8088 CPU.

I""_"""I

259A]
| oRoGRAMMABLE [UNIERRUPT
| INTERRUPT REQUEST
LINES

| CONTROLLER |

il

8284 8086/

CLOCKo
GENERATOR l LOCAL BUS

LATCHES

r“‘1
| szesm |
I cewsns I DATA LINES .

CONTROL LINES "
MINIMUM
MODE
SYSTEM
BUS

ADDRESS LINES

L..__.I

Figure 1-3. Minimum Mode System Bus

INTRODUCTION

When an 8086 or 8088 is configured in maximum
mode and an 8288 is added to control the system
bus, one or two 8089s may be directly connected
to the CPU (figure 1-4). The processors all share
the same latches, transceivers, clock and bus con-
troller, via the local bus. Arbitration logic built
into the 8086, 8088 and 8089 coordinates use of
the local bus, and thus of the system bus. This bus
configuration enables the powerful I/0 handling
capabilities of the 8089 to be incorporated into
systems of moderate size and cost.

The 8289 enables high-performance systems to be
designed as a series of independent processing
modules whose activities are coordinated via a
shared system bus. Figure 1-5 shows the multi-

master system bus interface; this bus structure is
electrically compatible with the Multibus™
architecture used in Intel iSBC™ single-board
computing systems.

Several different combinations of processors may
be attached to the local bus of a multimaster com-
puting module:

* asingle 8086 or 8088

* asingle 8089

* two 8089s

* an 8086 or 8088 and one 8089

* an 8086 or 8088 and two 8089s

————--7
| 8259A | N
| PROGRAMMABLE INTERRUPT LINES
INTERRUPT lh—
| CONTROLLER |
—_———
| |
| 8089 l" Das8 CONTROL LINES }
> 10P *
™) 7| CONTROLLER
=2
(| 1 a
| Lee—d [
| S
i SYSTEM
| > ST
| 5
far
' 8086/ E
120 ADDRESS LINES
CLOCK ¢ 8088 8282/83
GENERATOR CPU ﬂ F} LATCHES
8089 8286/87 4 . 4 DATALINES }
op TRANSCEIVERS)

Figure 1-4. Multimaster Local Bus

1-8

INTRODUCTION

INTERRUPT LINES

-

8259A !
IprRoGRAMMABLE!

1 _INTERRUPT

CONTROLLER

8289
BUS !‘
ARBITER

ARBITRATION ’
LINES

I
g2

S T T TR S
I Af

r
b
|
| L _*t 8208 CONTROL LINES . MULTIMASTER
\ Ny CONTROLLER ’ us
R
8284 |
cLock | -o 4>} P
GENERATOR | 1 P
|
| 1 8282783 ADDRESS LINES
I L—- y ke d ilo ’
l 2=
3 H B
| re="--a ER
1 1 =09
| 1 | E
I 8089
L - 10P !
8286/87 DATA LINES
1 TRANSCEIVERS F —
I 7
[J

Figure 1-5. Basic Multimaster Processing Module

All of the processors on the local bus obtain
access to the system bus through a single set of
interface components.

One or two 8089s in a multimaster processing
module may be configured with a private 1/0 bus
as shown in figure 1-6. In this configuration,
memory access commands are directed to the
public multimaster system bus, while I/O com-
mands use the private I/0 bus. Memory, contain-
ing the 8089’s programs, as well as I/0 devices,

may be connected to the private I/O bus. Taking
this approach can greatly reduce the 8089’s use of
the system bus as most memory and I/0 accesses
can be made to the private address space. The
system bus-is thus made available for use by other
processors, and the 8089 can execute in parallel
with other processors for extended periods. A
limited private I/O bus may be implemented
using the 8-bit multiplexed peripherals of the 8085
family, eliminating the latches and transceivers
shown in figure 1-6.

1-9

INTRODUCTION

|
| ———
- 1
- _»: 8088 :* - ,’
: I I
| I |
CLOCK A
GENERATOR y

8089

>

CONTROL LINES

G

ADDRESS LINES 8282/83
LATCHES
PRIVATE
1/0 BUS &
w
@
<
=
———— 3
r-==-1 %
=
DATA LINES H
L l TRANSCEIVERS I
N

I LOCAL BUS I

INTERRUPT LINES ' 3
i ARBITRATION LINES
ARBITER
A CONTROL LINES MULTIMASTER
CONTROLLER SYSTEM BUS
8282/83 ADDRESS LINES
LATCHES
8286/87 DATALINES
TRANSCEIVERS
P

Figure 1-6. Private I/0 Bus

Adding a second 8288 to the local bus allows an
8086 or 8088 in a processing module to divide its
address space into system and resident sections
(figure 1-7). A PROM or decoder is used to direct
an address reference to the system bus or to the
resident bus. The resident bus allows the CPU to
run out of its own address space to minimize its

use of the system bus. Since no other processors
can access the private memory on the CPU’s resi-
dent bus, operating system code and data in this
space is protected from errors in other processor
programs. If a second 8289 is added to a resident
bus module, the resident bus becomes a second
multimaster system bus.

1-10

INTRODUCTION

INTERRUPT
REQUEST
LINES
—— - 1
|
! 8259A |
IPROGRAMMABLE
| INTERRUPT
CONTROLLER
1 H
| S T R |
8086/ 8289
CLOCK 8088 BUS |‘ ARBITRATION }
GENERATOR ARBITER LINES
-4
lo
2]z
H P MULTIMASTER
= P SYSTEM BUS
(‘ CONTROL LINES 8288 H B 8288 CONTROL LINES
CONTROLLER " N CONTROLLER ’
PROM OR]} N]
DECODER VvV
RESIDENT J
BUS ADDRESS LINES 8282/83 8282/83 ADDRESS LINES
LATCHES LATCHES
| 1
1 1
DATA LINES 286/87 8286/87 DATA LINES
TRANSCEIVERS TRANSCEIVERS
q 1 I J
| i

Figure 1-7. Resident Bus

As an alternative to the resident bus, a private
read-only memory space can be implemented
using the RD (read) signal provided by the CPUs
in lieu of an 8288 Bus Controller.

Multiprocessing systems of widely varying com-
plexity can be constructed from multimaster pro-
cessing modules. Each module can be designed
and implemented separately and can be optimized
to perform a given task. The modules can com-
municate with each other by means of interrupts
and messages placed in system memory. Addi-
tional functions can be added to a system by
incorporating the new functions into modules and
connecting the modules to the system bus.

Figure 1-8 illustrates a hypothetical system in
which nine processors are distributed among five

multimaster processing modules. (For clarity, bus
interface components are not shown in. figure
1-8.) A supervisor module controls the system,
primarily responding to interrupts and dis-
patching other modules to perform tasks. The
supervisor CPU, like the other processors in the
system, executes code from private memory that
is inaccessible to other modules. System memory,
which is accessible to all the processors, is used
only for messages, common buffers, etc. This
helps to “‘protect’’ the processors from each other
and to keep system bus contention at a minimum.
The database module is responsible for maintain-
ing all system files. Each of the three graphics
modules supports a graphics CRT terminal. An
8089 in each module performs data transfers and
CRT refresh and calls upon an 8088 for intensive
computational routines.

INTRODUCTION

PRIVATE
MEMORY

]

=

DATABASE e

MODULE ﬂ <

<

a

PRIVATE
170
L |
RESIDENT

SUPERVISOR PRIVATE 8086
MODULE MEMORY CPU

PRIVATE
MEMORY

GRAPHICS
MODULE {

PRIVATE I/0

PRIVATE
1/0

MULTIMASTER
SYSTEM BUS

N
PRIVATE
MEMORY
o
S
= GRAPHICS
5 > MODULE
>
3
[N
PRIVATE
170
P
SYSTEM
MEMORY
S
8089 PRIVATE
10P MEMORY
o
S
1 = \, GRAPHICS
< MODULE
2
3
o
8088 PRIVATE
CPU 1/0

Figure 1-8. Multimaster Design Example .

1.3 Development Aids

Intel provides the sophisticated tools needed for
timely and economical development of products
based on the 8086 family. The 8086 family system
development environment is focused on the
Intellec® Series II Microcomputer Development
System (figure 1-9). The Intellec system is a
multiple-microprocessor system that runs
ISIS-II, a disk-based operating system that has
been proven in thousands of installations. The
Intellec has built-in interfaces for a printer,
a PROM programmer and a paper tape
reader/punch. This same hardware and operating

system may be used to develop systems based on
other Intel microprocessor families such as the
8085 and the 8048.

Three language translators support 8086 family
programming. PL/M-86 is a high-level language
for the 8086 and 8088 that supports structured
programming techniques. It is upward-
compatible with PL/M-80, the most widely used
high-level microprocessor language. ASM-86 may
be used to write assembly language programs for
the 8086 and the 8088 CPUs and gives the pro-
grammer access to the full power of these CPUs.
8089 programs are written in ASM-89, the 8089
assembly language.

1-12

INTRODUCTION

The language translators produce compatible out-
puts that can be manipulated by the software
development utilities. LINK-86, for example, can
combine programs written in ASM-86 with
PL/M-86 programs. LIB-86 allows related pro-
grams to be stored in libraries to simplify storage
and retrival. LOC-86 assigns absolute memory
addresses to programs. OH-86 changes the for-
mat of an executable program for PROM pro-
gramming or for loading into the RAM of a test
vehicle.

The UPP-301 Universal PROM Programmer can
burn programs into any of Intel’s PROM
memories; the UPP plugs into the Intellec®
system and allows program data to be
manipulated from the console before it is pro-
grammed into the PROM.

The SDK-86 is an (minimum mode) 8086-based
prototyping and evaluation kit. It includes the
CPU, RAM, 1/0 ports and a breadboard area for
interfacing customer circuits. A ROM-based
monitor program is supplied with the kit.
Monitor commands may be entered from an on-
board keypad or from a terminal; the monitor
returns results to the SDK-86’s on-board LED
display or to a terminal. Monitor commands
allow programs to be entered, run, stopped, and
single-stepped; memory contents can be altered as
well as displayed. The SDK-C86 Software and
Cable Interface connects an SDK-86 to an
Intellec® system. The software supplied with the
cable enables programs to be transferred between
the development system and the SDK-86 to allow
users to develop programs using the text editor,
translators and utilities of the Intellec system and
then download the program to the SDK-86 for
execution.

The iSBC 86/12™ board is a high-performance
single board computer based on a maximum
mode 8086 CPU. The board contains 32k of dual-
port RAM that is accessible to the CPU via the
on-board bus and to other processors via the
built-in Multibus™ interface. The board also has
an asynchronous serial port, parallel ports with
sockets for drivers and terminators, two timers
and sockets for 16k of ROM.

An iSBC 86/12™ can be linked to an Intellec®
system using the iSBC 957™ Intellec-iSBC 86/12
Interface and Execution Package. The package
includes a ROM-based monitor for the iSBC
86/12 board, software for the Intellec system and
cabling to connect the two. The package supports
data transfers between Intellec diskettes and iSBC
86/12 memory, full speed execution of customer
programs on the iSBC 86/12 board, breakpoints,
single-stepping, and data moves, replacements,
searches and compares. All commands are
entered from the Intellec console.

The ICE-86™ module is an in-circuit emulator
for the 8086 microprocessor. A 40-pin probe
replaces the 8086 in the system under test. This
probe is connected to ICE-86 circuit boards that
in turn plug into the Intellec® chassis. The ICE-86
module emulates the 8086 in the system under test
in response to commands entered through the
Intellec console. These commands allow the user
to debug the system by setting breakpoints, trac-
ing the flow of execution, single-stepping,
examining and altering memory and 1/0, etc. All
references to program variables and labels are
symbolic (i.e., their PL/M-86 or ASM-86 names).
Software testing can also map ‘‘system under
test’”” memory into the Intellec memory to permit
software testing to begin before prototype hard-
ware has been developed.

INTRODUCTION

LANGUAGE TRANSLATORS SOFTWARE DEVELOPMENT UTILITIES

PL/M-86

uPP
UNIVERSAL
PROM
PROGRAMMER

INTELLEC® SERIES Il MICROCOMPUTER
DEVELOPMENT SYSTEM

ICE-86™ IN-CIRCUIT EMULATOR

iSBC 86/12A™
SINGLE BOARD COMPUTER .
iSBC 957™ INTELLEC®
iSBC 86/12A™ INTERFACE
AND EXECUTION PACKAGE

SKD-C86 SOFTWARE
AND CABLE INTERFACE

Figure 1-9. 8086 Family Development Aids

1-14

Chapter 2
The 8086 and 8088
Central Processing Units

CHAPTER 2
THE 8086 AND 8088
CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086

microprocessor family: the 8086 and 8088 central st N/ wvec
processing unjts (CPUs). The material is divided ap1a]2 sl apts
into ten sections and generally proceeds from o1 s sa[J atesss
hardware to software topics as follows: a1z []4 a7 at7/sa
1. Processor Overview ao11 []s 36[] atesss
2. Processor Architecture aow0 e ss[] atosse
ape []7 34[] BHE/S7
3. Memory aps []s 33[] MN/MX
4. Input/Output a7 e 32l 5
5. Multiprocessing Features sosfro 8088 slwow @
. . A HLD RG/GT1)
6. Processor Control and Monitoring A:j E :; :: g - ' :m.
7. Instruction Set ap3 [J13 2awic &
8. Addressing Modes apz2 [J1a z[JoT/R &
9. Programming Facilities ::;E:: ::g:: ::‘:m
10. Programming Guidelines and Examples o [IWR (s
. . . INTR [J18 23] TEST
The chaptgr descglbes thq mterngl operation of ok e 22 menoy
the CPUs in detail. The interaction of the pro- ano 20 21 eser
cessors with other devices is discussed in func-
tional terms; electrical characteristics, timing, and
other information needed to actually interface ano[]+ N—/ wpvee
other devices with the 8086 and 8088 are provided aa]2 sPats
in Chapter 4. as[] s a8 [ate/ss
Aa2[a a7[] at7/sa
v ans 36 [] ata/ss
2.1 Processor Overview arnl]s ss[1 arorss
a7 3a[]sso (HIGH)
The 8086 and 8088 are closely related third- ns[]s 33| N /iR
generation microprocessors. The 8088 is designed aor[]e 2|7
with an 8-bit external data path to memory and a6 10 %OPBS sfdwow (RG/ETS)
170, while the 8086 can transfer 16 bits at a time. aps [w[dHoa @a/Em
In almost every other respect the processors are — __
. . . . apa[]12 20] WR (LOCK)
identical; software written for one CPU will aos s »hod @
execute on the other without alteration. The chips o B S
are contained in standard 40-pin dual in-line i o (_’
packages (figure 2-1) and operate from a single e wpom &
+5V power source. Apo (e # g““ (@s0)
[R4 24{] INTA (@s1)
The 8086 and 8088 are suitable for an exception- INTR[] 18 2] Test
ally wide spectrum of microcomputer applica- ok e 22[7] READY
tions, and this flexibility is one of their most ann[] 20 217 Reser
outstanding characteristics. Systems can range
from uniprocessor minimal-memory designs -
implemented with a handful of chips (figure 2-2), N MODE PINLUNCTIONS (e.g-, LOCK)
to multiprocessor systems with up to a megabyte
of memory (figure 2-3). Figure 2-1. 8086 and 8088 Central Processing
Units

2-1

8086 AND 8088 CENTRAL PROCESSING UNITS

- PN 'S
PORT A
A ‘M
|4 PORT B
8155 M
s | | 24
TIMER ‘mﬂ
A
1 4 < \ cLock
——p TIMER
—— . q
ER——
A
1 4 PORT A
8088 ADDRESS/DATA ‘
‘_— _* 8755A
cru ‘P ﬁ EPROM
170
PORT B
CONTROL) A M
|4 | 4
L =
A
| 4
8185
«_ ﬁ 1KX8
8284 AM
CLOCK
GEN. Y
| 4
A L b 4 D 4
Figure 2-2. Small 8088-Based System
1/0 MAPPED LOCAL
1/0 DEVICES ROM, RAM RESOURCES
P P r 1 N
5 1/0 BUS ~ N 4 LOCAL BUS - N
PN P |4 N o PN L4
8284 8284 8268
CLOCK GENERATOR CLOCK GENERATOR BUS CONTROLLER
l h > . I -~
1 I
TRANSCEIVERS TRANSCEIVERS
AND LATCHES AND LATCHES
8089 ag?is
—
10P -*» " 5088
h § cru
| 4
|
I ~ N l L
. L [I A
8288 8289 TRANSCEIVERS TRANSCEIVERS 8289 8288
BUS CONTROLLER BUS ARBITER AND LATCHES AND LATCHES BUS ARBITER BUS CONTROLLER
ZN S S S
C t_) C)
4 h._d4 h 4 MULTIBUS™ SYSTEM BUS h h. 4 b _d
—
Al N
y
MULTIBUS™ CONTROLS MULTIBUS™ CONTROLS

SYSTEM ROM, RAM

Figure 2-3. 8086/8088/8089 Multiprocessing System

2-2

8086 AND 8088 CENTRAL PROCESSING UNITS

The large application domain of the 8086 and
8088 is made possible primarily by the processors’
dual operating modes (minimum and maximum
mode) and built-in multiprocessing features.
Several of the 40 CPU pins have dual functions
that are selected by a strapping pin. Configured
in minimum mode, these pins transfer control
signals directly to memory and input/output
devices. In maximum mode these same pins take
on different functions that are helpful in medium
to large ystems, especially systems with multiple
processors. The control functions assigned to
these pins in minimum mode are assumed by a
support chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 8089
Input/Output Processor (IOP) and other pro-
cessors in multiprocessing and distributed pro-
cessing systems. When used in conjunction with
one or more 8089s, the 8086 and 8088 expand
the applicability of microprocessors into 1/0-
intensive data processing systems. Built-in coor-
dinating signals and instructions, and electrical
compatibility with Intel’s Multibus™ shared bus
architecture, simplify and reduce the cost of
developing multiple-processor designs.

Both CPUs are substantially more powerful than
any microprocessor previously offered by Intel.
Actual performance, of course, varies from
application to application, but comparisons to the
industry standard 2-MHz 8080A are instructive.
The 8088 is from four to six times more powerful
than the 8080A; the 8086 provides seven to ten
times the 8080A’s performance (see figure 2-4).

100

RELATIVE PERFORMANCE
S

1 1
1972 1974 1977 1978 1979

YEAR INTRODUCED

Figure 2-4. Relative Performance of the
8086 and 8088

The 8086’s advantage over the 8088 is attributable
to its 16-bit external data bus. In applications that
manipulate 8-bit quantities extensively, or that
are execution-bound, the 8088 can approach to
within 10% of the 8086’s processing throughput.

The high performance of the 8086 and 8088 is
realized by combining a 16-bit internal data path
with a pipelined architecture that allows instruc-
tions to be prefetched during spare bus cycles.
Also contributing to performance is a compact
instruction format that enables more instructions
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088
systems need not be written in assembly language.
The CPUs are designed to provide direct hard-
ware support for programs written in high-level
languages such as Intel’s PL/M-86. Most high-
level languages store variables in memory; the
8086/8088 symmetrical instruction set supports
direct operation on memory operands, including
operands on the stack. The hardware addressing
modes - provide efficient, straightforward
implementations of based variables, arrays, ar-
rays of structures and other high-level language
data constructs. A powerful set of memory-to-
memory string operations is available for efficient
character data manipulation. Finally, routines
with critical performance requirements that can-
not be met with PL/M-86 may be written in
ASM-86 (the 8086/8088 assembly language) and
linked with PL/M-86 code.

While the 8086 and 8088 are totally new designs,
they make the most of users’ existing investments
in systems designed around the 8080/8085
microprocessors. Many of the standard Intel
memory, peripheral control and communication
chips are compatible with the 8086 and the 8088.
Software is developed in the familiar Intellec®
Microcomputer Development System environ-
ment, and most existing programs, whether writ-
ten in ASM-80 or PL/M-80, can be directly con-
verted to run on the 8086 and 8088.

2.2 Processor Architecture

Microprocessors generally execute a program by
repeatedly cycling through the steps shown below
(this description is somewhat simplified):

1. Fetch the next instruction from memory.

2. Read an operand (if
instruction).

required by the

2-3

8086 AND 8088 CENTRAL PROCESSING UNITS

3. Execute the instruction.

4. Write the result (if required by the
instruction).

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them to two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions, reads operands and writes results.

The two units can operate independently of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe-
cution. The result is that, in most cases, the time
normally required to fetch instructions ‘‘dis-
appears’ because the EU executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
traditional microprocessor operation. In the
example, overlapping reduces the elapsed time
required to execute three instructions, and allows
two additional instructions to be prefetched as
well.

ELASPED TIME >

CPU:@ECUTEg &NRITE\s %ETCIﬂ szscumﬁ ||| “m“

SECOND
GENERATION

MICROPROCESSOR
BUS: BUSY BUSY BUSY

[N 7 UL
£u: [ExECuTE] execute) EXECUTE |
NS % |
% i | N —
MICROPRg%sEGég%Bg BlU: | FETCH | FETCH

L BUS:I BUSY I l BUSY | rsust | BUSY I l BUSYJ lsusvl

INSTRUCTION STREAM

)
I
=

1st INSTRUCTION (ALREADY FETCHED):
EXECUTE AND WRITE RESULT

2nd INSTRUCTION:
EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
(UNDEFINED)

5th INSTRUCTION:
(UNDEFINED)

Figure 2-5. Overlapped Instruction Fetch and Execution

2-4

8086 AND 8088 CENTRAL PROCESSING UNITS

Execution Unit

The execution units of the 8086 and 8088 are iden-
tical (figure 2-6). A 16-bit arithmetic/logic unit
(ALU) in the EU maintains the CPU status and
control flags, and manipulates the general
registers and instruction operands. All registers
and data paths in the EU are 16 bits wide for fast
internal transfers.

The EU has no connection to the system bus, the
““outside world.”” It obtains instructions from a
queue maintained by the BIU. Likewise, when an
instruction requires access to memory or to a
peripheral device, the EU requests the BIU to
obtain or store the data. All addresses
manipulated by the EU are 16 bits wide. The BIU,
however, performs an address relocation that
gives the EU access to the full megabyte of
memory space (see section 2.3).

Bus Interface Unit

The BIUs of the 8086 and 8088 are functionally
identical, but are implemented differently to
match the structure and performance
characteristics of their respective buses.

The BIU performs all bus operations for the EU.
Data is transferred between the CPU and memory
or I/0 devices upon demand from the EU. Sec-
tions 2.3 and 2.4 describe the interaction of the
BIU with memory and I/0 devices.

In addition, during periods when the EU is busy
executing instructions, the BIU ‘‘looks ahead”’
and fetches more instructions from memory. The
instructions are stored in an internal RAM array
called the instruction stream queue. The 8088
instruction queue holds up to four bytes of the
instruction stream, while the 8086 queue can store

EXECUTION UNIT (EU)

GENERAL
REGISTERS

1 1
[orermos]
1 1

BUS INTERFACE UNIT (BIU)

SEGMENT
REGISTERS

INSTRUCTION
POINTER

1

ADDRESS
GENERATION
AND BUS
CONTROL

l

INSTRUCTION
QUEUE

MULTIPLEXED BUS

Figure 2-6. Execution and Bus Interface Units (EU and BIU)

2-5

8086 AND 8088 CENTRAL PROCESSING UNITS

up to six instruction bytes. These queue sizes
allow the BIU to keep the EU supplied with pre-
fetched instructions under most conditions
without monopolizing the system bus. The 8088
BIU fetches another instruction byte whenever
one byte in its queue is empty and there is no
active request for bus access from the EU. The
8086 BIU operates similarly except that it does
not initiate a fetch until there are two empty bytes
in its queue. The 8086 BIU normally obtains two
instruction bytes per fetch; if a program transfer
forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd
address and then resumes fetching two-byte
words from the subsequent even addresses.

Under most circumstances the queues contain at
least one byte of the instruction stream and the
EU does not have to wait for instructions to be
fetched. The instructions in the queue are those
stored in the memory locations immediately adja-
cent to and higher than the instruction currently
being executed. That is, they are the next logical
instructions so long as execution proceeds seri-
ally. If the EU executes an instruction that
transfers control to another location, the BIU
resets the queue, fetches the instruction from the
new address, passes it immediately to the EU, and
then begins refilling the queue from the new loca-
tion. In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or
170 read or write (except that a fetch already in
progress is completed before executing the EU’s
bus request).

General Registers

Both CPUs have the same complement of eight
16-bit general registers (figure 2-7). The general
registers are subdivided into two sets of four
registers each: the data registers (sometimes called
the H & L group for ‘‘high’’ and ‘‘low’’), and the
pointer and index registers (sometimes called the
P & I group).

The data registers are unique in that their upper
(high) and lower halves are separately
addressable. This means that-each data register
can be used interchangeably as a 16-bit register,
or as two 8-bit registers. The other CPU registers
always are accessed as 16-bit units only. The data
registers can be used without constraint in most
arithmetic and logic operations. In addition,

-
AX
F—a T — = ACCUMULATOR
BX
b — — — T — — — —JpasE
DATA BH L BL
GROUP < 3 —Jcounr
CH e cL
DX
== -~ 51— —] pATA
5 0
-
STACK
sp POINTER
BASE
POIN;\I’:S { BP POINTER
INDEX
GROUP st i
oI DESTINATION
L INDEX

Figure 2-7. General Registers

some instructions use certain registers implicitly
(see table 2-1) thus allowing compact yet powerful
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word /O

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect /O

SP Stack Operations

Si String Operations

DI String Operations

The pointer and index registers can also par-
ticipate in most arithmetic and logic operations.
In fact, all eight general registers fit the definition
of ‘‘accumulator’’ as used in first and second
generation microprocessors. The P & I registers
(except for BP) also are used implicitly in some
instructions as shown in table 2-1.

8086 AND 8088 CENTRAL PROCESSING UNITS

Segment Registers

The megabyte of 8086 and 8088 memory space is
divided into logical segments of up to 64k bytes
each. (Memory segmentation is described in sec-
tion 2.3.) The CPU has direct access to four
segments at a time; their base addresses (starting
locations) are contained in the segment registers
(see figure 2-8), The CS register points to the cur-
rent code segment; instructions are fetched from
this segment. The SS register points to the current
stack segment; stack operations are performed on
locations in this segment. The DS register points
to the current data segment; it generally contains
program variables. The ES register points to the
current extra segment, which also is typically used
for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
Good programming practice and consideration of
compatibility with future Intel hardware and soft-
ware products dictate that the segment registers
be used in a disciplined fashion. Section 2.10 pro-
vides guidelines for segment register use.

5
cs SoSNenT
DS SEGMENT
ss SEaMENT
ES SEGMENT

Figure 2-8. Segment Registers

Instruction Pointer

The 16-bit instruction pointer (IP) is analogous to
the program counter (PC) in the 8080/8085
CPUs. The instruction pointer is updated by the
BIU so that it contains the offset (distance in
bytes) of the next instruction from the beginning
of the current code segment; i.e., IP points to the
next instruction. During normal execution, IP
contains the offset of the next instruction to be
fetched by the BIU; whenever IP is saved on the
stack, however, it first is automatically adjusted
to point to the next instruction to be executed.
Programs do not have direct access to the instruc-
tion pointer, but instructions -cause it to change
and to be saved on and restored from the stack.

Flags

The 8086 and 8088 have six 1-bit status flags
(figure 2-9) that the EU posts to reflect certain
properties of the result of an arithmetic or logic

CONTROL STATUS
FLAGS FLAGS

—_—— A
CARRY
PARITY

AUXILIARY CARRY
ZERO

SIGN

OVERFLOW
INTERRUPT-ENABLE
DIRECTION

TRAP

Figure 2-9. Flags

operation. A group of instructions is available
that allows a program to alter its execution
depending on the state of these flags, that is, on
the result of a prior operation. Different instruc-
tions affect the status flags differently; in general,
however, the flags reflect the following
conditions:

1. If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble into
the high nibble or a borrow from the high
nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This
flag is used by decimal arithmetic
instructions.

2. If CF (the carry flag) is set, there has been a

carry out of, or a borrow into, the high-order
bit of the result (8- or 16-bit). The flag is used
by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3. If OF (the overflow flag) is set, an arithmetic

overflow has occurred; that is, a significant
digit has been lost because the size of the
result exceeded the capacity of its destination
location. An Interrupt On Overflow instruc-
tion is available that will generate an inter-
rupt in this situation.

2-7

8086 AND 8088 CENTRAL PROCESSING UNITS

4. If SF (the sign flag) is set, the high-order bit
of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive,
1 = negative).

5. If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6. If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:

1. Setting DF (the direction flag) causes string
instructions to auto-decrement; that is, to
process strings from high addresses to low
addresses, or from ‘‘right to left.”” Clearing
DF causes string instructions to auto-
increment, or to process'strings from ‘‘left to
right.”

2. Setting IF (the interrupt-enable flag) allows
the CPU to recognize external (maskable)
interrupt requests. Clearing IF disables these
interrupts. IF has no affect on either non-
maskable external or internally generated
interrupts.

3. Setting TF (the trap flag) puts the processor
into single-step mode for debugging. In this
mode, the CPU automatically generates an
internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction. Section 2.10
contains an example showing the use of TF in
a single-step and breakpoint routine.

8080/8085 Registers and Flag
Correspondence

The registers, flags and program counter in the
8080/8085 CPUs all have counterparts in the 8086
and 8088 (see figure 2-10). The A register (ac-
cumulator) in the 8080/8085 corresponds to the
AL register in the 8086 and 8088. The 8080/8085
H&L, B&C, and D & E registers correspond to
registers BH, BL, CH, CL, DH and DL, respec-
tively, in the 8086 and 8088. The 8080/8085 SP
(stack pointer) and PC (program counter) have
their counterparts in the 8086/8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in
both CPU families. The remaining flags and
registers are unique to the 8086 and 8088. This
8080/8085 to 8086 mapping allows most existing
8080/8085 program code to be directly translated
into 8086/8088 code.

Mode Selection

Both processors have a strap pin (MN/MX) that
defines the function of eight CPU pins in the 8086
and nine pins in the 8088. Connecting MN/MX to
+5V places the CPU in minimum mode. In this
configuration, which is designed for small
systems (roughly one or two boards), the CPU
itself provides the bus control signals needed by
memory and peripherals. When MN/MX is
strapped to ground, the CPU is configured in
maximum mode. In this configuration the CPU
encodes control signals on three lines. An 8288
Bus Controller is added to decode the signals
from the CPU and to provide an expanded set of
control signals to the rest of the system. The CPU
uses the remaining free lines for a new set of
signals designed to help coordinate the activities
of other processors in the system. Sections 2.5
and 2.6 describe the functions of these signals.

2.3 Memory

The 8086 and 8088 can accommodate up to
1,048,576 bytes of memory in both minimum and
maximum mode. This section describes how
memory is functionally organized and used.
There are substantial differences in the way
memory components are actually accessed by the
two processors; these differences, which are in-
visible to. programs, are covered in section 4.2,
External Memory Addressing.

Storage Organization

From a storage point of view, the 8086 and 8088
memory spaces are organized as identical arrays
of 8-bit bytes (see figure 2-11). Instructions, byte
data and word data may be freely stored at any
byte address without regard for alignment thereby
saving memory space by allowing code to be
densely packed in memory (see figure 2-12). Odd-
addressed (unaligned) word variables, however,

2-8

8086 AND 8088 CENTRAL PROCESSING UNITS

Y
A o ; e CCUMULATO
A
- =
cX
BC % CH% //%% | COUNT
DX
DE %% DA G m% DATA
7 Astack
SP SP POINTER
BASE
BpP POINTER
SOURCE
s! INDEX
oI DESTINATION
INDEX
CODE
cs SEGMENT
DATA
DS SEGMENT
STACK
Ss SEGMENT
EXTRA
ES SEGMENT
INSTRUCTION
pC P POINTER
S,Z,AC, P, CY oF|oF| IF TFEF 2F1 ANV PFV/AcF| FLaGs

Figure 2-10. 8080/8085 Register Subset (Shaded)

LOW MEMORY HIGH MEMORY

00000H __ 00001H ___00002H FEFFEH_FFFFFH
00002H o LLEEES

.1|.I.I.l..l.l.§5..I.I.I..l..|..l.'J7 -

| 1MEGABYTE: |

1 1 1 Il 1 . i L
19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H

Figure 2-11. Storage Organization Figure 2-12. Instruction and Variable Storage

2-9

8086 AND 8088 CENTRAL PROCESSING UNITS

do not take advantage of the 8086’s ability to
transfer 16-bits at a time. Instruction alignment
does not materially affect the performance of
either processor.

Following Intel convention, word data always is
stored with the most-significant byte in the higher
memory location (see figure 2-13). Most of the
time this storage convention is .‘‘invisible’’ to
anyone working with the processors;"exceptions
may occur when monitoring the system bus or
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called
pointers and are used to address data and code
that are outside the currently-addressable
segments. The lower-addressed word of a pointer
contains an offset value, and the higher-addressed
word contains a segment base address. Each word
is stored conventionally with the higher-addressed
byte containing the most-significant eight bits of
the word (see figure 2-14).

724H 725H
o ! 2 5 | 5
0000 | 0010 | 0101 | o101

HEX

BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 2-13. Storage of Word Variables

Segmentation

8086 and 8088 programs ‘‘view’’ the megabyte of
memory space as a group of segments that are
defined by the application. A segment is a logical
unit of memory that may be up to 64k bytes long.
Each segment is made up of contiguous memory
locations and is an independent, separately-
addressable. unit. Every segment is assigned (by
software) a base address, which is its starting
location in the memory space. All segments begin
on 16-byte memory boundaries. There are no
other restrictions on segment locations; segments
may be adjacent, disjoint, partially overlapped,
or fully overlapped (see figure 2-15). A physical
memory location may be mapped into (contained
in) one or more logical segments.

The segment registers point to (contain the base
address values of) the four currently addressable
segments (see figure 2-16). Programs obtain
access to code and data in other segments by
changing the segment registers to point to the
desired segments.

Every application will define and use segments
differently. The currently addressable segments
provide a generous work space: 64k bytes for
code, a 64k byte stack and 128k bytes of data
storage. Many applications can be written to
simply initialize the segment registers and then
forget them. Larger applications should be
designed with careful consideration given to seg-
ment definition.

5H

6H “7H

~ 0110 0000 0000

)

—_——

0100

HEX __

1100 0011 1011 IBINARY

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3B4CH

OFFSET: 65H

Figure 2-14. Storage of Pointer Variables

2-10

8086 AND 8088 CENTRAL PROCESSING UNITS

FULLY

OVERLAP
PARTLY
OVERLAP!

PED

-

CONTIGUOUS_N‘

SEGMENT D

1

[SEGMENTA [SEGMENTLI

I
SEGMENTC

DISJOINT

LOGICAL
SEGMENTS

SEGMENTE

| / PHYSICAL
MEMORY

0000H

20000H

30000H

Figure 2-15. Segment Locations in Physical Memory

FFFFFH

DATA: DS: — —
CODE: CS:E— 7
|

—

:..Ill (2]

| =

Figure 2-16. Currently Addressable Segments

The segmented structure of the 8086/8088
memory space supports modular software design
by discouraging huge, monolithic programs. The
segments also can be used to advantage in many
programming situations. Take, for example, the
case of an editor for several on-line terminals. A
64k text buffer (probably an extra segment) could
be assigned to each terminal. A single program
could maintain all the buffers by simply changing
register ES to point to the buffer of the terminal
requiring service.

Physical Address Generation

It is useful to think of every memory location as
having two kinds of addresses, physical and
logical. A physical address is the 20-bit value that
uniquely identifies each byte location in the
megabyte memory space. Physical addresses may
range from OH through FFFFFH. All exchanges
between the CPU and memory components use
this physical address.

Programs deal with logical, rather than physical
addresses and allow code to be developed without
prior knowledge of where the code is to be located
in memory and facilitate dynamic management of
memory resources. A logical address consists of a
segment base value and an offset value. For any
given memory location, the segment base value

2-11

8086 AND 8088 CENTRAL PROCESSING UNITS

locates the first byte of the containing segment
and the offset value is the distance, in bytes, of
the target location from the beginning of the
segment. Segment base and offset values are
unsigned 16-bit quantities; the lowest-addressed
byte in a segment has an offset of 0. Many dif-
ferent logical addresses can map to the same
physical location as shown in figure 2-17. In
figure 2-17, physical memory location 2C3H is
contained in two different overlapping segments,
one beginning at 2BOH and the other at 2COH.

Whenever the BIU accesses memory—to fetch an
instruction or to obtain or store a variable—it
generates a physical address from a logical
address. This is done by shifting the segment base
value four bit positions and adding the offset as
illustrated in figure 2-18. Note that this addition
process provides for modulo 64k addressing
(addresses wrap around from the end of a seg-
ment to the beginning of the same segment).

The BIU obtains the logical address of a memory
location from different sources depending on the
type of reference that is being made (see table

2-2). Instructions always are fetched from the cur-
rent code segment; IP contains the offset of the
target instruction from the beginning of the seg-
ment. Stack instructions always operate on the
current stack segment; SP contains the offset of
the top of the stack. Most variables (memory
operands) are assumed to reside in the current
data segment, although a program can instruct
the BIU to access a variable in one of the other
currently addressable segments. The offset of a
memory variable is calculated by the EU. This
calculation is based on the addressing mode
specified in the instruction; the result is called the
operand’s effective address (EA). Section 2.8
covers addressing modes and effective address
calculation in detail.

Strings are addressed differently than other
variables. The source operand of a string instruc-
tion is assumed to lie in the current data segment,
but another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of
a string instruction always resides in the current

PHYSICAL

2C4H

ADDRESS -

SEGMENT
BASE

LOGICAL
ADDRESSES

SEGMENT]
BASE

OFFSET

(3H)

2C3H
2C2H
2C1H
2COH
2BFH
2BEH
2BDH
2BCH
2BBH
2BAH
2B9H
2B8H
2B7H
2B6H
2B5H
2B4H

2B3H
2B2H

2B1H
2BOH

OFFSET
(13H)

AR

Figure 2-17. Logical and Physical Addresses

2-12

8086 AND 8088 CENTRAL PROCESSING UNITS

123 4 |lpgase
- 15 o LOGICAL
F 2 3 410 | ADDRESS
o 7 2 0 0 2 2 |JOFFSET
P
+ [ew
15 0
= |12 36 2 I PHYSICAL ADDRESS
19 0
TO MEMORY
Figure 2-18. Physical Address Generation
Table 2-2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CS NONE P
Stack Operation SS NONE SP
Variable (except following) DS CS,ES,SS Effective Address
String Source DS CS,ES,SS SI
String Destination ES NONE DI
BP Used As Base Register SS CS,DS,ES Effective Address

extra segment; its offset is taken from DI, the
destination index register. The string instructions
automatically adjust SI and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in an instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way to address data on the stack; BP can be used,
however, to access data in any of the other cur-
rently addressable segments.

In most cases, the BIU’s segment assumptions are
a convenience to programmers. It is possible,
however, for a programmer to explicitly direct the
BIU to access a variable in any of the currently
addressable segments (the only exception is the
destination operand of a string instruction which
must be in the extra segment). This is done by
preceding an instruction with a segment override
prefix. This one-byte machine instruction tells the
BIU which segment register to use to access a
variable referenced in the following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086 and
8088 makes it possible to write programs that are
position-independent, or dynamically relocatable.
Dynamic relocation allows a multiprogramming
or multitasking system to make particularly effec-
tive use of available memory. Inactive programs
can be written to disk and the space they occupied
allocated to other programs. If a disk-resident
program is needed later, it can be read back into
any available memory location and restarted.
Similarly, if a program needs a large contiguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program
segments can be compacted to free up a con-
tinuous space. This process is shown graphically
in figure 2-19.

In order to be dynamically relocatable, a program
must not load or alter its segment registers and
must not transfer directly to a location outside the
current code segment. In other words, all offsets
in the program must be relative to fixed values

2-13

8086 AND 8088 CENTRAL PROCESSING UNITS

BEFORE RELOCATION

AFTER RELOCATION

CODE
SEGMENT |
l—_—'\ Cs
ss
STACK
SEGMENT DS
- ES
DATA
SEGMENT
EXTRA
SEGEMENT | _

i
|
}
|
|
l
|
|
|
i
|
|
l
|
|

cs
SS
DS
ES —
CODE
SEGMENT
STACK
SEGMENT
o DATA
| SEGMENT
EXTRA
SEGMENT

D FREE SPACE

Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the
program to be moved anywhere in memory as
long as the segment registers are updated to point
to the new base addresses. Section 2.10 contains
an example that illustrates dynamic code
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in
memory and are located by the stack segment
register (SS) and the stack pointer register (SP). A
system may have an unlimited number of stacks,
and a stack may be up to 64k bytes long, the max-
imum length of a segment. (An attempt to expand
a stack beyond 64k bytes overwrites the beginning
of the stack.) One stack is directly addressable at
a time; this is the current stack, often referred to
simply as ‘‘the’” stack. SS contains the base
address of the current stack and SP points to the
top of the stack (TOS). In other words, SP con-
tains the offset of the top of the stack from the

stack segment’s base address. Note, however, that
the stack’s base address (contained in SS) is not
the ‘““bottom”’ of the stack.

8086 and 8088 stacks are 16 bits wide; instructions
that operate on a stack add and remove stack
items one word at a time. An item is pushed onto
the stack (see figure 2-20) by decrementing SP by
2 and writing the item at the new TOS. An item is
popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the
stack grows down in memory toward its base
address. Stack operations never move items on
the stack, nor do they erase them. The top of the
stack changes only as a result of updating the
stack pointer.

Dedicated and Reserved Memory
Locations

Two areas in extreme low and high memory are
dedicated to specific processor functions or are
reserved by Intel Corporation for use by Intel

8086 AND 8088 CENTRAL PROCESSING UNITS

POP AX
POP BX
o[l
PUSH AX]
EXISTING ax[12 [34] ex[eelanf< |
STACK]] |
P T © P |
1062 | 0o | 11 T 1062] oo | 11 | 1062] 00 | 11 | |
1060 | 22 | 33 M 1060 22 | 33 | 1060 22 | 33 | |
105E[44 |55 | 29 105€| 44 | 55 | 105E| 44 | 55 | |
1se{e6| 77| E® 1058 66 | 77 105C| 66 | 77 |
ou T0S I
105A] 88 [99] @O 105A| 88 | 99 | > 5 105A] 88 | 99 _J |
1% o ioss[an|eB . 1058 | AA [BB _| 1058 AA | BB | B
TOS
1056] 01 23 gg —> 1056] 34 [12 = 105634 |12 F —
1054] 45 | 67 ‘L;,JE 1054] 45 | 67 1054 45 | 67
1052] 89 | AB E“x‘ 1052) 89 | AB 1052] 89 | AB
1050]co | EF 55 1050] cD | EF 1050 | co| eF
20
[10]50] ss [10 | 50 |ss [10] 50] ss

STACK OPERATION FOR CODE SEQUENCE

Figure 2-20. Stack Operation

hardware and software products. As shown in

figure 2-21, the location are: OH throgh 7FH (128
bytes) and FFFFOH through FFFFFH (16 bytes).
These areas are used for interrupt and system
reset processing 8086 and 8088 application
systems should not use these areas for any other
purpose. Doing so may make these systems
incompatible with future Intel products.

8086/8088 Memory Access
Differences

The 8086 can access either 8 or 16 bits of memory
at a time. If an instruction refers to a word
variable and that variable is located at an even-
numbered address, the 8086 accesses the complete
word in one bus cycle. If the word is located at an
odd-numbered address, the 8086 accesses the
word one byte at a time in two consecutive bus
cycles.

To maximize throughput in 8086-based systems,
16-bit data should be stored at even addresses
(should be word-aligned). This is particularly true
of stacks. Unaligned stacks can slow a system’s
response to interrupts. Nevertheless, except for
the performance penalty, word alignment is

totally transparent to software. This allows max-
imum data packing where memory space is
constrained.

The 8086 always fetches the instruction stream in
words from even addresses except that the first
fetch after a program transfer to an odd address
obtains a byte. The instruction stream is
disassembled inside the processor and instruction
alignment will not materially affect the per-
formance of most systems.

The 8088 always accesses memory in bytes. Word
operands are accessed in two bus cycles regardless
of their alignment. Instructions also are fetched
one byte at a time. Although alignment of word
operands does not affect the performance of the
8088, locating 16-bit data on even addresses will
insure maximum throughput if the system is ever
transferred to an 8086.

2.4 Input/Output

The 8086 and 8088 have a versatile set of in-
put/output facilities. Both processors provide a
large 170 space that is separate from the memory

2-15

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

FFFFFH
RESERVED
FFFFCH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
L L FFFFH
. OPEN
©
[J J,
T\ OPEN Tx
80H
7FH
RESERVED 100H
1aH RESERVED e
13H F7H
DEDICATED OPEN
oH OH
MEMORY 170

Figure 2-21. Reserved and Dedicated Memory
and I70 Locations

space, and instructions that transfer data between
the CPU and devices located in the I/0 space.
I/0 devices also may be placed in the memory
space to bring the power of the full instruction set
and addressing modes to input/output pro-
cessing. For high-speed transfers, the CPUs may
be used with traditional direct memory access
controllers or the 8089 Input/Output Processor.

Input/Output Space

The 8086/8088 I/0 space can accommodate up to
64k 8-bit ports or up to 32k 16-bit ports. The IN
and OUT (input and output) instructions transfer
data between the accumulator (AL for byte
transfers, AX for word transfers) and ports
located in the I/0 space.

The 1/0 space is not segmented; to access a port,
the BIU simply places the port address (0-64k) on
the lower 16 lines of the address bus. Different
forms of the I70 instructions allow the address to
be specified as a fixed value in the instruction or
as a variable taken from register DX.

Restricted 1/0 Locations

Locations F8H through FFH (eight of the 64k

. locations) in the I/0O space are reserved by Intel

Corporation for use by future Intel hardware and
software products. Using these locations for any
other purpose may inhibit compatibility with
future Intel products.

8086/8088 1/0 Access Differences

The 8086 can transfer either 8 or 16 bits at a time
to a device located in the 1/0O space. A 16-bit
device should be located at an even address so
that the word will be transferred in a single bus
cycle. An 8-bit device may be located at either an
even or odd address; however, the internal
registers in a given device must be assigned all-
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a
16-bit device is used in the 8088 1/0 space, it must
be capable of transferring words in the same
fashion, i.e., eight bits at a time in two bus cycles.
(The 8089 Input/Output Processor can provide a
straightforward interface between the 8088 and a
16-bit 1/0 device.) An 8-bit device may be located
at odd or even addresses in the 8088 1/0 space
and internal registers may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses to these registers, however,
will simplify transferring the system to an 8086
CPU.

Memory-Mapped 1/0

I/0 devices also may be placed in the 8086/8088
memory space. As long as the devices respond like
memory components, the CPU does not know the
difference.

Memory-mapped 170 provides additional pro-
gramming flexibility. Any instruction that
references memory may be used to access an I/0
port located in the memory space. For example,
the MOV (move) instruction can transfer data
between any 8086/8088 register and a port, or the
AND, OR and TEST instructions may be used to
manipulate bits in I/0 device registers. In addi-
tion, memory-mapped I/0 can take advantage of
the 8086/8088 memory addressing modes. A
group of terminals, for example, could be treated
as an array in memory with an index register

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

selecting a terminal in the array. Section 2.10 pro-
vides examples of using the instruction set and
addressing modes with memory-mapped 1/0.

Of course, a price must be paid for the added pro-
gramming flexibility that memory-mapped 1/0
provides. Dedicating part of the memory space to
I/0 devices reduces the number of addresses
available for memory, although with a megabyte
of memory space this should rarely be a con-
straint. Memory reference instructions also take
longer to execute and are somewhat less compact
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086
and 8088 provide HOLD (hold) and HLDA (hold
acknowledge) signals that are compatible with
traditional DMA controllers such as the 8257 and
8237. A DMA controller can request use of the
bus for direct transfer of data between an 1/0
device and memory by activating HOLD. The
CPU will complete the current bus cycle, if one is
in progress, and then issue HLDA, granting the
bus to the DMA controller. The CPU will not
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically
organized in two separate banks, one containing
even-addressed bytes and one containing odd-ad-
dressed bytes. An 8-bit. DMA controller must
alternately select these banks to access logically
adjacent bytes in memory. The 8089 provides a
simple way to interface a high-speed 8-bit device
to an 8086-based system (see Chapter 3).

8089 Input/Output Processor (IOP)

The 8086 and 8088 are designed to be used with
the 8089 in high-performance I/0 applications.
The 8089 conceptually resembles a
microprocessor with two DMA channels and an
instruction set specifically tailored for 1/0 opera-
tions. Unlike simple DMA controllers, the 8089
can service 1/0 devices directly, removing this
task from the CPU. In addition, it can transfer
data on its own bus or on the system bus, can
match 8- or 16-bit peripherals to 8- or 16-bit
buses, and can transfer data from memory to
memory and from.1/O device to 1/0 device.
Chapter 3 describes the 8089 in detail.

2.5 Multiprocessing Features

As microprocessor prices have declined,
multiprocessing (using two or more coordinated
processors in a system) has become an increas-
ingly attractive design alternative. Performance
can be substantially improved by distributing
system tasks among separate, concurrently exe-
cuting processors. In addition, multiprocessing
encourages a modular approach to design, usually
resulting in systems that are more easily main-
tained and enhanced. For example, figure 2-22
shows a multiprocessor system in which 170
activities have been delegated to an 8089 IOP.
Should an I/0 device in the system be changed
(e.g., a hard disk substituted for a floppy), the
impact of the modification is confined to the I/O
subsystem and is transparent to the CPU and to
the application software.

The 8086 and 8088 are designed for the
multiprocessing environment. They have built-in
features that help solve the coordination prob-
lems that have discouraged multiprocessing
system development in the past.

Bus Lock

When configured in maximum mode, the 8086
and 8088 provide the LOCK (bus lock) signal.
The BIU activates LOCK when the EU executes
the one-byte LOCK prefix instruction. The
LOCK signal remains active. throughout execu-
tion of the instruction that follows the LOCK
prefix. Interrupts are not affected by the LOCK
prefix. If another processor requests use of the
bus (via the request/grant lines, which are
discussed shortly), the CPU records the request,
but does not honor it until execution of the locked
instruction has been completed.

Note that the LOCK signal remains active for the
duration of a single instruction. If two con-
secutive instructions are each preceded by a
LOCK prefix, there will still be an unlocked
period between these instructions. In the case of a
locked repeated string instruction, LOCK does
remain active for the duration of the block
operation.

When the 8086 or 8088 is configured in minimum
mode, the LOCK signal is not available. The
LOCK prefix can be used, however, to delay the

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

| M T
APPLICATION |
| PROGRAMS |
| DATA
| |
| |
8086 |
| Py SYSTEMBUS |
1 |
| |
| I
L __ _mansysem |

MEMORY

1/0 PROGRAMS

1/0 BUFFERS

8089
10P

I/0 BUS .

170
DEVICES

|
|
|
|
|
== |
|
|
|
|

1/0 SUBSYSTEM

Figure 2-22. Multiprocessing System

generation of an HLDA response to a HOLD
request until execution of the locked instruction is
completed.

The LOCK signal provides information only. It is
the responsibility of other processors on the
shared bus to not attempt to obtain the bus while
LOCK is active. If the system uses 8289 Bus
Arbiters to control access to the shared bus, the
8289’s accept LOCK as an input and do not relin-
quish the bus while this signal is active.

LOCK may be used in multiprocessing systems to
coordinate access to a common resource, such as
a buffer or a pointer. If access to the resource is
not controlled, one processor can read an
erroneous value from the resource when another
processor is updating it (see figure 2-23).

Access can be controlled (see figure 2-24) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with memory) instruction. The
basis for controlling access to a given resource is a
semaphore, a software-settable flag or switch that
indicates whether the resource is. ‘‘available”
(semaphore=0) or ‘‘busy’’ (semaphore=1). Pro-
cessors that share the bus agree by convention not
to use the resource unless the semaphore indicates

that it is available. They likewise agree to set the
semaphore when they are using the resource and
to clear it when they are finished.

The XCHG instruction can obtain the current
value of the semaphore and set it to ‘‘busy’’ in a
single instruction. The instruction, however,
requires two bus cycles to swap 8-bit values. It is
possible for another processor to obtain the bus
between these two cycles and to gain access to the
partially-updated semaphore. This can be
prevented by preceding the XCHG instruction
with a LOCK prefix, as illustrated in figure 2-25.
The bus lock establishes control over access to the
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 8088 (in either maximum or
minimum mode) can be synchronized to an exter-
nal event with the WAIT (wait for TEST) instruc-
tion and the TEST input signal. When the EU
executes a WAIT instruction, the result depends
on the state of the TEST input line. If TEST is
inactive, the processor enters an idle state and
repeatedly retests the TEST line at five-clock
intervals. If TEST is active, execution continues
with the instruction following the WAIT.

Mnemonics © Intel, 1978

2-18

8086 AND 8088 CENTRAL PROCESSING UNITS

SHARED POINTER

BUSCYCLE IN MEMORY PROCESSOR ACTIVITIES

0 4C 1B

:
2
s

“A*“ UPDATES 1 WORD

“B” READS PARTIALLY
UPDATED VALUE

“A” COMPLETES UPDATE

Figure 2-23. Uncontrolled Access to Shared

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or
a memory operand from an 8086/8088 program.
When used in conjunction with WAIT and TEST,
ESC can initiate a ‘‘subroutine’’ that executes
concurrently in another processor (see figure
2-26).

Six bits in the ESC instruction may be specified by
the programmer when the instruction is written.
By monitoring the 8086/8088 bus and control
lines, another processor can capture the ESC
instruction when it is fetched by the BIU. The six
bits may then direct the external processor to per-
form some predefined activity.

If the 8086/8088 is configured in maximum
mode, the external processor, having determined
that an ESC has been fetched, can monitor QSO

Resource
SHARED POINTER
BUSCYCLE SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES
0 0 [, 22 [ac]
“A” OBTAINS EXCLUSIVE
: : [oK) [
2 1 C2, 59 “A” UPDATES 1 WORD
“B TESTS SEMAPHORE
3 1 C2,59 AND WAITS
4 1 c2,59 31,05 “A” COMPLETES UPDATE
“B” TESTS SEMAPHORE
5 1 C2,59] 31,05 | AND WAITS
6 0 C2,59.f31,05] “A” RELEASES RESOURCE
“B’ OBTAINS
7 1 c2 593105] EXCLUSIVE USE
“B’ READS
8 1 2,59 UPDATED VALUE
9 0 C2, 59 “B”’ RELEASES RESOURCE

Figure 2-24. Controlled Access to Shared Resource

2-19

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

> ! MOV AL,1
GET SEMA-
PHORE & WAIT: LOCK XCHG AL, SEMAPHORE
SET “BUSY”’
BUSY(1)

SEMAPHORE
TEST ALAL
JINZ WAIT

AVAILABLE(0)

MOV SEMAPHORE,0

SEMAPHORE
‘““AVAILABLE”

Figure 2-25. Using XCHG and LOCK

and QS1 (the queue status lines, discussed in sec-
tion 2.6) and determine when the ESC instruction
is executed. If the instruction references memory
the external processor can then monitor the bus
and capture the operand’s physical address
and/or the operand itself.

Note that fetching an ESC instruction is not tan-
tamount to executing it. The ESC may be pre-
ceded by a jump that causes the queue to be
reinitialized. This event also can be determined
from the queue status lines.

Request/Grant Lines

When the 8086 or 8088 is configured in maximum
mode, the HOLD and HLDA lines evolve into
two more sophisticated signals called RQ/GTO
and RQ/GTI1. These are bidirectional lines that
can be used to share a local bus between an 8086
or 8088 and two other processors via a handshake
sequence.

The request/grant sequence is a three-phase cycle:
request, grant and release. First, the processor
desiring the bus pulses a request/grant line. The
CPU returns a pulse on the same line indicating
that it is entering the ‘‘hold acknowledge’’ state
and is relinquishing the bus. The BIU is logically
disconnected from the bus during this period. The

PROCEgﬁSOR

CONTINUE
UNTIL “B”’s

PROCESSOR
“A” RESULT
IS NEEDED

TEST

Figure 2-26. Using ESC with WAIT and TEST

Mnemonics © Intel, 1978 2-20

8086 AND 8088 CENTRAL PROCESSING UNITS

EU, however, will continue to execute instruc-
tions until an instruction requires bus access or
the queue is emptied, whichever occurs first.
When the other processor has finished with the
bus, it sends a final pulse to the 8086/8088 in-
dicating that the request has ended and that the
CPU may reclaim the bus.

RQ/GTO has higher priority than RQ/GT1. If
requests arrive simultaneously on both lines, the
grant_goes to the processor on RQ/GTO and
RQ/GT1 is acknowledged after the bus has been
returned to the CPU. If, however, a request
arrives on RQ/GTO while the CPU is processing a
prior request on RQ/GT1, the second request is
not honored until the processor on RQ/GTI1
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose
multiprocessing bus called the Multibus. This is
the standard design used in iSBC™ single-board
microcomputer products. Many other manufac-
turers offer products that are compatible with the
Multibus architecture as well. When the 8086 and
8088 are configured in maximum mode, the 8288
Bus Controller outputs signals that are electrically
compatible with the Multibus protocol. Designers
of multiprocessing systems may want to consider
using the Multibus architecture in the design of
their products to reduce development cost and

time, and to obtain compatibility with the wide
variety of boards available in the iSBC product
line.

The Multibus architecture provides a versatile
communications channel that can be used to coor-
dinate a wide variety of computing modules (see
figure 2-27). Modules in a Multibus system are:
designated as masters or slaves. Masters may
obtain use of the bus and initiate data transfers on
it. Slaves are the objects of data transfers only.
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi-
tion to 16 data lines, the bus design provides 20
address lines, eight multilevel interrupt lines, and
control and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own
clock, independent of the clocks of the modules it
links together. This allows different speed masters
to share the bus and allows masters to operate
asynchronously with respect to each other. The
arbitration logic of the bus permit slow-speed
masters to compete equably for use of the bus.
Once a module has obtained the bus, however,
transfer speeds are dependent only on the
capabilities of the transmitting and receiving
modules. Finally, the Multibus standard defines
the form factors and physical requirements of
modules that communicate on this bus. For a
complete description of the Multibus architec-

MASTER
MASTER

WITH
BUS-ACCESSIBLE
MEMORY

MEMORY SLAVE 1/0 SLAVE

ADDRESS
DATA
COMMAND
BUS EXCHANGE
INTERRUPT
CONTROL
ADDRESS
DATA
COMMAND
BUS EXCHANGE

INTERRUPT

CONTROL

ADDRESS
DATA
COMMAND
CONTROL
ADDRESS
DATA
COMMAND
INTERRUPT
CONTROL

MULTIBUS™ INTERFACE

Figure 2-27. Multibus™-Based System

2-21

8086 AND 8088 CENTRAL PROCESSING UNITS

ture, refer to the Intel Multibus Specification
(document number 9800683) and Application
Note 28A, ““Intel Multibus Interfacing.”’

8289 Bus Arbiter

Multiprocessor systems require a means of coor-
dinating the processors’ use of the shared bus.
The 8289 Bus Arbiter works in conjunction with
the 8288 Bus Controller to provide this control
for 8086- and 8088-based systems. It is compati-
ble with the Multibus architecture and can be used
in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus
contention and matches processors operating
asynchronously with respect to each other. Each
processor on the bus is assigned a different pri-
ority. When simultaneous requests for the bus
arrive, the 8289 resolves the contention and grants
the bus to the processor with the highest priority;
three different prioritizing techniques may be
used. Chapter 4 discusses the 8289 in more detail.

2.6 Processor Control and
Monitoring

Interrupts

The 8086 and 8088 have a simple and versatile
interrupt system. Every interrupt is assigned a
type code that identifies it to the CPU. The 8086

and 8088 can handle up to 256 different interrupt
types. Interrupts may be initiated by devices
external to the CPU;j in addition, they also may be
triggered by software interrupt instructions and,
under certain conditions, by the CPU itself (see
figure 2-28). Figure 2-29 illustrates the basic
response of the 8086 and 8088 to an interrupt.
The next sections elaborate on the information
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external
devices may use to signal interrupts (INTR and
NMI). The INTR (Interrupt Request) line is
usually driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn con-
nected to the devices that need interrupt services.
The 8259A is a very flexible circuit that is con-
trolled by software commands from the 8086 or
8088 (the PIC appears as a set of I/0 ports to the
software). Its main job is to accept interrupt
requests from the devices attached to it, deter-
mine which requesting device has the highest
priority, and then activate the 8086/8088 INTR
line if the selected device has higher priority than
the device currently being serviced (if there is
one).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place, however,
until the currently-executing instruction has been

MASKABLE
INTR] g250a |

NON-MASKABLE
INTERRUPT
REQUEST
NMI
:_]
| INTERRUPT
! LoGIC -
['__f A [
|
|
T INTO piviDe | [SNGEEE
1 | wsTR | | wsTR. | | error| | FFEY,
|
|
| ooss/soss cPu

INTERRUPT
REQUESTS

|

Figure 2-28. Interrupt Sources

8086 AND 8088 CENTRAL PROCESSING UNITS

[

COMPLETE
CURRENT
INSTRUCTION

ACKNOWLEDGE - READ TYPE
INTERRUPT CODE

TF 1 PUSH FLAGS

o]
LETTEMP=TF

EXECUTE
NEXT

INSTRUCTION I
____J CLEARIF &TF
PUSHCS & 1P

CALL INTERRUPT
SERVICE ROUTINE

EXECUTE
USER INTERRUPT
PROCEDURE

POPIP&CS

POP FLAGS

I

RESUME
INTERRUPTED
PROCEDURE

Figure 2-29. Interrupt Processing Sequence

2-23

8086 AND 8088 CENTRAL PROCESSING UNITS

completed.* Then, if IF is clear (meaning that
interrupts signaled on INTR are masked or dis-
abled), the CPU ignores the interrupt request and
processes the next instruction. The INTR signal is
not latched by the CPU, so it must be held active
until a response is received or the request is
withdrawn. If interrupts on INTR are enabled (if
IF is set), then the CPU recognizes the interrupt
request and processes it. Interrupt requests arriv-
ing on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and dis-
abled by executing a CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled) by
writing commands to the 8259A. It should be
noted that in order to reduce the likelihood of
excessive stack buildup, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request by
executing two consecutive interrupt acknowledge
(INTA) bus cycles. If a bus hold request arrives
(via the HOLD or request/grant lines) during the
INTA cycles, it is not honored until the cycles
have been completed. In addition, if the CPU is
configured in maximum mode, it activates the
LOCK signal during these cycles to indicate to
other processors that they should not attempt to
obtain the bus. The first cycle signals the 8259A
that the request has been honored. During the
second INTA cycle, the 8259A responds by plac-
ing a byte on the data bus that contains the inter-
rupt type (0-255) associated with the device
requesting service. (The type assignment is made
when the 8259A is initialized by software in the
8086 or 8088.) The CPU reads this type code and
uses it to call the corresponding interrupt
procedure.

An external interrupt request also may arrive on
another CPU line, NMI (non-maskable inter-
rupt). This line is edge-triggered (INTR is level-
triggered) and is generally used to signal the CPU
of a ‘‘catastrophic’’ event, such as the imminent
loss of power, memory error detection or bus
parity error. Interrupt requests arriving on NMI
cannot be disabled, are latched by the CPU, and
have higher priority than an interrupt request on
INTR. If an interrupt request arrives on both
lines during the execution of an instruction, NMI
will be recognized first. Non-maskable interrupts
are predefined as type 2; the processor does not
need to be supplied with a type code to call the
NMI procedure, and it does not run the INTA bus
cycles in response to a request on NMI.

The time required for the CPU to recognize an
external interrupt request (interrupt latency)
depends on how many clock periods remain in the
execution of the current instruction. On the
average, the longest latency occurs when a
multiplication, division or variable-bit shift or
rotate instruction is executing when the interrupt
request arrives (see section 2.7 for detailed
instruction timing data). As mentioned pre-
viously, in a few cases, worst-case latency will
span two instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction generates an inter-
rupt immediately upon completion of its execu-
tion. The interrupt type coded into the instruction
supplies the CPU with the type code needed to
call the procedure to process the interrupt. Since
any type code may be specified, software inter-
rupts may be used to test interrupt procedures
written to service external devices.

*There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK
and segment override prefixes are considered ‘‘part of”’ the instructions they prefix; no interrupt is recognized between
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory.
It follows from this that whenever a segment register and another value must be updated together, the segment register
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases,
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these
cases, interrupts are accepted after any completed primitive operation or wait test cycle.

Mnemonics © Intel, 1978 224

8086 AND 8088 CENTRAL PROCESSING UNITS

If the overflow flag (OF) is set,.an INTO (inter-
rupt on overflow) instruction generates a type 4
interrupt immediately upon completion of its
execution.

The CPU itself generates a type 0 interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction if the
calculated quotient is larger than the specified
destination.

If the trap flag (TF) is set, the CPU automatically
generates a type 1 interrupt following every
instruction. This is called single-step execution
and is a powerful debugging tool that is discussed

in more detail shortly.

All internal interrupts (INT, INTO, divide error,
and single-step) share these characteristics:

1. The interrupt type code is either contained in
the instruction or is predefined.

2. No INTA bus cycles are run.

3. vInternal interrupts cannot be disabled, except
for single-step.

4. Any internal interrupt (except single-step)
has higher priority than any external inter-
rupt (see table 2-3). If interrupt requests
arrive on NMI and/or INTR during execu-
tion of an instruction that causes an internal
interrupt (e.g., divide error), the internal
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
(figure 2-30) is the link between an interrupt type
code and the procedure that has been designated
to service interrupts associated with that code.
The interrupt pointer table occupies up to the first
1k bytes of low memory. There may be up to 256
entries in the table, one for each interrupt type

IP OFFSET

r 3FFH
| TYPE255POINTER: _|
srcn (AVAILABLE)
|
AVAILABLE
lNTERRUPT{ T T
POINTERS
(224) | TYPE33POINTER: _|
oBan (AVAILABLE)
| TYPE32POINTER: _|
L H (AVAILABLE)
080
(O7FRl tvpe st POINTER: _
(RESERVED)
RESERVED J
|NoTeméuPT g
POINTERS
@n T T
| TYPE5POINTER: _]
L o1an (RESERVED)
(TYPE4 POINTER: _|
o1om OVERFLOW
| TYPE3POINTER: _|
soc | -BYTEINTINSTRUCTION
DEDICATED
INTERRUPT | TYPE2POINTER:
POINTERS 008H NON-MASKABLE
(5
TYPE 1 POINTER: _|
v0aH — SINGLE-STEP
| TYPE O POINTER:]
L o00n DIVIDE ERROR
| 16 BITS |

Figure 2-30. interrupt Pointer Table

2-25

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

that can occur in the system. Each entry in the
table is a doubleword pointer containing the
address of the procedure that is to service inter-
rupts of that type. The higher-addressed word of
the pointer contains the base address of the seg-
ment containing the procedure. The lower-ad-
dressed word contains the procedure’s offset
from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the
location of the correct entry for a given interrupt
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY
Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

Space at the high end of the table that would be
occupied by entries for interrupt types that cannot
occur in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
7FH), however, should not be used for any other
purpose to insure proper system operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086 or
8088 activates an interrupt procedure by exe-
cuting the equivalent of an intersegment indirect
CALL instruction. The target of the ““CALL” is
the address contained in the interrupt pointer
table element located at (type*4). The CPU saves
the address of the next instruction by pushing CS
and IP onto the stack. These are then replaced by
the second and first words of the table element,
thus transferring control to the procedure.

If multiple interrupt requests arrive simulta-
neously, the processor activates the interrupt pro-
cedures in priority order. Figure 2-31 shows how
procedures would be activated in an extreme case.
The processor is running in single-step mode with
external interrupts enabled. During execution of a
divide instruction, INTR is activated. Further-
more the instruction generates a divide error
interrupt. Figure 2-31 shows that the interrupts

are recognized in turn, in the order of their
priorities except for INTR. INTR is not recog-
nized until after the following instruction because
recognition of the earlier interrupts cleared IF. Of
couse interrupts could be reenabled in any of the
interrupt response routines if earlier response to
INTR is desired.

As figure 2-31 shows, all main-line code is exe-
cuted in single-step mode. Also, because of the
order of interrupt processing, the opportunity
exists in each occurrence of the single-step routine
to select whether pending interrupt routines
(divide error and INTR routines in this example)
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered,
the flags, CS, and IP are pushed onto the stack
and TF and IF are cleared. The procedure may
reenable external interrupts with the STI (set
interrupt-enable flag) instruction, thus allowing
itself to be interrupted by a request on INTR.
(Note, however, that interrupts are not actually
enabled until the instruction following STI has
executed.) An interrupt procedure always may be
interrupted by -a request arriving on NMI.
Software- or processor-initiated interrupts
occurring within the procedure also will interrupt
the procedure. Care must be taken in interrupt
procedures that the type of interrupt being ser-
viced by the procedure does not itself inadver-
tently occur within the procedure. For example,
an attempt to divide by 0 in the divide error (type
0) interrupt procedure may result in the procedure
being reentered endlessly. Enough stack space
must be available to accommodate the maximum
depth of interrupt nesting that can occur in the
system.

Like all procedures, interrupt procedures should
save any registers they use before updating them,
and restore them before terminating. It is good
practice for an interrupt procedure to enable
external interrupts for all but ‘‘critical sections’’
of code (those sections that cannot be interrupted
without risking erroneous results). If external
interrupts are disabled for too long in a pro-
cedure, interrupt requests on INTR can poten-
tially be lost.

Mnemonics © Intel, 1978

2-26

8086 AND 8088 CENTRAL PROCESSING UNITS

TF =
IF=1

DIVIDE
INSTRUCTION

| <o INTR

| DIVIDE ERROR RECOGNIZED

r

PUSH FLAGS

EXECUTE NEXT
INSTRUCTION

PUSH CS & IP
CLEARIF & TF

IjINGLE STEP RECOGNIZED

!

DIVIDE ERROR
PROCEDURE

POPCS &IP
POP FLAGS

TF=1,IF=1 l

INTR RECOGNIZED

l

PUSH FLAGS
PUSHCS & IP
CLEARIF&TF

T

SINGLE STEP
PROCEDURE *

POPCS &IP
POP FLAGS

TF=0,IF=0 AJ

'

PUSH FLAGS

INSTRUCTION

EXECUTE NEXT

PUSHCS & IP
CLEARIF & TF

* TF CAN BE SET IN THE

ISINGLE STEP RECOGNIZED

!

INTR
PROCEDURE

POPCS & IP
POP FLAGS

TF=1,IF=1 I

SINGLE STEP PROCEDURE
IF SINGLE STEPPING OF
THE DIVIDE ERROR OR INTR
PROCEDURE IS DESIRED.

PUSH FLAGS
PUSHCS & IP
CLEARIF & TF

SINGLE STEP
PROCEDURE*

POPCS & IP
POP FLAGS

TF=0,IF=0 |

Figure 2-31. Processing Simultaneous Interrupts

227

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

All interrupt procedures should be terminated
with an IRET (interrupt return) instruction. The
IRET instruction assumes that the stack is in the
same condition as it was when the procedure was
entered. It pops the top three stack words into IP,
CS and the flags, thus returning to the instruction
that was about to be executed when the interrupt
procedure was activated.

The actual processing done by the procedure is
dependent upon the application. If the procedure
is servicing an external device, it should output a
command to the device instructing it to remove its
interrupt request. It might then read status
information from the device, determine the cause
of the interrupt and then take action accordingly.
Section 2.10 contains three typical interrupt pro-
cedure examples.

Software-initiated interrupt procedures may be
used as service routines (‘‘supervisor calls’’) for
other programs in the system. In this case, the
interrupt procedure is activated when a program,
rather than an external device, needs attention.
(The ‘‘attention’’ might be to search a file for a
record, send a message to another program,
request an allocation of free memory, etc.) Soft-
ware interrupt procedures can be advantageous in
systems that dynamically relocate programs dur-
ing execution. Since the interrupt pointer table is
at a fixed storage location, procedures may
““call’”’ each other through the table by issuing
software interrupt instructions. This provides a
stable communication ‘‘exchange’” that is
independent of procedure addresses. The inter-
rupt procedures may themselves be moved so long
as the interrupt pointer table always is updated to
provide the linkage from the ¢‘calling’’ program
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086 or 8088 is
said to be in single-step mode. In this mode, the
processor automatically generates a type 1 inter-
rupt after each instruction. Recall that as part of
its interrupt processing, the CPU automatically
pushes the flags onto the stack and then clears TF
and IF. Thus the processor is not in single-step
mode when the single-step interrupt procedure is
entered; it runs normally. When the single-step
procedure terminates, the old flag image is
restored from the stack, placing the CPU back
into single-step mode.

Single-stepping is a valuable debugging tool. It
allows the single-step procedure to act as a ‘‘win-
dow”’ into the system through which operation
can be observed instruction-by-instruction. A
single-step interrupt procedure, for example, can
print or display register contents, the value of the
instruction pointer (it is on the stack), key
memory variables, etc., as they change after each
instruction. In this way the exact flow of a pro-
gram can be traced in detail, and the point at
which discrepancies occur can be determined.
Other possible services that could be provided by
a single-step routine include:

* Writing a message when a specified memory
location or I/0 port changes value (or equals
a specified value).

®* Providing diagnostics selectively (only for
certain instruction addresses for instance).

* Letting a routine execute a number of times
before providing diagnostics.

The 8086 and 8088 do not have instructions for
setting or clearing TF directly. Rather, TF can be
changed by modifying the flag-image on the
stack. The PUSHF and POPF instructions are
available for pushing and popping the flags
directly (TF can be set by ORing the flag-image
with 0100H and cleared by ANDing it with
FEFFH). After TF is set in this manner, the first
single-step interrupt occurs after the first
instruction following the IRET from the single-
step procedure.

If the processor is single-stepping, it processes an
interrupt (either internal or external) as follows.
Control is passed normally (flags, CS and IP are
pushed) to the procedure designated to handle the
type of interrupt that has occurred. However,
before the first instruction of that procedure is
executed, the single-step interrupt is ‘‘recog-
nized’’ and control is passed normally (flags, CS
and IP are pushed) to the type 1 interrupt pro-

cedure. When single-step procedure terminates,

control returns to the previous interrupt pro-
cedure. Figure 2-31 illustrates this process in a
case where two interrupts occur when the pro-
cessor is in single-step mode.

Breakpoint Interrupt

A type 3 interrupt is dedicated to the breakpoint
interrupt. A breakpoint is generally any place in a
program where normal execution is arrested so

Mnemonics © Intel, 1978

228

8086 AND 8088 CENTRAL PROCESSING UNITS

that some sort of special processing may be per-
formed. Breakpoints typically are inserted into
programs during debugging as a way of display-
ing registers, memory locations, etc., at crucial
points in the program.

The INT 3 (breakpoint) instruction is one byte
long. This makes it easy to ‘‘plant’’ a breakpoint
anywhere in a program. Section 2.10 contains an
example that shows how a breakpoint may be set
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
“patch’ a program (insert new instructions)
without recompiling or reassembling it. This may
be done by saving an instruction byte, and replac-
ing it with an INT 3 (CCH) machine instruction.
The breakpoint procedure would contain the new
machine instructions, plus code to restore the
saved instruction byte and decrement IP on the
stack before returning, so that the displaced
instruction would be executed after the patch
instructions. The breakpoint example in section
2.10 illustrates these principles.

Note that patching a program requires machine-
instruction programming and should be under-
taken with considerable caution; it is easy to add
new bugs to a program in an attempt to correct
existing ones. Note also that a patch is only a tem-
porary measure to be used in exceptional condi-
tions. The affected code should be updated and
retranslated as soon as possible.

System Reset

The 8086/8088 RESET line provides an orderly
way to start or restart an executing system. When
the processor detects the positive-going edge of a
pulse on RESET, it terminates all activities until
the signal goes low, at which time it initializes the
system as shown in table 2-4.

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the pro-
cessor executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an
intersegment direct JMP instruction whose target
is the actual beginning of the system program.
The LOC-86 utility supplies this JMP instruction
from information in the program that identifies
its first instruction. As external (maskable) inter-

rupts are disabled by system reset, the system
software should reenable interrupts as soon as the
system is initialized to the point where they can be
processed.

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT
Flags Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Instruction Queue Status

When configured in maximum mode, the 8086
and 8088 provide information about instruction
queue operations on lines QS0 and QS1. Table 2-5
interprets the four states that these lines can
represent.

The queue status lines are provided for external
processors that receive instructions and/or
operands via the 8086/8088 ESC (escape) instruc-
tion (see sections 2.5 and 2.8). Such a processor
may monitor the bus to see when an ESC instruc-
tion is fetched and then track the instruction
through the queue to determine when (and if) the
instruction is executed.

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QUEUE OPERATION IN LAST

0Sg| @84 CLK CYCLE

0 0 [Nooperation; default value

0 1 [First byte of an instruction was
taken from the queue

1 0 [Queue was reinitialized

1 1 |Subsequent byte of an instruction
was taken from the queue

Processor Halt

When the HLT (halt) instruction (see section 2.7)
is executed, the 8086 or 8088 enters the halt state.
This condition may be interpreted as ‘‘stop all

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

operations until an external interrupt occurs or
the system is reset.”” No signals are floated during
the halt state, and the content of the address and
data buses is undefined. A bus hold request
arriving on the HOLD line (minimum mode) or
either request/grant line (maximum mode) is
acknowledged normally while the processor is
halted.

The halt state can be used when an event prevents
the system from functioning correctly. An exam-
ple might be ‘a power-fail interrupt. After
recognizing that loss of power is imminent, the
CPU could use the remaining time to move
registers, flags and vital variables to (for example)
a battery-powered CMOS RAM area and then
halt until the return of power was signaled by an
interrupt or system reset.

Status Lines

When configured in maximum mode, the 8086
and 8088 emit eight status signals that can be used
by external devices. Lines S0, S1 and 52 identify
the type of bus cycle that the CPU is starting to
execute (table 2-6). These lines are typically
decoded by the 8288 Bus Controller. S3 and S4
indicate which segment register was used to con-
struct the physical address being used in this bus
cycle (see table 2-7). Line S5 reflects the state of
the interrupt-enable flag. S6 is always 0. S7 is a
spare line whose content is undefined.

Table 2-6. Bus Cycle Status Signals

S,|S7|So| TYPESOFBUSCYCLE
0] 0] 0 [Interrupt Acknowledge
00} 1] Readl/O
0f 1] 0| Writel/O
0] 1] 1| HALT
1 0 | 0 [Instruction Fetch
1 0 | 1 | Read Memory
1 1 0 | Write Memory
1 1 1 Passive; no bus cycle

Table 2-7. Segment Register Status Lines

Sy S3 SEGMENT REGISTER
0f{0]ES

0]1]SS

1 0 | CSornone (/0O oriInterrupt Vector)
111 | DS

2.7 Instruction Set

The 8086 and 8088 execute exactly the same
instructions. This instruction set includes
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations include:

¢ multiplication and division of signed and
unsigned binary numbers as well as unpacked
decimal numbers,

* move, scan and compare operations for
strings up to 64k bytes in length,

®* non-destructive bit testing,
® byte translation from one code to another,
e software-generated interrupts, and

e a group of instructions that can help
coordinate the activities of multiprocessor
systems.

These instructions treat different types of
operands uniformly. Nearly every instruction can
operate on either byte or word data. Register,
memory and immediate operands may be
specified interchangeably in most instructions (ex-
cept, of course, that immediate values may only
serve as ‘‘source’” and not ‘‘destination’’
operands). In particular, memory variables can be
added to, subtracted from, shifted, compared,
and so on, in place, without moving them in and
out of registers. This saves instructions, registers,
and execution time in assembly language pro-
grams. In high-level languages, where most
variables are memory based, compilers, such as
PL/M-86, can produce faster and shorter object
programs.

The 8086/8088 instruction set can be viewed as
existing at two levels: the assembly level and the
machine level. To the assembly language pro-
grammer, the 8086 and 8088 appear to have a
repertoire of about 100 instructions. One MOV
(move) instruction, for example, transfers a byte
or a word from a register or a memory location or
an immediate value to either a register or a
memory location. The 8086 and 8088 CPUs,
however, recognize 28 different MOV machine
instructions (‘‘move byte register to memory,”’
‘“‘move word immediate to register,”’ etc.). The
ASM-86 assembler translates the assembly-level
instructions written by a programmer into the

Mnemonics © Intel, 1978

2-30

8086 AND 8088 CENTRAL PROCESSING UNITS

machine-level instructions that are actually exe-
cuted by the 8086 or 8088. Compilers such as
PL/M-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two
different requirements: efficiency and simplicity.
The numerous—there are about 300 in all—forms
of machine-level instructions allow these instruc-
tions to make very efficient use of storage. For
example, the machine instruction that increments
a memory operand is three or four bytes long
because the address of the operand must be
encoded in the instruction. To increment a
register, however, does not require as much
information, so the instruction can be shorter. In
fact, the 8086 and 8088 have eight different
machine-level instructions that increment a dif-
ferent 16-bit register; these instructions are only
one byte long.

If a programmer had to write one instruction to
increment a register, another to increment a
memory variable, etc., the benefit of compact
instructions would be offset by the difficulty of
programming. The assembly-level instructions
simplify the programmer’s view of the instruction
set. The programmer writes one form of the INC
(increment) instruction and the ASM-86
assembler examines the operand to determine
which machine-level instruction to generate.

This section presents the 8086/8088 instruction
set from two perspectives. First, the assembly-
level instructions are described in functional
terms. The assembly-level instructions are then
presented in a reference table that breaks out all
permissible operand combinations with execution
times and machine instruction length, plus the
effect that the instruction has on the CPU flags.
Machine-level instruction encoding and decoding
are covered in section 4.2.

Data Transfer Instructions

The 14 data transfer instructions (table 2-8) move
single bytes and words between memory and
registers as well as between register AL or AX and
170 ports. The stack manipulation instructions
are included in this group as are instructions for
transferring flag contents and for loading seg-
ment registers.

Table 2-8. Data Transfer Instructions

GENERAL PURPOSE
MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
IN Input byte or word
ouT Output byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transfers

MOV destination,source

MOV transfers a byte or a word from the source
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two
and then transfers a word from the source
operand to the top of stack now pointed to by SP.
PUSH often is used to place parameters on the
stack before calling a procedure; more generally,
it is the basic means of storing temporary data on
the stack.

POP destination

POP transfers the word at the current top of stack
(pointed to by SP) to the destination operand,
and then increments SP by two to point to the
new top of stack. POP can be used to move tem-
porary variables from the stack to registers or
memory.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

XCHG destination,source

XCHG (exchange) switches the contents of the
source and destination (byte or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access to a resource shared by multiple processors
(see section 2.5).

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-coded
translation table. Register BX is assumed to point
to the beginning of the table. The byte in AL is
used as an index into the table and is replaced by
the byte at the offset in the table corresponding to
AL’s binary value. The first byte in the table has
an offset of 0. For example, if AL contains 5H,
and the sixth element of the translation table con-
tains 33H, then AL will contain 33H following
the instruction. XLAT is useful for translating
characters from one code to another, the classic
example being ASCII to EBCDIC or the reverse.

IN accumulator, port

IN transfers a byte or a word from an input port
to the AL register or the AX register, respectively.
The port number may be specified either with an
immediate byte constant, allowing access to ports
numbered O through 255, or with a number
previously placed in the DX register, allowing
variable access (by changing the value in DX) to
ports numbered from 0 through 65,535.

OUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an out-
put port. The port number may be specified either
with an immediate byte constant, allowing access
to ports numbered O through 255, or with a
number previously placed in register DX, allow-
ing variable access (by changing the value in DX)
to ports numbered from O through 65,535.

Address Object Transfers

These instructions manipulate the addresses of
variables rather than the contents or values of
variables. They are most useful for list process-
ing, based variables, and string operations.

LEA destination,source

LEA (load effective address) transfers the offset
of the source operand (rather than its value) to the
destination operand. The source operand must be
a memory operand, and the destination operand
must be a 16-bit general register. LEA does not
affect any flags. The XLAT and string instruc-
tions assume that certain registers point to
operands; LEA can be used to load these registers
(e.g., loading BX with the address of the translate
table used by the XLAT instruction).

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register DS. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register-
DS. Specifying SI as the destination operand is a
convenient way to prepare to process a source
string that is not in the current data segment
(string instructions assume that the source string
is located in the current data segment and that SI
contains the offset of the string).

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register ES. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
ES. Specifying DI as the destination operand is a
convenient way to prepare to process a destina-
tion string that is not in the current extra segment.
(The destination string must be located in the
extra segment, and DI must contain the offset of
the string.)

Flag Transfers

LAHF

LAHF (load register AH from flags) copies SF,
ZF, AF, PF and CF (the 8080/8085 flags) into
bits 7, 6, 4, 2 and 0, respectively, of register AH

Mnemonics © Intel, 1978

2-32

POPF

8086 AND 8088 CENTRAL PROCESSING UNITS

(see figure 2-32). The content of bits 5, 3 and 1 is
undefined; the flags themselves are not affected.
LAHF is provided primarily for converting
8080/8085 assembly language programs to run on
an 8086 or 8088.

SAHF

SAHF (store register AH into flags) transfers bits
7, 6, 4, 2 and 0 from register AH into SF, ZF, AF,
PF and CF, respectively, replacing whatever
values these flags previously had. OF, DF, IF and
TF are not affected. This instruction is provided
for 8080/8085 compatibility.

PUSHF

PUSHF decrements SP (the stack pointer) by two
and then transfers all flags to the word at the top
of stack pointed to by SP (see figure 2-32). The
flags themselves are not affected.

POPF

POPF transfers specific bits from the word at the
current top of stack (pointed to by register SP)
into the 8086/8088 flags, replacing whatever
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to
the new top of stack. PUSHF and POPF allow a
procedure to save and restore a calling program’s
flags. They also allow a program to change the

LAHF,

SAHF ISIZ|U|A|U|P|ULC]
|7 6 5 4 3 2 1 0|
|-«—-8080/8085 FLAGS—>»~|
1 1
| |

PUSHF,
IUIU|U|u|°|D|||T|s|Z|U|A|U|P|ULCJ

151413 12 1110 9 8 7 6 5 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE
O = OVERFLOW FLAG

= DIRECTION FLAG

= INTERRUPT ENABLE FLAG
= TRAP FLAG

= SIGN FLAG

Z = ZERO FLAG

é = AUXILIARY CARRY FLAG
o]

D
T
S

= PARITY FLAG
= CARRY FLAG

Figure 2-32. Flag Storage Formats

setting of TF (there is no instruction for updating
this flag directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Arithmetic Instructions

Arithmetic Data Formats

8086 and 8088 arithmetic operations (table 2-9)
may be performed on four types of numbers:
unsigned binary, signed binary (integers),
unsigned packed decimal and unsigned unpacked
decimal (see table 2-10). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in
bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The pro-
cessor always assumes that the operands specified
in arithmetic instructions contain data that repre-
sent valid numbers for the type of instruction
being performed. Invalid data may produce
unpredictable results.

Table 2-9. Arithmetic Instructions

ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCIl adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
SuB Subtract byte or word
SBB Subtract byte or word with
borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCI| adjust for multiply
DIVISION
DIV Divide byte or word unsigned
IDIV Integerdivide byte or word
AAD ASCIl adjust for division
CcBwW Convert byte to word
CWD Convert word to doubleword

2-33

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

vex | smeameaw | ViMoo | siawed | uweackeo | packed
07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

C5 11000101 197 -59 invalid invalid

Unsigned binary numbers may be either 8 or 16
bits long; all bits are considered in determining a
number’s magnitude. The value range of an 8-bit
unsigned binary number is 0-255; 16 bits can
represent values from 0 through 65,535. Addi-
tion, subtraction, multiplication and division
operations are available for unsigned binary
numbers.

Signed binary numbers (integers) may be either 8
or 16 bits long. The high-order (leftmost) bit is
interpreted as the number’s sign: 0 ="positive and
1 = negative. Negative numbers are represented
in standard two’s complement notation. Since
the high-order bit is used for a sign, the range of
an 8-bit integer is —128 through +127; 16-bit
integers may range from —32,768 through
+32,767. The value zero has a positive sign.
Multiplication’ and division operations are pro-
vided for signed binary numbers. Addition and
subtraction are performed with the unsigned
binary instructions. Conditional jump instruc-
tions, as well as an ‘‘interrupt on overflow”’
instruction, can be used following an unsigned
operation on an integer to detect overflow into
the sign bit.

Packed decimal numbers are stored as unsigned
byte quantities. The byte is treated as having one
decimal digit in each half-byte (nibble); the digit
in the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half-
byte, and the range of a packed decimal number is
0-99. Addition and subtraction are performed in
two steps. First an unsigned binary instruction is
used to produce an intermediate result in register
AL. Then an adjustment operation is performed
which changes the intermediate value in AL to a
final correct packed decimal result. Multiplica-
tion and division adjustments are not available
for packed decimal numbers.

Unpacked decimal numbers are stored as un-
signed byte quantities. The magnitude of the
number is determined from the low-order half-
byte; hexadecimal values 0-9 are valid and are
interpreted as decimal numbers. The high-order
half-byte must be zero for multiplication and divi-
sion; it may contain any value for addition and
subtraction. Arithmetic on unpacked decimal
numbers is performed in two steps. The unsigned
binary addition, subtraction and multiplication
operations are used to produce an intermediate
result in register AL. An adjustment instruction
then changes the value in AL to a final correct
unpacked decimal number. Division is performed
similarly, except that the adjustment is carried out
on the numerator operand in register AL first,
then a following unsigned binary division instruc-
tion produces a correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits 0-9.
Note, however, that the high-order half-byte of
an ASCII numeral is always 3H. Unpacked
decimal arithmetic may be performed on ASCII

numeric characters under the following

conditions:

e ' the high-order half-byte of an ASCII
numeral must be set to OH prior to

multiplication or division.

e unpacked decimal arithmetic leaves the
high-order half-byte set to OH; it must be set
to 3H to produce a valid ASCII numeral.

Arithmetic Instructions and Flags

The 8086/8088 arithmetic instructions post cer-
tain characteristics of the result of the operation
to six flags. Most of these flags can be tested by
following the arithmetic instruction with a condi-
tional jump instruction; the INTO (interrupt on
overflow) instruction also- may be used. The

Mnemonics © Intel, 1978

2-34

8086 AND 8088 CENTRAL PROCESSING UNITS

various instructions affect the flags differently, as
explained in the instruction descriptions.
However, they follow these general rules:

e CF (carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high-
order bit of the result, then CF is set; other-
wise CF is cleared. Note that a signed carry is
indicated by CF # OF. CF can be used to
detect an unsigned overflow. Two instruc-
tions, ADC (add with carry) and SBB (sub-
tract with borrow), incorporate the carry flag
in their operations and can be used to per-
form multibyte (e.g., 32-bit, 64-bit) addition
and subtraction.

e AF (auxiliary carry flag): If an addition
results in a carry out of the low-order half-
byte of the result, then AF is set; otherwise
AF is cleared. If a subtraction results in a
borrow into the low-order half-byte of the
result, then AF is set; otherwise AF is
cleared. The auxiliary carry flag is provided
for the decimal adjust instructions and
ordinarily is not used for any other purpose.

e SF (sign flag): Arithmetic and logical
instructions set the sign flag equal to the
high-order bit (bit 7 or 15) of the result. For
signed binary numbers, the sign flag will be 0
for positive results and 1 for negative results
(so long as overflow does not occur). A con-
ditional jump instruction can be used follow-
ing addition or subtraction to alter the flow
of the program depending on the sign of the
result. Programs performing unsigned opera-
tions typically ignore SF since the high-order
bit of the result is interpreted as a digit rather
than a sign.

e ZF (zero flag): If the result of an arithmetic
or logical operation is zero, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used to alter the flow of
the program if the result is or is not zero.

* PF (parity flag): If the low-order eight bits of
an arithmetic or logical result contain an
even number of 1-bits, then the parity flag is
set; otherwise it is cleared. PF is provided for
8080/8085 compatibility; it also can be used
to check ASCII characters for correct parity.

e OF (overflow flag): If the result of an
operation is too large a positive number, or
too small a negative number to fit in the
destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared. OF
thus indicates signed arithmetic overflow; it
can be tested with a conditional jump or the
INTO (interrupt on overflow) instruction.
OF may be ignored when performing
unsigned arithmetic.

Addition

ADD destination,source

The sum of the two operands, which may be bytes
or words, replaces the destination operand. Both
operands may be signed or unsigned binary
numbers (see AAA and DAA). ADD updates AF,
CF, OF, PF, SF and ZF.

ADC destination,source

ADC (Add with Carry) sums the operands, which
may be bytes or words, adds one if CF is set and
replaces the destination operand with the result.
Both operands may be signed or unsigned binary
numbers (see AAA and DAA). ADC updates AF,
CF, OF, PF, SF and ZF. Since ADC incorporates
a carry from a previous operation, it can be used
to write routines to add numbers longer than 16
bits.

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number (see
AAA and DAA). INC updates AF, OF, PF, SF
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the
contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content of
OF, PF, SF and ZF is undefined following execu-
tion of AAA.

2-35

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

DAA

DAA (Decimal Adjust for Addition) corrects the
result of previously adding two valid packed
decimal operands (the destination operand must
have been register AL). DAA changes the content
of AL to a pair of valid packed decimal digits. It
updates AF, CF, PF, SF and ZF; the content of
OF is undefined following execution of DAA.

Subtraction

SUB destination,source

The source operand is subtracted from the
destination operand, and the result replaces the
destination operand. The operands may be bytes
or words. Both operands may be signed or
unsigned binary numbers (see AAS and DAS).
SUB updates AF, CF, OF, PF, SF and ZF.

SBB destination,source

SBB (Subtract with Borrow) subtracts the source
from the destination, subtracts one if CF is set,
and returns the result to the destination operand.
Both operands may be bytes or words. Both
operands may be signed or unsigned binary
numbers (see AAS and DAS). SBB updates AF,
CF, OF, PF, SF and ZF. Since it incorporates a
borrow from a previous operation, SBB may be
used to write routines that subtract numbers
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina-
tion, which may be a byte or a word. DEC
updates AF, OF, PF, SF, and ZF; it does not
affect CF.

NEG destination

NEG (Negate) subtracts the destination operand,
which may be a byte or a word, from 0 and
returns the result to the destination. This forms
the two’s complement of the number, effectively
reversing the sign of an integer. If the operand is
zZero, its sign is not changed. Attempting to negate
a byte containing —128 or a word containing

—32,768 causes no change to the operand and sets
OF. NEG updates AF, CF, OF, PF, SF and ZF.
CF is always set except when the operand is zero,
in which case it is cleared.

CMP destination,source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can be
tested by a subsequent conditional jump instruc-
tion. CMP updates AF, CF, OF, PF, SF and ZF.
The comparison reflected in the flags is that of the
destination to the source. If a CMP instruction is
followed by a JG (jump if greater) instruction, for
example, the jump is taken if the destination
operand is greater than the source opérand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the
result of a previous subtraction of two valid
unpacked decimal operands (the destination
operand must have been specified as register AL).
AAS changes the content of AL to a valid
unpacked decimal number; the high-order half-
byte is zeroed. AAS updates AF and CF; the con-
tent of OF, PF, SF and ZF is undefined following
execution of AAS.

DAS

DAS (Decimal Adjust for Subtraction) corrects
the result of a previous subtraction of two valid
packed decimal operands (the destination
operand must have been specified as register AL).
DAS changes the content of AL to a pair of valid
packed decimal digits. DAS updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAS.

Multiplication

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length

Mnemonics © Intel, 1978

2-36

8086 AND 8088 CENTRAL PROCESSING UNITS

result is returned in AH and AL. If the source
operand is a word, then it is multiplied by register
AX, and the double-length result is returned in
registers DX and AX. The operands are treated as
unsigned binary numbers (see AAM). If the upper
half of the result (AH for byte source, DX for
word source) is nonzero, CF and OF are set;
otherwise they are cleared. When CF and OF are
set, they indicate that AH or DX contains signifi-
cant digits of the result. The content of AF, PF,
SF and ZF is undefined following execution of
MUL.

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
result is returned in AH and AL. If the sourceis a
word, then it is multiplied by register AX, and the
double-length result is returned in registers DX
and AX. If the upper half of the result (AH for
byte source, DX for word source) is not the sign
extension of the lower half of the result, CF and
OF are set; otherwise they are cleared. When CF
and OF are set, they indicate that AH or DX con-
tains significant digits of the result. The content
of AF, PF, SF and ZF is undefined following
execution of IMUL.

AAM

AAM (ASCII Adjust for Multiply) corrects the
result of a previous multiplication of two valid
unpacked decimal operands. A valid 2-digit
unpacked decimal number is derived from the
content of AH and AL and is returned to AH and
AL. The high-order half-bytes of the multiplied
operands must have been OH for AAM to pro-
duce a correct result. AAM updates PF, SF and
ZF; the content of AF, CF and OF is undefined
following execution of AAM.

Division
DIV source
DIV (divide) performs an unsigned division of the

accumulator (and its extension) by the source
operand. If the source operand is a byte, it is

divided into the double-length dividend assumed
to be in registers AL and AH. The single-length
quotient is returned in AL, and the single-length
remainder is returned in AH. If the source
operand is a word, it is divided into the double-
length dividend in registers AX and DX. The
single-length quotient is returned in AX, and the
single-length remainder is returned in DX. If the
quotient exceeds the capacity of its destination
register (FFH for byte source, FFFFFH for word
source), as when division by zero is attempted, a
type O interrupt is generated, and the quotient and
remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execu-
tion of DIV.

IDIV source

IDIV (Integer Divide) performs a signed division
of the accumulator (and its extension) by the
source operand. If the source operand is a byte, it
is divided into the double-length dividend
assumed to be in registers AL and AH; the single-
length quotient is returned in AL, and the single-
length remainder is returned in AH. For byte in-
teger division, the maximum positive quotient is
+127 (7FH) and the minimum negative quotient is
—127 (81H). If the source operand is a word, it is
divided into the double-length dividend in
registers AX and DX the single-length quotient is
returned in AX, and the single-length remainder
is returned in DX. For word integer division, the
maximum positive quotient is +32,767 (7FFFH)
and the minimum negative quotient is —32,767
(8001H). If the quotient is positive and exceeds
the maximum, or is negative and is less than the
minimum, the quotient and remainder are
undefined, and a type O interrupt is generated. In
particular, this occurs if division by 0 is
attempted. Nonintegral quotients are truncated
(toward 0) to integers, and the remainder has the
same sign as the dividend. The content of AF,
CF, OF, PF, SF and ZF is undefined following
IDIV.

AAD

AAD (ASCII Adjust for Division) modifies the
numerator in AL before dividing two valid
unpacked decimal operands so that the quotient
produced by the division will be a valid unpacked
decimal number. AH must be zero for the subse-

2-37

Mnemonics @ Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

quent DIV to produce the correct result. The quo-
tient is returned in AL, and the remainder is
returned in AH; both high-order half-bytes are
zeroed. AAD updates PF, SF and ZF; the content
of AF, CF and OF is undefined following execu-
tion of AAD.

cBw

CBW (Convert Byte to Word) extends the sign of
the byte in register AL throughout register AH.
CBW does not affect any flags. CBW can be used
to produce a double-length (word) dividend from
a byte prior to performing byte division.

cwbD

CWD (Convert Word to Doubleword) extends the
sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to per-
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of
instructions (table 2-11) for manipulating bits
within both bytes and words: logical, shifts and
rotates.

Table 2-11. Bit Manipulation Instructions
LOGICALS
NOT | ““Not”’ byte or word
AND “And’’ byte or word
OR “‘Inclusive or’’ byte or word
XOR ‘‘Exclusive or’’ byte or word
TEST “Test’’ byte or word
SHIFTS
SHL/SAL | Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte
or word
RCR Rotate through carry right byte
or word

Logical

The logical instructions include the boolean
operators ‘‘not,”” ‘‘and,”” ‘‘inclusive or,”’ and
““exclusive or,”” plus a TEST instruction that sets
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as
follows: The overflow (OF) and carry (CF) flags
are always cleared by logical instructions, and the
content of the auxiliary carry (AF) flag is always
undefined following execution of a logical
instruction. The sign (SF), zero (ZF) and parity
(PF) flags are always posted to reflect the result of
the operation and can be tested by conditional
jump instructions. The interpretation of these
flags is the same as for arithmetic instructions. SF
is set if the result is negative (high-order bit is 1),
and is cleared if the result is positive (high-order
bit is 0). ZF is set if the result is zero, cleared
otherwise. PF is set if the result contains an even
number of 1-bits (has even parity) and is cleared if
the number of 1-bits is odd (the result has odd
parity). Note that NOT has no effect on the flags.

NOT destination

NOT inverts the bits (forms the one’s comple-
ment) of the byte or word operand.

AND destination,source

AND performs the logical ‘“‘and” of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
both corresponding bits of the original operands
are set; otherwise the bit is cleared.

OR destination,source

OR performs the logical ‘‘inclusive or’’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original
operands are set; otherwise the result bit is
cleared.

XOR destination,source

XOR (Exclusive Or) performs the logical ‘‘exclu-
sive or’’ of the two operands and returns the
result to the destination operand. A bit in the

Mnemonics © Intel, 1978

2-38

8086 AND 8088 CENTRAL PROCESSING UNITS

result is set if the corresponding bits of the
original operands contain opposite values (one is
set, the other is cleared); otherwise the result bit is
cleared.

TEST destination, source

TEST performs the logical ‘‘and”” of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand is
changed. If a TEST instruction is followed by a
JNZ (jump if not zero) instruction, the jump will
be taken if there are any corresponding 1-bits in
both operands.

Shifts

The bits in bytes and words may be shifted
arithmetically or logically. Up to 255 shifts may
be performed, according to the value of the count
operand coded in the instruction. The count may
be specified as the constant 1, or as register CL,
allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used
to multiply and divide binary numbers by powers
of two (see note in description of SAR). Logical
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is
always undefined following a shift operation. PF,
SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the
last bit shifted out of the destination operand.
The content of OF is always undefined following
a multibit shift. In a single-bit shift, OF is set if
the value of the high-order (sign) bit was changed
by the operation; if the sign bit retains its original
value, OF is cleared.

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation and
are physically the same instruction. The destina-
tion byte or word is shifted left by the number of
bits specified in the count operand. Zeros are
shifted in on the right. If the sign bit retains its
original value, then OF is cleared.

SHR destination, source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right by

the number of bits specified in the count operand.
Zeros are shifted in on the left. If the sign bit
retains its original value, then OF is cleared.

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in the
destination operand (byte or word) to the right by
the number of bits specified in the count operand.
Bits equal to the original high-order (sign) bit are
shifted in on the left, preserving the sign of the
original value. Note that SAR does not produce
the same result as the dividend of an
“‘equivalent’’ IDIV instruction if the destination
operand is negative and 1-bits are shifted out. For
example, shifting —5 right by one bit yields —3,
while integer division of —5 by 2 yields —2. The
difference in the instructions is that IDIV trun-
cates all numbers toward zero, while SAR trun-
cates positive numbers toward zero and negative
numbers toward negative infinity.

Rotates

Bits in bytes and words also may be rotated. Bits
rotated out of an operand are not lost as in a
shift, but are ‘‘circled’’ back into the other ‘‘end”’
of the operand. As in the shift instructions, the
number of bits to be rotated is taken from the
count operand, which may specify either a con-
stant of 1, or the CL register. The carry flag may
act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated in
CF and then tested by a JC (jump if carry) or INC
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags.
CF always contains the value of the last bit
rotated out. On multibit rotates, the value of OF
is always undefined. In single-bit rotates, OF is
set if the operation changes the high-order (sign)
bit of the destination operand. If the sign bit
retains its original value, OF is cleared.

ROL destination,count

ROL (Rotate Left) rotates the destination byte or
word left by .the number of bits specified in the
count operand.

2-39

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

ROR destination,count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or word
are rotated right instead of left.

RCL destination,count

RCL (Rotate through Carry Left) rotates the bits
in the byte or word destination operand to the left
by the number of bits specified in the count
operand. The carry flag (CF) is treated as ‘‘part
of”’ the destination operand; that is, its value is
rotated into the low-order bit of the destination,
and itself is replaced by the high-order bit of the
destination.

RCR destination,count

RCR (Rotate through Carry Right) operates
exactly like RCL except that the bits are rotated
right instead of left.

String Instructions

Five basic string operations, called primitives,
allow strings of bytes or words to be operated on,
one element (byte or word) at a time. Strings of
up to 64k bytes may be manipulated with these
instructions. Instructions are available to move,
compare and scan for a value, as well as for mov-
ing string elements to and from the accumulator
(see table 2-12). These basic operations may be
preceded by a special one-byte prefix that causes
the instruction to be repeated by the hardware,
allowing long strings to be processed much faster
than would be possible with a software loop. The
repetitions can be terminated by a variety of con-
ditions, and a repeated operation may be inter-
rupted and resumed.

The string instructions operate quite similarly in
many respects; the common characteristics are
covered here and in table 2-13 and figure 2-33
rather than in the descriptions of the individual
instructions. A string instruction may have a
source operand, a destination operand, or both.
The hardware assumes that a source string resides
in the current data segment; a segment prefix byte
may be used to override this assumption. A
destination string must be in the current extra seg-
ment. The assembler checks the attributes of the

operands to determine if the elements of the
strings are bytes or words. The assembler does
not, however, use the operand names to address
the strings. Rather, the content of register SI
(source index) is used as an offset to address the
current element of the source string, and the con-
tent of register DI (destination index) is taken as
the offset of the current destination string ele-
ment. These registers must be initialized to point
to the source/destination strings before executing
the string instruction; the LDS, LES and LEA
instructions are useful in this regard.

Table 2-12. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/notzero

MOVS ’ Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word String

STOS Store byte or word string

Table 2-13. String Instruction Register and

Flag Use
SI Index (offset) for soufce string
DI . Index (offset) for destination
string
CX Repetition counter

AL/AX Scan value:
Destination for LODS
Source for STOS

DF 0 = auto-increment SI, DI
1 =auto-decrement S, DI

ZF Scan/compare terminator

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

r 1 s1/DI, CX

| L PREVIOUS . _ _ _ JaNDGFwouL
INSTRUCTIONS ~ 4 TYPICALLY BE

L] INITIALIZED HERE

ABSENT _

REPEAT
PREFIX

‘PRESENT

NORMAL
SYSTEM
INTERRUPT
SERVICE

PENDING

NOT PENDING

DECREMENT
CXBY1
\
8 POE?!.II.\EI'II'(‘)?I STRING DF DELTA
USING BYTE 0 1
S1/DI BYTE 1 -1
/| WORD 0 2
WORD 1 -2
/
ADJUST PREFIX | Z
Si/DI REPE | 1
BY DELTA REPZ 1
REPNE | 0
REPNZ | 0

PRESENT

REPEAT
PREFIX

Figure 2-33. String Operation Flow

2-41 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF (the direction
flag) determines whether the index registers are
auto-incremented (DF = 0) or auto-decremented
(DF = 1). If byte strings are being processed, SI
and/or DI is adjusted byl; the adjustment is 2 for
word strings.

If a Repeat prefix has been coded, then register
CX (count register) is decremented by 1 after each
repetition of the string instruction; therefore, CX
must be initialized to the number of repetitions
desired before the string instruction is executed. If
CX is 0, the string instruction is not executed, and
control goes to the following instruction.

Section 2.10 contains examples that illustrate the
use of all the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal and Repeat While Not
Zero are five mnemonics for two forms of the
prefix byte that controls repetition of a subse-
quent string instruction. The different mnemonics
are provided to improve program clarity. The
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String) instruc-
tions and is interpreted as ‘‘repeat while not end-
of-string”’ (CX not 0). REPE and REPZ operate
identically and are physically the same prefix byte
as REP. These instructions are used with the
CMPS (Compare String) and SCAS (Scan String)
instructions and require ZF (posted by these
instructions) to be set before initiating the next
repetition. REPNE and REPNZ are two
mnemonics for the same prefix byte. These
instructions function the same as REPE and
REPZ except that the zero flag must be cleared or
the repetition is terminated. Note that ZF does
not need to be initialized before executing the
repeated string instruction.

Repeated string sequences are interruptable; the
processor will recognize the interrupt before pro-
cessing the next string element. System interrupt
processing is not affected in any way. Upon
return from the interrupt, the repeated operation
is resumed from the point of interruption. Note,
however, that execution does not resume properly

if a second or third prefix (i.e., segment override
or LOCK) has been specified in addition to any of
the repeat prefixes. The processor ‘‘remembers’’
only one prefix in effect at the time of the inter-
rupt, the prefix that immediately precedes the
string instruction. After returning from the inter-
rupt, processing resumes at this point, but any
additional prefixes specified are not in effect. If
more than one prefix must be used with a string
instruction, interrupts may be disabled for the
duration of the repeated execution. However, this
will not prevent a non-maskable interrupt from
being recognized. Also, the time that the system is
unable to respond to interrupts may be unaccept-
able if long strings are being processed.

MOVS destination-string,source-string

MOVS (Move String) transfers a byte or a word
from the source string (addressed by SI) to the
destination string (addressed by DI) and updates
SI and DI to point to the next string element.
When used in conjunction with REP, MOVS per-
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move
string instruction. These mnemonics are coded
without operands; they explicitly tell the
assembler that a byte string (MOVSB) or a word
string (MOVSW) is to be moved (when MOVS is
coded, the assembler determines the string type
from the attributes of the operands). These
mnemonics are useful when the assembler cannot
determine the attributes of a string, e.g., a section
of code is being moved.

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destination
byte or word (addressed by DI) from the source
byte or word (addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and
updates AF, CF, OF, PF, SF and ZF to reflect the
relationship of the destination element to the
source element. For example, if a JG (Jump if
Greater) instruction follows CMPS, the jump is
taken if the destination element is greater than the
source element. If CMPS is prefixed with REPE

Mnemonics © Intel, 1978

2-42

8086 AND 8088 CENTRAL PROCESSING UNITS

or REPZ, the operation is interpreted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).”” If CMPS is preceded
by REPNE or REPNZ, the operation is inter-
preted as ‘‘compare while not end-of-string (CX
not zero) and strings are not equal (ZF = 0).”’
Thus, CMPS can be used to find matching or dif-
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX (word
string) and updates the flags, but does not alter
the destination string or the accumulator. SCAS
also updates DI to point to the next string element
and AF, CF, OF, PF, SF and ZF to reflect the
relationship of the scan value in AL/AX to the
string element. If SCAS is prefixed with REPE or
REPZ, the operation is interpreted as ‘‘scan while
not end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”” This form may be used to
scan for departure from a given value. If SCAS is
prefixed with REPNE or REPNZ, the operation
is interpreted as ‘‘scan while not end-of-string
(CX not 0) and string-element is not equal to
scan-value (ZF = 0).”” This form may be used to
locate a value in a string.

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL or
AX, and updates SI to point to the next element
in the string. This instruction is not ordinarily
repeated since the accumulator would be over-
written by each repetition, and only the last ele-
ment would be retained. However, LODS is very
useful in software loops as part of a more com-
plex string function built up from string
primitives and other instructions.

STOS destination-string

STOS (Store String) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI to point to the next location
in the string. As a repeated operation, STOS pro-
vides a convenient way to initialize a string to a
constant value (e.g., to blank out a print line).

Program Transfer Instructions

The sequence of execution of instructions in an
8086/8088 program is determined by the content
of the code segment register (CS) and the instruc-
tion pointer (IP). The CS register contains the
base address of the current code segment, the 64k
portion of memory from which instructions are
presently being fetched. The IP is used as an off-
set from the beginning of the code segment; the
combination of CS and IP points to the memory
location from which the next instruction is to be
fetched. (Recall that under most operating condi-
tions, the next instruction to be executed has
already been fetched from memory and is waiting
in the CPU instruction queue.) The program
transfer instructions operate on the instruction
pointer and on the CS register; changing the con-
tent of these causes normal sequential execution
to be altered. When a program transfer occurs,
the queue no longer contains the correct instruc-
tion, and the BIU obtains the next instruction
from memory using the new IP and CS values,
passes the instruction directly to the EU, and then
begins refilling the queue from the new location.

Four groups of program transfers are available in
the 8086/8088 (see table 2-14): unconditional
transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.
Only the interrupt-related instructions affect any
CPU flags. As will be seen, however, the execu-
tion of many of the program transfer instructions
is affected by the states of the flags.

Unconditional Transfers

The unconditional transfer instructions may
transfer control to a target instruction within the
current code segment (intrasegment transfer) or
to a different code segment (intersegment
transfer). (The ASM-86 assembler terms an
intrasegment target NEAR and an intersegment
target FAR.) The transfer is made uncondition-
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving
information on the stack to permit a RET (return)
instruction in the procedure to transfer control
back to the instruction following the CALL. The

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-14. Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Call procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below
nor equal
JAE/JNB Jump if above or
equal/not below
JB/JNAE Jump if below/not above
nor equal
JBE/JNA Jump if below or
equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/JNLE Jump if greater/not less
nor equal
JGE/JNL Jump if greater or
equal/notless
JL/IJNGE Jump if less/not greater
nor equal
JLE/JNG Jump if less or equal/not
greater
JNC Jump if not carry
JNE/JINZ Jump if not equal/not
zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity
odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/parity
even
JS Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JCXZ Jump if register CX =0
INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
IRET Interrupt return

assembler generates a different type of CALL
instruction depending on whether the program-
mer has defined the procedure name as NEAR or
FAR. For control to return properly, the type of
CALL instruction must match the type of RET
instruction that exits from the procedure. (The
potential for a mismatch exists if the procedure
and the CALL are contained in separately
assembled programs.) Different forms of the
CALL instruction allow the address of the target
procedure to be obtained from the instruction
itself (direct CALL) or from a memory location
or register referenced by the instruction (indirect
CALL). In the following descriptions, bear in
mind that the processor automatically adjusts IP
to point to the next instruction to be executed .
before saving it on the stack.

For an intrasegment direct CALL, SP (the stack
pointer) is decremented by two and IP is pushed
onto the stack. The relative displacement (up to
+32k) of the target procedure from the CALL.
instruction is then added to the instruction
pointer. This form of the CALL instruction is
‘“self-relative’’ and is appropriate for position- in-
dependent (dynamically relocatable) routines in
which the CALL and its target are in the same
segment and are moved together.

An intrasegment indirect CALL may be made
through memory or through a register. SP is
decremented by two and IP is pushed onto the
stack. The offset of the target procedure is
obtained from the memory word or 16-bit general
register referenced in the instruction and replaces
IP.

For an intersegment direct CALL, SP is
decremented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is decremented
by two. IP is pushed onto the stack and is
replaced by the offset word contained in the
instruction.

For an intersegment indirect CALL (which only
may be made through memory), SP is
decremented by two, and CS is pushed onto the
stack. CS is then replaced by the content of the
second word of the doubleword memory pointer
referenced by the instruction. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the content of the first
word of the doubleword pointer referenced by the
instruction.

Mnemonics © Intel, 1978

2-44

8086 AND 8088 CENTRAL PROCESSING UNITS

RET optional-pop-value

RET (Return) transfers control from a procedure
back to the instruction following the CALL that
activated the procedure. The assembler generates
an intrasegment RET if the programmer has
defined the procedure NEAR, or an intersegment
RET if the procedure has been defined as FAR.
RET pops the word at the top of the stack
(pointed to by register SP) into the instruction
pointer and increments SP by two. If RET is
intersegment, the word at the new top of stack is
popped into the CS register, and SP is again
incremented by two. If an optional pop value has
been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction, JMP
does not save any information on the stack, and
no return to the instruction following the JMP is
expected. Like CALL, the address of the target
operand may be obtained from the instruction
itself (direct JMP) or from memory or a register
referenced by the instruction (indirect JMP).

An intrasegment direct JMP changes the instruc-
tion pointer by adding the relative displacement
of the target from the JMP instruction. If the
assembler can determine that the target is within
127 bytes of the JMP, it automatically generates a
two-byte form of this instruction called a SHORT
JMP; otherwise, it generates a NEAR JMP that
can address a target within +32k. Intrasegment

" direct JMPS are self-relative and are appropriate
in position-independent (dynamically relocatable)
routines in which the JMP and its target are in the
same segment and are moved together.

An intrasegment indirect JMP may be made
either through memory or through a 16-bit
general register. In the first case, the content of
the word referenced by the instruction replaces
the instruction pointer. In the second case, the
new IP value is taken from the register named in
the instruction.

An intersegment direct JMP replaces IP and CS
with values contained in the instruction.

An intersegment indirect JMP may be made only
through memory. The first word of the
doubleword pointer referenced by the instruction
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps
that may or may not transfer control depending
on the state of the CPU flags at the time the
instruction is executed. These 18 instructions (see
table 2-15) each test a different combination of
flags for a condition. If the condition is ‘‘true,”’
then control is transferred to the target specified
in the instruction. If the condition is ‘‘false,”
then control passes to the instruction that follows
the conditional jump. All conditional jumps are
SHORT, that is, the target must be in the current
code segment and within —128 to +127 bytes of
the first byte of the next instruction (JMP 00H
jumps to the first byte of the next instruction).
Since the jump is made by adding the relative
displacement of the target to the instruction
pointer, all conditional jumps are self-relative and
are appropriate for position-independent
routines.

Iteration Control

The iteration control instructions can be used to
regulate the repetition of software loops. These
instructions use the CX register as a counter. Like
the conditional transfers, the iteration control
instructions are self-relative and may only
transfer to targets that are within —128 to +127
bytes of themselves, i.e., they are SHORT
transfers.

LOOP short-label

LOOP decrements CX by 1 and transfers control
to the target operand if CX is not 0; otherwise the
instruction following LOOP is executed.
LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and

Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-15. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF ...”

JA/JNBE (CF or ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/JNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JEIJZ ZF=1 equal/zero

JG/JNLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/JINGE (SF xor OF)=1 less/not greater nor equal
JLE/JING ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/JINZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

Js SF=1 sign

Note:

‘“above’’ and ‘“‘below’’ refer to the relationship of two unsigned values;

‘‘greater’’ and ‘‘less’’ refer to the relationship of two signed values.

REPZ repeat prefixes). CX is decremented by 1,
and control is transferred to the target operand if
CXis not 0 and if ZF is set; otherwise the instruc-
tion following LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not Equal
and Loop While Not Zero) are also synonyms for
the same instruction. CX is decremented by 1,
and control is transferred to the target operand if
CX is not 0 and if ZF is clear; otherwise the next
sequential instruction is executed.

JCXZ short-label

JCXZ (Jump If CX Zero) transfers control to the
target operand if CX is 0. This instruction is
useful at the beginning of a loop to bypass the
loop if CX has a zero value, i.e., to execute the
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by

external hardware devices. The effect of software
interrupts is similar to hardware-initiated inter-
rupts. However, the processor does not execute
an interrupt acknowledge bus cycle if the inter-
rupt originates in software or with an NMI. The
effect of the interrupt instructions on the flags is
covered in the description of each instruction.

INT interrupt-type

INT (Interrupt) activates the interrupt procedure
specified by the interrupt-type operand. INT
decrements the stack pointer by two, pushes the
flags onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable single-step
and maskable interrupts. The flags are stored in
the format used by the PUSHF instruction. SP is
decremented again by two, and the CS register is
pushed onto the stack. The address of the inter-
rupt pointer is calculated by multiplying
interrupt-type by four; the second word of the in-
terrupt pointer replaces CS. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the first word of the inter-
rupt pointer. If interrupt-type = 3, the assembler
generates a short (1 byte) form of the instruction,
known as the breakpoint interrupt.

Mnemonics © Intel, 1978

2-46

8086 AND 8088 CENTRAL PROCESSING UNITS

Software interrupts can be used as ‘‘supervisor
calls,” i.e., requests for service from an operating
system. A different interrupt-type can be used for
each type of service that the operating system
could supply for an application program. Soft-
ware interrupts also may be used to check out
interrupt service procedures writtén for hardware-
initiated interrupts.

INTO

INTO (Interrupt on Overflow) generates a soft-
ware interrupt if the overflow flag (OF) is set;
otherwise control proceeds to the following
instruction without activating an interrupt pro-
cedure. INTO addresses the target interrupt pro-
cedure (its type is 4) through the interrupt pointer
at location 10H; it clears the TF and IF flags and
otherwise operates like INT. INTO may be writ-
ten following an arithmetic or logical operation to
activate an interrupt procedure if overflow
occurs.

IRET

IRET (Interrupt Return) transfers control back to
the point of interruption by popping IP, CS and
the flags from the stack. IRET thus affects all
flags by restoring them to previously saved
values. IRET is used to exit any interrupt
procedure, whether activated by hardware or
software.

Processor Control Instructions

These instructions (see table 2-16) allow programs
to control various CPU functions. One group of
instructions updates flags, and another group is
used primarily for synchronizing the 8086 or 8088
with external events. A final instruction causes

the CPU to do nothing. Except for the flag opera-’

tions, none of the processor control instructions
affect the flags.

Flag Operations

CLC

CLC (Clear Carry flag) zeroes the carry flag (CF)
and affects no other flags. It (and CMC and STC)
is useful in conjunction with the RCL and RCR
instructions.

Table 2-16. Processor Control Instructions

FLAG OPERATIONS
STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next
instruction
NO OPERATION
NOP No operation
CMC

CMC (Complement Carry flag) ‘‘toggles’’ CF to
its opposite state and affects no other flags.

STC

STC (Set Carry flag) sets CF to 1 and affects no
other flags.

CLD

CLD (Clear Direction flag) zeroes DF causing the
string instructions to auto-increment the SI
and/or DI index registers. CLD does not affect
any other flags.

STD

STD (Set Direction flag) sets DF to 1 causing the
string instructions to ‘auto-decrement the SI
and/or DI index registers. STD does not affect
any other flags.

2-47

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CLI

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external inter-
rupt request that appears on the INTR line; in
other words maskable interrupts are disabled. A
non-maskable interrupt appearing on the NMI
line, however, is honored, as is a software inter-
rupt. CLI does not affect any other flags.

STI

STI (Set Interrupt-enable flag) sets IF to 1, en-
abling processor recognition of maskable inter-
rupt requests appearing on the INTR line. Note
however, that a pending interrupt will not actu-
ally be recognized until the instruction following
STI has executed. STI does not affect any other
flags.

External Synchronization

HLT

HLT (Halt) causes the 8086/8088 to enter the halt
state. The processor leaves the halt state upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI, or, if
interrupts are enabled, upon receipt of a
maskable interrupt request on INTR. HLT does
not affect any flags. It may be used as an alter-
native to an endless software loop in situations
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does not
affect any flags. This instruction is described
more completely in section 2.5.

ESC external-opcode, source

ESC (Escape) provides a means for an external
processor to obtain an opcode and possibly a
memory operand from the 8086 or 8088. The
external opcode is a 6-bit immediate constant that
the assembler encodes in the machine instruction

it builds (see table 2-26). An external processor
may monitor the system bus and capture this
opcode when the ESC is fetched. If the source
operand is a register, the processor does nothing.
If the source operand is a memory variable, the
processor obtains the operand from memory and
discards it. An external processor may capture the
memory operand when the processor reads ‘it
from memory.

LOCK

LOCK is a one-byte prefix that causes the
8086/8088 (configured in maximum mode) to
assert its bus LOCK signal while the following
instruction executes. LOCK does not affect any
flags. See section 2.5 for more information on
LOCK.

No Operation

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa-
tion for the 8086/8088 instruction set. The
information is presented from the point of view
of utility to the assembly language programmer.
Tables 2-17, 2-18 and 2-19 explain the symbols
used in table 2-21. Machine language instruction
encoding and decoding information is given in
Chapter 4.

Instruction timings are presented as the number
of clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of the instruction. If a system is running with
a 5 MHz maximum clock, the maximum clock
period is 200 ns; at 8 MHz, the clock period is 125
ns. Where memory operands are used, ‘“+EA”’
denotes a variable number of additional clock
periods needed to calculate the operand’s effec-
tive address (discussed in section 2.8). Table 2-20
lists all effective address calculation times.

Mnemonics © Intel, 1978

2-48

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-17. Key to Instruction Coding Formats

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is
arithmetic, used in the operation, but is not altered by the instruc-

source-table

target

short-label v

accumulator

port

source-string

dest-string

count

interrupt-type

optional-pop-value

external-opcode

bit manipulation

XLAT

JMP, CALL

cond. transfer,
iteration control

IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transferred directly, or a
register or memory location whose content is the
address of the location to which control is to be transfer-
red indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the first
byte of the next instruction.

Register AX for word transfers, AL for bytes.

An 1/0O port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by register
Sl; used only to identify string as byte or word and
specify segment override, if any. This string is used in
the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the opera-
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
countin the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

2-49 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-18. Key to Flag Effects

Table 2-19. Key to Operand Types

For control transfer instructions, the timings
given include any additional clocks required to
reinitialize the instruction queue as well as the
time required to fetch the target instruction. For
instructions executing on an 8086, four clocks
should be added for each instruction reference to
a word operand located at an odd memory
address to reflect any additional operand bus
cycles required. Similarly for instructions exe-
cuting on an 8088, four clocks should be added to
each instruction reference to a 16-bit memory
operand; this includes all stack operations. The
required number of data references is listed in
table 2-21 for each instruction to aid in this
calculation.

Several additional factors can increase actual
execution time over the figures shown in table
2-21. The time provided assumes that the instruc-
tion has already been prefetched and that it is
waiting in the instruction queue, an assumption
that is valid under most, but not all, operating
conditions. A series of fast executing (fewer than
two clocks per opcode byte) instructions can drain
the queue and increase execution time. Execution
time also is slightly impacted by the interaction of
the EU and BIU when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one clock if
the BIU has already started an instruction fetch
bus cycle. (The EU can detect the need for a
memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cycle). Of course
the EU does not have to wait if the queue is full,
because the BIU is idle. (This discussion assumes

source-table
source-string
dest-string
DX
short-label
near-label
far-label
near-proc
far-proc

memptri6

memptr32

regptr16

repeat

IDENTIFIER EXPLANATION IDENTIFIER EXPLANATION -
(blank) not altered (no operands) | No operands are written -
0 cleared to 0 regls;er 2n68-bcfr 16-bit g:aneljaltreglster
1 setto1 reg1 16-bit genera. register
. seg-reg A segment register
X ts:::;alteared according accumulator | Register AXor AL
. . immediate A constant in the range
U undefined—contains no 0-FFFFH
reliable value immed8 A constant in the range 0-FFH
R restored from previously- memory An 8- or 16-bit memory
saved value |0cati°n(1)
mems8 An 8-bit memory location"
memi6 A 16-bit memory location("

Name translate

table

Name of string addressed by
register Sl

Name of string addressed by
register DI

Register DX

A label within =128 to +127
bytes of the end of the instruc-
tion

of 256-byte

A label in current code
segment
A label in another code
segment

A procedure in current code
segment

A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred

A doubleword containing the
offset and the segment base
address of the location .in
another code segment to which
control is to be transferred)

A 16-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string instruction
prefix

repeat

(M Any addressing mode—direct, register in-
direct, based, indexed, or based
indexed—may be used (see section 2.8).

Mnemonics © Intel, 1978

2-50

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation

Time
EA COMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,S|,DI) 5
Displacement
+ 9

Base or Index (BX,BP,SI,Dl)
Base BP + DI, BX +SI 7

+
Index BP +SI, BX+ DI 8
Displacement BP +DI+DISP 11

+ BX+S1+DISP
Base

+ BP +S1+DISP 12
Index BX+DIl+DISP

*Add 2 clocks for segment override

that the BIU can obtain the bus on demand, i.e.,
that no other processors are competing for the
bus.)

With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-10% of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructions, however, is always
repeatable, assuming comparable external condi-
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle such as the
SDK-86 or the iSBC 86/12™ board.

Table 2-21. Instruction Set Reference Data

AAA (no operands) ODITSZAPC
AAA ASCIl adjust for addition Flags UU X U X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAA
AAD (no operands) ODITSZAPC
AAD ASCIl adjust for division Flags XX UXU
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 60 — 2 AAD
AAM (no operands) ODITSZAPC
AAM ASCII adjust for multiply Flags X X UX U
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 83 — 1 AAM
AAS (no operands) ODITSZAPC
AAS ASCII adjust for subtraction Flags |, UUXUX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 - 1 AAS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-51

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

ADC destination,source ODITSZAPC
ADC Add with carry Flags .y X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADC AX, Sl
register, memory 9+EA 1 2-4 ADC DX, BETA [SI]
memory, register 16+ EA 2 2-4 ADC ALPHA [BX][Sl], DI
register, immediate 4 — 3-4 ADC BX, 256
memory, immediate 17+EA 2 3-6 ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 ADC AL,5
ADD destination,source ODITSZAPC
ADD Addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADD CX, DX
register, memory 9+EA 1 2-4 ADD DI, [BX].ALPHA
memory, register 16+EA 2 2-4 ADD TEMP, CL
register, immediate 4 — 3-4 ADD CL, 2
memory, immediate 17+EA 2 3-6 ADD ALPHA, 2
accumulator, immediate 4 — 2-3 ADD AX, 200
AND destination,source ODITSZAPC
AND Logical and Flags XX U X 0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD
memory, register 16+ EA 2 2-4 AND ASCII [DI],AL
register, immediate 4 — 3-4 AND CX,0F0H
memory, immediate 17+EA 2 3-6 AND BETA, 01H
accumulator, immediate 4 — 2-3 AND AX, 010100008
CALL CALL target Flags ODITSZAPC
Call a procedure 9
Operands Clocks | Transfers* | Bytes Coding Examples
near-proc 19 1 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR_PROC
memptr 16 21+EA 2 2-4 CALL PROC__TABLE [SI]
regptr16 16 1 2 CALL AX
memptr 32 37+EA 4 2-4 CALL [BX].TASK [SI]
CBW (no operands) ODITSZAPC
CBW Convert byte to word Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 cBwW

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-52

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CLC (no operands) ODITSZAPC
CLC Clear carry flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLC
CLD (no operands) ODITSZAPC
CLD Clear direction flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 CLD
CLI (no operands) ODITSZAPC
CLi Clear interrupt flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLI
CMC (no operands) ODITSZAPC
CMC Flags
Complement carry flag 9 X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CMC
CMP destination,source ODITSZAPC
CmpP Compare destination to source Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 CMP BX, CX
register, memory 9+EA 1 2-4 CMP DH, ALPHA
memory, register 9+EA 1 2-4 CMP [BP+2], Sl
register, immediate 4 - 3-4 CMP BL, 02H
memory, immediate 10+EA 1 3-6 CMP [BX].RADAR [Dl], 3420H
accumulator, immediate 4 — 2-3 CMP AL, 00010000B
CMPS dest-string,source-string ODITSZAPC
CMPS Compare string Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS ID, KEY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-53

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CWD (no operands) ODITSZAPC
CwbD Convert word to doubleword Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 5 — 1 CWD
DAA (no operands) ODITSZAPC
DAA Decimal adjust for addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 DAA
DAS (no operands) ODITSZAPC
DAS i Decimal adjust for subtraction Flags U XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 DAS
DEC destination ODITSZAPC
DEC Decrement by 1 Flags X XX XX
Operands Clocks | Transfers* | Bytes Coding Example
reg16 2 — 1 DEC AX
reg8 3 — 2 DEC AL
memory 15+ EA 2 2-4 DEC ARRAY [SI]
DIV source ODITSZAPC
DIV Division, unsigned Flags UUUU U
Operands Clocks Transfers* | Bytes Coding Example
reg8 80-90 — 2 Div CL
reg16 144-162 - 2 DIV BX
mem8 (86-96) 1 2-4 DIV ALPHA
+EA
mem16 (150-168) 1 2-4 DIV TABLE [SI]
+EA
ESC ESC external-opcode,source Flags ODITSZAPC
Escape 9
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8+EA 1 2-4 ESC 6,ARRAY [SI]
immediate, register 2 — 2 | ESC 20,AL

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-54

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

HLT HLT (no operands) Flaas ODITSZAPC
Halt 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 HLT
IDIV source ODITSZAPC
IDIV Integer division Flags UUUU U
Operands Clocks | Transfers* | Bytes Coding Example
reg8 101-112 —_ 2 IDIV BL
reg16 165-184 - 2 IDIV CX
mem8 (107-118) 1 2-4 IDIV DIVISOR__BYTE [Sl]
+EA
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD
+EA
IMUL source ODITSZAPC
IMUL Integer multiplication Flags X UuuuuX
Operands Clocks | Transfers* | Bytes Coding Example
reg8 80-98 - 2 IMUL CL
 reg16 128-154 — 2 IMUL BX
mem8 (86-104) 1 2-4 IMUL RATE__BYTE
+EA
mem16 (134-160) 1 2-4 | IMUL RATE_WORD [BP][DI]
+EA
IN accumulator,port ODITSZAPC
IN Input byte or word Flags
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, immed8 10 1 2 IN AL, OFFEAH
accumulator, DX 8 1 1 IN AX, DX
INC destination ODITSZAPC
lNC Increment by 1 Flags X XX XX
Operands Clocks | Transfers* | Bytes Coding Example
reg16 2 — 1 INC CX
reg8 3 — 2 INC BL
memory 15+ EA 2 2-4 INC ALPHA [DI] [BX]

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-55

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

INT INT interrupt-type Flags ODITSZAPC
Interrupt 00
Operands f Clocks | Transfers* | Bytes Coding Example
immed8 (type = 3) 52 5 1 INT 3
immeds (type # 3) 51 5 2 INT 67
INTRY e I R
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 61 7 N/A N/A
|NTO INTO(no'operands) Flags ODITSZAPC
Interrupt if overflow 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 530r4 5 : 1 INTO
IRET interrupt Aot Flags | RRR AR A A
Operands Clocks | Transfers* Bytes Coding Example
(no operands) 24 3 1 IRET
JA/JNBE JA/JNBE short-label_ , Flags ODITSZAPC
Jump if above/Jump if not below nor equal
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 — 2 JA ABOVE
JAE/JNB JAE/JNB short-label . Flags ODITSZAPC
Jump if above or equal/Jump if not below
Operands ' Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 — 2 | JAE ABOVE_EQUAL
JB/JNAE jgr/n"pNi?:eTgv?I;tj::\?if not above nor equal Flags eplTSzAPC
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 - 2 JB BELOW '

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tINTR is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978

2-56

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JBE/JNA short-label

ODITSZAPC

JBE/JINA Jump if below or equal/Jump if not above Flags
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or4 - 2 JNA NOT_ABOVE

JC jlcj:r:;?ff::-:::)yel Flags ODITSZAPC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or4 - 2 JC CARRY_SET

Jexz Joxt sorivs,
Operands Clocks | Transfers* | Bytes Coding Example

short-label 18orb — 2 JCXZ COUNT_DONE

JE/SZ JEL el e
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or4 - 2 JZ ZERO

JG/JNLE jt?é‘:)b:f'-gErZ:?er:;T:;lp if not less nor equal Flags eplTszARC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16o0r4 — 2 JG GREATER

JGE/JNL erEéJi?gLr:zg:—clﬁt;ﬂual/Jump if notless Flags eplTszAre
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16or4 - 2 JGE GREATER_EQUAL

JL/INGE j\tr/r;l;:‘i?éssshl%r;-'n\a;?flnotgreater nor equal Flags opiTSzARC
Operands Clocks | Transfers* | Bytes Coding Example

short-label 16o0r4 — 2 JL LESS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-57

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JLE/JNG short-label

ODITSZAPC

JLE/JNG Jump if less or equal/Jump if not.greater Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 - 2 JNG NOT_GREATER
JMP JMP target Flags ODITSZAPC
Jump
Operands Clocks | Transfers* | Bytes Coding Example
short-label 15 — 2 JMP SHORT
near-label 15 — 3 JMP WITHIN_SEGMENT
far-label 15 — 5 JMP FAR_LABEL
memptr16 18+ EA 1 2-4 JMP [BX].TARGET
regptr16 11 - 2 JMP CX
memptr32 24+EA 2 2-4 JMP OTHER.SEG [SI]
JNC j:n(:psir;?]r;-tlzgfrly Flags ODITSZAPC
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 - 2 JNC NOT_CARRY
JNE/INZ jyrﬁg’i:l:ostr;%ﬁ:?/?ﬂmp if not zero Flags opliTszARC
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JNE NOT_EQUAL
INO T
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JNO NO__OVERFLOW
JNP/JPO j:::;’i?r?ofgz?i;;a/?lilmp if parity odd Flags 0D TBZATC
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JPO ODD__PARITY
INS s sortabl
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JNS POSITIVE

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-58

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JO Jo shgrt-label Flags ODITSZAPC
Jump if overflow
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JO SIGNED__OVRFLW
JP/JPE JP/JP.E shc?rt-label ' ' Flags ODITSZAPC
Jump if parity/Jump if parity even
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 - 2 JPE EVEN__PARITY
JS JS shqrt—!abel Flags ODITSZAPC
Jump if sign
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JS NEGATIVE
LAHF o ropernce)
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 LAHF
LDS e
Operands Clocks | Transfers | Bytes Coding Example
reg16, mem32 16+ EA 2 2-4 LDS SI,DATA.SEG [DI]
LEA TPy
Operands Clocks | Transfers* | Bytes Coding Example
regi6, mem16 2+EA - 2-4 LEA BX, [BP] [DI]
LES LES desj(ination_,source Flags ODITSZAPC
Load pointer using ES
Operands Clocks | Transfers* | Bytes Coding Example
reg16, mem32 16+ EA 2 2-4 LES DI, [BX].TEXT_BUFF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-59

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

LOCK (no operands)

ODITSZAPC

LOCK Lock bus Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 LOCK XCHG FLAG,AL
LODS LODS source-string Flags ODITSZAPC
Load string 9
Operands Clocks | Transfers* | Bytes Coding Example
source-string 12 1 1 LODS CUSTOMER__NAME
(repeat) source-string 9+13/rep 1/rep 1 REP LODS NAME
LOOP LOOP short-label Flags ODITSZAPC
Loop 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 1715 — 2 LOOP AGAIN
LOOPE/LOOPZ LOOPE/LOOPZ short-label Flags ODITSZAPC
Loop if equal/Loop if zero 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 18or6 - 2 LOOPE AGAIN
LOOPNE/LOOPNZ LOOPNE/LOOPNZ short-label Flags ODITSZAPC
Loop if not equal/Loop if not zero 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 190r5 — 2 LOOPNE AGAIN
1 NMI (external nonmaskable interrupt) OSITSZAPC
NMI Interrupt if NMI = 1 Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50 5 N/A N/A

*“For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
$NMlis not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978

2-60

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

MOV destination,source

ODITSZAPC

MOV Move Flags
Operands Clocks | Transfers* | Bytes Coding Example
memory, accumulator 10 1 3 MOV ARRAY [Sl], AL
accumulator, memory 10 1 3 MOV AX, TEMP_RESULT
register, register 2 — 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK__TOP
memory, register 9+EA 1 2-4 MOV COUNT [DI}, CX
register, immediate 4 — 2-3 MOV CL, 2
memory, immediate 10+EA 1 3-6 MOV MASK [BX][Sl], 2CH
seg-reg, regl6 2 — 2 MOV ES, CX
seg-reg, mem16 8+EA 1 2-4 MOV DS, SEGMENT_BASE
reg16, seg-reg 2 — 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG__SAVE, CS
MOVS MOVS dest-string,source-string Flags ODITSZAPC
Move string 9
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 18 2 1 MOVS LINE EDIT_DATA
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER
MOVSB/MOVSW (no operands) ODITSZAPC
MOVSB/MOVSW Move string (byte/word) Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 18 2 1 MOVSB
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW
MUL source ODITSZAPC
MUL Multiplication, unsigned Flags X Uuuu X
Operands Clocks | Transfers* | Bytes Coding Example
reg8 70-77 — 2 MUL BL
regié 118-133 — 2 MUL CX
mem8 (76-83) 1 2-4 MUL MONTH [S1]
+EA
mem16 (124-139) 1 2-4 MUL BAUD__RATE
+EA

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-61

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

NEG destination ODITSZAPC
NEG Negate Flags X XXX X1*
Operands Clocks | Transfers* | Bytes Coding Example
register 3 — 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER
*0if destination=10
NOP (no operands) ODITSZAPC
NOP No Operation Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 3 — 1 NOP
NOT NOT destination Flags ODITSZAPC
Logical not 9
Operands Clocks | Transfers* | Bytes Coding Example
register 3 - 2 NOT AX
memory 16+ EA 2 2-4 NOT CHARACTER
OR OR destination,source Flags ODITSZAPC
Logical inclusive or 9 9 XXUXO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 OR AL, BL
register, memory 9+EA 1 2-4 OR DX, PORT__ID [DI]
memory, register 16+ EA 2 2-4 OR FLAG__BYTE, CL
accumulator, immediate 4 — 2-3 OR AL, 01101100B
register, immediate 4 — 3-4 ORCX,01H
memory, immediate 17+EA 2 3-6 OR [BX].CMD_WORD,0CFH
OUT port,accumulator ODITSZAPC
ouT Output byte or word Flags
Operands Clocks | Transfers* | Bytes Coding Example
immed8, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL
POP destination ODITSZAPC
POP Pop word off stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 8 1 1 POP DX
seg-reg (CSillegal) 8 1 1 POP DS
memory 17+EA 2 2-4 POP PARAMETER

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-62

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

POPF (no operands) ODITSZAPC
POPF Pop flags off stack Flags R RRRRRR R R
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8 1 1 POPF
PUSH source ODITSZAPC
PUSH Push word onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 1 1 1 PUSH SI
seg-reg (CS legal) 10 1 1 PUSH ES
memory 16+EA 2 2-4 PUSH RETURN__CODE [Sl]
PUSHF (no operands) ODITSZAPC
PUSHF Push flags onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 10 1 1 PUSHF
RCL destination,count ODITSZAPC
RCL Rotate left through carry Flags X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 RCL CX,1
register, CL 8+ 4/bit — 2 RCL AL,CL
memory, 1 15+EA 2 2-4 RCL ALPHA,1
memory, CL 20+EA+ 2 2-4 RCL [BP].PARM, CL
4/bit
RCR designation,count ODITSZAPC
RCR Rotate right through carry Flags X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 - 2 RCR BX, 1
register, CL 8+4/bit — 2 RCR BL,CL
memory, 1 15+EA 2 2-4 RCR [BX].STATUS,1
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL
4/bit
REP REP (no operands) Flaas ODITSZAPC
Repeat string operation 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 REP MOVS DEST, SRCE

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-63

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

REPE/REPZ REPE/REPZ (no operands) Flags ODITSZAPC
Repeat string operation while equal/while zero 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REPE CMPS DATA, KEY
REPNE/REPNZ REPNE/REPNZ (no operands) Flags ODITSZAPC
Repeat string operation while not equal/not zero 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REPNE SCAS INPUT__LINE
RET RET optional-pop-value Flaas ODITSZAPC
Return from procedure 9
Operands Clocks | Transfers* | Bytes Coding Example
(intra-segment, no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2
ROL destination,count ODITSZAPC
ROL Rotate left Flags X X
Operands Clocks Transfers | Bytes Coding Examples
register, 1 2 — 2 ROL BX, 1
register, CL 8+ 4/bit — 2 ROL DI, CL
memory, 1 15+EA 2 2-4 ROL FLAG__BYTE [DI],1
memory, CL 20+EA+ 2 2-4 ROL ALPHA ,CL
4/bit
ROR destination,count ODITSZAPC
ROR Rotate right Flags X X
Operand Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 ROR AL, 1
register, CL 8+ 4/bit — 2 ROR BX,CL
memory, 1 15+ EA 2 2-4 ROR PORT__STATUS, 1
memory, CL 20+EA+ 2 2-4 ROR CMD__WORD, CL
4/bit
SAHF (no operands) ODITSZAPC
SAHF Store AH into flags Flags RRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 SAHF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-64

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

SAL/SHL destination,count ODITSZAPC
SAL/SHL Shift arithmetic left/Shift logical left Flags X
Operands Clocks | Transfers* | Bytes Coding Examples
register,1 2 — 2 SAL AL
register, CL 8+ 4/bit — 2 SHL DI, CL
memory,1 15+ EA 2 2-4 SHL [BX].OVERDRAW, 1
memory, CL 20+EA+ 2 2-4 SAL STORE_COUNT, CL
4/bit
SAR destination,source ODITSZAPC
SAR Shift arithmetic right Flags X X U X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SAR DX, 1
register, CL 8 +4/bit — 2 SAR DI, CL
memory, 1 15+EA 2 2-4 SAR N_BLOCKS, 1
memory, CL 20+EA+ 2 2-4 SAR N_BLOCKS, CL
4/bit
SBB destination,source ODITSZAPC
SBB Subtract with borrow Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SBB BX, CX
register, memory 9+EA 1 2-4 SBB DI, [BX].PAYMENT
memory, register 16+ EA 2 2-4 SBB BALANCE, AX
accumulator, immediate 4 — 2-3 SBB AX, 2
register, immediate 4 — 3-4 SBB CL, 1
memory, immediate 17+EA 2 3-6 SBB COUNT [Sl],10
SCAS dest-string ODITSZAPC
SCAS Scan string Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
dest-string 15 1 1 SCAS INPUT__LINE
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER
t SEGMENT override prefix ODITSZAPC
SEGMENT Override to specified segment Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 MOV SS:PARAMETER, AX

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

+ASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table

2-21 only for timing information.

2-65

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

SHR destination,count

ODITSZAPC

SHR Shift logical right Flags X
Operands Clocks | Transfers* | Bytes Coding Example

register, 1 2 — 2 SHR Si, 1

register, CL 8+4/bit — 2 SHR SI,CL

memory, 1 15+ EA 2 2-4 SHR ID_BYTE [SI] [BX], 1

memory, CL 20+ EA+ 2 2-4 SHR INPUT_WORD, CL

4/bit

SINGLE STEPT ﬁlt:ﬁtgtsif.rf:i:rap flag interrupt) Flags oD (l)'g SZAPC
Operands Clocks | Transfers* | Bytes Coding Example

(no operands) 50 5 N/A N/A

STC gl‘:.’:c(anrtr)yof?:éands) Flags ODITSZAP ?
Operands Clocks | Transfers* | Bytes Coding Example

(no operands) 2 — 1 STC

STD oo riags 0TS ZAPC
Operands Clocks | Transfers* | Bytes Coding Example

(no operands) 2 - 1 STD

STI e g Fags 00| TSZAPC
Operands Clocks | Transfers* | Bytes Coding Example

(no operands) 2 — 1 STI

STOS s Fage 00! TS ZAPC

_ Operands Clocks | Transfers* | Bytes Coding Example
dest-string 11 1 1 STOS PRINT__LINE
(repeat) dest-string 9+10/rep 1/rep 1 REP STOS DISPLAY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
+SINGLE STEP is not an instruction; it is included in table 2-21 only for timing information.

Mnemonics © Intel, 1978

2-66

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

SUB destination,source ODITSZAPC
SUB Subtraction Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SUB CX, BX
register, memory 9+EA 1 2-4 SUB DX, MATH__TOTAL [SI]
memory, register 16+ EA 2 2-4 SuB [BP+2],CL
accumulator, immediate 4 — 2-3 SUB AL,10
register, immediate 4 — 3-4 SUB SI, 5280
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE, 1000
TEST destination,source ODITSZAPC
TEST Test or non-destructive logical and Flags 0 XXUXo
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST S|, END_COUNT
accumulator, immediate 4 — 2-3 TEST AL, 001000008
register, immediate 5 — 3-4 TEST BX, 0CC4H
memory, immediate 11 +EA — 3-6 TEST RETURN__CODE, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 3+ 5n — 1 WAIT
XCHG XCHG destination,source Flaas ODITSZAPC
Exchange 9
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, reg16 3 — 1 XCHG AX, BX
memory, register 17+EA 2 2-4 XCHG SEMAPHORE, AX
register, register 4 —_ 2 XCHG AL, BL
XLAT XLAT source-table Flags ODITSZAPC
Translate g .
Operands Clocks | Transfers* | Bytes Coding Example
source-table 11 1 1 XLAT ASCII_TAB

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2-67

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

XOR destination,source ODITSZAPC

XOR Logical exclusive or Flags 0 XXUXO0

Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 XOR CX, BX
register, memory 9+ EA 1 2-4 XOR CL,MASK_BYTE
memory, register 16+ EA 2 2-4 XOR ALPHA [SI], DX
accumulator, immediate 4 — 2-3 XOR AL, 01000010B
register, immediate 4 - 3-4 XOR SI,00C2H
memory, immediate 17+EA 2 3-6 XOR RETURN__CODE, 0D2H

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2.8 Addressing Modes

The 8086 and 8088 provide many different ways
to access instruction operands. Operands may be
contained in registers, within the instruction
itself, in memory or in I/0 ports. In addition, the
addresses of memory and I/0 port operands can
be calculated in several different ways. These
addressing modes greatly extend the flexibility
and convenience of the instruction set. This sec-
tion briefly describes register and immediate
operands and then covers the 8086/8088 memory
and I/0 addressing modes in detail.

Register and Immediate Operands

Instructions that specify only register operands
are generally the most compact and fastest
executing of all instruction forms. This is because
the register ‘‘addresses’’ are encoded in instruc-
tions in just a few bits, and because these opera-
tions are performed entirely within the CPU (no
bus cycles are run). Registers may serve as source
operands, destination operands, or both.

Immediate operands are constant data contained
in an instruction. The data may be either 8 or 16
bits in length. Immediate operands can be
accessed quickly because they are available
directly from the instruction queue; like a register
operand, no bus cycles need to be run to obtain an
immediate operand. The limitations of immediate
operands are that they may only serve as source
operands and that they are constant values.

~ Figure 2-34 shows

Memory Addressing Modes

Whereas the EU has direct access to register and
immediate operands, memory operands must be
transferred to or from the CPU over the bus.
When the EU needs to read or write a memory
operand, it must pass an offset value to the BIU.
The BIU adds the offset to the (shifted) content of
a segment register producing a 20-bit physical
address and then executes the bus cycle(s) needed
to access the operand.

The Effective Address

The offset that the EU calculates for a memory
operand is called the operand’s effective address
or EA. It is an unsigned 16-bit number that
expresses the operand’s distance in bytes from the
beginning of the segment in which it resides. The
EU can calculate the effective address in several
different ways. Information encoded in the
second byte of the instruction tells the EU how to
calculate the effective address of each memory
operand. A compiler or assembler derives this
information from the statement or instruction
written by the programmer. Assembly language
programmers have access to all addressing modes.

that the execution unit
calculates the EA by summing a displacement, the
content of a base register and the content of an
index register. The fact that any combination of
these three components may be present in a given
instruction gives rise to the variety of 8086/8088
memory addressing modes.

Mnemonics © Intel, 1978

2-68

8086 AND 8088 CENTRAL PROCESSING UNITS

SINGLE INDEX
-

BX

OR

ENCODED

IN THE OR
INSTRUCTION

ﬁ

l

OR
- v
EXPLICIT G
IN THE
INSTRUCTION
p

ASSUMED
UNLESS
OVERRIDDEN
BY PREFIX

)«

Y

—— ADDRESS
) <——i DISPLACEMENT I—»Q/

L

ES

t———> | PHYSICAL ADDR |-——

DOUBLE INDEX

EFFECTIVE

OR

OR

OR

0000

®

Figure 2-34. Memory Address Computation

The displacement element is an 8- or 16-bit
number that is contained in the instruction. The
displacement generally is derived from the posi-
tion of the operand name (a variable or label) in
the program. It also is possible for a programmer
to modify this value or to specify the displace-
ment explicitly.

A programmer may specify that either BX or BP
is to serve as a base register whose content is to be
used in the EA computation. Similarly, either SI
or DI may be specified as an index register.
Whereas the displacement value is a constant, the
contents of the base and index registers may
change during execution. This makes it possible
for one instruction to access different memory
locations as determined by the current values in
the base and/or index registers.

It takes time for the EU to calculate a memory
operand’s effective address. In general, the more
elements in the calculation, the longer it takes.

Table 2-20 shows how much time is required to
compute an effective address for any combination
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest
memory addressing mode. No registers are in-
volved; the EA is taken directly from the displace-
ment field of the instruction. Direct addressing
typically is used to access simple variables
(scalars).

Register Indirect Addressing

The effective address of a memory operand may
be taken directly from one of the base or index
registers as shown in figure 2-36. One instruction
can operate on many different memory locations
if the value in the base or index register is updated

2-69

8086 AND 8088 CENTRAL PROCESSING UNITS

appropriately. The LEA (load effective address)
and arithmetic instructions might be used to
change the register value.

Note that any 16-bit general register may be used
for register indirect addressing with the JMP or
CALL instructions.

Lopcoos J MOD R/M I DISPLA|CEMENT |

——

Figure 2-35. Direct Addressing

lopcoos l MODR/M]

BP
o e
Sl

Figure 2-36. Register Indirect Addressing

ment (unless a segment override prefix is present).
This makes based addressing with BP a very con-
venient way to access stack data (see section 2.10
for examples).

Based addressing also provides a straightforward
way to address structures which may be located at
different places in memory (see figure 2-38). A
base register can be pointed at the base of the
structure and elements of the structure addressed
by their displacements from the base. Different
copies of the same structure can be accessed by
simply changing the base register.

HIGH ADDRESS

DISPLACEMENT DISPLACEMENT
1 @®ame] AGE |STATUS (RATE)
RATE
vac | sick
DEPT | DI
I--IBASE REGISTER | r» EMPLOYEE | BASEREGISTER |+
|
> r—fA]
© |
I
AGE_|STATUS]
RATE |
vac_| sick I
DEPT | DIV
EMPLOYEE _|&— — — — — — .
LOW ADDRESS

Figure 2-38. Accessing a Structure With Based
Addressing

Based Addressing

In based addressing (figure 2-37), the effective
address is the sum of a displacement value and the
content of register BX or register BP. Recall that
specifying BP as a base register directs the BIU to
obtain the operand from the current stack seg-

Indexed Addressing

In indexed addressing, the effective address is
calculated from the sum of a displacement plus
the content of an index register (SI or DI) as
shown in figure 2-39. Indexed addressing often is

l OPCODE [MOD R/M DISPLAC|EMENT]

p—
=H

Figure 2-37. Based Addressing

-——
DISPLAC|{EMENT =

Si I
OR —— >
DI

l OPCODE l MOD R/M [

Figure 2-39. Indexed Addressing

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

used to access elements in an array (see figure
2-40). The displacement locates the beginning of
the array, and the value of the index register
selects one element (the first element is selected if
the index register contains 0). Since all array
elements are the same length, simple arithmetic
on the index register will select any element.

Based Indexed Addressing

Based indexed addressing generates an effective
address that is the sum of a base register, an
index register and a displacement (see figure
2-41). Based indexed addressing is a very flexible
mode because two address components can be
varied at execution time.

| HIGH ADDRESS

S o
; ARRAY (8)

["LDISPLACEMENT 'ARRAY (7) | pisPLACEMENT } 1
ARRAY (6)

: ARRAY (5) l
| NDEXREGISTER ARRAY (4) INDEX REGISTER :
|) ARRAY (3) |
! [ARRAY (2) Y |
I 1 EA ARRAY (1) |—— EA 1 I
L=————_ | ARRAY()) | = — — — — — — d
8 J
<—1WORD—>
LOW ADDRESS

Figure 2-40. Accessing an Array With Indexed

Based indexed addressing provides a convenient
way for a procedure to address an array allocated
on a stack (see figure 2-42). Register BP can con-
tain the offset of a reference point on the stack,
typically the top of the stack after the procedure
has saved registers and allocated local storage.
The offset of the beginning of the array from the
reference point can be expressed by a displace-
ment value, and an index register can be used to
access individual array elements.

Arrays contained in structures and matrices (two-
dimension arrays) also could be accessed with
based indexed addressing.

I OPCODE | MODR/M] DISPLAC [EMENT

BX

o
OR
BP v
S|

Pe
OR
DI \>

Addressing Figure 2-41. Based Indexed Addressing
HIGH ADDRESS
o o .
DISPLACEMENT DISPLACEMENT
O e [= -
PARM__1
' ® P D) !
I oLD_BP I
| BASE REGISTER | (BP) o Bx @p[BaserecisTeR | 4 |
I oLD__AX !
I | ARRAY (6) | I
|| iNDEXREGISTER ARRAY (5) INDEXREGISTER | |
[ARRAY (4) q:] P!
I | ARRAY (3) | I
L I EA ARRAY 2) Je——o EA] | l
: : ARRAY (1) : :
ARRAY (0)
Iy T COUNT -1 |
I — TEMP m—— === T
LY s et -

4, 4,
<=1 WORD—>

LOWER ADDRESS

Figure 2-42. Accessing a Stack Array With Based Indexed Addressing

2-71

8086 AND 8088 CENTRAL PROCESSING UNITS

String Addressing

String instructions do not use the normal memory
addressing modes to access their operands.
Instead, the index registers are used implicitly as
shown in figure 2-43. When a string instruction is
executed, SI is assumed to point to the first byte
or word of the source string, and DI is assumed to
point to the first byte or word of the destination
string. In a repeated string operation, the CPUs
automatically adjust SI and DI to obtain subse-
quent bytes or words.

1/0 Port Addressing

If an 170 port is memory mapped, any of the
memory operand addressing modes may be used
to access the port. For example, a group of ter-
minals can be accessed as an ‘‘array.’’ String
instructions also can be used to transfer data to
memory-mapped ports with an appropriate hard-
ware interface. Section 2.10 contains examples of
addressing memory-mapped I/0 ports.

Two different addressing modes can be used to
access ports located in the I/0 space; these are
illustrated in figure 2-44. In direct port address-
ing, the port number is an 8-bit immediate

operand. This allows fixed access to ports
numbered 0-255. Indirect port addressing is
similar to register indirect addressing of memory
operands. The port number is taken from register
DX and can range from 0 to 65,535. By pre-
viously adjusting the content of register DX, one
instruction can access any port in the I/0 space.
A group of adjacent ports can be accessed using a
simple software loop that adjusts the value in DX.

2.9 Programming Facilities

A comprehensive integrated set of tools supports
8086/8088 software development. These tools are
programs that run on Intellec® 800 or Series II
Microcomputer Development Systems under the
ISIS-II operating system, the same hardware and
operating system used to develop software for the
8080 and the 808S5. Since the 8086 and 8088 are
software-compatible with one another, the same
tools are used for both processors to provide
programmers with a uniform development
environment.

}——>| sourceea |
——>|pEesTiNnaTIONEA]

Figure 2-43. String Operand Addressing

OPCODE |DATA

/
I PORT ADDRESS I

DIRECT PORT ADDRESSING

I OPCODE I

A
| DX

}—>] PORT ADDRESS|

INDIRECT PORT ADDRESSING

Figure 2-44. 1/0 Port Addressing

2-72

8086 AND 8088 CENTRAL PROCESSING UNITS

Software Development Overview

A program that will ultimately execute on an
8086- or 8088-based system is developed in steps
(see figure 2-45). The overall program is com-
posed of functional units called modules. For
purposes of this discussion, a module is a section
of code that is separately created, edited, and
compiled or assembled. A very small program
might consist of a single module; a large program
could be comprised of 100 or more modules. The
8086/8088 LINK-86 utility binds modules
together into a single program. (The module
structure of a program is critical to its successful
development and maintenance; see section 2.10
for guidelines.)

8086 and 8088 modules can be written in either
PL/M-86 or ASM-86 (see table 2-22). PL/M-86 is
a high-level language suitable for most
microprocessor applications. It is easy to use,
even by programmers who have little experience
with microprocessors. Because it reduces software
development time, PL/M-86 is ideal for most of
the programming in any application, especially
applications that must get to market quickly.

ASM-86 is the 8086/8088 assembly language.
ASM-86 provides the programmer who is familiar
with the CPU architecture, access to all processor
features. For critical code segments within pro-
grams that make sophisticated use of the hard-
ware, have extremely demanding performance or
memory constraints, ASM-86 is the best choice.

TRANSLATE

—1

EDIT PL/M-86|

|

]

|

| RELOCAT-
BL

LI LOCATE
e LOAD

1SIS-11
SOURCE
] TEXT }—>|
EDITOR -

ASM-86

oF | opyecr
MODJLES

exECoTe
RELOCAT- fasoLute z
LINK-g6—-{ (ABLE Loc-86 —={" OBJECT (EAESARY)
MODULE MODULE

|
|
1
|

=l

LiB-86

UPDATE
LIBRARIES

OBJECT
MODULE
LIBRARIES!

Figure 2-45. Software Development Process

2-73

8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-22. PL/M-86/ASM-86 Characteristics

PL/M-86

ASM-86

* Fast Development

* Less Programmer Training

¢ Detailed Hardware Knowledge Not Required

¢ Fastest Execution Speed , '
¢ Smallest Memory Requirements

» Access To All Processor Facilities -

The languages are completely compatible, and a
judicious combination of the two often makes
good sense. Prototype software can be developed
rapidly with PL/M-86. When the system is
operating correctly, it can be analyzed to see
which sections can best profit from being written
in ASM-86. Since the logic of these sections
already has been debugged, selective rewriting can
be done quickly and with low risk.

Each PL/M-86 or ASM-86 module (called a
source moduel) is keyed into the Intellec® system
using the ISIS-II text editor and is stored as a
diskette file. This source file is then input to the
appropriate language translator (ASM-86
assembler or PL/M-86 compiler). The language
translator creates a diskette file from the source
file, which is called a relocatable object module.
The translator also lists the program and flags any
errors detected during the translation. The
relocatable object module contains the 8086/8088
machine instructions that the translator created
from the statements in the source module. The
term ‘‘relocatable’’ refers to the fact that all
references to memory locations in the module are
relative, rather than being absolute memory
addresses. The module generally is not executable
until the relative references are changed to the
actual memory locations where the module will
reside in the execution system’s memory. The pro-
cess of changing the relative references to
absolute memory locations is called locating.

There are very good reasons for not locating
modules when they are translated. First, the exe-
cution system’s physical memory configuration
(where RAM and ROM/PROM segments are
actually located in the megabyte memory space)
may not be known at the time the modules are
written. Second, it is desirable to be able to use a
common module (e.g., a square root routine) in
more than one system. If absolute addresses were
assigned at translation time, the common module
would either have to occupy the same physical

addresses in every. system, or separate versions
with different addresses would have to be main-
tained for each system. When locating is deferred,
a single version of a common routine can be used
by any number of systems. Finally, the locations
of modules typically change as a system is
developed, maintained and enhanced. Separating
the location process from the translation process
means that as modifications are made, unchanged
modules only need to be relocated, not
retranslated.

Relocatable object modules may be placed into
special files called libraries, using the LIB-86
library manager program. Libraries provide a
convenient means of collecting groups of related
modules so that they can be accessed automati-
cally by the LINK-86 program.

When enough relocatable object modules have
been created to test the system, or part of it, the
modules are linked and located. Linking com-
bines all the separate modules into a single pro-
gram. Locating changes the relative memory
references in the program to the actual memory
locations where the program will be loaded in the
execution system. The link and locate process also
is referred to as R & L, for relocation and linkage.

Two other programs round out the software
development tools available for the 8086 and
8088. OH-86 converts an absolute object file into
a hexadecimal format used by some PROM pro-
grammers and system loaders (for example, the
SDK-86 and iSBC 957™ Joaders). CONV-86 can
do most of the conversion work required to
translate 8080/8085 assembly language source
modules into ASM-86 source modules.

The 8086/8088 software development facilities
are covered in more detail in the remainder of this
section, However, these are only introductions to

2-74

8086 AND 8088 CENTRAL PROCESSING UNITS

the use of these tools. Complete documentation is
available in the following publications available
from Intel’s Literature Department:

ISIS-II:

ISIS-1I System User’s Guide,, Order No. 9800306

ASM-86:

MCS-86 Assembly Language Reference Manual,
Order No. 9800640

MCS-86 Assembler Operating Instructions for
ISIS-II Users, Order No. 9800641

PL/M-86:

PL/M-86 Programming Manual,
9800466

ISIS-1I PL/M-86 Compiler Operator’s Manual,
Order No. 9800478

Order No.

LINK-86, LOC-86, LIB-86, OH-86:

MCS-86 Software Development Utilities
Operating Instructions for ISIS-1I Users, Order
No. 9800639

CONV-86:

MCS-86 Assembly Language Converter
Operating Instructions for ISIS-II Users, Order
No. 9800642

PL/M-86

PL/M-86 1is a general-purpose, high-level
language for programming the 8086 and 8088
microprocessors. It is an extension of PL/M-80,
the most widely-used, high-level programming
language for microprocessors. (PL/M-80 source
programs can be processed by the PL/M-86 com-
piler; the resulting object program is generally
reduced by 15-30% in size.) PL/M-86 is suitable
for all types of microprocessor software from
operating systems to application programs.

PL/M-86’s purpose is simple: to reduce the time
and cost of developing and maintaining software
for the 8086 and 8088. It accomplishes this by
creating a programming environment that, for the
most part, is distinct from the architecture of the
CPUs. Registers, segments, addressing modes,
stacks, etc., are effectively “‘invisible’’ to the

PL/M-86 programmer. Instead, the processors
appear to respond to simple commands and
familiar algebraic expressions. The responsibility
for translating these source statements into the
machine instructions ultimately required to exe-
cute on the 8086/8088 is assumed by the PL/M-86
compiler. By ‘‘hiding’’ the details of the machine
architecture, PL/M-86 encourages programmers
to concentrate on solving the problem at hand.
Furthermore, because PL/M-86 is closer to
natural - language, it is easier to ‘‘think in
PL/M-86’’ than it is to ‘‘think in assembly
language.”’ This speeds up the expression of a
program solution, and, equally important, makes
that solution easier for someone other than the
original programmer to understand. PL/M-86
also contains all the constructs necessary for
structured programming.

Statements and Comments

A programmer builds a PL/M-86 program by
writing statements and comments (see figure
2-46). There are several different types of
statements in PL/M-86; they always end with a
semicolon. Blanks can be used freely before,
within, and after statements to improve read-
ability. A statement also may span more than one
line.

The characters ‘‘/*’’ start a comment, and the
characters ‘‘*/’ end it; any characters may be
used in between. Comments do not affect the exe-
cution of a PL/M-86 program, but all good pro-
grams are thoughtfully commented. Comments
are notes that document and clarify the program’s
operation; they may be written virtually anywhere
in a PL/M-86 program.

Data Definition

Most PL/M-86 programs begin by defining the
data items (variables) with which they are going to
work. An individual PL/M-86 data element is
called a scalar. Every scalar variable has a
programmer-supplied name up to 31 characters
long, and a type. PL/M-86 supports five types of
scalars: byte, word, integer, real, and pointer.
Table 2-23 lists the characterlstlcs of these
PL/M-86 data. types.

2-75

8086 AND 8088 CENTRAL PROCESSING UNITS

/*TRAFFIC DATA RECORDER CONTROL PROGRAM*
VERSION 2.2, RELEASE 5, 23APR79.
THIS RELEASE FIXES THREE BUGS
DOCUMENTED IN PROBLEM REPORT #16./

./*COMPUTE TOTAL PAYMENT DUE*/

TOTAL = PRINCIPAL + INTEREST;

IF TERMINALSREADY

THEN CALL FILL$BUFFER;
/*WAIT 50 MS FOR RESPONSE*/

ELSE CALL WAIT (50);

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

TYPE BYTES RANGE USAGE
BYTE 1 0 to 255 Unsigned Integer, Character
WORD ' 2 0 to 65,535 Unsigned Integer
—32,768 to .
INTEGER 2 +32.767 Signed Integer
1x10738to . .
REAL 4 3.37x 10+38 Floating Point
POINTER 2/4 N/A Address Manipulation

Variables are defined by writing a DECLARE
statement of this form:

DECLARE scalar-name type; .

Options of the DECLARE statement can be used
to specify an initial value for the scalar and to
define a series of items in a shorthand form.

Besides scalar variables, scalar constants may be
used in PL/M-86 programs (see figure 2-47).
Constants may be written ‘‘as is’’ or may be given
names to improve program clarity.

Scalars:can be aggregated into named collections
of data such as arrays and structures. An array is
a collection of scalars of the same type (all
integer, -all real, etc.). Arrays are useful for
representing data that has a repetitive nature. For

example, monthly rainfall samples could be
represented as an array of 12 elements, one for
each month:

DECLARE RAINFALL (12) REAL;

Each element in an array is accessible by a
number called a subscript which is the element’s
relative location in the array. In PL/M-86, the
first element in an array has a subscript of 0; it is
considered the ‘‘Oth’’ element. Thus, RAINFALL
(11) refers to December’s sample. The subscript
need not be a constant; variables and expressions
also may be used as subscripts.

Strings of character data are typically defined as
byte arrays. Characters can be accessed with
subscripts or with:powerful string-handling func-
tions built into PL/M-86.

2-76

8086 AND 8088 CENTRAL PROCESSING UNITS

10 /*DECIMAL NUMBER*/
0AH /*HEXADECIMAL NUMBER*/
12Q /*OCTAL NUMBER*/
00001010B /*BINARY NUMBER*/
10.0 /*FLOATING POINT NUMBER*/
1.0E1 /*FLOATING POINT NUMBER*/
‘A’ [*CHARACTER*/

I*CONSTANTS MAY BE GIVEN NAMES*/
DECLARE STATUSS$PORT LITERALLY ‘OFFEH’;
DECLARE THRESHOLD LITERALLY ‘98.6°;

Figure 2-47. PL/M-86 Constants

A structure is a collection of related data elements
that do not necessarily have the same type. The
elements are related by virtue of ‘‘belonging’’ to
the entity represented by the structure. Here is a
simple structure declaration:

DECLARE BRIDGE STRUCTURE
(SPAN WORD,
YR$BUILT BYTE,

AVGS$TRAFFIC REAL);

The year the bridge was built could be accessed by
writing BRIDGE.YR$BUILT; the structure ele-
ment name is ‘‘qualified’’ by the dot and the
structure name. This allows structures with the
same element names to be distinguished from
each other (e.g., HHIGHWAY.YR$BUILT).

Arrays and structures can be combined into more
complex data aggregates:

® array elements may be structures rather than
scalars,

® astructure element may be an array,

e structures in arrays may themselves contain
arrays.

Figure 2-48 provides sample PL/M-86 data
declarations.

Assignment Statement

Data that has been defined can be operated on
with PL/M-86 executable statements. The fun-
damental executable statement is the assignment
statement, written in this form:

variable-name = expression;

This means ‘‘evaluate the expression and assign
(move) the result to the variable.”’

There are three basic classes of expressions in
PL/M-86; arithmetic, relational and logical (see
table 2-24 and figure 2-49). All expressions are
combinations of operands and operators,
although an expression can consist of a single
operand. Operands are variables and constants;
operators vary according to the type of expres-
sion. Evaluation of an expression always yields a
single result; different classes of expressions yield
different types of results.

Table 2-24. Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT
ARITHMETIC +,—,*,1,MOD NUMBER

o “TRUE” - FFH
RELATIONAL >, <, =, >=, <= CEALSE" - OH
LOGICAL AND, OR, XOR, NOT 8/16-BIT STRING

2-71

8086 AND 8088 CENTRAL PROCESSING UNITS

[****SCALARS****/
DECLARE SWITCH BYTE,
DECLARE COUNT WORD,
INDEX INTEGER,

DECLARE (NET, GROSS, TOTAL)

/****ARRAYS&Q**/
DECLAREMONTH (12) BYTE;
DECLARE TERMINAL__LINE (80)

[****STRUCTURE****/
DECLARE EMPLOYEE STRUCTURE
(ID_NUMBER
DEPARTMENT

RATE

REAL;

/*1 SCALAR*/
/*1 SCALAR*/
/*3 SCALARS*/

BYTE;

WORD,
BYTE
REAL);

/****ARRAY OF STRUCTURES****/

DECLARE INVENTORY__ITEM (100)
(PART_NUMBER
ON_HAND
RE_ORDER

STRUCTURE
WORD,
WORD,
BYTE);

/****ARRAY WITHIN STRUCTURE****/

DECLARE COUNTY__DATA
(NAME (20)
TEN_YR_RAINFALL(10)
PER CAPITA_INCOME

STRUCTURE
BYTE,

BYTE,
REAL);

Figure 2-48. PL/M-86 Data Declarations

N D
w
1
@«

+1;
(A*B) -2;
((A*B) +3) MOD 3;

*
[T [[

O0Ow>»

RELATIONAL/
2;B=3
B>A;

C=B=(A+1);

/*LOGICAL*/

A =0011$0001B;

B =1000$0001B;
C=NOTB;

C=AAND B;
C=AO0ORB;
C=BXORA;

C=(A AND B) OR 0F0H;

/*B CONTAINS 4*/
/*C CONTAINS 6*/
/*C CONTAINS 2%/

/*C CONTAINS OFFH*/
/*C CONTAINS OFFH*/
/*C CONTAINS OFFH*/

/*$1S FOR READABILITY*/

/*C CONTAINS 0111$1110B*/
/*C CONTAINS 0000$0001B*/
/*C CONTAINS 1011$0001B*/
/*C CONTAINS 1011$0000B*/
/*C CONTAINS 1111$0001B*/

Figure 2-49. Expressions in PL/M-86 Assignment Statements

2-

78

8086 AND 8088 CENTRAL PROCESSING UNITS

Program Flow Statements

Simple PL/M-86 programs can be written with
just DECLARE and assignment statements. Such
programs, however, execute exactly the same
sequence of statements every time they are run
and would not prove very useful. PL/M-86 pro-
vides statements that change the flow of control
through a program. These statements allow sec-
tions of the program to be executed selectively,
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the
other of two statements for execution depending
on the result of a relational expression. The IF
statement is written:

IF relational-expression
THEN statementt;
ELSE statement2;

Statement] is executed if the expression is ‘‘true’’;
statement? is'not executed in this case. If the rela-
tion is “‘‘false,”’ statementl is skipped and state-
ment?2 is executed. In determining the ‘‘truth’’ of
an expression, the IF statement only examines the
low-order bit of the result (1=*‘true’’). Therefore,
arithmetic and logical expressions also may be
used in an IF statement.

A=3;B=5;

IFA<LB
THEN MINIMUM =1;
ELSE MINIMUM = 2;

/*EXECUTED*/
I*SKIPPED*/

MORE__DATA = 0FFH;

IF NOT MORE__DATA
THEN DONE =1,
ELSE DONE =0;

/*SKIPPED*/
I*EXECUTED*/

/*NESTED IF STATEMENTS*/
CLOCK__ON =1; HOUR=24; ALARM=OFF;
IF CLOCK__ON
THEN IFHOUR =24 :
THEN IF ALARM = OFF
THEN HOUR =0; /*EXECUTED*/

Figure 2-50. PL/M-86 IF Statements

A DO block begins with a DO statement and ends
with an END statement. All intervening
statements are part of the block. A DO block can
appear anywhere in a program that an executable
statement can appear. There are four kinds of DO
statements in PL/M-86: simple DO, DO CASE,
interative DO, and DO WHILE.

A simple DO statement (figure 2-51) causes all the
statements in the block to be treated as though
they were a single statement. Simple DOs enable a
single IF statement to cause multiple statements
to be executed (the alternative would be to repeat
the IF statement for every statement -to be
executed).

/*SIMPLE DO*/
A=5; B=9;
IF (A+2)< BTHEN DO;
X=X-1; /*EXECUTED*/
Y(X)=0; |*EXECUTED*/
END;
ELSE DO;
X=X+1; /*SKIPPED*/
Y(X)=1; /*SKIPPED*/
END;
/*DO CASE*/
A=2;
DO CASE (A);
X=X+1; /*SKIPPED*/
X =X+2; /*SKIPPED*/
X =X+3; /*EXECUTED*/
X =X+4; /*SKIPPED*/
END;
Figure 2-51. PL/M-86 Simple DO
and DO CASE

DO CASE (figure 2-51) causes one statement in
the DO block to be selected and executed depend-
ing on the result of the expression (usually
arithmetic) written immediately following DO
CASE:

DO CASE arithmetic-expression;

If the expression yields 0, the first statement in the
DO block is executed; if the expression yields 1,
the second statement is executed, etc. A statement
in the DO block ‘may be null (consist of only a
semicolon) to cause no action for selected cases.
DO CASE provides a rapid and easily-understood
way to respond to data like ‘‘transaction codes’’

2-79

8086 AND 8088 CENTRAL PROCESSING UNITS

where a different action is required for each of
many values a code might assume (an alternative
would be an IF statement for every value the code
could assume).

An iterative DO block (figures 2-52 and 2-53) is
executed from O to an infinite number of times
based on the relationship of an index variable to
an expression that terminates execution. The
general form is: :

DO index = start-expr TO stop-expr BY step-expr;

The ‘“BY step-expr’’ is optional, and the step is
assumed to be 1 if not supplied (the typical case).
When control first reaches the DO statement,
start-expr is evaluated and is assigned to index.
Then index is compared to stop-expr; if index
exceeds stop-expr, control goes to the statement
following the DO block, otherwise the block is
executed. At the end of the block, the result of
step-expr is added to index, and it is compared to

stop-expr again, etc. (The iterative DO is quite
flexible—this is a simplified explanation.)
Iterative DOs are handy for *‘stepping through?’
an array. For example, an array of 10 elements
could be zeroed by:

DOI=0TOY;
ARRAY(l) = 0;
END;

In a DO WHILE (figures 2-52 and 2-54), the
statements are executed repeatedly as long as the
expression following WHILE evaluates to
“true.”” DO WHILE often can be applied in
situations where an interative DO will not work,
or is clumsy, such as where repetition must be
controlled by a non-integer value. Like an
iterative DO, DO WHILE may be executed from
0 times to an infinite number of times.

I*ITERATIVE DO*/

DOI1=0TOS5;
ARRAY (h=1; .
TOTAL =TOTAL+H;
END;

/*1=6 AT THIS POINT*/

/*DO WHILE*/

/*EXECUTED 6 TIMES*/
I*EXECUTED 6 TIMES*/

MORE =0; SPACE__OK =1;
DO WHILE (MORE AND SPACE__OK);,

ITEMS =ITEMS +1;

N_TRACKS =
N_TRACKS + 10;

IF N_TRACKS >=999

/*SKIPPED*/

/*SKIPPED*/
/*SKIPPED*/

THEN SPACE_OK =0;

END;

/*DO WHILE*/
CODE = ‘A’;

DO WHILE (CODE = ‘A’);
TEMP = TEMP * STEP;

IFTEMP >98.6

THEN CODE = ‘B

/*EXECUTION STOPS*/
/*AFTER TEMP*/

’ /*EXCEEDS 98.6*/

N__STEPS =N__STEPS + 1;

END;

Figlire 2-52. PL/M-86 Iterative DO and DO WHILE

2-80

8086 AND 8088 CENTRAL PROCESSING UNITS

EXECUTE
BLOCK

\

INDEX<INDEX + STEP

S
p o —

STATEMENT
FOLLOWING
END

Figure 2-53. PL/M-86 Iterative DO Flowchart

A GOTO written in the form
GOTO target;

causes an unconditional transfer (branch) to
another statement in the program. The statement
receiving control would be written

target: statement;

where ‘‘target’” is a label

statement.

identifying = the

A CALL statement written in the form

CALL proc-name (parm-list);

EXPRESSION

EXECUTE
BLOCK

SR
r_

STATEMENT
FOLLOWING
END

Figure 2-54. PL/M-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro-
gram. The variables listed in ‘‘parm-list’’ are
passed to the procedure, the procedure is
executed, and then control returns to the state-
ment following the CALL. Thus, unlike a GOTO,
a CALL brings control back to the point of
departure.

Procedures

Procedures are ‘‘subprograms’ that make it
possible to simplify the design of complex pro-
grams and to share a single copy of a routine
among programs. A procedure usually is designed
to perform one function;j i.e., to solve one part of
the total problem with which the program is deal-
ing. For example, a program to calculate
paychecks could be broken down into separate
procedures for calculating gross pay, income tax,
Social Security and net pay. The organization of
the ‘‘main’’ program then could be understood at
a glance:

CALL GROSS__PAY;

CALL INCOME__TAX;
CALL SOCIAL__SECURITY;
CALL NET__PAY;

2-81

8086 AND 8088 CENTRAL PROCESSING UNITS

Furthermore, the income tax procedure could be
divided into separate procedures for calculating
state and federal taxes. Procedures, then, provide
a mechanism by which a large, complex problem
can be attacked with a ‘‘divide and conquer’’
strategy.

A procedure usually is defined early in a program,
but it is only executed when it is referred to by
name in a later PL/M-86 statement. A procedure
can accept a list of variables, called parameters,
that it will use in performing its function. These
parameters may assume different values each time
the procedure is executed.

PL/M-86 provides two classes of procedures,
typed and untyped. A typed procedure returns a
value to the statement that activates it and, in
addition, may accept parameters from that state-
ment. A typed procedure is activated whenever its
name appears in a statement; the value it returns
effectively takes the place of the procedure name
in the statement. Typed procedures can be used in
all kinds of PL/M-86 expressions. Untyped pro-
cedures may accept parameters; but do-not return

a value. Untyped procedures are activated by
CALL statements. Figure 2-55 shows how simple
typed and untyped procedures may be declared
and then activated.

The statements forming the body of a procedure
need not exist within the module that activates the
procedure. The activating module can declare the
procedure EXTERNAL, and the LINK-86 utility
will connect the two modules.

PL/M-86 procedures can be written to handle
interrupts. Procedures also may be declared
REENTRANT, making them concurrently usable
by different tasks in a multitasking system.
PL/M-86 also has about 50 procedures built into
the language, including facilities for:

® converting variables from one type to another
* shifting and rotating bits

¢ performing input and output

* manipulating strings

® activating the CPU LOCK signal.

/*DECLARATION OF A TYPED PROCEDURE THAT
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE*/

AVG: PROCEDURE (X,Y) REAL;
DECLARE (X,Y) REAL;
RETURN (X+Y)/2.0;

END AVG;

/*ACTIVATING A TYPED PROCEDURE*/

LOW =2.0;
HIGH = 3.0;

TOTAL =TOTAL + AVG (LOW,HIGH); /*2.51S ADDED TO TOTAL*/

/*DECLARATION OF AN UNTYPED PROCEDURE

THAT ACCEPTS ONE PARAMETER*/

TEST: PROCEDURE (X);
DECLARE X BYTE;
IF X=0HTHEN
COUNT=COUNT +1;
END TEST;

/*ACTIVATING AN UNTYPED PROCEDURE*/
CALL TEST (ALPHA); /*COUNT IS INCREMENTED

IF ALPHA =0*/

Figure 2-55. PL/M-86 Procedures

8086 AND 8088 CENTRAL PROCESSING UNITS

ASM-86

Programmers who are familiar with the CPU
architecture can obtain complete access to all pro-
cessor facilities with ASM-86. Since the execution
unit on both the 8086 and the 8088 is identical,
both processors use the same assembly language.
Examples of processor features not accessible
through PL/M-86 that can be utilized in ASM-86
programs include: software interrupts, the WAIT
and ESC instructions and explicit control of the
segment registers.

An ASM-86 program often can be written to
execute faster and/or to use less memory than the
same program written in PL/M-86. This is
because the compiler has a limited ‘‘knowledge’’
of the entire program and must generate a
generalized set of machine instructions that will
work in all situations, but may not be optimal in a
particular situation. For example, assume that the
elements of an array are to be summed and the
result placed in a variable in memory. The
machine instructions generated by the PL/M-86
compiler would move the next array element to a
register and then add the register to the sum
variable in memory. An ASM-86 programmer,
knowing that a register will be ‘‘safe’’ while the
array is summed, could instead add all the array
elements to a register and then move the register
to the sum variable, saving one instruction execu-
tion per array element.

It is easier to write assembly language programs in
ASM-86 than it is in many assembly languages.
ASM-86 contains powerful data structuring
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program-
mer’s ‘‘view’’ of the 8086/8088 machine instruc-
tion set. For example, although there are 28 dif-
ferent types of MOV machine instructions, the
programmer always writes a single form of the
instruction:

MOV destination-operand, source-operand

The assembler generates the correct machine-
instruction form based on the attributes of the
source and destination operands (attributes are
covered later in this section). Finally, the ASM-86
assembler performs extensive checks on the con-
sistency of operand definition versus operand use
in instructions, catching many common types of
clerical errors.

Statements

Compared to many assemblers, ASM-86 accepts a
relaxed statement format (see figure 2-56). This
helps to reduce clerical errors and allows pro-
grammers to format their programs for better
readability. Variable and label names may be up
to 31 characters long and are not restricted to
alphabetic and numeric characters. In particular,
the underscore (__) may be used to improve the
readability of long names. Blanks may be inserted
freely between identifiers (there are no ‘‘column”
requirements), and statements also may span
multiple lines.

All ASM-86 statements are classified as instruc-
tions or directives. A clear distinction must be
made here between ASM-86 instructions and

; THIS STATEMENT CONTAINS A COMMENT ONLY

MOV AX, [BX+3]
MOV AX, [BX + 3]
MOV AX,
& [BX + 3]
ZERO EQU 0
CUR_PROJ EQU PROJECT [BX][SI]

THE_STACK_STARTS_HERE SEGMENT

TIGHT_LOOP: JMP TIGHT__LOOP
MOV ES:DATA_STRING [SI], AL

WAIT: LOCK XCHG AX,SEMAPHORE

; TYPICAL ASM-86 INSTRUCTION
; BLANKS NOT SIGNIFICANT

; CONTINUED STATEMENTS

; SIMPLE ASM-86 DIRECTIVE

; MORE COMPLEX DIRECTIVE

; LONG IDENTIFIER

; LABELLED STATEMENT

; SEGMENT OVERRIDE PREFIX
; LABEL & LOCK PREFIX

Figure 2-56. ASM-86 Statements

2-83

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

8086/8088 machine instructions. The assembler
generates machine instructions from ASM-86
instructions written by a programmer. Each
ASM-86 instruction produces one machine
instruction, but the form of the generated
machine instruction will vary according to the
operands written in the ASM-86 instruction. For
example, writing -

MOV BL,1

produces a byte-immediate-to-register MOV,
while writing

MOV TERMINAL__NO,BX
produces a word-register-to-memory MOV. To
the programmer, though, there is simply a MOV
source-to-destination instruction.

ASM-86 instructions are written in the form:

(label:) (prefix) mnemonic (operand(s)) (;comment)

where parentheses denote optional fields (theA

parentheses are not actually written by program-
mers). The label field names the storage location
containing the machine instruction so that it can
be referred to symbolically as the target of a JIMP
instruction elsewhere in the program. Writing a
prefix causes ASM-86 to generate one of the
special prefix bytes (segment override, bus lock or
repeat) immediately preceding the machine
instruction. The mnemonic identifies the type of
instruction (MOV for move,; ADD for add, etc.)
that is to be generated. Zero, one or two operands
may be written next, separated by commas,
according to the requirements of the instruction.
Finally, writing a semicolon signifies that what
follows is a comment. Comments do not affect
the execution of a program, but they can greatly

improve its clarity; all good ASM-86 programs
are thoughtfully commented.

Writing a directive gives ASM-86 information to
use in generating instructions, but does not itself
produce a machine instruction.- About 20 dif-
ferent directives are available in ASM-86. Direc-
tives are written like this: :

(name) mnemonic (operand(s)) (;comment)

Some directives require a name to be present,
while others prohibit a name. ASM-86 recognizes
the directive from the mnemonic keyword written
in the next field. Any operands required by the
directive are written next, separated by commas.
A comment may be written as the last field of a
directive.

Some of the more commonly used directives
define procedures (PROC), allocate storage for
variables (DB, DW, DD) give a descriptive name
to a number or an expression (EQU), define the
bounds of segments (SEGMENT and ENDS),
and force instructions and data to be aligned at
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric
constants (see figure 2-57) may be written in
ASM-86 statements; the assembler can perform
basic arithmetic operations on these as well. All
numbers must, however, be integers and must be
representable in 16 bits including a sign bit.
Negative numbers are assembled in standard
two’s complement notation.

Character constants are enclosed in single quotes
and may be up to 255 characters long when used

MOV STRING [SI], ‘A’ ; CHARACTER

MoV STRING [Sl], 41H ; EQUIVALENT IN HEX

ADD AX, 0C4H ; HEXCONSTANT MUST START WITH NUMERAL
OCTAL_38 - EQU 100 ; OCTAL

OCTAL_9 EQU 10Q ; OCTAL ALTERNATE

ALL__ONES EQU 11111111B ; BINARY

MINUS_5 EQU -5 ; DECIMAL

MINUS__6 EQU -6D ; DECIMAL ALTERNATE

Figure 2-57. ASM-86 Constants

Mnemonics © Intel, 1978

2-84

8086 AND 8088 CENTRAL PROCESSING UNITS

to initialize storage. When used as immediate
operands, character constants may be one or two
bytes long to match the length of the destination
operand.

Defining Data

Most ASM-86 programs begin by defining the
variables with which they will work. Three direc-
tives, DB, DW and DD, are used to allocate and
name data storage locations in ASM-86 (see
figure 2-58). The directives are used to define
storage in three different units: DB means
““define byte,”” DW means ‘‘define word,”’ and
DD means ‘‘define doubleword.’”” The operands
of these directives tell the assembler how many
storage units to allocate and what initial values, if
any, with which to fill the locations.

A_SEG SEGMENT
ALPHA DB 2 ; NOT INITIALIZED
ETA pw 2 ;NOT INITIALIZED
GAMMA DD ? ; NOT INITIALIZED
DELTA DB 2 : NOT INITIALIZED
EPSILON DW 5 ; CONTAINS 05H
_SEG ENDS
B_SEG SEGMENTAT 55H ; SPECIFYING BASE ADDRESS
10TA DB ‘HELLO’ = ; CONTAINS 48454C 4C 4F H
KAPPA ~ DW AB {CONTAINS 4241 H
LAMBDA DD _SEG : CONTAINS 0000 5500 H
MU BB 105DUPO : CONTAINS (100 X) 00H
B_SEG ENDS
ATTRIBUTES OPERATORS
VARIABLE | SEGMENT | OFFSET | TYPE | LENGTH | SizE
ALPHA A_SEG 0 1 1 1
ETA A_SEG 1 2 1 2
GAMMA A_SEG 3 4 1 4
DELTA A_SEG 7 1 1 1
EPSILON A_SEG 8 2 1 2
TA B_SEG 0 1 5 5
KAPPA B_SEG 5 2 1 2
LAMBDA B_SEG 7 4 1 4
B_SEG 1 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the
assembler keeps track of three attributes: seg-
ment, offset and type. Segment identifies the seg-
ment that contains the variable (segment control
is covered shortly). Offset is the distance in bytes
of the variable from the beginning of its contain-

ing segment. Type identifies the variable’s alloca-
tion unit (1 = byte, 2 = word, 4 = doubleword).
When a variable is referenced in an instruction,
ASM-86 uses these attributes to determine what
form of the instruction to generate. If the
variable’s attributes conflict with its usage in an
instruction, ASM-86 produces an error message.
For example, attempting to add a variable defined
as a word to a byte register is an error. There are
cases where the assembler must be explicitly told
an operand’s type. For example, writing MOVE
[BX],5 will produce an error message because the
assembler does not know if [BX] refers to a byte,
a word or a doubleword. The following operators
can be used to provide this information: BYTE
PTR, WORD PTR and DWORD PTR. In the
previous example, a word could be moved to the
location referenced by [BX] by wrmng MOVE
WORD PTR [BX],5

ASM-86 also provides two built-in operators,
LENGTH and SIZE, that can be written in
ASM-86 instructions along with attribute
information. LENGTH causes the assembler to
return the number of storage units (bytes, words
or doublewords) occupied by an array. SIZE
causes ASM-86 to return the total number of
bytes occupied by a variable or an array. These
operators and attributes make it possible to write
generalized instruction sequences that need not be
changed (only reassembled) if the attributes of the
variables change (e.g., a byte array is changed to a
word array). See figure 2-59 for an example of
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin-
ing individual bits-and strings of bits within a byte
or a word. Such a definition is called a record,
and each named bit string (which may consist of a
single bit) in a record is called a field. Records
promote efficient use of storage while at the same
time improving the readability of the program
and reducing the likelihood of clerical errors.
Defining a record does not -allocate storage;
rather, -a record is a template that tells the
assembler the name and location of each bit field
within the byte or word. When a field name is
written later in an instruction, ASM-86 uses the
record to generate an immediate mask for instruc-
tions like TEST, AND, OR, etc., or an immediate
count for shifts and rotates. See figure 2-60 for an

_example of using a record.

2-85

8086 AND 8088 CENTRAL PROCESSING UNITS

; SUM THE CONTENTS OF TABLE INTO AX

TABLE DW 50 DUP(?)
; NOTE SAME INSTRUCTIONS WOULD WORK FOR
; TABLE DB 25 DUP(?)
; TABLE Dw 118 DUP(?), ETC.
SuB AX,AX ; CLEARSUM
MOV CX, LENGTH TABLE ; LOOP TERMINATOR
Mov S|, SIZE TABLE ;POINT SUBSCRIPT
; TOEND OF TABLE
ADD__NEXT: SUB SI, TYPE TABLE ; BACK UP ONE ELEMENT
ADD AX, TABLE [S]] ; ADD ELEMENT
LOOP ADD__NEXT ; UNTILCX =0

; AXCONTAINS SUM

Figure 2-59. Using ASM-86 Attributes and Attribute Operators

EMP_BYTE DB ? ; 1BYTE, UNINITIALIZED
; BIT DEFINITIONS:
; 7-2 :YEARS EMPLOYED

1 : SEX (1 =FEMALE)

0 :STATUS (1 =EXEMPT)

EMP__BITSRECORD ;RECORD DEFINED HERE
& YRS_EMP : 6,

& SEX:1,

& STATUS : 1

; SELECT NONEXEMPT FEMALES EMPLOYED 10 + YEARS

MoV AL, EMP_BYTE ; KEEP ORIGINAL INTACT
TEST AL, MASK SEX ; FEMALE ? :

JZ REJECT ;NO, QUITE -

TEST AL, MASK STATUS ; NONEXEMPT?

JNZ REJECT ;NO, QUIT

SHR AL,CL ; ISOLATE YEARS

CMP AL, 11 ; >=10 YEARS?

JL REJECT ; NO, QUIT

; PROCESS SELECTED EMPLOYEE
REJECT: , PROCESS REJECTED EMPLOYEE

. ; RECORD USED HERE
MOV CL,YRS_EMP ; GET SHIFT COUNT

Figure 2-60. Using an ASM-86 RECORD Definition

Mnemonics © Intel, 1978 2-86

8086 AND 8088 CENTRAL PROCESSING UNITS

Structures

An ASM-86 structure is a map, or template, that
gives names and attributes (length, type, etc.) toa
collection of fields. Each field in a structure is
defined using DB, DW and DD directives;
however, no storage is allocated to the structure.
Instead, the structure becomes associated with a
particular area of memory when a field name is
referenced in an instruction along with a base
value. The base value ‘‘locates’’ the structure; it
may be a variable name or a base register (BX or
BP). The structure may be associated with
another area of memory by specifying a different
base value. Figure 2-61 shows how a simple struc-
ture may be defined and used. Note that a struc-
ture field may itself be a structure, allowing much
more complex organizations to be laid out.

Structures are particularly useful in situations
where the same storage format is at multiple loca-
tions, . where the location of a collection of
variables is not known at assembly-time, and
where the location of a collection of variables
changes during execution. Applications include
multiple buffers for a single file, list processing
and stack addressing.

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for
each of the 8086/8088 addressing modes. The
assembler interprets a bracketed reference to BX,
BP, SI or DI as a base or index register to be used
to construct the effective address of a memory
operand. An unbracketed reference means the
register itself is the operand.

The following cases illustrate typical ASM-86
coding for accessing arrays and structures, and
show which addressing mode the assembler
specifies in the machine instruction it generates:

e If ALPHA is an array, then ALPHA [SI] is
the element indexed by SI, and ALPHA
[SI+ 1] is the following byte (indexed).

e If ALPHA is the base address of a structure
and BETA is a field in the structure, then
ALPHA.BETA selects the BETA field
(direct).

e If register BX contajns the base address of a
structure and BETA is a field in the struc-
ture, then [BX].BETA refers to the BETA
field (based).

EMPLOYEE STRUC
SSN DB 9
RATE DB 1
DEPT DW 1
YR_HIRED DB 1
EMPLOYEE ENDS

MASTER DB 12

TXN ' DB 12

DUP(?)
DUP(?)
DUP(?)
DUP(?)

DUP(?)
DUP(?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
AL, TXN.RATE
MASTER:RATE, AL

MOV
MoV

; ASSUME BX POINTS TO AN AREA CONTAINING
; DATAIN THE SAME FORMAT AS THE EMPLOYEE
; STRUCTURE. ZERO THE SECOND DIGIT

; OFSSN
MoV
MOV

S, 1

; INDEX'VALUE OF 2ND DIGIT

[BX].SSN[SI],0

Figure 2-61. Using an ASM-86 Structure

2-87

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; REGISTER < REGISTER

; REGISTER < IMMEDIATE

; REGISTER < MEMORY (DIRECT)

; MEMORY (DIRECT) < IMMEDIATE

; MEMORY (DIRECT) < REGISTER

; REGISTER < MEMORY (REGISTER INDIRECT)
; MEMORY (REGISTER INDIRECT) < IMMEDIATE
; MEMORY (BASED) < REGISTER

; REGISTER < MEMORY (INDEXED)

; MEMORY (INDEXED) < IMMEDIATE

; MEMORY (BASED INDEXED) < REGISTER

; REGISTER <« MEMORY (BASED INDEXED)

ADD AX, BX

ADD AL,5

ADD CX,ALPHA

ADD ALPHA,6

ADD ALPHA, DX

ADD BL, [BX]

ADD [SI], BH

ADD [PP].ALPHA, AH

ADD CX, ALPHA [SI]

ADD ALPHA [DI+2], 10

ADD [BX].ALPHA [SI], AL

ADD SI, [BP+4] [DI]

IN AL, 30 : DIRECT PORT
OUT DX, AX : INDIRECT PORT

Figure 2-62. ASM-86 Addressing Mode Examples

e If register BX contains the»a,ddress of an
array, then [BX] [SI] refers to the element
indexed by SI (based indexed).

e If register BX points to a structure whose
ALPHA field is an array, then [BX]
.ALPHA [SI] selects the element indexed by
SI (based indexed).

e If register BX points to a structure whose
ALPHA field is itself a structure, then
[BX].ALPHA.BETA refers to the BETA
field of the ALPHA substructure (based).

e If register BX points to a structure and the
ALPHA field of the structure is an array and
each element of ALPHA is a structure, then
[BX].ALPHA[SI + 3].BETA refers to the
field BETA in the element of ALPHA
indexed by [SI + 3] (based indexed).

Note that DI may be used in place of SI in these
cases and that BP may be substituted for BX.
Without a segment override prefix, expressions
containing BP refer to the current stack segment,
and expressions containing BX refer to the cur-
rent data segment.

Segment Control

An ASM-86 program is organized into a series of
named segments. These are ‘‘logical’’ segments;
they are eventually mapped into 8086/8088
memory segments, but this usually is not done
until the program is located. A SEGMENT direc-
tive starts a segment, and an ENDS directive ends
the segment (see figure 2-63). All data and

instructions written between SEGMENT and
ENDS are part of the named segment. In small
programs, variables often are defined in one or
two segment(s), stack space is allocated in another
segment, and instructions are written in a third or
fourth segment. It is perfectly possible, however,
to write a complete program in one segment; if
this is done, all the segment registers will contain
the same base address; that is, the memory
segments will completely overlap. Large pro-
grams may be divided into dozens of segments.

The first instructions in a program usually
establish the correspondence between segment
names and segment registers, and then load each
segment register with the base address of its cor-
responding segment. The ASSUME directive tells
the assembler what addresses will be in the seg-
ment registers at execution time. The assembler
checks each memory instruction operand, deter-
mines which segment it is in and which segment
register contains the address of that segment. If
the assumed register is the register expected by the
hardware for that instruction type, then the
assembler generates the machine instruction nor-
mally. If, however, the hardware expects one seg-
ment register to be used, and the operand is not in
the segment pointed to by that register, then the
assembler automatically precedes the machine
instruction with a segment override prefix byte.
(If the segment cannot be overridden, the
assembler produces an error message.) An exam-
ple may clarify this. If register BP is used in an
instruction, the 8086 and 8088 CPUs expect, as a
default, that the memory operand will be located
in the segment pointed to by SS—in the current

Mnemonics © Intel, 1978

2-88

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA_SEG SEGMENT
; DATA DEFINITIONS GO HERE
DATA_SEG ENDS

STACK_SEG SEGMENT
; ALLOCATE 100 WORDS FOR A STACK AND
; LABEL THE INITIAL TOS FOR LOADING SP.
DW 100 DUP(?)
STACK TOP LABEL WORD
STACK_SEG ENDS

CODE__SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT
; CORRESPONDENCE. NOTE THAT IN THIS
; PROGRAM THE EXTRA SEGMENT INITIALLY
; OVERLAPS THE DATA SEGMENT ENTIRELY.
ASSUME CS: CODE__SEG,

& DS: DATA_SEG,
& ES: DATA__SEG,
& SS: STACK__SEG

START: ; THIS IS THE BEGINNING OF THE PROGRAM.
; LOC-86 WILL PLACE A JMP TO THIS
; LOCATION AT ADDRESS FFFFOH.

; LOAD THE SEGMENT REGISTERS. CS DOES NOT
; HAVETO BE LOADED BECAUSE SYSTEM
; RESETSETSIT TO FFFFH, AND THE
; LONG JMP INSTRUCTION AT THAT ADDRESS
; UPDATES IT TO THE ADDRESS OF CODE__SEG.
; SEGMENT REGISTERS ARE LOADED FROM AX
; BECAUSE THERE IS NO IMMEDIATE-TO-
; SEGMENT_REGISTER FORM OF THE MOV

INSTRUCTION.
MOV AX,DATA_SEG
MOV DS, AX
MOV ES, AX
MOV AX,STACK__SEG
MOV SS, AX

; SET STACK POINTER TO INITIAL TOS.
MOV SP,OFFSET STACK__TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE__SEG ENDS

; NEXT STATEMENT ENDS ASSEMBLY AND TELLS
; LOC-86 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments

2-89

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

stack segment. A programmer may, however,
choose to use BP to address a variable in the cur-
rent data segment—the segment pointed to by
DS. The ASSUME directive enables the assembler
to detect this situation and to automatically
generate the needed override prefix.

It also is possible for a programmer to explicitly
code segment override prefixes rather than relying
on the assembler. This may result in a somewhat
better-documented program since attention is
called to the override. The disadvantage of
explicit segment overrides is that the assembler
does not check whether the operand is in fact
addressable through the overriding segment
register.

ASM-86, in conjunction with the relocation and
linkage facilities, provides much more
sophisticated segment handling capabilities than
have been described in this introduction. For
example, different logical segments may be com-
bined into the same physical - segment, and
segments may be assigned the same physical loca-
tions (allowing a ‘‘common’’ area to be accessed
by different programs using different variable
and label names).

Procedures

Procedures may be written in ASM-86 as well as
in PL/M-86. In fact, procedures written in one
language are callable from the other, provided
that a few simple conventions are observed in the
ASM-86 program. The purpose of ASM-86 pro-
cedures is the same as in PL/M-86: to simplify the
design of complex programs and to make a single
copy of a commonly-used routine accessible from
anywhere in the program.

An ASM-86 program activates a procedure with a
CALL instruction. The procedure terminates with
a RET instruction, which transfers control to the
instruction following the CALL. Parameters may
be passed in registers or pushed onto the stack
before calling the procedure. The RET instruction
can discard stack parameters before returning to
the caller.

Unlike PL/M-86 procedures, ASM-86 procedures
are executable where they are coded, as well as by
a CALL instruction. Therefore, ASM-86 pro-
cedures often are defined following the main pro-
gram logic, rather than preceding it as in

PL/M-86. Figure 2-64 shows how procedures
may be defined .and called in ASM-86. Section
2-10contains examples of procedures that accept
parameters on the stack.

LINK-86

Fundamentally, LINK-86 combines separate
relocatable object modules into a single program.
This process consists primarily of combining
(logical) segments of the same name into single
segments, adjusting relative addresses when
segments are combined, and resolving external
references.

A programmer can use a procedure that is actual-
ly contained in another module by naming the
procedure in an ASM-86 EXTRN directive, or
declaring the procedure to be EXTERNAL in
PL/M-86. The procedure is defined or declared
PUBLIC in the module where it actually resides,
meaning that it can be used by other modules.
When LINK-86 encounters such an external
reference, it searches through the other modules
in its input, trying to find the matching PUBLIC
declaration. If it finds the referenced object, it
links it to the reference, ‘‘satisfying’’ the external
reference. If it' cannot satisfy the reference,
LINK-86 prints a diagnostic message. LINK-86
also checks PL/M-86 procedure calls and func-
tion references to insure that the parameters
passed to a procedure are the type expected by the
procedure.

LINK-86 gives the programmer, particularly the
ASM-86 programmer, great control over
segments (segments may be combined end to end,
renamed, assigned the same locations, etc.).
LINK-86 also produces a map that summarizes
the link process and lists any unusual conditions
encountered. While the output of LINK-86 is
generally input to LOC-86, it also may again be
input to LINK-86 to permit modules to be linked
in incremental groups.

LOC-86

LOC-86 accepts the single relocatable object
module produced by LINK-86 and binds the
memory references in the module to actual
memory addresses. Its output is an absolute
object module ready for loading into the memory
of an execution vehicle. LOC-86 also inserts a

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

FREQUENCY DB 256 DUP (0)
USART_DATA EQU OFFOH - DATA PORT ADDRESS
USART_STAT EQU OFF2H - STATUS PORT ADDRESS
NEXT: CALL CHAR_IN

CALL COUNT_IT

JMP NEXT
CHAR_IN PROC

; THIS PROCEDURE DOES NOT TAKE PARAMETERS.
; ITSAMPLES THE USART STATUS PORT

; UNTIL ACHARACTER IS READY, AND

; THEN READS THE CHARACTERINTO AL

MOV DX, USART_STAT
AGAIN: IN AL, DX ; READ STATUS

AND AL,2 ; CHARACTER PRESENT?
Jz AGAIN ; NO, TRY AGAIN
MOV DX, USART_DATA
IN AL, DX ; YES, READ CHARACTER
RET

CHAR_IN ENDP

COUNT_IT PROC

; THIS PROCEDURE EXPECTS A CHARACTER IN AL.
; ITINCREMENTS A COUNTER IN AFREQUENCY
; TABLE BASED ON THE BINARY VALUE OF

; THECHARACTER.
XOR AH, AH ; CLEARHIGH BYTE
MOV SI, AL ; INDEXINTO TABLE
INC FREQUENCY [S]; BUMP THE COUNTER
RET
COUNT_IT ENDP

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at.location
FFFFOH. The target of the JMP instruction is the
logical beginning of the program. When the 8086
or 8088 is reset, this instruction is automatically
executed to restart the system. LOC-86 produces
a memory map of the absolute object module and
a table showing the address of every symbol
defined in the program.

LIB-86
LIB-86 is a valuable adjunct to the R & L pro-

grams. It is used to maintain relocatable object
modules in special files called libraries. Libraries

are a convenient way to make collections of
modules available to LINK-86. When a module -
being linked refers to ‘‘external’’ data or instruc-
tions, LINK-86 can automatically search a series
of libraries, find the referenced module, and
include it in the program being created.

OH-86

OH-86 converts an absolute object module into
Intel’s standard hexadecimal format. This format
is used by some PROM programmers and system
loaders, such as the iSBC 957™ and SDK-86
loaders.

2-91

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CONV-86

Users who have developed substantial, . fully-
tested assembly language programs for the
8080/8085 microprocessors may want to use
CONV-86 to automatically convert large amounts
of this code into ASM-86 source code (see figure
2-65). CONV-86 accepts an ASM-80 source pro-

gram as input and produces an ASM-86 source.

program as output, plus a print file that
documents the conversion and lists any diagnostic
messages.

Some programs cannot be completely converted
by CONYV-86. Exceptions include:

¢ self-modifying code,

e software timing loops,

¢ 8085 RIM and SIM instructions,
¢ interrupt code, and ‘

® macros.

By using the diagnostic messages produced by
CONYV-86, the converted ASM-86 source file can
be manually edited to clean up any sections not

converted. A converted program is typically -

10-20% larger than the ASM-80 version and does
not take full advantage of the 8086/8088 architec-
ture. However, the development time saved by
using CONV-86 can make it an attractive alter-
native to rewriting working programs from
scratch.

Sample Programs

Figures 2-66 and 2-67 show how a simple program
might be written in PL/M-86 and ASM-86. The
program simulates a pair of rolling dice and
executes on an Intel SDK-86 System Design Kit.
The SDK-86 is an 8086-based: computer with
" memory, parallel and serial I/0 ports, a ke"ypad
and a display. The SDK-86 is implemented on a
single PC board which includes a large prototype
area for system expansion and experimentation.
A ROM-based monitor program provides a user
interface to the system; commands are entered
through the keypad and monitor responses are
written on the display. With the addition of a
cable and software interface (called SDK-C86),
the SDK-86 may be connected to an Intellec®
Microcomputer Development System. In this
mode, the user enters monitor commands from
the Intellec keyboard and receives replies on the
Intellec CRT display.

ASM-80
SOURCE
PROGRAM

CONV-86

DIAGNOSTICS

ASM-86
ASSEMBLER

Figure 2-65. ASM-80/ASM-86 Conversion

The dice program runs on an SDK-86 that is con-
nected to an Intellec® Microcomputer Develop-
ment System. The program displays two con-
tinuously changing digits in the upper left corner
of the Intellec display. The digits are random
numbers in the range 1-6. A roll is started by
entering a monitor GO command. Pressing the
INTR key on the SDK-86 keypad stops the roll.

There are two procedures in the PL/M-86 version
of the dice program. The first is called CO for
console output. This is an untyped PUBLIC pro-
cedure that is supplied on an SDK-C86 diskette.
CO is written in PL/M-86 and outputs one
character to the Intellec console. It is declared
EXTERNAL in the dice program because it exists
in - another module. LINK-86 searches' the
SDK-C86 library for CO and includes it in the
single relocatable object module it builds.

RANDOM is an internal typed procedure; it is
contained in the dice module and returns a word
value that is a random number between 1 and 6.
RANDOM does not ‘use any parameters and is
activated in the parameter list passed to CO.
When CO is called like this, first RANDOM is ac-
tivated,. then 30 is added to the number it returns
and the sumis passed to CO.

Mnemonics © Intel, 1978

2-92

8086 AND 8088 CENTRAL PROCESSING UNITS

PL/M-86 COMPILER DICE

18IS-I1 PL/M-86 V1.2 COMPILATION OF MODULE DICE
OBJECT MODULE PLACED IN :F1:DICE.OBJ
COMPILER INVOKED BY: PLM86 :F1:DICE.P86 XREF

1 DICE: DO;
/% THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE ¥/

/¥ GIVE NAMES TO CONSTANTS */

DECLARE CLEARS$CRT1 LITERALLY 'O1BH'; /¥ INTELLEC */
DECLARE CLEAR$CRT2 LITERALLY 'O45H'; /% CRT */
DECLARE HOME$CURSOR1 LITERALLY 'O1BH'; /% CONTROL */
DECLARE HOME$CURSOR2 LITERALLY 'O48H'; /¥ CODES */
DECLARE SPACE LITERALLY 'O20H'; /¥ASCII BLANK*/

ovEwN
NN RN

/%* PROGRAM VARIABLES */

701 DECLARE (RANDOM$NUMBER,SAVE) WORD;
/% CONSOLE OUTPUT PROCEDURE */
8 1 CO: PROCEDURE(X) EXTERNAL;
9 2 DECLARE X BYTE;
10 2 END CO;
/* RANDOM NUMBER GENERATOR PROCEDURE */
/% ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: */
/% "A GUIDE TO PL/M PROGRAMMING FOR *®/
/% MICROCOMPUTER APPLICATIONS," */
/% DANIEL D. MCCRACKEN, */
/% ADDISON-WESLEY, 1978 ®/
1M1 RANDOM: PROCEDURE WORD;
12 2 RANDOM$NUMBER = SAVE; /*START WITH OLD NUMBER*/
13 2 RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849;
w2 SAVE = RANDOM$NUMBER; /*SAVE FOR NEXT TIME*/
/*FORCE 16-BIT NUMBER INTO RANGE 1-6%/
15 2 RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1;
16 2 RETURN RANDOM$NUMBER;
17 2 END RANDOM;
/% MAIN ROUTINE */
/% CLEAR THE SCREEN*/
181 CALL CO(CLEAR$CRT1);
19 1 CALL CO(CLEAR$CRT2);
/* ROLL THE DICE UNTIL INTERRUPTED */
20 1 DO WHILE 1; /%'DO FOREVER"*/
/*NOTE THAT ADDING 30 TO THE DIE VALUE */
/% CONVERTS IT TO ASCII. */
21 2 CALL CO(RANDOM + 030H); /*1ST DIE¥/
22 2 CALL CO(SPACE); /*BLANK*/
23 2 CALL CO(RANDOM + 030H); /%2ND DIEX/
/* HOME THE CURSOR */
24 2 CALL CO(HOME$CURSOR1);
25 2 CALL CO(HOME$CURSOR2);
26 2 END;
27 1 END DICE;

CROSS-REFERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES

2 CLEARCRT1 LITERALLY

18
3 CLEARCRT2 LITERALLY
19
8 000O0H co PROCEDURE EXTERNAL(O) STACK=0000H
18 19 21 22 23 24 25
1 0002H 71 DICE PROCEDURE STACK=0004H
4 HOMECURSOR1 LITERALLY
24
5 HOMECURSOR2 LITERALLY
25
11 0049H 44 RANDOM PROCEDURE WORD STACK=0002H
. 21 23

Figure 2-66. Sample PL/M-86 Program

2-93

8086 AND 8088 CENTRAL PROCESSING UNITS

7 0000H 2 RANDOMNUMBER WORD
1213 14 15 16
7 0002H 2 SAVE " WORD
12 14
6 SPACE LITERALLY
22
8 0000H 10X BYTE PARAMETER
9
MODULE INFORMATION:
CODE AREA SIZE = 0075H - 117D
CONSTANT AREA SIZE = 0000H oD
VARIABLE AREA SIZE = OOO4H 4D
MAXIMUM STACK SIZE = OOO4H 4D

51 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

Figure 2-66. Sample PL/M-86 Program (Cont’d.)

MCS-86 MACRO ASSEMBLER

DICE

ISIS-II MCS~86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE

OBJECT MODULE PLACED IN

:F1:DICE.OBJ

ASSEMBLER INVOKED BY: ASM86 :F1:DICE.A86 XREF

LOC OBJ

0000
0002
0004
0006
0008
0004

1B0OO
4500
1B0O
4800
2000
2727

0000 (20

2?2272

0028

0000

0000 A10A00

LINE

OOV EW N A

10

SOURCE
;- THIS PROGRAM SIMULATES THE ROLL OF ‘A PAIR OF DICE
; CONSOLE OUTPUT PRCCEDURE

EXTRN CO:NEAR
; SEGMENT GROUP DEFINITIONS NEEDED FOR PL/M-86 COMPATIBILITY
CGROUP GROUP CODE . ’
DGROUP GROUP DATA, STACK

; INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS.
ASSUME . CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING

; ALLOCATE DATA

DATA SEGMENT PUBLIC 'DATA’

; NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86
BY CONVENTION, A BYTE PARAMETER IS PASSED IN
THESE ARE

PROCEDURE 'CO'.
;- THE LOW-ORDER 8-BITS OF A WORD
; DEFINED AS WORD VALUES, THOUGH

ON THE STACK. HENCE,
THEY OCCUPY 1 BYTE ONLY.

CLEAR_CRT1 DW 01BH INTELLEC
CLEAR_CRT2 DW OU45H H CRT
HOME_CURSOR1 DW 01BH H CONTROL
HOME_CURSOR2 DW O48H H CODES
SPACE DW 020H ; ASCII BLANK
SAVE DW ? ; HOLDS LAST 16-BIT RANDOM NUMBER
DATA ENDS
; ALLOCATE STACK SPACE
STACK SEGMENT STACK 'STACK'
DW 20 DUP (?)

; LABEL INITIAL TOS: FOR LATER USE.

STACK_TOP LABEL WORD
STACK ENDS

; PROGRAM CODE

CODE SEGMENT PUBLIC 'CODE’

; RANDOM NUMBER GENERATOR PROCEDURE
; ALGORITHM FOR 16-BIT RANDOM NUMBER FROM:
H "A GUIDE TO PL/M PROGRAMMING FOR

H MICROCOMPUTER APPLICATIONS,"

H DANIEL D. MCCRACKEN
5
R

ADDISON-WESLEY, 1978
ANDOM PROC
MOV AX,SAVE ; NEW NUMBER =

Figure 2-67. ASM-86 Sample Program

‘Mnemonics © Intel, 1978

2-94

8086 AND 8088 CENTRAL PROCESSING UNITS

UNTIL INTERRUPTED

H
H
H
H
H
H
H
H
H
H

T# 37 10
8# 14 25

MCS-86 MACRO ASSEMBLER DICE
LOC OBJ LINE SOURCE
0003 B90508 48 MOV CX, 2053
0006. F7E1 49 MUL X
0008 051936 50 ADD AX, 13849
000B A30A00 R 51 MOV SAVE,AX
52 H
53 H BY MODULO 6 DIVISION +
000E 2BD2 54 SUB DX, DX H
0010 B90600 55 MOV CcX,6
0013 F7F1 56 DIV cX
0015 8BC2 57 MOV AX,DX
0017 40 58 INC AX
0018 C3 59 RET
60 RANDOM ENDP
61
62 .
63 ; MAIN PROGRAM
64
65 ; LOAD SEGMENT REGISTERS
66 B
67 H
68 H
0019 B8==-- R 69 START: MOV AX,DGROUP
001C 8EDS8 70 MOV DS,AX
001E 8EDO 71 MOV SS, AX
72
N 73 ; INITIALIZE STACK POINTER
0020 BC2800 R T4 MOV
75
76 ; CLEAR THE SCREEN
0023 FF360000 R 77 PUSH CLEAR_CRT1
0027 E80000 E 78 CALL C
002A FF360200 R 79 PUSH CLEAR_CRT2
002E E80000 E 80 CALL co -
81
82 ; ROLL THE DICE
0031 E8CCFF 83 ROLL: CALL RANDOM
0034 0430 84 ADD AL,030H
0036 50 85 PUSH AX
0037 E80000 E 86 CALL co
003A FF360800 R 87 PUSH SPACE
003E E80000 E 88 CALL
0041 E8BCFF 89 CALL RANDOM
o044 0430 90 ADD AL,030H
0046 50 91 PUSH AX
0047 E80000 E 92 CALL co
93 ; HOME THE CURSOR
004A FF360400 R 9 PUSH HOME CURSOR1
OO4E E80000 E 95 CALL co -
0051 FF360600 R 96 PUSH HOME_ CURSOR2
0055 E80000 E 97 CALL co
98 ; CONTINUE FOREVER
0058 EBDT 99 JMP ROLL
-———— 100 CODE ENDS
101
XKEF SYMBOL TABLE LISTING
NAME TYPE VALUE ATTRIBUTES, XREFS
??SEG SEGMENT SIZE=0000H PARA PUBLIC
CGROUP. . GROUP CODE T# 11
CLEAR_CRT1. . V WORD 0000H DATA 19# 77
CLEAR CRT2. . V WORD 0002H DATA 20# 79
co. .~ . L NEAR 0000H EXTRN 4# 78 80 86 88 92 95 97
CODE. . SEGMENT SIZE=005AH PARA PUBLIC 'CODE'
DATA. . . SEGMENT SIZE=000CH PARA PUBLIC 'DATA'
DGROUP. . GROUP DATA STACK 8# 11 11 69 74
HOME_CURSOR1. V WORD OOO4H DATA 21# 94
HOME CURSOR2. V WORD 0006H DATA 22# 96
RANDOM. . L NEAR 0000H CODE U46# 60 83 89
ROLL. L NEAR 0031H CODE 83# 99
SAVE. V WORD OO0OAH DATA 244# 4T 51
SPACE V WORD 0008H DATA 23# 87
STACK SEGMENT SIZE=0028H PARA STACK 'STACK'
STACK_TOP . . V WORD 0028H STACK 32# 74
START . . . L NEAR 0019H CODE 69# 104
ASSEMBLY COMPLETE, NO ERRORS FOUND

OLD NUMBER * 2053
+ 13849

SAVE FOR NEXT TIME

FORCE 16-BIT NUMBER INTO RANGE 1 - 6

1
CLEAR” UPPER DIVIDEND
SET DIVISOR
DIVIDE BY 6
REMAINDER TO AX
ADD 1

RESULT IN AX

NOTE PROGRAM DOES NOT USE ES; CS IS INITIALIZED BY HARDWARE RESET;
DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE
MEMORY SEGMENT POINTED TO BY BOTH DS & SS.

SP,OFFSET DGROUP:STACK_TOP

GET 1ST DIE IN AL
CONVERT TO ASCII
PASS IT TO

CONSOLE -OUTPUT

GET 2ND DIE IN AL

; CONVERT TO ASCII

PASS IT TO
CONSOLE OUTPUT

0

Figure 2-67. ASM-86 Sample Program (Cont’d.)

2-95

Mnemonics © intel, 1978

.-8086 AND 8088 CENTRAL PROCESSING UNITS

The ASM-86 version of the dice program operates
like the PL/M-86 version. Since the program uses
the PL/M-86 CO procedure for writing data to
the Intellec console, it adheres to certain conven-
tions established by the PL/M-86 compiler. The
program’s logical

segments (called CODE,

DATA and STACK—the program does not use - .

an extra segment) are organized into two groups
called CGROUP and DGROUP. All the members
of a group of logical segments are located in the
same 64k byte physical memory segment.
Physically, the program’s DATA and STACK
segments can be viewed as ‘‘subsegments’’ of
DGROUP.

PL/M-86 procedures expect parameters to be
passed on the stack, so the program pushes each
character before calling CO. Note that the stack
will be ‘‘cleaned up’’ by the PL/M-86 procedure
before returning (i.e., the parameter will be
removed from the stack by CO).

2.10 Programming Guidelines
and Examples

This section addresses 8086/8088 programming
from two different perspectives. A series of
general guidelines "is presented first. These
guidelines apply to all types of systems and are
intended to make software easier to write, and
particularly, easier to maintain and enhance. The
second part contains a number of specific pro-
gramming examples. Written = primarily in
ASM-86, these examples illustrate how the
instruction set and addressing modes may be uti-
lized in various, commonly encountered program-
ming situations.

Programming Guidelines

These guidelines encourage the development of
8086/8088 software that is adaptable to change.
Some of the guidelines refer to specific processor
features and others suggest approaches to general
software design issues. PL/M-86 programmers
need not be concerned with the discussions that
deal with specific hardware topics; they should,
however, give careful attention to the system
design subjects.Systems that are designed in
accordance with these recommendations
should be less costly to modify or extend. In
addition, they should be better-positioned to

take advantage of new hardware and software
products that are constantly being introduced
by Intel.

Segments and Segment Registers

Segments should be considered as independent
logical units whose physical locations in memory
happen to be defined by the contents of the seg-
ment registers. Programs should be independent
of the actual contents of the segment registers and
of the physical locations of segments in memory.
For example, a program should not take

-advantage of the ‘‘knowledge’’ that two segments

are physically adjacent to each other in memory.
The single exception to this fully-independent
treatment of segments is that a program may set
up more than one segment register to point to the
same segment in memory, thereby obtaining
addressability through more than one segment
register. For example, if both DS and ES point to
the same segment, a string located in that-segment
may be used as a source operand in one string
instruction and as a destination string in another
instruction’ (recall that a destination string must
be located in the extra segment).

Any data aggregate or construct such as an array,
a structure, a string or a stack should be restricted
to 64k bytes in length and should be wholly con-
tained in one segment (i.e., should not cross a seg-
ment boundary).

Segment registers should only contain values sup-
plied by the relocation and linkage facilities. Seg-
ment register values may be moved to and from
memory, pushed onto the stack and popped from
the stack. Segment registers should never be used
to hold temporary variables nor should they be
altered in any other way.

As an additional guideline, code should not be
written within six bytes of the end of physical
memory (or the end of the code segment if this
segment is dynamically relocatable). Failure to
observe this guideline could result in an attempted
opcode . prefetch from non-existent memory,
hanging the CPU if READY is not returned.

Self-Modifying Code

It is possible to write a program that deliberately
changes some of its own machine instructions

™

2-96

8086 AND 8088 CENTRAL PROCESSING UNITS

during execution. While this technique may save a
few bytes or machine cycles, it does so at the
expense of program clarity. This is particularly
true if the program is being examined at the
machine instruction level; the machine instruc-
tions shown in the assembly listing may not match
those found in memory or monitored from the
bus. It also precludes executing the code from
ROM. Also, because of the prefetch queue within
the 8086 and 8088, code that is self-modified
within six bytes of the current point of execution
cannot be guaranteed to execute as intended.
(This code may already have been fetched.) Fin-
ally, a self-modifying program may prove
incompatible with future Intel products that
assume that the content of a code segment
remains constant during execution:

A corrollary to this requirement is that variable
data should not be placed in a code segment. Con-
stant data may be written in a code segment, but
this is not recommended for two reasons. First,
programs are simpler to understand if they are
uniformly subdivided into segments of code, data
and stack. Second, placing data in a code segment
can restrict the segment’s position independence.
This is because, in general, the segment base
address of a data item may be changed, but the
offset (displacement) of the data item may not.
This means that the entire segment must be
moved as a unit to avoid changing the offset of
the constant data. If the constant data were
located in a data segment or an extra segment,
individual procedures within the code segment
could be moved independently.

Input/Output

Since 1/0 devices vary so widely in their
capabilities and their interface designs, 1/0 soft-

ware is inevitably device dependent. Substituting

a hard disk for a floppy disk, for example,
necessitates software changes even though the
disks are functionally identical. I/O software can,
however, be designed to minimize the effect of
device changes on programs.

Figure 2-68 illustrates a design concept that struc-
tures an I/0 system into a hierarchy of separately
compiled/assembled modules. This approach
isolates application modules that . use the
input/output devices from all physical
characteristics of .the hardware with which they
ultimately communicate. An application module

that reads a disk file, for example, should have no
knowledge of where the file is located on the disk,
what size the disk sectors are, etc. This allows
these characteristics to change without affecting
the application module. To an application

module, the I/0 system appears to be a series of

file-oriented commands (e.g., Open, Close, Read,
Write). An application module would typically
issue a command by calling a file system
procedure.

The file system processes I/O command requests,
perhaps checking for gross errors, and calls a pro-
cedure in the I/0 supervisor. The I/0 supervisor
is a bridge between the functional I/0 request of
the application module and the physical 1/0 per-
formed by the lowest-level modules in the hier-
archy. There should be separate modules in the
supervisor for different types of devices and some
device-dependent code may be unavoidable at this
level. The 170 supervisor would typically perform
overhead activities such’ as maintaining disk
directories. : :

The modules that actually communicate with the
170 devices (or their controllers) are at the lowest
level in the hierarchy. These modules contain the
bulk of the system’s device-dependent code that
will have to be modified in the event that a device
is changed.

The 8089 Input/Output Processor is specifically
designed - to encourage' the ' development of
modular, hierarchical 1I/0 systems. The 8089
allows knowledge of device characteristics to be
‘‘hidden” from not only application programs,
but also from the operating system that controls
the CPU. The CPU’s 1/0 supervisor can simply
prepare a message in memory that describes the
nature of the operation to be performed, and then
activate the ‘8089. The 8089 independently per-
forms all physical I/0 and notifies the CPU when
the operation has been completed.

;Operating Systéms N

Operating systems also should be organized in a
hierarchy similar to the concept illustrated in
figure 2-69. Application modules should “‘see’’
only the upper level of the operating system. This
level might provide services like sending méssages
between application modules, providing time
delays, etc. An intermediate level might consist of

housekeeping routines that dispatch tasks, alter

2-97

8086 AND 8088 CENTRAL PROCESSING UNITS

L] L]] Wosutes ™"

prined

-

] FILE SYSTEM
MODULE(S)

1|

1/0 SUPERVISOR
{ | [| |] MoDuLES

1

=

—I :

]

PHYSICAL 170
MODULES

-

]

i

DEVICE CONTROL
HARDWARE

po———

[:__

|
Q Q-

Figure 2-68. I/0 System Hierarchy Concept

g

APPLICATION MODULES

| | J L 1L 1

~ OPERATING SYSTEM

L1111

FILE SERVICES SYSTEM SERVICES

SNEEEEpEEEEEE

1/0 SUPERVISOR HOUSEKEEPING INVISIBLE TO

Ll I l l] I [J [I | [I l [JJ APPLICATION MODULES

PHYSICAL I/0 . PRIMITIVE OPERATIONS

[»F_I‘JIITIJIILII-ILIIIIIl Y

'Figure 2-69. Operating System Hierarchy

2-98

8086 AND 8088 CENTRAL PROCESSING UNITS

priorities, manage memory, etc. At the lowest
level would be the modules that implement
primitive operations such as adding and removing
tasks or messages from lists, servicing timer inter-
rupts, etc.

Interrupt Service Procedures

Procedures that service external interrupts should
be considered differently than those that service
internal interrupts. A service procedure that is
activated by an internal interrupt, may, and often
should, be made reentrant. External interrupt
procedures, on the other hand, should be viewed
as temporary tasks. In this sense, a task is a single
sequential thread of execution; it should not be
reentered. The processor’s response to an external
interrupt may be viewed as the following sequence
of events:

¢ therunning (active) task is suspended,

® anew task, the interrupt service procedure, is
created and becomes the running task,

e theinterrupt task ends, and is deleted,

e the suspended task is reactived and
becomes the running task from the point
where it was suspended.

An external interrupt procedure should only be
interruptable by a request that activates a dif-

ferent interrupt procedure. When the number of
interrupt sources is not too large, this can be
accomplished by assigning a different type code
and corresponding service procedure to each
source. In systems where a large number of
similar sources can generate closely spaced inter-
rupts (e.g., 500 communication lines), an
approach similar to that illustrated in figure 2-70,
may be used to insure that the interrupt service
procedure is not reentered, and yet, interrupts
arriving in bursts are not missed. The basic
technique is to divide the code required to service
an interrupt into two parts. The interrupt service
procedure itself is kept as short as possible; it per-
forms the absolute minimum amount of process-
ing necessary to service the device. It then builds a
message that contains enough information to per-
mit another task, the interrupt message processor,
to complete the interrupt service. It adds the
message to a queue (which might be implemented
as a linked list), and terminates so that it is
available to service the next interrupt. The inter-
rupt message processor, which is not reentrant,
obtains a message from the queue, finishes pro-
cessing the interrupt associated with that message,
obtains the next message (if there is one), etc.
When a burst of interrupts occurs, the queue will
lengthen, but interrupts will not be missed so long
as there is time for the interrupt service procedure
to be activated and run between requests.

MULTIPLE INTERRUPT SCURCES

/

INTERRUPT
SERVICE

ADD MESSAGE TO QUEUE

PROCEDURE

—r——-"
- QUEUE (LIST)
DT g
b}: -0 j MESSAGES
| S JR—|
OBTAIN NEXT MESSAGE
FROM QUEUE
INTERRUPT
MESSAGE
PROCESSOR

Figure 2-70. Interrupt Message Processor

8086 AND 8088 CENTRAL PROCESSING UNITS

Stack-Based Parameters

Parameters are frequently passed to procedures
on a stack. Results produced by the procedure,
however, should be returned in other memory
locations or in registers. In other words, the called
procedure should ‘‘clean up”’ the stack by dis-
carding the parameters before returning. The.
RET .instruction can perform this function.
PL/M-86 procedures always follow this
convention.

Flag-images

Programs should make no assumptions about the
contents of the undefined bits in the flag-images
stored in memory by the PUSHF and SAHF
instructions. These bits always should be masked
out of any comparisons or tests that use these
flag-images. The undefined bits of the word flag-
image can be cleared by ANDing the word with
FDSH. The undefined bits of the byte flag-image
can be cleared by ANDing the byte with D5H.

Programming Examples

These examples demonstrate the 8086/8088
instruction set and addressing modes in common
programming situations. The following topics are
addressed:

® procedures (parameters, reentrancy)

® various forms of JMP and CALL
instructions

® bit manipulation with the ASM-86 RECORD
facility

* dynamic code relocation
* memory mapped I/0

® breakpoints

* interrupt handling

® string operations

These examples are written primarily in ASM-86
and will be of most interest to assembly language
programmers. The PL/M-86 compiler generates
code that handles many of these situations
automatically for PL/M-86 programs. For exam-
ple, the compiler takes care of the stack in
PL/M-86 procedures, allowing the.programmer
to concentrate on solving the application prob-
lem. PL/M-86 programmers, however, may want

to examine the memory mapped I/O and
interrupt handling examples, since the concepts
illustrated are generally: applicable; one of the
interrupt procedures is written in PL/M-86.

The examples are intended to show one way to use
the instruction set, addressing modes and features
of ASM-86. They do not demonstrate the ‘‘best”’
way to solve any particular problem. The flexibil-
ity of the 8086 and 8088, application differences
plus variations in programming style usually add
up to a number of ways to implement a program-
ming solution.

Procedures

The code in figure 2-71 illustrates several tech-
niques that are typically used in writing ASM-86
procedures. In this example a calling program
invokes a procedure (called EXAMPLE) twice,
passing it a different byte array each time. Two
parameters are passed on the stack; the first con-
tains the number of elements in the array, and the
second contains the address (offset in
DATA__SEG) of the first array element. This
same technique can be used to pass a variable-
length parameter list to a procedure (the ‘‘array’’
could be any series of parameters or parameter
addresses). Thus, although the procedure always
receives two parameters, these can be used to
indirectly access any number of variables in
memory.

Any results returned by a procedure should be
placed in registers or in memory, but not on the
stack. AX or AL is often used to hold a single
word or byte result. Alternatively, the calling pro-
gram can pass-the address (or addresses) of a
result area to the procedure as a parameter. It is
good practice for ASM-86 programs to follow the
calling conventions used by PL/M-86; these are
documented- in MCS-86 Assembler Operating
Instructions For ISIS-II Users, Order No.
9800641.

EXAMPLE is defined as a FAR procedure,
meaning it is in a different segment than the call-
ing program. The calling program must use an
intersegment CALL to activate the procedure.
Note that this type of CALL saves CS and IP on
the stack. If EXAMPLE were defined as NEAR
(in the same segment as the caller) then an intra-
segment CALL would be used, and only IP would
be saved on the stack. It is the responsibility of
the calling program to know how the procedure is
defined and to issue the correct type of CALL.

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

STACK_SEG SEGMENT

DW 20 DUP (?) ; ALLOCATE 20-WORD STACK
STACK_TOP LABEL WORD ; LABEL INITIAL TOS
STACK__SEG ENDS
DATA_SEG SEGMENT
ARRAY__1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY
ARRAY__2 DB 5DUP (?) ; S-ELEMENT BYTE ARRAY
DATA_SEG ENDS
PROC__SEG SEGMENT
ASSUME CS:PROC_SEG,DS:DATA__SEG,SS:STACK__SEG,ES:NOTHING
EXAMPLE PROC FAR ; MUST BE ACTIVATED BY

; INTERSEGMENT CALL

; PROCEDURE PROLOG

PUSH BP ; SAVE BP

MOV BP, SP ; ESTABLISH BASE POINTER

PUSH CX ; SAVE CALLER’S

PUSH BX ; REGISTERS

PUSHF ; AND FLAGS

SuUB SP, 6 ; ALLOCATE 3 WORDS LOCAL STORAGE

; END OF PROLOG
; PROCEDURE BODY

MOV CX,[BP+8] ;GETELEMENT COUNT

MoV BX,[BP+6] ;GET OFFSET OF 1ST ELEMENT

; PROCEDURE CODE GOES HERE
; FIRST PARAMETER CAN BE ADDRESSED:
; [BX]

; LOCAL STORAGE CAN BE ADDRESSED:

; [BP-8], [BP-10], [BP-12]

; END OF PROCEDURE BODY
; PROCEDURE EPILOG

ADD SP, 6 ; DE-ALLOCATE LOCAL STORAGE

POPF ; RESTORE CALLER’S

POP BX ; REGISTERS

POP CX ; AND

POP BP ; FLAGS

. ; END OF EPILOG

; PROCEDURE RETURN ‘

RET 4 ; DISCARD 2 PARAMETERS
EXAMPLE ENDP ; END OF PROCEDURE “‘EXAMPLE”’
PROC__SEG ENDS

Figure 2-71. Procedure Example 1

2-101 Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CALLER_SEG SEGMENT

; GIVE ASSEMBLER SEGMENT/REGISTER CORRESPONDENCE

ASSUME CS:CALLER__SEG,
& DS:DATA_SEG,

& SS:STACK_SEG,
& ES:NOTHING

; INITIALIZE SEGMENT REGISTERS

; NO EXTRA SEGMENT IN THIS PROGRAM

START: MOV AX,DATA_SEG
MOV DS,AX
MOV AX,STACK__SEG
MOV SS,AX
MOV SP,OFFSET STACK__TOP ;POINTSP TO TOS

; ASSUME ARRAY__1 IS INITIALIZED

; CALL “EXAMPLE”’, PASSING ARRAY__1, THAT IS, THE NUMBER OF ELEMENTS
; INTHE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.

MOV AX,SIZE ARRAY__1
PUSH AX

MOV AX,OFFSET ARRAY__1
PUSH AX

CALL EXAMPLE

; ASSUME ARRAY_2 IS INITIALIZED

; CALL “EXAMPLE’’ AGAIN WITH DIFFERENT SIZE ARRAY.

MoV AX,SIZE ARRAY__2

PUSH AX

MOV AX,OFFSET ARRAY__2

PUSH AX

CALL EXAMPLE
CALLER_SEG ENDS

END START

Figure 2-71. Procedure Example 1 (Cont’d.)

Figure 2-72 shows the stack before the caller
pushes the parameters onto it. Figure 2-73 shows
the stack as the procedure receives it after the
CALL has been executed.

EXAMPLE is divided into four sections. The
‘“‘prolog’’ sets up register BP so it can be used to
address data on the stack (recall that specifying
BP as a base register in an instruction auto-
matically refers to the stack segment unless a seg-
ment override prefix is coded). The next step in
the prolog is to save the ‘‘state of the machine’’ as

it existed when the procedure was activated. This
is done by pushing any registers used by the pro-
cedure (only CX and BP in this case) onto the
stack. If the procedure changes the flags, and the
caller expects the flags to be unchanged following
execution of the procedure, they also may be
saved on the stack. The last instruction in the pro-
log allocates three words on the stack for the pro-
cedure to use as local temporary storage. Figure
2-74 shows the stack at the end of the prolog.
Note that PL/M-86 procedures assume that all
registers except SP and BP can be used without
saving and restoring.

Mnemonics © Intel, 1978

‘8086 AND 8088 CENTRAL PROCESSING UNITS

«—— SP(TOS)

Figure 2-72. Stack Before Pushing Parameters

HIGH ADDRESSES
BP +8 ——>| PARAMETER 1
BP +6 ——>| PARAMETER 2
oLD CS
oLD IP
OLD BP | «——BP
. OLD CX
OLD BX
OLD FLAGS
BP-8 —> LOCAL 1
BP-10 ——> LOCAL 2
BP-12——> LOCAL 3 <—— SP (TOS)
LOW ADDRESSES

Figure 2-74. Stack Following Procedure Prolog

HIGH ADDRESSES
PARAMETER 1
PARAMETER 2
oLbDCs
oLDIP [<«—— SP (TOS)
LOW ADDRESSES

Figure 2-73. Stack at Procedure Entry

The procedure ‘‘body’’ does the actual processing
(none in the example). The parameters on the
stack are addressed relative to BP. Note that if
EXAMPLE were a NEAR procedure, CS would
not be on the stack and the parameters would be
two bytes ‘‘closer’” to BP. BP also is used to
address the local variables on the stack. Local
constants are best stored in a data or extra
segment.

The procedure “‘epilog’’ reverses the activities of
the prolog, leaving the stack as it was when the
procedure was entered (see figure 2-75).

HIGHER ADDRESSES

* PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP

~—BP & SP (TOS)

LOWER ADDRESSES
Figure 2-75. Stack Following Procedure Epilog

2-103

8086 AND 8088 CENTRAL PROCESSING UNITS

The procedure ‘‘return’’ restores CS and IP from
the stack and discards the parameters. As figure
2-76 shows, when the calling program is resumed,
the stack is in the same state as it was before any
parameters were pushed onto it.

HIGH ADDRESSES

| <«—— SP(TOS)

LOW ADDRESSES

Figure 2-76. Stack Following Procedure Return

Figure 2-77 shows a simple procedure that uses an
ASM-86 structure to address the stack. Register
BP is pointed to the base of the structure, which is
the top of the stack since the stack grows toward
lower addresses (see figure 2-78). Any ‘structure
element can then be addressed by specifying BP as
a base register:

[BP].structure-- element.

Figure 2-79 shows a different approach to using
an ASM-86 structure to define the stack layout.
As shown in figure 2-80, register BP is pointed at
the middle of the structure (at OLD__BP) rather
than at the base of the structure. Parameters and
the return address are thus located at positive
displacements (high addresses) from BP, while

~local variables are at negative displacements

(lower addresses) from BP. This means that the
local variables will be ‘‘closer’’ to the beginning
of the stack segment and increases the likelihood
that the assembler will be able to produce shorter
instructions to access these variables, i.e., their
offsets from SS may be 255 bytes or less and can
be expressed as a 1-byte value rather than a 2-byte
value. Exit from the subroutine also is slightly
faster because a MOV instruction can be used to
deallocate the local storage instead of an ADD
(compare figure 2-71).

It is possible for a procedure to be activated a sec-
ond time before it has returned from its first
activation. For example, procedure A may call
procedure B, and an interrupt may occur while
procedure B is executing. If the interrupt service
procedure calls B, then procedure B is reentered
and must be written to handle this situation cor-
rectly, i.e., the procedure must be made
reentrant.

In PL/M-86 this can be done by simply writing:
B: PROCEDURE (PARM1, PAF\‘MZ):REENTRANT;

An ASM-86 procedure-will be reentrant if it uses
the stack for storing all local variables. When the
procedure is reentered, a new ‘‘generation’’ of
variables will be allocated on the stack. The stack
will grow, but the sets of variables (and the
parameters and return addresses as well) will
automatically be kept straight. The stack must be
large enough to accommodate ‘the maximum
““‘depth”’ of procedure activation that can occur
under actual running conditions. In addition, any
procedure called by a reentrant procedure must
itself be reentrant.

A related situation that also requires reentrant
procedures is recursion. The following are
examples of recursion:

e Acalls A (direct recursion),

A calls B, B calls A (indirect recursion),

A calls B, B calls C, C calls A (indirect
recursion).’

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

CODE SEGMENT

ASSUME CS:CODE

MAX PROC

: THIS PROCEDURE IS CALLED BY THE FOLLOWING

SEQUENCE:
PUSH PARM1
PUSH PARM2

IT RETURNS THE MAXIMUM OF THE TWO WORD

: CALL MAX

PARAMETERS IN AX.

; DEFINE THE STACK LAYOUT AS A STRUCTURE.

STACK_LAYOUT STRUC

OLD__BP DW ? ; SAVED BP VALUE—BASE OF STRUCTURE
RETURN__ADDR DW? ; RETURN ADDRESS
PARM__2 DW? ; SECOND PARAMETER
PARM__1 DW ? ; FIRST PARAMETER
STACK_LAYOUT ENDS
; PROLOG
PUSH BP ; SAVEIN OLD_BP
MoV BP, SP ; POINTTOOLD_BP
; BODY
MoV AX, [BP].PARM__1 ;IFFIRST
CMP AX, [BP].PARM_2 ;>SECOND
JG FIRST__IS_MAX '; THEN RETURN FIRST
Mov AX, [BP].PARM_2 ;ELSE RETURN SECOND
; EPILOG .
FIRST__IS_MAX: POP BP ; RESTORE BP (& SP)
; RETURN .
RET 4 ; DISCARD PARAMETERS
MAX ENDP
CODE ENDS
END

Figure 2-77. Procedure Example 2

HIGHER ADDRESSES
H’\

PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP

~——BP &SP (TOS)

4 I

LOWER ADDRESSES

Figure 2-78. Procedure Example 2 Stack Layout

Jumps and Calls

The 8086/8088 instruction set contains many dif-
ferent types of JMP and CALL instructions (e.g.,
direct, indirect through register, indirect through
memory, etc.). These varying types of transfer
provide efficient use of space and execution time
in different programming situations. Figure 2-81
illustrates typical use.of the different forms of
these instructions. Note that the ASM-86
assembler uses the terms ‘““NEAR’’ and ‘“FAR”’
to denote intrasegment and intersegment trans-
fers, respectively.

2-105

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

EXTRA SEGMENT
; CONTAINS STRUCTURE TEMPLATE THAT ‘‘NEARPROC”’
; USESTO ADDRESS AN ARRAY PASSED BY ADDRESS.

DUMMY STRUC
PARM_ARRAY DB 256 DUP ?
DUMMY ENDS
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE, ES EXTRA
NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA).
DSASTRUC STRUC ; ‘
| DwW ? ‘ "} LOCAL VARIABLES FIRST
LOC__ARRAY DwW 10DUP(?) -~
OLD_BP DW 7 ; ORIGINAL BP VALUE
RETADDR DW ? ; RETURN ADDRESS
POINTER DD ? ; 2ND PARM—POINTER TO “PARM_ARRAY"
COUNT DB ? ; 1IST PARM—A BYTE OCCUPIES
o DB ? ; AWORDON THE STACK
DSASTRUC ENDS ‘

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE
; - DSA.CANNOT SIMPLY USE BP BECAUSE IT WILL
; BEPOINTING TO “OLD BP” IN THE MIDDLE OF

; THEDSA.
DSA EQU .. |BP —OFFSET OLD__BP]
PROCEDURE ENTRY
PUSH " BP ; SAVE BP
Mov BP, SP ; POINT BP AT OLD__BP
SuB SP, OFFSET OLD_BP; ALLOCATE LOC_ARRAY &1
; PROCEDURE BODY ;
; ACCESS LOCAL VARIABLE |
Mov AX, DSA I
; ACCESS LOCAL ARRAY (3) LE., 4TH ELEMENT
MOV Sl,6 ; WORD ARRAY-INDEX IS 3*2
Mov AX, DSA.LOC_ARRAY [s1]

; LOAD POINTER TO ARRAY PASSED BY ADDRESS
LES BX,DSA.POINTER

; ES:BX NOW POINTS TO PARM_ARRAY (0)
; ACCESS SI'TH ELEMENT OF PARM_ARRAY
Mov AL,ES:[BX].PARM_ARRAY [SI]

; ACCESS THE BYTE PARAMETER
MOV AL,DSA.COUNT

Figure 2-79. Procedure Example 3

Mnemonics © Intel, 1978 2:106

8086 AND 8088 CENTRAL PROCESSING UNITS

; PROCEDURE EXIT

MoV SP,BP

POP BP

; DE-ALLOCATE LOCALS
; RESTORE BP

; STACK NOW AS RECEIVED FROM CALLER

RET 6

NEARPROC ENDP
CODE ENDS
END

; DISCARD PARAMETERS

Figure 2-79. Procedure Example 3 (Cont’d.)

~ HIGHER ADDRESSES

| count

POINTER

RETADDR
OLD_BP «——BP
LOC_ARRAY (9)
LOC__ARRAY (8)
LOC__ARRAY (7)
LOC_ARRAY (6)
LOC__ARRAY (5)
LOC__ARRAY (4)
LOC__ARRAY (3)
LOC__ARRAY (2)
LOC__ARRAY (1)
LOC__ARRAY (0)
\ | «—spP

LOWER ADDRESSES

Figure 2-80. Procedure Example
3 Stack Layout

The procedure in figure 2-81 illustrates how a
PL/M-86 DO CASE construction may be
implemented in ASM-86. It also shows:

¢ an indirect CALL through memory to a
procedure located in another segment,

e adirect JMP to alabel in another segment,

e anindirect JMP though memory to a label in
the same segment,

* an indirect JMP through a register to a label
in the same segment,

e a direct CALL to a procedure in another
segment,

® a direct CALL to a procedure in the same

segment,

e direct JMPs to labels in the same segment,
within —128 to +127 bytes (‘“SHORT”’) and
farther than —128 to +127 bytes (‘““NEAR”’).

2-107

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA SEGMENT

; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE
; ““DO__CASE.” THE OFFSET OF EACH LABEL WILL

; BE PLACED IN THE TABLE BY THE ASSEMBLER.

CASE__TABLE DW ACTIONO, ACTION1, ACTION2, -
& ACTION3, ACTION4, ACTIONS
DATA ENDS :

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS
; ASSEMBLY. BUT SUPPLIED BY R & L FACILITY)
; PROCEDURES. ONE IS IN THIS CODE SEGMENT
; (NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR).
EXTRN NEAR__PROC: NEAR, FAR_PROC: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT
; IS IN ANOTHER SEGMENT.
EXTRN ERR_EXIT: FAR

CODE SEGMENT

ASSUME CS: CODE, DS: DATA
; ASSUME DS HAS BEEN SET UP
; BY CALLER TO POINT TO “‘DATA’’ SEGMENT.

DO__CASE PROC NEAR
; THIS EXAMPLE PROCEDURE RECEIVES TWO
; PARAMETERS ON THE STACK. THE FIRST
; PARAMETERIS THE ““CASE NUMBER”’ OF
; AROUTINE TO BE EXECUTED (0-5). THE SECOND
;7 PARAMETERIS A POINTER TO AN ERROR
; PROCEDURE THAT IS EXECUTED IF AN INVALID
; CASE NUMBER (>5) IS RECEIVED.

; LAY OUT THE STACK.
STACK__LAYOUT STRUC
OLD_BP DW ?
RETADDR DW ?
ERR_PROC_ADDR DD ?
CASE_NO DB ?

DB ?

STACK_LAYOUT ENDS

; SET UP PARAMETER ADDRESSING
PUSH BP
MOV BP, SP

; CODE TO SAVE CALLER’S REGISTERS COULD GO HERE.

; CHECK THE CASE NUMBER
MOV BH, 0
MOV BL, [BP].CASE__NO
CMP BX, LENGTH CASE__TABLE
JLE OK ; ALL CONDITIONAL JUMPS

; ARE SHORT DIRECT

Figure 2-81. JMP and CALL Examples

Mnemonics © Intel, 1978 2-108

- 8086 AND 8088 CENTRAL PROCESSING UNITS

: CALL THE ERROR ROUTINE WITH A FAR
: INDIRECT CALL. AFAR INDIRECT CALL
;IS INDICATED SINCE THE OPERAND HAS
: TYPE “DOUBLEWORD.”
CALL . [BP].ERR_PROC__ADDR

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT.
; 'AFARDIRECT JUMP IS INDICATED SINCE
; THEOPERAND HAS TYPE ““FAR.”

JMP ERR_EXIT

OK:
; MULTIPLY CASE NUMBER BY 2 TO GET OFFSET
; INTO CASE_TABLE (EACH ENTRY IS 2 BYTES).:
SHL BX, 1
NEAR INDIRECT JUMP THROUGH SELECTED
; ELEMENT OF CASE__TABLE. ANEAR
; INDIRECT JUMP IS INDICATED SINCE THE
; OPERAND HAS TYPE {‘WORD.”’
- JMP CASE__TABLE [BX]

ACTIONO: - ; EXECUTED IF CASE_NO =0

; CODE TO PROCESS THE ZERO CASE GOES HERE.
; FORILLUSTRATION PURPOSES, USE A

; NEARINDIRECT JUMP THROUGH A

; REGISTER TO BRANCH TO THE POINT

; WHERE ALL CASES CONVERGE.

; ADIRECT JUMP (JMP ENDCASE) IS

; ACTUALLY MORE APPROPRIATE HERE.

MOV AX, OFFSET ENDCASE
JMP AX
ACTION1: ; EXECUTED IF CASE_NO =1

; CALLAFAR EXTERNAL PROCEDURE. A FAR
; DIRECT CALL IS INDICATED SINCE OPERAND
; HASTYPE “FAR.”

CALL. FAR_PROC
; CALL ANEAR EXTERNAL PROCEDURE.
CALL NEAR_PROC

; BRANCH TO CONVERGENCE POINT USING NEAR
- DIRECT JUMP. NOTE THAT “ENDCASE”"

;IS MORE THAN 127 BYTES AWAY

; SO ANEARDIRECT JUMP WILL BE USED.

JMP ENDCASE
ACTION2: ; EXECUTED IF CASE_NO =2
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JUMP

Figure 2-81. JMP and CALL Examples (Cont’d.)

2-109 ‘ Mnemonics © Intel, 1978

‘8086 AND 8088 CENTRAL PROCESSING UNITS .

ACTIONS: ; EXECUTED IF CASE_NO =3
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JMP

; ARTIFICIALLY FORCE ‘‘ENDCASE’’ FURTHER AWAY
; SOTHAT ABOVE JUMPS CANNOT BE ““SHORT.”

ORG 500
ACTIONA4: ; EXECUTED IF CASE_NO =4
; CODE GOES HERE ‘
JMP ENDCASE ; NEAR DIRECT JUMP
ACTIONS: ; EXECUTED IFCASE_NO=5
; CODE GOES HERE.

; BRANCH TO CONVERGENCE POINT USING
; SHORT DIRECT JUMP SINCE TARGET IS
; WITHIN 127 BYTES. MACHINE INSTRUCTION
; HAS1-BYTE DISPLACEMENT RATHER THAN
: 2-BYTE DISPLACEMENT REQUIRED FOR
; NEARDIRECT JUMPS. ““SHORT”’ IS '
; WRITTEN BECAUSE “ENDCASE"" IS A FORWARD
: REFERENCE, WHICH ASSEMBLER ASSUMES IS
; ““NEAR.” IF “ENDCASE’* APPEARED PRIOR
; TOTHE JUMP, THE ASSEMBLER WOULD
; AUTOMATICALLY DETERMINE IF IT WERE REACHABLE

WITH A SHORT JUMP.
JMP SHORT ENDCASE
ENDCASE: ; ALL CASES CONVERGE HERE.

; POP CALLER’S REGISTERS HERE.
; RESTORE BP & SP, DISCARD PARAMETERS

; AND RETURN TO CALLER.
MOV SP, BP
POP BP
RET 6
DO_CASE - ENDP
CODE ENDS

END ; OF ASSEMBLY

Figure 2-81. JMP and CALL Examples (Cont’d.)

Records

Figure 2-82 shows how the ASM-86 RECORD
facility may be used to manipulate bit data. The

example shows how to: ® assign a constant known at assembly time,
® right-justify a bit field, ® assign a variable,

* test for a value, ® - setor clear a bit field.

Mnemonics © Intel, 1978
2-110

8086 AND 8088 CENTRAL PROCESSING UNITS

DATA SEGMENT
; DEFINE AWORD ARRAY
XREF DW 3000 DUP (?)

; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS:
; A2-BITTYPE CODE,
; A1-BIT FLAG,
; A13-BIT NUMBER.
DEFINE A RECORD TO LAY OUT THIS ORGANIZATION.

LlNE REC RECORD LINE_TYPE:2,
& VISIBLE: 1,

& LINE_NUM: 13
DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA
; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY
; AND THAT SIINDEXES AN ELEMENT OF XREF.

; ARECORD FIELD-NAME USED BY ITSELF RETURNS
; THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
; THEFIELD. ISOLATE “LINE_TYPE” IN THIS

; MANNER.

MOV AL, XREF [SI]
MOV CL, LINE_TYPE
SHR AX, CL

; THE “MASK”’ OPERATOR APPLIED TO A RECORD
; FIELD-NAME RETURNS THE BIT MASK

; REQUIRED TO ISOLATE THE FIELD WITHIN

; THERECORD. CLEAR ALL BITS EXCEPT

“LINE_NUM.”
MOV DX, XREF[SI]
AND DX, MASK LINE_NUM
: DETERMINE THE VALUE OF THE “VISIBLE" FIELD
TEST XREF[SI], MASK VISIBLE
Jz NOT_VISIBLE

; NOJUMP IF VISIBLE =1
NOT_VISIBLE: ;JUMPHEREIFVISIBLE=0

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME
; TO AFIELD, BY FIRST CLEARING THE BITS

; AND THEN OR’ING IN THE VALUE. IN

; THIS CASE ““LINE__TYPE” ISSETTO 2 (10B).

AND XREF[SI}, NOT MASK LINE__TYPE

OR XREF[SI],2 SHL LINE__TYPE
; THE ASSEMBLER DOES THE MASKING AND SHIFTING.
: THE RESULT IS THE SAME AS:
, AND XREF[SI], 3FFFH
OR XREF[SI], 8000H
. BUTIS MORE READABLE AND LESS SUBJECT
. TO CLERICAL ERROR.

Figure 2-82. RECORD Example

2-111

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; ASSIGN A VARIABLE (THE CONTENT OF AX)

; TO LINE__TYPE.
MOV CL,LINE_TYPE ;SHIFT COUNT
SHL AX,CL ;SHIFTTO “LINE UP” BITS
AND XREF[SI], NOT MASK LINE_TYPE ;CLEARBITS
OR XREF[SI], AX ; ORIN NEW VALUE

; NO SHIFT IS REQUIRED TO ASSIGN TO THE
; RIGHT-MOST FIELD. ASSUMING AX CONTAINS
; A VALID NUMBER (HIGH 3 BITS ARE 0),

; ASSIGN AXTO “LINE_NUM.”

AND XREF([SI], NOT MASK LINE__NUM
OR XREF([SI], AX

; AFIELD MAY BE SET OR CLEARED WITH

; ONE INSTRUCTION. CLEAR THE “‘VISIBLE”

; FLAG AND THEN SET IT.

AND XREF[SI], NOT MASK VISIBLE

OR XREF[SI], MASK VISIBLE
CODE ENDS

END ; OF ASSEMBLY

Figure 2-82. RECORD Example (Cont’d.)

The following considerations apply to position-
independent code sequences:

* A label that is referenced by a direct FAR
(intersegment) transfer is not moveable.

® A label that is referenced by an indirect
transfer (either NEAR or FAR) is moveable
so long as the register or memory pointer to
the label contains the label’s current address.

* A label that is referenced by a SHORT (e.g.,
conditional jump) or a direct NEAR (in-
trasegment) transfer is moveable so long as
the referencing instruction is moved with the
label as a unit. These transfers are self-
relative; that is they require only that the
label maintain the same distance from the
referencing instruction, and actual addresses
are immaterial.

* Data is segment-independent, but not offset-
independent. That is, a data item may be
moved to a different segment, but it must
maintain the same offset from the beginning
of the segment. Placing constants in a unit
of code also effectively makes the code
offset-dependent, and therefore is not
recommended.

* A procedure should not be moved while it is
active or while any procedure it has called is
active. -

® A section of code that has been interrupted
should not be moved.

The segment that is receiving a section of code
must have ‘‘room’’ for the code. If the MOVS (or
MOVSB or MOVSW) instruction attempts to
auto-increment DI past 64k, it wraps around to 0
and causes the beginning of the segment to be
overwritten. If a segment override is needed for
the source operand, code similar to the following
can be used to properly resume the instruction if it
is interrupted:

RESUME: REP MOVS DESTINATION, ES:SOURCE
;IFCX'NOT =0 THEN INTERRUPT HAS OCCURRED
AND CX,CX ; CX=0?
JNZ RESUME ;NO, FINISH EXECUTION
;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED.

If the MOVS is interrupted, the CPU
‘“‘remembers’’ the segment override, but

- “forgets’’ the presence of the REP prefix when

execution resumes. Testing CX indicates whether
the instruction is completed or not. Jumping back
to the instruction resumes it where it left off. Note
that a segment override cannot be specified with
MOVSB or MOVSW.

Mnemonics © Intel, 1978 - 2-112

8086 AND 8088 CENTRAL PROCESSING UNITS

Dynamic Code Relocation

Figure 2-83 illustrates one approach to moving
programs in memory at execution time. A ‘‘super-
visor’’ program (which is not moved) keeps
a pointer variable that contains the current loca-
tion (offset and segment base) of a position-
independent procedure. The supervisor always

calls the procedure through this pointer. The
supervisor also has access to the procedure’s
length in bytes. The procedure is moved with the
MOVSB instruction. After the procedure is
moved, its pointer is updated with the new loca-
tion. The ASM-86 WORD PTR operator is writ-
ten to inform the assembler that one word of the
doubleword pointer is being updated at a time.

MAIN_DATA SEGMENT

; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE

; AND FREE SPACE.
PIP_PTR DD
FREE_PTR DD

EXAMPLE
TARGET__SEG

; SET UP SIZE OF PROCEDURE IN BYTES

; 20 WORDS FOR STACK
; TOS BEGINS HERE

PIP__SIZE DW EXAMPLE__LEN
MAIN_DATA ENDS
STACK SEGMENT

DW 20 DUP (?)
STACK__TOP LABEL WORD
STACK ENDS
SOURCE_SEG SEGMENT

; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT.
; OTHER CODE MAY PRECEDE IT, I.E., ITS OFFSET NEED NOT BE ZERO.
ASSUME CS:SOURCE_SEG
EXAMPLE PROC FAR

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL

; BIT3OF THE VALUE READ IS FOUND SET. IT

; THEN READS ANOTHER PORT. IF THE VALUE READ

; IS GREATER THAN 10H IT WRITES THE VALUE TO

; ATHIRD PORT AND RETURNS; OTHERWISE IT STARTS

; OVER.

STATUS_PORT EQU 0DOH

PORT_READY EQU 008H

INPUT__PORT EQU 0D2H

THRESHOLD EQU 010H

OUTPUT_PORT EQU 0D4H

CHECK_AGAIN: IN AL,STATUS_PORT ;GETSTATUS
TEST AL,PORT_READY ; DATA READY?
JNE CHECK_AGAIN ; NO, TRY AGAIN
IN AL,INPUT_PORT ; YES, GET DATA
CMP AL, THRESHOLD ; > 10H?
JLE CHECK_AGAIN ; NO, TRY AGAIN
ouT OUTPUT_PORT,AL ;YES,; WRITEIT

Figure 2-83. Dynamic Code Relocation Example

2-113

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

: RET ; RETURN TO CALLER
; GET PROCEDURE LENGTH
EXAMPLE_LEN EQU (OFFSET THIS BYTE)—(OFFSET CHECK__AGAIN)
ENDP EXAMPLE ENDP

SOURCE_SEG ENDS

TARGET_SEG SEGMENT
; THE POSITION-INDEPENDENT PROCEDURE
; ISMOVED TO THIS SEGMENT, WHICH IS
; INITIALLY “EMPTY.”
;INTYPICAL SYSTEMS, A ‘‘FREE SPACE MANAGER” WOULD
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE
; FORILLUSTRATION PURPOSES, ALLOCATE ENOUGH
; SPACETOHOLDIT ,
DB EXAMPLE__LEN DUP (?)

TARGET_SEG ENDS

MAIN_CODE SEGMENT

; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE
; ATITS INITIAL LOCATION, MOVES IT, AND

; CALLS IT AGAIN AT THE NEW LOCATION.

ASSUME CS:MAIN__CODE,SS:STACK,
& DS:MAIN_DATA,ES:NOTHING
; INITIALIZE SEGMENT REGISTERS & STACK POINTER.
START: MOV AX,MAIN__DATA
Mov DS,AX
MOV AX,STACK
MoV SS,AX
MOV SP,OFFSET STACK__TOP

; CALL EXAMPLE AT INITIAL LOCATION.
CALL PIP_PTR

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX,PIP_SIZE

; SAVE DS, SET UP DS/SIAND ES/DITO

; POINT TO THE SOURCE AND DESTINATION

; ADDRESSES.
PUSH DS
LES DI,FREE_PTR
LDS SI,PIP_PTR
; MOVE THE PROCEDURE.
CLD ; AUTO INCREMENT
REP MOVSB
; RESTORE OLD ADDRESSABILITY.
MOV AX,DS ; HOLD TEMPORARILY
POP DS
; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE
MOV WORD PTR PIP_PTR+2,ES
SuB DI,PIP_SIZE ; PRODUCES OFFSET
MoV WORD PTR PIP_PTR,DI

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Mnemonics © Intel, 1978 2-114

8086 AND 8088 CENTRAL PROCESSING UNITS

; UPDATE POINTER TO FREE SPACE

MOV WORD PTR FREE__PTR+2,AX
sSuB SI,PIP__SIZE ; PRODUCES OFFSET
‘MOV . WORD PTR FREE__PTR,SI
; CALL POSITION-INDEPENDENT PROCEDURE AT
; NEWLOCATION AND STOP
CALL PIP_PTR

MAIN__CODE ENDS

END START

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Memory-Mapped 1/0 B

Figure 2-84 shows how memory-mapped 1/0 can
be used to address a group of communication
lines as an ‘‘array.”’ In the example, indexed
addressing is used to poll the array of status ports,
one port at a time. Any of the other 8086/8088
memory addressing modes may be used in con-
junction with memory-mapped I/O devices as
well.

In figure 2-85 a MOVS instruction is used to per-
form a high-speed transfer to. a memory-mapped
line printer. Using this technique requires the
hardware to be set up as follows. Since the MOVS

instruction transfers characters to successive
memory addresses, the decoding logic must select
the line printer if any of these locations is written.
One way of accomplishing this is to have the chip
select logic decode only the upper 12 lines of the
address bus (A19-A8), ignoring the contents of
the lower eight lines (A7-A0). When data is writ-
ten to any address in this 256-byte block, the
upper 12 lines will not change, so the printer will
be selected.

If an 8086 is being used with an 8-bit printer, the
8086’s 16-bit data bus must be mapped into 8-bits
by external hardware. Using an 8088 provides a
more direct interface.

COM__LINES

SEGMENT AT 800H

; THE FOLLOWING IS A MEMORY MAPPED ‘“‘ARRAY”’

; OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS
; (E.G., 8251 USARTS). PORTS HAVE ALL-ODD

; OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE

; IS SKIPPED) FOR 8086-COMPATIBILITY.

COM__DATA DB ?
DB ?

COM_STATUS DB ?
DB ?
DB 28

COM__LINES ENDS
CODE SEGMENT

DUP (?)

;'SKIP THIS ADDRESS

; SKIP THIS ADDRESS
; REST OF ““ARRAY”’

; ASSUME STACK IS SET UP, AS ARE SEGMENT
; REGISTERS (DS POINTING TO COM__LINES).
; FOLLOWING CODE POLLS THE LINES.

CHAR__RDY EQU
START_POLL: MOV CX, 8
SuB S|, Sl

00000010B

; CHARACTER PRESENT
; POLL8LINES ZERO
; ARRAY INDEX

Figure 2-84. Memory Mapped 170 “‘Array”’

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

POLL__NEXT: TEST COM__STATUS [Sl], CHAR_RDY
JE READ__CHAR ; READ IF PRESENT
ADD Sl 4 * ;ELSEBUMP TO NEXT LINE
LOOP POLL_NEXT ; CONTINUE POLLING UNTIL
; ALL8HAVE BEEN CHECKED
JMP START_POLL; START OVER
READ__CHAR: Mov AL,COM__DATA [SI] ;GET THE DATA
; ETC. L
CODE ENDS
END

Figure 2-84. Memory Mapped 1/0 ““Array’’ (Cont’d.)

PRINTER SEGMENT
TH|S SEGMENT CONTAINS A “STRING” THAT

IS ACTUALLY A MEMORY-MAPPED LINE PRINTER.

THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED)

THAT WRITING TO ANY ADDRESS IN THE

: TO A BLOCK OF THE ADDRESS SPACE SUCH
: BLOCK SELECTS THE PRINTER.

PRINT_SELECT DB133 DUP (?)
DB 123 DUP(?)

PRINTER ENDS

DATA SEGMENT

PRINT_BUF DB 133 DUP (?)

PRINT_COUNT DB1 ?

; OTHER PROGRAM DATA

DATA ENDS

CODE SEGMENT

; ASSUME STACK AND SEGMENT REGISTERS HAVE

; BEEN SET UP (DS POINTS TO DATA SEGMENT).

; FOLLOWING CODE TRANSFERS A LINETO

; “STRING” REPRESENTING PRINTER
; REST OF 256-BYTE BLOCK

; LINE TO BE PRINTED
; LINELENGTH

; PREVENT SEGMENT OVERRIDE
; CLEAR SOURCE AND

DESTINATION POINTERS

; THE PRINTER.
ASSUME ES:PRINTER
MoV AX, PRINTER
MOV ES, AX
suB DI, DI
suB S|, Si
MOV CX, PRINT__COUNT
CLD ; AUTO-INCREMENT
REP MOVS PRINT_SELECT, PRINT__BUF
; ETC. '
CODE ENDS
END

Figure 2-85. Memory Mapped Block Transfer Example

Mnemonics © Intel, 1978 2-116

8086 AND 8088 CENTRAL PROCESSING UNITS

Breakpoints

Figure 2-86 illustrates how a program may set a
breakpoint. In the example, the breakpoint
routine puts the processor into single-step mode,
but the same general approach could be used for
other purposes as well. A program passes the
address where the break is to occur to a procedure

that saves the byte located at that address and
replaces it with an INT 3 (breakpoint) instruction.
When the CPU encounters the breakpoint
instruction, it calls the type 3 interrupt procedure.
In the example, this procedure places the pro-
cessor into single-step mode starting with the
instruction where the breakpoint was placed.

INT_PTR_TAB SEGMENT

; INTERRUPT POINTER TABLE-LOCATE AT OH

TYPE_O DD ? ; NOT DEFINED IN EXAMPLE

TYPE_1 DD SINGLE__STEP

TYPE__2 DD ? ; NOT DEFINED IN EXAMPLE

TYPE__3 DD BREAKPOINT

INT_PTR_TAB ENDS

SAVE_SEG SEGMENT

SAVE_INSTR DB1 DUP (?) ; INSTRUCTION REPLACED
; BY BREAKPOINT

SAVE_SEG ENDS

MAIN__CODE SEGMENT

; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP.

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT
; LABEL ““NEXT’’ BY PASSING SEGMENT AND
; OFFSET OF ““NEXT" TO ““SET__BREAK’ PROCEDURE

PUSH Cs ;
LEA AX, CS: NEXT
PUSH AX
CALL FAR SET_BREAK
; ETC.
NEXT: IN AL, OFFFH ; BREAKPOINT SET HERE
, ETC.

MAIN__CODE ENDS

BREAK SEGMENT
SET_BREAK PROC FAR

; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE
; ADDRESS IS PASSED BY THE CALLER) AND WRITES
; ANINT 3 (BREAKPOINT) MACHINE INSTRUCTION

AT THE TARGET ADDRESS.
TARGET EQU

DWORD PTR [BP + 6]

Figure 2-86. Breakpoint Example

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; SET UP BP FOR PARM ADDRESSING & SAVE REGISTERS

PUSH BP
MOV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
; POINT DS/BX TO THE TARGET INSTRUCTION
LDS BX, TARGET
; POINT ES TO THE SAVE AREA
MOV AX, SAVE__SEG
MOV ES, AX
; SWAP THE TARGET INSTRUCTION FOR INT 3 (0CCH)
MOV AL, 0CCH
XCHG AL, DS: [BX]
; SAVE THE TARGET INSTRUCTION .
MOV ES: SAVE__INSTR, AL
; RESTORE AND RETURN
POP BX
POP AX
POP ES
POP DS
POP BP
RET 4

SET_BREAK ENDP

BREAKPOINT PROC FAR ..
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT
; EXECUTES THE INT 3INSTRUCTION SET BY THE
; SET__BREAK PROCEDURE. THIS PROCEDURE
; RESTORES THE SAVED INSTRUCTION BYTETO ITS
; ORIGINAL LOCATION AND'BACKS UPTHE
; INSTRUCTION POINTER IMAGE ON THE STACK
; SOTHAT EXECUTION WILL RESUMEWITH |
; THE RESTORED INSTRUCTION. IT THEN SETS
; TF(THETRAP FLAG) IN THE FLAG-IMAGE
;7 ONTHE STACK. THIS PUTS THE PROCESSOR
; INSINGLE-STEP MODE WHEN EXECUTION

RESUMES.
FLAG_IMAGE EQU WORD PTR [BP +6]
__IMAGE EQU WORD PTR [BP +2]
NEXT_INSTR EQU DWORD PTR [BP +2]
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS
PUSH BP
MOV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
: POINT ES AT THE SAVE AREA -
MOV AX, SAVE__SEG
MOV ES, AX
: GET THE SAVED BYTE
MOV AL, ES: SAVE__INSTR

Figure 2-86. Breakpoint Example (Cont’d.)

Mnemonics © Intel, 1978 2-118

8086 AND 8088 CENTRAL PROCESSING UNITS

; GET THE ADDRESS OF THE TARGET + 1
; (INSTRUCTION FOLLOWING THE BREAKPOINT)

LDS BX, NEXT_INSTR
; BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK
DEC BX
MOV IP__IMAGE, BX
: RESTORE THE SAVED INSTRUCTION
MOV DS: [BX], AL
: SET TF ON STACK
AND FLAG_IMAGE, 0100H
: RESTORE EVERYTHING AND EXIT
POP BX
POP AX
POP ES
POP DS
POP BP
IRET
BREAKPOINT ENDP
SINGLE STEP PROC FAR

ONCE SINGLE-STEP MODE HAS BEEN ENTERED,
THE CPU “TRAPS’ TO THIS PROCEDURE
AFTER EVERY INSTRUCTION THAT ISNOT IN
AN INTERRUPT PROCEDURE. IN THE CASE
OF THIS EXAMPLE, THIS PROCEDURE WILL

“IN AL, OFFFH'' INSTRUCTION (WHERE THE
BREAKPOINT WAS SET) AND AFTER EVERY
SUBSEQUENT INSTRUCTION. THE PROCEDURE
COULD “TURN ITSELF OFF"’ BY CLEARING

; BE EXECUTED IMMEDIATELY FOLLOWING THE

i TFONTHE STACK.

; SINGLE-STEP CODE GOES HERE.
; SINGLE_STEP ENDP

BREAK ENDS

END ;

Figure 2-86. Breakpoint Example (Cont’d.)

Interrupt Procedures

Figure 2-87 is a block diagram of a hypothetical
system that is used to illustrate three different
examples of interrupt handling: an external
(maskable) interrupt, an external non-maskable
interrupt and a software interrupt.

In this hypothetical system, an 8253 Program-
mable Interval Timer is used to generate a time
base. One of the three timers on the 8253 is pro-
grammed to repeatedly generate interrupt
requests at SO millisecond intervals. The output
from this timer is tied to one of the eight interrupt
request lines of an 8259A Programmable Inter-
rupt Controller. The 8259A, in turn, is connected
to the INTR line of an 8086 or 8088.

Mnemonics © Intel, 1978

2-119

/8086 AND 8088 CENTRAL PROCESSING UNITS

+5V
L0 gty o —
coLD START—I | > RAM
o =
POWER DOWN
CIRCUITS .
RESET MPRO DECODER
PF1
f PFSR
(PULSE) PFS
v |
NMI E0 E2
<NTR 1IR3} CTR1
8086/8085 8259A 8253 PORTS
11T I 11 | 11
ADDRESS BUS %
] 11 [P 11 ||
DATA BU — m—r =
CONTROL BUS | I I | s
— =]
[[
DECODER »>| EprOM DECODER »>| Rram

Figure 2-87. Interrupt Example Block Diagram

A power-down circuit is used in the system to
illustrate one application of the 8086/8088 NMI
(non-maskable interrupt) line. If the ac line
voltage drops below a certain threshold, the
power supply activates ACLO. The power-down
circuit then sends a power-fail interrupt (PFI)
pulse to the CPU’s NMI input. After 5
milliseconds, the power-down circuit activates
MPRO (memory protect) to disable reading
from and writing to the system’s battery-powered
RAM. This protects the RAM from fluctuations
that may occur when power is actually lost 7.5
milliseconds .after the power failure is detected.
The system software must save all vital informa-
tion in the battery-powered RAM segment within
5 milliseconds of the activation:.of NMI.

When: power returns, . the” power-down circuit
activates the system RESET line. Pressing the
‘‘cold start’’ switch also produces ‘a system
RESET. The PFS (power fail status) line, which is

connected to the low-order bit of port EO, iden-
tifies the source of the RESET. If the bit is set, the
software executes a ‘‘warm start”’ to restore the
information saved by the power-fail routine. If
the PFS bit is cleared, the software executes a
‘“‘cold start” from the beginning of the program.
In either case, the software writes a ‘‘one”’ to the
low-order bit of port E2. This line is connected to
the power-down circuit’s PFSR (power fail status
reset) signal and is used to enable the battery-
powered RAM segment.

A software interrupt is used to update a simple
real-time clock. This procedure is written in
PL/M-86, while the rest of the system is written in
ASM-86 to demonstrate the interrupt handling
capability of both languages. The system’s main
program simply initializes the system following
receipt of a RESET and then waits for an
interrupt. An example of this interrupt procedure
is given in figure 2-88.

2-

120

8086 AND 8088 CENTRAL PROCESSING UNITS

INT_POINTERS SEGMENT
; INTERRUPT POINTER TABLE, LOCATE AT OH, ROM-BASED
TYPE_O DD ? ; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE.
TYPE_1 DD ? ; SINGLE-STEP NOT SUPPLIED IN EXAMPLE.
TYPE_2 DD POWER__FAIL ; NON-MASKABLE INTERRUPT
TYPE__3 DD ? ; BREAKPOINT NOT SUPPLIED IN EXAMPLE.
TYPE__4 DD ? ; OVERFLOW NOT SUPPLIED IN EXAMPLE.
; SKIP RESERVED PART OF EXAMPLE
ORG 32*4

TYPE_32 DD ? ; 8258A IR0 - AVAILABLE
TYPE_33 DD ? ; 8258A IR1 - AVAILABLE
TYPE_34 DD ? ; 8259A IR2 - AVAILABLE
TYPE__35 DD TIMER_PULSE ; 8259A IR3
TYPE_36 DD ? ; 8259A IR4 - AVAILABLE
TYPE_37 DD ? ; 8259A IR5 - AVAILABLE
TYPE__38 DD ? ; 8259A IR6 - AVAILABLE

? ; 8259A IR7 - AVAILABLE

TYPE_39 DD
. POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER
INT_POINTERS ENDS

BATTERY SEGMENT

; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA
; THAT MUST BE MAINTAINED DURING POWER OUTAGES.

STACK__PTR DW ? ; SP SAVE AREA
STACK_SEG DW ? ; SS SAVE AREA
; SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE.
BATTERY ENDS
DATA SEGMENT
; RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY
N_PULSES DB 1 DUP (0) ; # TIMER PULSES
; ETC.
DATA ENDS
STACK SEGMENT
; LOCATED IN BATTERY-POWERED RAM
Dw 100 DUP (?) ; THIS IS AN ARBITRARY STACKSIZE
STACK__TOP LABEL WORD ; LABEL THE INITIAL TOS
STACK ENDS

INTERRUPT_HANDLERS SEGMENT
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)

ASSUME: CS:INTERRUPT_HANDLERS,DS:DATA,SS:STACK,ES:BATTERY

POWER__FAIL PROC ; TYPE2INTERRUPT
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS

; ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN
; RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SO THAT IT
; CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS

Figure 2-88. Interrupt Procedures Example

Mnemonics © Intel, 1978

2-121

8086 AND 8088 CENTRAL PROCESSING UNITS

;IP,CS, AND FLAGS ARE ALREADY ON THE STACK.
; SAVE THE OTHER REGISTERS.

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH Si
PUSH DI
PUSH BP
PUSH DS
PUSH ES

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK AT THIS
POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE *‘BATTERY"
; SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER

; ISLOST.
; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE.
MOV AX,BATTERY
MOV ES,AX
MOV ES:STACK_PTR,SP
MOV ES:STACK_SEG,SS
; STOP GRACEFULLY
HLT
POWER_FAIL ENDP
TIMER_PULSE PROC ; TYPE 35 INTERRUPT

; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253.

; ITCOUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT
PROCEDURE ONCE PER SECOND.

Z DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT

; THE 8253 IS RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT
; REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI).

INC N_PULSES

; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
STI
CMP N_PULSES,200 - ;1SECOND PASSED?
JBE DONE ; NO, GO ON.
MOV N_PULSES,0 ; YES, RESET COUNT.
INT 40 ; UPDATE CLOCK

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL
; ORLOWERPRIORITY INTERRUPTS.

DONE: MoV AL,020H ; EOLCOMMAND
ouT 0COH,AL ; 8259A PORT
IRET

TIMER_PULSE ENDP

INTERRUPT_HANDLERS ENDS

CODE SEGMENT

; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM.
ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING

Figure 2-88. Interrupt Procedures Example (Cont’d.)

Mnemonics © Intel, 1978 2-122

8086 AND 8088 CENTRAL PROCESSING UNITS

INIT

PROC

NEAR

; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE
; THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR

EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START.
; INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED.
; CLKINPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ.

LO50MS
HI50MS
CONTROL
COUNT__1
MODE2

EQU
EQU
EQU
EQU
EQU

MOV
MOV
ouT
MOV
MOV
ouT
MOV
ouT

000H
OFOH
0D6H
0D2H
011101008

DX,CONTROL

AL,MODE2
DX,AL

DX,COUNT_1

AL,LO50MS
DX,AL
AL,HI50MS
DX,AL

; COUNT VALUE IS
;61440 DECIMAL.

; CONTROL PORT ADDRESS
; COUNTER 1 ADDRESS

; MODE 2, BINARY

; LOAD CONTROL BYTE

; LOAD 50MS DOWNCOUNT

; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED,
;- INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT
; REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT.
; MASK OFF UNUSED INTERRUPT REQUEST LINES.

ICW1
ICW2
ICW4
ocwi
PORT__A
PORT_B

EQU
EQU
EQU
EQU
EQU
EQU

MOV

MOV
ouT
MOV
MOV
ouT
MOV
ouT
MOV
ouT

00010011B
001000008
00000001B
11110111B
0COH
0C2H

DX,PORT_A
AL,ICW1
DX,AL
DX,PORT_B
AL,ICW2
DX,AL
AL,ICW4
DX,AL
AL,0CW1
DX,AL

; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED.

; TYPE 20H, 32- 40D

; 8086 MODE, NORMAL EOI

; MASK ALL BUTIR3

; ICW1 WRITTEN HERE

; OTHER ICW’S WRITTEN HERE

; WRITE1ST ICW

; WRITE 2ND ICW

; WRITE 4TH ICW

; MASK UNUSED IR’S

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED

INIT

USER_PGM:

RET

ENDP

; “REAL’’ CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP

UNTIL AN INTERRUPT OCCURS.

; EXECUTION STARTS HERE WHEN CPU IS RESET.

JMP

POWER__FAIL__STATUS

ENABLE__RAM

USER__PGM

EQU OEOH
EQU OE2H

; PORT ADDRESS
; PORT ADDRESS

Figure 2-88. Interrupt Procedures Example (Cont’d.)

2-123

Mnemonics © Intel, 1978

8086 AND 8088 CEN‘TRAL PROCESSING UNITS

; ENABLE BATTERY-POWERED RAM SEGMENT
START: MOV AL,001H
out ENABLE__RAM,AL

; DETERMINE WARM OR COLD START

IN AL,POWER_FAIL__STATUS :
RCR AL,1 ; ISOLATE LOW BIT
JC WARM__START

COLD__START:

; INITIALIZE SEGMENT REGISTERS AND STACK POINTER.
ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING
; RESET TAKES CARE OF CS AND IP.

MOV AX,DATA
MOV DS,AX
MoV AX,STACK
MoV SS,AX
MoV SP,OFFSET STACK__TOP
; INITIALIZE 8253 AND 8259A.
CALL INIT
; ENABLE INTERRUPTS
STI
; START MAIN PROCESSING
JMP USER_PGM
WARM__START:
; INITIALIZE 8253 AND 8259A.
CALL INIT

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED
; MAKE BATTERY SEGMENT ADDRESSABLE
) MOV AX,BATTERY
MOV DX,AX
; VARIABLES SAVED IN THE “BATTERY”’ SEGMENT WOULD BE MOVED
; BACKTO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND
; ““ASSUME’” DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN
ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV SS,DS:STACK__SEG
MOV SP,DS:STACK_PTR

; RESTORE THE OTHER REGISTERS

POP ES
POP DS
POP BP
POP DI

POP Sl

POP DX
POP CX
POP BX
POP AX

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED.
; LE.,POPCS,IP,&FLAGS, EFFECTIVELY “RETURNING” FROM THE
; NMIPROCEDURE.
IRET
CODE ENDS

; TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM.
END START

Figure 2-88. Interrupt Procedures Example (Cont’d.)

Mnemonics © Intel, 1978 2-124

8086 AND 8088 CENTRAL PROCESSING UNITS

TYPE$40: DO;
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC;
UPDATES$TOD: PROCEDURE INTERRUPT 40;

/*THE PROCESSOR ACTIVATES THIS PROCEDURE
*TO HANDLE THE SOFTWARE INTERRUPT
*GENERATED EVERY SECOND BY THE TYPE 35
*EXTERNAL INTERRUPT PROCEDURE. THIS
*PROCEDURE UPDATES A REAL-TIME CLOCK.
*IT DOES NOT PRETEND TO BE ‘‘REALISTIC”

AS THERE IS NO WAY TO SET THE CLOCK./

SEC=SEC + 1;
IF SEC =60 THEN DO;

SEC=0;

MIN = MIN + 1;

IF MIN = 60 THEN DO;
MIN = 0;
HOUR=HOUR + 1;
IF HOUR =24 THEN DO;

HOUR =0;
END;
END;

END;

END UPDATESTOD;
END;

Figure 2-88. Interrupt Procedures Example (Cont’d.)

String Operations

Figure 2-89 illustrates typical use of string instruc-
tions and repeat prefixes. The XLAT instruction
also is demonstrated. The first example simply
moves 80 words of a string using MOVS. Then
two byte strings are compared to find the
alphabetically lower string, as might be done in a
sort. Next a string is scanned from right to left

(the index register is auto-decremented) to find
the last period (‘“.”’) in the string. Finally a byte

string of EBCDIC characters is translated to

ASCII. The translation is stopped at the end of
the string or when a carriage return character is
encountered, whichever occurs first. This is an
example of using the string primitives in combina-
tion with other instructions to build up more com-
plex string processing operations.

ALPHA SEGMENT

; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE
OUTPUT DW 100 DUP (?)

INPUT DW 100 DUP (?)

NAME__1 DB ‘JONES, JONA’

NAME__2 DB ‘JONES, JOHN’

SENTENCE DB 80 DUP (?)

EBCDIC_CHARS DB 80 DUP (?)

ASCIi_CHARS DB80 DUP (?)

CONV__TAB DB 64 DUP(0H)

Figure 2-89. String Examples

2-125

; EBCDIC TO ASCII

Mnemonics © Intel, 1978

8086 AND 8088 CENTRAL PROCESSING UNITS

; ASCIINULLS ARE SUBSTITUTED FOR ““UNPRINTABLE’ CHARS

ALPHA
STACK
STACK__BASE
STACK

CODE
BEGIN:

DB 1 20H
DB9 DUP (0H)
DB7 ‘¢, <L 0L, 4, 0H,
DB9 DUP (0H)
DB8 AT T R
DB 8 DUP (0H)
DB6 SR, D>
DB9 DUP (0H) _
DB17 e, =L
OH, ‘a’, ‘b’, ‘¢, ‘d’, ‘e’, 'f’, ‘g’, ‘h’, '’
DB7 DUP (0H) ‘
DB9 P S A 11 M KRR R s I B o
DB7 DUP (0H)
DB9 oA B G VI A TTAS G VA &
DB 22 DUP (0H)
DB 10 ‘A, B, ‘C, D, B, R, G, R, P
DB6 DUP (0H)
DB 10 C N KL MY, N O P, Q7 R
DB6 DUP (0H)
DB 10 ‘,0H, S, T, U, VY W X, Y
DB6 DUP (0H)
DB 10 ‘0’, 17,2, 3", '4’, ‘5, '6°, ‘7", ‘8", 'Y’
DB6 DUP (0H)
ENDS
SEGMENT ‘
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE
; FORILLUSTRATION ONLY.
LABEL WORD ; INITIALTOS
ENDS
SEGMENT

; SET UP SEGMENT REGISTERS. NOTICE THAT
; ES& DS POINT TO THE SAME SEGMENT, MEANING
; THAT THE CURRENT EXTRA & DATA
; SEGMENTS FULLY OVERLAP. THIS ALLOWS
; ANY STRING IN ““ALPHA’ TO BE USED
; AS A SOURCE OR A DESTINATION.
ASSUME CS: CODE, SS: STACK,
DS: ALPHA, ES: ALPHA

MOV AX, STACK

MoV S§, AX

MOV SP, OFFSET STACK__BASE ; INITIAL TOS
MOV AX, ALPHA

MOV DS, AX

MOV ES, AX

; MOVE THE FIRST 80 WORDS OF “INPUT”’ TO
; THELAST 80 WORDS OF “OUTPUT"".

LEA SI, INPUT ; INITIALIZE
LEA DI, OUTPUT + 20 ; INDEX REGISTERS

Figure 2-89. String Examples (Cont’d.)

Mnemonics © Intel, 1978

2-126

8086 AND 8088 CENTRAL PROCESSING UNITS

Mov CX, 80 ; REPETITION COUNT
CLD ; AUTO-INCREMENT
REP MOVS OUTPUT, INPUT

; FIND THE ALPHABETICALLY LOWER OF 2 NAMES.

MOV SI, OFFSETNAME__1 ; ALTERNATIVE
MOV DI, OFFSET NAME__2 ; TOLEA
MOV CX, SIZE NAME__2 ; CHAR. COUNT
CLD ; AUTO-INCREMENT
REPE CMPS NAME__2, NAME_1 “WHILE EQUAL”
JB NAME_2_LOW
NAME__1__LOW: ; NOT IN THIS EXAMPLE
NAME__2_LOW: ; CONTROL COMES HERE IN THIS EXAMPLE.
; DIPOINTS TOBYTE (‘H’) THAT
; COMPARED UNEQUAL.
; FIND THE LAST PERIOD (“.’) IN ATEXT STRING.
MOV DI, OFFSET SENTENCE +
& LENGTH SENTENCE ; START ATEND
MOV CX, SIZE SENTENCE
STD ; AUTO-DECREMENT
MOV AL, ‘) ; SEARCH ARGUMENT
REPNE SCAS SENTENCE s “WHILE NOT ="’
JCXZ NO__PERIOD ; IF CX=0, NO PERIOD FOUND
PERIOD: ; IFCONTROL COMES HERE THEN
; DIPOINTS TO LAST PERIOD IN SENTENCE.
NO__PERIOD: ; ETC.

; TRANSLATE A STRING OF EBCDIC CHARACTERS
; TO.ASCII, STOPPING IF A CARRIAGE RETURN
; (ODH ASCIl) IS ENCOUNTERED.

MoV BX, OFFSET CONV_TAB ;POINT TO TRANSLATE TABLE
Mov S|, OFFSET EBCDIC_CHARS ; INITIALIZE
MoV DI, OFFSET ASCII_CHARS ; INDEXREGISTERS
MOV CX, SIZE ASCII_CHARS ; AND COUNTER
CLD ; AUTO-INCREMENT

NEXT: LODS EBCDIC_CHARS ; NEXT EBCDIC CHARIN AL
XLAT CONV__TAB ; TRANSLATE TO ASCII
STOS ASCII_CHARS ; STORE FROM AL
TEST AL, ODH ; ISIT CARRIAGE RETURN?
LOOPNE NEXT ; NO, CONTINUE WHILE CX NOT 0
JE CR_FOUND ; YES, JUMP

; CONTROL COMES HERE IF ALL CHARACTERS
; HAVE BEEN TRANSLATED BUT NO
; CARRIAGE RETURN IS PRESENT.

; ETC.

CR_FOUND:
; DI-1 POINTS TO THE CARRIAGE RETURN
; INASCII_CHARS.

CODE ENDS

END

Figure 2-89. String Examples (Cont’d.)

Mnemonics © Intel, 1978

2-127/2-128

CHAPTER3
THE 8089 INPUT/OUTPUT PROCESSOR

This chapter describes the 8089 Input/Output
Processor (IOP). Its organization parallels
Chapter 2; that is, sections generally proceed
from hardware to software topics as follows:

1. Processor Overview

Processor Architecture

Memory

Input/Output

Multiprocessing Features
Processor Control and Monitoring
Instruction Set

Addressing Modes

Programming Facilities

O 00 9 N L A W N

—_
e

Programming Guidelines and Examples

As in Chapter 2, the discussion is confined to
covering the hardware in functional terms; tim-
ing, electrical characteristics and other physical
interfacing data are provided in Chapter 4.

3.1 Processor Overview

The 8089 Input/Output Processor is a high-
performance, general-purpose I/0 system
implemented on a single chip. Within the 8089 are
two independent I/O channels, each of which
combines attributes of a CPU with those of a very
flexible DMA (direct memory access) controller.
For example, channels can execute programs like
CPUs; the IOP instruction set has about 50 dif-
ferent types of instructions specifically designed
for efficient input/output processing. Each chan-
nel also can perform high-speed DMA transfers; a
variety of optional operations allow the data to be
manipulated (e.g., translated or searched) as it is
transferred. The 8089 is contained in a 40-pin
dual in-line package (figure 3-1) and operates
from a single + 5V power source. An integral
member of the 8086 family, the IOP is directly
compatible with both the 8086 and 8088 when
these processors are configured in maximum
mode. The IOP also may be used in any system
that incorporates Intel’s Multibus™ shared bus
architecture, or a superset of the Multibus™
design.

vss []1 40[] Vee
A14/D14] 2 39 [A15/D15
A13D13[] 3 38 [] A16/S3
A12/012 [4 37| ar7isa
anpn]s 38 [ateiss
Atw/10] 6 35 [] A19/S6
A9/Ds (] 7 34[7] BHE
AsD8 [} 8 33[] EXT1
A7/07]9 32[] exT2
Ae/De [] 10 31 bra1
A5/Ds [} 11 8089 49] DRQ 2
A4/D4 [] 12 29 [Tock
A3D3[] 13 28] s2
A2iD2[] 14 271 s
A1D1[] 15 26[1 so
Ao0/D0 [] 16 25 [RQIGT
SINTR-1[] 17 24[] SEL
SINTR2[] 18 23] ca
CLK [] 19 22 [7] READY
Vss [] 20 21{] RESET

Figure 3-1. 8089 Input/Output Processor
Pin Diagram

Evolution

Figure 3-2 depicts the general trend in CPU and
I/0 device relationships in the first three genera-
tions of microprocessors. First generation CPUs
were forced to deal directly with substantial
numbers of TTL components, often performing
transfers at the bit level. Only a very limited
number of relatively slow devices could be
supported.

Single-chip interface controllers were introduced
in the second generation. These devices removed
the lowest level of device control from the CPU
and let the CPU transfer whole bytes at once.
With the introduction of DMA controllers, high-
speed devices could be added to a system, and
whole blocks of data could be transferred without
CPU intervention. Compared to the previous
generation, I/O device and DMA controllers
allowed microprocessors to be applied to prob-
lems that required moderate levels of I/0, both in
terms of the numbers of devices that could be sup-
ported and the transfer speeds of those devices.

3-1

8089 INPUT/OUTPUT PROCESSOR

The controllers - themselves, however, still
required a considerable amount of attention from
the CPU, and in many cases the CPU had to
respond to an interrupt with every byte read or
written. The CPU also had to stop while DMA
transfers were performed.

The 8089 introduces the third generation of
input/output processing. It continues the trend of
simplifying the CPU’s ‘““view’’ of I/0 devices by
removing another level of control from the CPU.
The CPU performs an I/0 operation by building
a message in memory that describes the function
to be performed; the IOP reads the message, car-
ries out the operation and notifies the CPU when
it has finished. All I/0 devices appear to the CPU
as transmitting and receiving whole blocks of
data; the IOP can make both byte- and word-level
transfers invisible to the CPU. The IOP assumes
all device controller overhead, performs both pro-
grammed and DMA transfers, and can recover
from “‘soft’”> 1/0 errors without CPU interven-
tion; all of these activities may be performed
while the CPU is attending to other tasks.

Principles of Operation

Since the 8089 is a new concept in microprocessor
components, this section surveys the basic opera-
tion of the IOP as background to the detailed
descriptions provided in the rest of the chapter.
This summary deliberately omits some operating
details in order to provide an integrated overview
of basic concepts.

CPU/IOP Communications

A CPU communicates with an IOP in two distinct
modes: initialization and command. The
initialization sequence is typically performed
when the system is powered-up or reset. The CPU
initializes the IOP by preparing a series of linked
message blocks in memory. On a signal from the
CPU, the IOP reads these blocks and determines
from them how the data buses are configured and
how access to the buses is to be controlled.

TELETYPE-
WRITER

COMMUNICATION
INTERFACE

OTHER
1/0
DEVICE

PERIPHERAL
INTERFACE

HDLC/SDLC
PROTOCOL
CONTROLLER

DATA LINK 8273

COMMUNICATION
INTERFACE

8089
CRT 8251A 10P

PERIPHERAL
INTERFACE

OTHER
(o]

1/ 8255A
DEVICE

OTHER
1/
DEVICE

FLOPPY DISK
CONTROLLER

DMA
CONTROLLER
(FUTURE CONTROLLER)
<N I Forore 1
2 = 170 |
AL L DEVICE
-, -
“ FLOPPY DISK
CONTROLLER
8086/8088 8089 8271 FLOPPY
CPU 10P DISK

. HARD
nee (e
CONTROLLER

Figure 3-2. IOP Evolution

8089 INPUT/OUTPUT PROCESSOR

Following initialization, the CPU directs all com-
munications to either of the IOP’s two channels;
indeed, during normal operation the IOP appears
to be two separate devices—channel 1 and chan-
nel 2. All CPU-to-channel communications center
on the channel control block (CB) illustrated in
figure 3-3. The CB is located in the CPU’s
memory space, and its address is passed to the
IOP during initialization. Half of the block is
dedicated to each channel. The channel maintains
the BUSY flag that indicates whether it is in the
midst of an operation or is available for a new
command. The CPU sets the CCW (channel com-
mand word) to indicate what kind of operation
the IOP is to perform. Six different commands
allow the CPU to start and stop programs,
remove interrupt requests, etc.

If the CPU is dispatching a channel to run a pro-
gram, it directs the channel to a parameter block
(PB) and a task block (TB); these are also shown
in figure 3-3. The parameter block is analogous to
a parameter list passed by a program to a
subroutine; it contains variable data that the
channel program is to use in carrying out its
assignment. The parameter block also may con-

tain space for variables (results) that the channel
is to return to the CPU. Except for the first two
words, the format and size of a parameter block
are completely open; the PB may be set up to
exchange any kind of information between the
CPU and the channel program.

A task block is a channel program—a sequence of
8089 instructions that will perform an operation.
A typical channel program might use parameter
block data to set up the IOP and a device con-
troller for a transfer, perform the transfer, return
the results, and then halt. However, there are no
restrictions on what a channel program can do; its
function may be simple or elaborate to suit the
needs of the application.

Before the CPU starts a channel program, it links
the program (TB) to the parameter block and the
parameter block to the CB as shown in figure 3-3.
The links are standard 8086/8088 doubleword
pointer variables; the lower-addressed word con-
tains an offset, and the higher-addressed word
contains a segment base value. A system may
have many different parameter and task blocks;
however, only one of each is ever linked to a
channel at any given time.

CHANNEL CONTROL BLOCK (CB)

(RESERVED) 14
PARAMETER BLOCK POINTER__| 12
. —{ [~ (SEGMENT BASE & OFFSET) |, (* CHANNEL2
| BUsY | ccw 8
I (RESERVED) 6
| 4
_J |_PARAMETER BLOCK POINTER _|
| . { [(SEGMENT BASE & OFFSET) | , (- CHANNEL1
|
Lo BUSY | Ccw 0
! 15 87 (]
] -t--- = === —— == -
B 1
1 i
CHANNEL 2 PARAMETER BLOCK (PB) ! CHANNEL 1 PARAMETER BLOCK (PB) |
|
|
l. CHANNEL PROGRAM PARAMETERS 1 ! l CHANNEL PROGRAM PARAMETERS l |
(APPLICATION-DEFINED) | r (APPLICATION-DEFINED) f
4 | a
| tasksiockpomnter |2 ! TASKBLOCKPOINTER __ |2 |
— (SEGMENT BASE & OFFSET) od ™ (SEGMENT BASE & OFFSET) o<
|
| 15 [: 15 0
! CHANNEL 2 TASK BLOCK (T8) ! CHANNEL 1 TASK BLOCK (TB)
! (CHANNEL PROGRAM) | (CHANNEL PROGRAM)
! |
! |
i |
1 |
| 8089 | 8089
5 INSTRUCTIONS -\ 3 INSTRUCTIONS &
(e (APPLICATION- r R (APPLICATION- g
| DEFINED) | DEFINED)
| I
| |
L L

Figure 3-3. Command Communication Blocks

3-3

- 8089 INPUT/OUTPUT PROCESSOR

After the CPU has filled in the CCW and has
linked the CB to a parameter block and a task
block, if appropriate, it issues a channel attention
(CA). This is done by activating the IOP’s: CA
(channel attention) and SEL (channel select) pins.
The state of SEL at the falling edge of CA directs
the channel attention to channel 1 or channel 2. If
the IOP is located in the CPU’s I/0 space, it
appears to the CPU as two consecutive I/0 ports
(one for each channel), and an OUT instruction
to the port functions as a CA. If the IOP is
memory-mapped, the channels appear as two
consecutive memory locations, and any memory
reference instruction (e.g., MOV) to these loca-
tions causes a channel attention.

An IOP channel attention is functionally similar
to a CPU interrupt. When the channel recognizes
the CA, it stops what it is doing (it will typically
be idle) and examines the command in the CCW.
If it is to start a program, the channel loads the
addresses of the parameter and task blocks into
internal registers, sets its BUSY flag and starts
executing the channel program. After it has issued
the CA, the CPU is free to perform other process-
ing; the channel can perform. its function in
parallel, subject to limitations imposed by bus
configurations (discussed shortly). -

When the channel has completed its program, it.

notifies the CPU by clearing its BUSY flag in the
CB. Optionally, it may issue an interrupt request
to the CPU.

The CPU/IOP communication structure is sum-
marized in figure 3-4. Most communication takes
place via ‘‘message areas’’ shared in common
memory. The only direct hardware communica-
tions between the devices are channel attentions
and interrupt requests.

Channels

Each of the two 'IOP channels operates
independently,-and each has its own register set,
channel attention, interrupt request and DMA
control signals. At a given point in time, a chan-
nel may be idle, executing a program, performing
a DMA ‘transfer, or responding to a channel
attention. Although only one channel actually
runs at a time, the channels can be active concur-
rently, alternating their operations (e.g., channel
1 may execute instructions in the periods between
successive DMA transfer cycles run by channel 2).
A built-in priority system allows high-priority
activities on one channel to preempt less critical
operations on the other channel. The CPU is able
to further adjust priorities to handle special cases.
The CPU starts the channel and can halt it, sus-
pend it, or cause it to resume a suspended opera-
tion by placing different values in the CCW.

Channel Programs (Task Blocks)

Channel programs are written in ASM-89, the
8089 assembly language. About 50 basic instruc-
tions are available. These instructions operate on
bit, byte, word and doubleword (pointer) variable
types; a 20-bit physical address variable type (not
used by the 8086/8088) can also be manipulated.
Data may be taken from registers, immediate con-
stants and memory. Four memory addressing
modes allow flexible access to both memory
variables and I/0 devices located anywhere in
either the CPU’s megabyte memory space or in
the 8089’s 64k 1/0 space. ‘ '

The IOP instruction set contains general purpose
instructions similar to those found in CPUs as
well as instructions specifically tailored for 170

CHANNEL ATTENTION

Y

CPU -

MES?'::\G ES
MEMORY

10P

A
Y

A

INTERRUPT

Figure 3-4. CPU/IOP Communication.

34

8089 INPUT/OUTPUT PROCESSOR

operations. Data transfer, simple arithmetic,
logical and address manipulation operations are
available. Unconditional jump and call instruc-
tions also are provided so that channel programs
can link to each other. An individual bit may be
set or cleared with a single instruction. Condi-
tional jumps can test a bit and jump if it is set (or
cleared), or can test a value and jump if it is zero
(or non-zero). Other instructions initiate DMA
transfers, perform a locked test-and-set
semaphore operation, and issue an interrupt
request to the CPU.

DMA Transfers

The 8089 XFER (transfer) instruction prepares
the channel for a DMA transfer. It executes one
additional instruction, then suspends program
execution and enters the DMA transfer mode.
The transfer is governed by channel registers
setup by the program prior to executing the
XFER instruction.

Data is transferred from a source to a destination.
The source and destination may be any locations
in the CPU’s memory space or in the IOP’s 170
space; the IOP makes no distinction between
memory components and I/0 devices. Thus
transfers may be made from I/O device to
memory, memory to I/O device, memory to
memory and I/0 device to 170 device. The IOP
automatically matches 8- and 16-bit components
to each other.

Individual transfer cycles (i.e., the movement of a
byte or a word) may be synchronized by a signal
(DMA request) from the source or from the
destination. In the synchronized mode, the chan-
nel waits for the synchronizing signal before start-
ing the next transfer cycle. The transfer also may
be unsynchronized, in which case the channel
begins the next transfer cycle immediately upon
completion of the previous cycle.

A transfer cycle is performed in two steps: fetch-
ing a byte or word from the source into the IOP
and then storing it from the IOP into the destina-
tion. The IOP automatically optimizes the
transfer to make best use of the available data bus
widths. For example, if data is being transferred
from an 8-bit device to memory that resides on a
16-bit bus (e.g., 8086 memory), the IOP will nor-
mally run two one-byte fetch cycles and then store
the full word in a single cycle.

Between the fetch and store cycles, the IOP can
operate on the data. A byte may be translated to
another code (e.g., EBCDIC to ASCII), or com-
pared to a search value, or both, if desired.

A transfer can be terminated by several
programmer-specified conditions. The channel
can stop the transfer when a specified number (up
to 64k) of bytes has been transferred. An external
device may stop a transfer by signaling on the
channel’s external terminate pin. The channel can
stop the transfer when a byte (possibly translated)
compares equal, or unequal, to a search value.
Single-cycle termination, which stops uncondi-
tionally after one byte or word has been stored, is
also available.

When the transfer terminates, the channel
automatically resumes program execution. The
channel program can determine the cause of the
termination in situations where multiple termina-
tions are possible (e.g., terminating when 80 bytes
are transferred or a carriage return character is
encountered, whichever occurs first). As an exam-
ple of post-transfer processing, the channel pro-
gram could read a result register from the 1/0
device controller to determine if the transfer was
performed successfully. If not (e.g., a CRC error
was detected by the controller), the channel pro-
gram could retry the operation without CPU
intervention.

A channel program typically ends by posting the
result of the operation to a field supplied in the
parameter block, optionally interrupting the
CPU, and then halting. When the channel halts,
its BUSY flag in the channel control block is
cleared to indicate its availability for another
operation. As an alternative to being interrupted
by the channel, the CPU can poll this flag to
determine when the operation has been
completed.

Bus Configurations

As shown in figure 3-5, the IOP can access
memory or ports (I/O devices) located in a
1-megabyte system space and memory or ports
located in a 64-kilobyte 1/0 space. Although the
IOP only has one physical data bus, it is useful to
think of the IOP as accessing the system space via
a system data bus and the I/0 space over an I/0
data bus. The distinction between the ‘‘two’’
buses is based on the type-of-cycle signals output

3-5

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

by the 8288 Bus Controller. Components in the
system space respond to the memory read and
memory write signals, whether they are memory
or I/0 devices. Components in the I/O space
respond to the I/0 read and 1/0 write signals.
Thus I/0 devices located in the system space are
memory-mapped and memory in the I/0 space is
1/0-mapped. The two basic configuration op-
tions differ in the degree to which the IOP shares
these buses with the CPU. Both configurations re-
quire an 8086/8088 CPU to be strapped in max-
imum mode.

In the local configuration, shown in figure 3-6,
the IOP (or IOPs if two are used) shares both
buses with the CPU. The system bus and the I/0
bus are the same width (8 bits if the CPU is an

8088 or 16 bits if the CPU is an 8086). The IOP
system space corresponds to the CPU memory
space, and the IOP 1/0 space corresponds to the
CPU I/0 space. Channel programs are located in
the system space; 1/0 devices may be located in
either space. The IOP requests use of the bus for
channel program instruction fetches as well as for
DMA and programmed transfers. In the local
configuration, either the IOP or the CPU may use
the buses, but not both simultaneously. The
advantage of the local configuration. is that
intelligent DMA may be added to a system with
no additional components beyond the IOP. The
disadvantage is that parallel operation of the pro-
cessors is limited to cases in which the CPU has
instruction in its queue that can be executed
without using the bus.

1/0
DEVICE

170
DEVICE

SYSTEM SPACE (1 MBYTE)

MEMORY

1/0 SPACE (64 KBYTES)

MEMORY

1/0
DATA

BUS

Figure 3-5. IOP Data Buses

8089 INPUT/OUTPUT PROCESSOR

1/0 SPACE

1/0 BUS

BUS
ARBITRATION

r==-- l
OPTIONAL |
: Y

[S - d

8086/8088 \ g
CPU

8089 IOP

SYSTEM BUS

MEMORY

SYSTEM SPACE

Figure 3-6. Local Configuration

In the remote configuration (figure 3-7), the IOP
(or IOPs) shares a common system bus with the
CPU. Access to this bus is controlled by 8289 Bus
Arbiters. The IOP’s I/0 bus, however, is
physically separated from the CPU in the remote
configuration. Two IOPs can share the local I/0
bus. Any number of remote IOPs may be con-
tained in a system, configured in remote clusters
of one or two. The local I/0 bus need not be the
same physical width as the shared system bus,
allowing an IOP, for example, to interface 8-bit
peripherals to an 8086. In the remote configura-
tion, the IOP can access local I/0 devices and
memory without using the shared system bus,
thereby reducing bus contention with the CPU.
Contention can further be reduced by locating the
IOP’s channel programs in the local 1/0 space.
The IOP can then also fetch instructions without

accessing the system bus. Parameter, channel
control and other CPU/IOP communication
blocks must be located in system memory,
however, so that both processors can access them.
The remote configuration thus increases the
degree to which an IOP and a CPU can operate in
parallel and thereby increases a system’s
throughput potential. The price paid for this is
that additional hardware must be added to
arbitrate use of the shared bus, and to separate
the shared and local buses (see Chapter 4 for
details).

It is also possible to configure an IOP remote to
one CPU, and local to another CPU (see figure
3-8). The local CPU could be used to perform
heavy computational routines for the IOP.

3-7

8089 INPUT/OUTPUT PROCESSOR

=N 7

| - H i
VICE -
] 1/0 DEVICE) 1/0 DE :* e ARen
I o/ =)
L. _ opTioNALLOCALI/OSPACE _]
. NN M TR SNE SEE G N G e
NOT ACCESSIBLE TO IOPs

MEMORY-
MAPPED
170 DEVICE
MEMORY
MEMORY-
MAPPED
1/0 DEVICE
7]
=2
SYSTEM SPACE s
w
-
(7]
>
"
[4
w
=
(72}
<
H]
8089 s
10P 5
@ E
[72]
=
(]
g LOCAL BUS 8289
MEMORY 2 | ARBITRATION Bus
[$]
o
-

ARBITER
OPTIONAL
8089

1/0 SPACE 10P

/

NOT ACCESSIBLE TO CPU

\ r==-
i PR S
| o ohie | | ag L-d 3 77
Diwont - ~==7 e lamssfe 82 e
'L L F==7 | & - g | I
g B== e 1 =, i | I—
Looswee 7770 o (e

L--

Figure 3-7. Remote Configuration

3-8

8089 INPUT/OUTPUT PROCESSOR

|
OPTIONAL
LocALi/0SPAcE |

| NOT ACCESSIBLE TO IOP |
I_NOR REMOTE 3086/8088_]

MEMORY

170
1/0 SPACE DEVICE

NOT ACCESSIBLE TO SYSTEM CPU

LOCAL 1/0 BUS

8086/ 8289
----. 8088 BUS
170) 1 CPU ARBITER
DEVICE

MEMORY

SYSTEM SPACE

MEMORY-
MAPPED
1/0 DEVICE

8089
0P

A
LOCAL BUS
ARBITRATION

 /

8086/
8088
CPU

8289
BUS
ARBITER

Figure 3-8. Remote IOP Configured With Local 8086/8088

7]
2
o
=
w
=
»
>
»
<
w
=
»
<
=
e
o
S
=

39

8089 INPUT/OUTPUT PROCESSOR

A Sample Transaction

Figure 3-9 shows how a CPU and an IOP might
work together to read a record (sector) from a
floppy disk. This example is not illustrative of the
I0P’s full capabilities, but it does review its basic
operation and its interaction with a CPU.

The CPU must first obtain exclusive use of a
channel. This can be done by performing a ‘‘test
and set lock’’ operation on the selected channel’s
BUSY flag. Assuming the CPU wants to use
channel 1, this could be accomplished in
PL/M-86 by coding similar to the following:

DO WHILE LOCKSET (@CH1.BUSY,0FFH);
END;

In ASM-86 a loop containing the XCHG instruc-
tion prefixed by LOCK would accomplish the
same thing, namely testing the BUSY flag until it
is clear (OH), and immediately setting it to FFH
(busy) to prevent another task or processor from
obtaining use of the channel.

Having obtained the channel, the CPU fills in a
parameter block (see figure 3-10). In this case, the
CPU passes the following parameters to the chan-

“nel: the address of the floppy disk controller, the
address of the buffer where the data is to be
placed, and the drive, track and sector to be read.
It also supplies space for the IOP to return the
result of the operation. Note that this is quite a
““low-level’’ parameter block in that it implies
that the CPU has detailed knowledge of the 1/0
system. For a ‘real”’ system, a higher-level
parameter block would isolate the CPU from I/0
device characteristics. Such a block might contain
more general parameters such as file name and
record key.

After setting up the parameter block, the CPU
writes a ‘‘start channel program’ command in
channel 1’s CCW. Then the CPU places the
address of the desired channel program in the
parameter block and writes the parameter block
address in the CB. Notice that in this simple
example, the CPU “‘knows’’ the address of the
channel program for reading from the disk, and
presumably also ‘‘knows’’ the address of another
program for writing, etc. A more general solution

would be to place a function code (read, write,

delete, etc.) in the parameter block and let a single
channel program execute different routines
depending on which function is requested.

After the communication blocks have been setup,
the CPU dispatches the channel by issuing a chan-
nel attention, typically by an OUT instruction for
an I/O-mapped 8089, or a MOV or other memory
reference instruction for a memory-mapped 8089.

The channel begins executing the channel pro-
gram (task block) whose address has been placed
in the parameter block by the CPU. In this case
the program initializes the 8271 Floppy Disk Con-
troller by sending it a ‘‘read data’ command
followed by a parameter indicating the track to be
read. The program initializes the channel registers
that define and control the DMA transfer.

Having prepared the 8271 and the channel itself,
the channel program executes a XFER instruction
and sends a final parameter (the sector to be read)
to the 8271. (The 8271 enters DMA transfer mode
immediately upon receiving the last of a series of
parameters; sending the last parameter after the
XFER instruction gives the channel time to setup
for the transfer.) The DMA transfer begins when
the 8271 issues a DMA request to the channel.
The transfer continues until the 8271 issues an
interrupt request, indicating that the data has
been transferred or that an error has occurred.
The 8271’s interrupt request line is tied to the
IOP’s EXT!1 (external terminate on channel 1) pin
so that the channel interprets an interrupt request
as an external terminate condition. Upon ter-
mination of the transfer, the channel resumes
executing instructions and reads the 8271 result
register to determine if the data was read suc-
cessfully. If a soft (correctable) error is indicated,
the IOP retries the transfer. If a hard (uncorrect-
able) error is detected, or if the transfer has been
successful, the IOP posts the content of the result
register to the parameter block result field, thus
passing the result back to the CPU. The channel
then interrupts the CPU (to inform the CPU that
the request has been processed) and halts.

When the CPU recognizes the interrupt, it
inspects the result field in the parameter block to
see if the content of the buffer is valid. If so, it
uses the data; otherwise it typically executes an
error routine.

Mnemonics © Intel, 1979

3-10

8089 INPUT/OUTPUT PROCESSOR

SYSTEMMEMORY 0P DEVICE CONTROLLER

TEST & SET
BUSY
FLAG

—_— cce

CHANNEL BUSY-TRY AGAIN

PREPARE
PARAMTER
BLOCK

'
I
|
|
1
|
|
I
]
1
|
I
I
I
|
}
I
i
1
I
I

SETCCW IN
CBTO"START | — — —
CHANNEL'

J
(CHANNEL IS IDLE)

LINK
*READ SECTOR"
TASK BLOCK
TO P

®

LINKPB
T0c8 [——— —]
Soanel | __ _ cuawneamrennion
PROGRAM -
| E—
i
x e .
£ JOF 1S CONFIGURED REMOTELY ——t+=-" T - — — — [FLOPPY
CPU CAN CONTINUE WITH OTHE! COMMAND g el
FROCESSING. OTHERWISE T WAITS Tos2r!
NTIL CHANNEL CLEARS BUSY FLAG
OR ISSUES INTERRUPT REQUEST.
Femm—————————
| SOURCE = PORT IN 1/0 SPACE
seTup | BESTINATION = MEWORY IN SYSTEM SPACE
REGISTERS SINCHRONIZATION = SOUR
ST EEE - e
TRANSFER 'MASK COMPARE = NO

l S

i

I

1

I

1

I

|

1

1

i PERrORM

! TRANSFER = — —— ——— = FLORRY

l cYCle

I

I

1

]

! EXT FLOPPY

I ~-- <= === oisx

I

|

|

|

i
L —— —

H REGISTER |~ e oIsK

I

|

|

|

I

I

i

I

1

]

I

I

I

|

|

1

I

1

|

|

I

(READY)

sbfren |+ — -

.

——— _eost
[~ RESULT

INTERRUPT
cPy

EXAMINE

I
BUSY FLAG IS CLEARED,
CHANNE'L ISIDLE
1
1
1

ERROR
ROUTINE

use DATA
DATA [~ = — ~ | suFFer

T

Figure 3-9. Sample CPU/IOP Transaction

3-11

8089 INPUT/OUTPUT PROCESSOR

POINTER TO o
CHANNEL PROGRAM
(OFFSET & SEGMENT) 2
DEVICE ADDRESS 4
POINTER TO BUFFER 6
(OFFSET & SEGMENT) 8
TRACK DRIVE 10
RESULT SECTOR 12

Figure 3-10. Sample Parameter Block

Applications

Combining the raw speed and responsiveness of a
traditional DMA controller, an I/O-oriented
instruction set, and a flexible bus organization,
the 8089 IOP is a very versatile 1/O system.
Applications with demanding I/0 requirements,
previously beyond the abilities of microcomputer
systems, can be undertaken with the IOP. These
kinds of 1I/O-intensive applications include:

®* gsystems that employ high-bandwidth, low-
latency devices such as hard disks and
graphics terminals;

e gsystems with many devices
asynchronous service; and

requiring

* systems with high-overhead peripherals such
as intelligent CRTs and graphics terminals.

In addition, virtually every application that per-
forms a moderate amount of I/O can benefit
from the design philosophy embodied in the IOP:
system functions should be distributed among
special-purpose processors. An IOP channel pro-
gram is likely to be both faster and smaller than
an equivalent program implemented with a CPU.
Programming also is more straightforward with
the IOP’s specialized instruction set.

Removing I/0 from the CPU and assigning it to
one or more IOPs simplifies and structures a
~system’s design. The main interface to the I/0
system can be limited to the parameter blocks.
Once these are defined, the I/0 system can be
designed and implemented in parallel with the rest

of the system. I/0O specialists can work on the I/0O
system without detailed knowledge of the applica-
tion; conversely, the operating system and
application teams do not need to be expert in the
operation of I/0 devices. Standard high-level 170
systems can be used in multiple application
systems. Because the application and I/0 systems
are almost independent, application system
changes can be introduced without affecting the
I/0 system. New peripherals can similarly be
incorporated into a system without impacting
applications or operating system software. The
I0P’s simple CPU interface also is designed to be
compatible with future Intel CPUs.

Keeping in mind the true general-purpose nature
of the IOP, some of the situations where it can be
used to advantage are:

* Bus matching - The IOP can transfer data
between virtually any combination of 8- and
16-bit memory and I/O components. For
example, it can interface a 16-bit peripheral
to an 8-bit CPU bus, such as the 8088 bus.
The IOP also provides a straightforward
means of performing DMA between an 8-bit
peripheral and 8086 memory that is split
into odd- and even-addressed banks. The
8089 can access both 8- and 16-bit
peripherals connected to a 16-bit bus.

e String processing - The 8089 can perform a
memory move, translate, scan-for-match or
scan-for-nonmatch operation much faster
than the equivalent instructions in an 8086 or
8088. Translate and scan operations can be
setup so that the source and destination refer
to the same addresses to permit the string to
be operated on in place.

* Spooling - Data from low-speed devices such
as terminals and paper tape readers can be
read by the 8089 and placed in memory or on
disk until the transmission is complete. The
IOP can then transfer the data at high speed
when it is needed by an application program.
Conversely, output data ultimately destined
for a low-speed device such as a printer, can
be temporarily spooled to disk and then
printed later. This permits batches of data to
be gathered or distributed by low-priority
programs that run in the background, essen-
tially using up ‘‘spare’” CPU and IOP cycles.
Application programs that use or produce
the data can execute faster because they are
not bound by the low-speed devices.

3-12

8089 INPUT/OUTPUT PROCESSOR

Multitasking operating systems - A
multitasking operating system can dispatch
I/0 tasks to channels with an absolute
minimum of overhead. Because a remote
channel can run in parallel with the CPU, the
operating system’s capacity for servicing
application tasks can increase dramatically,
as can its ability to handle more, and faster,
170 devices. If both channels of an IOP are
active concurrently, the IOP automatically
gives preference to the higher-priority activ-
ity (e.g., DMA normally preempts channel
program execution). The operating system
can adjust the priority mechanism and also
can halt or suspend a channel to take care of
a critical asynchronous event.

Disk systems - The IOP can meet the speed
and latency requirements of hard disks. It
can be used to implement high-level, file-
oriented systems that appear to application
programs as simple commands: OPEN,
READ, WRITE, etc. The IOP can search
and update disk directories and maintain free
space maps. ‘‘Hierarchical memory’’ systems
that automatically transfer data among
memory, high-speed disks and low-speed
disks, based on frequency of use, can be built
around IOPs. Complex database searches
(reading data directly or following pointer
chains) can appear to programs as simple
commands and can execute in parallel with
application programs if an IOP is configured
remotely.

Display terminals - The 8089 is well suited to
handling the DMA requirements of CRT
controllers. The IOP’s transfer bandwidth is
high enough to support both alphanumeric
and graphic displays. The 8089 can assume
responsibility for refreshing the display from
memory data; in the remote configuration,
the refresh overhead can be removed from
the system bus entirely. Linked-list display
algorithms may be programmed to perform
sophisticated modes of display.

Each time it performs a refresh operation,
the IOP can scan a keyboard for input and
translate the key’s row-and-column format
into an ASCII or EBCDIC character. The
8089 can buffer the characters, scanning the
stream until an end-of-message character
(e.g., carriage return) is detected, and then
interrupt the CPU.

A single IOP can concurrently support an
alphanumeric CRT and keyboard on one
channel and a floppy disk on the other chan-
nel. This configuration makes use of approx-
imately 30 percent of the available bus band-
width. Performance can be increased within
the available bus bandwidth by adding an
8086 or 8088 CPU to a remote IOP con-
figuration. This configuration can provide
scaling, rotation or other sophisticated
display transformations.

3.2 Processor Architecture

The 8089 is internally divided into the functional
units depicted schematically in figure 3-11. The
units are connected by a 20-bit data path to obtain
maximum internal transfer rates.

Common Control Unit (CCU)

All IOP operations (instructions, DMA transfer
cycles, channel attention responses, etc.) are com-
posed of sequences of more basic processes called
internal cycles. A bus cycle takes one internal
cycle; the execution of an instruction may require
several internal cycles. There are 23 different
types of internal cycles each of which-takes from
two to eight clocks to execute, not including
possible wait states and bus arbitration times.

The common control unit (CCU) coordinates the
activities of the IOP primarily by allocating inter-
nal cycles to the various processor units; i.e., it
determines which unit will execute the next inter-
nal cycle. For example, when both channels are
active, the CCU determines which channel has
priority and lets that channel run; if the channels
have equal priority, the CCU “‘interleaves’’ their
execution (this is discussed more fully later in this
section). The CCU also initializes the processor.

Arithmetic/Logic Unit (ALU)

The ALU can perform unsigned binary arithmetic
on 8- and 16-bit binary numbers. Arithmetic
results may be up to 20 bits in length. Available
arithmetic instructions include addition, incre-
ment and decrement. Logical operations (‘‘and,”’
“or”’ and ‘‘not’’) may be performed on either 8-
or 16-bit quantities.

3-13

8089 INPUT/OUTPUT PROCESSOR

CA SEL RESET

L4

COMMON
CONTROL
UNIT

T __

=<

ASSEMBLY/
F DISASSEMBL
REGISTERS

INSTRUCTION 16
FETCH

D15-DO

MULTIPLEXED
ADDRESS/DATA BUS

20

I 1°

~| REGISTERS REGISTERS |~
2 @
Z | TASK POINTER TASK POINTER | 2
< <
z x
S 170 CONTROL 1/0 CONTROL |5

DRQ1 EXT1 SINTR-1 DRQ2 EXT2 SINTR-2

20

AD15-AD0
A19/56-A16/S3

BUS
_} INTERFACE

UNIT
}—3 BHE

READY _1 Lock

cLk —
RQ/GT ~——! +.> s0-S2
3

Figure 3-11. 8089 Block Diagram

Assembly/Disassembly Registers

All data entering the chip flows through these
registers. When data is being transferred between
different width buses, the 8089 wuses the
assembly/disassembly registers to effect the
transfer in the fewest possible bus cycles. In a
DMA transfer from an 8-bit peripheral to 16-bit
memory, for example, the IOP runs two bus
cycles, picking up eight bits in each cycle,
assembles a 16-bit word, and then transfers the
word to memory in a single bus cycle. (The first
and last cycles of a transfer may be performed
differently to accommodate odd-addressed
words; the IOP automatically adjusts for this
condition.)

Instruction Fetch Unit

This unit controls instruction fetching for the
executing channel (one channel actually runs at a
time). If the bus over which the instructions are
being fetched is eight bits wide, then the instruc-
tions are obtained one byte at a time, and each
fetch requires one bus cycle. If the instructions
are being fetched over a 16-bit bus, then the
instruction fetch unit automatically employs a 1-
byte queue to reduce the number of bus cycles.
Each channel has its own queue, and the activity
of one channel does not affect the other’s queue.

During sequential execution, instructions are
fetched one word at a time from even addresses;
each fetch requires one bus cycle. This process is
shown graphically in figure 3-12. When the last
byte of an instruction falls on an even address, the
odd-addressed byte (the first byte of the following
instruction) of the fetched word is saved in the
queue. When the channel begins execution of the
next instruction, it fetches the first byte from the
queue rather than from memory. The queue,
then, keeps the processor fetching words, rather
than bytes, thereby reducing its use of the bus and
increasing throughput.

The processor fetches bytes rather than words in
two cases. If a program transfer instruction (e.g.,
JMP or CALL) directs the processor to an
instruction located at an odd address, the first
byte of the instruction is fetched by itself as
shown in figure 3-13. This is because the program
transfer invalidates the content of the queue by
changing the serial flow of execution.

The second case arises when an LPDI instruction
is located at an odd address. In this situation, the
six-byte LPDI instruction is fetched: byte, word,
byte, byte, byte, and the queue is not used. The
first byte of the following instruction is fetched in
one bus cycle as if it had been the target of a pro-
gram transfer. Word fetching resumes with this
instruction’s second byte.

3-14

8089 INPUT/OUTPUT PROCESSOR

INSTRUCTION “X”’ INSTRUCTION “Y”
A

A
r N N\

EVEN . oDD EVEN| obD EVENl obDD)

\ J \ J \ J
1 2 | 4
'
QUEUE
3
FETCH INSTRUCTION BYTES

1 FIRST TWO BYTES OF “*X”’

2 THIRD BYTE OF ‘X’ PLUS
FIRST BYTE OF “‘Y*’, WHICH IS
SAVED IN QUEUE

3 FIRST BYTE OF “‘Y’’ FROM
QUEUE—NO BUS CYCLE

4 LAST TWO BYTES OF ““Y”’

Figure 3-12. Sequential Instruction Fetching (16-Bit Bus)

INSTRUCTION “X”” INSTRUCTION “Y”

A A
r~ N\ 7)

ODD | EVEN ODD EVENlODD EVENIODD "
1

AN J \ J \ J \ J
1 2 3 4 |
%
L TRANSFER TARGET QUEUE
FETCH INSTRUCTION BYTES
1 FIRST gODD ADDRESSED) BYTE OF “X”’
(8-BIT BUS CYCLE)

2 SECOND AND THIRD BYTES OF “X”’
3 FIRST AND SECOND BYTES OF “‘Y”’.
4 THIRD BYTE OF *‘Y”

PLUS FIRST BYTE OF NEXT INSTRUCTION,
WHICH IS SAVED IN QUEUE

Figure 3-13. Instruction Fetching Following a Program Transfer to an Odd Address (16-Bit Bus)

3-15

8089 INPUT/OUTPUT PROCESSOR

Bus Interface Unit (BIU)

The BIU runs all bus cycles, transferring instruc-
tions and data between the IOP and external
memory or peripherals. Every bus access is
associated with a register tag bit that indicates to
the BIU whether the system or I/0 space is to be
addressed. The BIU outputs the type of bus cycle
(instruction fetch from 1/0 space, data store into
system space, etc.) on status lines SO, S1, and S2.
An 8288 Bus Controller decodes these lines and
provides signals that selectively enable one bus or
the other (see Chapter 4 for details).

The BIU further distinguishes between - the
physical and logical widths of the system and I/0
buses. The physical widths of the buses are fixed
and are communicated to the BIU during
initialization. In the local configuration, both
buses must be the same width, either 8 or 16 bits
(matching the width of the host.CPU bus). In the
remote configuration, the IOP system bus must
be the same physical width as the bus it shares
with the CPU. The width of the IOP’s 1/0 bus,
which is local to the 8089, may be selected
independently. If any 16-bit peripherals are
located in the I/0 space, then a 16-bit I/0 bus
must be used. If only 8-bit devices reside on the
1/0 bus, then either an 8- or a 16-bit I/0O bus may
be selected. A 16-bit I/0 bus has the advantage of
easy accommodation of future 16-bit devices and
fewer instruction fetches if channel programs are
placed in the I/0 space. :

For a given DMA transfer, a channel program
specifies the logical width of the system and the
170 buses; each channel specifies logical bus
widths independently. The logical width of an
8-bit physical bus can only be eight bits. A 16-bit
physical bus, however, can be used as either an 8-
or 16-bit logical bus. This allows both 8- and
16-bit devices to be accessed over a single 16-bit
physical bus. Table 3-1 lists the permissible
physical and logical bus widths for both locally
and remotely configured IOPs. Logical bus width
pertains to DMA transfers only. Instructions are
fetched and operands are read and written in
bytes or words depending on physical bus width.

In addition to performing transfers, the BIU is
responsible for local bus arbitration. In the local
configuration, the BIU uses the RQ/GT
(request/grant) line to obtain the bus from the
CPU and to return it after a transfer has been per-
formed. In the remote configuration, the BIU

uses RQ/GT to coordinate use of the local 1/0
bus with another IOP or a local CPU, if present.
System bus arbitration in the remote configura-
tion is performed by an 8289 Bus Arbiter that
operates - invisibly to the IOP. The BIU
automatically asserts the LOCK (bus lock) signal
during execution of a TSL (test and set lock)
instruction and, if specified by the channel pro-
gram, can assert the LOCK signal for the dura-
tion of a DMA transfer. Section 3.5 contains a
complete discussion of bus arbitration.

Table 3-1. Physical/Logical Bus Combinations

Configuration System Bus 1/0 Bus
9 Physical:Logical Physical:Logical
Local 8:8 8:8
16:8/16 16:8/16
8:8 8:8
Remote 16:8/16 16:8/16
16:8/16 8:8
8:8 16:8/16
Channels

Although the 8089 is a single processor, under
most circumstances it is useful to think of it as
two independent channels. A channel may per-
form DMA transfers and may execute channel
programs; it also may be idle. This section
describes the hardware features that support these
operations.

1/0 Control

Each channel contains its own I/O control section
that governs the operation of the channel during
DMA transfers. If the transfer is synchronized,
the channel waits for a signal on its DRQ (DMA
request) line before performing the next fetch-
store sequence in the transfer. If the transfer is to
be terminated by an external signal, the channel
monitors its EXT (external terminate) line and
stops the transfer when this line goes active.
Between the fetch and store cycles (when the data
is in the IOP) the channel optionally counts,

3-16

8089 INPUT/OUTPUT PROCESSOR

translates, and scans the data, and may terminate
the transfer based on the results of these opera-
tions. Each channel also has a SINTR (system
interrupt) line that can be activated by software to
issue an interrupt request to the CPU.

Registers

Figure 3-14 illustrates the channel register set, and
table 3-2 summarizes the uses of each register.
Each channel has an independent set of registers;
they are not accessible to the other channel. Most
of the registers play different roles during channel
program execution than in DMA transfers. Chan-
nel programs must be careful to save these
registers in memory prior to a DMA transfer if
their values are needed following the transfer.

General Purpose A (GA). A channel program
may use GA for a general register or a base
register. A general register can be an operand of
most IOP instructions; a base register is used to
address memory operands (see section 3.8).
Before initiating a DMA transfer, the channel
program points GA to either the source or
destination address of the transfer.

General Purpose B (GB). GB is functionally
interchangeable with GA. If GA points to the
source of a DMA transfer, then GB points to the
destination, and vice versa.

BT 1915 7 0
ra GENERAL PURPOSE A GA
I— —l GENERAL PURPOSE B GB
I— -I GENERAL PURPOSE C GC
t j TASK POINTER TP
PARAMETER BLOCK POINTER | PP
INDEX X
BYTE COUNT BC
MASK/COMPARE MC

CHANNEL CONTROL cc

Figure 3-14. Channel Register Set

General Purpose C (GC). GC may beusedasa
general register or a base register during channel
program execution. If data is to be translated dur-
ing a DMA transfer, then the channel program
loads GC with the address of the first byte of a
translation table before initiating the transfer. GC
is not altered by a transfer operation.

Task Pointer (TP). The CCU loads TP from the
parameter block when it starts or resumes a chan-
nel program. During program execution, the
channel automatically updates TP to point to the

Table 3-2. Channel Register Summary

Program System
Register | Size A orl/O Use by Channel Programs Use in DMA Transfers
ccess .
Pointer
GA 20 Update | Either |General, base Source/destination pointer
GB 20 Update | Either |General, base Source/destination pointer
GC 20 Update | Either |General, base Translate table pointer
TP 20 Update | Either |Procedure return, Adjusted to reflect cause of
instruction pointer termination
PP 20 |ReferencefSystem|Base N/A
IX 16 Update | N/A |General, auto-increment ; N/A
BC 16 Update | N/A |General Byte counter
MC 16 Update | N/A |General, masked compare Masked compare
CC 16 Update | N/A [|Restricted use recommended Defines transfer options

8089 INPUT/OUTPUT PROCESSOR

next instruction to be executed; i.e., TP is used as
an instruction pointer or program counter. Pro-
gram transfer instructions (JMP, CALL, etc.)
update TP to cause nonsequential execution. A
procedure (subroutine) returns to the calling pro-
gram by loading TP with an address previously
saved by the CALL instruction. The task pointer
is fully accessible to channel programs; it can be
used as a general register or as a base register.
Such use is not recommended, however, as it can
make programs very difficult to understand.

Parameter Block Pointer (PP). The CCU
loads this register with the address of the
parameter block before it starts a channel pro-
gram. The register cannot be altered by a channel
program, but is very useful as a base register for
accessing data in the parameter block. PP is not
used during DMA transfers.

Index (IX). IX may be used as a general register
during channel program execution. It also may be
used as an index register to address memory
operands (the address of the operand is computed
by adding the content of IX to the content of a
base register). When specified as an index
register, IX may be optionally auto-incremented
as the last step in the instruction to provide a con-
venient means of “‘stepping”’ through arrays or
strings. IX is not used in DMA transfers.

Byte Count (BC). BC may be used as a general
register during channel program execution. If
DMA is to be terminated when a specific number
of bytes has been transferred, BC should be
loaded with the desired byte count before
initiating the transfer. During DMA, BC is
decremented for each byte transferred, whether
byte count termination has been selected or not.
If BC reaches zero, the transfer is stopped only if
byte count termination has been specified. If byte
count termination has not been selected, BC
““wraps around”’ from OH to FFFFH and con-
tinues to be decremented.

Mask/Compare (MC). A channel program may
use MC for a general register. This register also
may be used in either a channel program or in a
DMA transfer to perform a masked compare of a
byte value. To use MC in this way, the program
loads a compare value in the low-order eight bits
of the register and a mask value in the upper eight
bits (see figure 3-15). A ““1”’ in a mask bit selects
the bit in the corresponding position in the com-
pare value; a ‘“‘0”’ in a mask bit masks the cor-

responding bit in the compare value. In figure
3-15, a value compared with MC will be con-
sidered equal if its low-order five bits contain the
value 00100; the upper three bits may contain any
value since they are masked out of the
comparison.

15 87 0

T
I00011111|I10100100—|

MASK COMPARE
. VALUE VALUE

l |

MASKED
COMPARE
VALUE

(X = IGNORE VALUE OF CORRESPONDING BIT)

Figure 3-15. Mask/Compare Register

Channel Control (CC). The content of the
channel control register governs a DMA transfer
(see figure 3-16). A channel program loads this
register with appropriate values before beginning
the transfer operation; section 3.4 covers the
encoding of each field in detail. Bit 8 (the chain
bit) of CC pertains to channel program execution
rather than to a DMA transfer. When this bit is
zero, the channel program runs at normal prior-
ity; when it is one, the priority of the program is
raised to the same level as DMA (priorities are
covered later in this section). Although a channel
program may use CC as a general register, such
use is not recommended because of the side
effects on the chain bit and thus on the priority of
the channel program. Channel programs should
restrict their use of CC to loading control values
in preparation for a DMA transfer, setting and
clearing the chain bit, and storing the register.

Program Status Word (PSW)

Each channel maintains its own program status
word (PSW) as shown in figure 3-17. Channel
programs do not have access to the PSW. The
PSW records the state of the the channel so that
channel operation may be suspended and then
resumed later. When the CPU issues a ‘‘suspend”’
command, the channel saves the PSW, task
pointer, and task pointer tag bit in the first four
bytes of the channel’s parameter block as shown
in figure 3-18. Upon receipt of a subsequent

8089 INPUT/OUTPUT PROCESSOR

15 7 0
F [TRISYN|S|L|C|TS| TX | TBC TMC

|— TERMINATE ON MASKED COMPARE

TERMINATE ON BYTE COUNT
TERMINATE ON EXTERNAL SIGNAL
TERMINATE AFTER SINGLE TRANSFER

CHAINED CHANNEL PROGRAM
EXECUTION
LOCK BUS DURING TRANSFER

SOURCE/DESTINATION
SYNCHRONIZATION
TRANSLATE

FUNCTION (PORT TO PORT,
PORT TO MEMORY, ETC.)

Figure 3-16. Channel Control Register

“resume’’ command, the PSW, TP, and TP tag
bit are restored from the parameter block save

area and execution resumes. z 2
7 [xe] o [1s] c]re] s o]
Two conditions override the normal channel l I_': DESTINATION BUS LOGICAL WIDTH (0 =8, 1 = 16
. . . N . SOURCE BUS LOGICAL WIDTH (0 = 8, 1 = 16)

priority mechanism. If one channel is performing TASK BLOCK ! N
DMA (priority 1) and the channel receives a chan- INTERRUPT CONTROL (0 DISABLED. 1 - ENABLED)

. (0 = SINTR), INACTIVE 1 = SINTRy ACTIVE]
nel attention (priority 2), the channel attention is BUS LOAD LIMIT " nACTHE
serviced at the end of the current DMA transfer NP

PRIORITY BIT

cycle. This override prevents a synchronized
DMA transfers from ‘‘shutting out’’ a channel
attention. DMA terminations and chained chan-
nel programs postpone recognition of a CA on
the other channel; the CA is latched, however, Figure 3-17. Program Status Word
and is serviced as soon as priorities permit.

The IOP’s LOCK (bus lock) signal also
supersedes channel switching. A running channel
will not relinquish control of the processor while 15 87 o
LOCK is active, regardless of the priorities of the

o e,e . e . TP 15-8 TP 7-0 «— PP
activities on the two channels. This is consistent
with the purpose of the LOCK signal: to Psw 1916 | TAG | 0 0 0 |<—rp2
guarantee exclusive access to a shared resource in | |
a multiprocessing system. Refer to sections 3.5 A REMAINDER OF PARAMETER BLOCK s
and 3.7 for futher information on the LOCK | I
signal and the TSL instruction. L -
Tag Bits

Registers GA, GB, GC, and TP are called pointer

registers because they may be used to access, or Figure 3-18. Channel State Save Area

3-19

8089 INPUT/OUTPUT PROCESSOR

point to, addresses in either the system space or
the 170 space. The pointer registers may address
either memory or 1/0 devices (IOP instructions
do not distinguish between memory and 1/0
devices since the latter are memory-mapped). The
tag bit associated with each register (figure 3-14)
determines whether the register points to an
address in the system space (tag=0) or the I/0
space (tag=1).

The CCU sets or clears TP’s tag bit depending on
whether the command it receives from the CPU is
‘“‘start channel program in system space,’’ or
‘“‘start channel program in I/0 space.”” Channel
programs alter the tag bits of GA, GB, GC, and
TP by using different instructions for loading the
registers. Briefly, a ‘‘load pointer’’ instruction
clears a tag bit, a ‘“‘move’’ instruction sets a tag
bit, and a ‘““‘move pointer’’ instruction moves a
memory value (either 0 or 1) to a tag bit. Section
3.9 covers these instructions in detail.

If a register points to the system space, all 20 bits
are placed on the address lines to allow the full
megabyte to be directly addressed. If a register
points to the I/0 space, the upper four bits of the
address lines are undefined; the lower 16 bits are
sufficient to access any location in the 64k byte
170 space.

Concurrent Channel Operation

Both channels may be active concurrently, but
only one can actually run at a time. At the end of

each internal cycle, the CCU lets one channel or
the other execute the next internal cycle. No extra
overhead is incurred by this channel switching.
The basis for making the determination is a
priority mechanism built into the IOP. This
mechanism recognizes that some kinds of
activities (e.g., DMA) are more important than
others. Each activity that a channel can perform
has a priority that reflects its relative importance
(see table 3-3).

Two new activities are introduced in table 3-3.
When a DMA transfer terminates, the channel
executes a short internal channel program. This
DMA termination program adjusts TP so that the
user’s program resumes at the instruction
specified when the transfer was setup (this is
discussed in detail in section 3.4). Similarly, when
a channel attention is recognized, the channel
executes an internal program that examineés the
CCW and carries out its command. Both of these
programs consist of standard 8089 instructions
that are fetched from internal ROM. Intel
Application Note AP-50, Debugging Strategies
and Considerations for 8089 Systems, lists the
instructions in these programs. Users monitoring
the bus during debugging may see operands read
or written by the termination or channel attention
programs. The instructions themselves, however,
will not appear on the bus as they are resident in
the chip.

Notice also that, according to table 3-3, a channel
program may run at priority 3 or at priority 1.

Table 3-3. Channel Priorities and Interleave Boundaries

Chamel Actity B L 1
DMA transfer 1 Bus cycle' Buscycle'
DMA termination sequence 1 Internal cycle None
Channel program (chained) 1 Internal cycle?’ Instruction
Channel attention sequence 2 Internal cycle None
Channel program (not chained) 3 Internal cycle? Instruction
Idle 4 Two clocks Two clocks

'DMA is not interleaved while LOCK is active.
2Except TSL instruction; see section 3.7.

3-20

8089 INPUT/OUTPUT PROCESSOR

Channel program priority is determined by the
chain bit in the channel control register. If this bit
is cleared, the program runs at normal priority
(3); if it is set, the program is said to be chained,
and it runs at the same priority as DMA. Thus,
the chain bit provides a way to raise the priority
of a critical channel program.

The CCU lets the channel with the highest priority
run. If both channels are running activities with
the same priority, the CCU examines the priority
bits in the PSWs. If the priority bits are unequal,
the channel with the higher value (1) runs. Thus,
the priority bit serves as a ‘‘tie breaker’> when the
channels are otherwise at the same priority level.
The value of the priority bit in the PSW is loaded
from a corresponding bit in the CCW; therefore,
the CPU can control which channel will run when
the channels are at the same priority level. The
priority bit has no effect when the channel
priorities are different. If both channels are at the
same priority level and if both priority bits are
equal, the channels run alternately without any
additional overhead.

The CCU switches channels only at certain points
called interleave boundaries; these vary according
to the type of activity running in each channel and
are shown in table 3-3. In table 3-3 and in the
following discussion, the terms ‘‘channel A’’ and
‘““channel B’’ are used to identify two active chan-
nels that are bidding for control of an IOP.
‘“Channel A”’ is the channel that last ran and will
run again unless the CCU switches to ‘‘channel
B.”” Where the CCU switches from one channel
(channel A) to another (channel B) depends on
whether channel B is performing DMA or is
executing instructions. For this determination,
instructions in the internal ROM are considered
the same as instructions executed in user-written
channel programs (chained or not chained). Table
3-3 shows that a switch from channel A to chan-
nel B will occur sooner if channel B is running
DMA. DMA, then, interleaves instruction execu-
tion at internal cycle boundaries. Since instruc-
tions are often composed of several internal
cycles, instruction execution on channel A can be
suspended by DMA on channel B (when channel
A next runs, the instruction is resumed from the
point of suspension). DMA on channel A is
interleaved by DMA on channel B after any bus
cycle (when channel A runs again, the DMA
transfer sequence is resumed from the point of
suspension). If both channels are executing pro-
grams, the interleave boundaries are extended to

instruction boundaries: a program on channel B
will not run until channel A reaches the end of an
instruction. Note that a DMA termination
sequence or channel attention sequence on chan-
nel A cannot be interleaved by instructions on
channel B, regardless of channel B’s priority.
These internal programs are short, however, and
will not delay channel B for long (see Chapter 4
for timing information).

Table 3-4 summarizes the channel switching
mechanism with several examples. It is important
to remember that channel switching occurs only
when both channels are ready to run. In typical
applications, one of the channels will be idle
much of the time, either because it is waiting to be
dispatched by the CPU or because it is waiting for
a DMA request in a synchronized transfer. (Dur-
ing a synchronized transfer, the channel is idle
between DMA requests; for many peripherals, the
channel will spend much more time idling than
executing DMA cycles.) The real potential for one
channel ‘‘shutting out’’ a priority 1 activity on the
other channel is largely limited to unsynchronized
DMA transfers and locked transfers (synchro-
nized or unsynchronized). Long, chained channel
programs and high-speed synchronized DMA will
slow a priority 1 activity on the other channel, but
will not shut it out because the channels will alter-
nate (assuming their priority bits are equal). A
chained channel program will shut out any lower
priority activity on the other channel, including a
channel attention. (The channel attention is
latched by the IOP, however, so it will execute
when the other channel drops to a lower priority.)
Chained channel programs should therefore be
used with discretion and should be made as short
as possible.

3.3 Memory

The 8089 can access memory components located
in two different address spaces. The system space,
which coincides with the CPU’s memory space,
may contain up to 1,048,576 bytes. The 1/0
space, which may either coincide with the CPU’s
170 space or be local (private) to the IOP, may
contain up to 65,536 bytes. Memory components
in the system space should respond to the memory
read and write commands issued by the 8288 Bus
Controller. Memory components in the I/0 space
must respond to 8288 1/0 read and write com-
mands. Memory in either space may be

3-21

8089 INPUT/OUTPUT PROCESSOR

Table 3-4. Channel Switching Examples

Channel A (Ran Last) Channel B
Result
Activity C'B‘f"" Prst Lock Activity c:?t'“ Prionty
DMA transfer X X Inactive | Idle X X Aruns.
DMA transfer X X Inactive | Channel attention X X A runs until end of current
transfer cycle; then B runs.
Channel program X 0 Inactive | Channel program X 1 Bruns.
Channel program X 0 Inactive | Channel program X 0 A and B alternate by
instruction.
Channel program 1 X Inactive | Channel program 0 X Aruns.
DMA transfer X 1 Inactive | Channel program 1 1 B runs one bus or internal
cycle following each bus cycle
run by A.*
Channel attention X X Inactive | Channel program 1 X A runsif it has started the
sequence; otherwise B runs.
DMA transfer X X Active | Channel attention X X A runs until DMA terminates.
Channel program 0 X Active | DMA transfer X X A completes TSL instruction,
(TSL instruction) LOCK goes inactive and B
runs.
*If transfer is synchronized, B also runs when A goes idle between transfer cycles.
implemented like 8086 memory (16-bit words split
into even- and odd-addressed 8-bit banks) or 8088 LOW MEMORY HIGH MEMORY
memory (a single 8-bit bank). See Chapter 4 for syeren [t 0000 _00002H o GPRFFEM FRRFRM
physical implementation considerations. SPACE mm
7 07 07 07 0
L 1 MEGABYTE =
. . LOW MEMORY HIGH MEMORY
Storage Orgamzatlon 0000H. __0001H 0002H _FFFEH__FFFFH
1/0
From a software point of view, both 8089 SPACE m;m

memory spaces are organized as unsegmented
arrays of individually addressable 8-bit bytes
(figure 3-19). Instructions and data may be stored
at any address without regard for alignment
(figure 3-20).

ld—_——- 64K BYTES ————D'

Figure 3-19. Storage Organization

The IOP views the system space differently from
the 8086 or 8088 with which it typically shares the
space. The 8086 and 8088 differentiate between a
location’s logical (segment and offset) address
and its physical (20-bit) address.

The 8089 does not ‘‘see’’ the logically segmented l
structure of the memory space; it uses its 20-bit

pointer registers to access all locations in the

system space by their physical addresses. Memory

in the 8089 1/0 space is treated similarly except

that only 16 bits are needed to address any

location.

- — 4

Y
I
1

- . 1
1DH 1EH 1FH 20H 21H 22H 23H

1 1
1AH 1BH 1CH

Figure 3-20. Instruction and Variable Storage

3-22

8089 INPUT/OUTPUT PROCESSOR

Following Intel convention, word data is stored
with the most-significant byte in the higher
address (see figure 3-21). The 8089 recognizes the
doubleword pointer variable used by the 8086 and
8088 (figure 3-22). The lower-addressed word of
the pointer contains an offset value, and the
higher-addressed word contains a segment base
address. Each word is stored conventionally, with
the higher-addressed byte containing the most-
significant eight bits of the word. The 8089 can
convert a doubleword pointer into a 20-bit
physical address when it is loaded into a pointer
register to address system memory. A special 3-
byte variable, called a physical address pointer
(figure 3-23), is used to save and restore pointer
registers and their associated tag bits.

Dedicated and Reserved Memory
Locations

The extreme low and high addresses of the system
space are dedicated to specific processor func-
tions or are reserved for use by other Intel hard-

724H 725H
o | 2 5 | 5 [HEX
0000 | 0010 | 0101 ,I 0101 |BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 3-21. Storage of Word Variables

ware and software products; the locations are OH
through 7FH (128 bytes) and FFFFOH through
FFFFFH (16 bytes), as shown in figure 3-24. The
low addresses are used for part of the 8086/8088
interrupt pointer table. Locations FFFFOH-
FFFFBH are used for 8086, 8088 and 8089 startup
sequences; the remaining locations are reserved
by Intel.

If an IOP is configured locally, its I/0 space coin-
cides with the CPU’s 1/0 space, and it must
respect the reserved addresses FSH-FFH. The
entire I/0 space of a remotely-configured IOP
may be used without restriction.

Using any dedicated or reserved addresses may
inhibit the compatibility of a system with current
or future Intel hardware and software products.

Dynamic Relocation

The 8089 is very well-suited to environments in
which programs do not occupy static memory
locations, but are moved about during execution.
Dynamic code relocation allows systems to make
efficient use of limited memory resources by
transferring programs between external storage
and memory, and by combining scattered free
areas of memory into larger, more useful, con-
tinuous spaces.

IOP channel programs are inherently position-
independent, the only restriction being that chan-
nel programs that transfer to each other or
share data must be moved as a unit. Since the IOP

4H SH

6H 7H

0000 0000

6 5 0 0 4 c 3
.- . —_—— e o s — e e
0110 | 0101 | |

0100

HEX_

— — — —_—
1100 0011 1011 | BINARY

VALUE OF DOUBLEWORD POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3B4CH

OFFSET: 65H

Figure 3-22. Storage of Doubleword Pointer Variables

3-23

8089 INPUT/OUTPUT PROCESSOR

ponter TAG | 2 | 8 | 5 | F | 3 PHEX_
REGISTER o
0010 | 0110 | 0101 | 1111 | 0011 | BINARY
19 [
I 100h | 10 | 1020 |
F | 3 6 5 2 1 | Hex
MEMORY R R e Lk SRS [P
1111 | 0011 | 0110 | 0101 | 0020 | 0000 | BINARY

VALUE OF PHYSICAL ADDRESS POINTER AT 100H:
ADDRESS: 265F3H
TAG: 0

Figure 3-23. Storage of Physical Address
Pointer Variables

FFFFFH
RESERVED
FFFFCH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
L FFFFH
d
. OPEN QH
i i d
2 o
A OPEN ¢
80H W
7FH
RESERVED 100H
FFH
141 RESERVED e
F7H
DEDICATED OPEN
oH OH
SYSTEM SPACE

1/0 SPACE
(LOCAL CONFIGURATION ONLY)

Figure 3-24. Reserved Memory Locations

receives the address of a channel program and its
associated parameter block when it is dispatched
by the CPU, the location of these blocks is
immaterial and can change from one dispatch to
the next. (Note, however, that the channel control
block cannot be moved without reinitializing the
I0OP.) Typically, then, the CPU would direct the
movement of IOP channel programs and
parameter blocks. These blocks, of course, can-
not be moved while they are in use.

While the CPU may be in charge of relocation,
the IOP is an excellent vehicle for performing the
actual transfer of channel programs, parameter
blocks, and CPU programs as well. A very simple
channel program can transfer code between
memory locations by DMA much faster than the
equivalent CPU instructions, and transfers
between disk and memory also can be performed
more efficiently.

Memory Access

Memory accesses are always performed using a
pointer register and its associated tag bit. The tag
bit indicates whether the access is to the system
space (tag=0) or the I/O space (tag=1). The
pointer register contains the base address of the
location; i.e., the pointer register is used as a base
register. Only the low-order 16 bits of the pointer

register are used for I/O space locations; all 20
bits are used for system space addresses. Different
types of memory accesses use base registers as
shown in table 3-5. The 8089 addressing modes
allow the base address of a memory operand to be
modified by other registers and constant values to
yield the effective address of the operand (see sec-
tion 3.8).

Notice that table 3-S5 indicates that memory
operands may be addressed using register PP in
addition to GA, GB, and GC. PP is maintained
by the IOP and can neither be read nor written by
a channel program; it can be used, however, to
access data in the parameter block. PP has no
associated tag bit; a reference to it implies the
system space, where a parameter block always
resides.

Table 3-5. Base Register Use in Memory Access

Memory Access Base Register
Instruction Fetch TP
DMA Source GA or GB!
DMA Destination GAorGB!
DMA Translate Table | GC
Memory Operand GA or GB or GC or PP?

'As specified in CC register
*As specified in instruction

3-24

8089 INPUT/OUTPUT PROCESSOR

The IOP is told the physical widths of the system
and I/0 buses when it is initialized. If a bus is
eight bits wide, the IOP accesses memory on this
bus like an 8088. Instruction fetches and operand
reads and writes are performed one byte at a time;
one bus cycle is run for each memory access.
Word operands are accessed in two cycles, com-
pletely transparent to software. Instruction
fetches are made as needed, and the instruction
stream is not queued.

The IOP accesses memory on a 16-bit bus like an
8086. As mentioned in the previous section, the
instruction stream is generally fetched in words
from even addresses with the second byte held in
the one-byte queue. If a word operand is aligned
(i.e., located at an even address), the 8089 will
access it in a single 16-bit bus cycle. If a word
operand is unaligned (i.e., located at an odd
address), the word will be accessed in two con-
secutive 8-bit bus cycles. Byte operands are
always accessed in 8-bit bus cycles.

For memory on 16-bit buses, performance is
improved and bus contention is reduced if word
operands are stored at even addresses. The
instruction queue tends to reduce the effect of
alignment on instructions fetched on a 16-bit bus.
In tight loops, performance can be increased by
word-aligning transfer targets.

Notice that the correct operation of a program is
completely independent of memory bus width. A
channel program written for one system that uses
an 8-bit memory bus will execute without
modification if the bus is increased to 16 bits. It is
good practice, though, to write all programs as
though they are to run on 16-bit systems; i.e., to
align word operands. Such programs will then
make optimal use of the bus in whatever system
they are run.

3.4 Input/Output

The 8089 combines the programmed 1/0
capabilities of a CPU with the high-speed block
transfer facility of a DMA controller. It also pro-
vides additional features (e.g., compare and
translate during DMA) and is more flexible than a
typical CPU or DMA controller. The 8089
transfers data from a source address to a destina-
tion address. Whether the component mapped

into a given address is actually memory or I/0 is
immaterial. All addresses in both the system and
1/0 spaces are equally accessible, and transfers
may be made between the two spaces as well as
within either address space.

Programmed I/0

A channel program performs I/O similar to the
way a CPU communicates with memory-mapped
I/0 devices. Memory reference instructions per-
form the transfer rather than ‘‘dedicated’’ 170
instructions, such as the 8086/8088 IN and OUT
instructions. Programmed 1/0 is typically used to
prepare a device controller for a DMA transfer
and to obtain status/result information from the
controller following termination of the transfer.
It may be used, however, with any device whose
transfer rate does not require DMA.

1/0 Instructions

Since the 8089 does not distinguish between
memory components and I/0 devices, any
instruction that accepts a byte or word memory
operand can be used to access an I/O device.
Most memory reference instructions take a source
operand or a destination operand, or both. The
instructions generally obtain data from the source
operand, operate on the data, and then place the
result of the operation in the destination operand.
Therefore, when a source operand refers to an
address where an 170 device is located, data is
input from the device. Similarly, when a destina-
tion operand refers to an I/0 device address, data
is output to the device.

Most I/0 device controllers have one or more
internal registers that accept commands and
supply status or result information. Working with
these registers typically involves:

¢ reading or writing the entire register;

® setting or clearing some bits in a register while
leaving others alone; or

® testing a single bit in a register.

Table 3-6 shows some of the 8089 instructions
that are useful for performing these kinds of
operations. Section 3.7 covers the 8089 instruc-
tion set in detail.

3-25

8089 INPUT/OUTPUT PROCESSOR

Table 3-6. Memory Reference Instructions
Used for I70

Instruction Effect on 1/0 Device

MOV/MOVB | Read or write word/byte
AND/ANDB [Clear multiple bits in word/byte

OR/ORB Set multiple bits in word/byte

CLR Clear single bit (in byte)
SET Set single bit (in byte)
JBT Read (byte) and jump if
single bit=1
JNBT Read (byte) and jump if
single bit=0
Device Addressing

Since memory reference instructions are used to
perform programmed I/0, device addressing is
very similar to memory addressing. An operand
that refers to an I/0 device always specifies one
of the pointer registers GA, GB, or GC (PP is
legal, but an 1/0 device would not normally be
mapped into a parameter block). The base
address of the device is taken from the specified
pointer register. Any of the memory addressing
modes (see section 3.8) may be used to modify the
base address to produce the effective (actual)
address of the device. The pointer register’s tag
bit locates the device in the system space (tag=0)
or in the I/0 space (tag=1). If the device is in
the 1/0 space, only the low-order 16 bits of the
pointer register are used for the base address; all
20 bits are used for a system space address. The
IOP’s system and I/0 spaces are fully compatible

with the corresponding address spaces of the
other 8086 family processors.

1/0 Bus Transfers

Table 3-7 shows the number of bus cycles the IOP
runs for all combinations of bus size, transfer size
(byte or word), and transfer address (even or
odd). Bus width refers to the physical bus
implementation; the instruction mnemonic deter-
mines whether a byte or a word is transferred.

Both 8- and 16-bit devices may reside on a 16-bit
bus. All 16-bit devices should be located at even
addresses so that transfers will be performed in
one bus cycle. The 8-bit devices on a 16-bit bus
may be located at odd or even addresses. The
internal registers in an 8-bit device on a 16-bit bus
must be assigned all-odd or all-even addresses
that are two bytes apart (e.g., 1H, 3H, 5H, or 2H,
4H, 6H). All 8-bit peripherals should be refer-
enced with byte instructions, and 16-bit devices
should be referenced with word instructions.
Odd-addressed 8-bit devices must be able to
transfer data on the upper eight bits of the 16-bit
physical data bus.

Only 8-bit devices should be connected to an 8-bit
bus, and these should only be referenced with
byte instructions. An 8-bit device on an 8-bit bus
may be located at an odd or even address, and its
internal registers may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses, however, will simplify con-
version to a 16-bit bus at a later date.

Table 3-7. Programmed I/0 Bus Transfers

Bus Width: 8 16

Instruction: byte word* byte word
Device Address: even odd even odd even odd even odd*
Bus Cycles: 1 1 2 1 1 1 2

* not normally used

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

DMA Transfers

In addition to byte- and word-oriented pro-
grammed /0, the 8089 can transfer blocks of
data by direct memory access. A block may be
transferred between any two addresses; memory-
to-memory transfers are performed as easily as
memory-to-port, port-to-memory or port-to-port
exchanges. There is no limitation on the size of
the block that can be transferred except that the
block cannot exceed 64k bytes if byte count ter-
mination is used. A channel program typically
prepares for a DMA transfer by writing com-
mands to a device controller and initializing chan-
nel registers that are used during the transfer. No
instructions are executed during the transfer,
however, and very high throughput speeds can be
achieved.

Preparing the Device Controller

Most controllers that can peform DMA transfers
are quite flexible in that they can perform several
different types of operations. For example, an
8271 Floppy Disk Controller can read a sector,
write a sector, seek to track 0, etc. The controller
typically has one or more internal registers that
are ‘‘programmed’’ to perform a given operation.
Often, certain registers will contain status
information that can be read to determine if the
controller is busy, if it has detected an error, etc.

An 8089 channel program views these device
registers as a series of memory locations. The
channel program typically places the device’s base
address in a pointer register and uses programmed
170 to communicate with the registers.

Some controllers start a DMA transfer
immediately upon receiving the last of a series of

parameters. If this type of controller is being
used, the channel program instruction that sends
the last parameter should follow the 8089 XFER
instruction. (The XFER instruction places the
channel in DMA mode after the next instruction;
this is explained in more detail later in this
section.)

Preparing the Channel

For a channel to perform a DMA transfer, it must’
be provided with information that describes the
operation. The channel program provides this
information by loading values into channel
registers and, in one case, by executing a special
instruction (see table 3-8).

Source and Destination Pointers. One
register is loaded to point to the transfer source;
the other points to the destination. A bit in the
channel control register is set to indicate which
register is the source pointer. If a register is’
pointed at a memory location, it should contain
the address where the transfer is to begin — i.e.,
the lowest address in the buffer. The channel
automatically increments a memory pointer as the
transfer proceeds. If the tag bit selects the /0
space, the upper four bits of the register are
ignored; if the tag selects the system space, all 20
bits are used. The source and destination may be
located in the same or in different address spaces.

Translate Table Pointer. If the data is to be
translated as it is transferred, GC should be
pointed at the first (lowest-addressed) byte in a
256-byte translation table. The table may be
located in either the system or 1/0 space, and GC

Table 3-8. DMA Transfer Control Information

Information

Source Pointer
Destination Pointer
Translate Table Pointer
Byte Count
Mask/Compare Values
Logical Bus Width
Channel Control

Register or Instruction Required or Optional
GAorGB Required
GAorGB Required
GC Optional
BC Optional
MC Optional
WID Optional*

CC Required

*Must be executed once following processor RESET.

3-27

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

should be loaded by an instruction that sets or
clears its tag bit as appropriate. The translate
operation is. only defined for byte data; source
and destination logical bus widths must both be
set to eight bits.

The channel translates a byte by treating it as an
unsigned 8-bit binary number. This number is
added to the content of register GC to form a
memory address; GC is not altered by the opera-
tion. If GC points to the 1/0 space, its upper four
bits are ignored in the operation. The byte at this
address (which is in the translate table) is then
fetched from memory, replacing the source byte.
Figure 3-25 illustrates the translate process.

Byte Count. If the transfer is to be terminated
on byte count— i.e., after a specific number of
bytes have been transferred—the desired count
should be loaded into register BC as an unsigned
16-bit number. The channel decrements BC as the
transfer proceeds, whether or not byte count ter-
mination has been specified. There are cases
(discussed later in this section) where the dif-

ference between BC’s value before and after the
transfer does not accurately reflect the number of
bytes transferred to the destination.

Mask/Compare Values. If the transfer is to be
terminated when a byte (possibly translated) is
found equal or unequal to a search value, MC
should be loaded as described in section 3.2. MC
is not altered during the transfer. Normally, the
logical destination bus width is set to eight bits
when transferred data is being compared. If the
logical destination width is 16 bits, only the low-
order byte of each word is compared.

Logical Bus Width. The 8089 WID (logical bus
width) instruction is used to set the logical width
of the source and destination buses for a DMA
transfer. Any bus whose physical width is eight
bits can only have a logical width of eight bits. A
16-bit physical bus, however, can have a logical
width of 8 or 16 bits; i.e., it can be used as either
an 8-bit or 16-bit bus in any given transfer.
Logical bus widths are set independently for each
channel.

TRANSLATE TABLE

IN SYSTEM OR 1/0 SPACE

00200 |- ac 66|19]| 87| ¢
GC A A
+ 02 I|
SOURCE BYTE :
= 00202 }—————— -
TRANSLATE ADDRESS

TRANSLATED BYTE

»1 6 6 [— TO DESTINATION

Figure 3-25. Translate Operation

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

For a transfer to or from an I/O device on a
16-bit physical bus, the logical bus width should
be set equal to the peripheral’s width; i.e., 8 or 16
bits. Transfers to or from 16-bit memory will run
at maximum speed if the logical bus width is set to
16 since the channel will fetch/store words. In the
following cases, however, the logical width
should be set to 8:

e the data is being translated,

e the data is being compared under mask, and
the 16-bit memory is the destination of the
transfer.

The WID instruction sets both logical widths and
remains in effect until another WID instruction is
executed. Following processor reset, the settings
of the logical bus widths are unpredictable.
Therefore, the WID instruction must be executed
before the first DMA transfer.

Channel Control. The 16 bits of the CC register
are divided into 10 fields that specify how the
DMA transfer is to be executed (see figure 3-26).
A channel program typically sets these fields by
loading a word into the register.

The function field (bits 15-14) identifies the
source and destination as memory or ports (I/0
devices). During the transfer, the channel
increments source/destination pointer registers
that refer to memory so that the data will be
placed in successive locations. Pointers that refer
to I7/0 devices remain constant throughout the
transfer.

The translate field (bit 13) controls data transla-
tion. If it is set, each incoming byte is translated
using the table pointed to by register GC.
Translate is defined only for byte transfers; the
destination bus must have a logical width of eight.

The synchronization field (bits 12-11) specifies
how the transfer is to be synchronized.
Unsynchronized (‘‘free running’’) transfers are
typically used in memory-to-memory moves. The
channel begins the next transfer cycle immediately
upon completion of the current cycle (assuming it
has the bus). Slow memories, which cannot run as
fast as the channel, can extend bus cycles by
signaling ‘‘not ready”’ to the 8284 Clock
Generator, which will insert wait states into the
bus cycle. A similar technique may be used with
peripherals whose speed exceeds the channel’s

ability to execute a synchronized transfer: in
effect, the peripheral synchronizes the transfer
through the use of wait states. Chapter 4 discusses
synchronization in more detail.

Source synchronization is typically selected when
the source is an 170 device and the destination is
memory. The I/0O device starts the next transfer
cycle by activating the channel’s DRQ (DMA
request) line. The channel then runs one transfer
cycle and waits for the next DRQ.

Destination synchronization is most often used
when the source is memory and the destination is
an I/0 device. Again, the I/0 device controls the
transfer frequency by signaling on DRQ when it is
ready to receive the next byte or word.

The source field (bit 10) identifies register GA or
GB as the source pointer (and the other as the
destination pointer).

The lock field (bit 9) may be used to instruct the
channel to assert the processor’s bus lock (LOCK)
signal during the transfer. In a source-
synchronized transfer, LOCK is active from the
time the first DMA request is received until the
channel enters the termination sequence. In a
destination-synchronized transfer LOCK is active
from the first fetch (which precedes the first
DMA request) until the channel enters the ter-
mination sequence.

The chain field (bit 8) is not used during the
transfer. As discussed previously, setting this
bit raises channel program execution to priority
level 1.

The terminate on single transfer field (bit 7) can
be used to cause the channel to run one complete
transfer cycle only—i.e., to transfer one byte or
word and immediately resume channel program
execution. When single transfer is specified, any
other termination conditions are ignored. Single
transfer termination can be used with low-speed
devices, such as keyboards and communication
lines, to translate and/or compare one byte as it
transferred.

The three low-order fields in register CC instruct
the channel when to terminate the transfer,
assuming that single transfer has not been
selected. Three termination conditions may be
specified singly or in combination.

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

15 7
F |TR sYN|[s|L|c|Ts| Tx | TBC | TMC
] 1 1 1 |

E FUNCTION

00 PORTTO PORT

01 MEMORY TO PORT

10 PORT TO MEMORY

11 MEMORY TO MEMORY

TR TRANSLATE

0 NOTRANSLATE

1 TRANSLATE

SYN SYNCHRONIZATION

00 NO SYNCHRONIZATION

01 SYNCHRONIZE ON SOURCE

10 SYNCHRONIZE ON DESTINATION

11 RESERVED BY INTEL

S SOURCE

0 GAPOINTS TO SOURCE

1 GBPOINTS TO SOURCE

L LOCK

0 NOLOCK

1 ACTUATE LOCK DURING TRANSFER

C CHAIN

0 NOCHAINING

1 CHAINED: RAISE TB TO PRIORITY 1
TS TERMINATE ON SINGLE TRANSFER

0 NO.SINGLE TRANSFER TERMINATION
1 TERMINATE AFTER SINGLE TRANSFER
TX TERMINATE ON EXTERNAL SIGNAL

00 NO EXTERNAL TERMINATION

01 TERMINATE ON EXT ACTIVE; OFFSET = 0
10 TERMINATE ON EXT ACTIVE; OFFSET = 4
11 TERMINATE ON EXT ACTIVE; OFFSET = 8
TBC TERMINATE ON BYTE COUNT

00 NOBYTE COUNT TERMINATION

01 TERMINATE ON BC = 0; OFFSET = 0
10 TERMINATE ON BC = 0; OFFSET = 4
11 TERMINATE ON BC = 0; OFFSET = 8
TMC TERMINATE ON MASKED COMPARE
000 NO MASK/COMPARE TERMINATION
001 TERMINATE ON MATCH: OFFSET = 0
010 TERMINATE ON MATCH; OFFSET = 4
011 TERMINATE ON MATCH; OFFSET = 8
100 (NO EFFECT)

101 TERMINATE ON NON-MATCH; OFFSET = 0

110
111

TERMINATE ON NON-MATCH; OFFSET = 4
TERMINATE ON NON-MATCH; OFFSET = 8

Figure 3-26. Channel Control Register Fields

3-30

8089 INPUT/OUTPUT PROCESSOR

External termination allows an I/0 device
(typically, the one that is synchronizing the
transfer) to stop the transfer by activating the
channel’s EXT (external terminate) line. If byte
count termination is selected, the channel will
stop when BC=0. If masked compare termination
is specified, the channel will stop the transfer
when a byte is found that is equal or unequal (two
options are available) to the low-order byte in MC
as masked by MC’s high-order byte. The byte that
stops the termination is transferred. If translate
has been specified, the translated byte is
compared. :

When a DMA transfer ends, the channel adds a
value called the termination offset to the task
pointer and resumes channel program execution
at that point in the program. The termination off-
set may assume a value of 0, 4, or 8. Single
transfer termination always results in a termina-
tion offset of 0. Figure 3-27 shows how the ter-
mination offsets can be used as indices into a
three-element ‘‘jump table’’ that identifies the
condition that caused the termination.

As an example of using the jump table, consider a
case in which a transfer is to terminate when 80
bytes have been transferred or a linefeed
character is detected, whichever occurs first. The
program would load 80H into BC and 000AH
into MC (ASCII line feed, no bits masked). The
channel program could assign byte count termina-
tion an offset of 0 and masked compare termina-
tion an offset of 4. If the transfer is terminated by
byte count (no linefeed is found), the instruction
at location TP +0 will be executed first after the
termination. If the linefeed is found before the
byte count expires, the instruction at TP +4 will
be executed first. The LIMP (long unconditional
jump, see section 3.7) instruction is four bytes
long and can be placed at TP+0 and TP +4 to
cause the channel program to jump to a different
routine, depending on how the transfer
terminates.

If the transfer can only terminate in one way and
that condition is assigned an offset of 0, there is
no need for the jump table. Code which is to be
unconditionally executed when the transfer ends
can immediately follow the instruction after
XFER. This is also the case when single transfer is
specified (execution always resumes at TP + 0).

It is possible, however, for two, or even three, ter-
mination conditions to arise at the same time. In

T FER
TERMINATION

F
>
z
»

TP+0|

LIMP OFFSET_0_CODE
TP+4

LJMP OFFSET_4_CODE THREE-ELEMENT JUMP TABLE
TP+8

LJMP OFFSET_8__CODE

OFFSET_O_cOugl

EXECUTED IF TERMINATIONl
OFFSET = 0

OFFSET_4_C°DEr-ﬁ‘
EXECUTED IF TERMINATION
I OFFSET = 4 M

OFFSET_.B_CODEhl
EXECUTED IF TERMINATION
‘[OFFSET = 8]‘

o

Figure 3-27. Termination Jump Table

the preceding example, this would occur if the
80th character were a linefeed. When multiple ter-
minations occur simultaneously, the channel
indicates that termination resulted from the con-
dition with the largest offset value. In the
preceding example, if byte count and search ter-
mination occur at the same time, the channel pro-
gram resumes at TP + 4.

Beginning the Transfer

The 8089 XFER (transfer) instruction puts the
channel into DMA transfer mode after the
following instruction has been executed. This
technique gives the channel time to set itself up
when it is used with device controllers, such as the
8271 Floppy Disk Controller, that begin transfer-
ring immediately upon receipt of the last in a
series of parameters or commands. If the transfer
is to or from such a device, the last parameter
should be sent to the device after the XFER
instruction. If this type of device is not being
used, the instruction following XFER would

3-31

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

typically send a ‘‘start’” command to the con-
troller. If a memory-to-memory transfer is being
made, any instruction may follow XFER except
one that alters GA, GB, or CC. The HLT instruc-
tion should normally not be coded after the
XFER; doing so clears the channel’s BUSY flag,
but allows the DMA transfer to proceed.

DMA Transfer Cycle

A DMA transfer cycle is illustrated in figure 3-28;
a complete transfer is a series of these cycles run
until a termination condition is encountered. The
figure is deliberately simplified to explain the
general operation of a DMA transfer; in par-
ticular, the updating of the source and destination
pointers (GA and GB) can be more complex than
the figure indicates. Notice that it is possible to
start an unending transfer by not specifying a ter-
mination condition in CC or by specifying a con-
dition that never occurs; it is the programmer’s
responsibility to ensure that the transfer eventu-
ally stops.

If the transfer is source-synchronized, the channel
waits until the synchronizing device activates the
channel’s DRQ line. The other channel is free to
run during this idle period. The channel fetches a
byte or a word, depending on the source address
(contained in GA or GB) and the logical bus
width. Table 3-9 shows how a channel performs
the fetch/store sequence for all combinations of
addresses and bus widths. If the destination is on
a 16-bit logical bus and the source is on an 8-bit
logical bus, and the transfer is to an even address,
the channel fetches a second byte and assembles a
word internally. During each fetch, the channel
decrements BC according to whether a byte or
word is obtained. Thus BC always indicates the
number of bytes fetched.

The channel samples its EXT line after every bus
cycle in the transfer. If EXT is recognized after
the first of two scheduled fetches, the second
fetch is not run. After the fetch sequence has been
completed, the channel translates the data if this
option is specified in CC.

If a word has been fetched or assembled, and
bytes are to be stored (destination bus is eight bits
or transfer is to an odd address), the channel
disassembles the word into two bytes. If the
transfer is destination-synchronized (only one

Table 3-9. DMA Transfer

Assembly/Disassembly

Address Logical Bus Width

(Source—> Source—Destination)
Destination) | 88| 8—+16 | 168 | 1616
EVEN—EVEN | B—»B|B/B—>W|W—>B/B|W-W
EVEN—-ODD | B—»B|B—»B |W-B/B|W—B/B
ODD—EVEN | B—B|B/B—~W|B—B B/B-W
ODD—0DD B—B|B—~»B |B—B B—B

B= Byte Fetched or Stored in 1 Bus Cycle
W= Word Fetched or Stored in 1 Bus Cycle
B/B=2 Bytes Fetched or Stored in 2 Bus Cycles

type of synchronization may be specified for a
given transfer), the channel waits for DRQ before
running a store cycle. It stores a word or the
lower-addressed byte (which may be the only byte
or the first of two bytes). Table 3-9 shows the
possible combinations of even/odd addresses and
logical bus widths that define the store cycle.
Whenever stores are to memory on a 16-bit logical
bus, the channel stores words, except that bytes
may be stored on the first and last cycles.

The channel samples EXT again after the first
store cycle and, if it is active, the channel prevents
the second store cycle from running. If specified
in the CC register, the low-order byte is compared
to the value in MC. A “‘hit’’ on the comparison
(equal or unequal, as indicated in CC) also
prevents the second of two scheduled store cycles
from running. In both of these cases, one byte has
been ‘‘overfetched,’”’ and this is reflected in BC’s
value. It would be unusual, however, for a syn-
chronizing device to issue EXT in the midst of a
DMA cycle. Note also that EXT is valid only
when DRQ is inactive. Chapter 4 covers the tim-
ing requirements for these two signals in detail.

GA and GB are updated next. Only memory
pointers are incremented; pointers to 1/0 devices
remain constant throughout the transfer.

If any termination condition has occurred during
this cycle, the channel stops the transfer. It uses
the content of the CC register to assign a value to
the termination offset, to reflect the cause of the
termination. The channel adds this offset to TP
and resumes channel program execution at the
location now addressed by TP. This offset will

Mnemonics © Intel, 1979

3-32

8089 INPUT/OUTPUT PROCESSOR

ENTER FROM
CHANNEL PROGRAM

SYNCHRONI-
ZATION

WAIT FOR
DMA REQUEST

FETCHBYTE
ORWORD,
DECREMENT

BC

— — —EXT

ANOTHER
BYTE?

NO

ASSEMBLE
BYTES

(OPTIONAL)

TRANSLATE
?

DISASSEMBLE
WORD
{OPTIONAL)

DRQ

SOURCE

SYNCHRONI-
ZATION

WAIT FOR
DMA REQUEST

STORE WORD
OR LOWER-
ADDRESSED

- — —ExT

COMPARE
UNDER
MASK

UPDATE
GA/GB

DETERMINE
TERMINATION
OFFSET

SYNCHRONI-
ZATION

WAIT FOR

DMA REQUEST

]

TP=TP+
OFFSET

ADDRESSED
BYTE

— — —EXT

RETURNTO
CHANNEL PROGRAM

DRQ

Figure 3-28. Simplified DMA Transfer Flowchart

always be zero, four, or eight bytes past the end
of the instruction following the XFER instruc-
tion.

If no termination condition is detected and
another byte remains to be stored, the channel
stores this byte, waiting for DRQ if necessary,
and updates the source and destination pointers.
After the store, it again checks for termination.

Following the Transfer

A DMA transfer updates register BC, register GA
(if it points to memory), and register GB (if it
points to memory). If the original contents of
these registers are needed following the transfer,
the contents should be saved in memory prior to
executing the XFER instruction.

3-33

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

A program may determine the address of the last
byte stored by a DMA transfer by inspecting the
‘pointer registers as shown in table 3-10. The
number of bytes stored is equal to:

last__byte__address — first__byte__address + 1.

For port-to-port transfers, the number of bytes
transferred can be determined by subtracting the
final value of BC from its original value provided
that:

the original BC > final BC,

a transfer cycle is not ‘‘chopped off”’ before
it completes by a masked compare or exter-
nal termination.

~ In general, programs should net use the contents
of GA, GB and BC following a transfer except as
noted above and in table 3-10. This is because the
contents of the registers are affected by numerous
conditions, particularly when the transfer is ter-
minated by EXT. In particular, when a program
is performing a sequence of transfers, it should
reload these registers before each transfer.

3.5 Multiprocessing Features

The 8089 shares the multiprocessing facilities
common to the 8086 family of processors. It has
“on-chip logic for arbitrating the use of the local
bus with a CPU or another IOP; system bus
arbitration is delegated to an 8289 Bus Arbiter.

The 8089’s TSL (test and set while locked) in-
struction enables it to share a resource, such as a
buffer, with other processors by means of
semaphore (see section 2.5 for a discussion of the
use of semaphores to control access to shared
resources). Finally, the 8089 can lock the system
bus for the duration of a DMA transfer to ensure
that the transfer completes without interference
from other processors on the bus.

In the remote configuration, the 8089 is electric-
ally compatible with Intel’s Multibus™ multi-
master bus design. This means that the power and
convenience of 8089 I/0 processing can be used
in 8080- or 8085-based systems that implement the
Multibus protocol or a superset of it. This
includes single-board computers such as Intel’s
iSBC 80/20™ and iSBC 80/30™ boards. In addi-
tion, the IOP can access other iSBC board
products such as memory and communications
controllers.

Bus Arbitration

The 8089 shares its system bus with a CPU, and
may also share its I/O bus with an IOP or another
CPU. Only one processor at a time may drive a
bus. When two (or more) processors want to use a
shared bus, the system must provide an arbitra-
tion mechanism that will grant the bus to one of
the processors. This section describes the bus
arbitration facilities that may be used with the
8089 and covers their applicability to different
IOP configurations.

Table 3-10. Address of Last Byte Stored

Last Byte Stored

Termination Source Destination Synchronization

memory memory any destination pointer!

byte count memory port any source pointer
port memory any destination pointer
memory memory any destination pointer

masked compare memory port any source pointer
port memory any destination pointer
memory memory unsynchronized destination pointer

external memory port destination source pointer?
port memory source destination pointer

'Source pointer may also be used.

?If transfer is B/B—>W, source pointer must be decremented by 1 to point to last byte transferred.

Mnemonics © Intel, 1979

3-34

8089 INPUT/OUTPUT PROCESSOR

Request/Grant Line

When an 8089 is directly connected to
another 8089, an 8086 or an 8088, the
RQ/GT (request/grant) lines built into all of
these processors are used to arbitrate use of a
local bus. In the local mode, RQ/GT is used
to control access to both the system and the
170 bus.

As discussed in section_ 2.6, the CPU’s
request/grant lines (RQ/GTO and RQ/GTI)
operate as follows:

®* an external processor sends a pulse to the
CPU to request use of the bus;

e the CPU finishes its current bus cycle, if one
is in progress, and sends a pulse to the pro-
cessor to indicate that it has been granted the
bus; and

e when the external processor is finished with
the bus, it sends a final pulse to the CPU, to
indicate that it is releasing the bus.

The 8089’s request/grant circuit can operate in
two modes; the mode is selected when the IOP is
initialized (see section 3.6). Mode 0 is compatible
with the 8086/8088 request/grant circuit and
must be specified when the 8089’s RQ/GT line is
connected to RQ/GTO or RQ/GT1 of one of
these_CPUs. Mode 0 may be specified when
RQ/ GT of one 8089 is tied to RQ/GT of another
8089. When mode 0 is used with a CPU, the CPU
is designated the master, and the IOP is
designated a slave. When mode 0 is used with
another IOP, one IOP is the master, and the other
is the slave. Master/slave designation also is made
at initialization time as discussed in section 3.6.
The master has the bus when the system is in-
itialized and keeps the bus until it is requested by
the slave. When the slave requests the bus, the
master grants it if the master is idle. In this sense,
the CPU becomes idle at the end of the current
bus cycle. An IOP master, on the other hand,
does not become idle until both channels have
halted program execution or are waiting for DMA
requests. Once granted the bus, the slave (always
an IOP) uses it until both channels are idle, and
then releases it to the master. In mode 0, the
master has no way of requesting the slave to
return the bus.

Mode 1 operation of the request/grant lines may
only be used to arbitrate use of a private I/0 bus

between two IOPs. In this case, one IOP is
designated the master, and the other is designated
the slave. However, the only difference between a
master and a slave running in mode 1 is that the
master has the bus at initialization time. Both
processors may request the bus from each other at
any time. The processor that has the bus will
grant it to the requester as soon as one of the
following occurs on either channel:

* an unchained channel program instruction is
completed, or

® achannel goes idle due to a program halt or
the completion of a synchronized transfer
cycle (the channel waits for a DMA request).

Execution of a chained channel program, a DMA
termination sequence, a channel attention
sequence, or a synchronized DMA transfer (i.e., a
high-priority operation) on either channel
prevents the IOP from granting the bus to the
requesting IOP.

The handshaking sequence in mode 1 is:

* the requesting processor pulses once on
RQ/GT;

e the processor with the bus grants it by
pulsing once; and

e if the processor granting the bus wants it
back immediately (for example, to_fetch the
next instruction), it will pulse RQ/GT again,
two clocks after the grant pulse.

The fundamental difference between the two
modes is the frequency with which the bus can be
switched between the two processors when both
are active. In mode 0, the processor that has the
bus will tend to keep it for relatively long periods
if it is executing a channel program. Mode 1 in
effect places unchained channel programs at a
lower priority since the processor will give up the
bus at the end of the next instruction. Therefore,
when both processors are running channel pro-
grams or synchronized DMA, they will share the
bus more or less equally. When a processor
changes to what would typically be considered a
higher-priority activity such as chained program
execution or DMA termination, it will generally
be able to obtain the bus quickly and keep the bus
for the duration of the more critical activity.

3-35

8089 INPUT/OUTPUT PROCESSOR

8289 Bus Arbiter

When an IOP is configured remotely, an 8289 Bus
Arbiter is used to control its access to the shared
system bus (the CPU also has its own 8289). In a
remote cluster of two IOPs or an IOP and a CPU,
one 8289 controls access to the system bus for
both processors in the cluster. The 8289 has
several operating modes; when used with an 8089,
the 8289 is usually strapped in its IOB (I/O
Peripheral Bus) mode.

The 8289 monitors the IOP’s status lines. When
these indicate that the IOP needs a cycle on the
system bus, and the IOP does not presently have
the bus, the 8289 activates a bus request signal.
This signal, along with the bus request lines of
other 8289s on the same bus, can be routed to an
external priority-resolving circuit. At the end of
the current bus cycle, this circuit grants the bus to
the requesting 8289 with the highest priority.
Several different prioritizing techniques may be
used; in a typical system, an IOP would have
higher bus priority than a CPU. If the 8289 does
not obtain the bus for its processor, it makes the
bus appear ‘‘not ready’’ as if a slow memory were
being accessed. The processor’s clock generator
responds to the ‘‘not ready’’ condition by insert-
ing wait states into the IOP’s bus cycle, thereby
extending the cycle until the bus is acquired.

Bus Arbitration for IOP Configurations

When the CPU initializes an IOP, it must inform
the IOP whether it is a master or a slave, and
which request/grant mode is to be used. This sec-
tion covers the requirements and options
available for each IOP configuration; section 3.6
describes how the information is communicated
at initialization time.

Table 3-11 summarizes the bus arbitration
requirements and options by IOP configuration.
In the local configuration, all bus arbitration is
performed by the request/grant lines without
additional hardware. One IOP may be connected
to each of the CPU’s RQ/GT lines. The IOP con-
nected to RQ/GTO will obtain the bus if both pro-
cessors make simultaneous requests.

Since a single IOP in a remote configuration does
not use RQ/GT, its mode may be set to 0 or 1
without affect. The single remote IOP, however,
must be initialized as a master. If two remote
IOPs share an 170 bus, one must be a master and
the other a slave; both must be initialized to use
the same request/grant mode. Normally, mode 1
will be selected for its improved responsiveness,
and the designation of master will be arbitrary. If
one IOP must have the I/0 bus when the system
comes up, it should be initialized as the master.

When a remote IOP shares its I/O bus with a
local CPU, it must be a slave and must use
request/grant mode 0.

Bus Load Limit

A locally configured IOP effectively has higher
bus priority than the CPU since the CPU will
grant the bus upon request from the IOP. One or
two local IOPs can potentially monopolize the
bus at the expense of the CPU. Of course, if the
IOP activities are time-critical, this is exactly what
should happen. On the other hand, there may be
low-priority channel programs that have less
demanding performance requirements.

In such.cases, the CPU may set a CCW bit called
bus load limit to constrain the channel’s use of the
bus during normal (unchained) channel program

Table 3-11. Bus Arbitration Requirements and Options

Remote With
Local Remote Local CPU

I0P —— —— —
Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT
Slave Mode Slave Mode Slave Mode

I0P1 Slave 0 Master Oort Slave 0

IOP2 Slave 0 Slave Same as N/A N/A
Master

3-36

8089 INPUT/OUTPUT PROCESSOR

execution. When this bit is set, the channel
decrements a 7-bit counter from 7F (127) to OH
with each instruction executed. Since the counter
is decremented once per clock period, the channel
waits a minimum of 128 clock cycles before it exe-
cutes the next instruction. By forcing the execu-
tion time of all instructions to 128 clocks, the use
of the bus is reduced to between 3 and 25 percent
of the available bus cycles.

Setting the bus load limit effectively enables a
CPU to slow the execution of a normal channel
program, thus freeing up bus cycles. This is of
most use in local configurations, but also may be
effective in remote configurations, particularly
when channel programs are executed from system
memory. Bus load limit has no effect on chained
channel programs, DMA transfers, DMA ter-
mination, or channel attention sequences.

Bus Lock

Like the 8086 and 8088, the 8089 has a LOCK
(bus lock) signal which can be activated by soft-
ware. The LOCK output is normally connected to
the LOCK input of an 8289 Bus Arbiter. When
LOCK is active, the bus arbiter will not release the
bus to another processor regardless of its priority.
A channel automatically locks the bus during exe-
cution of the TSL (test and set while locked)
instruction and may lock the bus for the duration
of a DMA transfer.

If bit 9 of register CC is set, the 8089 activates its
LOCK output during a DMA transfer_on that
channel. If the transfer is synchronized, LOCK is
active from the time that the first DRQ is
recognized. If the transfer is unsynchronized,
LOCK is active throughout the entire transfer
(there are no idle periods in an unsynchronized
transfer). LOCK goes inactive when the channel
begins the DMA termination sequence.

A locked transfer ensures that the transfer will be
completed in the shortest possible time and that
the transferring channel has exclusive use of the
bus. Once the channel obtains the bus and starts a
locked transfer, the channel, in effect, becomes
the highest-priority processor on that bus.

The 8089 TSL (test and -set while locked)
instruction can be used to implement a
semaphore. (See section 2.5 for a discussion of
how a semaphore may be used to control the

access of multiple processors to a shared
resource.) The instruction activates LOCK and
inspects the value of a byte in memory. If the
value of the byte is OH, it is changed (set) to a
value specified in the instruction and the follow-
ing instruction is executed. If the byte does not
contain OH, control is transferred to another loca-
tion specified in the instruction. The bus is locked
from the time the byte is read until it is either writ-
ten or control is transferred to ensure that another
processor does not access the variable after TSL
has read it, but before it has updated it (i.e.,
between bus cycles). The following line of code
will repeatedly test a semaphore pointed to by GA
until it is found to contain zero:

TEST_FLAG: TSL [GA], OFFH, TEST__FLAG

When the semaphore is found to be zero, it is set
to FFH and the program continues with the next
instruction.

3.6 Processor Control and
Monitoring

This section focuses on IOP/CPU interaction,
i.e., how the CPU initializes the IOP and sub-
sequently sends commands to channels, and how
the channels may interrupt the CPU. It also
covers the channels’ DMA control signals and the
status signals that external devices can use to
monitor IOP activities.

Initialization

Before the 8089 channels can be dispatched to
perform 1/0 tasks, the IOP must be initialized.
The initialization sequence (figure 3-29) provides
the IOP with a definition of the system environ-
ment: physical bus widths, request/grant mode,
and the location of the channel control block.

The sequence begins when the IOP’s RESET line
is activated. This halts any operation in progress,
but does not affect any registers. Upon the first

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

0P CcPU

INITIALIZATION

RESET ——| HALT CONTROL

BLOCKS
CH1BUSY<FFH
CH2BUSY<—0H
WAIT FOR CA+SEL ISSUE
CHANNEL - CHANNEL
ATTENTION ATTENTION

!

READ
INITIALIZATION
CONTROL
BLOCKS

!

CH1BUSY<0H

!

WAIT FOR
CHANNEL
ATTENTION

CH1 BUSY

IOP IS READY;
CPU MAY INITIALIZE
ANOTHER IOP

Figure 3-29. Initialization Sequence

RESET after power-up, the content of all IOP
registers is undefined. Register contents are
preserved if the IOP is subsequently RESET,
except that RESET always clears the chain bit in
register CC.

The IOP initializes itself by reading information
from initialization control blocks located in the
system space (see figure 3-30). The three blocks
are the SCP (system configuration pointer), SCB
(system configuration block) and the CB (channel
control block). The CB is normally RAM-based;

the SCP and the SCB may be in RAM or ROM. It
is the CPU’s responsibility to properly setup the
control blocks.

The CPU starts the initialization sequence by issu-
ing a channel attention to channel 1 (SEL low) or
to channel 2 (SEL high). The CPU typically
accesses the channels as two consecutive addresses
in its I/O or memory space. An OUT instruction
(for an I70-mapped IOP) or a memory reference
instruction (such as MOV) then issues the channel
attention.

Mnemonics © Intel; 1979

3-38

8089 INPUT/OUTPUT PROCESSOR

HIGH SYSTEM MEMORY

FFFFEH
(RESERVED)
SYSTEM FFFFCH
CONgé?#P€J'°N SCB SEGMENT BASE EFFFAH
(FIXED LOCATION) —
SCB OFFSET FFFF8H
(RESERVED) J SYSBUS FFFF6H
FFFF4H
8086/8088
RESET LOCATION FFFF2H
FFFFOH
h S
T P
c
SYSTEM B SEGMENT BASE
CONFJESSQTION CB OFFSET
(USER-DEFINED LOCATION)
(RESERVED) soC -
d d
QD "D
[(RESERVED)
H
A PB SEGMENT BASE
N — — | _ » CHANNEL2
£ PB OFFSET PARAMETER BLOCK
L
88%#& 2 BUSY T ccw
BLOCK —
(USER-DEFINED LOCATION) ¢ (RESERVED)
H
" v
n PB SEGMENT BASE 1 cHanneLs
£ PB OFFSET PARAMETER BLOCK
L
1 BUSY ccw -
| l

LOW SYSTEM MEMORY

Figure 3-30. Initialization Control Blocks

If channel 1 is selected (SEL=low), the IOP con-
siders itself a master (as discussed in section 3.5).
If channel 2 is selected (SEL=high), the IOP
operates as a slave. The IOP ignores, and does
not latch, any subsequent channel attentions that
occur during initialization.

If the IOP is a master, it assumes that it has the
bus immediately. If it is a slave, it pulses RQ/GT
to request the bus from the CPU (local configura-
tion) or the other IOP (remote configuration).
When the IOP has obtained the bus, it assumes
that the system bus is eight bits wide and reads the

3-39

8089 INPUT/OUTPUT PROCESSOR

SYSBUS field (figure 3-31) from location
FFFF6H in system memory. This byte tells the
IOP the actual physical width of the system bus;
all subsequent accesses take advantage of a 16-bit
bus if it is available; i.e., even-addressed words
are fetched in single bus cycles. It is therefore
advantageous to word-align the control blocks.

W =0 = 8-BIT SYSTEM BUS
W =1 =16-BIT SYSTEM BUS

‘Figure 3-31. SYSBUS Encoding

Next, the IOP reads the SCB address located at
FFFF8H. This is a standard doubleword pointer,
and the IOP constructs a 20-bit physical address
from it by shifting the segment base left four bits
and adding the offset word of the pointer.

Having obtained the SCB address, the IOP reads
the SOC (system operation command). This byte
(see figure 3-32) tells the IOP the request/grant
mode and the width of the I/0 bus.

R = REQUEST/GRANT MODE
1= 0=8-BIT I/O BUS
I =1 =16-BIT I/0 BUS

Figure 3-32. SOC Encoding

Then the IOP reads the doubleword pointer to the
channel control block, converts the pointer into a
20-bit physical address, and stores it in an internal
register. This register is not accessible to channel

programs and is only loaded during initialization.
The CB, therefore, cannot be moved during exe-
cution except by reinitializing the IOP.

After loading the address of the CB, the IOP
clears the channel 1 BUSY flag to OH. The other
fields in the CB are used when a channel is dis-
patched and are not read or altered in the
initialization sequence.

After the CPU has started the initialization
sequence, it should monitor channel 1’s BUSY
flag in the CB to determine when the sequence has
been completed. When the BUSY flag has been
cleared, the CPU can dispatch either channel. It
also can begin the initialization of another IOP.
Since each IOP normally has a separate CB, the
CPU must allocate the CB and update the pointer
in the SCB before initializing the next IOP. Alter-
natively, multiple SCBs could be employed, each
pointing to a different CB area. In this case the
CPU would update the pointer in the SCP before
initializing the next IOP. It follows from this that
in multi-IOP systems, either the SCB or SCP, or
both, must be RAM-based. When all IOPs have
been initialized, the CPU may use RAM occupied
by the SCB for another purpose.

Channel Commands

After initialization, any channel attention is
interpreted as a command to channel 1
(SEL=low) or to channel 2 (SEL=high). As
discussed in section 3.2, the channel attention,
depending on the activities of both channels, may
not be recognized immediately. The channel
attention is latched, however, so that it will be
serviced as soon as priorities allow.

When the channel recognizes the CA, it sets its
BUSY flag in the CB to FFH. This does not pre-
vent the CPU from issuing another CA, but pro-
vides status information only. In its response to a
CA, the channel reads various control fields from
system memory. It is the responsibility of the
CPU to ensure that the appropriate fields are
properly initialized before issuing the CA.

After setting its BUSY flag, the channel reads its
CCW from the CB. It examines the command
field (see figure 3-33) and executes the command
encoded there by the CPU.

3-40

8089 INPUT/OUTPUT PROCESSOR

ICF
1

CF

COMMAND FIELD

000 UPDATE PSW
(RESERVED

(RESERVED)

10 ENABLE INTERRUPTS.
11 DISABLE INTERRUPTS.
B BUSLOADLIMIT

0 NOBUSLOADLIMIT

1 BUS LOAD LIMIT

P PRIORITY BIT

START CHA;‘INEL PROGRAM LOCATED IN I/0 SPACE.
START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE.

RESUME SUSPENDED CHANNEL OPERATION
SUSPEND CHANNEL OPERATION
HALT CHANNEL OPERATION

INTERRUPT CONTROL FIELD

IGNORE, NO EFFECT ON INTERRUPTS.
REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED.

Figure 3-33. Channel Command Word Encoding

Figure 3-34 illustrates the channel’s response to
each type of command. Note that if CF contains a
reserved value (010 or 100), the channel’s
response is unpredictable.

The CPU can use the ‘‘update PSW’’ command
to alter the bus load limit and priority bits in the
PSW (see figure 3-17) without otherwise affecting
the channel. This command also allows the CPU
to control interrupts originating in the channel;
this topic is discussed in more detail later in this
section.

The two ‘‘start program’’ commands differ only
in their affect on the TP tag bit. If CF=001, the
channel sets the tag to 1 to indicate that the pro-
gram resides in the I/0 space. If CF=011, the tag
is cleared to 0, and the program is assumed to be
in the system space. The channel converts the
doubleword parameter block pointer to a 20-bit
physical address and loads this into PP. It loads
the doubleword task block (channel program)
pointer into TP, updates the PSW as specified by
the ICF, B and P fields of the CCW and starts the
program with the instruction pointed to by TP.

The CPU may suspend a channel operation
(either program execution or DMA transfer) by
setting CF to 110. The channel saves its state (TP,
its tag bit, and PSW) in the first two words of the
parameter block (see figure 3-18 for format) and
clears its BUSY flag to OH. Note the following in
regard to a suspended operation:

The content of the doubleword pointer to the
beginning of the channel program is replaced
by the channel state save data. Therefore, a
suspended operation may be resumed, but
cannot be started from the beginning without
recreating the doubleword pointer.

TP is the only register saved by this
operation. If another channel program is
started on this channel, the other registers,
including PP, are subject to being over-
written. In general, suspend is used to tem-
porarily halt a channel, not to ““interrupt’’ it
with another program. Section 3.10 provides
an example of a program that can be used to
save another program’s registers.

3-41

8089 INPUT/OUTPUT PROCESSOR

psw | |

CHANNEL
CONTROL PARAMETER
COMMAND CHANNEL BLOCK BLOCK
«n “n
PARAMETER | 4
T - BLOCK —
UPDATE PSW A POINTER 2 TBPOINTER |2
(CF=000) G| | TBPOINTER |
BUSY | ccw | o CHANNEL STATE | ¢

(RESERVED) | 6

!
|

r
pJ
£
pl

PARAMETER | 4

T L < | BLOCK -
START PROGRAM A <——— POINTER 2 TASK 2
(CF=001/011) G | — BLOCK —
BUSY [ccw fo POINTER 0

(RESERVED) | 6

]

’'e
e
£
D

PARAMETER 4

POINTER 2
CHANNEL __|

Busy | ccw | o { STATE
Y

(RESERVED) | 6

N

SUSPEND OPERATION
(CR=110)

(=]

=

J 1

L
D
r
P4

PARAMETER | 4
- BLOCK —

POINTER -] 2

N

FEFSUME,OPERATION

| CHANNEL __|
BusY | ccw | o STATE

- - -

]
—A—

(RESERVED) | 6 J l
Y
LPARAMETER 4 [T
s, T
HALT OPERATION 2 2
HALT Ot a | _TBPOINTER |
susﬂccw 0 CHANNEL STATE | o

Figure 3-34. Channel Commands

3-42

8089 INPUT/OUTPUT PROCESSOR

e Suspending a DMA transfer does not affect
any 1/0 devices (an I/0 device will act as
though the transfer is proceeding). The CPU
must provide for conditions that may arise if,
for example, a device requests a DMA
transfer, but the channel does not
acknowledge the request because it has been
suspended. Similarly, an I/0O device may be
in a different condition when the operation is
resumed.

A suspended operation may be resumed by setting
CF to 101. This command causes the channel to
reload TP, its tag bit, and the PSW from the first
two words of PB. Resuming an operation that has
not been suspended will give unpredictable results
since the first two words of PB will not contain
the required channel state data. A resume com-
mand does not affect any channel registers other
than TP.

The CPU may abort a channel operation by
issuing a ‘‘halt”> command (CF=111). The chan-
nel clears its BUSY flag to OH and then idles.
Again, the CPU must be prepared for the effect
aborting a DMA transfer may have on an 1I/0
device.

DRQ (DMA Request)

The synchronizing device in a DMA transfer uses
the DRQ line to indicate when it is ready to send
or receive the next byte or word. The channel
recognizes a signal on this line only during a
DMA transfers, i.e., after the instruction follow-
ing XFER has been executed and before a ter-
mination condition has occurred. The channels
have separate DMA request lines (DRQ1 and
DRQ2).

EXT (External Terminate)

An external device (typically the synchronizing
device) can terminate a DMA transfer by signal-
ing on this line. Each channel has its own external
terminate line (EXT1 and EXT2). The channel
stops the transfer as soon as the current fetch or
store cycle is completed. An external terminate in
an unsynchronized transfer could result in a loss
of data, although this would not be a typical use
of EXT. In a synchronized transfer, the syn-
chronizing device will normally issue EXT instead

of DRQ following the last transfer cycle. If EXT
is activated during a transfer cycle, a fetched byte
may not be stored as explained in section 3.4.

A channel does not recognize EXT if it is not per-
forming a DMA transfer. If EXT1 and EXT2 are
activated simultaneously, EXTI1 is recognized
first.

Interrupts

Each channel has a separate system interrupt line
(SINTR1 and SINTR2). A channel program may
generate a CPU interrupt request by executing a
SINTR instruction. Whether this instruction
actually activates the SINTR line, however,
depends upon the state of the interrupt control bit
(bit 3 of the PSW; see figure 3-17). If this bit is
set, interrupts from the channel are enabled, and
execution of the SINTR instruction activates
SINTR. If the interrupt control bit is cleared, the
SINTR instruction has no effect; interrupts from
the channel are disabled.

The CPU can alter a channel’s interrupt control
bit by sending any command to the channel with
the value of ICF (interrupt control field) in the
CCW set to 10 (enable) or 11 (disable). Thus, the
CPU can prevent interrupts from either channel.

Once activated, SINTR remains active until the
CPU sends a channel command with ICF set to 01
(interrupt acknowledge). When the channel
receives this command, it clears the interrupt ser-
vice bit in the PSW (figure 3-17) and removes the
interrupt request. Disabling interrupts also clears
the interrupt service bit and lowers SINTR.

Status Lines

The IOP emits signals on the SO-S2 status lines to
indicate to external devices the type of bus cycle
the processor is starting. Table 3-12 shows the
signals that are output for each type of cycle.
These status lines are connected to an 8288 Bus
Controller. The bus controller decodes these lines
and outputs the signals that control components
attached to the bus. The IOP indicates ‘‘instruc-
tion fetch’’ on these lines when it is reading and
writing memory operands as well as when it is fet-

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

ched instructions. In the remote configuration, an
8289 Bus Arbiter monitors the SO-S2 status lines
to determine when a system bus access is required.

Table 3-12. Status Signals S0-S2

§2|51|S0 Type of Bus Cycle
0] 0| 0 | Instruction fetch from I/O space
0|0/} 1 | Datafetchfroml/O space
0| 1] 0 | Datastoretol/O space
0]11}1 | (notused)
1] 0| 0 | Instruction fetch from system

space

1] 0| 1 | Datafetch from system space
1] 1| 0 | Datastoreto system space
1111 | Passive;nobuscyclerun

Status lines S3-S6 indicate whether the bus cycle is
DMA or non-DMA, and which channel is run-
ning the cycle (see table 3-13). Note that when the
IOP is not running a bus cycle (e.g., when it is idle
or when it is executing an internal cycle that does
not use the bus), the status lines reflect the last
bus cycle run.

Table 3-13. Status Signals S3-S6

S6|S5|S4|S3 Bus Cycle
111]0|0 | DMAcycleonchannel1
1]1]0|1 | DMAcycleonchannel2
111]1]0 | Non-DMA cycleonchannel1
111|111 | Non-DMA cycle onchannel 2

3.7 Instruction Set

This section divides the IOP’s 53 instructions into
five functional categories:

1. data transfer,

2. arithmetic,

3. logic and bit manipulation,
4. program transfer,

5. processor control.

The description of each instruction in these
categories explains how the instruction operates
and how it may be used in channel programs.
Instructions that perform essentially the same
operation (e.g., ADD and ADDB, which add
words and bytes respectively), are described
together. A reference table at the end of the sec-
tion lists every instruction alphabetically and pro-
vides execution time, encoded length, and sample
ASM-89 coding for each permissable operand
combination. For information on how the 8089
machine instructions are encoded in memory, see
section 4.3.

In reading this section, it is important to recall
that the instruction set does not differentiate
between memory addresses and I/0 device
addresses. Instructions that are described as
accepting byte and word memory operands may
also be used to read and write I/0 devices.

Data Transfer Instructions

These instructions move data between memory
and channel registers. Traditional byte and word
moves (including memory-to-memory) are
available, as are special instructions that load
addresses into pointer registers and update tag
bits in the process.

MOV destination, source

MOV transfers a byte or word from the source to
the destination. Four instructions are provided:

MOV Move Word Variable,
MOVB Move Byte Variable,
MOVI Move Word Immediate,

MOVBI Move Byte Immediate.

Figure 3-35 shows how these instructions affect
register operands. Notice that when a pointer
register is specified as the destination of a MOV,
its tag bit is unconditionally set to 1. MOV
instructions are therefore used to load I/0 space
addresses into pointer registers.

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

Register is Destination

Tag 19 15 7 0
Byte - --
Operation ‘_1JLs_s§sissssssss|RHRRRRRFﬂ
Word
SLoh Lol
Operation L1JLS_S§S|HRRRRRRR1RRRRFIRRR—|

Register is Source

Tag 19 15 7 0

I-'|I"——
LGP XX X[TTTTTTT T

LIVS | IRV
Lx_nzqixhTTTTTTT|TTTTTTTﬂ

T = bitis transferred to destination operand
R = bitis replaced by source operand
S = bitis sign extension of high-order bit transferred

x
I

bitis ignored

—_
|

= bitis unconditionally set

Figure 3-35. Register Operands in MOV Instructions

MOVP destination, source

MOVP (move pointer) transfers a physical
address variable between a pointer register and
memory. If the source is a pointer register, its
content and tag bit are converted to a physical
address pointer (see figure 3-23). If the source is a
memory location, the three bytes are converted to
a 20-bit physical address and a tag value, and are
loaded into the pointer register and its tag bit.
MOVP is typically used to save and restore
pointer registers.

LPD destination, source

LPD (load pointer with doubleword) converts a
doubleword pointer (see figure 3-22) to a 20-bit
physical address and loads it into the destination,
which must be a pointer register. The pointer
register’s tag bit is unconditionally cleared to 0,
indicating a system address. Two instructions are
provided:

LPD Load Pointer With Doubleword
Variable

LPDI Load Pointer With Doubleword
Immediate

An 8086 or 8088 can pass any address in its
megabyte memory space to a channel program in
the form of a doubleword pointer. The channel
program can access the location by using LPD to
load the location address into a pointer register.

Arithmetic Instructions

The arithmetic instructions interpret all operands
as unsigned binary numbers of 8, 16 or 20 bits.
Signed values may be represented in standard
two’s complement notation with the high-order
bit representing the sign (O=positive, 1=negative).
The processor, however, has no way of detecting
an overflow into a sign bit so this possibility must
be provided for in the user’s software.

The 8089 performs arithmetic operations to 20
significant bits as follows. Byte and word
operands are sign-extended to 20 bits (e.g., bit 7
of a byte operand is propagated through bits 8-19
of an internal register). Sign extension does not
affect the magnitude of the operand. The opera-
tion is then performed, and the 20-bit result is

3-45

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

returned to the destination operand. High-order
bits are truncated as necessary to fit the result in
the available space. A carry out of, or borrow
into, the high-order bit of the result is not
detected. However, if the destination is a register
that is larger than the source operand, carries will
be reflected in the upper register bits, up to the
size of the register.

Figure 3-36 shows how the arithmetic instructions
treat registers when they are specified as source
and destination operands.

ADD destination, source

The sum of the two operands replaces the destina-
tion operand. Four addition instructions are
provided:

ADD Add Word Variable
ADDB Add Byte Variable
ADDI Add Word Immediate
ADDBI Add Byte Immediate

INC destination

The destination is incremented by 1. Two instruc-
tions are available:

INC Increment Word
INCB Increment Byte

DEC destination

The destination is decremented by 1. Word and
byte instructions are provided:

DEC Decrement Word
DECB Decrement Byte

Logical and Bit Manipulation
Instructions

The logical instructions include the boolean
operators AND, OR and NOT. Two bit manipu-
lation instructions are provided for setting or

Register is Destination

Register is Source

Tag 19 15 7 0

(X)X xxx[xxxxxxxx[pPPPPPPP]

Tag 19 15 7
Byte
Opel)'lation fx! RR RRRlRRRRRRRRlRRRRRRRRJ X
RpTIAL
Word

-
Operation | X] RRRR[RRRRRRRR[RRRRRRRR| |X]

l"||"

gxxﬂppppppppkppppppﬂ

v o X
o

bit is ignored in operation
bit is replaced by operation result
bit participates in operation

Figure 3-36. Register Operands in Arithmetic Instructions

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

clearing a single bit in memory or in an I/0 device
register. As shown in figure 3-37, the logical
operations always leave the upper four bits of
20-bit destination registers undefined. These bits
should not be assumed to contain reliable values
or the same values from one operation to the
next. Notice also that when a register is specified
as the destination of a byte operation, bits 8-15
are overwritten by bit 7 of the result. Bits 8-15 can
be preserved in AND and OR instructions by
using word operations in which the upper byte of
the source operand is FFH or 00H, respectively. -

AND destination, source

The two operands are logically ANDed and the
result replaces the destination operand. A bit in
the result is set if the bits in the corresponding
positions of the operands are both set, otherwise
the result bit is cleared. The following AND
instructions are available:

AND Logical AND Word Variable
ANDB Logical AND Byte Variable
ANDI Logical AND Word Immediate
ANDBI Logical AND Byte Immediate

AND is useful when more than one bit of a device
register must be cleared while leaving the remain-
ing bits intact. For example, ANDing an 8-bit
register with EEH only clears bits 0 and 4.

OR destination, source

The two operands are logically ORed, and the
result replaces the destination operand. A bit in
the result is set if either or both of the correspond-
ing bits of the operands are set; if both operand
bits are cleared, the result bit is cleared. Four
types of OR instructions are provided:

OR Logical OR Word Variable
ORB Logical OR Byte Variable
ORI Logical OR Word Immediate
ORBI Logical OR Byte Immediate

OR can be used to selectively set multiple bits in a
device register. For example, ORing an 8-bit
register with 30H sets bits 4 and 5, but does not
affect the other bits.

Register is Destination

Tag 19 15 7
Byte

Register is Source

Tag 19 15 7 0

Operat|onr-lrUUUU|SSSSSSSSIRRRRRRRR|

RalThs

My %

LX) 1% xxﬂxxxxxxxxhnpppppppl

Word

Operation)Z'

lUUUU[RRRRRRRA[RRRRRRRR]

v L VA
L XXXX|PPPPPPPPIPPPPPPPP|

c X

= bitis ignored in operation
bit is undefined following operation

R = bit participates in operation and is replaced by result
S = bitis sign-extension of high-order resuit bit
P = bit participates in operation, but is unchanged

Figure 3-37. Register Operands in Logical Instructions

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

NOT destination/destination, source

NOT inverts the bits of an operand. If a single
operand is coded, the inverted result replaces the
original value. If two operands are coded, the
inverted bits of the source replace the destination
value (which must be a register), but the source
retains its original value. In addition to these two
operand forms, separate mnemonics are provided
for word and byte values:

NOT
NOTB

Logical NOT Word
Logical NOT Byte

NOT followed by INC will negate (create the
two’s complement of) a positive number.

SETB destination, bit-select

The bit-select operand specifies one bit in the
destination, which must be a memory byte, that is
unconditionally set to 1. A bit-select value of 0
specifies the low-order bit of the destination while
the high-order bit is set if bit-select is 7. SETB is
handy for setting a single bit in an 8-bit device
register.

CLR destination, bit-select

CLR operates exactly like SETB except that the
selected bit is unconditionally cleared to 0.

Program Transfer Instructions

Register TP controls the sequence in which chan-
nel program instructions are executed. As each
instruction is executed, the length of the instruc-
tion is added to TP so that it points to the next
sequential instruction. The program transfer
instructions can alter this sequential execution by
adding a signed displacement value to TP. The
displacement is contained in the program transfer
instruction and may be either 8 or 16 bits long.
The displacement is encoded in two’s complement
notation, and the high-order bit indicates the sign
(O=positive displacement, 1=negative displace-
ment). An 8-bit displacement may cause a
transfer to a location in the range —128 through
+127 bytes from the end of the transfer instruc-
tion, while a 16-bit displacement can transfer to

any location within —32,768 through +32,767
bytes. An instruction containing an 8-bit displace-
ment is called a short transfer and an instruction
containing a 16-bit displacement is called a long
transfer.

The program transfer instructions have alternate
mnemonics. If the mnemonic begins with the let-
ter “‘L,” the transfer is long, and the distance to
the transfer target is expressed as a 16-bit
displacement regardless of how far away the
target is located. If the mnemonic does not begin
with “L,”” the ASM-89 assembler may build a
short or long displacement according to rules
discussed in section 3.9.

The “‘self-relative’’ addressing technique used by
program transfer instructions has two important
consequences. First, it promotes position-
independent code, i.e., code that can be moved in
memory and still execute correctly. The only
restriction here is that the entire program must be
moved as a unit so that the distance between the
transfer instruction and its target does not
change. Second, the limited addressing range of
these instructions must be kept in mind when
designing large (over 32k bytes of code) channel
programs.

CALL/LCALL TPsave, target

CALL invokes an out-of-line routine, saving the
value of TP so that the subroutine can transfer
back to the instruction following the CALL. The
instruction stores TP and its tag bit in the TPsave
operand, which must be a physical address
variable, and then transfers to the target address
formed by adding the target operand’s displace-
ment to TP. The subroutine can return to the
instruction following the CALL by using a
MOVP instruction to load TPsave back into TP.

Notice that the 8089’s facilities for implementing
subroutines, or procedures, is less sophisticated
than its counterparts in the 8086/8088. The prin-
cipal difference is that the 8089 does not have a
built in stack mechanism. 8089 programs can
implement a stack using a base register as a stack
pointer. On the other hand, since channel pro-
grams are not subject to interrupts, a stack will
not be required for most channel programs.

Mnemonics © Intel, 1979

3-48

8089 INPUT/OUTPUT PROCESSOR

JMP/LIMP target

JMP causes an unconditional transfer (jump) to
the target location. Since the task pointer is not
saved, no return to the instruction following the
JMP is implied.

JZ/LIZ source, target

JZ (jump if zero) effects a transfer to the target
location if the source operand is zero; otherwise
the instruction following JZ is executed. Word
and byte values may be tested by alternate
instructions:

JZ/1)Z Jump/Long Jump if Word Zero
JZB/LJZB Jump/Long Jump if Byte Zero

If the source operand is a register, only the low-
order 16 bits are tested; any additional high-order
bits in the register are ignored. To test the low-
order byte of a register, clear bits 8-15 and then
use the word form of the instruction.

JNZ/LINZ source, target

JNZ operates exactly like JZ except that control is
transferred to the target if the source operand
does not contain all 0-bits. Word and byte sources
may be tested using these mnemonics:

JNZ/LINZ Jump/Long Jump if Word Not
Zero

JNZB/LINZB Jump/Long Jump if Byte Not
Zero.

JMCE/LIMCE source, target

This instruction (jump if masked compare equal)
effects a transfer to the target location if the
source (a memory byte) is equal to the lower byte
in register MC as masked by the upper byte in
MC. Figure 3-15 illustrates how O0-bits in the
upper half of MC cause the corresponding bits in
the lower half of MC and the source operand to
compare equal, regardless of their actual values.
For example, if bits 8-15 of MC contain the value
01H, then the transfer will occur if bit 0 of the
source and register MC are equal. This instruction
is useful for testing multiple bits in 8-bit device
registers.

JMCNE/LIJMCNE source, target

This instruction causes a jump to the target loca-
tion if the source is not equal to the mask/
compare value in MC. It otherwise operates iden-
ticaily to JMCE.

JBT/LJBT source, bit-select, target

JBT (jump if bit true) tests a single bit in the
source operand and jumps to the target if the bit
is a 1. The source must be a byte in memory or in
an I/0 device register. The bit-select value may
range from 0 through 7, with 0 specifying the low-
order bit. This instruction may be used to test a
bit in an 8-bit device register. If the target is the
JBT instruction itself, the operation effectively
becomes ‘‘wait until bit is 0.”’

JNBT/LINBT source, bit-select, target

This instruction operates exactly like JBT, except
that the transfer is made if the bit is not true, i.e.,
if the bit is 0.

Processor Control Instructions

These instructions enable channel programs to
control IOP hardware facilities such as the LOCK
and SINTR1-2 pins, logical bus width selection,
and the initiation of a DMA transfer.

TSL destination, set-value, target

Figure 3-38 illustrates the operation of the TSL
(test and set while locked) instruction. TSL can be
used to implement a semaphore variable that
controls access to a shared resource in a
multiprocessor system (see section 2.5). If the
target operand specifies the address of the TSL
instruction, the instruction is repetively executed
until the semaphore (destination) is found to con-
tain zero. Thus the channel program does not
proceed until the resource is free.

WID source-width, dest-width

WID (set logical bus widths) alters bits 0 and 1 of
the PSW, thus specifying logical bus widths for a
DMA transfer. The operands may be specified as

3-49

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

l

ACTIVATE
LOCK

FETCH
DESTINATION

ASSIGN
SET-VALUETO
DESTINATION

STORE
DESTINATION

DE-ACTIVATE
LOCK

NEXT SEQUENTIAL INSTRUCTION

DE-ACTIVATE
LOCK

JUMPTO
TARGET

Figure 3-38. Operation of TSL Instruction

8 or 16 (bits), with the restriction that the logical
width of a bus cannot exceed its physical width.
The logical bus widths are undefined following a
processor RESET; therefore the WID instruction
must be executed before the first transfer.
Thereafter the logical widths retain their values
until the next WID instruction or processor
RESET.

XFER (nooperands)

XFER (enter DMA transfer mode after following
instruction) prepares the channel for a DMA
transfer operation. In a synchronized transfer,

the instruction following XFER may ready the
synchronizing device (e.g., send a ‘‘start’> com-
mand or the last of a series of parameters). Any
instruction, including NOP and WID, may follow
XFER, except an instruction that alters GA, GB
or GC.

SINTR (no operands)

This instruction sets the interrupt service bit in the
PSW and activates the channel’s SINTR line if
the interrupt control bit in the PSW is set. If the

Mnemonics © Intel, 1979

3-50

8089 INPUT/OUTPUT PROCESSOR

interrupt control bit is cleared (interrupts from
this channel are disabled), the interrupt service bit
is set, but SINTR1-2 is not activated. A channel
program may use this instruction to interrupt a
CPU.

NOP (no operands)

This instruction consumes clock cycles but per-
forms no operation. As such, it is useful in timing
loops.

HLT (nooperands)
This instruction concludes a channel program.
The channel clears its BUSY flag and then idles.

Instruction Set Reference Information

Table 3-16 lists every 8089 instruction
alphabetically by its ASM-89 mnemonic. The
ASM-89 coding format is shown (see table 3-14
for an explanation of operand identifiers) along

with the instruction name. For every combination
of operand types (see table 3-15 for key), the
instruction’s execution time and its length in
bytes, and a coding example are provided.

The instruction timing figures are the number of
clock periods required to execute the instruction
with the given combination of operands. At
5 MHz, one clock period is 200 ns; at 8 MHz a
clock period is 125 ns. Two timings are provided
when an instruction operates on a memory word.
The first (lower) figure indicates execution time
when the word is aligned on an even address and
is accessed over a 16-bit bus. The second figure is
for odd-addressed words on 16-bit buses and any
word accessed via an 8-bit bus.

Instruction fetch time is shown in table 3-17 and
should be added to the execution times shown in
table 3-16 to determine how long a sequence of
instructions will take to run. (Section 3.2 explains
the effect of the instruction queue on 16-bit
instruction fetches.) External delays such as bus
arbitration, wait states and activity on the other
channel will increase the elapsed time over the
figures shown in tables 3-16 and 3-17. These
delays are application dependent.

Table 3-14. Key to ASM-89 Operand Identifiers

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data operated on
arithmetic, by the instruction, and which receives (is replaced by) the result
bit manipulation of the operation.
source data transfer, A register, memory location, or immediate value that is used in
arithmetic, the operation, but is not altered by the instruction.
bit manipulation
target program transfer | Location to which control is to be transferred.
TPsave program transfer | A 24-bit memory location where the address of the next sequen-
tial instruction is to be saved.
bit-select bit manipulation Specification of a bit location within a byte; 0=least-significant
(rightmost) bit, 7=most-significant (leftmost) bit.
set-value TSL Value to which destination is set if it is found 0.
source-width WID Logical width of source bus.
dest-width WID Logical width of destination bus.

Mnemonics © Intel, 1979

3-51

8089 INPUT/OUTPUT PROCESSOR

Table 3-15. Key to Operand Types

IDENTIFIER EXPLANATION
(nooperands) | No operands are written
register Any general register
ptr-reg A pointer register
immed8 A constant in the range 0-FFH
immedi16 A constant in the range 0-FFFFH
| mem8 An 8-bit memory location (byte)
mem16 A 16-bit memory location (word)
mem24 A 24-bit memory location (physical address pointer)
mem32 A 32-bit memory location (doubleword pointer)
label A label within —32,768 to +32,767 bytes of the end of the instruction
short-label A label within —128 to +127 bytes of the end of the instruction
0-7 A constant in the range: 0-7
8/16 The constant 8 or the constant 16

Table 3-16. Instruction Set Reference Data

ADD destination, source Add Word Variable

Operands Clocks Bytes Coding Example
register, mem16 11/15 23 ADD BC, [GA].LENGTH
mem16, register 16/26 2-3 ADD [GB], GC
ADDB destination, source Add Byte Variable

Operands Clocks Bytes Coding Example
register, mem8 1 2-3 ADDB GC, [GA].N_CHARS
mem8, register 16 2-3 ADDB [PP].ERRORS, MC
ADDBl destination, source Add Byte Immediate

Operands Clocks Bytes Coding Example
register, immeds8 3 3 ADDBI MC,10
mem8, immed8 16 3-4 ADDBI [PP+IX+].RECORDS, 2CH
ADDI destination, source Add Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 ADDI GB, 0C25BH
mem16, immed16 16/26 4-5 ADDI [GB].POINTER, 5899

Mnemonics © Intel, 1979

3-52

8089 INPUT/OUTPUT PROCESSOR

Table 3-16. Instruction Set Reference Data (Cont’d.)

AN D destination, source Logical AND Word Variable

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 AND MC, [GA].FLAG_WORD
mem16, register 16/26 2-3 AND [GC].STATUS, BC
ANDB destination, source Logical AND Byte Variable

Operands Clocks Bytes Coding Example
register, mem8 11 2-3 AND BC, [GC]
mem8, register 16 2-3 AND [GA+IX].RESULT, GA
ANDBI destination, source Logical AND Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 GA, 011000008
mem8, immed8 16 3-4 [GC+IX], 2CH
ANDI destination, source Logical AND Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 IX, OH
mem16, immed16 16/26 4-5 [GB+IX].TAB, 40H
CALL TPsave, target Call

Operands Clocks Bytes Coding Example
mem24, label 17/23 3-5 CALL [GC+IX].SAVE, GET__NEXT
CLR destination, bit select Clear Bit To Zero

Operands Clocks Bytes Coding Example
mems8, 0-7 16 2-3 CLR [GA], 3
DEC destination Decrement Word By 1

Operands Clocks Bytes Coding Example
register 3 2
mem16 16/26 2-3 DEC [PP].RETRY

3-53 Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

Table 3-16. Instruction Set Reference Data (Cont’d.)

DECB destination Decrement Byte By 1

Operands Clocks Bytes Coding Example
mem8 16 2-3 DECB [GA+IX+].TAB
HLT (no operands) Halt Channel Program

Operands Clocks Bytes Coding Example
(no operands) 1 2 HLT
INC destination Increment Word by 1

Operands Clocks Bytes Coding Example
register 3 2 INC GA
mem16 16/26 2-3 INC [GA].COUNT
INCB destination Increment Byte by 1

Operands Clocks Bytes Coding Example
mem8 16 2-3 INCB [GB].POINTER
J BT source, bit-select, target Jump if Bit True (1)

Operands Clocks Bytes Coding Example
mem8, 0-7, label 14 3-5 JBT [GA].RESULT_REG, 3, DATA_VALID
JMCE source, target Jump if Masked Compare Equal

Operands Clocks Bytes Coding Example
mema3, label 14 3-5 JMCE [GB].FLAG, STOP_SEARCH
JMCNE source, target Jump if Masked Compare Not Equal

Operands Clocks Bytes Coding Example
mem8, label 14 3-5 JMCNE [GB+IX], NEXT__ITEM
JMP target Jump Unconditionally

Operands Clocks Bytes Coding Example
label 3 3-4 JMP READ__SECTOR

Mnemonics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

Table 3-16. Instruction Set Reference Data (Cont’d.)

JNBT source, bit-select, target Jump if Bit Not True (0)

Operands Clocks Bytes Coding Example
mem3, 0-7, label 14 3-5 JNBT [GC], 3, RE_READ
JNZ source, target Jump if Word Not Zero

Operands Clocks Bytes Coding Example
register, label 5 34 JNZ BC, WRITE__LINE
mem16, label 12/16 3-5 JNZ [PP].NUM__CHARS, PUT_BYTE
JNZB source, target Jump if Byte Not Zero

Operands Clocks Bytes Coding Example
mem3, label 12 3-5 JNZB [GA], MORE_DATA
JZ source, target Jump if Word is Zero

Operands Clocks Bytes Coding Example
register, label 5 3-4 JZ BC, NEXT__LINE
mem16, label 12/16 3-5 JZ [GC+IX].INDEX, BUF_EMPTY
JZB source, target Jump if Byte Zero

Operands Clocks Bytes Coding Example
mem8, label 12 3-5 JZB [PP].LINES__LEFT, RETURN
LCALL TPsave, target Long Call

Operands Clocks Bytes Coding Example
mem24, label 17/23 4-5 LCALL [GC].RETURN__SAVE, INIT__8279
LJBT source, bit-select, target Long Jump if Bit True (1)

Operands Clocks Bytes Coding Example
mem§, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA_OK
LIMCE source, target Long jump if Masked Compare Equal

Operands Clocks Bytes Coding Example
mem8, label 14 4-5 LJMCE [GB], BYTE_FOUND

Mnemonics © Intel, 1979

3-55

8089 INPUT/OUTPUT PROCESSOR

Table 3-16. Instruction Set Reference Data (Cont’d.)

LJMCNE source, target Long jump if Masked Compare Not Equal
Operands Clocks Bytes Coding Example
mem§, label 14 4-5 LJMCNE [GC+IX+], SCAN_NEXT
LJMP target Long Jump Unconditional
Operands Clocks Bytes Coding Example
label 3 4 LJMP GET_CURSOR
LJNBT source, bit-select, target Long Jump if Bit Not True (0)
Operands Clocks Bytes Coding Example
mem8, 0-7, label 14 4-5 LJIJNBT [GC], 6, CRCC_ERROR
LIJNZ source, target Long Jump if Word Not Zero
Operands Clocks Bytes Coding Example
register, label 5 4 LJNZ BC, PARTIAL_XMIT
mem16, label 12/16 4-5 LIJNZ [GA+IX].N_LEFT, PUT_DATA
LJNZB source, target Long Jump if Byte Not Zero
Operands Clocks Bytes Coding Example
mem§, label 12 4-5 LINZB [GB+IX+].ITEM, BUMP_COUNT
LJZ source, target Long Jump if Word Zero
Operands Clocks Bytes Coding Example
register, label 5 4 LJZ IX, FIRST_ELEMENT
mem16, label 12/16 4-5 LJZ [GB].XMIT_COUNT, NO_DATA
LJZB source, target Long Jump if Byte Zero
Operands Clocks Bytes Coding Example
mem8, label 12 4-5 LJZB [GA], RETURN__LINE
LPD destination, source Load Pointer With Doubleword Variable
Operands Clocks Bytes Coding Example
ptr-reg, mem32 20/28* 2-3 LPD GA, [PP].BUF_START

*20 clocks if operand is on even address; 28 if on odd address

Mnemonics © Intel, 1979

3-56

8089 INPUT/OUTPUT PROCESSOR

Table 3-16. Instruction Set Reference Data (Cont’d.)

LPDI destination, source Load Pointer With Doubleword Immediate
Operands Clocks Bytes Coding Example
ptr-reg, immed32 12/16* 6 LPDI GB, DISK_ADDRESS

*12 clocks if instruction is on even address; 16 if on odd address

MOV destinaticn, source Move Word

Operands Clocks Bytes Coding Example
register, mem16 8/12 2-3 MOV X, [GC]
mem16, register 10/16 2-3 MOV [GA].COUNT, BC
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB]
MOVB destination, source Move Byte

Operands Clocks Bytes Coding Example
register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT
mema, register 10 2-3 MOVB [PP].RETURN__CODE, GC
mem8, mem8 18 4-6 MOVB [GB+IX+], [GA+IX+]
MOVB' destination, source Move Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 MOVBI MC, ‘A’
mem8, immed8 12 34 MOVBI [PP].RESULT, 0
MOV' destination, source Move Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 MOVI BC, 0
mem16, immed16 12/18 4-5 MOVI [GB], OFFFFH
MOVP destination, source Move Pointer

Operands Clocks Bytes Coding Example
ptr-reg, mem24 19/27* 2-3 MOVP TP, [GC+IX]
mem24, ptr-reg 16/22* 2-3 MOVP [GB].SAVE__ADDR, GC

*First figure is for operand on even address; second

is for odd-addressed operand.

N OP (no operands) No Operation
Opérands Clocks Bytes Coding Example
(no operands) 4 2 NOP

3-57

Mneﬁ\onics © Intel, 1979

8089 INPUT/OUTPUT PROCESSOR

Table 3-16. Instruction Set Reference Data (Cont’d.)

NOT destination/destination, source Logical NOT Word

Operands Clocks Bytes Coding Example
register 3 2 NOT MC
mem16 16/26 2-3 NOT [GA].PARM
register, mem16 11/15 2-3 NOT BC, [GA+IX].LINES__LEFT
NOTB destination/destination, source Logical NOT Byte

Operands Clocks Bytes Coding Example
mems8 16 2-3 NOTB [GA].PARM__REG
register, mem8 11 2-3 NOTB IX, [GB].STATUS
OR destination, source Logical OR Word

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 OR MC, [GC].MASK
mem?16, register 16/26 2-3 OR [GC],BC
ORB destination, source Logical OR Byte

Operands Clocks Bytes Coding Example
register, mem8 1 2-3 ORB IX, [PP].POINTER
mem§, register 16 2-3 ORB [GA+IX+],GB
ORBI destination, source Logical OR Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 ORBI 1X, 00010001B
mema8, immed8 16 3-4 ORBI [GB].COMMAND, 0CH
ORI destination, source Logical OR Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 ORI MC, 0FFODH
mem16,immed16 16/26 4-5