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CHAPTER 1 
INTRODUCTION 

This publication describes the Intel® 8086 family 
of microcomputing components, concentrating 
on the 8086, 8088 and 8089 microprocessors. It is 
written for hardware and software engineers and 
technicians who understand microcomputer 
operating principles. The manual is intended to 
introduce the product line and to serve as a refer­
ence during system design and implementation. 

Recognizing that successful microcomputer-based 
. products are judicious blends of hardware and 
software, the User's Manual addresses both sub­
jects, although at different levels of detail. This 
publication is the definitive source for informa­
tion describing the 8086 family components. Soft­
ware topics, such as programming languages, 
utilities and examples, are given moderately 
detailed, but by no means complete, coverage. 
Additional references, available from Intel's 
Literature Department, are cited in the program­
ming sections. 

1.1 Manual Organization 

The manual contains four chapters and three 
appendices. The remainder of this chapter 
describes the architecture of the 8086 family, and 
subsequent chapters cover the individual com­
ponents in detail. 

Chapter 2, describes the 8086 and 8088 Central 
Processing Units, and Chapter 3 covers the 8089 
Input/Output Processor. These two chapters are 
identically organized and focus on providing a 
functional description of the 8086, 8088 and 
8089, plus related Intel hardware and software 
products. Hardware reference information­
electrical characteristics, timing .. and physical 
interfacing considerations-for ail three pro­
cessors is concentrated in Chapter 4. 

Appendix A is a collection of 8086 family applica­
tion notes; these provide design and debugging 
examples. Appendix B contains complete data 
sheets for all the 8086 family components and 
system development aids; summary data sheets 
covering compatible components from other Intel 
product lines are also reproduced in Appendix B. 

1-1 

1.2 8086 Family Architecture 

Considered individually, the 8086, 8088 and 8089 
are advanced third-generation microprocessors. 
Moreover, these processors are elements of a 
larger design, that of the 8086 family. This 
systems architecture specifies how the processors 
and other components relate to each other, and is 
the key to the exceptional versatility of these 
products. 

The components in the 8086 family have been 
designed to operate together in diverse combina­
tions within the systematic framework of the 
overall family architecture. In this way a single 
family of components can be used to solve a wide 
array of microcomputing problems. A compo­
nent mix can be tailored to fit the performance 
needs of an application precisely, without having 
to pay for unneeded capabilities that may be 
bundled into more monolithic, CPU-centered 
architectures. Using the same family of com­
ponents across multiple systems limits the learn­
ing curve problem and builds on past experience. 
Finally, the modular structure of the family 
architecture provides an orderly way for systems 
to grow and change. 

The 8086 family architecture is characterized by 
three major principles: 

1. System functions are distributed among 
specialized components. 

2. Multiprocessing capabilities are inherent in 
the hardware. 

3. A hierarchical bus organization provides for 
the complex data flows required by high­
performance systems without burdening 
simpler systems with unneeded capabilities. 

Functional Distribution 

Table 1-1 lists the components that constitute the 
8086 microprocessor family. All components are 
contained in standard dual in-line packages and 
require single +5V power sources. 
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Table 1-1. 8086 Component Family 

Microprocessor Technology Pins Description 

8086 Central Processing Unit (CPU) HMOS 40 8/16 bit general-purpose micro-
processor; 16-bitexternal data path. 

8088 Central Processing Unit (CPU) HMOS 40 8/16 bit general-purpose micro-
processor; 8-bit external data path. 

8089 Input/Output Processor (lOP) HMOS 40 8/16 bit microprocessor optimized for 
high-speed I/O operations; 8-bit and 
16-bit external data paths. 

Support Component Technology Pins Function 

8259A Programmable Interrupt Controller (PIC) NMOS 28 Identifies h ig hest-priority interrupt 
request. 

8282 Octal Latch Bipolar 20 Demultiplexes and increases drive of 
8283 Octal Latch (Inverting) address bus. 

8284 Clock Generator and Driver Bipolar 18 Provides time base. 

8286 Octal Bus Transceiver Bipolar 20 Increases drive on data bus. 
8287 Octal Bus Transceiver (Inverting) 

8288 Bus Controller 

8289 Bus Arbiter 

Microprocessors 
At the core of the product line are three 
microprocessors that share these characteristics: 

• Standard operating speed is 5 MHz (200 ns 
cycle time); a selected 8 MHz version of the 
8086 CPU is also available. 

• Chips are housed in reliable 40-pin packages. 
• Processors operate on both 8- and 16-bit data 

types; internal data paths are at least 16 bits 
wide. 

• Up to 1 megabyte of memory can be 
addressed, along with a separate 64k byte 
110 space. 

• The address/data and status interfaces of the 
processors are compatible (the address and 
data buses are time-multiplexed at the pro­
cessor, i.e., an address transmission is 
followed by a data transmission over a subset 
of the same physical lines). 

Bipolar 20 Generates bus command signals. 

Bipolar 20 Controls access of microprocessors 
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to multimaster system bus. 

The 8086 and 8088 are third-generation central 
processing units (CPUs) that differ primarily in 
their external data paths. The 8088 transfers data 
between itself and other system components 8 bits 
at a time. The 8086 can transfer either 8 or 16 bits 
in one bus cycle and is therefore capable of 
greater throughput. Both processors have two 
operating modes, selectable by a strapping pin. In 
minimum mode, the CPUsemit the bus control 
signals needed by memory and 110 peripheral 
components. In maximum mode, an 8288' Bus 
Controller assumes responsibility for controlling 
devices attached to the system bus. CPU pins no 
longer needed for bus control are then redefined 
to provide signals that support multiprocessing 
systems. 

The 8089 Input/Output Processor (lOP) is an 
independent microprocessor whose design has 
been optimized for transferring data. The 8089 
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typically runs under the direction of a CPU, but it 
executes a separate instruction stream and can 
operate in parallel with other system processors. 
The lOP contains two independent I/O channels 
that combine attributes of both CPUs and 
advanced DMA (direct memory access) con­
trollers. The channels can execute programs and 
perform programmed I/O operations similar to 
CPUs. They may also transfer data by DMA, at 
rates up to 1.25 megabytes per second (5 MHz 
version). The channels can support mixes of 8-
and 16-bit I/O devices and memory. Combining 
speed with programmable intelligence, the 8089 
can assume the bulk of I/O processing overhead 
and thereby free a CPU to perform other tasks. 

Interrupt Controller 

The 8259A Programmable Interrupt Controller 
(PIC) is a new, 8086 family-compatible version 
of the familiar 8259 that has been enhanced to 
operate with the advanced interrupt facilities of 
the 8086 and 8088 CPUs. The 8259A accepts 
interrupt requests from up to eight sources; up 
to 64 sources may be accommodated by 
"cascading" additional 8259As. Each interrupt 
sOlirce is assigned a priority number that typi­
cally reflects its "criticality" in the system. The 
8259A has several built-in, priority-resolving 
mechanisms that are selectable by software com­
mands from the CPU. These modes operate 
somewhat differently, but in general the 8259A 
continuously identifies the highest-priority active 
interrupt request and generates an interrupt 
request to the CPU if this request has higher 
priority than the request currently being pro­
cessed. When the CPU recognizes the interrupt 
request, the 8259A transfers a code to the CPU 
that identifies the interrupt source. 

Bus Interface Components 

Components may be selected from this modular 
group to implement different system bus con­
figurations. Except for the 8284, all components 
are optional; their inclusion in a system is based 
on the needs of the application. All of the bus 
interface components are implemented using 
bipolar technology to provide high-quality, high­
drive signals and very fast inttrnal switching. 

The 8284 Clock Generator and Driver provides 
the time base for the 8086 family micro­
processors. It divides the frequency signal from 
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an external crystal or TTL signal by three and 
outputs the 5 MHz or 8 MHz processor clock 
signal. It also provides the microprocessors with 
reset and ready signals. 

8282 or 8283 Octal Latches may be added to a 
system to demultiplex the combined address/data 
bus generated by the 8086 family micro­
processors. A demultiplexed bus provides 
separate stable address and data lines required by 
many peripheral components. Two latches 
demultiplex 16 bits of the bus to provide an 
address space of up to 64k bytes, while three 
latches generate the fu1l20-bit (megabyte) address 
space. The latches also provide the high drive on 
the address lines needed in larger systems. 

8286 and 8287 Octal Bus Transceivers are used to 
provide more drive on data lines than the pro­
cessors themselves are capable of providing. One 
or two transceivers may be used depending on the 
width of the data bus (8 or 16 bits). 

The 8288 Bus Controller decodes status signals 
output by an 8089, or a maximum mode 8086 or 
8088. When these signals indicate that the pro­
cessor is to run a bus cycle, the 8288 issues a bus 
command that identifies the bus cycle as memory 
read, memory write, I/O read, I/O write, etc. It 
also provides a signal that strobes the address into 
8282183 latches. The 8288 provides the drive 
levels needed for the bus control lines in medium 
to large systems. 

The 8289 Bus Arbiter controls the access of a pro­
cessor to a multimaster system bus. A multi­
master bus is a path to system resources (typically 
memory) that is shared by two or more 
microprocessors (masters). Arbiters for each 
master may use one of several priority-resolving 
techniques to ensure that only one master drives 
the shared bus. 

Multiprocessing 

Employing mUltiple processors in medium to 
large systems offers several significant advantages 
over the centralized approach that relies on a 
single CPU and extremely fast memory: 

• system tasks may be allocated to 
special-purpose processors whose designs are 
optimized to perform certain types of tasks 
simply and efficiently; 
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• very high levels of performance can be 
attained when multiple processors can 
execute simultaneously (parallel processing); 

• robustness can be improved by isolating 
system functions so that a failure or error in 
one part of the system has a limited effect on 
the rest of the system; 

• the natural partitioning of the system 
promotes parallel development of sub­
systems, breaks the application into smaller, 
more manageable tasks, and helps isolate the 
effects of system modifications. 

The 8086 family architecture is explicitly designed 
to simplify the development of multiple processor 
systems by providing facilities for coordinating 
the interaction of the processors. 

The architecture supports two types of pro­
cessors: independent processors and 
coprocessors. An independent processor is one 
that executes its own instruction stream. The 
8086, 8088 and 8089 are examples of independent 
processors. An 8086 or 8088 typically executes a 
program in response to an interrupt. The 8089 
starts its channels in response to an interrupt-like 
signal called a channel attention; this signal is 
typically issued by a CPU. 

The 8086 architecture also supports a second type 
of processor, called a coprocessor. Coprocessor 
"hooks" have been designed into the 8086 and 
8088 so that this type of processor can be 
accommodated in the future. A coprocessor dif­
fers from an independent processor in that it 
obtains its instructions from another processor, 
called a host. The coprocessor monitors instruc­
tions fetched by the host and recognizes certain of 
these as its own and executes them. A 
coprocessor, in effect, extends the instruction set 
of its host processor. 

The 8086 family architecture provides built-in 
solutions to two classic mUltiprocessing coordina­
tion problems: bus arbitration and mutual exclu­
sion. Bus arbitration may be performed by the 
bus request/grant logic contained in each of the 
processors, by 8289 Bus Arbiters, or by a com­
bination of the two when processors have access 
to multiple shared buses. In all cases, the arbitra­
tion mechanism operates invisibly to software. 
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For mutual exclusion,. each processor has a 
LOCK (bus lock) signal which a program may 
activate to prevent other processors from obtain­
ing a shared system bus. The 8089 may lock the 
bus during a DMA transfer to ensure that both 
the transfer completes in the shortest possible 
time and that another processor does not access 
the target of the transfer (e.g., a buffer) while it is 
being updated. Each of the processors has an 
instruction that examines and updates a memory 
byte with the bus locked. This instruction can be 
used to implement a semaphore mechanism for 
controlling the access of multiple processors to 
sha:red resources. (A semaphore is a variable that 
indicates whether a resource, such as a buffer or a 
pointer, is "available" or "in use"; section 2.5 
discusses semaphores in more detail). 

Bus Organization 

Figure 1-1 summarizes the 8086 family bus struc­
ture. There are two different types of buses: 
system and local. Both buses may be shared by 
multiple processors,. i.e., both are multimaster 
buses. Microprocessors are always connected to a 
local bus, and memory and 110 components 
usually reside on a system bus. The 8086 family 
bus interface components link a local bus to a 
system bus. 

Local Bus 

The local bus is optimized for use by the 8086 
family microprocessors. Since standard memory 
and 110 components are not attached to the local 
bus, information can be multiplexed and encoded 
to make very efficient use of processor pins (cer­
tain MCS-85™ peripheral components can be 
directly connected to the local bus). This allows 
several pins to be dedicated to coordinating the 
activity of multiple processors sharing the local 
bus. Multiple processors connected to the same 
local bus are said to be local to each other; pro­
cessors on different local buses are said to be 
remote to each other, or configured remotely. 
Both independent processors and coprocessors 
may share a local bus; on-chip arbitration logic 
determines which processor drives the bus. 
Because the processors on the local bus share the 
same bus interface components, the local con­
figuration of multiple processors provides a com­
pact and inexpensive multiprocessing system. 
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Figure 1-1. Generalized 8086 Family Bus Structure 

System Bus The system bus design is modular and subsets 
may be implemented according to the needs of the 
application. For example, the arbitration lines are 
not needed in single-processor systems or in 
multiple-processor systems that perform arbitra­
tion at the local-bus level. 

A full implementation of an 8086 system bus con­
sists of the following five sets of signals: 

1. address bus, 

2. data bus, 

3. control lines, 

4. interrupt lines, and 

5. arbitration lines. 

These signals are designed to meet the needs of 
standard memory and I/O devices; the address 
and data buses are demultiplexed and traditional 
control signals (memory read/write, I/O 
read/write, etc.) are provided on the system bus. 
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A group of bus interface components transforms 
the signals of a local bus into a system bus. The 
number of bus interface components required to 
generate a system bus depends on the size and 
complexity of the system; reduced application 
needs translate directly into reduced component 
counts. These main variables determine the con­
figuration of a bus interface group: address space 
size (number of latches), data bus Width (number 
of transceivers), and arbitration needs (presence 
of a bus arbiter). 
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The 8086 family system bus is functionally and 
electrically compatible with the Multibus ™ 
multimaster system bus used in Intel's iSBC™ 
line of single board computing products. This 
compatability gives system designers access to a 
wide variety of computer, memory, communica­
tions and other modules that may be incorporated 
into products, used for evaluation or for test 
vehicles. 

Processing Modules 

The processor(s) and bus interface group(s) that 
are connected by a local bus constitute a process­
ing module. A simple processing module could 
consist of a single CPU and one bus interface 
group. A more complex module would contain 
multiple processors, such as two lOPs, or a CPU 
and one or two lOPs. One bus interface group 
typically links the processors in the module to a 
public system bus. If there are multiple processing 
modules in the system, all memory or 110 con­
nected to the public bus is accessible to all pro­
cessing modules on the public bus. 8289 Bus 
Arbiters in each processing module control the 
access of the modules to the public bus and hence 
to the public memory and 110. 

A second bus interface group may be connected 
to a processing module's local bus, generating a 
second bus. This bus can provide the processing 
module with a private address space that is not 
accessible to other processing modules. Distri­
buting memory and 110 resources in this manner 
can improve system robustness by isolating the 
effects of failures. It can also increase system 
throughput dramatically. If processor programs 
and local data are placed in private memory, con-

8284 8088 CLOCK CPU GENERATOR 

tention for use of the public system bus can be 
held to a minimum to ensure that shared 
resources are quickly available when they are 
needed. In addition, processors in separate 
modules can simultaneously fetch instructions 
from private memory spaces to allow multiple 
system tasks to proceed in parallel. 

Bus Implementation Examples 

This section summarizes the 8086 family bus 
organization by showing how components from 
the family can be combined to implement diverse 
bus configurations. The first two examples 
illustrate special cases that extend the applicabil­
ity of the 8086 family to smaller systems. The 
remaining examples add and recombine the same 
basic components to form progressively more 
complex bus configurations. Note that these 
examples are intended to be illustrative rather 
than exhaustive; many different combinations of 
components can be tailored to fit the needs of 
individual applications. 

In its minimum mode configuration, the 8088 
time-multiplexes its 8-bit data bus with the lower 
eight bits of its 20-bit address bus (figure 1-2). 
This multiplexed address/data bus, and the bus 
control signals emitted by the 8088, are directly 
compatible with the multiplexed bus components 
of Intel's 8085 family. These peripherals contain 
on-chip logic that demultiplexes a combined 
address/data bus. In addition, many of these 
devices are multifunctional,combining, for 
example, RAM, 110 ports and a timer on a single 
chip. By using these components, it is possible to 
build small (as few as four chips) economical 
systems that are nonetheless capable of perform­
ing significant computing tasks. 

CONTROL LINES Ji. , 
ADDRESSI 
DATA LINES II.. , 

} 
8088 MULTIPLEXED 

BUS 

Figure 1-2. 8088 Multiplexed Bus 
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Combining 8282/83 latches with a minimum 
mode 8086 or 8088 produces a minimum mode 
system bus (figure 1-3). Two latches provide an 
address space of up to 64k bytes; adding a third 
latch provides access to the full megabyte of 
memory. An 8288 Bus Controller is not required 
for this implementation as the CPUs themselves 
emit the bus control signals when they are con­
figured in the minimum mode. This demulti­
plexed bus structure is compatible with the wide 
array of memory and 110 components that have 

8284 8086/ 
CLOCK 8088 

GENERATOR CPU 
"" LOCAL BUS 110. 

"II ,. 
8282/83 

been developed for the industry-standard 8080A 
CPU. Eight-bit peripherals may be connected to 
both the upper and lower halves of the 8086's 
16-bit data bus. 8286/87 transceivers may be 
added to provide additional drive on the data 
lines, where required. Including an 8259A gives 
the CPU the ability to respond to multiple inter­
rupt sources without polling. The minimum mode 
system bus configuration is well-suited to a 
variety of systems whose computational require­
ments can be met by a single 8086 or 8088 CPU. 
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Figure 1-3. Minimum Mode System Bus 
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When an 8086 or 8088 is configured in maximum 
mode and an 8288 is added to control the system 
bus, one or two 8089s may be directly connected 
to the CPU (figure 1-4). The processors all share 
the same latches, transceivers, clock and bus con­
troller, via the local bus. Arbitration logic built 
into the 8086, 8088 and 8089 coordinates use of 
the local bus, and thus of the system bus. This bus 
configuration enables the powerful 1/0 handling 
capabilities of the 8089 to be incorporated into 
systems of moderate size and cost. 

The 8289 enables high-performance systems to be 
designed as a series of independent processing 
modules whose activities are coordinated via a 
shared system bus. Figure 1-5 shows the multi-

master system bus interface; this bus structure is 
electrically compatible with the Multibus™ 
architecture used in Intel iSBCTM single-board 
computing systems. 

Several different combinations of processors may 
be attached to the local bus of a multimaster com­
puting module: 

• a single 8086 or 8088 

• a single 8089 

• two 8089s 

• an 8086 or 8088 and one 8089 

• an 8086 or 8088 and two 8089s 
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MULTIMASTER 
SYSTEM BUS 

All of the processors on the local bus obtain 
access to the system bus through a single set of 
interface components. 

may be connected to the private I/O bus. Taking 
this approach can greatly reduce the 8089's use of 
the system bus as most memory and I/O accesses 
can be made to the private address space. The 
system bus is thus made available for use by other 
processors, and the 8089 can execute in parallel 
with other processors for extended periods. A 
limited private I/O bus may be implemented 
using the 8-bit multiplexed peripherals of the 8085 
family, eliminating the latches and transceivers 
shown in figure 1-6. 

One or two 8089s in a multimaster processing 
module may be configured with a private I/O bus 
as shown in figure 1-6. In this configuration, 
memory access commands are directed to the 
public multimaster system bus, while I/O com­
mands use the private I/O.bus. Memory, contain­
ing the 8089's programs, as well as I/O devices, 
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Adding a second 8288 to the local bus allows an 
8086 or 8088 in a processing module to divide its 
address space into system and resident sections 
(figure 1-7). A PROM or decoder is used to direct 
an address reference to the system bus or to the 
resident bus. The resident bus allows the CPU to 
run out of its own address space to minimize its 
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use of the system bus. Since no other processors 
can access the private memory on the CPU's resi­
dent bus, operating system code and data in this 
space is protected from errors in other processor 
programs. If a second 8289 is added to a resident 
bus module, the resident bus becomes a second 
multimaster system bus. 
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Figure 1-7. Resident Bus 

As an alternative to the resident bus, a private 
read-only memory space can be implemented 
using the RD (read) signal provided by the CPUs 
in lieu of an 8288 Bus Controller. 

Multiprocessing systems of widely varying com­
plexity can be constructed from multimaster pro­
cessing modules. Each module can be designed 
and implemented separately and can be optimized 
to perform a given task. The modules can com­
municate with each other by means of interrupts 
and messages placed in system memory. Addi­
tional functions can be added to a system by 
incorporating the new functions into modules and 
connecting the modules to the system bus. 

Figure 1-8 illustrates a hypothetical system in 
which nine processors are distributed among five 
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multimaster processing modules. (For clarity, bus 
interface components are not shown in figure 
1-8.) A supervisor module controls the system, 
primarily responding to interrupts and dis­
patching other modules to perform tasks. The 
supervisor CPU, like the other processors in the 
system, executes code from private memory that 
is inaccessible to other modules. System memory, 
which is accessible to all the processors, is used 
only for messages, common buffers, etc. This 
helps to "protect" the processors from each other 
and to keep system bus contention at a minimum. 
The database module is responsible for maintain­
ing all system files. Each of the three graphics 
modules supports a graphics CRT terminal. An 
8089 in each module performs data transfers and 
CRT refresh and calls upon an 8088 for intensive 
computational routines. 
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Figure 1-8. Multimaster Design Example 

1.3 Development Aids 

Intel provides the sophisticated tools needed for 
timely and economical development of products 
based on the 8086 family. The 8086 family system 
development environment is focused on the 
Intellec® Series II Microcomputer Development 
System (figure 1-9). The Intellec system is a 
multiple-microprocessor system that runs 
ISIS-II, a disk-based operating system that has 
been proven in thousands of installations. The 
Intellec has built-in interfaces for a printer, 
a PROM programmer and a paper tape 
reader/punch. This same hardware and operating 
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system may be used to develop systems based on 
other Intel microprocessor families such as the 
8085 and the 8048. 

Three language translators support 8086 family 
programming. PL/M-86 is a high-level language 
for the 8086 and 8088 that supports structured 
programming techniques. It is upward­
compatible with PLlM-80, the most widely used 
high-level microprocessor language. ASM-86 may 
be used to write assembly language programs for 
the 8086 and the 8088 CPUsand gives the pro­
grammer access to the full power of these CPUs. 
8089 programs are written in ASM-89, the 8089 
assembly language. 
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The language translators produce compatible out­
puts that can be manipulated by the software 
development utilities. LINK-86, for example, can 
combine programs written in ASM-86 with 
PL/M-86 programs. LIB-86 allows related pro­
grams to be stored in libraries to simplify storage 
and retrival. LOC-86 assigns absolute memory 
addresses to programs. OH-86 changes the for­
mat of an executable program for PROM pro­
gramming or for loading into the RAM of a test 
vehicle. 

The UPP-301 Universal PROM Programmer can 
burn programs into any of Intel's PROM 
memories; the UPP plugs into the Intellec® 
system and allows program data to be 
manipulated from the console before it is pro­
grammed into the PROM. 

The SDK-86 is an (minimum mode) 8086-based 
prototyping and evaluation kit. It includes the 
CPU, RAM, I/O ports and a breadboard area for 
interfacing customer circuits. A ROM-based 
monitor program is supplied with the kit. 
Monitor commands may be entered from an on­
board keypad or from a terminal; the monitor 
returns results to the SDK-86's on-board LED 
display or to a terminal. Monitor commands 
allow programs to be entered, run, stopped, and 
single-stepped; memory contents can be altered as 
well as displayed. The SDK-C86 Software and 
Cable Interface connects an SDK-86 to an 
Intellec® system. The software supplied with the 
cable enables programs to be transferred between 
the development system and the SDK-86 to allow 
users to develop programs using the text editor, 
translators and utilities of the Intellec system and 
then download the program to the SDK-86 for 
execution. 
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The iSBC 86/12™ board is a high-performance 
single board computer based on a maximum 
mode 8086 CPU. The board contains 32k of dual­
port RAM that is accessible to the CPU via the 
on-board bus and to other processors via the 
built-in Multibus™ interface. The board also has 
an asynchronous serial port, parallel ports with 
sockets for drivers and terminators, two timers 
and sockets for 16k of ROM. 

An iSBC 86/12TM can be linked to an Intellec® 
system using the iSBC 957™ Intellec-iSBC 86/12 
Interface and Execution Package. The package 
includes a ROM-based monitor for the iSBC 
86/12 board, software for the Intellec system and 
cabling to connect the two. The package supports 
data transfers between Intellec diskettes and iSBC 
86/12 memory, full speed execution of customer 
programs on the iSBC 86/12 board, breakpoints, 
single-stepping, and data moves, replacements, 
searches and compares. All commands are 
entered from the Intellec console. 

The ICE-86™ module is an in-circuit emulator 
for the 8086 microprocessor. A 40-pin probe 
replaces the 8086 in the system under test. This 
probe is connected to ICE-86 circuit boards that 
in turn plug into the Intellec® chassis. The ICE-86 
module emulates the 8086 in the system under test 
in response to commands entered through the 
Intellec console. These commands allow the user 
to debug the system by setting breakpoints, trac­
ing the flow of execution, single-stepping, 
examining and altering memory and 110, etc. All 
references to program variables and labels are 
symbolic (i.e., their PLlM-86 or ASM-86 names). 
Software testing can also map "system under 
test" memory into the Intellec memory to permit 
software testing to begin before prototype hard­
ware has been developed. 
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CHAPTER 2 
THE 8086 AND 8088 

CENTRAL PROCESSING UNITS 

This chapter describes the mainstays of the 8086 
microprocessor family: the 8086 and 8088 central 
processing units (CPUs). The material is divided 
into ten sections and generally proceeds from 
hardware to software topics as follows: 

1. Processor Overview 

2. Processor Architecture 

3. Memory 

4. Input/Output 

5. Multiprocessing Features 

6. Processor Control and Monitoring 

7. Instruction Set 

8. Addressing Modes 

9. Programming Facilities 

10. Programming Guidelines and Examples 

The chapter describes the internal operation of 
the CPUs in detail. The interaction of the pro­
cessors with other devices is discussed in func­
tional terms; electrical characteristics, timing, and 
other information needed to actually interface 
other devices with the 8086 and 8088 are provided 
in Chapter 4. 

2.1 Processor Overview 

The 8086 and 8088 are closely related third­
generation microprocessors. The 8088 is designed 
with an 8-bit external data path to memory and 
110, while the 8086 can transfer 16 bits at a time. 
In almost every other respect the processors are 
identical; software written for one CPU will 
execute on the other without alteration. The chips 
are contained in standard 40-pin dual in-line 
packages (figure 2-1) and operate from a single 
+5V power source. 

The 8086 and 8088 are suitable for an exception­
ally wide spectrum of microcomputer applica­
tions,and this flexibility is one of their most 
outstanding characteristics. Systems can range 
from uniprocessor minimal-memory designs 
implemented with a handful of chips (figure 2-2), 
to multiprocessor systems with up to a megabyte 
of memory (figure 2-3). 
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The large application domain of the 8086 and 
8088 is made possible primarily by the processors' 
dual operating modes (minimum and maximum 
mode) and built-in multiprocessing features. 
Several of the 40 CPU pins have dual functions 
that are selected by a strapping pin. Configured 
in minimum mode, these pins transfer control 
signals directly to memory and input/output 
devices. In maximum mode these same pins take 
on different functions that are helpful in medium 
to large ystems, especially systems with mUltiple 
processors. The control functions assigned to 
these pins in minimum mode are assumed by a 
support chip, the 8288 Bus Controller. 

The CPUs are designed to operate with the 8089 
Input/Output Processor (lOP) and other pro­
cessors in multiprocessing and distributed pro­
cessing systems. When used in conjunction with 
one or more 8089s, the 8086 and 8088 expand 
the applicability of microprocessors into 1/0-
intensive data processing systems. Built-in coor­
dinating signals and instructions, and electrical 
compatibility with Intel's Multibus ™ shared bus 
architecture, simplify and reduce the cost of 
developing multiple-processor designs. 

Both CPUs are substantially more powerful than 
any microprocessor previously offered by Intel. 
Actual performance, of course, varies from 
application to application, but comparisons to the 
industry standard 2-MHz 8080A are instructive. 
The 8088 is from four to six times more powerful 
than the 8080A; the 8086 provides seven to ten 
times the 8080A's performance (see figure 2-4). 
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The 8086's advantage over the 8088 is attributable 
to its 16-bit external data bus. In applications that 
manipulate 8-bit quantities extensively, or that 
are execution-bound, the 8088 can approach to 
within 10070 of the 8086's processing throughput. 

The high performance of the 8086 and 8088 is 
realized by combining a 16-bit internal data path 
with a pipelined architecture that allows instruc­
tions to be pre fetched during spare bus cycles. 
Also contributing to performance is a compact 
instruction format that enables more instructions 
to be fetched in a given amount of time. 

Software for high-performance 8086 and 8088 
systems need not be written in assembly language. 
The CPUs are designed to provide direct hard­
ware support for programs written in high-level 
languages such as Intel's PLlM-86. Most high­
level languages store variables in memory; the 
8086/8088 symmetrical instruction set supports 
direct operation on memory operands, including 
operands on the stack. The hardware addressing 
modes provide efficient, straightforward 
implementations of based variables, arrays, ar­
rays of structures and other high-level language 
data constructs. A powerful set of memory-to­
memory string operations is available for efficient 
character data manipulation. Finally, routines 
with critical performance requirements that can­
not be met with PL/M-86 may be written in 
ASM-86 (the 8086/8088 assembly language) and 
linked with PLlM-86 code. 

While the 8086 and 8088 are totally new designs, 
they make the most of users' existing investments 
in systems designed around the 8080/8085 
microprocessors. Many of the standard Intel 
memory, peripheral control and communication 
chips are compatible with the 8086 and the 8088. 
Software is developed in the familiar Intellec® 
Microcomputer Development System environ­
ment, and most existing programs, whether writ­
ten in ASM-80 or PL/M-80, can be directly con­
verted to run on the 8086 and 8088 . 

2.2 Processor Architecture 
Microprocessors generally execute a program by 
repeatedly cycling through the steps shown below 
(this description is somewhat simplified): 

1. Fetch the next instruction from memory. 

2. Read an operand (if required by the 
instruction). 
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3. Execute the instruction. 

4. Write the result (if required by the 
instruction) . 

In previous CPUs, most of these steps have been 
performed serially, or with only a single bus cycle 
fetch overlap. The architecture of the 8086 and 
8088 CPUs, while performing the same steps, 
allocates them to two separate processing units 
within the CPU. The execution unit (EU) executes 
instructions; the bus interface unit (BIU) fetches 
instructions, reads operands and writes results. 

The two units can operate independently of one 
another and are able, under most circumstances, 
to extensively overlap instruction fetch with exe­
cution. The result is that, in most cases, the time 
normally required to fetch instructions "dis­
appears" because the EU executes instructions 
that have already been fetched by the BIU. Figure 
2-5 illustrates this overlap and compares it with 
~raditional microprocessor operation. In the 
example, overlapping reduces the elapsed time 
required to execute three instructions, and allows 
two additional instructions to be prefetched as 
well. 
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Execution Unit 

The execution units of the 8086 and 8088 are iden­
tical (figure 2-6). A 16-bit arithmetic/logic unit 
(ALU) in the EU maintains the CPU status and 
control flags, and manipulates the general 
registers and instruction operands. All registers 
and data paths in the EU are 16 bits wide for fast 
internal transfers. 

The EU has no connection to the system bus, the 
"outside world." It obtains instructions from a 
queue maintained by the BIU. Likewise, when an 
instruction requires access to memory or to a 
peripheral device, the EU requests the BIU to 
obtain or store the data. All addresses 
manipulated by the EU are 16 bits wide. The BIU, 
however, performs an address relocation that 
gives the EU access to the full megabyte of 
memory space (see section 2.3). 
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Bus Interface Unit 

The BIUs of the 8086 and 8088 are functionally 
identical, but are implemented differently to 
match the structure and performance 
characteristics of their respective buses. 

The BIU performs all bus operations for the EU. 
Data is transferred between the CPU and memory 
or 110 devices upon demand from the EU. Sec­
tions 2.3 and 2.4 describe the interaction of the 
BIU with memory and 110 devices. 

In addition, during periods when the EU is busy 
executing instructions, the BIU "looks ahead" 
and fetches more instructions from memory. The 
instructions are stored in an internal RAM array 
called the instruction stream queue. The 8088 
instruction queue holds up to four bytes of the 
instruction stream, while the 8086 queue can store 
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Figure 2-6. Execution and Bus Interface Units (EU and BIU) 
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up to six instruction bytes. These queue sizes 
allow the BIU to keep the EU supplied with pre­
fetched instructions under most conditions 
without monopolizing the system bus. The 8088 
BIU fetches another instruction byte whenever 
one byte in its queue is empty and there is no 
active request for bus access from the EU. The 
8086 BIU operates similarly except that it does 
not initiate a fetch until there are two empty bytes 
in its queue. The 8086 BIU normally obtains two 
instruction bytes per fetch; if a program transfer 
forces fetching from an odd address, the 8086 
BIU automatically reads one byte from the odd 
address and then resumes fetching two-byte 
words from the subsequent even addresses. 

Under most circumstances the queues contain at 
least one byte of the instruction stream and the 
EU does not have to wait for instructions to be 
fetched. The instructions in the queue are those 
stored in the memory locations immediately adja­
cent to and higher than the instruction currently 
being executed. That is, they are the next logical 
instructions so long as execution proceeds seri­
ally. If the EU executes an instruction that 
transfers control to another location, the BIU 
resets the queue, fetches the instruction from the 
new address, passes it immediately to the EU, and 
then begins refilling the queue from the new loca­
tion. In addition, the BIU suspends instruction 
fetching whenever the EU requests a memory or 
I/O read or write (except that a fetch already in 
progress is completed before executing the EU's 
bus request). 

General Registers 

Both CPUs have the same complement of eight 
16-bit general registers (figure 2-7). The general 
registers are subdivided into two sets of four 
registers each: the data registers (sometimes called 
the H & L group for "high" and "low"), and the 
pointer and index registers (sometimes called the 
P & I group). 

The data registers are unique in that their upper 
(high) and lower halves are separately 
addressable. This means that each data register 
can be used interchangeably as a 16-bit register, 
or as two 8-bit registers. The other CPU registers 
always are accessed as 16-bit units only. The data 
registers can be used without constraint in most 
arithmetic and logic operations. In addition, 

2-6 

I 
H I L 

15 8 7 0 

{

AX r- - - - -.-- - - - ACCUMULATOR AH AL 
BX r- - - - -.- - - - - BASE 

DATA BH BL 
GROUP CX 

I- - CH - -.- - CL - - COUNT 

I- - DH - ~ - DL - - DATA 

15 0 

POINTER { AND 
INDEX 

GROUP 

SP 

BP 

SI 

01 

STACK 
POINTER 

BASE 
POINTER 

SOURCE 
INDEX 

DESTINATION 
NDEX I 

Figure 2-7. General Registers 

some instructions use certain registers implicitly 
(see table 2-1) thus allowing compact yet powerful 
encoding. 

Table 2-1. Implicit Use of General Registers 

REGISTER OPERATIONS 

AX Word Multiply, Word Divide, 
Word 1/0 

AL Byte Multiply, Byte Divide, Byte 
1/0, Translate, Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

OX Word Multiply, Word Divide, 
Indirect 1/0 

SP Stack Operations 

SI String Operations 

01 String Operations 

The pointer and index registers can also par­
ticipate in most arithmetic and logic operations. 
In fact, all eight general registers fit the definition 
of "accumulator" as used in first and second 
generation microprocessors. The P & I registers 
(except for BP) also are used implicitly in some 
instructions as shown in table 2-1. 
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Segment Registers 

The megabyte of 8086 and 8088 memory space is 
divided into logical segments of up to 64k bytes 
each. (Memory segmentation is described in sec­
tion 2.3.) The CPU has direct access to four 
segments at a time; their base addresses (starting 
locations) are contained in the segment registers 
(see figure 2-S), The CS register points to the cur­
rent code segment; instructions are fetched from 
this segment. The SS register points to the current 
stack segment; stack operations are performed on 
locations in this segment. The DS register points 
to the current data segment; it generally contains 
program variables. The ES register points to the 
current extra segment, which also is typically used 
for data storage. 

The segment registers are accessible to programs 
and can be manipulated with several instructions. 
Good programming practice and consideration of 
compatibility with future Intel hardware and soft­
ware products dictate that the segment registers 
be used in a disciplined fashion. Section 2.10 pro­
vides guidelines for segment register use. 
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Figure 2-8. Segment Registers 

Instruction Pointer 

The 16-bit instruction pointer (IP) is analogous to 
the program counter (PC) in the 8080/S0S5 
CPUs. The instruction pointer is updated by the 
BIU so that it contains the offset (distance in 
bytes) of the next instruction from the beginning 
of the current code segment; i.e., IP points to the 
next instruction. During normal execution, IP 
contains the offset of the next instruction to be 
fetched by the BIU; whenever IP is saved on the 
stack, however, it first is automatically adjusted 
to point to the next instruction to be executed. 
Programs do not have direct access to the instruc­
tion pointer, but instructions cause it to change 
and to be saved on and restored from the stack. 
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Flags 

The SOS6 and SOSS have six I-bit status flags 
(figure 2-9) that the EU posts to reflect certain 
properties of the result of an arithmetic or logic 
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Figure 2-9. Flags 

operation. A group of instructions is available 
that allows a program to alter its execution 
depending on the state of these flags, that is, on 
the result of a prior operation. Different instruc­
tions affect the status flags differently; in general, 
however, the flags reflect the following 
conditions: 

I. If AF (the auxiliary carry flag) is set, there 
has been a carry out of the low nibble into 
the high nibble or a borrow from the high 
nibble into the low nibble of an S-bit quantity 
(low-order byte of a 16-bit quantity). This 
flag is used by decimal arithmetic 
instructions. 

2. If CF (the carry flag) is set, there has been a 
carry out of, or a borrow into, the high-order 
bit of the result (S- or 16-bit). The flag is used 
by instructions that add and subtract 
multibyte numbers. Rotate instructions can 
also isolate a bit in memory or a register by 
placing it in the carry flag. 

3. If OF (the overflow flag) is set, an arithmetic 
overflow has occurred; that is, a significant 
digit has been lost because the size of the 
result exceeded the capacity of its destination 
location. An Interrupt On Overflow instruc­
tion is available that will generate an inter­
rupt in this situation. 
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4. If SF (the sign flag) is set, the high-order bit 
of the result is a 1. Since negative binary 
numbers are represented in the SOS6 and SOSS 
in standard two's complement notation, SF 
indicates the sign of the result (0 = positive, 
1 = negative). 

5. If PF (the parity flag) is set, the result has 
even parity, an even number of I-bits. This 
flag can be used to check for data transmis­
sion errors. 

6. If ZF (the zero flag) is set, the result of the 
operation is O. 

Three additional control flags (figure 2-9) can be 
set and cleared by programs to alter processor 
operations: 

1. Setting DF (the direction flag) causes string 
instructions to auto-decrement; that is, to 
process strings from high addresses to low 
addresses, or from "right to left." Clearing 
DF causes string instructions to auto­
increment, or to process strings from "left to 
right." 

2. Setting IF (the interrupt-enable flag) allows 
the CPU to recognize external (maskable) 
interrupt requests. Clearing IF disables these 
interrupts. IF has no affect on either non­
maskable external or internally generated 
interrupts. 

3. Setting TF (the trap flag) puts the processor 
into single-step mode for debugging. In this 
mode, the CPU automatically generates an 
internal .interrupt after each instruction, 
allowing a program to be inspected as it exe­
cutes instruction by instruction. Section 2.10 
contains an example showing the use of TF in 
a single-step and breakpoint routine. 

8080/8085 Registers and Flag 
Correspondence 

The registers, flags and program counter in the 
SOSO/SOS5 CPUs all have counterparts in the SOS6 
and 808S (see figure 2-10). The A register (ac­
cumulator) in the 8080/80S5 corresponds to the 
AL register in the 8086 and 8088. The 8080/8085 
H & L, B & C, and D & E registers correspond to 
registers BH, BL, CH, CL, DH and DL, respec­
tively, in the 80S6 and S088. The 8080/8085 SP 
(stack pointer) and PC (program counter) have 
their counterparts in the 8086/8088 SP and IP. 
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The AF, CF, PF, SF, and ZF flags are the same in 
both CPU families. The remaining flags and 
registers are unique to the 8086 and 8088. This 
8080/8085 to 8086 mapping allows most existing 
80S0/8085 program code to be directly translated 
into 8086/8088 code. 

Mode Selection 

Both processors have a strap pin (MN/MX) that 
defines the function of eight CPU pins in the S086 
and nine pins in the S088. Connecting MN/MX to 
+5V places the CPU in minimum mode. In this 
configuration, which is designed for small 
systems (roughly one or two boards), the CPU 
itself provides the bus control signals needed by 
memory and peripherals. When MN/MX is 
strapped to ground, the CPU is configured in 
maximum mode. In this configuration the CPU 
encodes control signals on three lines. An 8288 
Bus Controller is added to decode the signals 
from the CPU and to provide an expanded set of 
control signals to the rest of the system. The CPU 
uses the remaining free lines for a new set of 
signals designed to help coordinate the activities 
of other processors in the system. Sections 2.5 
and 2.6 describe the functions of these signals. 

2.3 Memory 

The 8086 and 8088 can accommodate up to 
1,048,576 bytes of memory in both minimum and 
maximum mode. This section describes how 
memory is functionally organized and used. 
There are substantial differences in the way 
memory components are actually accessed by the 
two processors; these differences, which are in­
visible to programs, are covered in section 4.2, 
External Memory Addressing. 

Storage Organization 

From a storage point of view, the 8086 and 80SS 
memory spaces are organized as identical arrays 
of 8-bit bytes (see figure 2-11). Instructions, byte 
data and word data may be freely stored at any 
byte address without regard for alignment thereby 
saving memory spac'e by allowing code to be 
densely packed in memory (see figure 2-12). Odd­
addressed (unaligl1ed) word variables, however, 



8086 AND 8088 CENTRAL PROCESSING UNITS 

BP BASE 
POINTER 

SI SOURCE 
INDEX 

01 DESTINATION 
INDEX 

CS CODE 
SEGMENT 

OS DATA 
SEGMENT 

SS STACK 
SEGMENT 

ES EXTRA 
SEGMENT 

Figure 2-10.8080/8085 Register Subset (Shaded) 

LOW MEMORY HIGH MEMORY 

OOOOOH 00001H 00002H 5 §FFFFEH FFFFFH 

L I II "II" I IIIII "" "5 §LI"" I" I"" I 
7 07 07 07 '0 

I_ 1 MEGABYTE -I 

Figure 2-11. Storage Organization Figure 2-12. Instruction and Variable Storage 

2-9 



8086 AN08088 CENTRAL PROCESSING UNITS 

do not take advantage of the 8086's ability to 
transfer 16-bits at a time. Instruction alignment 
does not materially affect the performance of 
either processor. 

Following Intel convention, word data always is 
stored with the most-significant byte in the higher 
memory location (see figure 2-13). Most of the 
time this storage convention is ,"invisible" to 
anyone working with the processors; exceptions 
may occur when monitoring the system bus or 
when reading memory dumps. 

A special class of data is stored as doublewords; 
i.e., two consecutive words. These are called 
pointers and are used to address data and code 
that are outside the currently-addressable 
segments. The lower-addressed word of a pointer 
contains an offset value, and the higher-addressed 
word contains a segment base address. Each word 
is stored conventionally with the higher-addressed 
byte containing the most-significant eight bits of 
the word (see figure 2-14). 

724H 725H 

VALUE OF WORD STORED AT 724H: 5502H 

Figure 2-13. Storage of Word Variables 

Segmentation 

8086 and 8088 programs "view" the megabyte of 
memory space as a group of segments that are 
defined by the application. A segment is a logical 
unit of memory that may be up to 64k bytes long. 
Each segment is made up of contiguous memory 
locations and is an independent, separately­
addressable unit. Every segment is assigned (by 
software) a base address, which is its starting 
location in the memory space. All segments begin 
on 16-byte memory boundaries. There are no 
other restrictions on segment locations; segments 
may be adjacent, disjoint, partially overlapped, 
or fully overlapped (see figure 2-15). A physical 
memory location may be mapped into (contained 
in) one or more logical segments. 

The segment registers point to (contain the base 
address values of) the four currently addressable 
segments (see figure 2-16). Programs obtain 
access to code and data in other segments by 
changing the segment registers to point to the 
desired segments. 

Every application will define and use segments 
differently. The currently addressable segments 
provide a generous work space: 64k bytes for 
code, a 64k byte stack and 128k bytes of data 
storage. Many applications can be written to 
simply initialize the segment registers and then 
forget them. Larger applications should be 
designed with careful consideration given to seg­
ment definition. 

VALUE OF POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET: 65H 

Figure 2-14. Storage of Pointer Variables 
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Figure 2-15. Segment Locations in Physical Memory 
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The segmented structure of the 8086/8088 
memory space supports modular software design 
by discouraging huge, monolithic programs. The 
segments also can be used to advantage in many 
programming situations. Take, for example, the 
case of an editor for several on-line terminals. A 
64k text buffer (probably an extra segment) could 
be assigned to each terminal. A single program 
could maintain all the buffers by simply changing 
register ES to point to the buffer of the terminal 
requiring service. 

Physical Address Generation 

It is useful to think of every memory location as 
having two kinds of addresses, physical and 
logical. A physical address is the 20-bit value that 
uniquely identifies each byte location in the 
megabyte memory space. Physical addresses may 
range from OH through FFFFFH. All exchanges 
between the CPU and memory components use 
this physical address. 

Figure 2-16. Currently Addressable Segments 

Programs deal with logical, rather than physical 
addresses and allow code to be developed without 
prior knowledge of where the code is to be located 
in memory and facilitate dynamic management of 
memory resources. A logical address consists of a 
segment base value and an offset value. For any 
given memory location, the segment base value 
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locates the first byte of the containing segment 
and the offset value is the distance, in bytes, of 
the target location from the beginning of the 
segment. Segment base and offset values are 
unsigned 16-bit quantities; the lowest-addressed 
byte in a segment has an offset of o. Many dif­
ferent logical addresses can map to the same 
physical location as shown in figure 2-17. In 
figure 2-17, physical memory location 2C3H is 
contained in two different overlapping segments, 
one beginning at 2BOH and the other at 2COH. 

Whenever the BIU accesses memory-to fetch an 
instruction or to obtain or store a variable-it 
generates a physical address from a logical 
address. This is done by shifting the segment base 
value four bit positions and adding the offset as 
illustrated in figure 2-18. Note that this addition 
process provides for modulo 64k addressing 
(addresses wrap around from the end of a seg­
ment to the beginning of the same segment). 

The BIU obtains the logical address of a memory 
location from different sources depending on the 
type of reference that is being made (see table 

PHYSICAL 
ADDRESS 

LOGICAL 
ADDRESSES --< 

;-

SEGMENT 
BASE 

.... SEGMENT 
BASE 

t 

2-2). Instructions always are fetched from the cur­
rent code segment; IP contains the offset of the 
target instruction from the beginning of the seg­
ment. Stack instructions always operate on the 
current stack segment; SP contains the offset of 
the top of the stack. Most variables (memory 
operands) are assumed to reside in the current 
data segment, although a program can instruct 
the BIU to access a variable in one of the other 
currently addressable segments. The offset of a 
memory variable is calculated by the EU. This 
calculation is based on the addressing mode 
specified in the instruction; the result is called the 
operand's effective address (EA). Section 2.8 
covers addressing modes and effective address 
calculation in detail. 

Strings are addressed differently than other 
variables. The source operand of a string instruc­
tion is assumed to lie in the current data segment, 
but another currently addressable segment may be 
specified. Its offset is taken from register SI, the 
source index register. The destination operand of 
a string instruction always resides in the current 
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Figure 2-17. Logical and Physical Addresses 
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Figure 2-18. Physical Address Generation 

Table 2-2. Logical Address Sources 

DEFAULT 
TYPE OF MEMORY REFERENCE SEGMENT 

BASE 

Instruction Fetch CS 
Stack Operation SS 
Variable (except following) DS 
String Source DS 
String Destination ES 
BP Used As Base Register SS 

extra segment; its offset is taken from DI, the 
destination index register. The string instructions 
automatically adjust SI and DI as they process the 
strings one byte or word at a time. 

When register BP, the base pointer register, is 
designated as a base register in an instruction, the 
variable is assumed to reside in the current stack 
segment. Register BP thus provides a convenient 
way to address data on the stack; BP can be used, 
however, to access data in any of the other cur­
rently addressable segments. 

In most cases, the BIU's segment assumptions are 
a convenience to programmers. It is possible, 
however, for a programmer to explicitly direct the 
BIU to access a variable in any of the currently 
addressable segments (the only exception is the 
destination operand of a string instruction which 
must be in the extra segment). This is done by 
preceding an instruction with a segment override 
prefix. This one-byte machine instruction tells the 
BIU which segment register to use to access a 
variable referenced in the following instruction. 
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ALTERNATE 
SEGMENT OFFSET 

BASE 

NONE IP 
NONE SP 

CS,ES,SS Effective Address 
CS,ES,SS SI 

NONE DI 
CS,DS,ES Effective Address 

Dynamically Relocatable Code 

The segmented memory structure of the 8086 and 
8088 makes it possible to write programs that are 
position-independent, or dynamically relocatable. 
Dynamic relocation allows a multiprogramming 
or multitasking system to make particularly effec­
tive use of available memory. Inactive programs 
can be written to disk and the space they occupied 
allocated to other programs. If a disk-resident 
program is needed later, it can be read back into 
any available memory location and restarted. 
Similarly, if a program needs a large contiguous 
block of storage, and the total amount is available 
only in nonadjacent fragments, other program 
segments can be compacted to free up a con­
tinuous space. This process is shown graphically 
in figure 2-19. 

In order to be dynamically relocatable, a program 
must not load or alter its segment registers and 
must not transfer directly to a location outside the 
current code segment. In other words, all offsets 
in the program must be relative to fixed values 
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BEFORE RELOCATION AFTER RELOCATION 

CODE 
SEGMENT 

I 
CS CS 

I 
SS 

STACK .---- OS 
SEGMENT 

SS 

OS r---
- ES ES f-

DATA CODE 
SEGMENT SEGMENT 

STACK 
SEGMENT 

DATA 
SEGMENT 

EXTRA EXTRA 
SEGEMENT SEGMENT 

C]FREESPACE 

Figure 2-19. Dynamic Code Relocation 

contained in the segment registers. This allows the 
program to be moved anywhere in memory as 
long as the segment registers are updated to point 
to the new base addresses. Section 2.10 contains 
an example that illustrates dynamic code 
relocation. 

Stack Implementation 

Stacks in the 8086 and 8088 are implemented in 
memory and are located by the stack segment 
register (SS) and the stack pointer register (SP). A 
system may have an unlimited number of stacks, 
and a stack may be up to 64k bytes long, the max­
imum length of a segment. (An attempt to expand 
a stack beyond 64k bytes overwrites the beginning 
of the stack.) One stack is directly addressable at 
a time; this is the current stack, often referred to 
simply as "the" stack. SS contains the base 
address of the current stack and SP points to the 
top of the stack (TOS). In other words, SP con­
tains the offset of the top of the stack from the 
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stack segment's base address. Note, however, that 
the stack's base address (contained in SS) is not 
the "bottom" of the stack. 

8086 and 8088 stacks are 16 bits wide; instructions 
that operate on a stack add and remove stack 
items one word at a time. An item is pushed onto 
the stack (see figure 2-20) by decrementing SP by 
2 and writing the item at the new TOS. An item is 
popped off the stack by copying it from TOS and 
then incrementing SP by 2. In other words, the 
stack grows down in memory toward its base 
address. Stack operations never move items on 
the stack, nor do they erase them. The top of the 
stack changes only as a result of updating the 
stack pointer. 

Dedicated and Reserved Memory 
Locations 

Two areas in extreme low and high memory are 
dedicated to specific processor functions or are 
reserved by Intel Corporation for use by Intel 
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Figure 2-20. Stack Operation 

hardware and software products. As shown in 
figure 2-21, the location are: OH throgh 7FH (128 
bytes) and FFFFOH through FFFFFH (16 bytes). 
These areas are used for interrupt and system 
reset processing 8086 and 8088 application 
systems should not use these areas for any other 
purpose. Doing so may make these systems 
incompatible with future Intel products. 

8086/8088 Memory Access 
Differences 

The 8086 can access either 8 or 16 bits of memory 
at a time. If an instruction refers to a word 
variable and that variable is located at an even­
numbered address, the 8086 accesses the complete 
word in one bus cycle. If the word is located at an 
odd-numbered address, the 8086 accesses the 
word one byte at a time in two consecutive bus 
cycles. 

To maximize throughput in 8086-based systems, 
16-bit data should be stored at even addresses 
(should be word-aligned). This is particularly true 
of stacks. Unaligned stacks can slow a system's 
response to interrupts. Nevertheless, except for 
the performance penalty, word alignment is 
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totally transparent to software. This allows max­
imum data packing where memory space is 
constrained. 

The 8086 always fetches the instruction stream in 
words from even addresses except that the first 
fetch after a program transfer to an odd address 
obtains a byte. The instruction stream is 
disassembled inside the processor and instruction 
alignment will not materially affect the per­
formance of most systems. 

The 8088 always accesses memory in bytes. Word 
operands are accessed in two bus cycles regardless 
of their alignment. Instructions also are fetched 
one byte at a time. Although alignment of word 
operands does not affect the performance of the 
8088, locating 16-bit data on even addresses will 
insure maximum throughput if the system is ever 
transferred to an 8086. 

2.4 Input/Output 

The 8086 and 8088 have a versatile set of in­
put/output facilities. Both processors provide a 
large lIO space that is separate from the memory 
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FFFFFH 
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FFFFCH 
FFFFBH 
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FFFFOH 
FFFEFH 

OPEN I 
OPEN 
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7FH 
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14H 
13H 

DEDICATED OPEN 

OH "'-____ ..... OH 

MEMORY liD 

Figure 2-21. Reserved and Dedicated Memory 
and I/O Locations 

space, and instructions that transfer data between 
the CPU and devices located in the I/O space. 
I/O devices also may be placed in the memory 
space to bring the power of the full instruction set 
and addressing modes to input/output pro­
cessing. For high-speed transfers, the CPUs may 
be used with traditional direct memory access 
controllers or the 8089 Input/Output Processor. 

InputlOutput Space 

The 808618088 I/O space can accommodate up to 
64k 8-bit ports or up to 32k 16-bit ports. The IN 
and OUT (input and output) instructions transfer 
data between the accumulator (AL for byte 
transfers, AX for word transfers) and ports 
located in the I/O space. 

The I/O space is not segmented; to access a port, 
the BIU simply places the port address (O-64k) on 
the lower 16 lines of the address bus. Different 
forms of the I/O instructions allow the address to 
be specified as a fixed value in the instruction or 
as a variable taken from register DX. 
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Restricted 1/0 Locations 

Locations F8H through FFH (eight of the 64k 
locations) in the 1/0 space are reserved by Intel 
Corporation for use by future Intel hardware and 
software products. Using these locations for any 
other purpose may inhibit compatibility with 
future Intel products. 

SOS6/S0SS 1/0 Access Differences 

The 8086 can transfer either 8 or 16 bits at a time 
to a device located in the I/O space. A 16-bit 
device should be located at an even address so 
that the word will be transferred in a single bus 
cycle. An 8-bit device may be located at either an 
even or odd address; however, the internal 
registers in a given device must be assigned all­
even or all-odd addresses. 

The 8088 transfers one byte per bus cycle. If a 
16-bit device is used in the 8088 I/O space, it must 
be capable of transferring words in the same 
fashion, i.e., eight bits at a time in two bus cycles. 
(The 8089 Input/Output Processor can provide a 
straightforward interface between the 8088 and a 
16-bit I/O device.) An 8-bit device may be located 
at odd or even addresses in the 8088 I/O space 
and internal registers maybe assigned consecutive 
addresses (e.g., IH, 2H, 3H). Assigning all-odd 
or all-even addresses to these registers, however, 
will simplify transferring the system to an 8086 
CPU. 

Memory-Mapped 1/0 

I/O devices also may be placed in the 8086/8088 
memory space. As long as the devices respond like 
memory components, the CPU does not know the 
dif f erence. 

Memory-mapped I/O provides additional pro­
gramming flexibility. Any instruction that 
references memory may be used to access an I/O 
port located in the memory space. For example, 
the MOV (move) instruction can transfer data 
between any 8086/8088 register and a port, or the 
AND, OR and TEST instructions may be used to 
manipulate bits in I/O device registers. In addi­
tion, memory-mapped I/O can take advantage of 
the 8086/8088 memory addressing modes. A 
group of terminals, for example, could be treated 
as an array in memory with an index register 
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selecting a terminal in the array. Section 2.10 pro­
vides examples of using the instruction set and 
addressing modes with memory-mapped liD. 

Of course, a price must be paid for the added pro­
gramming flexibility that memory-mapped liD 
provides. Dedicating part of the memory space to 
liD devices reduces the number of addresses 
available for memory, although with a megabyte 
of memory space this should rarely be a con­
straint. Memory reference instructions also take 
longer to execute and are somewhat tess compact 
than the simpler IN and OUT instructions. 

Direct Memory Access 

When configured in minimum mode, the 8086 
and 8088 provide HOLD (hold) and HLDA (hold 
acknowledge) signals that are compatible with 
traditional DMA controllers such as the 8257 and 
8237. A DMA controller can request Use of the 
bus for direct transfer of data between an liD 
device and memory by activating HOLD. The 
CPU will complete the.current bus cycle, if one is 
in progress, and then issue HLDA, granting the 
bus to the DMA controller. The CPU will not 
attempt to use the bus until HOLD goes inactive. 

The 8086 addresses memory that is physically 
organized in two separate banks, one containing 
even-addressed bytes and one containing odd-ad­
dressed bytes. An8-bit DMA controller must 
alternately select these banks to access logically 
adjacent bytes in memory. The 8089 provides a 
simple way to interface a high-speed 8-bit device 
to an 8086-based system (see Chapter 3). 

8089 Input/Output Processor (lOP) 

The 8086 and 8088 are designed to be used with 
the 8089 in high-performance 110 applications. 
The 8089 conceptually resembles a 
microprocessor with two DMA channels and an 
instruction set specifically tailored for liD opera­
tions. Unlike simple DMA controllers, the 8089 
can service liD devices directly, removing this 
task from the CPU. In addition, it can transfer 
data on its own bus or on the system bus, can 
match 8- or 16-bit peripherals to 8- or 16-bit 
buses, and can transfer data from memory to 
memory and from, 110 device to 110 device. 
Chapter 3 describes the 8089 in detail. 
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2.5 Multiprocessing Features 

As microprocessor prices have declined, 
multiprocessing (using two or more coordinated 
processors in a system) has become an increas­
ingly attractive design alternative. Performance 
can be substantially improved by distributing 
system tasks among separate, concurrently exe­
cuting processors. In addition, multiprocessing 
encourages a modular approach to design, usually 
resulting in systems that are more easily main­
tained and enhanced. For example, figure 2-22 
shows a multiprocessor system in which liD 
activities have been delegated to an 8089 lOP. 
Should an 110 device in the system be changed 
(e.g., a hard disk substituted for a floppy), the 
impact of the modification is confined to the 110 
subsystem and is transparent to the CPU and to 
the application software. 

The 8086 and 8088 are designed for the 
multiprocessing environment. They have built-in 
features that help solve the coordination prob­
lems that have discouraged multiprocessing 
system development in the past. 

Bus Lock 

When configured in maximum mode, the 8086 
and 8088 provide the LOCK (bus lock) signal. 
The BIU activates LOCK when the EU executes 
the one-byte LOCK prefix instruction. The 
LOCK signal remains active throughout execu­
tion of the instruction that follows the LOCK 
prefix. Interrupts are not affected by the LOCK 
prefix. If another processor requests use of the 
bus (via the request! grant lines, which are 
discussed shortly), the CPU records the request, 
but does not honor it until execution of the locked 
instruction has been completed. 

Note that the L5"CK signal remains active .for the 
duration of a single instruction. If two con­
secutive instructions are each preceded by a 
LOCK prefix, there will still be an unlocked 
period between these instructions. In the case of a 
locked repeated string instruction, LOCK does 
remain active for the duration of the block 
operation. 

When the 8086 or 8088 is configured in minimum 
mode, the LOCK signal is not available. The 
LOCK prefix can be used, however, to delay the 
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Figure 2-22. Multiprocessing System 

generation of an HLDA response to a HOLD 
request until execution of the locked instruction is 
completed. 

The LOCK signal provides information only. It is 
the responsibility of other processors on the 
shared bus to not attempt to obtain the bus while 
LOCK is active. If the system uses 8289 Bus 
Arbiters to control access to the shared bus, the 
8289's accept LOCK as an input and do not relin­
quish the bus while this signal is active. 

LOCK may be used in multiprocessing systems to 
coordinate access to a common resource, such as 
a buffer or a pointer. If access to the resource is 
not controlled, one processor can read an 
erroneous value from the resource when another 
processor is updating it (see figure 2-23). 

Access can be controlled (see figure 2-24) by using 
the LOCK prefix in conjunction with the XCHG 
(exchange register with memory) instruction. The 
basis for controlling access to a given resource is a 
semaphore, a software-settable flag or switch that 
indicates whether the resource is "available" 
(semaphore=O) or "busy" (semaphore= 1). Pro­
cessors that share the bus agree by convention not 
to use the resource unless the semaphore indicates 
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that it is available. They likewise agree to set the 
semaphore when they are using the resource and 
to clear it when they are finished. 

The XCHG instruction can obtain the current 
value of the semaphore and set it to "busy" in a 
single instruction. The instruction, however, 
requires two bus cycles to swap 8-bit values. It is 
possible for another processor to obtain the bus 
between these two cycles and to gain access to the 
partially-updated semaphore. This can be 
prevented by preceding the XCHG instruction 
with a LOCK prefix, as illustrated in figure 2-25. 
The bus lock establishes control over access to the 
semaphore and thus to the shared resource. 

WAIT and TEST 

The 8086 and 8088 (in either maximum or 
minimum mode) can be synchronized to an exter­
nal event with the WAIT (wait for TEST) instruc­
tion and the TEST input signal. When the EU 
executes aWAIT instruction, the result depends 
on the state of the TEST input line. If TEST is 
inactive, the processor enters an idle state and 
repeatedly retests the TEST line at five-clock 
intervals. If TEST is active, execution continues 
with the instruction following the WAIT. 
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Escape 

The ESC (escape) instruction provides a way for 
another processor to obtain an instruction and/or 
a memory operand from an 8086/8088 program. 
When used in conjunction with WAIT and TEST, 
ESC can initiate a "subroutine" that executes 
concurrently in another processor (see figure 
2-26). 

Six bits in the ESC instruction may be specified by 
the programmer when the instruction is written. 
By monitoring the 8086/8088 bus and control 
lines, another processor can capture the ESC 
instruction when it is fetched by the BIU. The six 
bits may then direct the external processor to per­
form some predefined activity. 

Figure 2-23. Uncontrolled Access to Shared 
Resource 

If the 8086/8088 is configured in maximum 
mode, the external processor, having determined 
that an ESC has been fetched, can monitor QSO 
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Figure 2-24. Controlled Access to Shared Resource 
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MOV AL,l 

WAIT: LOCK XCHG AL, SEMAPHORE 

TEST AL,AL 
JNZ WAIT 

MOV SEMAPHORE,O 

and QSl (the queue status lines, discussed in sec­
tion 2,6) and determine when the ESC instruction 
is executed. If the instruction references memory 
the external processor can then monitor the bus 
and capture the operand's physical address 
and/or the operand itself. 

Note that fetching an ESC instruction is not tan­
tamount to executing it. The ESC may be pre­
ceded by a jump that causes the queue to be 
reinitialized. This event also can be determined 
from the queue status lines, 

Request/Grant Lines 

When the 8086 or 8088 is configured in maximum 
mode, the HOLD and HLDA lines evolve into 
two more sophisticated signals called RQ/GTO 
and RQ/GTl. These are bidirectional lines that 
can be used to share a local bus between an 8086 
or 8088 and two other processors via a handshake 
sequence. 

Figure 2-25. Using XCHG and LOCK 

The request/grant sequence is a three-phase cycle: 
request, grant and release. First, the processor 
desiring the bus pulses a request/grant line. The 
CPU returns a pulse on the same line indicating 
that it is entering the "hold acknowledge" state 
and is relinquishing the bus. The BIU is logically 
disconnected from the bus during this period. The 

PROCESSOR 
"A" 

Figure 2-26. Using ESC with WAIT and TEST 
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EU, however, will continue to execute instruc­
tions until an instruction requires bus access or 
the queue is emptied, whichever occurs first. 
When the other processor has finished with the 
bus, it sends a final pulse to the 8086/8088 in­
dicating that the request has ended and that the 
CPU may reclaim the bus. 

RQ/GTO has higher priority than RQ/GTl. If 
requests arrive simultaneously on both lines, the 
~nt~es to the processor on RQ/GTO and 
RQ/GTl is acknowledged after the bus has been 
returned to the CPU. If, however, a request 
arrives on RQ/GTO while the CPU is processing a 
prior request on RQ/GTl, the second r~est is 
not honored until the processor on RQ/GTI 
releases the bus. 

Multibus™ Architecture 

Intel has designed a general-purpose 
multiprocessing bus called the Multibus. This is 
the standard design used in iSBCTM single-board 
microcomputer products. Many other manufac­
turers offer products that are compatible with the 
Multibus architecture as well. When the 8086 and 
8088 are configured in maximum mode, the 8288 
Bus Controller outputs signals that are electrically 
compatible with the Multibus protocol. Designers 
of multiprocessing systems may want to consider 
using the Multibus architecture in the design of 
their products to reduce development cost and 

MASTER 

MASTER 
WITH 

BUS·ACCESSIBLE 
MEMORY 

time, and to obtain compatibility with the wide 
variety of boards available in the iSBC product 
line. 

The Multibus architecture provides a versatile 
communications channel that can be used to coor­
dinate a wide variety of computing modules (see 
figure 2-27). Modules in a Multibus system are 
designated as masters or slaves. Masters may 
obtain use of the bus and initiate data transfers on 
it. Slaves are the objects of data transfers only. 
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi­
tion to 16 data lines, the bus design provides 20 
address lines, eight multilevel interrupt lines, and 
control and arbitration lines. An auxiliary power 
bus also is provided to route standby power to 
memories if the normal supply fails. 

The Multibus architecture maintains its own 
clock, independent of the clocks of the modules it 
links together. This allows different speed masters 
to share the bus and allows masters to operate 
asynchronously with respect to each other. The 
arbitration logic of the bus permit slow-speed 
masters to compete equably for use of the bus. 
Once a module has obtained the bus, however, 
transfer speeds are dependent only on the 
capabilities of the transmitting and receiving 
modules. Finally, the Multibus standard defines 
the form factors and physical requirements of 
modules that communicate on this bus. For a 
complete description of the Multibus architec-
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Figure 2-27. Multibus™-Based System 
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ture, refer to the Intel Multibus Specification 
(document number 9800683) and Application 
Note 28A, "Intel Multibus Interfacing." 

8289 Bus Arbiter 

Multiprocessor systems require a means of coor­
dinating the processors' use of the shared bus. 
The 8289 Bus Arbiter works in conjunction with 
the 8288 Bus Controller to provide this control 
for 8086- and 8088-based systems. It is compati­
ble with the Multibus architecture and can be used 
in other shared-bus designs as well. 

The 8289 eliminates race conditions, resolves bus 
contention and matches processors operating 
asynchronously with respect to each other. Each 
processor on the bus is assigned a different pri­
ority. When simultaneous requests for the bus 
arrive, the 8289 resolves the contention and grants 
the bus to the processor with the highest priority; 
three different prioritizing techniques may be 
used. Chapter 4 discusses the 8289 in more detail. 

2.6 Processor Control and 
Monitoring 

Interrupts 

The 8086 and 8088 have a simple and versatile 
interrupt system. Every interrupt is assigned a 
type code that identifies it to the CPU. The 8086 

I NON·MASKABLE 
INTERRUPT 
REQUEST I 

and 8088 can handle up to 256 different interrupt 
types. Interrupts may be initiated by devices 
external to the CPU; in addition, they also may be 
triggered by software interrupt instructions and, 
under certain conditions, by the CPU itself (see 
figure 2-28). Figure 2-29 illustrates the basic 
response of the 8086 and 8088 to an interrupt. 
The next sections elaborate on the information 
presented in this drawing. 

External Interrupts 

The 8086 and 8088 have two lines that external 
devices may use to signal interrupts (lNTR and 
NMI). The INTR (Interrupt Request) line is 
usually driven by an Intel® 8259A Programmable 
Interrupt Controller (PIC), which is in turn con­
nected to the devices that need interrupt services. 
The 8259A is a very flexible circuit that is con­
trolled by software commands from the 8086 or 
8088 (the PIC appears as a set of liD ports to the 
software). Its main job is to accept interrupt 
requests from the devices attached to it, deter­
mine which requesting device has the highest 
priority, and then activate the 8086/8088 INTR 
line if the selected device has higher priority than 
the device currently being serviced (if there is 
one). 

When INTR is active, the CPU takes different 
action depending on the state of the interrupt­
enable flag (IF). No action takes place, however, 
until the currently-executing instruction has been 

-
r--------t~-------, --II I INTERRUPTI I IINTR 

LOGIC 
I I 

: I • t t· I : 

8259A 

II INT n INTO DIVIDE SINGLE· II 
STEP 

I INSTR. INSTR. ERROR (TF=1) I 

I 

I 8086/8088 CPU I L _________________ ~ 

Figure 2-28. Interrupt Sources 
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Figure 2-29. Interrupt Processing Sequence 
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completed. * Then, if IF is clear (meaning that 
interrupts signaled on INTR are masked or dis­
abled), the CPU ignores the interrupt request and 
processes the next instruction. The INTR signal is 
not latched by the CPU, so it must be held active 
until a response is received or the request is 
withdrawn. If interrupts on INTR are enabled (if 
IF is set), then the CPU recognizes the interrupt 
request and processes it. Interrupt requests arriv­
ing on INTR can be enabled by executing an STI 
(set interrupt-enable flag) instruction, and dis­
abled by executing a CLI (clear interrupt-enable 
flag) instruction. They also may be selectively 
masked (some types enabled, some disabled) by 
writing commands to the 8259A. It should be 
noted that in order to reduce the likelihood of 
excessive stack buildup, the STI and IRET 
instructions will reenable interrupts only after 
the end of the following instruction. 

The CPU acknowledges the interrupt request by 
executing two consecutive interrupt acknowledge 
(INTA) bus cycles. If a bus hold request arrives 
(via the HOLD or request/grant lines) during the 
INT A cycles, it is not honored until the cycles 
have been completed. In addition, if the CPU is 
configured in maximum mode, it activates the 
LOCK signal during these cycles to indicate to 
other processors that they should not attempt to 
obtain the bus. The first cycle signals the 8259A 
that the request has been honored. During the 
second INT A cycle, the 8259A responds by plac­
ing a byte on the data bus that contains the inter­
rupt type (0-255) associated with the device 
requesting service. (The type assignment is made 
when the 8259A is initialized by software in the 
8086 or 8088.) The CPU reads this type code and 
uses it to call the corresponding interrupt 
procedure. 

An external interrupt request also may arrive on 
another CPU line, NMI (non-maskable inter­
rupt). This line is edge-triggered (lNTR is level­
triggered) and is generally used to signal the CPU 
of a "catastrophic" event, such as the imminent 
loss of power, memory error detection or bus 
parity error. Interrupt requests arriving on NMI 
cannot be disabled, are latched by the CPU, and 
have higher priority than an interrupt request on 
INTR. If an interrupt request arrives on both 
lines during the execution of an instruction, NMI 
will be recognized first. Non-maskable interrupts 
are predefined as type 2; the processor does not 
need to be supplied with a type code to call the 
NMI procedure, and it does not run the INT A bus 
cycles in response to a request on NMI. 

The time required for the CPU to recognize an 
external interrupt request (interrupt latency) 
depends on how many clock periods remain in the 
execution of the current instruction. On the 
average, the longest latency occurs when a 
multiplication, division or variable-bit shift or 
rotate instruction is executing when the interrupt 
request arrives (see section 2.7 for detailed 
instruction timing data). As mentioned pre­
viously, in a few cases, worst-case latency will 
span two instructions rather than one. 

Internal Interrupts 

An INT (interrupt) instruction generates an inter­
rupt immediately upon completion of its execu­
tion. The interrupt type coded into the instruction 
supplies the CPU with the type code needed to 
call the procedure to process the interrupt. Since 
any type code may be specified, software inter­
rupts may be used to test interrupt procedures 
written to service external devices. 

"There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK 
and segment override prefixes are considered "part of" the instructions they prefix; no interrupt is recognized between 
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register 
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects 
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been 
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory. 
It follows from this that whenever a segment register and another value must be updated together, the segment register 
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases, 
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these 
cases, interrupts are accepted after any completed primitive operation or wait test cycle. 
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If the overflow flag (OF) is set,an INTO (inter­
rupt on overflow) instruction generates a type 4 
interrupt immediately upon completion of its 
execution. 

The CPU itself generates a type 0 interrupt 
immediately following execution of a DIY or 
IDlY (divide, integer divide) instruction if the 
calculated quotient is larger than the specified 
destination. 

If the trap flag (TF) is set, the CPU automatically 
generates a type 1 interrupt following every 
instruction. This is called single-step execution 
and is a powerful debugging tool that is discussed 
in more detail shortly. 

All internal interrupts (INT, INTO, divide error, 
and single-step) share these characteristics: 

1. The interrupt type code is either contained in 
the instruction or is predefined. 

2. No INT A bus cycles are run. 

3. Internal interrupts cannot be disabled, except 
for single-step. 

4. Any internal interrupt (except single-step) 
has higher priority than any external inter­
rupt (see table 2-3). If interrupt requests 
arrive on NMI and/or INTR during execu­
tion of an instruction that causes an internal 
interrupt (e.g., divide error), the internal 
interrupt is processed first. 

Interrupt Pointer Table 

The interrupt pointer (or interrupt vector) table 
(figure 2-30) is the link between an interrupt type 
code and the procedure that has been designated 
to service interrupts associated with that code. 
The interrupt pointer table occupies up to the first 
lk bytes of low memory. There may be up to 256 
entries in the table, one for each interrupt type 

3FFH r--------"I 
~ TY~~J~i:A~I~;)ER -

3FCH~ ______________ ~ 

AVAILABLE 
INTERRUPT 
POINTERS 
(224) - TYPE 33 POINTER: -(AVAILABLE) 

OS4H 

TYPE 32 POINTER: - (AVAILABLE) -
OSOH 
07FH 

TYPE 31 POINTER: - (RESERVED) -
RESERVED 
INTERRUPT 
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TYPE 5 POINTER: -
014H 

(RESERVED) -
TYPE 4 POINTER: - OVERFLOW -

010H 

1.BY~mf rN~I~:J~+ION 
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Figure 2-30. Interrupt Pointer Table 
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that can occur in the system. Each entry in the 
table is a doubleword pointer containing the 
address of the procedure that is to service inter­
rupts of that type. The higher-addressed word of 
the pointer contains the base address of the seg­
ment containing the procedure. The lower-ad­
dressed word contains the procedure's offset 
from the beginning of the segment. Since each 
entry is four bytes long, the CPU can calculate the 
location of the correct entry for a given interrupt 
type by simply multiplying (type*4). 

Table 2-3. Interrupt Priorities 

INTERRUPT PRIORITY 

Divide error, INT n, INTO highest 
NMI 
INTR 
Single-step lowest 

Space at the high end of the table that would be 
occupied by entries for interrupt types that cannot 
occur in a given application may be used for other 
purposes. The dedicated and reserved portions of 
the interrupt pointer table (locations OH through 
7FH), however, should not be used for any other 
purpose to insure proper system operation and to 
preserve compatibility with future Intel hardware 
and software products. 

After pushing the flags onto the stack, the 8086 or 
8088 activates an interrupt procedure by exe­
cuting the equivalent of an intersegment indirect 
CALL instruction. The target of the "CALL" is 
the address contained in the interrupt pointer 
table element located at (type*4). The CPU saves 
the address of the next instruction by pushing CS 
and IP onto the stack. These are then replaced by 
the second and first words of the table element, 
thus transferring control to the procedure. 

If multiple interrupt requests arrive simulta­
neously, the processor activates the interrupt pro­
cedures in priority order. Figure 2-31 shows how 
procedures would be activated in an extreme case. 
The processor is running in single-step mode with 
external interrupts enabled. During execution of a 
divide instruction, INTR is activated. Further­
more the instruction generates a divide error 
interrupt. Figure 2-31 shows that the interrupts 
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are recognized in turn, in the order of their 
priorities except for INTR. INTR is not recog­
nized until after the following instruction because 
recognition of the earlier interrupts cleared IF. Of 
couse interrupts could be reenabled in any of the 
interrupt response routines if earlier response to 
INTR is desired. 

As figure 2-31 shows, all main-line code is exe­
cuted in single-step mode. Also, because of the 
order of interrupt processing, the opportunity 
exists in each occurrence of the single-step routine 
to select whether pending interrupt routines 
(divide error and INTR routines in this example) 
are executed at full speed or in single-step mode. 

Interrupt Procedures 

When an interrupt service procedure is entered, 
the flags, CS, and IP are pushed onto the stack 
and TF and IF are cleared. The procedure may 
reenable external interrupts with the STI (set 
interrupt-enable flag) instruction, thus allowing 
itself to be interrupted by a request on INTR. 
(Note, however, that interrupts are not actually 
enabled until the instruction following STI has 
executed.) An interrupt procedure always may be 
interrupted by a request arriving on NMI. 
Software- or processor-initiated interrupts 
occurring within the procedure also will interrupt 
the procedure. Care must be taken in interrupt 
procedures that the type of interrupt being ser­
viced by the procedure does not itself inadver­
tently occur within the procedure. For example, 
an attempt to divide by 0 in the divide error (type 
0) interrupt procedure may result in the procedure 
being reentered endlessly. Enough stack space 
must be available to accommodate the maximum 
depth of interrupt nesting that can occur in the 
system. 

Like all procedures, interrupt procedures should 
save any registers they use before updating them, 
and restore them before terminating. It is good 
practice for an interrupt procedure to enable 
external interrupts for all but "critical sections" 
of code (those sections that cannot be interrupted 
without risking erroneous results). If external 
interrupts are disabled for too long in a pro­
cedure, interrupt requests on INTR can poten­
tially be lost. 
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Figure 2-31. Processing Simultaneous Interrupts 
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All interrupt procedures should be terminated 
with an IRET (interrupt return) instruction. The 
IRET instruction assumes that the stack is in the 
same condition as it was when the procedure was 
entered. It pops the top three stack words into IP, 
CS and the flags, thus returning to the instruction 
that was about to be executed when the interrupt 
procedure was activated. 

The actual processing done by the procedure is 
dependent upon the application. If the procedure 
is servicing an external device, it should output a 
command to the device instructing it to remove its 
interrupt request. It might then read status 
information from the device, determine the cause 
of the interrupt and then take action accordingly. 
Section 2.10 contains three typical interrupt pro­
cedure examples. 

Software-initiated interrupt procedures may be 
used as service routines ("supervisor calls") for 
other programs in the system. In this case, the 
interrupt procedure is activated when a program, 
rather than an external device, needs attention. 
(The "attention" might be to search a file for a 
record, send a message to another program, 
request an allocation of free memory, etc.) Soft­
ware interrupt procedures can be advantageous in 
systems that dynamically relocate programs dur­
ing execution. Since the interrupt pointer table is 
at a fixed storage location, procedures may 
"call" each other through the table by issuing 
software interrupt instructions. This provides a 
stable communication "exchange" that is 
independent of procedure addresses. The inter­
rupt procedures may themselves be moved so long 
as the interrupt pointer table always is updated to 
provide the linkage from the "calling" program 
via the interrupt type code. 

Single-Step (Trap) Interrupt 

When TF (the trap flag) is set, the 8086 or 8088 is 
said to be in single-step mode. In this mode, the 
processor automatically generates a type 1 inter­
rupt after each instruction. Recall that as part of 
its interrupt processing, the CPU automatically 
pushes the flags onto the stack and then clears TF 
and IF. Thus the processor is not in single-step 
mode when the single-step interrupt procedure is 
entered; it runs normally. When the single-step 
procedure terminates, the old flag image is 
restored from the stack, placing the CPU back ", 
into single-step mode. 
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Single-stepping is a valuable debugging tool. It 
allows the single-step procedure to act as a "win­
dow" into the system through which operation 
can be observed instruction-by-instruction. A 
single-step interrupt procedure, for example, can 
print or display register contents, the value of the 
instruction pointer (it is on the stack), key 
memory variables, etc., as they change after each 
instruction. In this way the exact flow of a pro­
gram can be traced in detail, and the point at 
which discrepancies occur can be determined. 
Other possible services that could be provided by 
a single-step routine include: 

• Writing a message when a specified memory 
location or 110 port changes value (or equals 
a specified value). 

• Providing diagnostics selectively (only for 
certain instruction addresses for instance). 

• Letting a routine execute a number of times 
before providing diagnostics. 

The 8086 and 8088 do not have instructions for 
setting or clearing TF directly. Rather, TF can be 
changed by modifying the flag-image on the 
stack. The PUSHF and POPF instructions are 
available for pushing and popping the flags 
directly (TF can be set by ORing the flag-image 
with OIOOH and cleared by ANDing it with 
FEFFH). After TF is set in this manner, the first 
single-step interrupt occurs after the first 
instruction following the IRET from the single­
step procedure. 

If the processor is single-stepping, it processes an 
interrupt (either internal or external) as follows. 
Control is passed normally (flags, CS and IP are 
pushed) to the procedure designated to handle the 
type of interrupt that has occurred. However, 
before the first instruction of that procedure is 
executed, the single-step interrupt is "recog­
nized" and control is passed normally (flags, CS 
and IP are pushed) to the type 1 interrupt pro­
cedure. When single-step procedure terminates, 
control returns to the previous interrupt pro­
cedure.Figure 2-31 illustrates this process in a 
case where two interrupts occur when the pro­
cessor is in single-step mode. 

Breakpoint Interrupt 

A type 3 interrupt is dedicated to the breakpoint 
interrupt. A breakpoint is generally any place in a 
program where normal execution is arrested so 
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that some sort of special processing may be per­
formed. Breakpoints typically are inserted into 
programs during debugging as a way of display­
ing registers, memory locations, etc., at crucial 
points in the program. 

The INT 3 (breakpoint) instruction is one byte 
long. This makes it easy to "plant" a breakpoint 
anywhere in a program. Section 2.10 contains an 
example that shows how a breakpoint may be set 
and how a breakpoint procedure may be used to 
place the processor into single-step mode. 

The breakpoint instruction also may be used to 
"patch" a program (insert new instructions) 
without recompiling or reassembling it. This may 
be done by saving an instruction byte, and replac­
ing it with an INT 3 (CCH) machine instruction. 
The breakpoint procedure would contain the new 
machine instructions, plus code to restore the 
saved instruction byte and decrement IP on the 
stack before returning, so that the displaced 
instruction would be executed after the patch 
instructions. The breakpoint example in section 
2.10 illustrates these principles. 

Note that patching a program requires machine­
instruction programming and should be under­
taken with considerable caution; it is easy to add 
new bugs to a program in an attempt to correct 
existing ones. Note also that a patch is only a tem­
porary measure to be used in exceptional condi­
tions. The affected code should be updated and 
retranslated as soon as possible. 

System Reset 

The 8086/8088 RESET line provides an orderly 
way to start or restart an executing system. When 
the processor detects the positive-going edge of a 
pulse on RESET, it terminates all activities until 
the signal goes low, at which time it initializes the 
system as shown in table 2-4. 

Since the code segment register contains FFFFH 
and the instruction pointer contains OH, the pro­
cessor executes its first instruction following 
system reset from absolute memory location 
FFFFOH. This location normally contains an 
inter segment direct JMP instruction whose target 
is the actual beginning of the system program. 
The LOC-86 utility supplies this JMP instruction 
from information in the program that identifies 
its first instruction. As external (maskable) inter-
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rupts are disabled by system reset, the system 
software should reenable interrupts as soon as the 
system is initialized to the point where they can be 
processed. 

Table 2-4. CPU State Following RESET 

CPU COMPONENT CONTENT 

Flags Clear 
Instruction Pointer OOOOH 
CS Register FFFFH 
DS Register OOOOH 
SS Register OOOOH 
ES Register OOOOH 
Queue Empty 

Instruction Queue Status 

When configured in maximum mode, the 8086 
and 8088 provide information about instruction 
queue operations on lines QSO and QS 1. Table 2-5 
interprets the four states that these lines can 
represent. 

The queue status lines are provided for external 
processors that receive instructions and/or 
operands via the 8086/8088 ESC (escape) instruc­
tion (see sections 2.5 and 2.8). Such a processor 
may monitor the bus to see when an ESC instruc­
tion is fetched and then track the instruction 
through the queue to determine when (and if) the 
instruction is executed. 

QSo 

0 

0 

1 

1 

Table 2-5. Queue Status Signals 
(Maximum Mode Only) 

QS1 
QUEUE OPERATION IN LAST 

CLKCYCLE 

0 No operation; default value 

1 First byte of an instruction was 
taken from the queue 

0 Queue was reinitialized 

1 Subsequent byte of an instruction 
was taken from the queue 

Processor Halt 

When the HL T (halt) instruction (see section 2.7) 
is executed, the 8086 or 8088 enters the halt state. 
This condition may be interpreted as "stop all 
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operations until an external interrupt occurs or 
the system is reset." No signals are floated during 
the halt state, a'nd the content of the address and 
data buses is undefined. A bus hold request 
arriving on the HOLD line (minimum mode) or 
either request/grant line (maximum mode) is 
acknowledged normally while the processor is 
halted. 

The halt state can be used when an event prevents 
the system from functioning correctly. An exam­
ple might be a power-fail interrupt. After 
recognizing that loss of power is imminent, the 
CPU could use the remaining time to move 
registers, flags and vital variables to (for example) 
a battery-powered CMOS RAM area and then 
halt until the return of power was signaled by an 
interrupt or system reset. 

Status Lines 

When configured in maximum mode, the 8086 
and 8088 emit eight status signals that can be used 
by external devices. Lines SO, S1 and 51 identify 
the type of bus cycle that the CPU is starting to 
execute (table 2-6). These lines are typically 
decoded by the 8288 Bus Controller. S3 and S4 
indicate which segment register was used to con­
struct the physical address being used in this bus 
cycle (see table 2-7). Line S5 reflects the state of 
the interrupt-enable flag. S6 is always O. S7 is a 
spare line whose content is undefined. 

Table 2-6. Bus Cycle Status Signals 

S2 S1 So TYPES OF BUS CYCLE 

0 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 1 0 Write 1/0 
0 1 1 HALT 
1 0 0 Instruction Fetch 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive; no bus cycle 

Table 2-7. Segment Register Status Lines 

S4 S3 SEGMENT REGISTER 

0 0 ES 
0 1 SS 
1 0 CS or none (1/0 or Interrupt Vector) 
1 1 OS 
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2.7 Instruction Set 

The 8086 and 8088 execute exactly the same 
instructions. This instruction set includes 
equivalents to the instructions typically found in 
previous microprocessors, such as the 8080/8085. 
Significant new operations include: 

• multiplication and division of signed and 
unsigned binary numbers as well as unpacked 
decimal numbers, 

• move, scan and compare operations for 
strings up to 64k bytes in length, 

• non-destructive bit testing, 

• byte translation from one code to another, 

• software-generated interrupts, and 

• a group of instructions that can help 
coordinate the activities of multiprocessor 
systems. 

These instructions treat different types of 
operands uniformly. Nearly every instruction can 
operate on either byte or word data. Register, 
memory and immediate operands may be 
specified interchangeably in most instructions (ex­
cept, of course, that immediate values may only 
serve as "source" and not "destination" 
operands). In particular, memory variables can be 
added to, subtracted from, shifted, compared, 
and so on, in place, without moving them in and 
out of registers. This saves instructions, registers, 
and execution time in assembly language pro­
grams. In high-level languages, where most 
variables are memory based, compilers, such as 
PL/M-86, can produce faster and shorter object 
programs. 

The 8086/8088 instruction set can be viewed as 
existing at two levels: the assembly level and the 
machine level. To the assembly language pro­
grammer, the 8086 and 8088 appear to have a 
repertoire of about 100 instructions. One MOV 
(move) instruction, for example, transfers a byte 
or a word from a register or a memory location or 
an immediate value to either a register or a 
memory location. The 8086 and 8088 CPUs, 
however, recognize 28 different MOV machine 
instructions ("move byte register to memory," 
"move word immediate to register," etc.). The 
ASM-86 assembler translates the assembly-level 
instructions written by a programmer into the 
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machine-level instructions that are actually exe­
cuted by the 8086 or 8088. Compilers such as 
PLlM-86 translate high-level language statements 
directly into machine-level instructions. 

The two levels of the instruction set address two 
different requirements: efficiency and simplicity. 
The numerous-there are about 300 in all-forms 
of machine-level instructions allow these instruc­
tions to make very efficient use of storage. For 
example, the machine instruction that increments 
a memory operand is three or four bytes long 
because the address of the operand must be 
encoded in the instruction. To increment a 
register, however, does not require as much 
information, so the instruction can be shorter. In 
fact, the 8086 and 8088 have eight different 
machine-level instructions that increment a dif­
ferent 16-bit register; these instructions are only 
one byte long. 

If a programmer had to write one instruction to 
increment a register, another to increment a 
memory variable, etc., the benefit of compact 
instructions would be offset by the difficulty of 
programming. The assembly-level instructions 
simplify the programmer's view of the instruction 
set. The programmer writes one form of the INC 
(increment) instruction and the ASM-86 
assembler examines the operand to determine 
which machine-level instruction to generate. 

This section presents the 8086/8088 instruction 
set from two perspectives. First, the assembly­
level instructions are described in functional 
terms. The assembly-level instructions are then 
presented in a reference table that breaks out all 
permissible operand combinations with execution 
times and machine instruction length, plus the 
effect that the instruction has on the CPU flags. 
Machine-level instruction encoding and decoding 
are covered in section 4.2. 

Data Transfer Instructions 

The 14 data transfer instructions (table 2-8) move 
single bytes and words between memory and 
registers as well as between register AL or AX and 
I/O ports. The stack manipulation instructions 
are included in this group as are instructions for 
transferring flag contents and for loading seg­
ment registers. 
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Table 2-8. Data Transfer Instructions 

GENERAL PURPOSE 

MOV Move byte or word 
PUSH Push word onto stack 
POP Pop word off stack 
XCHG Exchange byte or word 
XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 
OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 
LOS Load pointer using OS 
LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 
SAHF Store AH register in flags 
PUSHF Push flags onto stack 
POPF Pop flags off stack 

General Purpose Data Transfers 

MOV destination, source 

MOY transfers a byte or a word from the source 
operand to the destination operand. 

PUSH source 

PUSH decrements SP (the stack pointer) by two 
and then transfers a word from the source 
operand to the top of stack now pointed to by SP. 
PUSH often is used to place parameters on the 
stack before calling a procedure; more generally, 
it is the basic means of storing temporary data on 
the stack. 

POP destination 

POP transfers the word at the current top of stack 
(pointed to by SP) to the destination operand, 
and then increments SP by two to point to the 
new top of stack. POP can be used to move tem­
porary variables from the stack to registers or 
memory. 
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XCHG destination, source 

XCHG (exchange) switches the contents of the 
source and destination (byte or word) operands. 
When used in conjunction with the LOCK prefix, 
XCHG can test and set a semaphore that controls 
access to a resource shared by multiple processors 
(see section 2.5). 

XLAT translate-table 

XLAT (translate) replaces a byte in the AL 
register with a byte from a 256-byte, user-coded 
translation table. Register BX is assumed to point 
to the beginning of the table. The byte in AL is 
used as an index into the table and is replaced by 
the byte at the offset in the table corresponding to 
AL's binary value. The first byte in the table has 
an offset of O. For example, if AL contains 5H, 
and the sixth element of the translation table con­
tains 33H, then AL will contain 33H following 
the instruction. XLAT is useful for translating 
characters from one code to another, the classic 
example being ASCII to EBCDIC or the reverse. 

IN accumulator,port 

IN transfers a byte or a word from an input port 
to the AL register or the AX register, respectively. 
The port number may be specified either with an 
immediate byte constant, allowing access to ports 
numbered 0 through 255, or with a number 
previously placed in the DX register, allowing 
variable access (by changing the value in DX) to 
ports numbered from 0 through 65,535. 

OUT port, accumulator 

OUT transfers a byte or a word from the AL 
register or the AX register, respectively, to an out­
put port. The port number may be specified either 
with an immediate byte constant; allowing access 
to ports numbered 0 through 255, or with a 
number previously placed in register DX, allow­
ing variable access (by changing the value in DX) 
to ports numbered from 0 through 65,535. 

Address Object Transfers 

These instructions manipulate the addresses of 
variables rather than the contents or values of 
variables. They are most useful for list process­
ing, based variables, and string operations. 
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LEA destination,source 

LEA (load effective address) transfers the offset 
of the source operand (rather than its value) to the 
destination operand. The source operand must be 
a memory operand, and the destination operand 
must be a 16-bit general register. LEA does not 
affect any flags. The XLA T and string instruc­
tions assume that certain registers point to 
operands; LEA can be used to load these registers 
(e.g., 10'lding BX with the address of the translate 
table used by the XLA T instruction). 

LOS destination,source 

LDS (load pointer using DS) transfers a 32-bit 
pointer variable from the source operand, which 
must be a memory operand, to the destination 
operand and register DS. The offset word of the 
pointer is transferred to the destination operand, 
which may be any 16-bit general register. The seg­
ment word of the pointer is transferred to register 
DS. Specifying SI as the destination operand is a 
convenient way to prepare to process a source 
string that is not in the current data segment 
(string instructions assume that the source string 
is located in the current data segment and that SI 
contains the offset of the string). 

LES destination, source 

LES (load pointer using ES) transfers a 32-bit 
pointer variable from the source operand, which 
must be a memory operand, to the destination 
operand and register ES. The offset word of the 
pointer is transferred to the destination operand, 
which may be any 16-bit general register. The seg­
ment word of the pointer is transferred to register 
ES. Specifying DI as the destination operand is a 
convenient way to prepare to process a destina­
tion string that is not in the current extra segment. 
(The destination string must be located in the 
extra segment, and DI must contain the offset of 
the string.) 

Flag Transfers 

LAHF 

LAHF (load register AH from flags) copies SF, 
ZF, AF, PF and CF (the 8080/8085 flags) into 
bits 7, 6, 4, 2 and 0, respectively, of register AH 
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(see figure 2-32). The content of bits 5, 3 and 1 is 
undefined; the flags themselves are not affected. 
LAHF is provided primarily for converting 
8080/8085 assembly language programs to run on 
an 8086 or 8088. 

SAHF 

SAHF (store register AH into flags) transfers bits 
7,6,4,2 and 0 from register AH into SF, ZF, AF, 
PF and CF, respectively, replacing whatever 
values these flags previously had. OF, DF, IF and 
TF are not affected. This instruction is provided 
for 8080/8085 compatibility. 

PUSHF 

PUSHF decrements SP (the stack pointer) by two 
and then transfers all flags to the word at the top 
of stack pointed to by SP (see figure 2-32). The 
flags themselves are not affected. 

POPF 

POPF transfers specific bits from the word at the 
current top of stack (pointed to by register SP) 
into the 8086/8088 flags, replacing whatever 
values the flags previously contained (see figure 
2-32). SP is then incremented by two to point to 
the new top of stack. PUSHF and POPF allow a 
procedure to save and restore a calling program's 
flags. They also allow a program to change the 

LAHF, I I SAHF S , Z , U I A , U I P , U ,c 
17 6 5 4 3 2 1 01 
1_8080/8085 FLAGS_I 

I I 
I I 

~g~~ F, I u , U I U , U I 0 I 0, I , T , S I Z I U , A , U , P I U ,c I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED; VALUE IS INDETERMINATE 
o = OVERFLOW FLAG 
D = DIRECTION FLAG 
I = INTERRUPT ENABLE FLAG 
T = TRAP FLAG 
S = SIGN FLAG 
Z = ZERO FLAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG 

Figure 2-32. Flag Storage Formats 
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setting of TF (there is no instruction for updating 
this flag directly). The change is accomplished by 
pushing the flags, altering bit 8 of the memory­
image and then popping the flags. 

Arithmetic Instructions 

Arithmetic Data Formats 

8086 and 8088 arithmetic operations (table 2-9) 
may be performed on four types of numbers: 
unsigned binary, signed binary (integers), 
unsigned packed decimal and unsigned unpacked 
decimal (see table 2-10). Binary numbers may be 8 
or 16 bits long. Decimal numbers are stored in 
bytes, two digits per byte for packed decimal and 
one digit per byte for unpacked decimal. The pro­
cessor always assumes that the operands specified 
in arithmetic instructions contain data that repre­
sent valid numbers for the type of instruction 
being performed. Invalid data may produce 
unpredictable results. 

Table 2-9. Arithmetic Instructions 

ADDITION 

ADD Add byte or word 
ADC Add byte or word with carry 
INC Increment byte or word by 1 
AAA ASCII adjust for addition 
DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 
SBB Subtract byte or word with 

borrow 
DEC Decrement byte or word by 1 
NEG Negate byte or word 
CMP Compare byte or word 
AAS ASCII adjust for subtraction 
DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 
IMUL Integer multiply byte or word 
AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 
IDIV Intege~<:Iivide byte or word 
AAD ASCII adjust for division 
CBW Convert byte to word 
CWO Convert word to doubleword 
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Table 2-10. Arithmetic Interpretation of 8-Bit Numbers 

HEX BIT PATTERN 
UNSIGNED 

BINARY 

07 00000111 7 

89 1 0001001 137 

C5 1 1000101 197 

Unsigned binary numbers may be either 8 or 16 
bits long; all bits are considered in determining a 
number's magnitude. The value range of an 8-bit 
unsigned binary number is 0-255; 16 bits can 
represent values from 0 through 65,535. Addi­
tion, subtraction, multiplication and division 
operations are available for unsigned binary 
numbers. 

Signed binary numbers (integers) may be either 8 
or 16 bits long. The high-order (leftmost) bit is 
interpreted as the number's sign: 0 = positive and 
1 = negative. Negative numbers are represented 
in standard two's complement notation. Since 
the high-order bit is used for a sign, the range of 
an 8-bit integer is -128 through +127; 16-bit 
integers may range from -32,768 through 
+32,767. The value zero has a positive sign. 
Multiplication and division operations are pro­
vided for signed binary numbers. Addition and 
subtraction are performed with the unsigned 
binary instructions. Conditional jump instruc­
tions, as well as an "interrupt on overflow" 
instruction, can be used following an unsigned 
operation on an integer to detect overflow into 
the sign bit. 

Packed decimal numbers are stored as unsigned 
byte quantities. The byte is treated as having one 
decimal digit in each half-byte (nibble); the digit 
in the high-order half-byte is the most significant. 
Hexadecimal values 0-9 are valid in each half­
byte, and the range of a packed decimal number is 
0-99. Addition and subtraction are performed in 
two steps. First an unsigned binary instruction is 
used to produce an intermediate result in register 
AL. Then an adjustment operation is performed 
which changes the intermediate value in AL to a 
final correct packed decimal result. Multiplica­
tion and division adjustments are not available 
for packed decimal numbers. 
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SIGNED UNPACKED PACKED 
BINARY DECIMAL DECIMAL 

+7 7 7 

-119 invalid 89 

-59 invalid invalid 

Unpacked decimal numbers are stored as un­
signed byte quantities. The magnitude of the 
number is determined from the low-order half­
byte; hexadecimal values 0-9 are valid and are 
interpreted as decimal numbers. The high-order 
half-byte must be zero for multiplication and divi­
sion; it may contain any value for addition and 
subtraction. Arithmetic on unpacked decimal 
numbers is performed in two steps. The unsigned 
binary addition, subtraction and multiplication 
operations are used to produce an intermediate 
result in register AL. An adjustment instruction 
then changes the value in AL to a final correct 
unpacked decimal number. Division is performed 
similarly, except that the adjustment is carried out 
on the numerator operand in register AL first, 
then a following unsigned binary division instruc­
tion produces a correct result. 

Unpacked decimal numbers are similar to the 
ASCII character representations of the digits 0-9. 
Note, however, that the high-order half-byte of 
an ASCII numeral is always 3H. Unpacked 
decimal arithmetic may be performed on ASCII 
numeric characters under the following 
conditions: 

• the high-order half-byte of an ASCII 
numeral must be set to OH prior to 
multiplication or division. 

• unpacked decimal arithmetic leaves the 
high-order half-byte set to OH; it must be set 
to 3H to produce a valid ASCII numeral. 

Arithmetic Instructions and Flags 

The 8086/8088 arithmetic instructions post cer­
tain characteristics of the result of the operation 
to six flags. Most of these flags can be tested by 
following the arithmetic instruction with a condi­
tional jump instruction; the INTO (interrupt on 
overflow) instruction also may be used. The 
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various instructions affect the flags differently, as 
explained in the instruction descriptions. 
However, they follow these general rules: 

• CF (carry flag): If an addition results in a 
carry out of the high-order bit of the result, 
then CF is set; otherwise CF is cleared. If a 
subtraction results in a borrow into the high­
order bit of the result, then CF is set; other­
wise CF is cleared. Note that a signed carry is 
indicated by CF *" OF. CF can be used to 
detect an unsigned overflow. Two instruc­
tions, ADC (add with carry) and SBB (sub­
tract with borrow), incorporate the carry flag 
in their operations and can be used to per­
form multibyte (e.g., 32-bit, 64-bit) addition 
and subtraction. 

• AF (auxiliary carry flag): If an addition 
results in a carry out of the low-order half­
byte of the result, then AF is set; otherwise 
AF is cleared. If a subtraction results in a 
borrow into the low-order half-byte of the 
result, then AF is set; otherwise AF is 
cleared. The auxiliary carry flag is provided 
for the decimal adjust instructions and 
ordinarily is not used for any other purpose. 

• SF (sign flag): Arithmetic and logical 
instructions set the sign flag equal to the 
high-order bit (bit 7 or 15) of the result. For 
signed binary numbers, the sign flag will be a 
for positive results and 1 for negative results 
(so long as overflow does not occur). A con­
ditional jump instruction can be used follow­
ing addition or subtraction to alter the flow 
of the program depending on the sign of the 
result. Programs performing unsigned opera­
tions typically ignore SF since the high-order 
bit of the result is interpreted as a digit rather 
than a sign. 

• ZF (zero flag): If the result of an arithmetic 
or logical operation is zero, then ZF is set; 
otherwise ZF is cleared. A conditional jump 
instruction can be used to alter the flow of 
the program if the result is or is not zero. 

• PF (parity flag): If the low-order eight bits of 
an arithmetic or logical result contain an 
even number of I-bits, then the parity flag is 
set; otherwise it is cleared. PF is provided for 
8080/8085 compatibility; it also can be used 
to check ASCII characters for correct parity. 
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• OF (overflow flag): If the result of an 
operation is too large a positive number, or 
too small a negative number to fit in the 
destination operand (excluding the sign bit), 
then OF is set; otherwise OF is cleared. OF 
thus indicates signed arithmetic overflow; it 
can be tested with a conditional jump or the 
INTO (interrupt on overflow) instruction. 
OF may be ignored when performing 
unsigned arithmetic. 

Addition 

ADD destination,source 

The sum of the two operands, which may be bytes 
or words, replaces the destination operand. Both 
operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADD updates AF, 
CF, OF, PF, SF and ZF. 

ADC destination, source 

ADC (Add with Carry) sums the operands, which 
may be bytes or words, adds one if CF is set and 
replaces the destination operand with the result. 
Both operands may be signed or unsigned binary 
numbers (see AAA and DAA). ADC updates AF, 
CF, OF, PF, SF and ZF. Since ADC incorporates 
a carry from a previous operation, it can be used 
to write routines to add numbers longer than 16 
bits. 

INC destination 

INC (Increment) adds one to the destination 
operand. The operand may be a byte or a word 
and is treated as an unsigned binary number (see 
AAA and DAA). INC updates AF, OF, PF, SF 
and ZF; it does not affect CF. 

AAA 

AAA (ASCII Adjust for Addition) changes the 
contents of register AL to a valid unpacked 
decimal number; the high-order half-byte is 
zeroed. AAA updates AF and CF; the content of 
OF, PF, SF and ZF is undefined following execu­
tion of AAA. 
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DAA 

DAA (Decimal Adjust for Addition) corrects the 
result of previously adding two valid packed 
decimal operands (the destination operand must 
have been register AL). DAA changes the content 
of AL to a pair of valid packed decimal digits. It 
updates AF, CF, PF, SF and ZF; the content of 
OF is undefined following execution of DAA. 

Subtraction 

SUB destination,source 

The source operand is ~ubtracted from the 
destination operand, and the result replaces the 
destination operand. The operands may be bytes 
or words. Both operands may be signed or 
unsigned binary numbers (see AAS and DAS). 
SUB updates AF, CF, OF, PF, SF and ZF. 

SBB destination, source 

SBB (Subtract with Borrow) subtracts the source 
from the destination, subtracts one if CF is set, 
and returns the result to the destination operand. 
Both operands may be bytes or words. Both 
operands may be signed or unsigned binary 
numbers (see AAS and DAS). SBB updates AF, 
CF, OF, PF, SF and ZF. Since it incorporates a 
borrow from a previous operation, SBB may be 
used to write routines that subtract numbers 
longer than 16 bits. 

DEC destination 

DEC (Decrement) subtracts one from the destina­
tion, which may be a byte or a word. DEC 
updates AF, OF, PF, SF, and ZF; it does not 
affect CF. 

NEG destination 

NEG (Negate) subtracts the destination operand, 
which may be a byte or a word, from 0 and 
returns the result to the destination. This forms 
the two's complement of the number, effectively 
reversing the sign of an integer. If the operand is 
zero, its sign is not changed. Attempting to negate 
a byte containing -128 or a word containing 

Mnemonics © Intel, 1978 2-36 

-32,768 causes no change to the operand and sets 
OF. NEG updates AF, CF, OF, PF, SF and ZF. 
CF is always set except when the operand is zero, 
in which case it is cleared. 

CMP destination, source 

CMP (Compare) subtracts the source from the 
destination, which may be bytes or words, but 
does not return the result. The operands are 
unchanged, but the flags are updated and can be 
tested by a subsequent conditional jump instruc­
tion. CMP updates AF, CF, OF, PF, SF and ZF. 
The comparison reflected in the flags is that of the 
destination to the source. If a CMP instruction is 
followed by a 1G (jump if greater) instruction, for 
example, the jump is taken if the destination 
operand is greater than the source operand. 

AAS 

AAS (ASCII Adjust for Subtraction) corrects the 
result of a previous subtraction of two valid 
unpacked decimal operands (the destination 
operand must have been specified as register AL). 
AAS changes the content of AL to a valid 
unpacked decimal number; the high-order half­
byte is zeroed. AAS updates AF and CF; the con­
tent of OF, PF, SF and ZF is undefined following 
execution of AAS. 

DAS 

DAS (Decimal Adjust for Subtraction) corrects 
the result of a previous subtraction of two valid 
packed decimal operands (the destination 
operand must have been specified as register AL). 
DAS changes the content of AL to a pair of valid 
packed decimal digits. DAS updates AF, CF, PF, 
SF and ZF; the content of OF is undefined 
following execution of DAS. 

Multiplication 

MULsource 

MUL (Multiply) performs an unsigned multi­
plication of the source operand and the 
accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double-length 
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result is returned in AH and AL. If the source 
operand is a word, then it is multiplied by register 
AX, and the double-length result is returned in 
registers DX and AX. The operands are treated as 
unsigned binary numbers (see AAM). If the upper 
half of the result (AH for byte source, DX for 
word source) is nonzero, CF and OF are set; 
otherwise they are cleared. When CF and OF are 
set, they indicate that AH or DX contains signifi­
cant digits of the result. The content of AF, PF, 
SF and ZF is undefined following execution of 
MUL. 

IMULsource 

IMUL (Integer Multiply) performs a signed 
mUltiplication of the source operand and the 
accumulator. If the source is a byte, then it is 
mUltiplied by register AL, and the double-length 
result is returned in AH and AL. If the source is a 
word, then it is multiplied by register AX, and the 
double-length result is returned in registers DX 
and AX. If the upper half of the result (AH for 
byte source, DX for word source) is not the sign 
extension of the lower half of the result, CF and 
OF are set; otherwise they are cleared. When CF 
and OF are set, they indicate that AH or DX con­
tains significant digits of the result. The content 
of AF, PF, SF and ZF is undefined following 
execution of IMUL. 

AAM 

AAM (ASCII Adjust for Multiply) corrects the 
result of a previous multiplication of two valid 
unpacked decimal operands. A valid 2-digit 
unpacked decimal number is derived from the 
content of AH and AL and is returned to AH and 
AL. The high-order half-bytes of the multiplied 
operands must have been OH for AAM to pro­
duce a correct result. AAM updates PF, SF and 
ZF; the content of AF, CF and OF is undefined 
following execution of AAM. 

Division 

DIV source 

DIV (divide) performs an unsigned division of the 
accumulator (and its extension) by the source 
operand. If the source operand is a byte, it is 
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divided into the double-length dividend assumed 
to be in registers AL and AH. The single-length 
quotient is returned in AL, and the single-length 
remainder is returned in AH. If the source 
operand is a word, it is divided into the double­
length dividend in registers AX and DX. The 
single-length quotient is returned in AX, and the 
single-length remainder is returned in DX. If the 
quotient exceeds the capacity of its destination 
register (FFH for byte source, FFFFFH for word 
source), as when division by zero is attempted, a 
type 0 interrupt is generated, and the quotient and 
remainder are undefined. Nonintegral quotients 
are truncated to integers. The content of AF, CF, 
OF, PF, SF and ZF is undefined following execu­
tion of DIV. 

IDIV source 

IDIV (Integer Divide) performs a signed division 
of the accumulator (and its extension) by the 
source operand. If the source operand is a byte, it 
is divided into the double-length dividend 
assumed to be in registers AL and AH; the single­
length quotient is returned in AL, and the single­
length remainder is returned in AH. For byte in­
teger division, the maximum positive quotient is 
+127 (7FH) and the minimum negative quotient is 
-127 (SIH). If the source operand is a word, it is 
divided into the double-length dividend in 
registers AX and DX; the single-length quotient is 
returned in AX, and the single-length remainder 
is returned in DX. For word integer division, the 
maximum positive quotient is +32,767 (7FFFH) 
and the minimum negative quotient is -32,767 
(SOOIH). If the quotient is positive and exceeds 
the maximum, or is negative and is less than the 
minimum, the quotient and remainder are 
undefined, and a type 0 interrupt is generated. In 
particular, this occurs if division by 0 is 
attempted. Nonintegral quotients are truncated 
(toward 0) to integers, and the remainder has the 
same sign as the dividend. The content of AF, 
CF, OF, PF, SF and ZF is undefined following 
IDIV. 

AAD 

AAD (ASCII Adjust for Division) modifies the 
numerator in AL before dividing two valid 
unpacked decimal operands so that the quotient 
produced by the division will be a valid unpacked 
decimal number. AH must be zero for the subse-
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quent DIV to produce the correct result. The quo­
tient is returned in AL, and the remainder is 
returned in AH; both high-order half-bytes are 
zeroed. AAD updates PF, SF and ZF; the content 
of AF, CF and OF is undefined following execu­
tion of AAD. 

CBW 

CBW (Convert Byte to Word) extends the sign of 
the byte in register AL throughout register AH. 
CBW does not affect any flags. CBW can be used 
to produce a double-length (word) dividend from 
a byte prior to performing byte division. 

cwo 

CWD (Convert Word to Doubleword) extends the 
sign of the word in register AX throughout 
register DX. CWD does not affect any flags. 
CWD can be used to produce a double-length 
(doubleword) dividend from a word prior to per­
forming word division. 

Bit Manipulation Instructions 

The 8086 and 8088 provide three groups of 
instructions (table 2-11) for manipulating bits 
within both bytes and words: logical, shifts and 
rotates. 

Table 2-11 . Bit Manipulation Instructions 

LOGICALS 
NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 
SHLISAL Shift logical/arithmetic left 

byte orword 
SHR Shift logical right byte or word 
SAR Shift arithmetic right byte or 

word 
ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

orword 
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Logical 

The logical instructions include the boolean 
operators "not," "and," "inclusive or," and 
"exclusive or," plus a TEST instruction that sets 
the flags, but does not alter either of its operands. 

AND, OR, XOR and TEST affect the flags as 
follows: The overflow (OF) and carry (CF) flags 
are always cleared by logical instructions, and the 
content of the auxiliary carry (A F) flag is always 
undefined following execution of a logical 
instruction. The sign (SF), zero (ZF) and parity 
(PF) flags are always posted to reflect the result of 
the operation and can be tested by conditional 
jump instructions. The interpretation of these 
flags is the same as for arithmetic instructions. SF 
is set if the result is negative (high-order bit is I), 
and is cleared if the result is positive (high-order 
bit is 0). ZF is set if the result is zero, cleared 
otherwise. PF is set if the result contains an even 
number of I-bits (has even parity) and is cleared if 
the number of I-bits is odd (the result has odd 
parity). Note that NOT has no effect on the flags. 

NOT destination 

NOT inverts the bits (forms the one's comple­
ment) of the byte or word operand. 

AND destination,source 

AND performs the logical "and" of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
both corresponding bits of the original operands 
are set; otherwise the bit is cleared. 

OR destination,source 

OR performs the logical "inclusive or" of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
either or both corresponding bits in the original 
operands are set; otherwise the result bit is 
cleared. 

XOR destination, source 

XOR (Exclusive Or) performs the logical "exclu­
sive or" of the two operands and returns the 
result to the destination operand. A bit in the 
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result is set if the corresponding bits of the 
original operands contain opposite values (one is 
set, the other is cleared); otherwise the result bit is 
cleared. 

TEST destination, source 

TEST performs the logical "and" of the two 
operands (byte or word), updates the flags, but 
does not return the result, i.e., neither operand is 
changed. If a TEST instruction is followed by a 
JNZ (jump if not zero) instruction, the jump will 
be taken if there are any corresponding I-bits in 
both operands. 

Shifts 

T'he bits in bytes and words may be shifted 
arithmetically or logically. Up to 255 shifts may 
be performed, according to the value of the count 
operand coded in the instruction. The count may 
be specified as the constant I, or as register CL, 
allowing the shift count to be a variable supplied 
at execution time. Arithmetic shifts may be used 
to multiply and divide binary numbers by powers 
of two (see note in description of SAR). Logical 
shifts can be used to isolate bits in bytes or words. 

Shift instructions affect the flags as follows. AF is 
always undefined following a shift operation. PF, 
SF and ZF are updated normally, as in the logical 
instructions. CF always contains the value of the 
last bit shifted out of the destination operand. 
The content of OF is always undefined following 
a multibit shift. In a single-bit shift, OF is set if 
the value of the high-order (sign) bit was changed 
by the operation; if the sign bit retains its original 
value, OF is cleared. 

SHL/SAL destination, count 

SHL and SAL (Shift Logical Left and Shift 
Arithmetic Left) perform the same operation and 
are physically the same instruction. The destina­
tion byte or word is shifted left by the number of 
bits specified in the count operand. Zeros are 
shifted in on the right. If the sign bit retains its 
original value, then OF is cleared. 

SHR destination, source 

SHR (Shift Logical Right) shifts the bits in the 
destination operand (byte or word) to the right by 
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the number of bits specified in the count operand. 
Zeros are shifted in on the left. If the sign bit 
retains its original value, then OF is cleared. 

SAR destination, count 

SAR (Shift Arithmetic Right) shifts the bits in the 
destination operand (byte or word) to the right by 
the number of bits specified in the count operand. 
Bits equal to the original high-order (sign) bit are 
shifted in on the left, preserving the sign of the 
original value. Note that SAR does not produce 
the same result as the dividend of an 
"equivalent" IDIV instruction if the destination 
operand is negative and I-bits are shifted out. For 
example, shifting -5 right by one bit yields -3, 
while integer division of -5 by 2 yields -2. The 
difference in the instructions is that IDIV trun­
cates all numbers toward zero, while SAR trun­
cates positive numbers toward zero and negative 
numbers toward negative infinity. 

Rotates 

Bits in bytes and words also may be rotated. Bits 
rotated out of an operand are not lost as in a 
shift, but are "circled" back into the other "end" 
of the operand. As in the shift instructions, the 
number of bits to be rotated is taken from the 
count operand, which may specify either a con­
stant of I, or the CL register. The carry flag may 
act as an extension of the operand in two of the 
rotate instructions, allowing a bit to be isolated in 
CF and then tested by a JC (jump if carry) or JNC 
(jump if not carry) instruction. 

Rotates affect only the carry and overflow flags. 
CF always contains the value of the last bit 
rotated out. On multibit rotates, the value of OF 
is always undefined. In single-bit rotates, OF is 
set if the operation changes the high-order (sign) 
bit of the destination operand. If the sign bit 
retains its original value, OF is cleared. 

ROL destination, count 

ROL (Rotate Left) rotates the destination byte or 
word left by the number of bits specified in the 
count operand. 
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ROR destination, count 

ROR (Rotate Right) operates similar to ROL 
except that the bits in the destination byte or word 
are rotated right instead of left. 

RCL destination, count 

RCL (Rotate through Carry Left) rotates the bits 
in the byte or word destination operand to the left 
by the number of bits specified in the count 
operand. The carry flag (CF) is treated as "part 
of" the destination operand; that is, its value is 
rotated into the low-order bit of the destination, 
and itself is replaced by the high-order bit of the 
destination. 

RCR destination, count 

RCR (Rotate through Carry Right) operates 
exactly like RCL except that the bits are rotated 
right instead of left. 

String Instructions 

Five basic string operations, called prImitIves, 
allow strings of bytes or words to be operated on, 
one element (byte or word) at a time. Strings of 
up to 64k bytes may be manipulated with these 
instructions. Instructions are available to move, 
compare and scan for a value, as well as for mov­
ing string elements to and from the accumulator 
(see table 2-12). These basic operations may be 
preceded by a special one-byte prefix that causes 
the instruction to be repeated by the hardware, 
allowing long strings to be processed much faster 
than would be possible with a software loop. The 
repetitions can be terminated by a variety of con­
ditions, and a repeated operation may be inter­
rupted and resumed. 

The string instructions operate quite similarly in 
many respects; the common characteristics are 
covered here and in table 2-13 and figure 2-33 
rather than in the descriptions of the individual 
instructions. A string instruction may have a 
source operand, a destination operand, or both. 
The hardware assumes that a source string resides 
in the current data segment; a segment prefix byte 
may be used to override this assumption. A 
destination string must be in the current extra seg­
ment. The assembler checks the attributes of the 
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operands to determine if the elements of the 
strings are bytes or words. The assembler does 
not, however, use the operand names to address 
the strings. Rather, the content of register Sf 
(source index) is used as an offset to address the 
current element of the source string, and the con­
tent of register DI (destination index) is taken as 
the offset of the current destination string ele­
ment. These registers must be initialized to point 
to the source/destination strings before executing 
the string instruction; the LDS, LES and LEA 
instructions are useful in this regard. 

Table 2-12. String Instructions 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not 
equal/not zero 

MOVS Move byte or word string 

MOVSB/MOVSW Move byte or word string 

CMPS Compare byte or word 
string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

Table 2-13. String Instruction Register and 

SI 

01 

CX 

ALiAX 

OF 

ZF 

Flag Use . 

Index (offset) for source string 

Index (offset) for destination 
string 

Repetition counter 

Scan value 
Destination for LODS 
Source for STOS 

0= auto-increment SI, 01 
1 = auto-decrement SI, 01 

Scan/compare terminator 
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The string instructions automatically update SI 
and/or DI in anticipation of processing the next 
string element. The setting of DF (the direction 
flag) determines whether the index registers are 
auto-incremented (DF = 0) or auto-decremented 
(DF = 1). If byte strings are being processed, SI 
and/ or DI is adjusted byl; the adjustment is 2 for 
word strings. 

If a Repeat prefix has been coded, then register 
CX (count register) is decremented by 1 after each 
repetition of the string instruction; therefore, CX 
must be initialized to the number of repetitions 
desired before the string instruction is executed. If 
CX is 0, the string instruction is not executed, and 
control goes to the following instruction. 

Section 2.10 contains examples that illustrate the 
use of all the string instructions. 

REP/REPE/REPZ/REPNE/REPNZ 

Repeat, Repeat While Equal, Repeat While Zero, 
Repeat While Not Equal and Repeat While Not 
Zero are five mnemonics for two forms of the 
prefix byte that controls repetition of a subse­
quent string instruction. The different mnemonics 
are provided to improve program clarity. The 
repeat prefixes do not affect the flags. 

REP is used in conjunction with the MOYS 
(Move String) and STOS (Store String) instruc­
tions and is interpreted as "repeat while not end­
of-string" (CX not 0). REPE and REPZ operate 
identically and are physically the same prefix byte 
as REP. These instructions are used with the 
CMPS (Compare String) and SCAS (Scan String) 
instructions and require ZF (posted by these 
instructions) to be set before initiating the next 
repetition. REPNE and REPNZ are two 
mnemonics for the same prefix byte. These 
instructions function the same as REPE and 
REPZ except that the zero flag must be cleared or 
the repetition is terminated. Note that ZF does 
not need to be initialized before executing the 
repeated string instruction. 

Repeated string sequences are interruptable; the 
processor will recognize the interrupt before pro­
cessing the next string element. System interrupt 
processing is not affected in any way. Upon 
return from the interrupt, the repeated operation 
is resumed from the point of interruption. Note, 
however, that execution does not resume properly 
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if a second or third prefix (i.e., segrnent override 
or LOCK) has been specified in addition to any of 
the repeat prefixes. The processor "remembers" 
only one prefix in effect at the time of the inter­
rupt, the prefix that immediately precedes the 
string instruction. After returning from the inter­
rupt, processing resumes at this point, but any 
additional prefixes specified are not in effect. If 
more than one prefix must be used with a string 
instruction, interrupts may be disabled for the 
duration of the repeated execution. However, this 
will not prevent a non-maskable interrupt from 
being recognized. Also, the time that the system is 
unable to respond to interrupts may be unaccept­
able if long strings are being processed. 

MOVS destination-string, source-string 

MOYS (Move String) transfers a byte or a word 
from the source string (addressed by SI) to the 
destination string (addressed by DI) and updates 
SI and DI to point to the next string element. 
When used in conjunction with REP, MOYS per­
forms a memory-to-memory block transfer. 

MOVSB/MOVSW 

These are alternate mnemonics for the move 
string instruction. These mnemonics are coded 
without operands; they explicitly tell the 
assembler that a byte string (MOYSB) or a word 
string. (MOYSW) is to be moved (when MOYS is 
coded, the assembler determines the string type 
from the attributes of the operands). These 
mnemonics are useful when the assembler cannot 
determine the attributes of a string, e.g., a section 
of code is being moved. 

CMPS destination-string, source-string 

CMPS(Compare String) subtracts the destination 
byte or word (addressed by DI) from the source 
byte or word (addressed by SI). CMPS affects the 
flags but does not alter either operand, updates SI 
and DI to point to the next string element and 
updates AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the destination element to the 
source element. For example, if a JG (Jump if 
Greater) instruction follows CMPS, the jump is 
taken if the destination element is greater than the 
source element. If CMPS is prefixed with REPE 
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or REPZ, the operation is interpreted as "com­
pare while not end-of-string (CX not zero) and 
strings are equal (ZF = 1)." If CMPS is preceded 
by REPNE or REPNZ, the operation is inter­
preted as "compare while not end-of-string (CX 
not zero) and strings are not equal (ZF = 0)." 
Thus, CMPS can be used to find matching or dif­
fering string elements. 

SCAS destination-string 

SCAS (Scan String) subtracts the destination 
string element (byte or word) addressed by DI 
from the content of AL (byte string) or AX (word 
string) and updates the flags, but does not alter 
the destination string or the accumulator. SCAS 
also updates DI to point to the next string element 
and AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the scan value in ALI AX to the 
string element. If SCAS is prefixed with REPE or 
REPZ, the operation is interpreted as "scan while 
not end-of-string (CX not 0) and string-element = 
scan-value (ZF = 1)." This form may be used to 
scan for departure from a given value. If SCAS is 
prefixed with REPNE or REPNZ, the operation 
is interpreted as "scan while not end-of-string 
(CX not 0) and string-element is not equal to 
scan-value (ZF = 0)." This form may be used to 
locate a value in a string. 

LODS source-string 

LODS (Load String) transfers the byte or word 
string element addressed by SI to register AL or 
AX, and updates SI to point to the next element 
in the string. This instruction is not ordinarily 
repeated since the accumulator would be over­
written by each repetition, and only the last ele­
ment would be retained. However, LODS is very 
useful in software loops as part of a more com­
plex string function built up from string 
primitives and other instructions. 

STOS destination-string 

STOS (Store String) transfers a byte or word from 
register AL or AX to the string element addressed 
by DI and updates DI to point to the next location 
in the string. As a repeated operation, STOS pro­
vides a convenient way to initialize a string to a 
constant value (e.g., to blank out a print line). 
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Program Transfer Instructions 

The sequence of execution of instructions in an 
8086/8088 program is determined by the content 
of the code segment register (CS) and the instruc­
tion pointer (IP). The CS register contains the 
base address of the current code segment, the 64k 
portion of memory from which instructions are 
presently being fetched. The IP is used as an off­
set from the beginning of the code segment; the 
combination of CS and IP points to the memory 
location from which the next instruction is to be 
fetched. (Recall that under most operating condi­
tions, the next instruction to be executed has 
already been fetched from memory and is waiting 
in the CPU instruction queue.) The program 
transfer instructions operate on the instruction 
pointer and on the CS register; changing the con­
tent of these causes normal sequential execution 
to be altered. When a program transfer occurs, 
the queue no longer contains the correct instruc­
tion, and the BIU obtains the next instruction 
from memory using the new IP and CS values, 
passes the instruction directly to the EU, and then 
begins refilling the queue from the new location. 

Four groups of program transfers are available in 
the 8086/8088 (see table 2-14): unconditional 
transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions. 
Only the interrupt-related instructions affect any 
CPU flags. As will be seen, however, the execu­
tion of many of the program transfer instructions 
is affected by the states of the flags. 

Unconditional Transfers 

The unconditional transfer instructions may 
transfer control to a target instruction within the 
current code segment (intrasegment transfer) or 
to a different code segment (intersegment 
transfer). (The ASM-86 assembler terms an 
intrasegment target NEAR and an intersegment 
target FAR.) The transfer is made uncondition­
ally any time the instruction is executed. 

CALL procedure-name 

CALL activates an out-of-line procedure, saving 
information on the stack to permit a RET (return) 
instruction in the procedure to transfer control 
back to the instruction following the CALL. The 
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Table 2-14. Program Transfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL Call procedure 
RET Return from procedure 
JMP Jump 

CONDITIONAL TRANSFERS 

JA/JNBE Jump if above/ not below 
nor equal 

JAE/JNB Jump if above or 
equal/not below 

JB/JNAE Jump if below / not above 
nor equal 

JBE/JNA Jump if below or 
equal/ not above 

JC Jump if carry 
JE/JZ Jump if equal/zero 
JG/JNLE Jump if greater/not less 

nor equal 
JGE/JNL Jump if greater or 

equal/not less 
JLlJNGE Jump if less/not greater 

nor equal 
JLE/JNG Jump if less or equal/not 

greater 
JNC Jump if not carry 
JNE/JNZ Jump if not equal/not 

zero 
JNO Jump if not overflow 
JNP/JPO J u m p if not parity / parity 

odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity/parity 

even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LOOPZ Loop if equal/zero 
LOOPNE/LOOPNZ Loop if not equal/not 

zero 
JCXZ Jump if register CX = 0 

INTERRUPTS 

INT Interrupt 
INTO Interrupt ifoverflow 
IRET Interrupt return 
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assembler generates a different type of CALL 
instruction depending on whether the program­
mer has defined the procedure name as NEAR or 
FAR. For control to return properly, the type of 
CALL instruction must match the type of RET 
instruction that exits from the procedure. (The 
potential for a mismatch exists if the procedure 
and the CALL are contained in separately 
assembled programs.) Different forms of the 
CALL instruction allow the address of the target 
procedure to be obtained from the instruction 
itself (direct CALL) or from a memory location 
or register referenced by the instruction (indirect 
CALL). In the following descriptions, bear in 
mind that the processor automatically adjusts IP 
to point to the next instruction to be executed, 
before saving it on the stack. 

For an intrasegment direct CALL, SP (the stack 
pointer) is decremented by two and IP is pushed 
onto the stack. The relative displacement (up to 
±32k) of the target procedure from the CALL 
instruction is then added to the instruction 
pointer. This form of the CALL instruction is 
"self-relative" and is appropriate for position- in­
dependent (dynamically relocatable) routines in 
which the CALL and its target are in the same 
segment and are moved together. 

An intrasegment indirect CALL may be made 
through memory or through a register. SP is 
decremented by two and IP is pushed onto the 
stack. The offset of the target procedure is 
obtained from the memory word or 16-bit general 
register referenced in the instruction and replaces 
IP. 

For an intersegment direct CALL, SP is 
decremented by two, and CS is pushed onto the 
stack. CS is replaced by the segment word con­
tained in the instruction. SP again is decremented 
by two. IP is pushed onto the stack and is 
replaced by the offset word contained in the 
instruction. 

For an intersegment indirect CALL (which only 
may be made through memory), SP is 
decremented by two, and CS is pushed onto the 
stack. CS is then replaced by the content of the 
second word oithe doubleword memory pointer 
referenced by the instruction. SP again is 
decremented by two, and IP is pushed onto the 
stack and is replaced by the content of the first 
word of the doubleword pointer referenced by the 
instruction. 
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RET optional-pop-value 

RET (Return) transfers control from a procedure 
back to the instruction following the CALL that 
activated the procedure. The assembler generates 
an intrasegment RET if the programmer has 
defined the procedure NEAR, or an intersegment 
RET if the procedure has been defined as FAR. 
RET pops the word at the top of the stack 
(pointed to by register SP) into the instruction 
pointer and increments SP by two. If RET is 
intersegment, the word at the new top of stack is 
popped into the CS register, and SP is again 
incremented by two. If an optional pop value has 
been specified, RET adds that value to SP. This 
feature may be used to discard parameters pushed 
onto the stack before the execution of the CALL 
instruction. 

JMP target 

JMP unconditionally transfers control to the 
target location. Unlike a CALL instruction, JMP 
does not save any information on the stack, and 
no return to the instruction following the JMP is 
expected. Like CALL, the address of the target 
operand may be obtained from the instruction 
itself (direct JMP) or from memory or a register 
referenced by the instruction (indirect JMP). 

An intrasegment direct JMP changes the instruc­
tion pointer by adding the relative displacement 
of the target from the JMP instruction. If the 
assembler can determine that the target is within 
127 bytes of the JMP, it automatically generates a 
two-byte form of this instruction called a SHORT 
JMP; otherwise, it generates a NEAR JMP that 
can address a target within ±32k. Intrasegment 
direct JMPS are self-relative and are appropriate 
in position-independent (dynamically relocatable) 
routines in which the JMP and its target are in the 
same segment and are moved together. 

An intrasegment indirect JMP may be made 
either through memory or through a 16-bit 
general register. In the first case, the content of 
the word referenced by the instruction replaces 
the instruction pointer. In the second case, the 
new IP value is taken from the register named in 
the instruction. 

An intersegment direct JMP replaces IP and CS 
with values contained in the instruction. 
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An intersegment indirect JMP may be made only 
through memory. The first word of the 
doubleword pointer referenced by the instruction 
replaces IP, and the second word replaces CS. 

Conditional Transfers 

The conditional transfer instructions are jumps 
that mayor may not transfer control depending 
on the state of the CPU flags at the time the 
instruction is executed. These 18 instructions (see 
table 2-15) each test a different combination of 
flags for a condition. If the condition is "true," 
then control is transferred to the target specified 
in the instruction. If the condition is "false," 
then control passes to the instruction that follows 
the conditional jump. All conditional jumps are 
SHORT, that is, the target must be in the current 
code segment and within -128 to +127 bytes of 
the first byte of the next instruction (JMP OOH 
jumps to the first byte of the next instruction). 
Since the jump is made by adding the relative 
displacement of the target to the instruction 
pointer, all conditional jumps are self-relative and 
are appropriate for position-independent 
routines. 

Iteration Control 

The iteration control instructions can be used to 
regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like 
the conditional transfers, the iteration control 
instructions are self-relative and may only 
transfer to targets that are within -128 to +127 
bytes of themselves, i.e., they are SHORT 
transfers. 

LOOP short-label 

LOOP decrements CX by 1 and transfers control 
to the target operand if CX is not 0; otherwise the 
instruction following LOOP is executed. 

LOOPE/LOOPZ short-label 

LOOPE and LOOPZ (Loop While Equal and 
Loop While Zero) are different mnemonics for 
the same instruction (similar to the REPE and 
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Table 2-15. Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED "JUMP IF ... " 

JA/JNBE (CF OR ZF)=O above/not below nor equal 
JAE/JNB CF=O above or equal/ not below 
JB/JNAE CF=1 below / not above nor equal 
JBE/JNA (CF OR ZF)=1 below or equal/ not above 
JC CF=1 carry 
JE/JZ ZF=1 equal/zero 
JG/JNLE ((SF XOR OF) OR ZF)=O greater / not less nor equal 
JGE/JNL (SF XOR OF)=O greater or equal/not less 
JLlJNGE (SF XOR OF)=1 less/not greater nor equal 
JLE/JNG ((SF XOR OF) OR ZF)=1 less or equal/ not greater 
JNC CF=O not carry 
JNE/JNZ ZF=O not equal/ not zero 
JNO OF=O not overflow 
JNP/JPO PF=O not parity / parity odd 
JNS SF=O not sign 
JO OF=1 overflow 
JP/JPE PF=1 parity / parity equal 
JS SF=1 sign 

Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

REPZ repeat prefixes). CX is decremented by 1, 
and control is transferred to the target operand if 
ex is not 0 and if ZF is set; otherwise the instruc­
tion following LOOPE/LOOPZ is executed. 

LOOPNE/LOOPNZ short-label 

LOOPNE and LOOPNZ (Loop While Not Equal 
and Loop While Not Zero) are also synonyms for 
the same instruction. CX is decremented by 1, 
and control is transferred to the target operand if 
ex is not 0 and if ZF is clear; otherwise the next 
sequential instruction is executed. 

JCXZ short-label 

JeXZ (Jump If CX Zero) transfers control to the 
target operand if CX is O. This instruction is 
useful at the beginning of a loop to bypass the 
loop if ex has a zero value, i.e., to execute the 
loop zero times. 

Interrupt Instructions 

The interrupt instructions allow interrupt service 
routines to be activated by programs as well as by 
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external hardware devices. The effect of software 
interrupts is similar to hardware-initiated inter­
rupts. However, the processor does not execute 
an interrupt acknowledge bus cycle if the inter­
rupt originates in software or with an NMI. The 
effect of the interrupt instructions on the flags is 
covered in the description of each instruction. 

INT interrupt-type 

INT (Interrupt) activates the interrupt procedure 
specified by the interrupt-type operand. INT 
decrements the stack pointer by two, pushes the 
flags onto the stack, and clears the trap (TF) and 
interrupt-enable (IF) flags to disable single-step 
and maskable interrupts. The flags are stored in 
the format used by the PUSHF instruction. SP is 
decremented again by two, and the es register is 
pushed onto the stack. The address of the inter­
rupt pointer is calculated by multiplying 
interrupt-type by four; the second word of the in­
terrupt pointer replaces CS. SP again is 
decremented by two, and IP is pushed onto the 
stack and is replaced by the first word of the inter­
rupt pointer. If interrupt-type = 3, the assembler 
generates a short (1 byte) form of the instruction, 
known as the breakpoint interrupt. 
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Software interrupts can be used as "supervisor 
calls," i.e., requests for service from an operating 
system. A different interrupt-type can be used for 
each type of service that the operating system 
could supply for an application program. Soft­
ware interrupts also may be used to check out 
interrupt service procedures written for hardware­
initiated interrupts. 

INTO 

INTO (Interrupt on Overflow) generates a soft­
ware interrupt if the overflow flag (OF) is set; 
otherwise control proceeds to the following 
instruction without activating an interrupt pro­
cedure. INTO addresses the target interrupt pro­
cedure (its type is 4) through the interrupt pointer 
at location IOH; it clears the TF and IF flags and 
otherwise operates like INT. INTO may be writ­
ten following an arithmetic or logical operation to 
activate an interrupt procedure if overflow 
occurs. 

IRET 

IRET (Interrupt Return) transfers control back to 
the point of interruption by popping IP, CS and 
the flags from the stack. IRET thus affects all 
flags by restoring them to previously saved 
values. IRET is used to exit any interrupt 
procedure, whether activated by hardware or 
software. 

Processor Control Instructions 

These instructions (see table 2-16) allow programs 
to control various CPU functions. One group of 
instructions updates flags, and another group is 
used primarily for synchronizing the 8086 or 8088 
with external events. A final instruction causes 
the CPU to do nothing. Except for the flag opera.' 
tions, none of the processor control instructions 
affect the flags. 

Flag Operations 

CLC 

CLC (Clear Carry flag) zeroes the carry flag (CF) 
and affects no other flags. It (and CMC and STC) 
is useful in conjunction with the RCL and RCR 
instructions. 

2-47 

Table 2-16. Processor Control Instructions 

FLAG OPERATIONS 

STC Set carry flag 
CLC Clear carry flag 
CMC Complement carry flag 
STO Set direction flag 
CLO Clear direction flag 
STI Set interrupt enable flag 
CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST pin active 
ESC Escape to external processor 
LOCK Lock bus during next 

instruction 

NO OPERATION 

NOP No operation 

CMC 

CMC (Complement Carry flag) "toggles" CF to 
its opposite state and affects no other flags. 

STC 

STC (Set Carry flag) sets CF to 1 and affects no 
other flags. 

CLO 

CLD (Clear Direction flag) zeroes DF causing the 
string instructions to auto-increment the SI 
and/or DI index registers. CLD does not affect 
any other flags. 

STO 

STD (Set Direction flag) sets DF to 1 causing the 
string instructions to auto-decrement the SI 
and/or DI index registers. STD does not affect 
any other flags. 
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CLI 

CLI (Clear Interrupt-enable flag) zeroes IF. 
When the interrupt-enable flag is cleared, the 
8086 and 8088 do not recognize an external inter­
rupt request that appears on the INTR line; in 
other words maskable interrupts are disabled. A 
non-maskable interrupt appearing on the NMI 
line, however, is honored, as is a software inter­
rupt. CLI does not affect any other flags. 

STI 

STI (Set Interrupt-enable flag) sets IF to 1, en­
abling processor recognition of maskable inter­
rupt requests appearing on the INTR line. Note 
however, that a pending interrupt will not actu­
ally be recognized until the instruction following 
STI has executed. STI does not affect any other 
flags. 

External Synchronization 

HLT 

HL T (Halt) causes the 8086/8088 to enter the halt 
state. The processor leaves the halt state upon 
activation of the RESET line, upon receipt of a 
non-maskable interrupt request on NMI, or, if 
interrupts are enabled, upon receipt of a 
maskable interrupt request on INTR. HL T does 
not affect any flags. It may be used as an alter­
native to an endless software loop in situations 
where a program must wait for an interrupt. 

WAIT 

WAIT causes the CPU to enter the wait state 
while its TEST line is not active. WAIT does not 
affect any flags. This instruction is described 
more completely in section 2.5. 

ESC externa/-opcode, source 

ESC (Escape) provides a means for an external 
processor. to obtain an opcode and possibly a 
memory operand from the 8086 or 8088. The 
external opcode is a 6-bit immediate constant that 
the assembler encodes in the machine instruction 
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it builds (see table 2-26). An external processor 
may monitor the system bus and capture this 
opcode when the ESC is fetched. If the source 
operand is a register, the processor does nothing. 
If the source operand isa memory variable, the 
processor obtains the operand from memory and 
discards it. An external processor may capture the 
memory operand when the processor reads it 
from memory. 

LOCK 

LOCK is a one-byte prefix that causes the 
8086/8088 (configured in maximum mode) to 
assert its bus LOCK signal while the following 
instruction executes. LOCK does not affect any 
flags. See section 2.5 for more information on 
LOCK. 

No Operation 

NOP 

Nap (No Operation) causes the CPU to do 
nothing. Nap does not affect any flags. 

Instruction Set Reference Information 

Table 2-21 provides detailed operational informa­
tion for the 8086/8088 instruction set. The 
information is presented from the point of view 
of utility to the assembly language programmer. 
Tables 2-17, 2-18 and 2-19 explain the symbols 
used in table 2-21. Machine language instruction 
encoding and decoding information is given in 
Chapter 4. 

Instruction timings are presented as the number 
of clock periods required to execute a particular 
form (register-to-register, immediate-to-memory, 
etc.) of the instruction. If a system is running with 
a 5 MHz maximum clock, the maximum clock 
period is 200 ns; at 8 MHz, the clock period is 125 
ns. Where memory operands are used, "+EA" 
denotes a variable number of additional clock 
periods needed to calculate the operand's effec­
tive address (discussed in section 2.8). Table 2-20 
lists all effective address calculation times. 



IDENTIFIER 

destination 

source 

source-table 

target 

short-label 

accumulator 

port 

source-string 

dest-string 

count 

interrupHype 
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Table 2-17. Key to Instruction Coding Formats 

USED IN 

data transfer, 
bit manipulation 

data transfer, 
arithmetic, 
bit manipulation 

XLAT 

JMP,CALL 

condo transfer, 
iteration control 

IN,OUT 

IN,OUT 

string ops. 

string ops. 

shifts, rotates 

INT 

EXPLANATION 

A register or memory location that may contain data 
operated on by the instruction, and which receives (is 
replaced by) the result of the operation. 

A register, memory location or immediate value that is 
used in the operation, but is not altered by the instruc­
tion. 

Name of memory translation table addressed by register 
BX. 

A label to which control is to be transferred directly, or a 
register or memory location whose content is the 
address of the location to which control is to be transfer­
red indirectly. 

A label to which control is to be conditionally 
transferred; must lie within -128 to +127 bytes of the first 
byte of the next instruction. 

Register AX for word transfers, AL for bytes. 

An I/O port number; specified as an immediate value of 
0-255, or register OX (which contains port number in 
range 0-64k). 

Name of a string in memory that is addressed by register 
SI; used only to identify string as byte or word and 
specify segment override, if any. This string is used in 
the operation, but is not altered. 

Name of string in memory that is addressed by register 
01; used only to identify string as byte or word. This 
string receives (is replaced by) the result of the opera­
tion. 

Specifies number of bits to shift or rotate; written as 
immediate value 1 or register CL (which contains the 
count in the range 0-255). 

Immediate value of 0-255 identifying interrupt pOinter 
number. 

optional-pop-value RET Number of bytes (0-64k, ordinarily an even number) to 
discard from stack. 

external-opcode ESC Immediate value (0-63) that is encoded in the instruction 
for use by an external processor. 

2-49 Mnemonics © Intel. 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

Table 2-18. Key to Flag Effects 

IDENTIFIER EXPLANATION 

(blank) not altered 

0 cleared toO 

1 set to 1 

X set or cleared according 
to result 

U undefined-contains no 
reliable value 

R restored from previouSly-
saved value 

For control transfer instructions, the timings 
given include any additional clocks required to 
reinitialize the instruction queue as well as the 
time required to fetch the target instruction. For 
instructions executing on an 8086, four docks 
should be added for each instruction refer.en,ce to 
a word operand located at an odd memory 
address to reflect any additional operand bus 
cycles required. Similarly for instructions exe­
cuting on an 8088, four clocks should be added to 
each instruction reference to a 16-bit memory 
operand; this includes all stack operations. The 
required number of data references is listed in 
table 2-21 for each instruction to aid in this 
calculation. 

Several additional factors can increase actual 
execution time over the figures shown in table 
2-21. The time provided assumes that the instruc­
tion has already been prefetched and that it is 
waiting in the instruction queue, an assumption 
that is valid under most, but not all, operating 
conditions. A series of fast executing (fewer than 
two clocks per opcode byte) instructions can drain 
the queue and increase execution time. Execution 
time also is slightly impacted by the interaction of 
the EU and BIU when memory operands must be 
read or written. If the EU needs access to 
memory, it may have to wait for up to one clock if 
the BIU has already started an instruction fetch 
bus cycle. (The EU can detect the need for a 
memory operand and post a bus request far 
enough in advance of its need for this operand to 
avoid waiting a full 4-clock bus cycle). Of course 
the EU does not have to wait if the queue is full, 
because the BIU is idle. (This discussion assumes 
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Table 2-19. Key to Operand Types 

IDENTIFIER EXPLANAT,ION 

(no operands) No operands are written 

register An 8- or 16-bit general register 

reg 16 A 16-bit general register 

seg-reg A segment register 

accumulator Register AX or AL 
immediate A constant in the range 

O-FFFFH 

immed8 A constant in the range O-FFH 

memory 

mem8 
mem16 
source-table 

An 8- or f6-bit' memory 
10cation(1) 
An 8-bit memory 10cation(1) 
A 16-bit memory 10cation(1) 

Name of 256-byte translate 
table 

source-string Name of string addressed by 
registerSI 

dest-string 

ox 
short-label 

near-label 

far-label 

near-proc 

far-proc 

memptr16 

memptr32 

regptr16 

repeat 

Name of string addressed by 
register 01 

Register OX 

A label within -128 to +127 
bytes of the end of the instruc­
tion 
A label in current code 
segment 
A label in another code 
segment 
A procedure in current code 
segment 
A proceQure in another code 
segment 
A word containing the offset of 
the location in the current code 
segment to which control is to 
be transferred(l) 

A doubleword containing the 
offset and the segment base 
address of the location in 
another code segment to which 
control is to be transferred(l)i 
A 16-bit general register 
containing the offset of the 
location In the current code 
segment to which control is to 
be transferred 
A string instru\?tion repeat 
prefix 

(l)Any addressing mode-direct, register in­
direct, based, indexed, or based 
indexed-may be used (see section 2.8). 
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Table 2-20. Effective Address Calculation 
Time 

that the BIU can obtain the bus on demand, i.e., 
that no other processors are competing for the 
bus.) 

EA COMPONENTS CLOCKS· 

Displacement Only 6 With typical instruction mixes, the time actually 
required to execute a sequence of instructions will 
typically be within 5-100/0 of the sum of the 
individual timings given in table 2-21. Cases can 
be constructed, however, in which execution time 
may be much higher than the sum of the figures 
provided in the table. The execution time for a 
given sequence of instructions, however, is always 
repeatable, assuming comparable external condi­
tions (interrupts, coprocessor activity, etc.). If the 
execution time for a given series of instructions 
must be determined exactly, the instructions 
should be run on an execution vehicle such as the 
SDK-86 or the iSBC 86/12TM board . 

Base or Index Only (BX,BP,SI,DI) 5 
Displacement 

+ 9 
Base or Index (BX,BP ,SI,DI) 
Base BP+DI, BX+SI 7 

+ 
Index BP+SI, BX+DI 8 
Displacement BP+DI+DISP 

11 
+ BX+SI+DISP 

Base 
+ BP+SI+DISP 

12 
Index BX+DI+DISP 

• Add 2 clocks for segment override 

Table 2-21. Instruction Set Reference Data 

AAA I AAA (no operands) Flags 
ODITSZAPC 

ASCII adjust for addition U UU X U X 

Operands Clocks Transfers· Bytes Coding Example 

, (no operands) 4 - 1 AAA 

AAD J AAD (no operands) Flags 
ODITSZAPC 

ASCII adjust for division U XXUXU 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 60 - 2 AAD 

AAM IAAM (no operands) Flags 
ODITSZAPC 

ASCII adjust for multiply U X X UX U 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 83 - 1 AAM 

AAS I AAS (no operands) 
ASCII adjust for subtraction 

FI ODITSZAPC 
ags U UU X U X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 AAS 

·For the 8086, add four clocks for each 16·blt word transfer with an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

ADC IADC destination,source Flags 
ODITSZAPC 

Add with carry X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 ADC AX,SI 
register, memory 9+EA 1 2-4 ADC DX,BETA[SI] 
memory, register 16+EA 2 2-4 ADC ALPHA [BX] [SI], 01 
register, immediate 4 - 3-4 ADC BX,256 
memory, immediate 17+EA 2 3-6 ADC GAMMA,30H 
accumulator, immediate 4 - 2-3 ADC AL,5 

ADD IADD destination, source Flags 
ODITSZAPC 

Addition X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 ADD CX, OX 
register, memory 9+EA 1 2-4 ADD 01, [BX].ALPHA 
memory, register 16+EA 2 2-4 ADD TEMP, CL 
register, immediate 4 - 3-4 ADD CL,2 
memory, immediate 17+EA 2 3-6 ADD ALPHA,2 
accumulator, immediate 4 - 2-3 ADD AX, 200 

AND lAND destination,source Flags 
ODITSZAPC 

Logical and 0 XX U X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 AND AL,BL 
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD 
memory, register 16+ EA 2 2-4 AND ASCII [DI],AL 
register, immediate 4 - 3-4 AND CX,OFOH 
memory, immediate 17+EA 2 3-6 AND BETA,01H 
accumulator, immediate 4 - 2-3 AND AX,01010000B 

CALL I~ALL target Flags 
ODITSZAPC 

Call a procedure 

Operands Clocks Transfers· Bytes Coding Examples 

near-proc 19 1 3 CALL NEAR_PROC 
far-proc 28 2 5 CALL FAR_PROC 
memptr16 21 +EA 2 2-4 CALL PROC_TABLE [SI] 
regptr 16 16 1 2 CALL AX 
memptr32 37+EA 4 2-4 CALL [BX].TASK [SI] 

CBW I~BW (no operands) Flags 
ODITSZAPC 

Convert byte to word 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CBW 

'For the 8086, add .four clocks for each 16-blt word transfer With an odd address. For the 8088, add four clocks for each 1,6-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

CLC I CLC (no operands) Flags 
ODITSZAPC 

Clear carry flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLC 

CLD I CLD (no operands) Flags 
ODITSZAPC 

Clear direction flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLD 

CLI I CLI (no operands) Flags 
ODITSZAPC 

Clear interrupt flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLI 

CMC I CMC (no operands) Flags 
ODITSZAPC 

Complement carry flag X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CMC 

CMP I CMP destination,source Flags 
ODITSZAPC 

Compare destination to source X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 CMP BX, CX 
register, memory 9+EA 1 2-4 CMP DH, ALPHA 
memory, register 9+EA 1 2-4 CMP [BP + 2], SI 
register, immediate 4 - 3-4 CMP BL,02H 
memory, immediate 10+EA 1 3-6 CMP [BX].RADAR [DI], 3420H 
accumulator, immediate 4 - 2-3 CMP AL,00010000B 

CMPS I CMPS dest-string,source-string Flags 
ODITSZAPC 

Compare string X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2 
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS 10, KEY 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

CWD I CWO (no operands) Flags 
ODITSZAPC 

Convert word to doubleword 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 5 - 1 CWO 

DAA I DAA (no operands) Flags 
ODITSZAPC 

Decimal adjust for addition X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 DAA 

DAS I DAS (no operands) Flags 
ODITSZAPC 

Decimal adjust for subtraction U XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 DAS 

DEC I DEC destination Flags 
ODITSZAPC 

Decrement by 1 X . X X X X 
Operands Clocks Transfers· Bytes Codlng Example 

reg16 2 - 1 DEC AX 
reg8 3 - 2 DEC AL 
memory 15+EA 2 2-4 DEC ARRAY [SI] 

DIV I DIV source Flags 
ODITSZAPC 

Division, unsigned U U U UU U 

Operands Clocks Transfers· Bytes Coding Example 

reg8 80-90 - 2 DIV CL 
reg16 144-162 - 2 DIV BX 
mem8 (86-96) 1 2-4 DIV ALPHA 

+EA 
mem16 (150-168) 1 2-4 DIV TABLE [SI] 

+EA 

ESC ESC external-opcode,sourc.e Flags 0 D ITS ZAP C 
Escape 

Operands Clocks Transfers· Bytes Coding Example 

immediate, memory 8+EA 1 2·4 ESC 6,ARRAY [SI] 
immediate, register 2 - 2 ESC 20,AL 

-For the 8086, add four clocks for each 16-blt word transfer with an odd address. For the 8086, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

HLT I HL T (no operands) Flags 
ODITSZAPC 

Halt 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 HLT 

IDIV IIDIV source Flags 
ODITSZAPC 

Integer division U U U U U U 

Operands Clocks Transfers· Bytes Coding Example 

reg8 101-112 - 2 IDIV BL 
reg16 165-184 - 2 IDIV CX 
mem8 (107-118) 1 2-4 IDIV DIVISOR_BYTE [SI] 

+EA 
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD 

+EA 

IMUL IIMUL source Flags 
ODITSZAPC 

Integer multiplication X UUUUX 

Operands Clocks Transfers· Bytes Coding Example 

reg8 80-98 - 2 IMUL CL 
. reg16 128·154 - 2 IMUL BX 
mem8 (86-104) 1 2-4 IMUL RATE_BYTE 

+EA 
mem16 (134-160) 1 2-4 IMUL RATE_WORD [BP] [DI] 

+EA 

IN IN accumulator,port 
Flags 

ODITSZAPC 
Input byte or word 

Operands Clocks Transfers· Bytes Coding Example 

accumulator, immed8 10 1 2 IN AL, OFFEAH 
accumulator, DX 8 1 1 IN AX, OX 

INC IINC destination Flags 
ODITSZAPC 

Increment by 1 X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

reg16 2 - 1 INC CX 
reg8 3 - 2 INC BL 
memory 15+EA 2 2-4 INC ALPHA [01] [BX] 

'For the 8086, add four clocks for each 16·blt word transfer wIth an odd address. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

INT liNT interrupt-type Flags 
ODITSZAPC 

Interrupt o 0 

Operands Clocks Transfers· Bytes Coding Example 

immed8 (type = 3) 52 5 1 INT 3 
immed8 (type"* 3) 51 5 2 INT 67 

INTRt INTR (external maskable interrupt) 
Flags 

ODITSZAPC 
Interruptif INTR and IF=1 o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 61 7 N/A N/A 

INTO IINTO (no operands) Flags 
o 0 I. T S ZAP C 

Interrupt if overflow o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 53 or 4 5 1 INTO 

IRET IIRET (no operands) Flags 
ODITSZAPC 

Interrupt Return RRRRRRRRR 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 24 3 1 IRET 

JA/JNBE I JA/JNBE short-label Flags 
ODITSZAPC 

Jump if above/Jump if not below nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JA ABOVE 

JAE/JNB I JAE/JNB short-label Flags 
ODITSZAPC 

Jump if above or equal/Jump.if not below 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JAE ABOVE_EQUAL 

... 

JB/JNAE I JB/JNAE short-label Flags 
ODITSZAPC 

Jump if below/Jump if not above nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JB BELOW 

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

tlNTR is not an instruction; it is included in table 2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

JBE/JNA I JBE/JNA short-label Flags 
ODITSZAPC 

Jump if below or equal/ Jump if not above 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNA NOT_ABOVE 

JC I JC short-label Flags 
ODITSZAPC 

Jump if carry 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JC CARRY _SET 

JCXZ I JCXZ short-label Flags 
ODITSZAPC 

Jump if CX is zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 18 or 6 - 2 JCXZ COUNT_DONE 

JE/JZ I JEI JZ short-label Flags 
ODITSZAPC 

Jump if equal/Jump if zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JZ ZERO 

JG/JNLE IJG/JNLE short-label Flags 
ODITSZAPC 

Jump if greater/ Jump if not less nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JG GREATER 

JGE/JNL I JGE/JNL short-label Flags 
ODITSZAPC 

Jump if greater or equal/Jump if not less 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JGE GREATER_EQUAL 

JL/JNGE I JL/JNGE short-label Flags 
ODITSZAPC 

Jump if less/ Jump if not greater nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JL LESS 

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

JLE/JNG I JLE/JNG short-label Flags 
ODITSZAPC 

Jump if less or equal/Jump if not greater 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNG NOT_GREATER 

JMP I JMP target Flags 
ODITSZAPC 

Jump 

Operands Clocks Transfers· Bytes Coding Example 

short-label 15 - 2 JMP SHORT 
near-label 15 - 3 JMP WITHIN_SEGMENT 
far-label 15 - 5 JMP FAR_LABEL 
memptr16 18+EA 1 2-4 JMP [BX].TARGET 
regptr16 11 - 2 JMP CX 
memptr32 24+EA 2 2-4 JMP OTHER.SEG [SI] 

JNC I JNC short-label Flags 
ODITSZAPC 

Jump if not carry 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNC NOT_CARRY 

JNE/JNZ I JNE/JNZ short-label Flags 
ODITSZAPC 

Jump if not equal/Jump if not zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNE NOT _EQUAL 

JNO I JNO short-label Flags 
ODITSZAPC 

Jump if not overflow 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNO NO_OVERFLOW 

JNP/JPO I JNP/JPO short-label Flags 
ODITSZAPC 

Jump if not parity/Jump if parity odd 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JPO ODD_PARITY 

JNS I JNS short-label Flags 
ODITSZAPC 

Jump if not sign 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNS POSITIVE 

'For the 8086, add four clocks for each 16-blt word transfer with an odd addrtlss. For the 8088, add four clocks for each 16-blt word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

JO I JO short-label Flags 
OOITSZAPC 

Jump if overflow 

Operands Clocks Transfers· Bytes Coding Example 

short-label 160r4 - 2 JO SIGNEO_OVRFLW 

JP/JPE I JP/JPE short-label Flags 
OOITSZAPC 

Jump if parity I Jump if parity even 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JPE EVEN_PARITY 

JS I JS short-label Flags 
OOITSZAPC 

Jump if sign 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JS NEGATIVE 

LAHF I LAHF (no operands) Flags 
OOITSZAPC 

Load AH from flags 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) . 4 - 1 LAHF 

LOS I LOS destination,source Flags 
OOITSZAPC 

Load pOinter using OS 

Operands Clocks Transfers Bytes Coding Example 

reg16, mem32 16+EA 2 2-4 LOS SI,OATA.SEG [01] 

LEA I LEA destination,source Flags 
OOITSZAPC 

Load effective address 

Operands Clocks Transfers· Bytes Coding Example 

reg16, mem16 2+EA - 2-4 LEA BX, [BP] [01] 

LES I LES destination,source Flags 
OOITSZAPC 

Load pointer using ES 

Operands Clocks Transfers· Bytes Coding Example 

reg16, mem32 16+EA 2 2-4 LES 01, [BX].TEXT_BUFF 

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8086, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

LOCK I LOCK (no operands) Flags 
ODITSZAPC 

Lock bus 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 LOCK XCHG FLAG,AL 

LODS I LODS source-string Flags 
ODITSZAPC 

Load string 

Operands Clocks Transfers' Bytes Coding Example 

source-string 12 1 1 LODS CUSTOMER_NAME 
(repeat) source-string 9+13/rep 1/rep 1 REP LODS NAME 

LOOP I LOOP short-label Flags 
ODITSZAPC 

Loop 

Operands Clocks Transfers' Bytes Coding Example 

short-label 17/5 - 2 LOOP AGAIN 

LOOPE/LOOPZ I LOOPE/LOOPZ short-label Flags 
ODITSZAPC 

Loop if equal/Loop if zero 

Operands Clocks Transfers' Bytes Coding Example 

short-label 18 or 6 - 2 LOOPE AGAIN 

LOOPNE/LOOPNZ I LOO~NE/LOOPNZ sho.rt-Iabel Flags 
ODITSZAPC 

Loop If not equal I Loop If not zero 

Operands Clocks Transfers' Bytes Coding Example 

short-label 19 or 5 - 2 LOOPNE AGAIN 

NMlt I NMI (external nonmaskable interrupt) Flags 
OSITSZAPC 

Interrupt if NMI = 1 o 0 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 50' 5 N/A N/A 

'Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

tNMI is not an instruction; it is included in table 2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

MOV I MOV destination,source Flags 
ODITSZAPC 

Move 

Operands Clocks Transfers· Bytes Coding Example 

memory, accumulator 10 1 3 MOV ARRAY [SI], Al 
accumulator, memory 10 1 3 MOV AX, TEMP _RESULT 
register, register 2 - 2 MOV AX,CX 
register, memory 8+EA 1 2-4 MOV BP, STACK_TOP 
memory, register 9+EA 1 2-4 MOV COUNT [01], CX 
register, immediate 4 - 2-3 MOV Cl,2 
memory, immediate 10+EA 1 3-6 MOV MASK [BX] [SI], 2CH 
seg-reg, reg16 2 - 2 MOV ES, CX 
seg-reg, mem16 8+EA 1 2-4 MOV OS, SEGMENT_BASE 
reg16, seg-reg 2 - 2 MOV BP, SS 
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG_SAVE, CS 

MOVS I MOVS dest-string,source-string Flags 
ODITSZAPC 

Move string 

Operands Clocks Transfers· Bytes Coding Example 

dest-string, source-string 18 2 1 MOVS LINE EDIT_DATA 
(repeat) dest-string, source-string 9 + 17/rep 2/rep 1 REP MOVS SCREEN, BUFFER 

MOVSB/MOVSW I MOVSB/MOVSW (no operands) Flags 
ODITSZAPC 

Move string (byte/word) 

Operands Clocks Transfers· Bytes Coding Example 

(no op,erands) 18 2 1 MOVSB 
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW 

MUL I MUl source Flags 
ODITSZAPC 

Multiplication, unsigned X U U U U X 

Operands Clocks Transfers· Bytes Coding Example 

reg8 70-77 - 2 MUl Bl 
reg16 118-133 - 2 MUl CX 
mem8 (76-83) 1 2-4 MUl MONTH [SI] 

+EA 
mem16 (124-139) 1 2-4 MUl BAUD_RATE 

+EA 

"For the 8086, add four clocks for each 16-bit word transfer with an odd address. For Ihe 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (<Cont'd.) 

NEG I NEG destination 
Flags 

ODITSZAPC 
Negate X X X X X1* 

Operands Clocks Transfers' Bytes Coding Example 

register 3 - 2 NEG AL 
memory 16+EA 2 2-4 NEG MULTIPLIER 

*0 if destination == 0 

NOP I NOP (no operands) Flags 
ODITSZAPC 

No Operation 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 3 - 1 NOP 

NOT I NOT destination Flags 
ODITSZAPC 

Logical not 

Operands Clocks Transfers' Bytes Coding Example 

register 3 - 2 NOT AX 
memory 16+ EA 2 2-4 NOT CHARACTER 

OR lOR destination,source Flags ODITSZAPC 
Logical inclusive or 0 X X U X 0 

Operands Clocks Transfers' Bytes Coding Example 

register, register 3 - 2 OR AL, BL 
register, memory 9+EA 1 2-4 OR DX, PORT_ID [DI] 
memory, register 16+EA 2 2-4 OR FLAG_BYTE, CL 
accumulator, immediate 4 - 2-3 OR AL,01101100B 
register, immediate 4 - 3-4 OR CX,01H 
memory, immediate 17+EA 2 3-6 OR [BX].CMD_WORD,OCFH 

OUT lOUT port,accumulator Flags 
ODITSZAPC 

Output byte or word 

Operands Clocks Transfers' Bytes Coding Example 

immed8, accumulator 10 1 2 OUT 44, AX 
DX, accumulator 8 1 1 OUT DX, AL 

POP I POP destination Flags 
ODITSZAPC 

Pop word off stack 

Operands Clocks Transfers' Bytes Coding Example 

register 8 1 1 POP DX 
seg-reg (CS illegal) 8 1 1 POP DS 
memory 17+EA 2 2-4 POP PARAMETER 

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for· each 16-b!t word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

POPF I POPF (no operands) Flags 
ODITSZAPC 

Pop flags off stack R RR R R R R R R 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) B 1 1 POPF 

PUSH I PUSH source Flags ODITSZAPC 
Push word onto stack 

Operands Clocks Transfers' Bytes Coding Example 

register 11 1 1 PUSH SI 
seg-reg (CS legal) 10 1 1 PUSH ES 
memory 16+EA 2 2-4 PUSH RETURN_CODE [SI] 

PUSHF I PUSHF (no operands) Flags ODITSZAPC 
Push flags onto stack 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 10 1 1 PUSHF 

RCL ~ RCL destination,count Flags 
ODITSZAPC 

Rotate left through carry X X 

Operands Clocks Transfers' Bytes Coding Example 

register, 1 2 - 2 RCL CX,1 
register, CL B+4/bit - 2 RCL AL, CL 
memory, 1 15+EA 2 2-4 RCL ALPHA,1 
memory, CL 20+EA+ 2 2-4 RCL [BP].PARM, CL 

4/bit 

RCR IRCR designation,count Flags 
ODITSZAPC 

Rotate right through carry X X 

Operands Clocks Transfers' Bytes Coding Example 

register, 1 2 - 2 RCR BX,1 
register, CL B+4/bit - 2 RCR BL, CL 
memory, 1 15+EA 2 2-4 RCR [BX].STATUS,1 
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL 

4/bit 

REP I REP (no operands) Flags 
ODITSZAPC 

Repeat string operation 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 REP MOVS DEST, SRCE 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

REPE/REPZ IREPE/REPZ (no operands) Flags 
ODITSZAPC 

Repeat string operation while equal/while zero 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 REPE CMPS DATA, KEY 

REPNE/REPNZ I REPNE/REPNZ (no operands) Flags 
ODITSZAPC 

Repeat string operation while not equal/not zero 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 REPNE SCAS INPUT_LINE 

RET I RET optional-pop-value Flags 
ODITSZAPC 

Return from procedure 

Operands Clocks Transfers' Bytes Coding Example 

(intra-segment, no pop) 8 1 1 RET 
(intra-segment, pop) 12 1 3 RET 4 
(inter-segment, no pop) 18 2 1 RET 
(inter-segment, pop) 17 2 3 RET 2 

ROL I ROL destination,count Flags 
ODITSZAPC 

Rotate left X X 

Operands Clocks Transfers Bytes Coding Examples 

register, 1 2 - 2 ROL BX,1 
register,CL 8+4/bit - 2 ROL DI, CL 
memory, 1 15+EA 2 2-4 ROL FLAG_BYTE [DI],1 
memory, CL 20+EA+ 2 2-4 ROL ALPHA, CL 

4/bit 

ROR I ROR destination, count Flags 
ODITSZAPC 

Rotate right X X 

Operand Clocks Transfers' Bytes Coding Example 

register, 1 2 - 2 ROR AL,1 
register, CL 8+4/bit - 2 ROR BX, CL 
memory, 1 15+EA 2 2-4 ROR PORT _ST ATUS, 1 
memory, CL 20+EA+ 2 2-4 ROR CMD_WORD, CL 

4/bit 

SAHF I SAH F (no operands) Flags 
ODITSZAPC 

Store AH into flags R R R R R 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 4 - 1 SAHF 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. Forthe 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

SAL/SHL I SAL/SHL destination,count Flags 
OOITSZAPC 

Shift arithmetic left/Shift logical left X X 

Operands Clocks Transfers· Bytes Coding Examples 

register,1 2 - 2 SAL AL,1 
register, CL 8+4/bit - 2 SHL 01, CL 
memory,1 15+EA 2 2-4 SHL [BXj.OVERORAW,1 
memory, CL 20+EA+ 2 2-4 SAL STORE_COUNT, CL 

4/bit 

SAR I SAR destination,source Flags 
OOITSZAPC 

Shift arithmetic right X X X U X X 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 SAR OX,1 
register, CL 8+4/bit - 2 SAR 01, CL 
memory, 1 15+EA 2 2-4 SAR N_BLOCKS,1 
memory, CL 20+EA+ 2 2-4 SAR N_BLOCKS, CL 

4/bit 

see I SBB destination,source Flags 
OOITSZAPC 

Subtract with borrow X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 SBB BX, CX 
register, memory 9+EA 1 2-4 SBB 01, [BXj.PAYMENT 
memory, register 16+EA 2 2-4 SBB I;lALANCE, AX 
accumulator, immediate 4 - 2-3 SBB AX,2 
register, immediate 4 - 3-4 SBB CL,1 
memory, immediate 17+EA 2 3-6 SBB COUNT [SI], 10 

seAS I SCAS dest-string Flags 
OOITSZAPC 

Scan string X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

dest-string 15 1 1 SCAS INPUT_LINE 
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER 

SEGMENTt I SEGMENT override prefix Flags 
OOITSZAPC 

Override to specified segment 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 MOV SS:PARAMETER, AX 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

tASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table 

2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

SHR I SHR destination,count Flags 
ODITSZAPC 

Shift logical right X X 

Operands Clocks Transfers* Bytes Coding Example 

register, 1 2 - 2 SHR SI,1 
register, CL 8+4/bit - 2 SHR SI, CL 
memory, 1 15+EA 2 2-4 SHR ID_BYTE [SI] [BXJ, 1 
memory, CL 20+EA+ 2 2-4 SHR INPUT_WORD, CL 

4/bit 

SINGLE STEPt I SINGLE STEP (Trap flag interrupt) Flags ODITSZAPC 
Interrupt if TF = 1 o 0 

Operands Clocks Transfers* Bytes Coding Example 

(no operands) 50 5 N/A N/A 

STC I STC (no operands) Flags 
ODITSZAPC 

Set carry flag 1 

Operands Clocks . Transfers* Bytes Coding Example 

(no operands) 2 - 1 STC 

STO I STD (no operands) Flags ODITSZAPC 
Set direction flag 1 

Operands Clocks Transfers* Bytes Coding Example 

(no operands) 2 - 1 STD 

STI I S1I (no operands) Flags 
ODITSZAPC 

Set interrupt enable flag 1 

Operands Clocks Transfers* Bytes Coding Example 

(no operands) 2 - 1 STI 

STOS I STOS dest-string Flags ODITSZAPC 
Store byte or word string 

Operands Clocks Transfers* Bytes Coding Example 

dest-string 11 1 1 STOS PRINT_LINE 
(repeat) dest-string 9+10/rep 1/rep 1 REP STOS DISPLAY 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8066, add four clocks for each 16-bit word transfer. 

tSINGLE STEP is not an instruction; it is included in table 2-21 only for timing information. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

SUB I SUB destination,source Flags 
ODITSZAPC 

Subtraction X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 SUB CX, BX 
register, memory 9+EA 1 2-4 SUB DX, MATH_TOTAL [SI] 
memory, register 16+EA 2 2-4 SUB [BP+2], CL 
accumulator, immediate 4 - 2-3 SUB AL,.10 
register, immediate 4 - 3-4 SUB SI,5280 
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE,1000 

TEST I TEST destination,source Flags 
ODITSZAPC 

Test or non-destructive logical and 0 XXUXO 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 TEST SI, DI 
register, memory 9+EA 1 2-4 TEST SI, END_COUNT 
accumulator, immediate 4 - 2-3 TEST AL,00100000B 
register, immediate 5 - 3-4 TEST BX, OCC4H 
memory, immediate 11 +EA - 3-6 TEST RETURN_CODE, 01 H 

WAIT IWAIT (no operands) Flags 
ODITSZAPC 

Wait while TEST pin not asserted 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 3 + 5n - 1 WAIT 

XCHG IXCHG destination,source Flags 
ODITSZAPC 

Exchange 

Operands Clocks Transfers· Bytes Coding Example 

accumulator, reg16 3 - 1 XCHG AX, BX 
memory, register 17+EA 2 2-4 XCHG SEMAPHORE, AX 
register, register 4 - 2 XCHG AL, BL 

XLAT IXLAT source-table Flags 
ODITSZAPC 

Translate 

Operands Clocks Transfers· Bytes Coding Example 

source-table 11 1 1 XLAT ASCII_TAB 

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 
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Table 2-21. Instruction Set Reference Data (Cont'd.) 

XOR I XOR destination,source Flags 
ODITSZAPC 

Logical exclusive or 0 X X U X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 XOR CX, BX 
register, memory 9+EA 1 2-4 XOR CL, MASK_BYTE 
memory, register 16+EA 2 2-4 XOR ALPHA [51], OX 
accumulator, immediate 4 - 2-3 XOR AL,01000010B 
register, immediate 4 - 3-4 XOR SI,00C2H 
memory, immediate 17+EA 2 3-6 XOR RETURN_CODE,OD2H 

'For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer. 

2.8 Addressing Modes 

The 8086 and 8088 provide many different ways 
to access instruction operands. Operands may be 
contained in registers, within the instruction 
itself, in memory or in 110 ports. In addition, the 
addresses of memory and 110 port operands can 
be calculated in several different ways. These 
addressing modes greatly extend the flexibility 
and convenience of the instruction set. This sec­
tion briefly describes register and immediate 
operands and then covers the 8086/8088 memory 
and 110 addressing modes in detail. 

Register and Immediate Operands 

Instructions that specify only register operands 
are generally the most compact and fastest 
executing of all instruction forms. This is because 
the register "addresses" are encoded in instruc­
tions in just a few bits, and because these opera­
tions are performed entirely within the CPU (no 
bus cycles are run). Registers may serve as source 
operands, destination operands, or both. 

Immediate operands are constant data contained 
in an instruction. The data may be either 8 or 16 
bits in length. Immediate operands can be 
accessed quickly because they are available 
directly from the instruction queue; like a register 
operand, no bus cycles need to be rUn to obtain an 
immediate operand. The limitations of immediate 
operands are that they may only serve as source 
operands and that they are constant values. 
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Memory Addressing Modes 

Whereas the EU has direct access to register and 
immediate operands, memory operands must be 
transferred to or from the CPU over the bus. 
When the EU needs to read or write a memory 
operand, it must pass an offset value to the BIU. 
The BIU adds the offset to the (shifted) content of 
a segment register producing a 20-bit physical 
address and then executes the bus cycle(s) needed 
to access the operand. 

The Effective Address 

The offset that the EU calculates for a memory 
operand is called the operand's effective address 
or EA. It is an unsigned 16-bit number that 
expresses the operand's distance in bytes from the 
beginning of the segment in which it resides. The 
EU can calculate the effective address in several 
different ways. Information encoded in the 
second byte of the instruction tells the EU how to 
calculate the effective address of each memory 
operand. A compiler or assembler derives this 
information from the statement or instruction 
written by the programmer. Assembly language 
programmers have access to all addressing modes. 

Figure 2-34 shows that the execution unit 
calculates the EA by summing a displacement, the 
content of a base register and the content of an 
index register. The fact that any combination of 
these three components may be present in a given 
instruction gives rise to the variety of 8086/8088 
memory addressing modes. 
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Figure 2-34. Memory Address Computation 

The displacement element is an 8- or 16-bit 
number that is contained in the instruction. The 
displacement generally is derived from the posi­
tion of the operand name (a variable or label) in 
the program. It also is possible for a programmer 
to modify this value or to specify the displace­
ment explicitly. 

A programmer may specify that either BX or BP 
is to serve as a base register whose content is to be 
used in the EA computation. Similarly, either SI 
or DI may be specified as an index register. 
Whereas the displacement value is a constant, the 
contents of the base and index registers may 
change during execution. This makes it possible 
for one instruction to access different memory 
locations as determined by the current values in 
the base and/or index registers. 

It takes time for the EU to calculate a memory 
operand's effective address. In general, the more 
elements in the calculation, the longer it takes. 
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Table 2-20 shows how much time is required to 
compute an effective address for any combination 
of displacement, base register and index register. 

Direct Addressing 

Direct addressing (see figure 2-35) is the simplest 
memory addressing mode. No registers are in­
volved; the EA is taken directly from the displace­
ment field of the instruction. Direct addressing 
typically is used to access simple variables 
(scalars). 

Register Indirect Addressing 

The effective address of a memory operand may 
be taken directly from one of the base or index 
registers as shown in figure 2-36. One instruction 
can operate on many different memory locations 
if the value in the base or index register is updated 
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appropriately. The LEA (load effective address) 
and arithmetic instructions might be used to 
change the register value. 

Note that any 16-bit general register may be used 
for register indirect addressing with the JMP or 
CALL instructions. 

OISPLA CEM~N~ J 
EA 

Figure 2-35. Direct Addressing 

BX 
OR 

~.t---OR EA BP---~~I:::2~:::J 51 
OR 
01 

Figure 2-36. Register Indirect Addressing 

Based Addressing 

In based addressing (figure 2-37), the effective 
address is the sum of a displacement value and the 
content of register BX or register BP. Recall that 
specifying BP as a base register directs the BIU to 
obtain the operand from the current stack seg-

Figure 2-37. Based Addressing 
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ment (unless a segment override prefix is present). 
This makes based addressing with BP a very con­
venient way to access stack data (see section 2.10 
for examples). 

Based addressing also provides a straightforward 
way to address structures which may be located at 
different places in memory (see figure 2-38). A 
base register can be pointed at the base of the 
structure and elements of the structure addressed 
by their displacements from the base. Different 
copies of the same structure can be accessed by 
simply changing the base register. 

HIGH ADDRESS 

DISPLACEMENT 

I (RATE) I AGE ISTATUS 

+ 
r- RATE 

VAC I SICK 

DEPT I DIV 

~ BASE REGISTER I i EMPLOYEE 

t 
I EA t- I 

VAC SICK 

DEPT DIV 

EMPLOYEE 

LOW ADDRESS 

Figure 2-38. Accessing a Structure With Based 
Addressing 

Indexed Addressing 

In indexed addressing, the effective address is 
calculated from the sum of a displacement plus 
the content of an index register (SI or DI) as 
shown in figure 2-39. Indexed addressing often is 

Figure 2-39. Indexed Addressing 



8086 AND 8088 CENTRAL PROCESSING UNITS 

used to access elements in an array (see figure 
2-40). The displacement locates the beginning of 
the array, and the value of the index register 
selects one element (the first element is selected if 
the index register contains 0). Since all array 
elements are the same length, simple arithmetic 
on the index register will select any element. 

Based Indexed Addressing 

Based indexed addressing generates an effective 
address that is the sum of a base register, an 
index . register and a displacement (see figure 
2-41). Based indexed addressing is a very flexible 
mode because two address components can be 
varied at execution time. 

r 
I 
I 
1 
I 
I 
L 

~ DISPLACEMENT r-

IND.EX!QISTER 

I 14 I , 
I EA I-------- ...... 

HIGH ADDRESS 

ARRAY (8) 

.ARRAY(7) 

ARRAY(S) 

ARRAY(S) 

ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

... 1 WORD ..... 
LOW ADDRESS 

--t EA II _---------1 
, 

.. Figure 2-40. Accessing an Array With Indexed 
Addressing 

Based indexed addressing provides a convenient 
way for a procedure to address an array allocated 
on a stack (see figure 2-42). Register BP can con­
tain the offset of a reference point on the stack, 
typically the top of the stack after the procedure 
has saved registers and allocated local storage. 
The offset of the beginning of the array from the 
reference point can be expressed by a displace­
ment value, and an index register can be used to 
access individual array elements. 

Arrays contained in structures and matrices (two­
dimension arrays) also could be accessed with 
based indexed addressing. 

Ei7+r 
I EA 

Figure 2-41. Based Indexed Addressing 
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Figure 2-42. Accessing a Stack Array With Based Indexed Addressing 
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String Addressing 

String instructions do not use the normal memory 
addressing modes to access their operands. 
Instead, the index registers are used implicitly as 
shown in figure 2-43. When a string instruction is 
executed, SI is assumed to point to the first byte 
or word of the source string, and DI is assumed to 
point to the first byte or word of the destination 
string. In a repeated string operation, the CPUs 
automatically adjust SI and DI to obtain subse­
quent bytes or words. 

I/O Port Addressing 

If an I/O port is memory mapped, any of the 
memory operand addressing modes may be used 
to access the port. For example, a group of ter­
minals can be accessed as an "array." String 
instructions also can be used to transfer data to 
memory-mapped ports with an appropriate hard­
ware interface. Section 2.10 contains examples of 
addressing memory-mapped I/O ports. 
Two different addressing modes can be used to 
access ports located in the I/O space; these are 
illustrated in figure 2-44. In direct port address­
ing, the port number is an 8-bit immediate 

IOPCODE I 

SI J--.I SOURCE EA 

___ D_I __ ... J--.I DESTINATION EA I 

Figure 2-43. String Operand Addressing 
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operand. This allows fixed access to ports 
numbered 0-255. Indirect port addressing is 
similar to register indirect addressing of memory 
operands. The port number is taken from register 
DX and can range from 0 to 65,535. By pre­
viously adjusting. the content of register DX, one 
instruction can access any port in the I/O space. 
A group of adjacent ports can be accessed using a 
simple software loop that adjusts the value in DX. 

2.9 Programming Facilities 

A comprehensive integrated set of tools supports 
8086/8088 software development. These tools are 
programs that run on Intellec® 800 or Series II 
Microcomputer Development Systems under the 
ISIS-II operating system, the same hardware and 
operating system used to develop software for the 
8080 and the 8085. Since the 8086 and 8088 are 
software-compatible with one another, the same 
tools are used for both processors to provide 
programmers with a uniform development 
environment. 

DIRECT PORT ADDRESSING 

~ 
~rl P-O-R-T-AD-D-R-E-Ss"l 

INDIRECT PORT ADDRESSING 

Figure 2-44. I/O Port Addressing 



8086 AND 8088 CENTRAL PROCESSING UNITS 

Software Development Overview 

A program that will ultimately execute on an 
SOS6- or SOSS-based system is developed in steps 
(see figure 2-45). The overall program is com­
posed of functional units called modules. For 
purposes of this discussion, a module is a section 
of code that is separately created, edited, and 
compiled or assembled. A very small program 
might consist of a single module; a large program 
could be comprised of 100 or more modules. The 
SOS6/S0SS LlNK-S6 utility binds modules 
together into a single program. (The module 
structure of a program is critical to its successful 
development and maintenance; see section 2.10 
for guidelines.) 

SOS6 and SOSS modules can be written in either 
PLlM-S6 or ASM-S6 (see table 2-22). PLlM-S6 is 
a high-level language suitable for most 
microprocessor applications. It is easy to use, 
even by programmers who have little experience 
with microprocessors. Because it reduces software 
development time, PLlM-S6 is ideal for most of 
the programming in any application, especially 
applications that must get to market quickly. 

ASM-S6 is the SOS6/S0SS assembly language. 
ASM-S6 provides the programmer who is familiar 
with the CPU architecture, access to all processor 
features. For critical code segments within pro­
grams that make sophisticated use of the hard­
ware, have extremely demanding performance or 
memory constraints, ASM-S6 is the best choice. 

LOAD 
AND 

EXECUTE 

(m'6Wl~~ ) 

Figure 2-45. Software Development Process 
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Table 2·22. PLlM·861 ASM·86 Characteristics 

PL/M-86 

• Fast Development 

• Less Programmer Training 

• Detailed Hardware Knowledge Not Required 

The languages are completely compatible, and a 
judicious combination of the two often makes 
good sense. Prototype software can be developed 
rapidly with PLlM·86. When the system is 
operating correctly, it can be analyzed to see 
which sections can best profit from being written 
in ASM·86. Since the logic of these sections 
already has been debugged, selective rewriting can 
be done quickly and with low risk. 

Each PLlM·86 or ASM-86 module (called a 
source moduel) is keyed into the Intellec® system 
using the ISIS-II text editor and is stored as a 
diskette file. This source file is then input to the 
appropriate language translator (ASM-86 
assembler or PL/M-86 compiler). The language 
translator creates a diskette file from the source 
file, which is called a relocatable object module. 
The translator also lists the program and flags any 
errors detected during the translation. The 
relocatable object module contains the 8086/8088 
machine instructions that the translator created 
from the statements in the source module. The 
term "relocatable" refers to the fact that all 
references to memory locations in the module are 
relative, rather than being absolute memory 
addresses. The module generally is not executable 
until the relative references are changed to the 
actual memory locations where the module will 
reside in the execution system's memory. The pro­
cess of changing the relative references to 
absolute memory locations is called locating. 

There are very good reasons for not locating 
modules when they are translated. First, the exe­
cution system's physical memory configuration 
(where RAM and ROM/PROM segments are 
actually located in the megabyte memory space) 
may not be known at the time the modules are 
written. Second, it is desirable to be able to use a 
common module (e.g., a square root routine) in 
more than one system. If absolute addresses were 
assigned at translation time, the common module 
would either have to occupy the same physical 
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ASM-86 

• Fastest ExecutionSpeed 

• Smallest Memory Requirements 

• Access To All Processor Facilities 

addresses in every system, or separate versions 
with different addresses would have to be main· 
tained for each system. When locating is deferred; 
a single version of a common routine can be used 
by any number of systems. Finally, the locations 
of modules typically change as a system is 
developed, maintained and enhanced. Separating 
the location process from the translation process 
means that as modifications are made, unchanged 
modules only need to be relocated, not 
retranslated. 

Relocatable object modules may be placed into 
special files called libraries, using the LIB-86 
library manager program. Libraries provide a 
convenient means of collecting groups of related 
modules so that they can be accessed automati­
cally by the LINK-86 program. 

When enough relocatable object modules have 
been created to test the system, or part of it, the 
modules are linked and located. Linking com­
bines all the separate· modules into a single pro­
gram. Locating changes the relative memory 
references in the program to the actual memory 
locations where the program will be loaded in the 
execution system. The link and locate process also 
is referred to as R & L, for relocation and linkage. 

Two other programs round out the software 
development tools available for the 8086 and 
8088. OH-86 converts an absolute object file into 
a hexadecimal format used by some PROM pro­
grammers and system loaders (for example, the 
SDK-86 and iSBC 957™ loaders). CONV-86 can 
do most of the conversion work required to 
translate 8080/8085 assembly language source 
modules into ASM-86 source modules. 

The 8086/8088 software development facilities 
are covered in more detail in the remainder of this 
section. However, these are only introductions to 
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the use of these tools. Complete documentation is 
available in the following publications available 
from Intel's Literature Department: 

ISIS-II: 

ISIS-II System User's Guide, Order No. 9800306 

ASM-86: 

MCS-86 Assembly Language Reference Manual, 
Order No. 9800640 

MCS-86 Assembler Operating Instructions for 
ISIS-II Users, Order No. 9800641 

PLlM-86: 

PLIM-86 Programming Manual, Order No. 
9800466 

ISIS-II PLIM-86 Compiler Operator's Manual, 
Order No. 9800478 

LINK-86, LOC-86, LIB-86, OH-86: 

MCS-86 Software Development Utilities 
Operating Instructions for ISIS-II Users, Order 
No. 9800639 

CONV-86: 

MCS-86 Assembly Language Converter 
Operating Instructions for ISIS-II Users, Order 
No. 9800642 

PLlM-86 

PLlM-86 is a general-purpose, high-level 
language for programming the 80S6 and SOSS 
microprocessors. It is an extension of PL/M-80, 
the most widely-used, high-level programming 
language for microprocessors. (PL/M-SO source 
programs can be processed by the PL/M-86 com­
piler; the resulting object program is generally 
reduced by 15-30% in size.) PLlM-S6 is suitable 
for all types of microprocessor software from 
operating systems to application programs. 

PLlM-S6's purpose is simple: to reduce the time 
and cost of developing and maintaining software 
for the S086 and 80SS. It accomplishes this by 
creating a programming environment that, for the 
most part, is distinct from the architecture of the 
CPUs. Registers, segments, addressing modes, 
stacks, etc., are effectively "invisible" to the 
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PL/M-86 programmer. Instead, the processors 
appear to respond to simple commands and 
familiar algebraic expressions. The responsibility 
for translating these source statements into the 
machine instructions ultimately required to exe­
cute on the SOS6/S0SS is assumed by the PLlM-S6 
compiler. By "hiding" the details of the machine 
architecture, PL/M-86 encourages programmers 
to concentrate on solving the problem at hand. 
Furthermore, because PL/M-S6 is closer to 
natural· language, it is easier to "think in 
PLlM-S6" than it is to "think in assembly 
language." This speeds up the expression of a 
program solution, and, equally important, makes 
that solution easier for someone other than the 
original programmer to understand. PLlM-S6 
also contains all the constructs necessary for 
structured programming. 

Statements and Comments 

A programmer builds a PLlM-S6 program by 
writing statements and comments (see figure 
2-46). There are several different types of 
statements in PL/M-S6; they always end with a 
semicolon. Blanks can be used freely before, 
within, and after statements to improve read­
ability. A statement also may span more than one 
line. . 

The characters "1*" start a comment, and the 
characters "*1" end it; any characters may be 
used in between. Comments do not affect the exe­
cution of a PLlM-S6 program, but all good pro­
grams are thoughtfully commented. Comments 
are notes that document and clarify the program's 
operation; they may be written virtually anywhere 
in a PLlM-86 program. 

Data Definition 

Most PLlM-S6 programs begin by defining the 
data items (variables) with which they are going to 
work. An individual PLlM-S6 data element is 
called a scalar. Every scalar variable has a 
programmer-supplied name up to 31 characters 
long, and a type. PLlM-S6 supports five types of 
scalars: byte, word, integer , real, and pointer. 
Table 2-23 lists the characteristics of these 
PL/M-86 data types. 
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I*TRAFFIC DATA RECORDER CONTROL PROGRAM* 
*VERSION 2.2, RELEASE 5, 23APR79. * 
*THIS RELEASE FIXES THREE BUGS* 
*DOCUMENTED IN PROBLEM REPORT #16. * I 

I*COMPUTE TOTAL PAYMENT DUE* I 
TOTAL = PRINCIPAL + INTEREST; 

IF TERMINAL$READY 
THEN CALL FILL$BUFFER; 
ELSE CALL WAIT (50); I*WAIT 50 MS FOR RESPONSE* 1 

Figure 2-46. PL/M-86 Statements and Comments 

Table 2-23. PL/M-86 Data Types 

TYPE BYTES RANGE USAGE 

BYTE 1 o to 255 Unsigned Integer, Character 

WORD 2 o to 65,535 Unsigned Integer 

INTEGER 2 
-32,768 to 

Signed Integer 
+32,767 

REAL 4 
1 x 10-38 to 

Floating Point 3.37 x 10+38 

POINTER 2/4 NIA 

Variables are defined by writing a DECLARE 
statement of this form: 

DECLARE scalar-name type; 

Options of the DECLARE statement can be used 
to specify an initial value for the scalar and to 
define a series of items in a shorthand form. 

Besides scalar variables, scalar constants may be 
used in PL/M-86 programs (see figure 2-47). 
Constants may be written "as is" or may be given 
names to improve program clarity. 

Scalars'can be aggregated into named collections 
of data such as arrays and structures. An array is 
a collection of scalars of the same type (all 
integer, all real, etc.). Arrays are useful for 
representing data that has a repetitive nature. For 
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Address Manipulation 

example, monthly rainfall samples could be 
represented as an array of 12 elements, one for 
each month: 

DECLARE RAINFALL (12) REAL; 

Each element in an array is accessible by a 
number called a subscript which is the element's 
relative location in the array. In PLlM-86, the 
first element in an array has a subscript of 0; it is 
considered the "Oth".eIement. Thus, RAINFALL 
(11) refers to December's sample. The subscript 
need not be a constant; variables and expressions 
also may be used as subscripts. 

Strings of character data are typically defined as 
byte arrays. Characters can be accessed with 
subscripts or with powerful string-handling func­
tions built into PLlM-86. 
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10 "DECIMAL NUMBER" 
OAH "HEXADECIMAL NUMBER" 
12Q "OCTAL NUMBER" 

00001010B "BINARY NUMBER" 
10.0 "FLOATING POINT NUMBER" 

1.0E1 "FLOATING POINT NUMBER" 
'A' "CHARACTER" 

"CONSTANTS MAY BE GIVEN NAMES" 
DECLARE STATUS$PORT LITERALLY 'OFFEH'; 
DECLARE THRESHOLD LITERALLY '98.6'; 

Figure 2-47. PL/M-86 Constants 

A structure is a collection of related data elements 
that do not necessarily have the same type. The 
elements are related by virtue of "belonging" to 
the entity represented by the structure. Here is a 
simple structure declaration: 

DECLARE BRIDGE STRUCTURE 

(SPAN 

YR$BUILT 

WORD, 

BYTE, 

AVG$TRAFFIC REAL); 

The year the bridge was built could be accessed by 
writing BRIDGE. YR$BUIL T; the structure ele­
ment name is "qualified" by the dot and the 
structure name. This allows structures with the 
same element names to be distinguished from 
each other (e.g., HIGHWAY.YR$BUILT). 

Arrays and structures can be combined into more 
complex data aggregates: 

• array elements may be structures rather than 
scalars, 

• a structure element may be an array, 

• structures in arrays may themselves contain 
arrays. 

Figure 2-48 provides sample PLlM-86 data 
declarations. 

Assignment Statement 

Data that has been defined can be operated on 
with PLlM-86 executable statements. The fun­
damental executable statement is the assignment 
statement, written in this form: 

variable-name = expression; 

This means "evaluate the expression and assign 
(move) the result to the variable." 

There are three basic classes of expressions in 
PLlM-86; arithmetic, relational and logical (see 
table 2-24 and figure 2-49). All expressions are 
combinations of operands and operators, 
although an expression can consist of a single 
operand. Operands are variables and constants; 
operators vary according to the type of expres­
sion. Evaluation of an expression always yields a 
single result; different classes of expressions yield 
different types of results. 

Table 2-24. Characteristics of PL/M-86 Expressions 

EXPRESSION OPERATORS RESULT 

ARITHMETIC +, -;', /, MOD NUMBER 

RELATIONAL >,<, "',>=, <= "TRUE" - FFH 
"FALSE"-OH 

LOGICAL AND, OR, XOR, NOT 8'16-BIT STRING 
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BYTE; 
I****SCALARS**** I 

DECLARE SWITCH 
DECLARE COU NT 

INDEX 
DECLARE (NET, GROSS, 

WORD, 
INTEGER; 
TOTAL) REAL; 

I****ARRAYS**** I 
DECLARE MONTH (12) BYTE; 
DECLARE TERMINAL_LINE (80) 

I****STRUCTURE**** I 
DECLARE EMPLOYEE STRUCTURE 

(lD_NUMBER 
DEPARTMENT 
RATE 

BYTE; 

WORD, 
BYTE 
REAL); 

1**** ARRAY OF STRUCTURES**** I 

1*1 SCALAR* I 
1*1 SCALAR*I 
1*3 SCALARS* I 

DECLARE INVENTORY_ITEM (100) STRUCTURE 
(PART_NUMBER WORD, 
ON_HAND WORD, 
RE_ORDER BYTE); 

1**** ARRAY WITHINSTRUCTURE****I 
DECLARE COUNTY_DATA STRUCTURE 

(NAME (20) BYTE, 
TEN_ YR_RAINFALL(10) BYTE, 
PER CAPITA_INCOME REAL); 

Figure 2-48. PL/M-86 Data Declarations 

I*ARITHMETIC* I 
A = 2; B = 3; 
B = B+ 1; 
C = (A*B) -2; 
C = ((A*B) + 3) MOD 3; 

I*RELATIONAL * I 
A=2; B=3 
C= B>A; 
C= B<>A; 
C= B = (A+1); 

I*LOGICAL'I 
A = 0011 $0001 B; 
B = 1 000$0001 B; 
C= NOT B; 
C= AAND B; 
C=AOR B; 
C= BXORA; 
C = (A AND B) OR OFOH; 

I*B CONTAINS 4* I 
I *C CONTAINS 6* I 
I *C CONTAINS 2* I 

I*C CONTAINS OFFH* I 
I*C CONTAINS OFFH* I 
I*C CONTAINS OFFH* I 

I*$IS FOR READABILlTY* I 

I*C CONTAINS 0111$1110B* I 
I*C CONTAINS 0000$0001 B* I 
I*C CONTAINS 1011$0001 B* I 
I*C CONTAINS 1011$0000B* I 
I*C CONTAINS 1111$0001 B* I 

Figure 2-49. Expressions in PL/M-86 Assignment Statements 
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Program Flow Statements 

Simple PL/M-86 programs can be written with 
just DECLARE and assignment statements. Such 
programs, however, execute exactly the same 
sequence of statements every time they are run 
and would not prove very useful. PL/M-86 pro­
vides statements that change the flow of control 
through a program. These statements allow sec­
tions of the program to be executed selectively, 
repeated, skipped entirely, etc. 

The IF statement (figure 2-50) selects one or the 
other of two statements 'for execution depending 
on the result of a relational expression. The IF 
statement is written: 

IF relational-expression 

THEN statement1; 

ELSE statement2; 

Statementl is executed if the expression is "true"; 
statement2 hfnot executed'lil this case. If the rela­
tion is "false," statementl is skipped and state­
ment2 is executed. In determining the "truth" of 
an expression, the IF statement only examines the 
low-order bit of the result (1="true"). Therefore, 
arithmetic and logical expressions also may' be 
used in an IF statement. 

A=3; B=5; 
IFA<B 

THEN MINIMUM =1; 
ELSE MINIMUM = 2; 

MORE_DATA = OFFH; 
IF NOT MORE_DATA 

THEN DONE=1; 
ELSE DONE = 0; 

'" EXECUTED" , 
'"SKIPPED" , 

'"SKIPPED"' 
'"EXECUTED"' 

'"NESTED IF STATEMENTS"' 
CLOCK_ON =1; HOUR=24; ALARM=OFF; 
IF CLOCK_ON 

THEN IF HOUR = 24 
THEN IF ALARM = OFF 

THEN HOUR = 0; '"EXECUTED"' 

Figure 2-50. PL/M-~6IF Statem~nts 
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A DOblock begins with a DO statement and ends 
with an END statement. All intervening 
statements are part of the block. A DO block can 
appear anywhere in a program that an executable 
statement can appear. There are four kinds of DO 
statements in PLlM-86: simple DO, DO CASE, 
interative DO, and DO WHILE. 

A simple DO statement (figure 2-51) causes all the 
statements in the block to be treated as though 
they were a single statement. Simple DOs enable a 
single IF statement to cause multiple statements 
to be executed (the alternative would be to repeat 
the IF statement for every statement, to be 
executed). 

'·SIMPLE DO·' 
A=5; B=9; 
IF(A+2)< BTHEN DO; 

X=X-1; 
Y(X)=O; 
END; 

ELSE DO; 

'·00 CASE·' 
A=2;' 

X=X+1' 
Y(X)=1; 
END; 

'·EXECUTED·' 
''''EXECUTED"' 

'·SKIPPED·' 
'"SKIPPED''' 

DO CASE (A); 
X=X+1; 
X=X+2; 
X=X+3; 
X='~+4; 
END; 

'·SKIPPED"' 
'·SKIPPED"I 
'''EXECUTED"' 
''''SKIPPEO·' 

Figure 2-51:, 'PLlM-86 Simple DO 
and DO CASE 

DO CASE (figure 2-51) causes one statement in 
the DO block to be selected and executed depend­
ing on the result of the expression (usually 
arithmetic) wri~ten immediately following DO 
CASE: 

DO CASE'arithmetic-expression; 

If the expression yieids 0, the first statement in the 
DO block is executed; if the expression yields 1, 
the second statement is executed, etc. A statement 
in the DO block 'xIuiy be null (consist of only a 
semicolon}to cause no action for selected cases. 
DO CASE provides a rapid and easily-understood 

way to respond to dataJike "transaction codes" 
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where a different action is required for each of 
many values a code might assume (An alternative 
would be an. IF stateme,nt for every value the ,code 
could assume). 

An iterative DO block (figures 2-52 anct 2-53)is 
executed from 0 to an' infinite number of times 
based on the relationship of an index variable to 
an expression, that termin,ates execution. The 
general farmis: . 

DO Index = start-expr TO stop-expr BY step-expr; 

The "BY step-expr" is optional, and the step is 
assumed to be 1 if not supplied (the typical case). 
When control first reaches the DO statement, 
start-expr is evaluated and is assigned to index. 
Then index is compared to stop-expr; if index 
exceeds stop-expr, control goes to the statement 
following the DO bloc\c; otperwise the block is 
executed. At the end of. the 'block, the result of 
step-exprisadded to index" an.d it is compared to 

"ITERATIVE DO" 
DOI=OT05; 

ARRAY (J)"" I; 
TOTAL = TOTAL +1; 
END; , 

'·:1= 6 ATTHIS.POINT·' 

"DO WHILE" 
M()RE = 0; SPACE_OK =1; 

stop-expr again, etc. (The iterative, DO is quite 
flexible-this is a simplified explanation.) 
Iterative DOs are handy for "stepping through" 
an array. For example, an array of 10 elements 
could be zeroed by: 

DO I =OT09; 

ARRAY(I) == 0; 

END; 

In a DO WHILE (figures 2-$2 and 2-54), the 
statements are executed repeatedly as long as the 
expression following WHILE evaluates to 
"true." DO WHILE often can be applied in 
situations where an interative DO will not work, 
or is clumsy, such as where repetition must be 
controlled by a non-integer value. Like an 
iterative DO, DO WHILE may be executed from 
o times to an infinite number of times. 

'"EXECUTED 6 TIMES"' 
'"EXECUTED 6 TIMES"' 

DO WHILE (MORE AND SPACE_OK); 
ITEMS = ITEMS + 1; '"SKIPPED"' 
N' TRACKS= 
N TRACKS + 10; '"SKIPPED"' 
IFN~TRACKS>=999 '"SKIPPED"' 

THEN SPACE_OK';' 0; 
END; 

/"PO WHILE"' 
CODE = 'A'; 
DO WHH-E (CODE c= • A'); 

TEMP ~ TEMP" STEP; '"EXECUTION STOPS"' 
IFTEMP>98.6 '"AFTER TEMP"' 

THEN CbOE = 'B'; '"EXCEEDS 98.6"' 
N~STEPS= N~STEPS + 1; 

END; , 

FigO're2-S2. PL/M-86 Iterative DO and DO WHILE '0 
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INDEX-START 

EXECUTE 
BLOCK 

INDEX-INDEX+STEP 

OUTOF 
RANGE 

Figure 2-53. PLlM-86 Iterative DO Flowchart 

A GOTO written in the form 

GOTO target; 

causes an unconditional transfer (branch) to 
another statement in the program. The statement 
receiving control would be written 

target: statement; 

where "target" is a label identifying the 
statement. 

A CALL statement written in the form 

CALL proc-name (parm-list); 

EXECUTE 
BLOCK 

FALSE 

Figure 2-54. PLlM-86 DO WHILE Flowchart 

activates a procedure defined earlier in the pro­
gram. The variables listed in "parm-list" are 
passed to the procedure, the procedure is 
executed, and then control returns to the state­
ment following the CAbL. Thus, unlike a GOTO, 
a CALL. brings control back to the point of 
departure. 

Procedures 

Procedures are "subprograms" that make it 
possible to simplify the design of complex pro­
grams and to share a single copy of a routine 
among prggrams. A procedure usually is designed 
to perform'one function;'Le., to solve one part of 
the total problem with which the program is deal­
ing. For example, a program to calculate 
paychecks could be broken down into separate 
procedures for calculating gross pay, income tax, 
Social Security and net pay. The organization of 
the "main" program then could be understood at 
a glance: 

"CALLGROSS~PAY; 
CALL INCOME_TAX; 
CALL SOCIAL_SECURITY; 
CALL NET_PAY; 
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Furthermore, the .income tax procedure could be 
divided into separate procedures for calCulating 
state and federal taxes. Procedures, then, provide 
a mechanism by whicli'il large, complex problem 
can be attacked with a "divide and conquer" 
strategy. 

A procedure usually is defined early in a program, 
but it is only executed when.' it is referred to by 
name in a later PLlM-86 statement. A procedure 
can accept a list of variables, called parameters, 
that it will use in performing its function. These 
parameters may assume different values each time 
the procedure is executed. 

PL/M-86 provides two classes 'of procedures, 
typed and untyped. A typed procedure n:turns a 
value to the statement that activates it and, in 
addition, may accept parameters from that state­
ment. A typed procedure is ~ctivated whenever its 
name appears in a statement; tqe value it returns 
effectively takes the place:ofthe procedure name 
in the statement. Typed procedures can be used in 
all kinds of PLlM,86 expressions. Untyped pro­
cedures may accept parameters, but do'not return 

a value. Untyped procedllres are activated by 
CALL statements:: Figure 2-55 shows how simple 
typed and untyped procedures may be declared 
and then activated. 

The statements forming the body of a procedure 
need not exist within the module that activates the 
procedure. The activating module can declare the 
procedure EXTERNAL, and the LINK-86 utility 
will connect the two modules. 

PLlM-86 procedures can be written to handle 
interrupts. Procedures also may be declared 
REENTRANT, making them concurrently usable 
by different tasks in' a multitasking system. 
PLlM-86 also has about 50 procedures built into 
the language, including facilities for: 

• converting variables fr,om one type to another 

• shifting and rotating bits 

• performing input and output 

• manipulating strings 

• activating the 'CPU LOCK signal. 

!·DECLARATION OF A TYPED PROCEDURE THAT 
ACCEPTS TWO REAL PARAMETERS AND RETURNS AREAL VALUE"! 
AVG: PROCEDURE (X,Y) REAL; 

DECLARE (X,Y) REAL.:;· 
RETURN (X+Y)!2.0; 
ENDAVG; 

!·ACTIVATING A TYPED PROCEDURE·! 
LOW=2.Q; 
HIGH ;"3.0;, , , 
:rOTAL = TOT~L + AVG (LOW,'HIGH); !·2.5IS ADDED TO TOTAL *! 

!*QECLAFIATION OF AN UNTYPED PROCEDURE 
.THAT ACCEPTS ONE PARAMETER*! 

TEST: PROCEDUFIE (X); , 
DECLARE X BYTE; 
IFX = OH THEN' 

COONT= COUNT +1; 
END TEST; 

!*ACTIVATING AN UNTYPED PROCEDURE"! 
CALL TEST (ALPHA); .I"COUNT IS INCREMENTED 

.' IF ALPHA = 0* ! , , 

.• If '. 

Figu~e 2-55. PL/M-86 Procedures 
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ASM-86 

Programmers who are familiar with the CPU 
architecture can obtain complete access to all pro­
cessor facilities with ASM-86. Since the execution 
unit on both the 8086 and the 8088 is identical, 
both processors use the same assembly language. 
Examples of processor features not accessible 
through PLlM-86 that can be utilized in ASM-86 
programs include: software interrupts, the WAIT 
and ESC instructions and explicit control of the 
segment registers. 

An ASM-86 program often can be written to 
execute faster andlor to use less memory than the 
same program written in PLlM-86. This is 
because the compiler has a limited "knowledge" 
of the entire program and must generate a 
generalized set of machine instructions that will 
work in all situations, but may not be optimal in a 
particular situation. For example, assume that the 
elements of an array are to be summed and the 
result placed in a variable in memory. The 
machine instructions generated by the PL/M-86 
compiler would move the next array element to a 
register and then add the register to the sum 
variable in memory. An ASM-86 programmer, 
knowing that a register will be "safe" while the 
array is summed, could instead add all the array 
elements to a register and then move the register 
to the sum variable, saving one instruction execu~ 
tion per array element. 

It is easier to write assembly language programs in 
ASM-86 than it is in many assembly languages. 
ASM-86 contains powerful data structuring 
facilities that are usually found only in high-level 

languages. ASM-86 also simplifies the program­
mer's "view" of the 8086/8088 machine instruc­
tion set. For example, although there are 28 dif­
ferent types of MOV machine instructions, the 
programmer always writes a single form of the 
instruction: 

MOV destination-operand, source-operand 

The assembler generates the correct machine­
instruction form based on the attributes of the 
source and destination operands (attributes are 
covered later in this section). Finally, the ASM-86 
assembler performs extensive checks on the con­
sistency of operand definition versus operand use 
in instructions, catching many common types of 
clerical errors. 

Statements 

Compared to many assemblers, ASM-86 accepts a 
relaxed statement format (see figure 2-56). This 
helps to, reduce clerical errors and allows pro­
grammers to format their programs for better 
readability. Variable and label names may be up 
to 31 characters long and are not restricted to 
alphabetic and numeric characters. In particular, 
the underscore (_) may be used to improve the 
readability oflong names. Blanks may be inserted 
freely between identifiers (there are no "column" 
requirements), and statements also may span 
multiple lines. 

All ASM-86 statements are classified as instruc­
tions or directives. A clear distinction must be 
made here between AS'M-86 instructions and 

; TH IS ST ATEM ENT CONTAINS A COM M ENT ON L Y 

MOV AX, [BX + 3) 
MOV AX, [BX + 3) 

; TYPICAL ASM-86 INSTRUCTION 
; BLANKS NOT SIGNIFICANT 

MOV AX, 
& [BX+3) ; CONTINUED STATEMENTS 

ZERO EQU 0 ; SIMPLE ASM-86 DIRECTIVE 
CUR_PROJ eQU PROJECT [BX} [SI) ; MORE COMPLEX DIRECTIVE 
THE_STACLSTARTS_HERE SEGMENT; LONG IDENTIFIER 
TIGHT_LOOP: JMPTIGHT_LOOP ; LABELLED STATEMENT 
MOV ES: DATA_STRING [SI), AL ; SEGMENT OVERRIDE PREFIX 
WAIT: LOCK XCHG AX,SEMAPHORE ; LABEL & LOCK PREFIX 

Figure 2-56. ASM-86 Statements 
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8086/8088 machine instructions. The assembler 
generates machine instructions from ASM-86 
instructions written by a programmer. Each 
ASM-86 instruction produces one machine 
instruction, but the form of the generated 
machine instruction will vary according to the 
operands written in the ASM-86 instruction. For 
example, writing· 

MOV BL,1 

produces a byte-immediate-to-register MOV, 
while writing 

MOVTERMINAL_NO,BX 

produces a word-register-to-memory MOV. To 
the programmer, though, there is simply a MOV 
source-to-destination instruction. 

ASM-86 instructions are written in the form: 

(label:) (prefix) mnemonic (operand(s)) (;comment) 

where parentheses denote optional fields (the 
parentheses are not actually written by program­
mers). The label field names the storage location 
containing the machine instruction so that it can 
be referred to symbolically as the target of a JMP 
instruction elsewhere in the program. Writing a 
prefix causes ASM-86 to generate one of the 
special prefix bytes (segment override, bus lock or 
repeat) immediately . preceding the machine 
instruction. The mnemonic identifies the type of 
instruction (MOV for move, ADD for add, etc.) 
that is to be generated. Zero, one or two operands 
may be written next, separated by commas, 
according to the requirements of the instruction. 
Finally, writing a semicolon signifies that what 
follows is a comment. Comments do not affect 
the execution of a program, but they can greatly 

improve its clarity; all good ASM-86 programs 
are thoughtfully commented. 

Writing a directive gives ASM·86 information ,10 

use in generating instructions, but do.es not itself 
produce .a machine instruction. About 20 dif­
ferent directives are available in ASM-86. Direc­
tives are written like this: 

(name) mnemonic (operand(s)) (;comment) 

Some directives require a name to be present, 
while others prohibit a name. ASM-86 recognizes 
the directive from the mnemonic keyword written 
in the next field. Any operands required by the 
directive are written next, separated by commas. 
A comment may be written as the last field of a 
directive. 

Some. of the more commonly used directives 
define procedures (PROC), allocate storage for 
variables (DB, DW, DD) give a descriptive name 
to a number or an expression (EQU), define the 
bounds of segments (SEGMENT and ENDS), 
and force instructions and data to be aligned at 
word boundaries (EVEN). 

Constants 

Binary, decimal, octal and hexadecimal numeric 
constants (see figure 2-57) may be written in 
ASM-86 statements; the assembler can perform 
basic arithmetic operations on these as well. All 
numbers must, however, be integers and must be 
representable in 16 bits including a sign bit. 
Negative numbers are a~sembled in standard 
two's complement notation. 

Character constants are enclosed in single quotes 
and may be up to 255 characters long when used 

MOV STRING [SI), 'A' 
STRING [SI), 41 H 
AX,OC4H 

; CHARACTER 
MOV 
ADD 
OCTAL_8 
OCTAL'-:9 
ALL_ONES 
MINUS_5 
MINUS_6 
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EQU 100 
EQU 10Q 
EQU 11111111'B 
EQU -5 
EqU -60 

; EQUIVALENT IN HEX 
; HEX CONSTANT MUST START WITH NUMERAL 
; OCTAL 
; OCTAL ALTERNATE 
; BINARY·. 
; DECIMAL 
; DECIMAL ALTERNATE 

Figure 2-57. ASM-86 Constants 
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to initialize storage. When used as immediate 
operands, character constants may be one or two 
bytes long to match the length of the destination 
operand. 

Defining Data 

Most ASM-86 programs begin by defining the 
variables with which they will work. Three direc­
tives, DB, DW and DD, are used to allocate and 
name data storage locations in ASM-86 (see 
figure 2-58). The directives are used to define 
storage in three different units: DB means 
"define byte," DW means "define word," and 
DD means "define doubleword." The operands 
of these directives tell the assembler how many 
storage units to allocate and what initial values, if 
any, with which to fill the locations. 

A_SEG 
ALPHA 
BETA 
GAMMA 
DELTA 
EPSILON 
A_SEG 

B_SEG 
IOTA 
KAPPA 
LAMBDA 
MU 
B_SEG 

VARIABLE 

ALPHA 
BETA 
GAMMA 
DELTA 
EPSILON 
IOTA 
KAPPA 
LAMBDA 
MU 

SEGMENT 
DB ? 
DW ? 
DD ? 
DB ? 
DW 5 
ENDS 

; NOT INITIALIZED 
; NOT INITIALIZED 
; NOT INITIALIZED 
; NOT INITIALIZED 
; CONTAINS 05H' 

SEGMENT AT 55H ; SPECIFYING BASE ADDRESS 
DB 'H£LLO' ; CONTAINS 48454C 4C4F H 
DW 'AB' ; CONTAINS 42 41 H 
DD B_SEG ; CONTAINS 0000 5500 H 
DB 100 DUP 0 ; CONTAINS (100 Xl OOH 
ENDS 

ATTRIBUTES OPERATORS 

SEGMENT OFFSET TY.PE LENGTH SIZE 

A_SEG 0 1 1 1 
A_SEG 1 2 1 2 
ILSEG 3 4 1 4 
A_SEG 7 1 1 1 
A_SEG 8 2 1 2 
B_SEG 0 1 5 5 
B_SEG 5 2 1. 2 
B_SEG 7 4 1 4 
B_SEG 11 1 100 100 

Figure 2-58. ASM-86 Data Definitions 

For every variable in an ASM-86 program, the 
assembler keeps track of three attributes: seg­
ment, offset and type. Segment identifies the seg­
ment that contains the variable (segment control 
is covered shortly). Offset is the distance in bytes 
of the variable from the beginning of its contain-
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ing segment. Type identifies the variable's alloca­
tion unit (1 = byte, 2 = word, 4 = doubleword). 
When a variable is referenced in an instruction, 
ASM-86 uses these attributes to determine what 
form of the instruction to generate. If the 
variable's attributes conflict with its usage in an 
instruction, ASM-86 produces an error message. 
For example, attempting to add a variable defined 
as a word to a byte register is an error. There are 
cases where the assembler must be explicitly told 
an operand's type. For example, writing MOVE 
[BX],5 will produce an error message because the 
assembler does not know if [BX] refers to a byte, 
a word or a doubleword. The following operators 
can be used to provide this information: BYTE 
PTR, WORD PTR and DWORD PTR. In the 
previous example, a word could be moved to the 
location referenced by [BX] by writing MOVE 
WORD PTR [BX],5. 

ASM-86 also provides two built-in operators, 
LENGTH and SIZE, that can be written in 
ASM-86 instructions along with attribute 
information. LENGTH causes the assembler to 
return the number of storage units (bytes, words 
or doublewords) occupied by an array. SIZE 
causes ASM-86 to return the total number of 
bytes occupied by a variable or an array. These 
oPerators and attributes make it possible to write 
generalized instruction sequences that need not be 
changed (only reassembled) if the attributes of the 
variables change (e.g., a byte array is changed to a 
word array). See figure 2-59 for an example of 
using the attributes and attribute operators. 

Records 

ASM-86 provides a means of symbolically defin­
ing individual bits and strings of bits within a byte 
or a word. Such a definition is called a record, 
and each named bit string (which may consist of a 
single bit) in a record is called a field. Records 
promote efficient use of storage while ilt the same 
time improving the readability of the program 
and reducing the likelihood of clerical errors. 
Defining a record does not· allocate storage; 
rather, a record is a template that tells the 
assembler the name and location of each bit field 
within the byte or word. When a field Ilame is 
written later in an instruction, ASM-86 uses the 
record to generate an immediate mask for instruc­
tions like TEST, AND, OR, etc., or an immediate 
count for shifts and rotates. See figure 2-60 for an 

,example of using a record. 
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; SUM THE CONTENlS OF TABLE INTO AX 
TABLE DW 50 DUP(?) 
; NOTE SAME INSTRUCTIONS WOULD WORK FOR 
; TABLE DB 25 DUP(?) 
; TABLE DW 118 DUP(?), ETC. 

SUB 
MOV 
MOV 

AX,AX ; CLEAR SUM 
CX, LENGTH TABLE; LOOP TERMINATOR 
SI, SIZE TABLE ,jPOINT SUBSCRIPT 

; TO ENDOFTABLE. 
ADD_NEXT: SUB SI, TYPE TABLE. ; BACK UP ONE ELEMENT 

; ADD ELEMENT ADD AX, TABLE [SI] 
LOOP ADD_NEXT ; UNTlLCX=O 
; AX CONTAINS SU M 

Figure 2-59. Using ASM-86,Attributes and Attribute Operators 

EMP _BYTE DB ? ; 1I3YTE, UNINITIALIZED 
; BIT DEFINITIONS: . 

7-2 : YEARS EMPLOYED 
1 : SEX (1 = FEMALE) 
0: STATUS (1 = EXEMPT) 

EMP _BITSAECORD iRECORDDEFINED HERE 
& YRS_EMP : 6, . 
& SEX:1, 
& STATUS: 1 

; SELECT NONEXEMPT FEMALES EMPLOYED10+YEARS 

MOV AL, EMP _BYTE ; KEEP ORIGINAL INTACT 
TEST AL,MASKSEX ; FEMALE? • 
JZ REJECT; NO, QUITE 
TEST AL, MASK STATUS .; NbNEX~MPT? 
JNZ REJECT' ';NO, QUIT, 
SHR AL, CL ' ; ISOLATE YEARS 
CMP AL,11 ; >=10 YEARS? 
JL REJECT ; NO, QUIT 
; PROCESS SELECTED EMPLOYEE 

REJECT: ; PROCESS REJECTED EMPLOYEE 

Mnemonics © Intel, 1978 

MOV 
; RECORD USED HERE 
; GET SHIFT COUNT 

Figure 2-60. USirigan ASM-86 RECORD Defirtition 
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Structures 

An ASM-86 structure is a map, or template, that 
gives names and attributes (length, type, etc.) to a 
collection of fields. Each field in a structure is 
defined using DB, DW and DD directives; 
however, no storage is allocated to the structure. 
Instead, the structure becomes associated with a 
particular area of memory when a field name is 
referenced in an instruction along with a base 
value. The base value "locates" the structure; it 
may be a variable name or a base register (BX or 
BP). The structure may be associated with 
another area of memory by specifying a different 
base value. Figure 2-61 shows how a simple struc­
ture may be defined and used. Note that a struc­
ture field may itself be a structure, allowing much 
more complex· organizations to be laid out. 

Structures are particularly useful in situations 
where the same storage format is at multiple loca­
tions, ,where the location of a collection of 
variables is not known at assembly-time, and 
where the location of a collection of variables 
changes during execution. Applications include 
multiple buffers for a single file, list processing 
and stack addressing. 

EMPLOYEE STRUC 
SSN DB 9 
RATE DB 1 
DEPT DW 1 
YR_HIRED DB 1 
EMPLOYEE ENDS 

MASTER DB 12 
TXN DB 12 

Addressing Modes 

Figure 2-62 provides sample ASM-86 coding for 
each of the 8086/8088 addressing modes. The 
assembler interprets a bracketed reference to BX, 
BP, SI or DI as a base or index register to be used 
to construct the effective address of a memory 
operand. An unbracketed reference means the 
register itself is the operand. 

The following cases illustrate typical ASM-86 
coding for accessing arrays and structures, and 
show which addressing mode the assembler 
specifies in the machine instruction it generates: 

• If ALPHA is an array, then ALPHA [SI] is 
the element· indexed by SI, and ALPHA 
[SI + 1] is the following byte (indexed). 

• If ALPHA is the base address of a structure 
and BET A is a field in the structure, then 
ALPHA. BETA selects the BETA field 
(direct). 

• If register BX contajns the base address of a 
structure and BET A is a field in the struc­
ture, then [BX].BETA refers to the BETA 
field (based). 

DUP(?) 
DUP(?) 
DUP(?) 
DUP(?) 

DUP(?) 
DUP(?) 

; CHANGE RATE IN MASTER TO VALUE IN TXN. 
MOV AL, TXN.RATE 
MOV MASTER-,RATE, AL 

; ASSUME BX POINTS TO AN AREA CONTAINING 
DATA IN THE SAME FORMAT AS THE EMPLOYEE 
STRUCTURE. ZERO THE SECOND DIGIT 

. OF SSN 
MOV SI,1; INDEXVALUE OF 2ND DIGIT 
MOV [BX].SSN[SI],O 

Figure 2-61. Using an ASM-86 Structure 
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ADO 
ADO 
ADD 
ADD 
AD,D 
ADO 
ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
IN 
OUT 

AX,BX 
AL,5 
CX,ALPHA 
ALPHA,6 

·ALPHA,DX 
·BL, [BX] 
[SI], BH 

; REGISTER +- REGISTER 
; REGISTER -IMMEDIATE 
; REGISTER +- MEMORY (DIRECT) 
; MEMORY (DIRECT) -IMMEDIATE 
; MEMORY (DIRECT)- REGISTER 
; REGISTER"" MEMORY (REGISTER INDIRECT) 

[PP].AlPHA, AH 
CX, ALPHA [SI] 
ALPHA [DI+2], 10 
[BX].ALPHA [SI], AL 
SI, [BP+4] [DI] 
AL,30 

; MEMORY (REGISTER INDIRECT) -IMMEDIATE 
; MEMORY (BASED) - REGISTER 
; REGISTER - MEMORY (INDEXED) 
; MEMORY (INDEXED) -IMMEDIATE 
; MEMORY (BASED INDEXED) - REGISTER 
; REGISTER +- MEMORY (BASED INDEXED) 
; DIRECT PORT 

DX,AX ; INDIRECT PORT 

. Figure 2-62. ASM -86 Addressing Mode Examples 

• If register BX. contains the:a,ddress of an 
array, then [BX) [Sil refers to the element 
indel(ed by SI (based indexed). 

• If register BX points to a structure whose 
ALPHA .field is an array, then [BX) 
.ALPtIA lSI) selects the element indexed by 
SI (based indexed). 

• If register BX points to a structure whose 
ALPHA field is itself a structure, then 
[BX).ALPHA.BETA refers to the BETA 
field of the ALPHA substructure (based). 

• If register BX points to a structure and the 
ALPHA field of the structure is an array and 
each element of ALPHA is a structure, then 
[BX).ALPHA[SI + 3).BETA refers to the 
field BET A in the element of ALPHA 
indexed by lSI + 3) (based indexed). 

Note that DI may be used in place of SI in these 
cases and 'that BP may be substituted for BX. 
Without a segment override prefix, expressions 
containing BP refer to the current stack segment, 
and expressions containing BX refer to the cur-
rent data segment. . . 

Segment Control 

An ASM-8.6 prpgram is organized into a series of 
named segments. These are "logical" ,segments; 
they are eventually mapped into 8086/8088 

. memory segments, but this usually is .. not done 
until the program is located~ A SEGMENT direc­
tivestarts a segment, and an ENDS directive ends 
the segment (see figure 2-63). All data and 
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instructions written between SEGMENT and 
ENDS are· part of the named segment. In small 
programs, variables often are defined in one or 
two segment(s), stack space is allocated in another 
segment, and instructions are written in a third or 
fourth segment. It is perfectly possible, however, 
to write a complete program in one segment; if 
this is done, all the segment registers will contain 
the same base address; that is, the memory 
segments will completely overlap.. Large pro­
grams may be divided into dozens of segmentS. 

The Jirst instructions in a program usually 
establish the correspondence between segment 
names and segment registers, and then load each 
segment register with the base address of its cor­
responding segment. The ASSUME .directive tells 
the assembler what addresses will be in the seg­
ment registers at execution time. The assembler 
checks each memory instruction operand, deter­
mines which segment it is in and which segment 
register contains the address of that. segment. If 
the assumed register is the register expected by the 
hardw~re for that instruction type, then the 
assembler generates the machine instruction nor­
mally. If, however, the hardware expects one seg~ 
ment register to be used, and the operand is not in 
the segment pointed to by that register, then the 
assembler automatically precedes the machine 
instruction with a segment override prefix byte. 
(If the segment can riot be . overridden, the 
assembler produces an error message.) An exam­
ple may clarify this. If register BP is used in an 
instruction, the 8086 and 8088 CPUs expect, as a 
default, that the memory operand will be located 
in the segment pointed to by SS-in the current 
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DATA_SEG SEGMENT 
; DATA DEFIN ITIONS GO HERE 

DATA_SEG ENDS 

STACK_SEG SEGMENT 
; ALLOCATE 100 WORDS FOR A STACK AND 

LABEL THE INITIAL TOS FOR LOADING SP. 
OW 100 DUP(?) 

STACK TOP LABEL WORD 
STACK_SEG ENDS 

CODE_SEG SEGMENT 
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT 
; CORRESPONDENCE. NOTE THAT IN THIS 
; PROGRAM THE EXTRA SEGMENT INITIALLY 
; OVERLAPS THE DATA SEGMENT ENTIRELY. 

ASSUME CS: CODE_SEG, 
& OS: DATA_SEG, 
& ES: DATA_SEG, 
& SS: ST ACK_SEG 

START: ; THIS IS THE BEGINNING OFTHE PROGRAM. 
; LOC-S6 WILL PLACE A JMP TO THIS 
; LOCATION AT ADDRESS FFFFOH. 

; LOAD THE SEGMENT REGISTERS. CS DOES NOT 
HAVE TO BE LOADED BECAUSE SYSTEM 
RESET SETS IT TO FFFFH, AND THE 
LONG JMP INSTRUCTION AT THAT ADDRESS 
UPDATES IT TO THE ADDRESS OF CODE_SEG. 
SEGMENT REGISTERS ARE LOADED FROM AX 
BECAUSE THERE IS NO IMMEDIATE-TO­
SEGMENT _REGISTER FORM OF THE MOV 
INSTRUCTION. 

MOV AX, DATA_SEG 
MOV DS,AX 
MOV ES, AX 
MOV AX, STACK_SEG 
MOV SS, AX 

; SET STACK POINTER TO INITIAL TOS. 
MOV SP,OFFSET STACK_TOP 

; SEGMENTS ARE NOW ADDRESSABLE. 
; MAIN PROGRAM CODE GOES HERE. 
CODE_SEG ENDS 

; NEXT STATEMENT ENDS ASSEMBLY ANDTELLS 
LOC-S6 THE PROGRAMS STARTING ADDRESS. 

END START 

Figure 2-63. Setting Up ASM-86 Segments 
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stack segment. A programmer may, however, 
choose to use BP to address a variable in the cur­
rent data segment-the segment pointed to by 
DS. The ASSUME directive enables the assembler 
to detect this situation and to automatically 
generate the needed override prefix. 

It also is possible for a programmer to explicitly 
code segment override prefixes rather than relying 
on the assembler. This may result in a somewhat 
better-documented program since attention is 
called to the override. The disadvantage of 
explicit segment overrides is that the assembler 
does not check whether the operand is in fact 
addressable through the overriding segment 
register. 

ASM-86, in conjunction with the relocation and 
linkage facilities, provides much more 
sophisticated segment handling capabilities than 
have been described in this introduction. For 
example, different logical segments may be com­
bined into the same physical segment, and 
segments may be assigned the same physicalloca­
tions (allowing a "common" area to be accessed 
by different programs using different variable 
and label names). 

Procedures 

Procedures may be written in ASM-86 as well as 
in PLlM-86. In fact, procedures written in one 
language are callable from the other, provided 
that a few simple conventions are observed in the 
ASM-86 program. The purpose of ASM-86 pro­
cedures is the same as in PLlM-86: to simplify the 
design of complex programs and to make a single 
copy of a commonly-used routine accessible from 
anywhere in the program. 

An ASM-86 program activates a procedure with a 
CALL instruction. The procedure terminates with 
a RET instruction, which transfers control to the 
instruction following the CALL. Parameters may 
be passed in registers or pushed onto the stack 
before calling the procedure. The RET instruction 
can discard stack parameters before returning to 
the caller. 

Unlike PLlM-86 procedures, ASM-86 procedures 
are executable where they are coded, as well as by 
a CALL instruction. Therefore, ASM-86 pro­
cedures often are defined following the main pro­
gram logic, rather than preceding it as in 
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PLlM-86. Figure 2-64 shows how procedures 
may be defined.and called in ASM-86. Section 
2-10 contains examples of procedures that accept 
parameters on the stack. 

LlNK-86 

Fundamentally, LINK-86 combines separate 
relocatable object modules into a single program. 
This process consists primarily of combining 
(logical) segments of the same name into single 
segments, adjusting relative addresses when 
segments are combined, and resolving external 
references. 

A programmer can use a procedure that is actual­
ly contained in another module by naming the 
procedure in an ASM-86 EXTRN directive, or 
declaring the procedure to be EXTERNAL in 
PLlM-86. The procedure is defined or declared 
PUBLIC in the module where it actually resides, 
meaning that it can be used by other modules. 
When LINK-86 encounters such an external 
reference, it searches through the other modules 
in its input, trying to find the matching PUBLIC 
declaration. If it finds the referenced object, it 
links it to the reference, "satisfying" the external 
reference. If it· cannot satisfy the reference, 
LINK-86 prints a diagnostic message. LINK-86 
also checks PLlM-86 procedure calls and func­
tion references to insure that the parameters 
passed to a procedure are the type expected by the 
procedure. 

LINK-86 gives the programmer, particularly the 
ASM-86 programmer, great control over 
segments (segments may be combined end to end, 
renamed, assigned the same locations, etc.). 
LINK-86 also produces a map that summarizes 
the link process and lists any unusual conditions 
encountered. While the output of LINK-86 is 
generally input to LOC-86, it also may again be 
input to LINK-86 to permit modules to be linked 
in incremental groups. 

LOC-86 

LOC-86 accepts the single relocatable object 
module produced by LINK-86 and binds the 
memory references in the module to actual 
memory addresses. Its output is an absolute 
object module ready for loading into the memory 
of an execution vehicle. LOC-86 also inserts a 
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FREQUENCY DB 256 DUP (0) 

USART_DATA EQU OFFOH ; DATA PORT ADDRESS 
USART_STAT EQU OFF2H ; STATUS PORT ADDRESS 

NEXT: CALL CHAR_IN 
CALL COUNT_IT 
JMP NEXT 

CHAR_IN PROC 
; THIS PROCEDURE DOES NOT TAKE PARAMETERS. 

rrSAMPLESTHE USARTSTATUS PORT 
UNTIL A CHARACTER IS READY, AND 
THEN READS THE CHARACTER INTO AL 

MOV DX, USART_STAT 
AGAIN: IN AL, DX ; READ STATUS 

AND AL,2 ; CHARACTER PRESENT? 
JZ AGAIN ; NO, TRY AGAIN 
MOV DX, USART_DATA 
IN AL, DX ; YES, READ CHARACTER 
RET 

CHAR_IN ENDP 

COUNT_IT PROC 
; THIS PROCEDURE EXPECTS A CHARACTER IN AL. 

IT INCREMENTS A COUNTER IN A FREQUENCY 
TABLE BASED ON THE BINARY VALUE OF 
THE CHARACTER. 

XOR 
MOV 
INC 
RET 
ENDP 

AH, AH ; CLEAR HIGH BYTE 
SI, AL ; INDEX INTO TABLE 
FREQUENCY [S); BUMP THE COUNTER 

Figure 2-64. ASM-86 Procedures 

direct intersegment JMP instruction at location 
FFFFOH. The target of the JMP instruction is the 
logical beginning of the program. When the 8086 
or 8088 is reset, this instruction is automatically 
executed to restart the system. LOC-86 produces 
a memory map of the absolute object module and 
a table showing the address of every symbol 
defined in the program. 

are a convenient way to make collections of 
modules available to LINK-86. When a module 
being linked refers to "external" data or instruc­
tions, LINK-86 can automatically search a series 
of libraries, find the referenced module, and 
include it in the program being created. 

LlB-86 

LIB-86 is a valuable adjunct to the R & L pro­
grams. It is used to maintain relocatable object 
modules in special files called libraries. Libraries 
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OH-86 

OH-86 converts an absolute object module into 
Intel's standard hexadecimal format. This format 
is used by some PROM programmers and system 
loaders, such as the iSBC 957™ and SDK-86 
loaders. 

Mnemonics © Intel, 1978 
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CONV-86 

Users who have developed substantial, fully­
tested assembly language programs for the 
SOSO/SOS5 microprocessors may want to use 
CON V -S6 to automatically convert large amounts 
of this code into ASM-S6 source code (see figure 
2-65). CONV-S6 accepts an ASM-SO source pro­
gram as input and produces an ASM-S6 source 
program as output, plus a print file that 
documents the conversion and lists any diagnostic 
messages. 

Some programs cannot be completely converted 
by CONV-S6. Exceptions include: 

• self-modifying code, 

• software timing loops, 

• SOS5 RIM and SIM instructions, 

• interrupt code, and 

• macros. 

By using the diagnostic messages produced by 
CONV-S6, the converted ASM-S6 source file can 
be manually edited to clean up any sections not 
converted. A converted program is typically 
10-20070 larger than the ASM-SO version and does 
not take full advantage of the SOS6/S0SS architec­
ture. However, the development time saved by 
using CONY -S6 can make it an attractive alter­
native to rewriting working programs from 
scratch. 

Sample Programs 

Figures 2-66 and 2-67 show how a simple program 
might be written in PLlM-S6 and ASM-S6. The 
program simulates a pair of rolling dice and 
executes on an Intel SDK-S6 System Design Kit. 
The SDK-S6 is an SOS6-based computer with 
memory, parallel and serial 110 ports, a keypad 
and a display. The SDK-S6 is implemented on a 
single PC board which includes a large prototype 
area for system expansion and experimentation. 
A ROM-based monitor program provides a user 
interface to the system; commands are entered 
through the keypad and monitor responses are 
written on the display. With the addition of a 
cable and software interface (called SDK-CS6), 
theSDK-S6 may be connected to an Intellec® 
Microcomputer Development System. In this 
mode, the user enters monitor commands from 
the Intellec keyboard and receives replies on the 
Intellec CRT display. 
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CONV-86 

,-, 
- - ___ ( EDIT ) 

I '-1.J 
I /EDiTEii 7 1------~ ASM-86 I 

-, SOURCE 

~~~~ 

Figure 2-65. ASM-80/ ASM-86 Conversion 

The dice program runs on an SDK-86 that is con­
nected to an Intellec® Microcomputer Develop­
ment System. The program displays two con­
tinuously changing digits in the upper left corner 
of the InteIlec display. The digits are random 
numbers in the range 1-6. A roll is started by 
entering a monitor GO command. Pressing the 
INTR key on the SDK-S6 keypad stops the roll. 

There are two procedures in the PL/M-S6 version 
of the dice program. The first is called CO for 
console output. This is an untyped PUBLIC pro­
cedure that is supplied on an SDK-CS6 diskette. 
CO is written in PLlMcS6 and outputs one 
character to the Intellec console. It is declared 
EXTERNAL in the dice program because it exists 
in another module. LINK-S6 searches' the 
SDK"C86 library for CO and includes it in the 
single relocatable object module it builds. 

RANDOM is an internal typed procedure; it is 
contained in the dice module and returns a word 
value that is a random number between 1 and 6. 
RANDOM does not use any parameters and is 
activated in the parameter list passed to CO. 
When CO is called like this, first RANDOM is ac­
tivated,. then 30 is added to the number it returns 
and the sum is passed to CO. 



8086 ANO,s088 CENTRAL PROCESSING UNITS 

PL/M-86 COMPILER DICE 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICE.OBJ 
COMPILER INVOKED BY: PLM86 :Fl:DICE.P86 XREF 

2 
3 
4 
5 
6 

8 1 
9 2 

10 2 

11 1 
12 2 
13 2 
14 2 

15 2 
16 2 
17 2 

18 
19 

20 

21 2 
22 2 
23 2 

24 2 
25 2 
26 2 

27 

DICE: DO; 
/* THIS PROGRAM SIMULATES THE HOLL OF A PAIR OF DICE */ 

/* GIVE NAMES TO CONSTANTS */ 
DECLARE CLEAR$CRTl LITERALLY 'OlBH'; 
DECLARE CLEAR$CRT2 LITERALLY '045H'; 
DECLARE HOME$CURSORl LITERALLY 'OlBH'; 
DECLARE HOME$CURSOR2 LITERALLY '048H'; 
DECLARE SPACE LITERALLY'020H'; 

/* PROGRAM VARIABLES */ 
DECLARE (RANDOM$NUMBER,SAVE) WORD; 

/* CONSOLE OUTPUT PROCEDURE */ 
CO: PROCEDURE(X) EXTERNAL; 

DECLARE X BYTE; 
END CO; 

/* INTELLEC */ 
/* CRT */ 
/* CONTROL */ 
/* CODES */ 
/"ASCII BLANK*/ 

/* RANDOM NUMBER GENERATOR PROCEDURE "/ 
/* ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: */ 
/* "A GUIDE TO PL/M PROGRAMMING FOR "/ 
/" MICROCOMPUTER APPLICATIONS," */ 
/* DANIEL D. MCCRACKEN, */ 
/* ADDISON-WESLEY, 1978 "/ 
RANDOM: PROCEDURE WORD; 

RANDOM$NUMBER = SAVE; /*START WITH OLD NUMBER"/ 
RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849; 
SAVE = RANDOM$NUMBER; /"SAVE FOR NEXT TIME"/ 
/"FORCE 16-BIT NUMBER INTO RANGE 1-6*/ 
RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1; 
RETURN RANDOM$NUMBER; 
END RANDOM; 

/* MAIN ROUTINE */ 
/* CLEAR THE SCREEN*/ 
CALL CO(CLEAR$CRT1); 
CALL CO(CLEAR$CRT2); 

1* ROLL THE DICE ·UNTIL INTERRUPTED "/ 
DO WHlhE 1; /*"DO FOREVER"*/ 

/*NOTE THAT ADDING 30 TO THE DIE VALUE */ 
*/ 

/"lST DIE*/ 
/"BLANK*/ 
/*2ND DIE"/ 

/" CONVERTS IT TO ASCII. 
CALL CO(RANDOM + 030H); 
CALL CO(SPACE); 
CALL CO(RANDOM + 030H); 
/* HOME THE CURSOR */ 
CALL CO(HOME$CURSOR1); 
CALL CO(HOME$CURSOR2); 
END; 

END DICE; 

CROSS-REFERENCE LISTING 

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES 
---~--------------------~-------

2 CLEARCRTl LITERALLY 
18 

CLEARCRT2 LITERALLY 
19 

8 OOOOH CO PROCEDURE EXTERNAL(O) STACK=OOOOH 
18 19 21 22 23 24 25 

0002H 71 DICE PROCEDURE STACK=0004H 

4 HOMECURSORl LITERALLY 
24 

5 HOMECURSOR2 LITERALLY 
25 

11 0049H 44 RANDOM PROCEDURE WORD STACK=0002H 
21 23 

Figure 2-66. Sample PL/M-86 Program 
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OOOOH 2 RANDOMNUMBER 

7 0002H 2 SAVE 

SPACE 

OOOOH X 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
51 LINES REJlD 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0075H 
OOOOH 
0004H 
0004H 

117D 
OD 
4D 
4D 

WORD 
12 13 14 

WORD 
12 14 

LITERALLY 
22 

BYTE PARAMETER 
'9 

15 

Figure 2-66. Sample PL/M-86 Program (Cont'd.) 

16 

MCS-86 MACRO ASSEMBLER DICE 

ISIS-II MCS~86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICE.OBJ 
A'SSEMBLER INVOKED BY: ASM86 :Fl :DICE .. A86 XREF 

LOC OBJ 

0000 lBOO 
0002 4500 
0004 lBOO 
0006 4800 
0008 ?OOO 
OOOA ???? 

0000' (20 
??1? 

0028 

0000 
0000 A 10AOO 
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R 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

SOURCE 

THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE 

CONSOLE OUTPUT PROCEDURE 
EXTRN CO: NEAR 

; SEGMENT GROUP DEFINITIONS NEEDED FOR PL/M-86 C.OMPATIBILITY 
CGROUP GROUP CODE 
DGROUP GROUP DATA,STACK 

INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS. 
ASSUME, CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING 

; ALLOCATE DATA 
DATA SEGMENT PUBLIC 'DATA' 

NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86 
PROCEDURE 'CO'. BY CONVENTION, A BYTE PARAMETER IS PASSED IN 
THE LOW-ORDER 8-BITS OF A WORD ON THE STACK. HENCE, THESE ARE 

bLE:~~F~m AS Wo~e VALUE~i'i3~HOUGH i~nL~~gupy 1 BYTE ONLY. 
CLEAR-CRT2 DW 045H CRT' 

·HOME GURSOR 1 DW 01 BH CONTROL 
HOME-CURSOR2 DW 048H CODES 
SPACE DW 020H ASCII BLANK 
SAVE DW HOLDS LAST 16-BIT RANDOM NUMBER 
DATA ENDS 

; ALLOCATE STACK SPACE 
STACK SEGMENT STACK 'STACK' 

DW 20 DUP (?) . 

; LABEL INITIAL TOS: FOR LATER USE. 
STACK TOP LABEL WORD 
STACK- ENDS 

; PROGRAM CODE 
CODE SEGMENT PUBLIC 'CODE' 

RANDOM NUMBER GENERATOR PROCEDURE 
ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: 

"A GUIDE TO PL/M PROGRAMMING FOR 
MICROCOMPUTER APPLICATIONS," 
DANIEL D. MCCRACKEN 

; ADDISON-WESLEY, 1978 
'RANDOM PROC 

MOV AX, SAVE ; NEW NUMBER 

Figur~ 2-67. ASM-86 Sample Program 
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MCS-86 ~ACRO ASSEMBLER DICE 

LOC OBJ LINE SOURCE 

0003 B90508 ~8 MOV CX,2053 OLD NUMBER • 2053 
0006 F7El 49 MUL CX + 13849 
0008 051936 50 ADD AX,13849 
OOOB A30AOO 51 MOV SAVE,AX SAVE FOR NEXT TIME 

52 ; FORCE 16-BIT NUMBER INTO RANGE 1 - 6 
53 

SUB 
BY MODULO 6 DIVISION + 1 

OOOE 2BD2 54 DX,DX CLEAR-UPPER DIVIDEND 
0010 B90600 55 MOV CX,6 SET DIVISOR 
0013 F7Fl 56 DIV CX DIVIDE BY 6 
0015 8BC2 57 MOV AX,DX REMAINDER TO AX 
0017 40 58 INC AX ADD 1 
0018 C3 59 RET RESULT IN AX 

60 RANDOM ENDP 
61 
62 
63 MAIN PROGRAM 
64 
65 LOAD SEGMENT REGISTERS 
66 NOTE PROGRAM DOES NOT USE ES; CS IS INITIALIZED BY HARDWARE RESET; 
67 DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE 
68 MEMORY SEGMENT POINTED TO BY BOTH DS & SS. 

0019 B8---- 69 START: MOV AX,DGROUP 
001C 8ED8 70 MOV DS,AX 
001E 8EDO 71 MOV SS,AX 

72 

Bc2800 
73 INITIALIZE STACK POINTER 

0020 74 MOV SP,OFFSET DGROUP:STACK TOP 
75 
76 CLEAR THE SCREEN 

0023 FF360000 77 PUSH CLEAR _CRT 1 
0027 E80000 78 CALL CO 
002A FF360200 79 PUSH CLEAR_CRT2 
002E E80000 80 CALL CO 

81 
82 ; ROLL THE DICE UNTIL INTERRUPTE 

0031 E8CCFF 83 ROLL: CALL RANDOM GET 1ST DIE IN AL' 
003~ 0430 84 ADD AL,030H CONVERT TO ASCII 
0036 50 85 PUSH AX PASS IT 1'0 
0037 E80000 E 86 CALL CO CONSOLE ,OUTPUT 
003A FF360800 R 87 PUSH SPACE OUTPUT 
003E E80000 E 88 CALL CO A BLANK 
0041 E8BCH 89 CALL RANDOM GET 2ND DIE IN AL 
00~4 0430 90 ADD AL,030H CONVERT TO ASCII 
0046 50 91 PUSH AX PASS IT TO 
0047 E80000 92 CALL CO CONSOLE OUTPUT 

93 HOME THE CURSOR 
004A FF360400 R 94 PUSH HOME CURSORl 
OO~E E80000 E 95 CALL CO 
0051 FF360600 R 96 PUSH HOME_ CURSOR2 
0055 E80000 E 97 CALL CO 

98 CONTINUE FOREVER 
0058 EBD7 99 JMP ROLL 

100 CODE ENDS 
101 

XREF SYMBOL TABLE LISTING 
----- -------

NAME TYPE VALUE ATTRIBUTES, XREFS 

??SEG SEGMENT SIZE=OOOOH PARA PUBLIC 
CGROUP. GROUP CODE 711 11 
CLEAR CRT 1. V WORD OOOOH DATA 1911 77 
CLEAR:::CRT2. V WORD 0002H DATA 2011 79 
CO. L NEAR OOOOH EXTRN 411 78 80 86 88 92 95 97 
CODE. SEGMENT SIZE=005AH PARA PUBLIC 'CODE' 711 37 100 
DATA. SEGMENT SIZE=OOOCH PARA PUBLIC 'DATA' 811 14 25 
VGROUP. GROUP DATA STACK 811 11 11 69 74 
flOME CURSOR 1. V WORD 0004H DATA 2111 94 
HOMCCURSOR2. V WORD 0006H DATA 2211 96 
RANDOM. L NEAR OOOOH CODE 4611 60 83 89 
ROLL. L NEAR 0031H CODE 8311 99 
SAVE. V WORD OOOAH DATA 2411 ~7 51 
SPACE V WORD 0008H DATA 2311 87 
STACK • SEGMENT SIZE=002,8H PARA STACK 'STACK' 
STACK TOP V WORD 0028H STACK :'211 7~ 
START-. L NEAR 0019H CODE 6911 104 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

Figure 2-67. ASM-86 Sample Program (Cont'd.) 
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The ASM-86 version of the dice program operates 
like the PLlM-86 version. Since the program uses 
the PLlM-86 CO procedure for writing data to 
the Intellec console, it adheres to certain conven­
tions established by the PLlM-86 compiler. The 
program's logical segments (called CODE, 
DATA and STACK-the program does not use 
an extra segment) are organized into two groups 
called CGROUP and DGROUP. All the members 
of a group of logical segments are located in the 
same 64k byte physical memory segment. 
Physically, the program's DATA and STACK 
segments can be viewed as "subsegments" of 
DGROUP. 

PLlM-86 procedures expect parameters to be 
passed on the stack, so the program pushes each 
character before calling CO. Note that the stack 
will be "cleaned up" by the PLlM-86 procedure 
before returning (i.e., the parameter will be 
removed from the stack by CO). 

2.10 Programming Guidelines 
and Examples 

This section addresses 8086/8088 programming 
from two different perspectives. A series of 
general guidelines is presented first. These 
guidelines apply to all types of systems and are 
intended to make software easier to write, and 
particularly, easier to maintain and enhance. The 
second part contains a number of specific pro­
gramming examples. Written primarily in 
ASM-86, these examples illustrate how the 
instruction set and addressing modes may be uti­
lized in various, commonly encountered program­
ming situations. 

Programming Guidelines 

These guidelines encourage the development of 
8086/8088 software that is adaptable to change. 
Some of the guidelines refer to specific processor 
features and others suggest approaches to general 
software design issues. PL/M-86 programmers 
need not be concerned with the discussions that 
deal with specific hardware topics; they should, 
however, give careful attention to. the system 
design subjects. Systems that are designed in 
accordance with these recommendations 
should be less costly to modify or extend. In 
addition, they should be better-positioned to 
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take advantage of new hardware and software 
products that are constantly being introduced 
by Intel. 

Segments and Segment Registers 

Segments should be considered as independent 
logical units whose physical locations in memory 
happen to be defined by the contents of the seg­
ment registers. Programs should be independent 
of the actual contents of the segment registers and 
of the physical locations of segments in memory. 
For example, a program should not take 
advantage of the "knowledge" that two segments 
are physically adjacent to each other in memory. 
The single exception to this fully-independent 
treatment of segments is that a program may set 
up more than one segment register to point tothe 
same segment in memory, thereby obtaining 
addressability through more than one segment 
register. For example, if both DS and ES point to 
the.same segment,a string located in thatsegment 
may be used as a source operand in one string 
instruction and as a destination string in another 
instruction. (recall that a destination string must 
be located in the extra segment). 

Any data aggregate or construct such as an array, 
a structure, a string or a stack should be restricted 
to 64k bytes in length and should be wholly con­
tained in one segment (i.e., should not cross a seg­
ment boundary). 

Segment registers should only contain values sup­
plied by the relocation and linkage facilities. Seg­
ment register values may be moved to and from 
memory, pushed onto the stack and popped from 
the stack. Segment registers should never be used 
to hold temporary variables nor should they be 
altered in any other way. 

As an additional guideline, code should not be 
written within six bytes of the end of physical 
memory (or the end of the code segment if this 
segment is dynamically relocatable). Failure to 
observe this guideline could result in an attempted 
opcode prefetch from non-existent memory, 
hangingthe CPU if READY is not returned. 

Self-Modifying Code . 

It is possible to write a program that deliberately 
changes some of its own machine instructions 
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during execution. While this technique may save a 
few bytes or machine cycles, it does so at the 
expense of program clarity. This is particularly 
true if the program is being examined at the 
machine instruction level; the machine instruc­
tions shown in the assembly listing may not match 
those found in memory or monitored from the 
bus. It also precludes executing the code from 
ROM. Also, because of the pre fetch queue within 
the 8086 and 8088, code that is self-modified 
within six bytes of the current point of execution 
cannot be guaranteed to execute as intended. 
(This code may already have been fetched.) Fin­
ally, a self-modifying program may prove 
incompatible with future Intel products that 
assume that the content of a code segment 
remains constant during execution; 

A corrollary to this requirement is that variable 
data should not be placed in a code segment. Con­
stant data may be written in a code segment, but 
this is not recommended for two reasons. First, 
programs are simpler to understand if they' are 
uniformly subdivided into segments of code, data 
and stack. Second, placing data in a code segment 
can restrict the segment's position independen~e. 
This is because, in general, the segment base 
address of a data item may be changed, but the 
offset (displacement) of the data item may not. 
This means that the entire segment must be 
moved as a unit to avoid changing the offset of 
the constant data. If the constant data were 
located in a data segment or an extra segment, 
individual procedures within the code segment 
could be moved independently. 

Input/Output 

Since 110 devices vary so widely in their 
capabilities and their interface designs, I/O soft­
ware is inevitably device dependent. Substituting 
a hard disk for a floppy disk, for example,. 
necessitates software changes even though the 
disks are functionally identical. I/O software \.(~n, 
however, be designed to minimize the effect of 
device changes on programs. 

Figure 2-68 illustrates a design concept that struc­
tures an I/O system into a hierarchy of separately 
compiled/assembled modules. This approa~h 
isolates application modules that. use the 
input! output devices from all physical 
characteristics of. the hardware with which they 
ultimately communicate. An application module 
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that reads a disk file, fQr example, should have no 
knowledge of where the file is located on the disk, 
what size the disk sectors ani, etc. This allows 
these characteristics to change without affecting 
the application module. To an application 
module, the 110 system appears to be a series of 
file-oriented commands (e.g., Open, Close, Read, 
Write). An application module would typically 
issue a command by calling a file system 
procedure. 

The file system processes 110 command requests, 
perhaps checking for gross errors, and calls a pro­
cedure in theIlO supervisor. The I/O supervisor 
is a bridge between the functional 110 request of 
the application module and the physical 110 per­
formed by the lowest-level modules in the hier­
archy. There shouHl be separate modules in the 
supervisor for different types of devices and some 
device-dependent code may be unavoidable at this 
level. The 110 supervisor would typically perform 
overhead activities such' as maintaining disk 
directories. 

The modules that actually c;qmmunicate with the 
I/O devices"(or their controllers) are at the lowest 
level in the hierarchy. These module$ contain the 
bulk of the system's device-dependent code that 
will have to be modified in the event that a device 
is changed. 

The 8089 Input/Output Processor is specifically 
designed to encourage' the' development of 
modular, hierarchical 110 systems. The 8089 
allows knowledge of device c;haracteristics to be 
"hidden" from not only .application programs, 
but also from the operating system that controls 
the CPU. The CPU's 110 supervisor can simply 
prepare a message in memory that describes the 
nature of the operation to be performed, and then 
activate tht; '8089. The 8089 independently per­
forms all physical I/O and notifies the CPU when 
the operation has been completed. 

Operating Systems 

Operating systems also shoitld he organized in a 
hierarchy similar to the c'oncept· illustrated in 
figure 2-69. Application modules should "see" 
only the uppedevel of the operating system. This 
level might provide services like sendihgmessages 
between application modules, 'providing time 
delays, etc. An intermediate level might consist of 
housekeeping routines that dispatch tasks, alter 
t~. , "'. . 
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I APPLICATION ___ -.,. __ .... MODULES 

.... -..,...-..,...--,.--,....-.,..-...,...-..., 1/0 SUPERVISOR 

................ 1""-....... _ ..... ___ '--.,....""'-.,... ... ,...,...,.... MODULES 

I PHYSICAL 1/0 
-,... ...... .,.. .... ...,.. ...... ....,. ...... -r-""-.,.. ....... ..,... .... ...,.......I-,r--I. MODULES 

II. DEVICE CONTROL 
THARDWARE 

Q 1/0 DEVICES 

Figure 2·68. I/O System Hierarchy Concept 

APPLICATION MODULES 

1..-..._ ..... 1 1...1 ___ 

OPERATING SYSTEM 

I I I 1 

--~---. -. -,;;;,;;,;;;;'-. ---;Y;;M-;R~~--------l 

I I I I I I 1 1 I· II ·.1· I 1 . 

1/0 SUPERVISOR HOUSEKEEPING INVISIBLE TO 

I I I I APPLICATION MODULES 

I PHYSICAL 1/0 PRIMITIVE OPERATIONS 

I: I I I I I 

Figure 2·69. Operating System Hierarchy 
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priorities, manage memory, etc. At the lowest 
level would be the modules that implement 
primitive operations such as adding and removing 
tasks or messages from lists, servicing timer inter­
rupts, etc. 

Interrupt Service Procedures 

Procedures that service external interrupts should 
be considered differently than those that service 
internal interrupts. A service procedure that is 
activated by an internal interrupt, may, and often 
should, be made reentrant. External interrupt 
procedures, on the other hand, should be viewed 
as temporary tasks. In this sense, a task is a single 
sequential thread of execution; it should not be 
reentered. The processor's response to an external 
interrupt may be viewed as the following sequence 
of events: 

• the running (active) task is suspended, 

• a new task, the interrupt service procedure, is 
created and becomes the running task, 

• 
• 

the interrupt task ends, and is deleted, 

.the suspended task is reactived 
becomes the running task from the 
where it was suspended. 

and 
point 

An external interrupt procedure should only be 
interruptable by a request that activates a dif-

MULTIPLE INTERRUPT SOURCES' 

~ 

ferent interrupt procedure. When the number of 
interrupt sources is not too large, this can be 
accomplished by ~.ssigning a different type code 
and corresponding service procedure to each 
source. In systems where a large number of 
similar sources can generate closely spaced inter­
rupts (e.g., 500 communication lines), an 
approach similar to that illustrated in figure 2-70, 
may be used to insure that the interrupt service 
procedure is not reentered, and yet; interrupts 
arriving in bursts are not missed. The basic 
technique is to divide the code required to service 
an interrupt into two parts. The interrupt service 
procedure itself is kept as short as possible; it per­
forms the absolute minimum amount of process­
ing necessary to service the device. It then builds a 
mcssage that contains enough information to per­
mit another task, the interrupt message processor, 
to complete the interrupt service. It adds the 
message to a queue (which might be implemented 
as a linked list), and terminates so that it is 
available to service the next interrupt. The inter­
rupt message processor, which is not reentrant, 
obtains a message from the queue, finishes pro­
cessing the interrupt associated with that message, 
obtains the next message (if there is one). etc. 
When a burst of interrupts occurs, the queue will 
lengthen, but interrupts will not be missed so long 
as there is time for the interrupt service procedure 
to be activated and run between requests. 

INTERRUPT 
SERVICE' 

PROCEDURE 

ADD MESSAGE TO QUEUE 

,_1_--, 
r----l 
r- - - - -l g~~~fJ~WJh 
r- - - - -l ~~~~I;~ES 
r-----l L--r_--l OBTAIN NEXT MESSAGE 

FROM QUEUE 

INTERRUPT 
MESSAGE 

PROCESSOR 

Figure 2-70. Interrupt Message Processor 
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Stack-Based Parameters 
. . , 

Parameters are frequently passed to. prQcedures 
Qn a stack. Results prQduced by the prQcedure, 
hQwever, shQuld be returned in Qther memQry 
IQcatiQns~r in registers. In QtherwQrds, the called 
prQcedure . should "clean up" the stack by dis­
carding the parameters befQre returning. The, 
RET instruction can perfQrm this functiQn. 
PL/M-S6 prQcedures always fQIIQW this 
cQnventiQn. 

Flag-Images 

PrQgrams shQuld make no. assumptiQns abQut the 
CQntents Qf the undefined bits in the flag-images 
stQred in memQry by the PUSHF and SAHF 
instructiQns. These bits always shQuld be masked 
QU,t Qf any cQmparisQns Qr tests that use these 
flag-images. The undefined bits Qfthe wQrd flag­
image can be cleared by ANDing the wQrd with 
FD5H. The undefined bits Qf the byte flag-image 
can be cleared by ANDing the byte with D5H. 

Programming Examples 

These examples demQnstrate the SOS6/S0SS 
instructiQn set and addressing mQdes in CQmmQn 
prQgramming situatiQns. The fQIIQwing tQPics are 
addressed: . 

• 
• 

• 

• 
• 
• 
• 

prQcedures (parameters, reentrancy) 

variQus fQrms Qf JMP and CALL 
instructiQns 

bit manipulatiQn with the ASM-S6 RECORD 
facility 

dynamic cQde relQcatiQn 

memQry mapped 1/0 

breakpQints 

interrupt handling 

• string QperatiQns 

These examples are written primarily in ASM-S6 
and will be Qf mQst interest to. assembly language 
prQgrammers. The PL/M-S6 cQmpiler generates 
cQde that handles many Qf these situations 
autQmatically fQr PL/M-86 prQgrams. FQr exam" 
pIe, the cQmpiler takes care Qf the 'stack in 
PL/M-S6 prQcedures, allQwing the.,prQgrammer 
to. co.ncentrate Qn sQlving the applicatiQn prQb­
lem. PL/M-S6 prQgrammers, hQwever, may want 
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to. examine the memQry mapped 110 and 
interrupt handling examples, since the cQncepts 
illustrated are generally applicable; Qne o.f the 
interrupt prQcedures is. written in PL/M-S6. 

The examples are intended to. sho.w Qne way to. use 
the instructiQn set, addressing mQdes and features 
Qf ASM-S6. They do. nQt demQnstrate the "best" 
way to. sQlve any particular problem. The flexibil­
ity of the SOS6 and SOSS, applicatiQn differences 
plus variatiQns in prQgramming style usually add 
up to. a number Qf ways to. implement a prQgram­
ming so.lutiQn. 

Procedures 

The cQde in figure 2-71 illustrates several tech­
niques that are typically used in writing ASM-S6 
prQcedures. In this example a calling program 
invQkes a prQcedure (called EXAMPLE) twice, 
passing it a different byte array each time. Two. 
parameters are passed o.n the stack; the first CQn­
tains the number Qf elements in the array, and the 
secQnd cQntains the address (Qffset in 
DAT A_SEG) Qf the first array element. This 
same technique can be used to. pass a variable­
length parameter list to. a prQcedure (the "array" 
CQuid be any series Qf parameters. or parameter 
addresses). Thus, althQugh the prQcedure always 
receives two. parameters, these can be used to. 
indirectly access any number Qf variables in 
memQry. 

Any results returned by a prQcedure shQuld be 
placed in registers Qr in memQry, but nQt Qn the 
stack. AX o.r AL is o.ften used to. ho.ld a single 
wQrd Qr byte result. Alternatively, the calling prQ­
gram can pass the address(Qr addresses) Qf a 
result area to. the procedure as a parameter. It is 
gQQd practice for ASM-S6 prQgrams to. fQIIQW the 
calling cQnveritio.ns used by PLlM-S6; these are 
dQcumented" in MCS-86 Assembler Operating 
Instructions For ISIS-II Users, Order No.. 
9S00641. 

EXAMPLE is defined as a FAR procedure, 
meaning it is in a different segment than the call­
ingprQgram. The calling prQgram must use an 
intersegment CALL to. activate the prQcedure. 
NQte that this type Qf CALL saves CS and IP Qn 
the stack. If EXAMPLE were defined as NEAR 
(in the same segment as the caller) then an intra­
segment CALL WQuid be used, and Qnly IP WQuid 
be saved Qn the stack. It is the resPQnsibility Qf 
the calling program to. knQw hQW the procedure is 
defi,ned and to. issue the CQrrect type Qf CALL. 
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STACK_SEG SEGMENT 
OW 20 DUP (?) ; ALLOCATE 20-WORD STACK 

STACK_TOP LABEL WORD ; LABEL INITIAL TOS 
STACK_SEG ENDS 

DATLSEG SEGMENT 
ARRAY_1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY 

ARRAY_2 DB 5 DUP (?) ;~ELEMENTBYTEARRAY 

DATLSEG ENDS 

PROC_SEG SEGMENT 
ASSUME CS:PROC_SEG,DS:DATA_SEG,SS:STACK_SEG,ES:NOTHING 

EXAMPLE PROC 

; PROCEDURE PROLOG 
PUSH 
MOV 
PUSH 
PUSH 
PUSHF 

FAR 

BP 
BP,SP 
CX 
BX 

SUB SP,6 
; END OF PROLOG 

; PROCEDURE BODY 

; MUST BE ACTIVATED BY 
INTERSEGMENT CALL 

; SAVE BP 
; ESTABLISH BASE POINTER 
; SAVE CALLER'S 

REGISTERS 
; AND FLAGS 
; ALLOCATE 3 WORDS LOCAL STORAGE 

MOV CX, [BP+8] ; GET ELEMENT COUNT 
MOV BX, [BP+6] ; GET OFFSET OF 1ST ELEMENT 
; PROCEDURE CODE GOES HERE 
; FIRST PARAMETER CAN BE ADDRESSED: 
; [BX] 
; LOCAL STORAGE CAN BE ADDRESSED: 
; [BP-8], [BP-10], [BP-12] 
; ENDOF PROCEDURE BODY 

; PROCEDURE EPILOG 
ADD 
POPF 

SP,6 ; DE-ALLOCATE LOCAL STORAGE 
; RESTORE CALLER'S 

POP BX 
POP CX 
POP BP 
; END OF EPILOG 

; PROCEDURE. RETURN 
RET 4 

EXAMPLE, ENDP 

REGISTERS 
AND 
FLAGS 

; DISCARD 2 PARAMETERS 

; END OF PROCEDURE "EXAMPLE" 

Figure 2-71. Procedure Example 1 
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CALLER_SEG SEGMENT 
; GIVE ASSEM BLER SEGMENT I REGISTER CORRESPONDENCE 
ASSUME CS:CALLER_SEG, 
& DS:DATA_SEG, 
& SS:STACK_SEG, 
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM 

; INITIALIZE SEGMENT REGISTERS 
START: MOV AX,DATA_SEG 

MOV DS,AX 
MOV AX,STACK_SEG 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP ; POINT SP TO TOS 

; ASSUME ARRAY _1 IS INITIALIZED 
, 
; CALL "EXAMPLE", PASSING ARRAY_1, THAT IS, THE NUMBER OF ELEMENTS 

IN THE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT. 
MOV AX,SIZE ARRAY_1 
PUSH AX 
MOV AX,OFFSET ARRAY_1' 
PUSH AX 
CALL EXAM PLE 

; ASSUME ARRAY _21S INITIALIZED 
, 
; CALL "EXAMPLE" AGAIN WITH DIFFERENT SIZE ARRAY. 

MOV 
PUSH 
MOV 
PUSH 
CALL 

AX,SIZE ARRAY_2 
AX 
AX,OFFSET ARRAY_2 
AX 
EXAMPLE 
ENDS 

END START 

Figure 2-71. Procedure Example 1 (Cont'd.) 

Figure 2-72 shows the stack before the caller 
pushes the parameters onto it. Figure 2-73 shows 
the stack as the procedure receives it after the 
CALL has been executed. 

EXAMPLE is divided into four sections. The 
"prolog" sets up register BP so it can be used to 
address data on the stack (recall that specifying 
BP as a base register in an instruction auto­
matically refers to the stack segment unless a seg­
ment override prefix is coded). The next step in 
the prolog is to save the "state of the machine" as 
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it existed when the procedure was activated. This 
is done by pushing any registers used by the pro­
cedure (only CX and BP in this case) onto the 
stack. If the procedure changes the flags, and the 
caller expects the flags to be unchanged following 
execution of the procedure, they also may be 
saved on the stack. The last instruction in the pro­
log allocates three words on the stack for. the pro­
cedure to use as local temporary storage. Figure 
2-74 shows the stack at the end of the prolog. 
Note that PL/M-86 procedures assume that all 
registers except SP and BP can be used without 
saving and restoring. 
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I--------~- SP (TOS) 

Figure 2-72. Stack Before Pushing Parameters 

HIGH ADDRESSES 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLD IP _SP(TOS) 

LOW ADDRESSES 

Figure 2-73. Stack at Procedure Entry 
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BP-8_ 

BP-10_ 

BP-12_ 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLD IP 

OLD BP 

OLDCX 

OLD BX 

OLD FLAGS 

LOCAL 1 

LOCAL2 

LOCAL3 

HIGH ADDRESSES 

_BP 

_SP(TOS) 

LOW ADDRESSES 

Figure 2-74. Stack Following Procedure Prolog 

The procedure "body" does the actual processing 
(none in the example). The parameters on the 
stack are addressed relative to BP. Note that if 
EXAMPLE were a NEAR procedure, CS would 
not be on the stack and the parameters would be 
two bytes "closer" to BP. BP also is used to 
address the local variables on the stack. Local 
constants are best stored in a data or extra 
segment. 

The procedure "epilog" reverses the activities of 
the prolog, leaving the stack as it was when the 
procedure was entered (see figure 2-75). 

HIGHER ADDRESSES 
r 'P 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLD BP ___ BP & SP (TOS) 

" '" LOWER ADDRESSES 

Figure 2-75. Stack Following Procedure Epilog 
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The procedure "return" restores CS and IP from 
the stack and discards the parameters. As figure 
2-76 shows, when the calling program is resumed, 
the stack is in the same state as it was before any 
parameters were pushed onto it. 

HIGH ADDRESSES ... 

1----------1-SP (TOS) 

LOW ADDRESSES 

Figure 2-76. Stack Following Procedure Return 

Figure 2-77 shows a simple proc:eg,ure that uses an 
ASM-S6 structure to address the stack. Register 
BP is pointed to the base of the structure, which is 
the top of the.stac:k since the stack grows toward 
lower addresses (see figure 2-7S). Any structure 
element canthen be addressed by specifying BP.as 
a base register: 

[BP) .structure--,-element. 
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Figure 2-79 shows a different approach to using 
an ASM-S6 structure to define the stack layout. 
As shown in figure 2-S0, register BP is pointed at 
the middle of the structure (at OLD_BP) rather 
than at the base of the structure. Parameters and 
the return address are thus located at positive 
displacements (high addresses) from BP, while 
local variables are at negative displacements 
(lower addresses) from BP. This means that the 
local variables will be "closer" to the beginning 
of the stack segment and increases the likelihood 
that the assembler will be able to produce shorter 
instructions to access these variables, i.e., their 
offsets from SS may be 255 bytes or less and can 
be expressed as a I-byte value rather than a 2-byte 
value. Exit from the subroutine also is slightly 
faster because a MOV instruction can be used to 
deallocate the local storage instead of an ADD 
(compare figure 2-71). 

It is possible for a procedure to be activated a sec­
ond time before it has returned from its first 
activation. For example, procedure A may call 
procedure B, and an interrupt may occur while 
procedure B is executing. If the interrupt service 
procedure calls B, then procedure B is reentered 
and must be written to handle this situation cor­
rectly, i.e., the procedure must be made 
reentrant. 

In PLlM-S6 this can be done by simply writing: 

B: PROCEDURE (PARM1, PARM2) REENTRANT; 

An ASM-S6 procedure will be reentrant if it uses 
the stack for storing all local variables. When the 
procedure is reentered, a new "generation" of 
variables will be allocated on the stack. The stack 
will grow, but the sets of variables (and the 
parameters and return addresses as well) will 
automatically be kept straight. The stack must be 
large enough to accommodate the maximum 
"depth" of procedure activation that can occur 
under actual running conditions. In addition, any 
procedure called by a reentrant procedure: must 
itself be reentrant. 

A related situation that also requires reentrant 
procedures is recursion. The following are 
examples of recursion: 

• A calls A (direct recursion), 

• A calls B, B calls A (indirect recursion), 

• A calls B, B calls C, C calls A (indirect 
recursion). 
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CODE SEGMENT 
ASSUME CS:CODE 

MAX PROC 
; THIS PROCEDURE IS CALLED BY THE FOLLOWING 

SEQUENCE: 
PUSH PARM1 
PUSH PARM2 
CALL MAX 

; IT RETURNS THE MAXIMUM OF THE TWO WORD 
PARAMETERS IN AX. 

; DEFINE THE STACK LAYOUT AS A STRUCTURE. 
STACK~LAYOUT STRUC 
OLD~BP DW? 
RETURN_ADDR DW? 
PARM_2 DW? 
PARM_1 DW? 
STACK_LAYOUT ENDS 

; PROLOG 

; BODY 

PUSH 
MOV 

MOV 
CMP 
JG 
MOV 

; EPILOG 
FIRST_IS_MAX: POP 
; RETURN 

MAX 

CODE 

RET 
ENDP 

ENDS 
END 

; SAVED BPVALUE-BASEOFSTRUCTURE 
; RETURN ADDRESS 
; SECOND PARAMETER 
; FIRST PARAMETER 

BP 
BP, SP 

AX, [BP).PARM_1 
AX, [BP).PARM_2 
FIRST_IS_MAX 
AX, [BP).PARM_2 

BP 

4 

; SAVE IN OLD_BP 
; POINT TO OLD_BP 

; IF FIRST 
; >SECOND 
; THEN RETURN FIRST 
; ELSE RETURN SECOND 

; RESTORE BP (& SP) 

; DISCARD PARAMETERS 

Figure 2-77. Procedure Example 2 

HIGHER ADDRESSES , Jumps and Calls 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLDBP _BP&SP(TOS) 

h 

LOWER ADDRESSES 

Figure 2-78. Procedure Example 2 Stack Layout 

The 8086/8088 instruction set contains many dif­
ferent types of JMP and CALL instructions (e.g., 
direct, indirect. through register, indirect through 
memory, etc.). These varying types of transfer 
provide efficient use of space and execution time 
in different programming situations. Figure 2-81 
illustrates typical use of the different forms of 
these instructions. Note that the ASM-86 
assembler uses the terms "NEAR" and "FAR" 
to denote intrasegment and intersegment trans­
fers, respectively. 
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EXTRA SEGMENT 
; CONTAINS STRUCTURE TEMPLATE THAT ','NEARPROC" 
; USES TO ADDRESS AN ARRAY PASSED BV ADDRESS. 
DUMMY STRUC 
PARM_ARRAY DB 256 DUP? 
DUMMY ENDS 
EXTRA ENDS 

CODE SEGMENT 
ASSUME CS:COQE,ES:EXTRA 

NEARPROC PROC " " .. 
; LAY OUTTHE STACK (THE l;)yNAMICSTORAGE AREA OR DSA). 
DSASTRUC STRUC' 
I OW ? 

10 DUP (?) . 
; LOCAL VARIABLES FIRST 

LOC_ARRA Y DW , 
OLD_BP OW ?: ; ORIG INAL BP V ALU E 

; RETURN ADDRESS RETADDR DW ? 
POINTER DD ? 

? 
; 2ND PARM-POINTERTO "PARM_ARRAY" 
; 1ST PARM-A BYTE OCCUPIES COUNT DB 

DSASTRUC 
DB. 
ENDS 

? A WORD ON THE STACK 

; USE AN EQU TO DEFINE THE BASEtADDRESS OF THE 
DSA. CANNOT SIMPLY USE BP BECA!)SI:IT WILL 
BE POINTING TO ~'OLD~BP~'.IN HIE MIDDLE OF 

; THE DSA: 
DSA EQU[BP -OFFSET OLD_BP] 

; PROCEDURE ENTRY 
PUSH 
MOV 
SUB 

BP ; SAVE BP 
BP, SP ; POI NT BP AT OLD_BP 
SP, OFFSETOLD_BP; ALLOCATE LOC_ARRAY & I 

; PROCEDURE BODY 
; ACCESS LOCAL VARIABLE I 
MOV' . ~X,DSA.I 

; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT . 
MOV SI,6 ; WORD ARRAY-INDEX IS 3*2 
MOV AX,DSA.LOC_ARRAY [SI] 

; LOAD POINTERTOARRAY PASSED BY ADDRESS 
LES 'BX,DSA.POINTER 

; ES:BX NOW POIN:rS TO PARM_ARRAY (0) 
; ACCESS SI'TH ELEMENT OF PARM_ARRAY 
MOV AL,ES:[BX].PARM_ARRAY [51] 

; ACCESS THE BYTE PARAMETER 
MOV AL,DSA.COUNT 

Figure 2"79. Procedure Example 3 

Mnemonics © Int~l, 1978 



8086 AND 8088 CENTRAL PROCESSING UNITS 

; PROCEDURE EXIT 
MOV SP,BP ; DE-ALLOCATE LOCALS 
POP BP ; RESTORE BP 
; STACK NOW AS RECEIVED FROM CALLER 
RET 6 ; DISCARD PARAMETERS 

NEARPROC 
CODE 

ENDP 
ENDS 
END 

Figure 2-79. Procedure Example 3 (Cont'd.) 

, HIGHER ADDRESSES , 

I COUNT 

-POINTER 

RETADDR 

OLD_BP _BP 

LOC_ARRAY (9) 

LOC_ARRAY (8) 

LOC_ARRAY (7) 

LOC_ARRAY (6) 

LOC_ARRAY (5) 

LOC_ARRAY (4) 

LOC_ARRAY (3) 

LOC_ARRAY (2) 

LOC~ARRAY (1) 

LOC_ARRAY (0) 

I _SP 

" " LOWER ADDRESSES 

Figure 2-80. Procedure Example 
3 Stack Layout 

. The procedure in figure 2-81 illustrates how a 
PLlM-86 DO CASE construction may be 
implemented in ASM-86. It also shows: 

2-107 

• an indirect CALL through memory to a 
procedure located in another segment, 

• 

• 

• 

• 

a direct JMP to a label in another segment, 

an indirect JMP though memory to a label in 
the same segment, 

an indirect JMP through a register to a label 
in the same segment, 

a direct CALL to a procedure in another 
segment, 

• a direct CALL to a procedure in the same 
segment, 

• direct JMPs to labels in the same segment, 
within -128 to +127 bytes ("SHORT") and 
farther than -128 to +127 bytes ("NEAR"). 
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DATA SEGMENT 
; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE 

"DO_CASE." THE OFFSET OF EACH LABEL WILL 
; BE PLACED IN THE TABLE BY THE ASSEMBLER. 
CASE_TABLE OW ACTIO NO, ACTION1 , ACTION2, 
& ACTION3, ACTION4, ACTION5 
DATA ENDS 

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS 
ASSEMBLY BUT SUPPLIED BY R & L FACILITY) 
PROCEDURES. ONE IS IN THIS CODE SEGMENT 
(NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR). 

EXTRN NEAR_PROC: NEAR, FAR_PRoe: FAR 

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT 
IS IN ANOTHER SEGMENT. 

EXTRN ERR_EXIT: FAR 

CODE SEGMENT 
ASSUME CS: CODE, OS: DATA 

; ASSUME DS HAS BEEN SETUP 
BY CALLER TO POINTTO "DATA" SEGMENT. 

DO_CASE PROC NEAR 
; THIS EXAMPLE PROCEDURE RECEIVES TWO 

PARAMETERS ON THE STACK. THE FIRST 
PARAMETER IS THE "CASE NUMBER" OF 
A ROUTINE TO BE EXECUTED (0-5). THE SECOND 
PARAMETER IS A POINTER TO AN ERROR 
PROCEDURE THAT IS EXECUTED IF AN INVALID 
CASE NUMBER (>5) IS RECEIVED. 

; LAY OUT THE STACK. 
STACK_LAYOUT STRUC 
OLD_BP DW? 
RETADDR DW? 
ERR_PROC_ADDR DD ? 
CASE_NO DB? 

DB ? 
STACK_LAYOUT ENDS 

; SET UP PARAMETER ADDRESSING 
PUSH BP 
MOV BP,SP 

; CODE TO SAVE CALLER'S REGISTERS COULD GO HERE. 

; CHECK THE CASE NUMBER 
MOV 
MOV 
CMP 
JLE 

BH,O 
BL, [BPj.CASE_NO 
BX, LENGTH CASE_TABLE 
OK ; ALL CONDITIONAL JUMPS 

; ARE SHORT DIRECT 

Figure 2-81. JMP and CALL Examples 
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; CALL THE ERROR ROUTINE WITH A FAR 
INDIRECT CALL. AFAR INDIRECT CALL 
IS INDICATED SINCE THE OPERAND HAS 
TYPE "DOUBLEWORD." 

CALL. [BP].ERR_PROC_ADDR 

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT. 

OK: 

A FAR DIRECTJUMP IS INDICATED SINCE 
THE OPERAND HAS TYPE "FAR." 

JMP ERR_EXIT 

; MULTIPLY CASE NUMBEfi BY 2 TO Ge;T OFFSET 
INTO CASE_TABLE (EACH ENTRY IS 2 BYTES).· 

SHL BX,1 
; NEAR INDIRECT JUMP THROUGH SELECTED 

ELEMENT OF CASE_TABLE. A NEAR 
INDIRECT JUMP IS INDICATED SINCE THE 
OPERAND HAS TYPE ~IWORD." 

JMP CASE_TABLE [BX] 

ACTIONO:' ; EXECUTED IF CASE_NO = 0 
; CODE TO PROCESS THE ZERO CASE GOES HERE. 
; FOR ILLUSTRATION PURPOSES, USE A 

NEAR INDIRECT JUMP THROUGH A 
REGISTER TO BRANCH. TO THE POINT 
WHERE ALL CASES CONVERGE. 
A DIRECT JUMP (JMP ENDCASE) IS 
ACTUALLY MORE APPROPRIATE HERE. 

MOV AX, OFFSET ENDCASE 
JMP AX 

ACTION1: ; EXECUTED IF CASE_NO = 1 
; CALL A FAR EXTERNAL PROCEDURE. A FAR 

DIRECT CALL IS INDICATED SINCE OPERAND 
HAS TYPE "FAR." 

CALL. FAR_PROC 
; CALL A NEAR EXTERNAL PROCEDURE. 

CALL NEAR_PROC 
; BRANCH TO CONVER~ENCE POINT USiNG NEAR 

.' DIRECT JUMP. NOTE THAT "ENDCASE" 
IS MORE THAN127 BYTES AWAY 
SO A NEAR DIRECT JUMP WILL BE USED. 

JMP ENDCASE 

ACTION2: ; EXECUTED IF CASE_NO = 2 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JUMP 

Figure 2-&1. JMP and CALL Examples (Cont'd.) 
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ACTION3: ; EXECUTED IF CASE_NO = 3 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JMP 

; ARTIFICIALLY FORCE "ENDCASE" FURTHER AWAy ... ~ 
SO THAT ABOVE JUMPSGANNQ'r BE'!SHORT.'?· 

ORG 500 

ACTION4: ; EXECUTED IF CASE_NO = 4 
; CODE GOES HERE 

JMP ENDCAsE; NEARl::ilRECT JUMP 

ACTION5: ; EXECUTED IFCASE_NO = 5 
; CODE GOES HERE. 
; BRANCH TO CONVERGENCE POINT USING 

SHORT DIRECNUMP SINCE TARGET IS 
WITHIN 127 BYTES. MACHINE INSTRUCTION 
HAS 1-BYTE DISPLACEMENT RATHER THAN 
2-BYTE DISPLACEMENT REQUIRED FoA 
NEAR DIRECT JUMPS. "SHORT" IS 
WRITTEN BECAUSE "ENDCASE" ISA FORWAR't> 
REFERENCE, WHICH ASS'EMBLER ASSUMESTS 
"NEAR." IF "ENOCASF'APPEARED PRIOR 
TO THE JUMP, THE ASSEMBLER WOULD 
AUTOMATICALLY DETERMINE IF ITWERE REACHABLE 
WITH A SHORT JUMP. 

JMP SHORTENDCASE 

ENDCASE: ;ALLCASESCONVERGEHER~ 

; POP CALLER'S REGISTERS HERE. 
; RESTORE BP & SP, DISCARD pARAMETERS 

AND RETURN TO CALLER. 
MOV SP, BP 
POP BP 
RET 6 

i 

'ENDP 
ENDS 
END ; OF ASSEMBLY 

Figure 2~81. JMPand CALL Examples (C?Dt'd.) 

Figure 2-82 shows how the ASM-86 RECORD 
facility may be used to manipulate bit data. The 
example shows how to: • assign a constant known at assembly time, 

• right-justify a bit field, • assign a variable, 

,- test for a value, • set or clear. a bit:field. 
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DATA SEGMENT 
; DEFIN E A WORD ARRAY 
XREF DW 3000 DUP (?) 
; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS: 

A 2-BIT TYPE CODE, 
A 1-BIT FLAG, 
A 13-BIT NUMBER. 

; DEFINE A RECORD TO LAY OUT THIS ORGANIZATION. 
L1NE_REC RECORD LINE_TYPE: 2, 
& VISIBLE: 1, 
& L1NE_NUM: 13 
DATA ENDS 

CODE SEGMENT 
ASSUME CS: CODE, DS: DATA 

; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY 
AND THAT SIINDEXES AN ELEMENT OF XREF. 

; A RECORD FIELD-NAME USED BY ITSELF RETURNS 
THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY 

; THE FIELD. ISOLATE "LINE_TYPE" IN THIS 
; MANNER. 

MOV AL, XREF [SI] 
MOV CL, LINE_TYPE 
SHR AX,CL 

; THE "MASK" OPERATOR APPLIED TO A RECORD 
FIELD-NAME RETURNS THE BIT MASK 
REQUIRED TO ISOLATE THE FIELD WITHIN 
THE RECORD. CLEAR ALL BITS EXCEPT 
"L1NE_NUM. " 

MOV DX, XREF[SI] 
AND DX, MASK L1NE_NUM 

; DETERMINE THE VALUE OF THE "VISIBLE" FIELD 
TEST XREF[SI], MASK VISIBLE 
JZ NOT_VISIBLE 

; NO JUMP IF VISIBLE = 1 
NOT_VISIBLE: ; JUMP HERE IF VISIBLE = 0 

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME 
TO A FIELD, BY FIRST CLEARING THE BITS 
AND THEN OR'ING IN THE VALUE. IN 
THIS CASE "LINE_TYPE" IS SET TO 2 (10B). 

AND XREF[SI], NOT MASK LINE_TYpE 
OR XREF[SI],2 SHL LINE_TYPE 

; THE ASSEMBLER DOES THE MASKING AND SHIFTING. 
; THE RESULT IS THE SAME AS: 

AND XREF[SI],3FFFH 
OR XREF[SIJ, 8000H 

BUT IS MORE READABLE AND LESS SUBJECT 
TO CLERICAL ERROR.. 

Figure 2-82. RECORD Example 
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; ASSIGN A VARIABLE (THE CONTENT OF AX) 
TO LINE_TYPE. 

MOV 
SHL 
AND 
OR 

CL, LINE_TYPE ; SHIFT COUNT 
AX, CL ; SHIFTTO "LINE UP" BITS 
XREF[SIJ, NOT MASK LINE_TYPE ; CLEAR BITS 
XREF[SIJ, AX ; OR IN NEW VALUE 

; NO SHIFT IS REQUIRED TO ASSIGN TO THE 
RIGHT-MOST FIELD. ASSUMING AX CONTAINS 
A VALID NUMBER (HIGH 3 BITS ARE 0), 
ASSIGN AX TO "LlNE_NUM." 

AND XREF[SIJ, NOT MASK LlNE_NUM 
OR XREF[SIJ, AX 

; A FIELD MAY BE SET OR CLEARED WITH 
ONE INSTRUCTION. CLEAR THE "VISIBLE" 
FLAG AND THEN SET IT. 

AND 
OR 

XREF[SIJ, NOT MASK VISIBLE 
XREF[SIJ, MASK VISIBLE 

CODE ENDS 
END ; OF ASSEMBLY 

Figure 2-82. RECORD Example (Cont'd.) 

The following considerations apply to position­
independent code sequences: 

• A label that is referenced by a direct FAR 
(inter segment) transfer is not moveable. 

• A label that is referenced by an indirect 
transfer (either NEAR or FAR) is moveable 
so long as the register or memory pointer to 
the label contains the label's current address. 

• A label that is referenced by a SHORT (e.g., 
conditional jump) or a direct NEAR (in­
trasegment) transfer is moveable so long as 
the referencing instruction is moved with the 
label as a unit. These transfers are self­
relative; that is they require only that the 
label maintain the same distance from the 
referencing instruction, and actual addresses 
are immaterial. 

• Data is segment-independent, but not offset­
independent. That is, a data item may be 
moved to a different segment, but it must 
maintain the same offset from the beginning 
of the segment. Placing constants in a unit 
of code also effectively makes the code 
offset-dependent, and therefore is not 
recommended. 

• A procedure should not be moved while it is 
active or while any procedure it has called is 
active. 
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• A section of code that has been interrupted 
should not be moved. 

The segment that is receiving a section of code 
must have "room" for the code. If the MOVS (or 
MOVSB or MOVSW) instruction attempts to 
auto-increment DI past 64k, it wraps around to 0 
and causes the beginning of the segment to be 
overwritten. If a segment override is needed for 
the source operand, code similar to the following 
can be used to properly resume the instruction if it 
is interrupted: 

RESUME: REP MOVS DESTINATION, ES:SOURCE 

;IF CXNOT ~ 0 THEN INTERRUPT HAS OCCURRED 

AND CX,CX ; CX~O? 

JNZ RESUME ;NO, FINISH EXECUTION 

;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED. 

If the MOVS is interrupted, the CPU 
"remembers" the segment override, but 
"forgets" the presence of the REP prefix when 
execution resumes. Testing CX indicates whether 
the instruction is completed or not. Jumping back 
to the instruction resumes it where it left off. Note 
that a segment override cannot be specified with 
MOVSB or MOVSW. 



8086 AND 8088 CENTRAL PROCESSING UNITS 

Dynamic Code Relocation 

Figure 2-83 illustrates one approach to moving 
programs in memory at execution time. A "super­
visor" program (which is not moved) keeps 
a pointer variable that contains the current loca­
tion (offset and segment base) of a position­
independent procedure. The supervisor always 

calls the procedure through this pointer. The 
supervisor also has access to the procedure's 
length in bytes. The procedure is moved with the 
MOVSB instruction. After the procedure is 
moved, its pointer is updated with the new loca­
tion. The ASM-86 WORD PTR operator is writ­
ten to inform the assembler that one word of the 
doubleword pointer is being updated at a time. 

MAIN_DATA SEGMENT 
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE 

AND FREE SPACE. 
PIP _PTR DO EXAMPLE 
FREE_PTR DO TARGET_SEG 
; SET UP SIZE OF PROCEDURE IN BYTES 
PIP_SIZE OW EXAMPLE_LEN 
MAIN_DATA ENDS 

STACK SEGMENT 

STACK_TOP 
STACK 

OW 20 DUP (?) 

LABEL WORD 

; 20 WORDS FOR STACK 

; TOS BEGINS HERE 
ENDS 

SOURCE_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT. 
; OTHER CODE MAY PRECEDE IT, I.E., ITS OFFSET NEED NOT BE ZERO. 
ASSUME CS:SOURCE_SEG 
EXAMPLE PROC FAR 

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL 
; BIT 3 OF THE VALUE READ IS FOUND SET. IT 
; THEN READS ANOTHER PORT. IF THE VALUE READ 
; IS GREATER THAN 10H IT WRITES THE VALUE TO 
; A THIRD PORT AND RETURNS; OTHERWISE IT STARTS 
; OVER. 

STATUS_PORT EQU 
PORT_READY EQU 
INPUT_PORT EQU 
THRESHOLD EQU 
OUTPUT_PORT EQU 
CHECK_AGAIN: IN 

TEST 
JNE 
IN 
CMP 
JLE 
OUT 

ODOH 
008H 
OD2H 
010H 
OD4H 
AL,STATUS_PORT 
AL,PORT _READY 
CHECK_AGAIN 
AL,INPUT _PORT 
AL,THRESHOLD 
CHECK_AGAIN 
OUTPUT_PORT ,AL 

; GET STATUS 
; DATA READY? 
; NO, TRY AGAIN 
; YES, GET DATA 
; > 10H? 
; NO, TRY AGAIN 
; YES, WRITE IT 

Figure 2-83. Dynamic Code Relocation Example 
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RET ; RETURN TO CALLER 
;GETPROCEDURELENGTH 
EXAMPLE_LEN EQU (OFFSET THIS BYTE)-(OFFSETCHECK_AGAIN) 

ENDP EXAMPLE ENDP 
SOURCE_SEG ENDS 

TARGET_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE 

IS MOVED TO THIS SEGMENT, WHICH IS 
; INITIALLY "EMPTY." 
; IN TYPICAL SYSTEMS, A "FREE SPACE MANAGER" WOULD 
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE 
; FOR ILLUSTRATION PURPOSES, ALLOCATE ENOUGH 

SPACE TO HOLD IT 
DB EXAMPLE_LEN DUP (?) 

TARGET_SEG ENDS 

MAIN_CODE SEGMENT 
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE 
; AT ITS INITIAL LOCATION, MOVES IT, AND 
; CALLS IT AGAIN ATTHE NEW LOCATION. 

ASSUME 
& 

CS:MAIN_CODE,SS:STACK, 
DS:MAIN_DATA,ES:NOTHING 

; INITIALIZE SEGMENT REGISTERS & STACK POINTER. 
START: MOV AX,MAIN_DATA 

MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP 

; CALL EXAMPLE AT INITIAL LOCATION. 
CALL PIP_PTA 

; SET UP CX WITH COUNT OF BYTES TO MOV 
MOV CX,PIP _SIZE 

; SAVE DS, SET UP DS/SI AND ES/DI TO 
POINT TO THE SOU RCE AN D DESTINATION 
ADDRESSES. 

PUSH 
LES 
LDS 

; MOVE THE PROCEDURE. 
CLD 
REP MOVSB 

DS 
DI,FREE_PTR 
SI,PIP_PTR 

; RESTORE OLD ADDRESSABILITY. 

; AUTO INCREMENT 

MOV AX,DS ; HOLD TEMPORARILY 
POP DS 

; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE 
MOV WORD PTR PIP _PTR+2,ES 
SUB DI,PIP _SIZE ; PRODUCES OFFSET 
MOV WORD PTR PIP _PTR,DI 

Figure 2-83. Dynamic Code Relocation Example (Cont'd.) 
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; UPDATE POINTER TO FREESPACE 
MOV . WORD PTR FREE_PTR+2,AX 
SUB SI,PIP _SIZE ; PRODUCES OFFSET 
,MOV WORD PTR FREE_PTR,SI 

; CALL POSITION-INDEPENDENT PROCEDURE AT 
NEW LOCATION AND STOP 

CALL PIP _PTR 
MAIN_CODE ENDS 

END START 

Figure 2-83. Dynamic Code Relocation Example (Cont'd.) 

Memory-Mapped I/O 

Figure 2-84 shows how memory-mapped 110 can 
be used to address a group of communication 
lines as an "array." In the example, indexed 
addressing is used to poll the array of status ports, 
one port at a time. Any of the other 8086/8088 
memory addressing modes may be used in con­
junction with memory-mapped 1/0 devices as 
well. 

In figur\: 2-85 a MOVS instruction is used to per­
form a high-speed transfer to.a memory-mapped 
line printer. Using this technique requires the 
hardware to be set up as follows. Since the MOVS 

COM_LINES SEGMENT AT 800H 

instruction transfers characters to successive 
memory addresses, the decoding logic must select 
the line printer if any of these locations is written. 
One way of accomplishing this is to have the chip 
select logic decode only the upper 12 lines of the 
address bus (AI9-A8), ignoring the contents of 
the lower eight lines (A7-AO). When data is writ­
ten to any address in this 256-byte block, the 
upper 12 lines will not change, so the printer will 
be selected. 

If an 8086 is being used with an 8-oit printer, the 
8086's 16-bit data bus must be mapped into 8-bits 
by external hardware. Using an 8088 provides a 
more direct interface. 

; THE FOLLOWING IS A MEMORY MAPPED "ARRAY" 
OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS 
(E.G.,8251 USARTS). PORTS HAVE ALL-ODD 
OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE 
IS SKIPPED) FOR 8086-COMPATIBILITY. 

COM_DATA DB ? 
DB ? ; SKIP THIS ADDRESS 

COM_STATUS DB ? 
DB ? ; SKIP THIS ADDRESS 
DB 28 DUP(?) ; REST OF "ARRAY'.' 

COM_LINES ENDS 

CODE SEGMENT 
; ASSUME STACK IS SET UP, AS ARE SEGMENT 

REGISTERS (DS POINTING TO COM_LINES). 
FOLLOWING CODE POLLS THE LINES. ' 

CHAR_RDY EaU 
START_POLL: MOV 

SUB 

00000010B 
CX,8 
SI,SI 

; CHARACTER PRESENT 
; POLL 8 LINES ZERO 
; ARRAY INDEX 

Figure 2-84. Memory Mapped 1/0 "Array" 
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POLL_NEXT: TEST 
JE 
ADD 
LOOP 

JMP 

READ_CHAR: MOV 
; ETC. 
CODE ENDS 

END 

COM_STATUS [SI], CHAR_RDY 
READ_CHAR; READ IF PRESENT 
SI,.4 ; ELSE BUMP TO NEXT LINE 
POLL_NEXT ; CONTINUE POLLING UNTIL 

; ALL 8 HAVE BEEN CHECKED 
START_POLL; STARTOVER 

AL,COM_DATA [SI] ;GETTHE DATA 

Figure 2-84. Memory Mapped I/O "Array" (Cont'd.) 

PRINTER SEGMENT 
; THIS SEGMENT CONTAINS A "STRING" THAT 

IS ACTUALLY A MEMORY-MAPPED LINE PRINTER. 
THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED) 
TO A BLOCK OF THE ADDRESS SPACE SUCH 
THATWRITING TO ANY ADDRESS IN THE 
BLOCK SELECTS THE PRINTER. 

PRINT_SELECT DB 133 DUP (?) 
DB123 DUP(?) 

PRINTER ENDS 

DATA SEGMENT 
PRINT _BUF DB 133 DUP (?) 
PRINT_COUNT DB1 ? 
; OTHER PROGRAM DATA 
DATA ENDS 

CODE SEGMENT 
; ASSUME STACK AND SEGMENT REGISTERS HAVE 

BEEN SET UP (DS POINTS TO DATA SEGMENT). 
FOLLOWING CODE TRANSFERS A LINE TO 
THE PRINTER. 

ES: PRINTER 

; "STRING" REPRESENTING PRINTER 
; REST OF 256-BYTE BLOCK 

; LINE TO BE PRINTED 
; LINE LENGTH 

ASSUME 
MOV 
MOV 
SUB 
SUB 
MOV 
CLD 
MOVS 

AX, PRINTER ; PREVENT SEGMENT OVERRIDE 

REP 

CODE 

Mnemonics © Intel, 1978 

; ETC. 
ENDS 
END 

ES,AX 
DI, DI ; CLEAR SOURCE AND 
SI, SI DESTINATION POINTERS 
CX, PRINT_COUNT 
; AUTO-INCREMENT 
PRINT_SELECT, PRINT_BUF 

Figure 2-85. Memory Mapped Block Transfer Example 
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Breakpoints 

Figure 2-86 illustrates how a program may set a 
breakpoint. In the example, the breakpoint 
routine puts the processor into single-step mode, 
but the same general approach could be used for 
other purposes as well. A program passes the 
address where the break is to occur to a procedure 

that saves the byte located at that address and 
replaces it with an INT 3 (breakpoint) instruction. 
When the CPU encounters the breakpoint 
instruction, it calls the type 3 interrupt procedure. 
In the example, this procedure places the pro­
cessor into single-step mode starting with the 
instruction where the breakpoint was placed. 

INT_PTR_TAB SEGMENT 
; INTERRUPT POINTER TABLE-LOCATE ATOH 
TYPE_O DO ? 
TYPE_1 DO SINGLE_STEP 
TYPE_2 DO ? 

; NOT DEFINED IN EXAMPLE 

; NOT DEFINED IN EXAMPLE 
TYPE_3 DO BREAKPOINT 
INT_PTR_TAB ENDS 

SEGMENT SAVE_SEG 
SAVE_INSTR DB 1 DUP (?) ; INSTRUCTION REPLACED 

; BY BREAKPOINT 
SAVE_SEG ENDS 

MAIN_CODE SEGMENT 
; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP. 

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT 
LABEL "NEXT" BY PASSING SEGMENT AND 
OFFSET OF "NEXT" TO "SET_BREAK" PROCEDURE 

PUSH CS 
LEA AX,CS:NEXT 
PUSH AX 
CALL FAR SET_BREAK 

; ETC. 

NEXT: IN AL,OFFFH ; BREAKPOINT SET HERE 
; ETC. 

ENDS 

BREAK SEGMENT 
SET_BREAK PROC FAR 
; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE 

ADDRESS IS PASSED BY THE CALLER) AND WRITES 
AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION 
AT THE TARGET ADDRESS. 

TARGET EQU DWORD PTR [BP + 6] 

Figure 2-86. Breakpoint Example 
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; S~T UP BP FOR PARM ADDRESSING & SAVE REGISTERS 
PUSH BP 
MOV BP,SP 
PUSH DS 
PUSH ES 
PUSH AX 
PUSH BX 

; POINT DS/BX TO THE TARGET INSTRUCTION 
LDS BX,TARGET 

; POINT ES TO THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; SWAP THE TARGET INSTRUCTION FOR INT 3 (OCCH) 
MOV AL,OCCH 
XCHG AL, DS: [BX) 

; SAVE THE TARGET INSTRUCTION 
MOV ES: SAVE_INSTR, AL 

; RESTORE AND RETURN 
POP BX 
POP AX 
POP ES 
POP DS 
POP BP 
RET 4 

SET_BREAK ENDP 

BREAKPOINT PROC FAR ..... . 
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT 

EXECUTES THE INT 3 INSTRUCTION SET BY THE 
SET_BREAK PROCEDURE. tHIS PROCEDURE 
RESTORES THE SAVED INSTRUCTION BYTE TO ITS 
ORIGINAL LOCATION AND BACKS UP THE 
INSTRUCTION POINTER IMAGE ON THE STACK 
SO THAT EXECUTION WILL RESUME WITH 
THE RESTORED INSTRUCTION. IT THEN SETS 
TF (THE TRAP FLAG) IN THE FLAG-IMAGE 
ON THE STACK. THIS PUTS THE PROCESSOR 
IN SINGLE-STEP MODE WHEN EXECUTION 
RESUMES. 

FLAG_IMAGE EQU WORD PTR [BP+6) 
IP _IMAGE EQU WORD PTR [BP + 2) 

NEXT_INSTR EQU DWORD PTR [BP+2) 
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS 

PUSH BP 
MOV BP, SP 
PUSH DS 
PUSH ES 
PUSH AX 
PUSH BX 

; POINT ES AT THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; GET THE SAVED BYTE 
MOV AL, ES: SAVE_INSTR 

Figure 2-86. Breakpoint Example (Cont'd.) 
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; GET THE ADDRESS OF THE TARGET + 1 
(INSTRUCTION FOLLOWING THE BREAKPOINT) 

LDS BX, NEXT_INSTR 
; BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK 

DEC BX 
MOV IP _IMAGE, BX 

; RESTORE THE SAVED INSTRUCTION 
MOV DS: [BX], AL 

; SET TF ON STACK 
AND FLAG_IMAGE,0100H 

; RESTORE EVERYTHING AND EXIT 
POP BX 
POP AX 
POP ES 
POP DS 
POP BP 
IRET 

BREAKPOINT ENDP 

SINGLE STEP PROC FAR 
; ONCE SINGLE-STEP MODE HAS BEEN ENTERED, 

THE CPU "TRAPS" TO THIS PROCEDURE 
AFTER EVERY INSTRUCTION THAT IS NOT IN 
AN INTERRUPT PROCEDURE. IN THE CASE 
OF THIS EXAMPLE, THIS PROCEDURE WILL 
BE ExeCUTED IMMEDIATELY FOLLOWING THE 
"IN AL, OFFFH" INSTRUCTION (WHERE THE 
BREAKPOINT WAS SET) AND AFTER EVERY 
SUBSEQUENT INSTRUCTION. THE PROCEDURE 
COULD "TURN ITSELF OFF" BY CLEARING 
TF ON THE STACK. 

; SINGLE-STEP CODE GOES HERE. 
; SINGLE_STEP ENDP 

BREAK ENDS 

END 

Figure 2-86. Breakpoint Example (Cont'd.) 

Interrupt Procedures 

Figure 2-87· is a block diagram of Ii hypothetical 
system that is used to illustrate three different 
examples of interrupt handling: an external 
(maskable) interrupt, an external non-mask able 
interrupt and a software interrupt. 

In this· hypothetical system, an 8253· Program­
mable Interval Timer is used to generate ·.a time 
base. One of the three timers on the 825Hs pro­
grammed to repeatedly generate . interrupt 
requests at 50 millisecond intervals. The output 
from this timer is tied to one of the eight interrupt 
request lines of an 8259A Programmable lnter­
rupt Controller. The 8259A, in turn, is connected 
to the INTR line of an 8086 or 8088. 
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+5V BATTERY 

START-1 ~ 
BATTERY POWERED 

RAM COLD T r-r ~ POWER DOWN 

IE1 J--

~ 
NMI 

8086/8085 

ADDRESS 

DATA 

CONTROL 

BUS 

BUS 

BUS 

I 

I DECODER 

I I I 
! I 

I 

-
CS 

RESET 

PF1 

(PULSE) 

INTR 
IR3 

8259A 

I I 
! ! I 

I I I 
1 I I T 

EPROM I 

CIRCUITS 

MPRO I' DECODER 

t PFSR 

PFS 

I 
EO E2 

CTR1 
8253 PORTS 

I I I I I 
! I ! ! I ! I S 

I I I I 

l- 1.11 
I CS 

DECODER' RAM 

Figure 2-87. InterruptExample Block Diagram 

A power-down circuit is used in the system to 
illustrate one application of the 8086/8088 NMI 
(non-mask able interrupt) line. If the ac line 
voltage drops below a certain threshold, the 
power supply activates ACLO. The power-down 
circuit then sends a power-fail interrupt (PFI) 
pulse to the CPU's NMI input. After 5 
milliseconds, the power-down circuit activates 
MPRO (memory protect) to disable reading 
from and writing to the system's battery-powered 
RAM. This protects the RAM from fluctuations 
that may occur when. power is actually lost 7.5 
milliseconds :.after the power failure is detected. 
The system software must save all vital informa­
tion in the batiery-poweredRAM segment within 
5 milliseconds oHhe activatiol}:;of NMI. . 

When power returns, the power-down circ.uit 
activates the system RESET line. Pressing the 
'''coldstart'' '. switch alsop.roduces a system 
RESET. The PFS.(powerfail status) line;whictJ: is 

connected to the low-order bit of port EO, iden­
tifies the source of the RESET. If the bit is set, the 
software executes a "warm start" to restore the 
information saved by the power-fail routine. If 
the PFS bit is cleared, the software executes a 
"cold start" from the beginning of the program. 
In either case, the software writes a "one" to the 
low-order bit of port E2. This line is connected to 
the power-down circuit's PFSR (power fail status 
reset) signal and is used to enable the battery­
powered RAM segment. 

A software interrupt is used to update a simple 
real-time clock. This procedure is written in 
PLlM-86, while the rest of the system is written in 
ASM-86 to demonstrate the interrupt handling 
capability of bOth languages. The system's main 
program simply initializes, .the system following 
teceipt of a RESET and then waits for an 
interrupt. An example of this interrupt procedure 
is given in figure 2-88 .. 

2-f20 



8086 AND 8088 CENTRAL PROCESSING UNITS 

INT_POINTERS SEGMENT 
; INTERRUPT POINTER TABLE, LOCATE AT OH, ROM-BASED 
TYPE_O DD ? 
TYPE_1 DD ? 
TYPE_2 DD POWER_FAIL 

; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE. 
; SINGLE-STEP NOT SUPPLIED IN EXAMPLE. 
; NON-MASKABLE INTERRUPT 

TYPE_3 DD ? 
TYPE_4 DD ? 

; BREAKPOINT NOT SUPPLIED IN EXAMPLE. 
; OVERFLOW NOT SUPPLIED IN EXAMPLE. 

; SKIP RESERVED PART OF EXAMPLE 

TYPE_32 
TYPE_33 
TYPE_34 
TYPE_35 
TYPE_36 
TYPE_37 
TYPE_38 
TYPE_39 
, 

ORG 32'4 
DD ? 
DD ? 
DD ? 
DD TIMER_PULSE 
DD ? 
DD ? 
DD ? 
DD ? 

; POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER 

INT _POINTERS ENDS 

BATTERY SEGMENT 

; 8259A IRa - AVAILABLE 
; 8259A IR1 - AVAILABLE 
; 8259A IR2 - AVAILABLE 
; 8259A IR3 
; 8259A IR4 - AVAILABLE 
; 8259A IR5 - AVAILABLE 
; 8259A IR6 - AVAILABLE 
; 8259A IR7 - AVAILABLE 

; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA 
; THAT MUST BE MAINTAINED DURING POWER OUTAGES. 
STACK_PTR DW? ; SP SAVE AREA 
STACK_SEG DW? ; SS SAVE AREA 
;SPACEFOROTHERVAR~BLESCOULDBEDEANEDHERE. 
BATTERY ENDS 

DATA SEGMENT 
; RAM SEGMENTTHAT IS NOT BACKED UP BY BATTERY 
N_PULSES DB 1 DUP (0) ; #TIMER PULSES 

; ETC. 
DATA ENDS 

STACK SEGMENT 
; LOCATED IN BATTERY-POWERED RAM 

STACK_TOP 
STACK 

DW 100 DUP (?) 

LABEL WORD 
ENDS 

; THIS IS AN ARBITRARY STACKSIZE 

; LABEL THE INITIAL TOS 

INTERRUPT_HANDLERS SEGMENT 
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PLI M-86) 

ASSUME: CS:INTERRUPT_HANDLERS,DS:DATA,SS:STACK,ES:BATTERY 

POWER_FAIL PROC ; TYPE 2 INTERRUPT 
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS 

ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN 
RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SO THAT IT 
CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS 

Figure 2-88. Interrupt Procedures Example 
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; IP, CS, AND FLAGS ARE ALREADY ON THE STACK. 
SAVE THE OTHER REGISTERS. 

PUSH AX 
PUSH BX 
PUSH CX 
PUSH DX 
PUSH SI 
PUSH DI 
PUSH BP 
PUSH DS 
PUSH ES 

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK ATTHIS 
POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE "BATTERY" 
SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER 
IS LOST. 

; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE. 
MOV AX,BATTERY 
MOV ES,AX 
MOV ES:STACK_PTR,SP 
MOV ES:STACK_SEG,SS 

; STOP GRACEFULLY 
HLT 

ENDP 

TIMER_PULSE PROC ; TYPE 35 INTERRUPT 
; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253. 

, 

IT COUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT 
PROCEDURE ONCE PER SECOND. 

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT 
, 
; THE 8253 IS RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT 

REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT,THE CODE MIGHTGO HERE. 
, 
; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI). 

INC N_PULSES 
; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING 

STI 
CMP N_PULSES,200; 1 SECOND PASSED? 
JBE DONE ; NO, GO ON. 
MOV N_PULSES,O ; YES, RESET COUNT. 
INT 40 ; UPDATE CLOCK 

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL 
; OR LOWER PRIORITY INTERRUPTS. 
DONE: MOV AL,020H ; EOI COMMAND 

OUT OCOH ,AL ; 8259A PORT 
IRET 

TIMER_PULSE ENDP 

INTERRUPT_HANDLERS ENDS 

CODE SEGMENT 
; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 
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INIT PROC NEAR 
; THIS PROCEDURE IS CALLED fOR BOTH WARM AND COLD STARTS TO INITIALIZE 

THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR 
EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM STA.RT. 
INTERRUPTS ARE DISABLED BY VIRTUE Of THE SYSTEM RESET. 

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED. 
; CLK INPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ. 

L050MS 
HI50MS 
CONTROL 
COUNT_1 
MODE2 

EQU 
EQU 
EQU 
EQU 
EQU 

OOOH 
OfOH 
OD6H 
OD2H 
01110100B 

; COUNT VALUE IS 
; 61440 DECIMAL. 
; CONTROL PORT ADDRESS 
; COUNTER 1 ADDRESS 
; MODE 2, BINARY 

MOV DX,CONTROL ; LOAD CONTROL BYTE 
MOV AL,MODE2 
OUT DX,AL 
MOV DX,COUNT_1 ; LOAD 50MS DOWNCOUNT 
MOV AL,L050MS 
OUT DX,AL 
MOV AL,HI50MS 
OUT DX,AL 
; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED. 

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED, 
; INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU fOR INTERRUPT 
; REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-Of-INTERRUPT. 
; MASK Off UNUSED INTERRUPT REQUEST LINES. 

ICW1 
ICW2 
ICW4 
OCW1 
PORT_A 
PORT_B 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

00010011 B 
00100000B 
00000001 B 
11110111B 
OCOH 
OC2H 

; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED. 
; TYPE 20H, 32 - 40D 
; 8086 MODE, NORMAL EOI 
; MASK ALL BUT IR3 
; ICW1 WRITTEN HERE 
; OTHER ICW'S WRITTEN HERE 

MOV DX,PORT_A ; WRITE 1ST ICW 
MOV AL,ICW1 
OUT DX,AL 
MOV DX,PORT_B ; WRITE 2ND ICW 
MOV AL,ICW2 
OUT DX,AL 
MOV AL,ICW4 ; WRITE 4TH ICW 
OUT DX,AL 
MOV AL,OCW1 ; MASK UNUSED IR'S 
OUT DX,AL 

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED 
RET 

INIT ENDP 

USER_PGM: 
; "REAL" CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP 

UNTIL AN INTERRUPT OCCURS. 
JMP USER_PGM 

; EXECUTION STARTS HERE WHEN CPU IS RESET. 
POWER_fAIL_STATUS EQU OEOH 
ENABLE_RAM EQU OE2H 

; PORT ADDRESS 
; PORT ADDRESS 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 
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; ENABLE BATTERY-POWERED RAM SEGMENT 
START: MOV AL,001H 

OUT ENABLE_RAM,AL 

; DETERMINE WARM OR COLD START 
IN AL,POWER_FAIL._STATUS 
RCR AL,1 ; ISOLATE LOW BIT 
JC WARM_START 

COLD_START: 
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 
; RESET TAKES CARE OFCS AND IP. 
MOV AX,DATA 
MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET STACK_TOP 

; INitiALIZE 8253 AND 8259A. 
CALL INIT 

; ENABLE INTERRUPTS 
STI 

; START MAIN PROCESSING 
JMP 

WARM_START: 
; INITIALIZE 8253 AND 8259A. 

CALL INIT 

; RESTORE SYSTEM to STATE AT THE TIME POWER FAILED 

CODE 

Mnemonics © Intel, 1978 

; MAKE BATTERY SEGMENT ADDRESSABLE 
MOV AX,BATTERY 
MOV DX,AX 

; VARIABLES SAVED IN THE "BATTERY" SEGMENT WOULD BE MOVED 
BACK TO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND 
"ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN 
ADDRESSABILITY. 

; RESTORE THE OLD STACK 
MOV SS,DS:STACK_SEG 
MOV SP,DS:STACK_PTR 

; RESTORE THE OTHER REGISTERS 
POP ES. 
POP OS 
POP BP 
POP 01 
POP SI 
POP OX 
POP CX 
POP BX 
POP AX 

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED. 
I.E., POP CS, IP, & FLAGS, EFFECTIVELY "RETURNING" FROM THE 
NMI PROCEDURE. 

IRET 
ENDS 

; TERMINATE ASSEMBLY AND MARK BEGINNING OFTHE PROGRAM. 
END START 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 
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TYPE$40: DO; 
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC; 
UPDATE$TOD: PROCEDURE INTERRUPT 40; 

"THE PROCESSOR ACTIVATES THIS PROCEDURE 
'TO HANDLE THE SOFTWARE INTERRUPT 
'GENERATED EVERY SECOND BY THE TYPE 35 
'EXTERNAL INTERRUPT PROCEDURE. THIS 
'PROCEDURE UPDATES A REAL-TIME CLOCK. 
'IT DOES NOT PRETEND TO BE "REALISTIC" 
'AS THERE IS NO WAYTO SET THE CLOCK." 

SEC=SEC+1; 
IF SEC = 60 THEN DO; 

SEC= 0; 
MIN = MIN + 1; 
IF MIN = 60 THEN DO; 

MIN =0; 
HOUR=HOUR+1; 
IF HOUR = 24 THEN DO; 

HOUR= 0; 
END; 

END; 
END; 

END UPDATE$TOD; 
END; 

Figure 2-88. Interrupt Procedures Example (Cont'd.) 

String Operations 

Figure 2-89 illustrates typical use of string instruc­
tions and repeat prefixes. The XLAT instruction 
also is demonstrated. The first example simply 
moves 80 words of a string using MOVS. Then 
two byte strings are compared to find the 
alphabetically lower string, as might be done in a 
sort. Next a string is scanned from right to left 

(the index register is auto-decremented) to find 
the last period (".") in the string. Finally a byte 
string of EBCDIC characters is translated to 
ASCII. The translation is stopped at the end of 
the string or when a carriage return character is 
encountered, whichever occurs first. This is an 
example of using the string primitives in combina­
tion with other instructions to build up more com­
plex string processing operations. 

ALPHA SEGMENT 
; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE 
OUTPUT DW 100 DUP (?) 
INPUT DW 100 DUP (?) 
NAME_1 DB 'JONES, JON A' 
NAME_2 DB 'JONES, JOHN' 
SENTENCE DB 80 DUP (?) 
EBCDIC_CHARS DB 80 DUP (?) 
ASCII_CHARS DB 80 DU P (?) 
CONY _TAB DB 64 DU P(OH) ; EBCDIC TO ASCII 

Figure 2-89. String Examples 
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; ASCII NULLS ARE SUBSTITUTED FOR "UNPRINTABLE" CHARS 
DB 1 20H 
DB 9 DUP (OH) 
DB? 'Q:',',','<','(','+',OH,'&' 
DB 9 DUP (OH) 
DBB '!','$','*',')',';',' ','-','/' 
DB 8 DUP (OH) 
DB6 ' ',',',1%', '_', I>', '?' 
DB 9 DUP (OH) 
D817 ",':','#','@','''','=',''1', 

OH, 'a', 'b', Ie', 'd', Ie', If', 'g,', 'h', 'i' 
DB 7 DUP (OH) 
DB9 Ij', 'k', 'I', 'm', In', '0', 'p', 'q', 'r' 
DB 7 DUP (OH) 
DB9 '~', '5', '1', lU', 'v', 'w', 'x', 'y', 'z' 
DB 22 DUP (OH) 
0810 ' ','A', '8', 'G', 'D', 'E', IF', 'G', 'l-'i', 'I' 
DB 6 DUP (OH) 
0810 ' ','J', 'K','L', 'M', 'N', '0', 'P', 'Q', lR' 
DB 6 DUP (OH) 
DB10 ",OH,'S','T','U','V','W','X','Y','Z' 
DB 6 DUP (OH) 
0810 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 
DB 6 DUP (OH) 

ALPHA ENDS 

STACK SEGMENT 
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE 

; FOR ILLUSTRATION ONLY. 
STACK_BASE LABEL WORD ; INITIAL TOS 
STACK ENDS 

CODE 
BEGIN: 

& 

SEGMENT 
; SET UP SEGMENT REGISTERS. NOTICE THAT 
; ES & DS POINT TO THE SAME SEGMENT, MEANING 
; THAT THE CURRENT EXTRA & DATA 
; SEGMENTS FULLY OVERLAP. THIS ALLOWS 
; ANY STRJNG IN "ALPHA" TO BE USED 
; AS A SOURCE OR A DESTINATION. 
ASSUME CS: CODE, SS: STACK, 

DS:ALPHA,ES:ALPHA 
MOV AX, STACK 
MOV SS, AX 
MOV SP, OFFSET STACK_BASE; INITIAL TOS 
MOV AX, ALPHA 
MOV DS, AX 
MOV ES, AX 

; MOVE THE FIRST 80 WORDS OF "INPUT" TO 
THE LAST 80 WORDS OF "OUTPUT". 

LEA SI, INPUT ; INITIALIZE 
LEA DI, OUTPUT +20 ; INDEX REGISTERS 

Figure 2-89. String Examples (Cont'd.) 
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MOV 
CLD 

CX,SO ; REPETITION COUNT 
; AUTO-INCREMENT 

REP MOVS OUTPUT, INPUT 

; FIND THE ALPHABETICALLY LOWER OF 2 NAMES. 
MOV SI, OFFSET NAME_1 
MOV 01, OFFSET NAME_2 
MOV CX, SIZE NAME_2 
CLD 

; ALTERNATIVE 
; TO LEA 
; CHAR. COUNT 

REPE CMPS NAME_2, NAME_1 
NAME_2_LOW 

; AUTO-INCREMENT 
"WHILE EQUAL" 

JB 
NAME_1_LOW: 
NAME_2_LOW: 

; NOT IN THIS EXAMPLE 
; CONTROL COMES HERE IN THIS EXAMPLE. 
; 01 POINTS TO BYTE ('H') THAT 
; COMPARED UNEQUAL. 

; FIND THE LAST PERIOD (' .') IN A TEXT STRING. 
MOV 01, OFFSET SENTENCE + 

& LENGTH SENTENCE ; START AT END 
MOV CX, SIZE SENTENCE 
STD ; AUTO-DECREMENT 
MOV AL, '.' ; SEARCH ARGUMENT 

REPNE SCAS SENTENCE ; "WHILE NOT =" 
JCXZ NO_PERIOD ; IF CX=O, NO PERIOD FOUND 

PERIOD: ; IF CONTROL COMES HERE THEN 
; 01 POINTS TO LAST PERIOD IN SENTENCE. 

NO_PERIOD: ; ETC. 

; TRANSLATE A STRING OF EBCDIC CHARACTERS 
TO ASCII, STOPPING IF A CARRIAGE RETURN 
(ODH ASCII) IS ENCOUNTERED. 

MOV BX,OFFSETCONV __ TAB; POINTTO TRANSLATE TABLE 
MOV SI, OFFSET EBCDIC_CHARS ; INITIALIZE 
MOV 01, OFFSET ASCILCHARS INDEX REGISTERS 
MOV CX, SIZE ASCII_CHARS ; AND COUNTER 
CLD ; AUTO-INCREMENT 

NEXT: LODS EBCDIC_CHARS ; NEXT EBCDIC CHAR IN AL 

CODE 

XLAT CONV_ TAB ; TRANSLATE TO ASCII 
STOS ASCII_CHARS ; STORE FROM AL 
TEST AL,ODH ; IS IT CARRIAGE RETU RN? 
LOOPNE NEXT ; NO, CONTINUE WHILE CX NOT 0 
JE CR_FOUND ; YES, JUMP 
; CONTROL COMES HERE IF ALL CHARACTERS 

HAVE BEEN TRANSLATED BUT NO 
; CARRIAGE RETURN IS PRESENT. 
; ETC. 

; 01-1 POINTS TO THE CARRIAGE RETURN 
IN ASCII_CHARS. 

ENDS 
END 

Figure 2-89. String Examples (Cont'd.) 
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CHAPTER 3 
THE 8089 INPUT/OUTPUT PROCESSOR 

This chapter describes the 8089 Input/Output 
Processor (lOP). Its organization parallels 
Chapter 2; that is, sections generally proceed 
from hardware to software topics as follows: 

1. Processor Overview 

2. Processor Architecture 

3. Memory 

4. Input/Output 

5. Multiprocessing Features 

6. Processor Control and Monitoring 

7. Instruction Set 

8. Addressing Modes 

9. Programming Facilities 

10. Programming Guidelines and Examples 

As in Chapter 2, the discussion is confined to 
covering the hardware in functional terms; tim­
ing, electrical characteristics and other physical 
interfacing data are provided in Chapter 4. 

3.1 Processor Overview 

The 8089 Input/Output Processor is a high­
performance, general-purpose I/O system 
implemented on a single chip. Within the 8089 are 
two independent I/O channels, each of which 
combines attributes of a CPU with those of a very 
flexible DMA (direct memory access) controller. 
For example, channels can execute programs like 
CPUs; the lOP instruction set has about 50 dif­
ferent types of instructions specifically designed 
for efficient input/output processing. Each chan­
nel also can perform high-speed DMA transfers; a 
variety of optional operations allow the data to be 
manipulated (e.g., translated or searched) as it is 
transferred. The 8089 is contained in a 40-pin 
dual in-line package (figure 3-1) and operates 
from a single + 5V power source. An integral 
member of the 8086 family, the lOP is directly 
compatible with both the 8086 and 8088 when 
these processors are configured in maximum 
mode. The lOP also may be used in any system 
that incorporates Intel's Multibus™ shared bus 
architecture, or a superset of the Multibus™ 
design. 

3-1 
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SINTR·l SEl 

SINTR·2 CA 

ClK READY 

Vss RESET 

Figure 3-1. 8089 Input/Output Processor 
Pin Diagram 

Evolution 

Figure 3-2 depicts the general trend in CPU and 
I/O device relationships in the first three genera­
tions of microprocessors. First generation CPUs 
were forced to deal directly with substantial 
numbers of TTL components, often performing 
transfers at the bit level. Only a very limited 
number of relatively slow devices could be 
supported. 

Single-chip interface controllers were introduced 
in the second generation. These devices removed 
the lowest level of device control from the CPU 
and let the CPU transfer whole bytes at once. 
With the introduction of DMA controllers, high­
speed devices could be added to a system, and 
whole blocks of data could be transferred without 
CPU intervention. Compared to the previous 
generation, I/O device and DMA controllers 
allowed microprocessors to be applied to prob­
lems that required moderate levels of I/O, both in 
terms of the numbers of devices that could be sup­
ported and the transfer speeds of those devices. 
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The controllers themselves, however, still 
required a considerable amount of attention from 
the CPU, and in many cases the CPU had to 
respond to an interrupt with every byte read or 
written. The CPU also had to stop while DMA 
transfers were performed. 

The 8089 introduces the third generation of 
input/output processing. It continues the trend of 
simplifying the CPU's "view" of I/O devices by 
removing another level of control from the CPU. 
The CPU performs an I/O operation by building 
a message in memory that describes the function 
to be performed; the lOP reads the message, car­
ries out the operation and notifies the CPU when 
it has finished. All I/O devices appear to the CPU 
as transmitting and receiving whole blocks of 
data; the lOP can make both byte- and word-level 
transfers invisible to the CPU. The lOP assumes 
all device controller overhead, performs both pro­
grammed and DMA transfers, and can recover 
from "soft" I/O errors without CPU interven­
tion; all of these activities may be performed 
while the CPU is attending to other tasks. 

DATA LINK 

HOLe/SOLe 
PROTOCOL 

CONTROLLER 

Principles of Operation 

Since the 8089 is a new concept in microprocessor 
components, this section surveys the basic opera­
tion of the lOP as background to the detailed 
descriptions provided in the rest of the chapter. 
This summary deliberately omits some operating 
details in order to provide an integrated overview 
of basic concepts. 

CPU/lOP Communications 

A CPU communicates with an lOP in two distinct 
modes: initialization and command. The 
initialization sequence is typically performed 
when the system is powered-up or reset. The CPU 
initializes the lOP by preparing a series of linked 
message blocks in memory. On a signal from the 
CPU, the lOP reads these blocks and determines 
from them how the data buses are configured and 
how access to the buses is to be controlled. 

(FUTURE CONTROLLER) 

... , r~~;,;, 
( ? r - -I 110 I 

/A... '" L ~E:C:.J 
,/ /' FLOPPY DISK 

CONTROLLER 

Figure 3-2. lOP Evolution 
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Following initialization, the CPU directs all com­
munications to either of the lOP's two channels; 
indeed, during normal operation the lOP appears 
to be two separate devices-channel 1 and chan­
nel2. All CPU-to-channel communications center 
on the channel control block (CB) illustrated in 
figure 3-3. The CB is located in the CPU's 
memory space, and its address is passed to the 
lOP during initialization. Half of the block is 
dedicated to each channel. The channel maintains 
the BUSY flag that indicates whether it is in the 
midst of an operation or is available for a new 
command. The CPU sets the CCW (channel com­
mand word) to indicate what kind of operation 
the lOP is to perform. Six different commands 
allow the CPU to start and stop programs, 
remove interrupt requests, etc. 

If the CPU is dispatching a channel to run a pro­
gram, it directs the channel to a parameter block 
(PB) and a task block (TB); these are also shown 
in figure 3-3. The parameter block is analogous to 
a parameter list passed by a program to a 
subroutine; it contains variable data that the 
channel program is to use in carrying out its 
assignment. The parameter block also may con-

tain space for variables (results) that the channel 
is to return to the CPU~ Except for the first two 
words, the format and size of a parameter block 
are completely open; the PB may be set up to 
exchange any kind of information between the 
CPU and the channel program. 

A task block is a channel program-a sequence of 
8089 instructions that will perform an operation. 
A typical channel program might use parameter 
block data to set up the lOP and a device con­
troller for a transfer, perform the transfer, return 
the results, and then halt. However, there are no 
restrictions on what a channel program can do; its 
function may be simple or elaborate to suit the 
needs of the application. 

Before the CPU starts a channel program, it links 
the program (TB) to the parameter block and the 
parameter block to the CB as shown in figure 3-3. 
The links .are standard 8086/8088 doubleword 
pointer variables; the lower-addressed word con­
tains an offset, and the higher-addressed word 
contains a segment base value. A system may 
have many different parameter and task blocks; 
however, only one of each is ever linked to a 
channel aniny given time. 
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Figure 3-3. Command Communication Blocks 
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After· the CPU. has filled in the CCW and has 
linked the CB to a parameter block and a task 
block, if appropriate, it issues a channel attention 
(CA). This is done by activating the 10P's- CA 
(channel attention) and SEL (channel select) pins. 
The state of SEL at the falling edge of CA directs 
the channel attention to channell or channel 2. If 
the lOP is located in the CPU's 1/0 spa~e, it 
appears to the CPU as two consecutive 1/0 'ports 
(one for each channel), and an OUT instruction 
to the port functions as a CA. lithe lOP is 
memory-mapped, the channels appear as two 
consecutive memory locations, and any memory 
reference instruction (e.g., MOV) to these loca­
tions causes a channel attention. 

An lOP channel attention is functionally similar 
to a CPU interrupt. When the channel recognizes 
the CA, it stops what it is doing (it will typically 
be idle) and examines the command in the CCW. 
If it is to start a program, the channei loads the 
addresses of the parameter and task blocks jnto 
internal registers, sets its BUSY flag and' starts 
executing the channel program. After it has issued 
the,CA, the CPU is free to perform other process­
ing; the channel can perform. its function,in 
parallel, subject to limitations imposed by bus 
configurations (discussed shortly). 

When the channel has completed its program, it· 
notifies the CPU by clearing its BUSY flag in the 
CB. Optionally, irmay issue an interrupt request 
to the CPU. 

The CPUIIOP communication structure is sum­
marized in figure 3-4. Most communication:takes 
place via "message areas" shared in common 
memory. The only direct hardware communica­
tions between the devices .are channel attentions 
and interrupt requests. 

Channels 

Each of the two . lOP channels operates 
iridependentiy,;a:ndeach has its own register set. 
channelaitention, interrupt request and DMA 
control signals. At a given point in time,.6 chan­
nel may be idle, executing a program', performing 
a DMAtransfer, or responding to a channel 
attention. Although only one channel actually 
runs at a time, the channels can be active eoncur·) 
rentiy, alternating their operations (e.g;, channel 
1 may execute instructions in the periods between 
successive DMA transfer cycles run by channel 2). 
A built-in priority system allows high-priority 
activities on one channel to preempt less critical 
operations on the other channel. The CPU is able 
to further adjust priorities to handle special cases. 
The CPU starts the channel and can halt it, sus­
pend it, or cause it to resume a suspended opera:­
tion by placing different values in theCCW. 

Channel Programs (Task Blocks) 

Channel programs are written in ASM-89,the 
8089 assembly language. About 50 basic instruc­
tions are available. These instructions operate on 

- bit, byte, word and doubleword (pointer) variable 
types; a 20-bit physical address variable type (not 
used by the 8086/8088) can also be manipulated. 
Data may be taken from registers, immediate con­
stants and memory. Four memory addressing 
modes allow flexible access to both memory 
variables and 110 devices located anywhere in 
either the CPU's megabyte memory space or in 
the 8089's 64k 110 space. . 

The lOP instruction set contains general purpose 
instructions similar to those found in CPUs as 
well as instructions specifically tailored for 110 

CHANNEL ATTENTION 
, 

MESSAGES 
CPU IN 

MEMORY 
lOP 

.- . 

INTERRUPT 

FiBUre 3-4. CPUIIOP Commpnication. 
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operations. Data transfer, simple arithmetic, 
logical and address manipulation operations are 
available. Unconditional jump and call instruc­
tions also are provided so that channel programs 
can link to each other. An individual bit may be 
set or cleared with a single instruction. Condi­
tional jumps .can test a bit and jump if it is set (or 
cleared), or can test a value and jump if it is zero 
(or non-zero). Other instructions initiate DMA 
transfers, perform a locked test-and-set 
semaphore operation, and issue an interrupt 
request to the CPU. 

DMA Transfers 

The 8089 XFER (transfer) instruction prepares 
the channel for a DMA transfer. It executes one 
additional instruction, then suspends program 
execution and enters the DMA transfer mode. 
The transfer is governed by channel registers 
setup by the program prior to executing the 
XFER instruction. 

Data is transferred from a source toa destination. 
The source and destination may be any locations 
in the CPU's memory space or in the lOP's 110 
space; the lOP makes no distinction between 
memory components and 110 devices. Thus 
transfers may be made from 110 device to 
memory, memory to I/O device, memory to . 
memory and I/O device to.l/O device. The lOP 
automatically matches 8- and 16-bit components 
to each other. 

Individual transfer cycles (Le., the movement of a 
byte or a word) may be synchronized by a signal 
(DMA request) from the source or from the 
destination. In the synchronized mode, the chan­
nel waits for the synchronizing signal before start­
ing the next transfer cycle. The transfer also may 
be unsynchronized, in which case the channel 
begins the next transfer cycle immediately upon 
completion of the previous cycle. 

A transfer cycle is performed in two steps: fetch­
ing a byte or word from the source into the lOP 
and then storing it from the lOP into the destina­
tion. The lOP automatically optimizes the 
transfer to make best use of the available data bus 
widths. For example, if data is being transferred 
from an 8-bit device to memory that resides on a 
16-bit bus (e.g., 8086 memory), the lOP will nor­
mally run two one-byte fetch cycles and then store 
the full word in a single cycle. 

3-5 

Between the fetch and store cycles, the lOP can 
operate on the data. A byte may be translated to 
another code (e.g., EBCDIC to ASCII), or com­
pared to a search value, or both, if desired. 

A transfer can be terminated by several 
programmer-specified conditions. The channel 
can stop the transfer when a specified number (up 
to 64k) of bytes has been transferred. An external 
device may stop a transfer by signaling on the 
channel's external terminate pin. The channel can 
stop the transfer when a byte (possibly translated) 
compares equal, or unequal, to a search value. 
Single-cycle termination, which stops uncondi­
tionally after one byte or word has been stored, is 
also available. 

When the transfer terminates, the channel 
automatically resumes program execution. The 
channel program can determine the cause of the 
termination in situations where multiple termina­
tions are possible (e.g., terminating when 80 bytes 
are transferred or a carriage return character is 
encountered, whichever occurs first). As an exam­
ple of post-transfer processing, the channel pro­
gram could read a result register from the I/O 
device controller to determine if the transfer was 
performed successfully. If not (e.g., a CRC error 
was detected by the controller), the channel pro­
gram could retry the operation without CPU 
intervention. 

A channel program typically ends by posting the 
result of the operation to a field supplied in the 
parameter block, optionally interrupting the 
CPU, and then halting. When the channel halts, 
its BUSY flag in the channel control block is 
cleared to indicate its availability for another 
operation. As an alternative to being interrupted 
by the channel, the CPU can poll this flag to 
determine when the operation has been 
completed. 

Bus Configurations 

As shown in figure 3-5, the lOP can access 
memory or ports (I/O devices) located in a 
I-megabyte system space and memory or ports 
located in a 64-kilobyte 110 space. Although the 
lOP only has one physical data bus, it is useful to 
think of the lOP as accessing the system space'via 
a system data bus and the 110 space over an I/O 
data bus. The distinction between the "two" 
buses is based on the type-of-cycle signals output 
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by the 8288 Bus Controller. Components in the 
system space respond to the memory read and 
memory write signals, whether they are memory 
or 110 devices. Components in the 1/0 space 
respond to the 110 read and 110 write signals. 
Thus 110 devices located in the system space are 
memory-mapped and memory in the 110 space is 
1I0-mapped. The two basic configuration op­
tions differ in the degree to which the lOP shares 
these buses with the CPU. Both configurations re­
quire an 8086/8088 CPU to be strapped in max­
imummode. 

In the local configuration, shown in figure 3-6, 
the lOP (or lOPs if two are used) shares both 
buses with the CPU. The system bus and the 110 
bus are the same width (8 bits if the CPU is an 

MEMORY 

SYSTEM SPACE (1 MBYTE) 

SYSTEM 
DATA 
BUS 

lOP 

8088 or 16 bits if the CPU is an 8086). The lOP 
system space corresponds to the CPU memory 
space, and the lOP 110 space corresponds to the 
CPU 110 space. Channel programs are located in 
the system space; 110 devices may be located in 
either space. The lOP requests use of the bus for 
channel program instruction fetches as well as for 
DMA and programmed transfers. In the local 
configuration, either the lOP or the CPU may use 
the buses, but not both simultaneously. The 
advantage of the local configuration is that 
intelligent DMA may be added to a system with 
no additional components beyond the lOP. The 
disadvantage is that parallel operation of the pro­
cessors is limited to cases in which the CPU has 
instruction in its queue that can be executed 
without using the bus. 

MEMORY 

1/0 SPACE (64 KBYTES) 

1/0 
DATA 
BUS 

Figure 3-5. lOP Data Buses 
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8089 lOP 

.... -

B 
SYSTEM SPACE 

Figure 3-6. Local Configuration 

In the remote configuration (figure 3-7), the lOP 
(or lOPs) shares a common system blls with the 
CPU. Access to this bus is controlled by 8289 Bus 
Arbiters. The lOP's 110 bus, however, is 
physically separated from the CPU in the remote 
configuration. Two lOPs can share the local 110 
bus. Any number of remote lOPs may be con­
tained in a system, configured in remote clusters 
of one or two. The local 1/0 bus need not be the 
same physical width as the shared system bus, 
allowing an lOP, for example, to interface 8-bit 
peripherals to an 8086. In the remote configura­
tion, the lOP can access local 1/0 devices and 
memory without using the shared system bus, 
thereby reducing bus contention with the CPU. 
Contention can further be reduced by locating the 
lOP's channel programs in the local 110 space. 
The lOP can then also fetch instructions without 
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accessing the system bus. Parameter, channel 
control and other CPUIIOP communication 
blocks must be located in system memory, 
however, so that both processors can access them. 
The remote configuration thus increases the 
degree to which an lOP and a CPU can operate in 
parallel and thereby increases a . system's 
throughput potential. The price paid for this is 
that additional hardware must be added to 
arbitrate use of the shared bus, and to separate 
the shared and local buses (see Chapter '4 for 
details). 

It is also possible to configure an lOP remote to 
one CPU, and local to another CPU (see figure 
3-8). The local CPU could be used to perform 
heavy computational routines for the lOP. 
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A Sample Transaction 

Figure 3-9 shows how a CPU and an lOP might 
work together to read a record (sector) from a 
floppy disk. This example is not illustrati-:e of t~e 
lOP's full capabilities, but it does review Its basIc 
operation and its interaction with a CPU. 

The CPU must first obtain exclusive use of a 
channel. This can be done by performing a "test 
and set lock" operation on the selected channel's 
BUSY flag. Assuming the CPU wants to use 
channel 1, this could be accomplished in 
PLlM-86 by coding similar to the following: 

DO WHILE LOCKSET (@CH1.BUSY,OFFH); 
END; 

In ASM-86 a loop containing the XCHG instruc­
tion prefixed by LOCK .would accomplish the 
same thing, namely testing the BUSY flag until it 
is clear (OH), and immediately setting it to FFH 
(busy) to prevent another task or processor from 
obtaining use of the channel. 

Having obtained the channel, the CPU fills in a 
parameter block (see figure 3-10). In this case, the 
CPU passes the following parameters to tile chan-

. ne!: the address of the floppy disk controller, the 
address of the buffer where the data is to be 
placed, and the drive, track and sector to be read. 
It also supplies space for· the lOP to return the 
result of the operation. Note that this is quite a 
"low-level" parameter block in that it implies 
that the CPU has detailed knowledge of the I/O 
system. For a "real" system, a higher-level 
parameter block would isolate the CPY from I/~ 
device characteristics. Such a block might contam 
more general parameters such as file name and 
record key. 

After setting up the parameter block, the CPU 
writes a "start channel program" command in 
channell' s CCW. Then the CPU places the 
address of the desired channel program in the 
parameter block and writes the parameter block 
address in the CB. Notice that in this simple 
example, the CPU "knows" the address of the 
channel program for reading from the disk, and 
presumably also "knows" the address of anot~er 
program for writing, etc. A more general solutIOn 
would be to place a function code (read, write, 
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delete, etc.) in the parameter block and let a single 
channel program execute different routines 
depending on which function is requested. 

After the communication blocks have been setup, 
the CPU dispatches the channel by issuing a chan­
nel attention, typically by an OUT instruction for 
an I/O-mapped 8089, or a MOV or other memory 
reference instruction for a memory-mapped 8089. 

The channel begins executing the channel pro­
gram (task block) whose address has been placed 
in the parameter block by the CPU. In this case 
the program initializes the 8271 Floppy Disk Con­
troller by sending it a ".read data" command 
followed by a parameter indicating the track to be 
read. The program initializes the channel registers 
that define and control the DMA transfer. 

Having prepared the 8271 and the channel itself, 
the channel program executes a XFER instruction 
and sends a final parameter (the sector to be read) 
to the 8271. (The 8271 enters DMA transfer mode 
immediately upon receiving the last of a series of 
parameters; sending the last parameter after the 
XFER instruction gives the channel time to setup 
for the transfer.) The DMA transfer begins when 
the 8271 issues a DMA request to the channel. 
The transfer continues until the 8271 issues an 
interrupt request, indicating that the data has 
been transferred or that an error has occurred. 
The 8271 's interrupt request line is tied to the 
lOP's EXTl (external terminate on channell) pin 
so that the channel interprets an interrupt request 
as an external terminate condition. Upon ter­
mination of the transfer, the channel resumes 
executing instructions and reads the 8271 result 
register to determine if the data was read suc­
cessfully. If a soft (correctable) error is indicated, 
the lOP retries the transfer. If a hard (uncorrect­
able) error is detected, or if the transfer has been 
successful, the lOP posts the content of the result 
register to the parameter block result field, thus 
passing the result back to the CPU. The channel 
then interrupts the CPU (to inform the CPU that 
the request has been processed) and halts. 

When the CPU recognizes the interrupt, it 
inspects the result field in the parameter block to 
see if the content of the buffer is valid. If so, it 
uses the data; otherwise it typically executes an 
error routine. 
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Figure 3-10. Sample Parameter Block 

Applications 

Combining the raw speed and responsiveness of a 
traditional DMA controller, an I/O-oriented 
instruction set, and a flexible bus organization, 
the 8089 lOP is a very versatile I/O system. 
Applications with demanding I/O requirements, 
previously beyond the abilities of microcomputer 
systems, can be undertaken with the lOP. These 
kinds of I/O-intensive applications include: 

• systems that employ high-bandwidth, low­
latency devices such as hard disks and 
graphics terminals; 

• systems with many devices requiring 
asynchronous service; and 

• systems with high-overhead peripherals such 
as intelligent CRTs and graphics terminals. 

In addition, virtually every application that per­
forms a moderate amount of I/O can benefit 
from the design philosophy embodied in the lOP: 
system functions should be distributed among 
special-purpose processors. An lOP channel pro­
gram is likely to be both faster and smaller than 
an equivalent program implemented with a CPU. 
Programming also is more straightforward with 
the lOP's specialized instruction set. 

Removing I/O from the CPU and assigning it to 
one or more lOPs simplifies and structures a 
system's design. The main interface to the I/O 

. system can be limited to the parameter blocks. 
Once these are defined, the I/O system can be 
designed and implemented in parallel with the rest 
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of the system. I/O specialists can work on the I/O 
system without detailed knowledge of the applica­
tion; conversely, the operating system and 
application teams do not need to be expert in the 
operation of I/O devices. Standard high-level I/O 
systems can be used in multiple application 
systems. Because the application and I/O systems 
are almost independent, application system 
changes can be introduced without affecting the 
I/O system. New peripherals can similarly be 
incorporated into a system without impacting 
applications or operating system software. The 
lOP's simple CPU interface also is designed to be 
compatible with future Intel CPUs. 

Keeping in mind the true general-purpose nature 
of the lOP, some of the situations where it can be 
used to advantage are: 

• Bus matching - The lOP can transfer data 
between virtually any combination of8- and 
16-bit memory and 110 components. For 
example, it can interface a 16-bit peripheral 
to an 8-bit CPU bus, such as the 8088 bus. 
The lOP also provides a straightforward 
means of performing DMA between an 8-bit 
peripheral and 8086 memory that is split 
into odd- and even-addressed banks. The 
8089 can access both 8- and 16-bit 
peripherals connected to a 16-bit bus. 

• String processing - The 8089 can perform a 
memory move, translate,· scan-for-match or 
scan-for-nonmatch operation much faster 
than the equivalent instructions in an 8086 or 
8088. Translate and scan operations can be 
setup so that the source and destination refer 
to the same addresses to permit the string to 
be operated on in place. 

• Spooling - Data from low-speed devices such 
as terminals and paper tape readers can be 
read by the 8089 and placed in memory or on 
disk until the transmission is complete. The 
lOP can then transfer the data at high speed 
when it is needed by an application program. 
Conversely, output data ultimately destined 
for a low-speed device such as a printer, can 
be temporarily spooled to disk and then 
printed later. This permits batches of data to 
be gathered or distributed by low-priority 
programs that run in the background, essen­
tially using up "spare" CPU and lOP cycles. 
Application programs that use or produce 
the data can execute faster because they are 
not bound by the low-speed devices. 
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• Multitasking operating systems A 
multitasking operating system can dispatch 
110 tasks to channels with an absolute 
minimum of overhead. Because a remote 
channel can run in parallel with the CPU, the 
operating system's capacity for servicing 
application tasks can increase dramatically, 
as can its ability to handle more, and faster, 
I/O devices. If both channels of an lOP are 
active concurrently, the lOP automatically 
gives preference to the higher-priority activ­
ity (e.g., DMA normally preempts channel 
program execution). The operating system 
can adjust the priority mechanism and also 
can halt or suspend a channel to take care of 
a critical asynchronous event. 

• Disk systems - The lOP can meet the speed 
and latency requirements of hard disks. It 
can be used to implement high-level, file­
oriented systems that appear to application 
programs as simple commands: OPEN, 
READ, WRITE, etc. The lOP can search 
and update disk directories and maintain free 
space maps. "Hierarchical memory" systems 
that automatically transfer data among 
memory, high-speed disks and low-speed 
disks, based on frequency of use, can be built 
around lOPs. Complex database searches 
(reading data directly or following pointer 
chains) can appear to programs as simple 
commands and can execute in parallel with 
application programs if an lOP is configured 
remotely. 

• Display terminals - The 8089 is well suited to 
handling the DMA requirements of CRT 
controllers. The lOP's transfer bandwidth is 
high enough to support both alphanumeric 
and graphic displays. The 8089 can assume 
responsibility for refreshing the display from 
memory data; in the remote configuration, 
the refresh overhead can be removed from 
the system bus entirely. Linked-list display 
algorithms may be programmed to perform 
sophisticated modes of display. 

Each time it performs a refresh operation, 
the lOP can scan a keyboard for input and 
translate the key's row-and-column format 
into an ASCII or EBCDIC character. The 
8089 can buffer the characters, scanning the 
stream until an end-of-message character 
(e.g., carriage return) is detected, and then 
interrupt the CPU. 
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A single lOP can concurrently support an 
alphanumeric CRT and keyboard on one 
channel and a floppy disk on the other chan­
nel. This configuration makes use of approx­
imately 30 percent of the available bus band­
width. Performance can be increased within 
the available bus bandwidth by adding an 
8086 or 8088 CPU to a remote lOP con­
figuration. This configuration can provide 
scaling, rotation or other sophisticated 
display transformations. 

3.2 Processor Architecture 

The 8089 is internally divided into the functional 
units depicted schematically in figure 3-11. The 
units are connected by a 20-bit data path to obtain 
maximum internal transfer rates. 

Common Control Unit (CCU) 

All lOP operations (instructions, DMA transfer 
cycles, channel attention responses, etc.) are com­
posed of sequences of more basic processes called 
internal cycles. A bus cycle takes one internal 
cycle; the execution of an instruction may require 
several internal cycles. There are 23 different 
types of internal cycles each of which takes from 
two to eight clocks to execute, not including 
possible wait states and bus arbitration times. 

The common control unit (CCU) coordinates the 
activities of the lOP primarily by allocating inter­
nal cycles to the various processor units; i.e., it 
determines which unit will execute the next inter­
nal cycle. For example, when both channels are 
active, the CCU determines which channel has 
priority and lets that channel run; if the channels 
have equal priority, the CCU "interleaves" their 
execution (this is discussed more fully later in this 
section). The CCU also initializes the processor. 

Arithmetic/Logic Unit (ALU) 

The ALU can perform unsigned binary arithmetic 
on 8- and 16-bit binary numbers. Arithmetic 
results may be up to 20 bits in length; Available 
arithmetic instructions include addition, incre­
ment and decrement. Logical operations ("and," 
"or" and "not") may be performed on either 8-
or 16-bit quantities. 
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Figure 3-11. 8089 Block Diagram 

Assembly IDisassembly Registers 

All data entering the chip flows through these 
registers. When data is being transferred between 
different width buses, the 8089 uses the 
assembly/disassembly registers to effect the 
transfer in the fewest possible bus cycles. In a 
DMA transfer from an 8-bit peripheral to 16-bit 
memory, for example, the lOP runs two bus 
cycles, picking up eight bits in each cycle, 
assembles a 16-bit word, and then transfers the 
word to memory in a single bus cycle. (The first 
and last cycles of a transfer may be performed 
differently to accommodate odd-addressed 
words; the lOP automatically adjusts for this 
condition.) 

Instruction Fetch Unit 

This unit controls instruction fetching for the 
executing channel (one channel actually runs at a 
time). If the bus over which the instructions are 
being fetched is eight bits wide, then the instruc­
tions are obtained one byte at a time, and each 
fetch requires one bus cycle. If the instructions 
are being fetched over a 16-bit bus, then the 
instruction fetch unit automatically employs a 1-
byte queue to reduce the number of bus cycles. 
Each channel has its own queue, and the activity 
of one channel does not affect the other's queue. 
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During sequential execution, instructions are 
fetched one word at a time from even addresses; 
each fetch requires one bus cycle. This process is 
shown graphically in figure 3-12. When the last 
byte of an instruction falls on an even address, the 
odd-addressed byte (the first byte of the following 
instruction) of the fetched word is saved in the 
queue. When the channel begins execution of the 
next instruction, it fetches the first byte from the 
queue rather than from memory. The queue, 
then, keeps the processor fetching words, rather 
than bytes, thereby reducing its use of the bus and 
increasing throughput. 

The processor fetches bytes rather than words in 
two cases. If a program transfer instruction (e.g., 
JMP or CALL) directs the processor to an 
instruction . located at an odd address, the first 
byte of the instruction is fetched by itself as 
shown ·in figure 3-13. This is because the program 
transfer invalidates the content of the queue by 
changing the serial flow of execution. 

The second case arises when an LPDI instruction 
is located at an odd address. In this situation, the 
six-byte LPDI instruction is fetched: byte, word, 
byte, byte, byte, and the queue is not used. The 
first byte of the following instruction is fetched in 
one bus cycle as if it had been the target of a pro­
gram transfer. Word fetching resumes with this 
instruct jon's second byte. 
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Bus Interface Unit (BIU) 

The BIU runs all bus cycles, transferring instruc­
tions and data between the lOP and external 
memory or peripherals. Every bus access is 
associated with a register tag bit that indicates to 
the BIU whether the system or I/O space is to be 
addressed. The BIU outputs the type of bus cycle 
(instruction fetch from I/O space, data store into 
system space, etc.) on status lines SO, SI, and S2. 
An 8288 Bus Controller decodes these lines and 
provides signals that selectively enable one bus or 
the other (see Chapter 4 for details). 

The BIU further distinguishes between the 
physical and logical widths of the system and I/O 
buses. The physical widths of the buses are fixed 
and are communicated to the BIU during 
initialization. In the local configuration, both 
buses must be the same width, either 8 or 16 bits 
(matching the width of the hoscCPU bus). In the 
remote configuration, the lOP system bus must 
be the same physical width as the bus it shares 
with the CPU. The width of the lOP's I/O bus, 
which is local to the 8089, may be selected 
independently. If any 16-bit peripherals are 
located in the I/O space, then a 16-bit I/O bus 
must be used. If only 8-bit devices reside on the 
I/O bus, then either an 8- or a 16-bit I/O bus may 
be selected. A 16-bit I/O bus has the advantage of 
easy accommodation of future 16-bit devices and 
fewer instruction fetches if channel programs are 
placed in the I/O space. 

For a given DMA transfer, a channel program 
specifies the logical width of the system and the 
I/O buses; each channel specifies logical bus 
widths independently. The logical width of an 
8-bit physical bus can only be eight bits. A 16-bit 
physical bus, however, can be used as either an 8-
or 16-bit logical bus. This allows both 8- and 
16-bit devices to be accessed over a single 16-bit 
physical bus. Table 3-1 lists the permissible 
physical and logical bus widths for both locally 
and remotely configured lOPs. Logical bus width 
pertains to DMA transfers only. Instructions are 
fetched and operands are read and written in 
bytes or words depending on physical bus width. 

In addition to performing transfers, the BIU is 
responsible for local bus arbitration. In the local 
configuration, the BIU uses the RQ/GT 
(request/grant) line to obtain the bus from the 
CPU and to return it after a transfer has been per­
formed. In the remote configuration, the BIU 
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uses RQ/GT to coordinate use of the local I/O 
bus with another lOP or a local CPU, if present. 
System bus arbitration in the remote configura­
tion is performed by an 8289 Bus Arbiter that 
operates invisibly to the lOP. The BIU 
automatically asserts the LOCK (bus lock) signal 
during execution of a TSL (test and set lock) 
instruction and, if specified by the channel pro­
gram, can assert the LOCK signal for the dura­
tion of a DMA transfer. Section 3.5 contains a 
complete discussion of bus arbitration. 

Table 3-1. Physical/Logical Bus Combinations 

Configuration 
System Bus I/O Bus 

Physical:Logical Physical:Logical 

Local 
8:8 8:8 

16:8/16 16:8/16 

8:8 8:8 

Remote 
16:8/16 16:8/16 
16:8/16 8:8 
8:8 16:8/16 

Channels 

Although the 8089 is a single processor, under 
most circumstances it is useful to think of it as 
two independent channels. A channel may per­
form DMA transfers and may execute channel 
programs; it also may be idle. This section 
describes the hardware features that support these 
operations. 

I/O Control 

Each channel contains its own I/O control section 
that governs the operation of the channel during 
DMA transfers. If the transfer is synchronized, 
the channel waits for a signal on its DRQ (DMA 
request) line before performing the next fetch" 
store sequence in the transfer. If the transfer is. to 
be terminated by an external signal, the channel 
monitors its EXT (external terminate) line and 
stops the transfer when this line goes active. 
Between the fetch and store cycles (when the data 
is in the lOP) the channel optionally counts, 
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translates, and scans the data, and may terminate 
the transfer based on the results of these opera­
tions. Each channel also has a SINTR (system 
interrupt) line that can be activated by software to 
issue an interrupt request to the CPU. 

Registers 

Figure 3-14 illustrates the channel register set, and 
table 3-2 summarizes the uses of each register. 
Each channel has an independent set of registers; 
they are not accessible to the other channel. Most 
of the registers play different roles during channel 
program execution than in DMA transfers. Chan­
nel programs must be careful to save these 
registers in memory prior to a DMA transfer if 
their values are needed following the transfer. 

General Purpose A (GA). A channel program 
may use GA for a general register or a base 
register. A general register can be an operand of 
most lOP instructions; a base register is used to 
address memory operands (see section 3.8). 
Before initiating a DMA transfer, the channel 
program points GA to either the source or 
destination address of the transfer. 

General Purpose B (G B). GB is functionally 
interchangeable with GA. If GA points to the 
source of a DMA transfer, then GB points to the 
destination, and vice versa. 

TAG 
BIT 

r, 
I--i 
~-I 
1--1 
L...J 

19 15 7 o 

GENERAL PURPOSE A 

GENERAL PURPOSE B 

GENERAL PURPOSE C 

TASK POINTER 

PARAMETER BLOCK POINTER 

INDEX 

BYTE COUNT 

MASK/COMPARE 

CHANNEL CONTROL 

Figure 3-14. Channel Register Set 
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General Purpose C (GC). GC may be used as a 
general register or a base register during channel 
program execution. If data is to be translated dur­
ing a DMA transfer, then the channel program 
loads GC with the address of the first byte of a 
translation table before initiating the transfer. GC 
is not altered by a transfer operation. 

Task Pointer (TP). The CCU loads TP from the 
parameter block when it starts or resumes a chan­
nel program. During program execution, the 
channel automatically updates TP to point to the 

Table 3-2. Channel Register Summary 

Program 
System 

Register Size 
Access 

or 1/0 Use by Channel Programs Use in DMA Transfers 
Pointer 

GA 20 Update Either General, base Source/destination pointer 

GB 20 Update Either General, base Sourcejdestination pointer 

GC 20 Update Either General, base Translate table pointer 

TP 20 Update Either Procedure return, Adjusted to reflect cause of 
instruction pointer termination 

PP 20 Reference ,System Base N/A 

IX 16 Update N/A General, auto-increment N/A 

BC 16 Update N/A General Byte counter 

MC 16 Update N/A General, masked compare Masked compare 

CC 16 Update N/A Restricted use recommended Defines transfer options 
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next instruction to be executed; i.e., TP is used as 
an instruction pointer or program counter. Pro­
gram transfer instructions (JMP, CALL, etc.) 
update TP to cause nonsequential execution. A 
procedure (subroutine) returns to the calling pro­
gram by loading TP with an address previously 
saved by the CALL instruction. The task pointer 
is fully accessible to channel programs; it can be 
used as a general register or as a base register. 
Such use is not recommended, however, as it can 
make programs very difficult to understand. 

Parameter Block Pointer (PP). The CCU 
loads this register with the address of the 
parameter block before it starts a channel pro­
gram. The register cannot be altered by a channel 
program, but is very useful as a base register for 
accessing data in the parameter block. PP is not 
used during DMA transfers. 

Index (IX). IX may be used as a general register 
during channel program execution. It also may be 
used as an index register to address memory 
operands (the address of the operand is computed 
by adding the content of IX to the content of a 
base register). When specified as an index 
register, IX may be optionally auto-incremented 
as the last step in the instruction to provide a con­
venient means of "stepping" through arrays or 
strings. IX is not used in DMA transfers. 

Byte Count (BC). BC may be used as a general 
register during channel program execution. If 
DMA is to be terminated when a specific number 
of bytes has been transferred, BC should be 
loaded with the desired byte count before 
initiating the transfer. During DMA, BC is 
decremented for each byte transferred, whether 
byte count termination has been selected or not. 
If BC reaches zero, the transfer is stopped only if 
byte count termination has been specified. If byte 
count termination has not been selected, BC 
"wraps around" from OH to FFFFH and con­
tinues to be decremented. 

Mask/Compare (MC). A channel program may 
use MC for a general register. This register also 
may be used in either a channel program or in a 
DMA transfer to perform a masked compare of a 
byte value. To use MCin this way, the program 
loads a compare value in the low-order eight bits 
of the register and a mask value in the upper eight 
bits (see figure 3-15). A "1" in a mask bit selects 
the bit in the corresponding position in the com­
pare value; a "0" in a mask bit masks the cor-
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responding bit in the compare value. In figure 
3-15, a value compared with MC will be con­
sidered equal if its low-order five bits contain the 
value 00100; the upper three bits may contain any 
value since they are masked out of the 
comparison. 

15 8 7 

o 0 0 1 1 1 1 1 I 1 0100100 

MASK COMPARE 
VALUE VALUE 

'---: t-~ ----' 
XXX00100 

MASKED 
COMPARE 

VALUE 

(X = IGNORE VALUE OF CORRESPONOING BIT) 

Figure 3-15. Mask/Compare Register 

Channel Control (CC). The content of the 
channel control register governs a DMA transfer 
(see figure 3-16). A channel program loads this 
register with appropriate values before beginning 
the transfer operation; section 3.4 covers the 
encoding of each field in detail. Bit 8 (the chain 
bit) of CC pertains to channel program execution 
rather than to a DMA transfer. When this bit is 
zero, the channel program runs at normal prior­
ity; when it is one, the priority of the program is 
raised to the same level as DMA (priorities are 
covered later in this section). Although a channel 
program may use CC as a general register, such 
use is not recommended because of the side 
effects on the chain bit and thus on the priority of 
the channel program. Channel programs should 
restrict their use of CC to loading control values 
in preparation for a DMA transfer, setting and 
clearing the chain bit, and storing the register. 

Program Status Word (PSW) 

Each channel maintains its own program status 
word (PSW) as shown in figure 3-17. Channel 
programs do not have access to the PSW. The 
PSW records the state of the the channel so that 
channel operation may be suspended and then 
resumed later. When the CPU issues a "suspend" 
command, the channel saves the PSW, task 
pointer, and task pointer tag bit in the first four 
bytes of the channel's parameter block as shown 
in figure 3-18. Upon receipt of a subsequent 



8089 INPUT /OUTPUT PROCESSOR 

15 7 0 

I F ITRI SYN I S I L I C ITSI TX I TBC I TMC I 
I I I I I I 
-~ -,-- TT L TERMINATE ON MASKED COMPARE 

TERMINATE ON BYTE COUNT 

TERMINATE ON EXTERNAL SIGNAL 

TERMINATE AFTER SINGLE TRANSFER 

CHAINED CHANNEL PROGRAM 
EXECUTION 
LOCK BUS DURING TRANSFER 

SOURCE/DESTINATION 

SYNCHRONIZATION 

TRANSLATE 

FUNCTION (PORT TO PORT, 
PORT TO MEMORY, ETC.) 

Figure 3-16. Channel Control Register 

"resume" command, the psw, TP, and. TP tag 
bit are restored from the parameter block save 
area and execution resumes. 

Two conditions override the normal channel 
priority mechanism. If one channel is performing 
DMA (priority 1) and the channel receives a chan­
nel attention (priority 2), the channel attention is 
serviced at the end of the current DMA transfer 
cycle. This override prevents a synchronized 
DMA transfers from "shutting out" a channel 
attention. DMA terminations and chained chan­
nel programs postpone recognition of a CA on 
the other channel; the CA is latched, however, 
and is serviced as soon as priorities permit. 

The lOP's LOCK (bus lock) signal also 
supersedes channel switching. A running channel 
will not relinquish control of the processor while 
LOCK is active, regardless of the priorities of the 
activities on the two channels. This is consistent 
with the purpose of the LOCK signal: to 
guarantee exclusive access to a shared resource in 
a multiprocessing system. Refer to sections 3.5 
and 3.7 for futher information on the LOCK 
signal and the TSL instruction. 

Tag Bits 

Registers GA, GB, GC, and TP are called pointer 
registers because they may be used to access, or 
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INTERRUPT CONTROL (0 = DISABLED, 1 "ENABLED) 
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TRANSFER IN PROGRESS 
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Figure 3-17. Program Status Word 
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Figure 3-18. Channel State Save Area 
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point to, addresses in either the system space or 
the 110 space. The pointer registers may address 
either memory or 110 devices (lOP instructions 
do not distinguish between memory and 110 
devices since the latter are memory-mapped). The 
tag bit associated with each register (figure 3-14) 
determines whether the register points to an 
address in the system space (tag=O) or the 110 
space (tag= 1) . 

The CCU sets or clears TP's tag bit depending on 
whether the command it receives from the CPU is 
"start channel program in system space," or 
"start channel program in 110 space." Channel 
programs alter the tag bits of GA, GB, GC, and 
TP by using different instructions for loading the 
registers. Briefly, a "load pointer" instruction 
clears a tag bit, a "move" instruction sets a tag 
bit, and a "move pointer" instruction moves a 
memory value (either 0 or 1) to a tag bit. Section 
3.9 covers these instructions in detail. 

If a register points to the system space, .all 20 bits 
are placed on the address lines to allow the full 
megabyte to be directly addressed. If a register 
points to the I/O space, the upper four bits of the 
address lines are undefined; the lower 16 bits are 
sufficient to access any location in the 64k byte 
110 space. 

Concurrent Channel Operation 

Both channels may be active concurrently, but 
only one can actually run at a time. At the end of 

each internal cycle, the CCU lets one channel or 
the other execute the next internal cycle. No extra 
overhead is incurred by this channel switching. 
The basis for making the determination is a 
priority mechanism built i.nto the lOP. This 
mechanism recognizes that some kinds of 
activities (e.g., DMA) are more important than 
others. Each activity that a channel can perform 
has a priority that reflects its relative importance 
(see table 3-3). 

Two new activities are introduced in table 3-3. 
When a DMA transfer terminates, the channel 
executes a short internal channel program. This 
DMA termination program adjusts TP so that the 
user's program resumes at the instruction 
specified when the transfer was setup (this is 
discussed in detail in section 3.4). Similarly, when 
a channel attention is recognized, the channel 
executes an internal program that examines the 
CCW and carries out its command. Both cif these 
programs consist of standard 8089 instructions 
that are fetched from internal ROM. Intel 
Application Note AP-50, Debugging Strategies 
and Considerations for 8089 Systems, lists the 
instructions in these programs. Users monitoring 
the bus during debugging may see operands read 
or written by the termination or channel attention 
programs. The instructions themselves, however, 
wlll not appear on the bus as they are resident in 
the chip. 

Notice also that, according to table 3-3, a channel 
program may run at priority 3 or at priority 1. 

Table 3-3. Channel Priorities and Interleave Boundaries 

Channel Activity 

DMA transfer 

DMA termination sequence 

Channel program (chained) 

Channel attention sequence 

Channel program (not chained) 

Idle 

!DMA is not interleaved while Lc5Ci< is active. 
2Except TSL instruction; see section 3.7. 

Priority 
(1 = highest) 

1 

1 

1 

2 

3 

4 
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Interleave. Boundary 
ByOMA By Instruction 

Bus cycle! Bus cycle! 

Internal cycle None 

Internal cycle2 Instruction 

Internal cycle None 

Internal cycle2 Instruction 

Two clocks Two clocks 
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Channel program priority is determined by the 
chain bit in the channel control register. If this bit 
is cleared, the program runs at normal priority 
(3); if it is set, the program is said to be chained, 
and it runs at the same priority as DMA. Thus, 
the chain bit provides a way to raise the priority 
of a critical channel program. 

The CCU lets the channel with the highest priority 
run. If both channels are running activities with 
the same priority, the CCU examines the priority 
bits in the PSWs. If the priority bits are unequal, 
the channel with the higher value (1) runs. Thus, 
the priority bit serves as a "tie breaker" when the 
channels are otherwise at the same priority level. 
The value of the priority bit in the PSW is loaded 
from a corresponding bit in the CCW; therefore, 
the CPU can control which channel will run when 
the channels are at the same priority level. The 
priority bit has no effect when the channel 
priorities are different. If both channels are at the 
same priority level and if both priority bits are 
equal, the channels run alternately without any 
additional overhead. 

The CCU switches channels only at certain points 
called interleave boundaries; these vary according 
to the type of activity running in each channel and 
are shown in table 3-3. In table 3-3 and in the 
following .discussion, the terms "channel A" and 
"channel B" are used to identify two active chan­
nels that are bidding for control of an lOP. 
"Channel A" is the channel that last ran and will 
run again unless the CCU switches to "channel 
B." Where the CCU switches from one channel 
(channel A) to another (channel B) depends on 
whether channel B is performing DMA or is 
executing instructions. For this determination, 
instructions in the internal ROM are considered 
the same as instructions executed in user-written 
channel programs (chained or not chained). Table 
3-3 shows that a switch from channel A to chan­
nel B will occur sooner if channel B is running 
DMA. DMA, then, interleaves instruction execu­
tion at internal cycle boundaries. Since instruc­
tions are often composed of several internal 
cycles, instruction execution on channel A can be 
suspended by DMA on channel B (when channel 
A next runs, the instruction is resumed from the 
point of suspension). DMA on channel A is 
interleaved by DMA on channel B after any bus 
cycle (when channel A runs again, the DMA 
transfer sequence is resumed from the point of 
suspension). If both channels are executing pro­
grams, the interleave boundaries are extended to 
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instruction boundaries: a program on channel B 
will not run until channel A reaches the end of an 
instruction. Note that a DMA termination 
sequence or channel attention sequence on chan­
nel A cannot be interleaved by instructions on 
channel B, regardless of channel B's priority. 
These internal programs are short, however, and 
will not delay channel B for long (see Chapter 4 
for timing information). 

Table 3-4 summarizes the channel switching 
mechanism with several examples. It is important 
to remember that channel switching occurs only 
when both channels are ready to run. In typical 
applications, one of the channels will be idle 
much of the time, either because it is waiting to be 
dispatched by the CPU or because it is waiting for 
a DMA request in a synchronized transfer. (Dur­
ing a synchronized transfer, the channel is idle 
between DMA requests; for many peripherals, the 
channel will spend much more time idling than 
executing DMA cycles.) The real potential for one 
channel "shutting out" a priority 1 activity on the 
other channel is largely limited to un synchronized 
DMA transfers and locked transfers (synchro­
nized or unsynchronized). Long, chained channel 
programs and high-speed synchronized DMA will 
slow a priority I activity on the other channel, but 
will not shut it out because the channels will alter­
nate (assuming their priority bits are equal). A 
chained channel program will shut out any lower 
priority activity on the other channel, including a 
channel attention. (The channel attention is 
latched by the lOP, however, so it will execute 
when the other channel drops to a lower priority.) 
Chained channel programs should therefore be 
used with discretion and should be made as short 
as possible. 

3.3 Memory 

The 8089 can access memory components located 
in two different address spaces. The system space, 
which coincides with the CPU's memory space, 
may contain up to 1,048,576 bytes. The 1/0 
space, which may either coincide with the CPU's 
lIO space or be local (private) to the lOP, may 
contain up to 65,536 bytes. Memory components 
in the system space should respond to the memory 
read and write commands issued by the 8288 Bus 
Controller. Memory components in the 1/0 space 
must respond to 8288 lIO read and write com­
mands. Memory in either space may be 
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Table 3-4. Channel Switching Examples 

ChannelA (Ran Last) ChannelB 
Result 

Activity 
Chain Priority 

LOCK Activity 
Chain Priority 

Bit Bit Bit Bit 

DMA transfer X X Inactive Idle X X A runs. 
DMA transfer X X Inactive Channel attention X X A runs until end of current 

transfer cycle; then Bruns. 
Channel program X 0 Inactive Channel program X 1 Bruns. 
Channel program X 0 Inactive Channel program X 0 A and B alternate by 

instruction. 
Channel program 1 X Inactive Channel program 0 X A runs. 
DMA transfer X 1 Inactive Channel program 1 1 B runs one bus or internal 

cycle following each bus cycle 
run by A.' 

Channel attention X X Inactive Channel program 1 X A runs if it has started the 
sequence; otherwise Bruns. 

DMA transfer X X Active Channel attention X X A runs until DMA terminates. 
Channel program 0 X Active DMA transfer X X A completes TSL instruction, 

(TSL instruction) LOCK goes inactive and B 
runs. 

'If transfer is synchronized, B also runs when A goes idle between transfer cycles. 

implemented like 8086 memory (l6-bit words split 
into even- and odd-addressed 8-bit banks) or 8088 
memory (a single 8-bit bank). See Chapter 4 for 
physical implementation considerations. 

Storage Organization 

From a software point of view, both 8089 
memory spaces are organized as unsegmented 
arrays of individually addressable 8-bit bytes 
(figure 3-19). Instructions and data may be stored 
at any address without regard for alignment 
(figure 3-20). 

The lOP views the system space differently from 
the 8086 or 8088 with which it typically shares the 
space. The 8086 and 8088 differentiate between a 
location's logical (segment and offset) address 
and its physical (20-bit) address. 

The 8089 does not "see" the logically segmented 
structure of the memory space; it uses its 20-bit 
pointer registers to access all locations in the 
system space by their physical addresses. Memory 
in the 8089 110 space is treated similarly except 
that only 16 bits are needed to address any 
location. 
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SYSTEM 
SPACE 

I/O 
SPACE 

LOW MEMORY HIGH MEMORY 

OOOOOH 00001H 00002H § SFFFFEH FFFFFH 

I. 111111111111111111111 § 51' 11111", IIIII 
7 07 07 07 0 

I.. 1 MEGABYTE -I 

LOW MEMORY HIGH MEMORY 

OOOOH ,0001H 0002H § fFFFEH FFFFH. 

I. 1111 J 11111111111111 § SklllllllllIl' II 
7 07 07 07 0 

I.. 64K BYTES -I 

Figure 3-19. Storage Organization 

lAH lBH lCH lDH lEH lFH 20H 21H 

Figure 3-20. Instruction and Variable Storage 
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Following Intel convention, word data is stored 
with the most-significant byte in the higher 
address (see figure 3-21). The 8089 recognizes the 
doubleword pointer variable used by the 8086 and 
8088 (figure 3-22). The lower-addressed word of 
the pointer contains an offset value, and the 
higher-addressed word contains a segment base 
address. Each word is stored conventionally, with 
the higher-addressed byte containing the most­
significant eight bits of the word. The 8089 can 
convert a doubleword pointer into a 20-bit 
physical address when it is loaded into a pointer 
register to address system memory. A special 3-
byte variable, called a physical address pointer 
(figure 3-23), is used to save and restore pointer 
registers and their associated tag bits. 

Dedicated and Reserved Memory 
Locations 

The extreme low and high addresses of the system 
space are dedicated to specific processor func­
tions or are reserved for use by other Intel hard-

VALUE OF WORD STORED AT 724H: 5502H 

Figure 3-21. Storage of Word Variables 

ware and software products; the locations are OH 
through 7FH (128 bytes) and FFFFOH through 
FFFFFH (16 bytes), as shown in figure 3-24. The 
low addresses are used for part of the 8086/8088 
interrupt pointer table. Locations FFFFOH­
FFFFBH are used for 8086, 8088 and 8089 startup 
sequences; the remaining locations are reserved 
by Intel. 

If an lOP is configured locally, its 1/0 space coin­
cides with the CPU's 110 space, and it must 
respect the reserved addresses F8H-FFH. The 
entire 1/0 space of a remotely-configured lOP 
may be used without restriction. 

Using any dedicated or reserved addresses may 
inhibit the compatibility of a system with current 
or future Intel hardware and software products. 

Dynamic Relocation 

The 8089 is very well-suited to environments in 
which programs do not occupy static memory 
locations, but are moved about during execution. 
Dynamic code relocation allows systems to make 
efficient use of limited memory resources by 
transferring programs between external storage 
and memory, and by combining scattered free 
areas of memory into larger, more useful, con­
tinuous spaces. 

lOP channel programs are inherently position­
independent, the only restriction being that chan­
nel programs that transfer to each other or 
share data must be moved as a unit. Since the lOP 

VALUE OF DOUBLEWORD POINTER STORED AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET:65H 

Figure 3-22. Storage of Doubleword Pointer Variables 
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POINTER 
REGISTER 

MEMORY 

19 

101H 102H 

HEX 

BINARY 

VALUE OF PHYSICAL ADDRESS POINTER AT 100H: 
ADDRESS: 265F3H 
TAG: 0 

Figure 3-23. Storage of Physical Address 
Pointer Variables 

receives the address of a channel program and its 
associated parameter block when it is dispatched 
by the CPU, the location of these blocks is 
immaterial and can change from one dispatch to 
the next. (Note, however, that the channel control 
block cannot be moved without reinitializing the 
lOP.) Typically, then, the CPU would direct the 
movement of lOP channel programs and 
parameter blocks. These blocks, of course, can­
not be moved while they are in use. 

While the CPU may be in charge of relocation, 
the lOP is an excellent vehicle for performing the 
actual transfer of channel programs, parameter 
blocks, and CPU programs as well. A very simple 
channel program can transfer code between 
memory locations by DMA much faster than the 
equivalent CPU instructions, and transfers 
between disk and memory also can be performed 
more efficiently. 

Memory Access 

Memory accesses are always performed using a 
pointer register and its associated tag bit. The tag 
bit indicates whether the access is to the system 
space (tag=O) or the I/O space (tag=I). The 
pointer register contains the base address of the 
location; i.e., the pointer register is used as a base 
register. Only the low-order 16 bits of the pointer 
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FFFFFH 

RESERVED 

FFFFCH 
FFFFBH 

DEDICATED 

FFFFOH 
FFFEFH 

" OPEN I r' r 
r OPEN 

80H 
7FH 

RESERVED 100H 

14H RESERVED FFH 

13H F8H 
F7H 

DEDICATED OPEN 

OH OH 

I/O SPACE SYSTEM SPACE 
(LOCAL CONFIGURATION ONLY) 

Figure 3-24. Reserved Memory Locations 

register are used for I/O space locations; all 20 
bits are used for system space addresses. Different 
types of memory accesses use base registers as 
shown in table 3-5. The 8089 addressing modes 
allow the base address of a memory operand to be 
modified by other registers and constant values to 
yield the effective address of the operand (see sec­
tion 3.8). 

Notice that table 3-5 indicates that memory 
operands may be addressed using register PP in 
addition to GA, GB, and GC. PP is maintained 
by the lOP and can neither be read nor written by 
a channel program; it can be used, however, to 
access data in the parameter block. PP has no 
associated tag bit; a reference to it implies the 
system space, where a parameter block always 
resides. 

Table 3-5. Base Register Use in Memory Access 

Memory Access Base Register 

Instruction Fetch TP 
DMASource GAorGBI 
DMA Destination GAorGBI 
DMA Translate Table GC 
Memory Operand GA or GB or GC or PP' 

lAs specified in CC register 
'As specified in instruction 
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The lOP is told the physical widths of the system 
and 110 buses when it is initialized. If a bus is 
eight bits wide, the lOP accesses memory on this 
bus like an 8088. Instruction fetches and operand 
reads and writes are performed one byte at a time; 
one bus cycle is run for each memory access. 
Word operands are accessed in two cycles, com­
pletely transparent to software. Instruction 
fetches are made as needed, and the instruction 
stream is not queued. 

The lOP accesses memory on a 16-bit bus like an 
8086. As mentioned in the previous section, the 
instruction stream is generally fetched in words 
from even addresses with the second byte held in 
the one-byte queue. If a word operand is aligned 
(i.e., located at an even address), the 8089 will 
access it in a single 16-bit bus cycle. If a word 
operand is unaligned (i.e., located at an odd 
address), the word will be accessed in two con­
secutive 8-bit bus cycles. Byte operands are 
always accessed in 8-bit bus cycles. 

For memory on 16-bit buses, performance is 
improved and bus contention is reduced if word 
operands are stored at even addresses. The 
instruction queue tends to reduce the effect of 
alignment on instructions fetched on a 16-bit bus, 
In tight loops, performance can be increased by 
word-aligning transfer targets. 

Notice that the correct operation of a program is 
completely independent of memory bus width. A 
channel program written for one system that uses 
an 8-bit memory bus will execute without 
modification if the bus is increased to 16 bits. It is 
good practice, though, to write all programs as 
though they are to run on 16-bit systems;).e., to 
align word operands. Such programs will then 
make optimal use of the bus in whatever system 
they are run. 

3.4 Input/Output 

The 8089 combines the programmed I/O 
capabilities of a CPU with the high-speed block 
transfer facility of a DMA controller. It also pro­
vides additional features (e.g.; compare and 
translate during DMA) and is more flexible than a 
typical CPU or DMA controller. The 8089 
transfers data from a source address to a destina­
tion address. Whether the component mapped 
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into a given address is actually memory or I/O is 
immaterial. All addresses in both the system and 
I/O spaces are equally accessible, and transfers 
may be made between the two spaces as well as 
within either address space. 

Programmed I/O 

A channel program performs 110 similar to the 
way a CPU communicates with memory-mapped 
I/O devices. Memory reference instructions per­
form the transfer rather than "dedicated" 110 
instructions, such as the 8086/8088 IN and OUT 
instructions. Programmed I/O is typically used to 
prepare a device controller for a DMA transfer 
and to obtain status/result information from the 
controller following termination of the transfer. 
It may be used, however, with any device whose 
transfer rate does not require DMA. 

I/O Instructions 

Since the 8089 does not distinguish between 
memory components and 110 devices, any 
instruction that accepts a byte or word memory 
operand can be used to access an I/O device. 
Most memory reference instructions take a source 
operand or a destination operand, or both. The 
instructions generally obtain data from the source 
operand, operate on the data, and then place the 
result of the operation in the destination operand. 
Therefore, when a source operand refers to an 
address where an 110 device is located, data is 
input from the device. Similarly, when a destina­
tion operand refers to an I/O device address, data 
is output to the device. 

Most I/O device controllers have one or more 
internal registers that accept commands and 
supply status or result information. Working with 
these registers typically involves: 

• reading or writing the entire register; 
• setting or clearing some bits in a register while 

leaving others alone; or 
• testing a single bit in a register. 

Table 3-6 shows some of the 8089 instructions 
that are useful for performing these kinds of 
operations. Sectien 3.7 covers the 8089 instruc­
tion set in detail. 
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Table 3-6. Memory Reference Instructions 
Used for I/O 

Instruction Effect on I/O Device 

MOV/MOVB Read or write word / byte 

AND/ANDB Clear multiple bits in word/byte 

OR/ORB Set multiple bits in word/byte 

CLR Clear' single bit (in byte) 

SET Set single bit (in byte) 

JBT Read (byte) and jump if 
single bit =1 

JNBT Read (byte) and jump if 
single bit =0 

Device Addressing 

Since memory reference instructions are used to 
perform programmed I/O, device addressing. is 
very similar to memory addressing. An operand 
that refers to an I/O device always specifies one 
of the pointer registers GA, GB, or GC (PP is 
legal, but an 110 device would not normally be 
mapped into a parameter block). The base 
address of the device is taken from the specified 
pointer register. Any of the memory addressing 
modes (see section 3.8) may be used to modify the 
base address to produce the effective (actual) 
address of the device. The pointer register's tag 
bit locates the device in the system space (tag=O) 
or in the 110 space (tag=I). If the device is in 
the I/O space, only the low-order 16 bits of the 
pointer register are used for the base address; all 
20 bits are used for a system space address. The 
lOP's system and I/O spaces are fully compatible 

with the corresponding address spaces of the 
other 8086 family processors. 

I/O Bus Transfers 

Table 3-7 shows the number of bus cycles the lOP 
runs for all combinations of bus size, transfer size 
(byte or word), and transfer address (even or 
odd). Bus width refers to the physical bus 
implementation; the instr.uction mnemonic deter­
mines whether a byte or a word is transferred. 

Both 8- and 16-bit devices may reside on a 16-bit 
bus. All 16-bit devices should be located at even 
addresses so that transfers will be performed in 
one bus cycle. The 8-bit devices on a 16-bit bus 
may be located at odd or even addresses. The 
internal registers in an 8-bit device on a 16-bit bus 
must be assigned all-odd or all-even addresses 
that are two bytes apart (e.g., IH, 3H, 5H, or 2H, 
4H, 6H). All 8-bit peripherals should be refer­
enced with byte instructions, and 16-bit devices 
should be referenced with word instructions. 
Odd-addressed 8-bit devices must be able to 
transfer data on the upper eight bits of the 16-bit 
physical data bus. 

Only 8-bit devices should be connected to an 8-bit 
bus, and these should only be referenced with 
byte instructions. An 8-bit device on an 8-bit bus 
may be located at an odd or even address, and its 
internal registers may be assigned consecutive 
addresses (e.g., IH, 2H, 3H). Assigning all-odd 
or all-even addresses, however, will simplify con­
version to a 16-bit bus at a later date. 

Table 3-7. Programmed I/O Bus Transfers 

Bus Width: 8 16 

Instruction: byte word' byte word 

Device Address: even odd even odd even odd even odd' 

Bus Cycles: 1 1 2 2 1. 1 1 2 

, not normally used 

Mnemonics © Intel, 1979 3-26 
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DMA Transfers 

In addition to byte- and word-oriented pro­
grammed 110, the 8089 can transfer blocks of 
data by direct memory access. A block may be 
transferred between any two addresses; memory­
to-memory transfers are performed as easily as 
memory-to-port, port-to-memory or port-to-port 
exchanges. There is no limitation on the size of 
the block that can be transferred except that the 
block cannot exceed 64k bytes if byte count ter­
mination is used. A channel program typically 
prepares for a DMA transfer by writing com­
mands to a device controller and initializing chan­
nel registers that are used during the transfer. No 
instructions are executed during the transfer, 
however, and very high throughput speeds can be 
achieved. 

Preparing the Device Controller 

Most controllers that can peform DMA transfers 
are quite flexible in that they can perform several 
different types of operations. For example, an 
8271 Floppy Disk Controller can read a sector, 
write a sector, seek to track 0, etc. The controller 
typically has one or more internal registers that 
are "programmed" to perform a given operation. 
Often, certain registers will contain status 
information that can be read to determine if the 
controller is busy, if it has detected an error, etc. 

An 8089 channel program views these device 
registers as a series of memory locations. The 
channel program typically places the device's base 
address in a pointer register and uses programmed 
lIO to communicate with the registers. 

Some controllers start a DMA transfer 
immediately upon receiving the last of a series of 

parameters. If this type of controller is being 
used, the chanpel program instruction that sepds 
the last parameter should follow the 8089 XFER 
instruction. (The XFER instruction places the 
channel in DMA mode after the next instruction; 
this is explained in more detail later in this 
section.) 

Preparing the Channel 

For a channel to perform a DMA transfer, it must 
be provided with information that describes the 
operation. The channel program provides this 
information by loading values into channel 
registers and, in one case, by executing a special 
instruction (see table 3-8). 

Source and Destination Pointers. One 
register is loaded to point to the transfer source; 
the other points to the destination. A bit in the 
channel control register is set to indicate which 
register is the source pointer. If a register is 
pointed at a memory location, it should contain 
the address where the transfer is to begin - i.e., 
the lowest address in the buffer. The channel 
automatically increments a memory pointer as the 
transfer proceeds. If the tag bit selects the lIO 
space, the upper four bits of the register are 
ignored; if the tag selects the system space, all 20 
bits are used. The source and destination may be 
located in the same or in different address spaces. 

Translate Table Pointer. If the data is to be 
translated as it is transferred, GC should be 
pointed at the first (lowest-addressed) byte in a 
256-byte translation table. The table may be 
10Gated in either the system or lIO space, and GC 

Table 3-8. DMA Transfer Control Information 

Information Register or Instruction Required or Optional 

Source Pointer GAorGB Required 
Destination Pointer GAorGB Required 
Translate Table Pointer GC Optional 
Byte Count BC Optional 
Mask/Compare Values MC Optional 
Logical Bus Width WID Optional* 
Channel Control CC Required 

*Must be executed once following processor RESET. 
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should be loaded by an instruction that sets or 
clears its tag bit as appropriate. The translate 
operation is. only defined for byte data; source 
and destination logical bus widths must both be 
set to eight bits. 

The channel translates a byte by treating it as an 
unsigned 8-bit binary number. This number is 
added to the content of register GC to form a 
memory address; GC is not altered by the opera­
tion. If GC points to the lIO space, its upper four 
bits are ignored in the operation. The byte at this 
address (which is in the translate table) is then 
fetched from memory, replacing the source byte. 
Figure 3-25 illustrates the translate process. 

Byte Count. If the transfer is to be terminated 
on byte count- i.e., after a specific number of 
bytes have been transferred-the desired count 
should be loaded into register BC as an unsigned 
16-bit number. The channel decrements BC as the 
transfer proceeds, whether or not byte count ter­
mination has been specified. There are cases 
(discussed later in this section) where the dif-

ference between BC's value before and after the 
transfer does not accurately reflect the number of 
bytes transferred to the destination. 

Mask/Compare Values. If the transfer is to be 
terminated when a byte (possibly translated) is 
found equal or unequal to a search value, MC 
should be loaded as described in section 3.2. MC 
is not altered during the transfer. Normally, the 
logical destination bus width is set to eight bits 
when transferred data is being compared. If the 
logical destination width is 16 bits, only the low­
order byte of each word is compared. 

Logical Bus Width. The 8089 WID (logical bus 
width) instruction is used to set the logical width 
of the source and destination buses for a DMA 
transfer. Any bus whose physical width is eight 
bits can only have a logical width of eight bits. A 
16-bit physical bus, however, can have a logical 
width of 8 or 16 bits; i.e., it can be used as either 
an 8-bit or 16-bit bus in any given transfer. 
Logical bus widths are set independently for each 
channel. 

TRANSLATE TABLE 
IN SYSTEM OR I/O SPACE 

00200 1--,) 3F 4C 166119 87 1 ( 
GC • 

B : 
SOURCE BYTE I 

+ 

= 00202 ~ ______ J 
TRANSLATE ADDRESS 

TO DESTINATION 

TRANSLATED BYTE 

Figure 3-25. Translate Operation 

Mnemonics © Intel, 1979 
3-28 



8089 INPUT /OUTPUT PROCESSOR 

For a transfer to or from an 110 device on a 
16-bit physical bus, the logical bus width should 
be set equal to the peripheral's width; i.e., 8 or 16 
bits. Transfers to or from 16-bit memory will run 
at maximum speed if the logical bus width is set to 
16 since the channel will fetch/store words. In the 
following cases, however, the logical width 
should be set to 8: 

• the data is being translated, 
• the data is being compared under mask, and 

the 16-bit memory is the destination of the 
transfer. 

The WID instruction sets both logical widths and 
remains in effect until another WID instruction is 
executed. Following processor reset, the settings 
of the logical bus widths are unpredictable. 
Therefore, the WID instruction must be executed 
before the first DMA transfer. 

Channel Control. The 16 bits of the CC register 
are divided into 10 fields that specify how the 
DMA transfer is to be executed (see figure 3-26). 
A channel program typically sets these fields by 
loading a word into the register. 

The function field (bits 15-14) identifies the 
source and destination as memory or ports (110 
devices). During the transfer, the channel 
increments source/destination pointer registers 
that refer to memory so that the data will be 
placed in successive locations. Pointers that refer 
to I/O devices remain constant throughout the 
transfer. 

The translate field (bit 13) controls data transla­
tion. If it is set, each incoming byte is translated 
using the table pointed to by register GC. 
Translate is defined only for byte transfers; the 
destination bus must have a logical width of eight. 

The synchronization field (bits 12-11) specifies 
how the transfer is to be synchronized. 
Unsynchronized ("free running") transfers are 
typically used in memory-to-memory moves. The 
channel begins the next transfer cycle immediately 
upon completion of the current cycle (assuming it 
has the bus). Slow memories, which cannot run as 
fast as the channel, can extend bus cycles by 
signaling "not ready" to the 8284 Clock 
Generator, which will insert wait states into the 
bus cycle. A similar technique may be used with 
peripherals whose speed exceeds the channel's 
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ability to execute a synchronized transfer: in 
effect, the peripheral synchronizes the transfer 
through the use of wait states. Chapter 4 discusses 
synchronization in more detail. 

Source synchronization is typically selected when 
the source is an 110 device and the destination is 
memory. The 110 device starts the next transfer 
cycle by activating the channel's DRQ (DMA 
request) line. The channel then runs one transfer 
cycle and waits for the next DRQ. 

Destination synchronization is most often used 
when the source is memory and the destination is 
an 110 device. Again, the 110 device controls the 
transfer frequency by signaling on DRQ when it is 
ready to receive the next byte or word. 

The source field (bit 10) identifies register GA or 
GB as the source pointer (and the other as the 
destination pointer). 

The lock field (bit 9) may be used to instruct the 
channel to assert the processor's bus lock (LOCK) 
signal during the transfer. In a source­
synchronized transfer, LOCK is active from the 
time the first DMA request is received until the 
channel enters the termination sequence. In a 
destination-synchronized transfer LOCK is active 
from the first fetch (which precedes the first 
DMA request) until the channel enters the ter­
mination sequence. 

The chain field (bit 8) is not used during the 
transfer. As discussed previously, setting this 
bit raises channel program execution to priority 
level 1. 

The terminate on single transfer field (bit 7) can 
be used to cause the chaimel to run one complete 
transfer cycle only-i.e., to transfer one byte or 
word and immediately resume channel program 
execution. When single transfer is specified, any 
other termination conditions are ignored. Single 
transfer termination can be used with low-speed 
devices, such as keyboards and communication 
lines, to translate and/or compare one byte as it 
transferred. 

The three low-order fields in register CC instruct 
the channel when to terminate the transfer, 
assuming that single transfer has not been 
selected. Three termination conditions may be 
specified singly or in combination. 
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15 7 0 

I f ITRI STN I S I L I C ITSI Tf I T~C I TMC I 
F FUNCTION 
00 PORT TO PORT 
01 MEMORY TO PORT 
10 PORT TO MEMORY 
11 MEMORYTO MEMORY 

TR TRANSLATE 
o NO TRANSLATE 
1 TRANSLATE 

SYN SYNCHRONIZATION 
00 NO SYNCHRONIZATION 
01 SYNCHRONIZE ON SOURCE 
10 SYNCHRONIZE ON DESTINATION 
11 RESERVED BY INTEL 

S SOURCE 
o GA POINTS TO SOURCE 
1 GB POINTS TO SOURCE 

L LOCK 
o NO LOCK 
1 ACTUATE LOCK DURING TRANSFER 

C ~ 
o NO CHAINING 
1 CHAINED: RAISE TB TO PRIORITY 1 

TS TERMINATE ON SINGLE TRANSFER 
o NO·SINGLE TRANSFER TERMINATION 
1 TERMINATE AFTER SINGLE TRANSFER 

TX TERMINATE ON EXTERNAL SIGNAL 
00 NO EXTERNAL TERMINATION 
01 TERMINATE ON EXT ACTIVE; OFFSET = 0 
10 TERMINATE ON EXT ACTIVE; OFFSET = 4 
11 TERMINATE ON EXT ACTIVE; OFFSET = 8 

TBC TERMINATE ON BYTE COUNT 
00 NO BYTE COUNT TERMINATION 
01 TERMINATE ON BC = 0; OFFSET = 0 
10 TERMINATE ON BC = 0; OFFSET = 4 
11 TERMINATE ON BC = 0; OFFSET = 8 

TMC TERMINATE ON MASKED COMPARE 
000 NO MASK/COMPARE TERMINATION 
001 TERMINATE ON MATCH; OFFSET = 0 
010 TERMINATE ON MATCH; OFFSET = 4 
011 TERMINATE ON MATCH; OFFSET = 8 
100 (NO EFFECT) 
101 TERMINATE ON NON-MATCH; OFFSET = 0 
110 TERMINATE ON NON-MATCH; OFFSET = 4 
111 TERMINATE ON NON-MATCH; OFFSET = 8 

Figure 3-26. Channel Control Register Fields 
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External termination allows an 1/0 device 
(typically, the one that is synchronizing the 
transfer) to stop the transfer by activating the 
channel's EXT (external terminate) line. If byte 
count termination is selected, the channel will 
stop when BC=O. If masked compare termination 
is specified, the channel will stop the transfer 
when a byte is found that is equal or unequal (two 
options are available) to the low-order byte in MC 
as masked by MC's high-order byte. The byte that 
stops the termination is transferred. If translate 
has been specified, the translated byte is 
compared. 

When a DMA transfer ends, the channel adds a 
value called the termination offset to the task 
pointer and resumes channel program execution 
at that point in the program. The termination off­
set may assunie a value of 0, 4, or 8. Single 
transfer termination always results in a termina­
tion offset of O. Figure 3-27 shows how the ter­
mination offsets can be used as indices into a 
three-element "jump table" that identifies the 
condition that caused the termination. 

As an example of using the jump table, consider a 
case in which a transfer is to terminate when 80 
bytes have been transferred or a linefeed 
character is detected, whichever occurs first. The 
program would load 80H into BC and OOOAH 
into MC (ASCII line feed, no bits masked). The 
channel program could assign byte count termina­
tion an offset of 0 and masked compare termina­
tion an offset of 4. If the transfer is terminated by 
byte count (no linefeed is found), the instruction 
at location TP + 0 will be executed first after the 
termination. If the linefeed is found before the 
byte count ,expires, the instruction at TP + 4 will 
be executed first. The LJMP (long unconditional 
jump, see section 3.7) instruction is four bytes 
long and can be placed at TP + 0 and TP + 4 to 
cause the channel program to jump to a different 
routine, depending on how the transfer 
terminates. 

If the transfer can only terminate in one way and 
that condition is assigned an offset of 0, there is 
no need for the jump table. Code which is to be 
unconditionally executed when the transfer ends 
can imniediately follow the instruction after 
XFER. This is also the case when single transfer is 
specified (execution always resumes at TP + 0). 

It is possible, however, for two, or even three"ter­
mination conditions to arise at the same time. In 
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-(COULD IE A DIFFERENT INSTRUCTION) 

(TP PO~IN::TS-=TO!l'~.T~U~MP~'N~.~T"~UC~TI~ONd) _ ...... _, 

UMP OFFSET _O_CODE } 

L_~~L~JM~P~OF~FS~ET~_4~_~CO~D~E] THREE·ELEMENTJUMPTAILE 

TP+8 
LJMP OFFSET_I_CODE 

OFFSET _o_coDE:l 1 
EXECUTED IF TERMINATION T OFFSET_O T 

OFFSET _4_cODEl 1 
T IX!cUTg~r.lf'!.M~NATIONT 

OFFSET •• LCODE'l 1 
IXECUTED IFTERMINATION T OFFIET.I T 

Figure 3-27. Termination Jump Table 

the preceding example, this would occur if the 
80th character were a linefeed. When mUltiple ter­
minations occur simultaneously, the channel 
indicates that termination resulted from the con­
dition with the largest offset value. In the 
preceding example, if byte count and search ter­
mination occur at the same time, the channel pro­
gram resumes at TP + 4. 

Beginning the Transfer 

The 8089 XFER (transfer) instruction puts the 
channel into DMA transfer mode after the 
following instruction has been executed. This 
technique gives the channel time to set itself up 
when it is used with device controllers, such as the 
8271 Floppy Disk Controller, that begin transfer­
ring immediately upon receipt of the last in a 
series of parameters or commands. If the transfer 
is to or from such a device, the last parameter 
should be sent to the device after the XFER 
instruction. If this type of device is not being 
used, the instruction following XFER would 

Mnemonics © Intel, 1979 



8089 INPUT /OUTPUT PROCESSOR 

typically send a "start" command to the con­
troller. If a memory-to-memory transfer is being 
made, any instruction may follow XFER except 
one that alters GA, GB, or CC. The HL T instruc­
tion should normally not be coded after the 
XFER; doing so clears the channel's BUSY flag, 
but allows the DMA transfer to proceed. 

DMA Transfer Cycle 

A DMA transfer cycle is illustrated in figure 3-28; 
a complete transfer is a series of these cycles run 
until a termination condition is encountered. The 
figure is deliberately simplified to explain the 
general operation of a DMA transfer; in par­
ticular, the updating of the source and destination 
pointers (GA and GB) can be more complex than 
the figure indicates. Notice that it is possible to 
start an unending transfer by not specifying a ter­
mination condition in CC or by specifying a con­
dition that never occurs; it is the programmer's 
responsibility to ensure that the transfer eventu­
ally stops. 

If the transfer is source-synchronized, the channel 
waits until the synchronizing device activates the 
channel's DRQ line. The other channel is free to 
run during this idle period. The channel fetches a 
byte or a word, depending on the source address 
(contained in GA or GB) and the logical bus 
width. Table 3-9 shows how a channel performs 
the fetch/store sequence for all combinations of 
addresses and bus widths. If the destination is on 
a 16-bit logical bus and the source is on an 8-bit 
logical bus, and the transfer is to an even address, 
the channel fetches a second byte and assembles a 
word internally. During each fetch, the channel 
decrements BC according to whether a byte or 
word is obtained. Thus BC always indicates the 
number of bytes fetched. 

The channel samples its EXT line after every bus 
cycle in the transfer. If EXT is recognized after 
the first of two scheduled fetches, the second 
fetch is not run. After the fetch sequence has been 
completed, the channel translates the data if this 
option is specified in CC. 

If a word has been fetched or assembled, and 
bytes are to be stored (destination bus is eight bits 
or transfer is to an odd address), the channel 
disassembles the word into two bytes. If the 
transfer is destination-synchronized (only one 
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Table 3-9. DMA Transfer 
Assembly IDisassembly 

Address Logical Bus Width 
(Source- Source-Destination) 

Destination) 8-8 8-16 16-8 16-16 

EVEN-EVEN B-B B/B-W W-B/B W-W 
EVEN-ODD B-B B-B W-B/B W-B/B 
ODD-EVEN B-B B/B-W B-B B/B-W 
ODD-ODD B-B B-B B-B B-B 

B= Byte Fetched or Stored in 1 Bus Cycle 
W= Word Fetched or Stored in 1 Bus Cycle 
B/B= 2 Bytes Fetched or Stored in 2 Bus Cycles 

type of synchronization may be specified for a 
given transfer), the channel waits for DRQ before 
running a store cycle. It stores a word or the 
lower-addressed byte (which may be the only byte 
or the first of two bytes). Table 3-9 shows the 
possible combinations of even/odd addresses and 
logical bus widths that define the store cycle. 
Whenever stores are to memory on a 16-bit logical 
bus, the channel stores words, except that bytes 
may be stored on the first and last cycles. 

The channel samples EXT again after the first 
store cycle and, if it is active, the channel prevents 
the second store cycle from running. If specified 
in the CC register, the low-order byte is compared 
to the value in Me. A "hit" on the comparison 
(equal or unequal, as indicated in CC) also 
prevents the second of two scheduled store cycles 
from running. In both of these cases, one byte has 
been "overfetched," and this is reflected in BC's 
value. It would be unusual, however, for a syn­
chronizing device to issue EXT in the midst of a 
DMA cycle. Note also that EXT is valid only 
when DRQ is inactive. Chapter 4 covers the tim­
ing requirements for these two signals in detail. 

GA and GB are updated next. Only memory 
pointers are incremented; pointers to I/O devices 
remain constant throughout the transfer. 

If any termination condition has occurred during 
this cycle, the channel stops the transfer. It uses 
the content of the CC register to assign a value to 
the termination offset, to reflect the cause of the 
termination. The channel adds this offset to TP 
and resumes channel program execution at the 
location now addressed by TP. This offset will 
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ASSEMBLE 
BYTES 

(OPTIONAL) 

COMPARE 
UNDER 
MASK 

WAIT FOR 
DMA REQUEST 

ORO 

Figure 3-28. Simplified DMA Transfer Flowchart 

always be zero, four, or eight bytes past the end 
of the instruction following the XFER instruc­
tion. 

If no termination condition is detected and 
another byte remains to be stored, the channel 
stores this byte, waiting for DRQ -if necessary, 
and updates the source and destination pointers. 
After the store, it again checks for termination. 
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Following the Transfer 

A DMA transfer updates register Be, register GA 
(if it points to memory), and register GB (if it 
points to memory). If the original contents of 
these registers are needed following the transfer, 
the contents should be saved in memory prior to 
executing the XFER instruction. 
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A program may determine the address of the last 
byte stored by a DMA transfer by inspecting the 
pointer registers as shown in table 3-10. The 
number of bytes stored is equal to: 

lasLbyte_address - first_byte_address + 1. 

For 'port-to-port transfers, the number of bytes 
ttansferred can be determined by subtracting the 
final value of BC from its original value provided 
that: 

• the original BC > final BC, . 

• a transfer cycle is not "chopped off" before 
it completes by a masked compare or exter­
nal termination. 

In general, programs should not use the contents 
of GA, GB and BC following a transfer except as 
noted above and in table 3-10. This is because the 
contents of the registers are affected by numerous 
conditions, particularly when the transfer is ter­
minated by EXT. In particular, when a program 
is performing a sequence of transfers, it should 
reload these registers before each transfer. 

3.5 Multiprocessing Features 

The 8089 shares the multiprocessing facilities 
common to the 8086 family of processors. It has 

. on-chip logic for arbitrating the use of the local 
bus with a CPU or another lOP; system bus 
arbitration is delegated to an 8289 Bus Arbiter. 

The 8089's TSL (test and set while locked) in­
struction enables it to share a resource, such as a 
buffer, with other processors by means of 
semaphore (see section 2.5 for a discussion of the 
use of semaphores to control access to shared 
resources). Finally, the 8089 can lock the system 
bus for the duration of a DMA transfer to ensure 
that the transfer completes without interference 
from other processors on the bus. 

In the remote configuration, the 8089 is electric­
ally compatible with Intel's Multibus™ multi­
master bus design. This means that the power and 
convenience of 8089 lIO processing can be used 
in 8080- or 8085-based systems that implement the 
Multibus protocol or a superset of it. This 
includes single-board computers such as Intel's 
iSBC 80120™ and iSBC 80130™ boards. In addi­
tion, the lOP can access other iSBC board 
products such as memory and communications 
controllers. 

Bus Arbitration 

The 8089 shares its system bus with a CPU, and 
may also share its 1/0 bus with an lOP or another 
CPU. Only one processor ata time may drive a 
bus. When two (or more) processors want to use a 
shared bus, the system must provide an arbitra­
tion mechanism that will grant the bus to one of 
the processors. This section describes the bus 
arbitration facilities that may be used with the 
8089 and covers their applicability to different 
lOP configurations. 

Table 3-10. Address of Last Byte Stored 

Termination Source Destination Synchronization Last Byte Stored 

memory memory any destination pointer' 
byte count memory port any source pointer 

port memory any destination pOinter 

memory memory any destination pointer 
masked compare memory port any source pointer 

port memory any destination pointer 

memory memory unsynchronized destination pointer 
external memory port destination source pOinter' 

port memory source d.esUnation pointer 

'Source pointer may also be used. 
llftransfer is BI B-W, source pOinter must be decremented by 1 to point to last byte transferred. 
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Request/Grant Line 

When an 8089 is directly connected to 
another 8089, an 8086 or an 8088, the 
RQ/GT (request/grant) lines built into all of 
these processors are used to arbitrate use of a 
local bus. In the local mode, RQ/GT is used 
to control access to both the system and the 
110 bus. 

As discussed in section 2.6, the CPU's 
request/grant lines (RQ/GTO and RQ/GTl) 
operate as follows: 

• an external processor sends a pulse to the 
CPU to request use of the bus; 

• the CPU finishes its current bus cycle, if one 
is in progress, and sends a pulse to the pro­
cessor to indicate that it has been granted the 
bus; and 

• when the external processor is finished with 
the bus, it sends a final pulse to the CPU, to 
indicate that it is releasing the bus. 

The 8089's request/grant circuit can operate in 
two modes; the mode is selected when the lOP is 
initialized (see section 3.6). Mode 0 is compatible 
with the 8086/8088 request/ grant circuit and 
must be specified when the 8089's RQ/GT line is 
connected to RQ/GTO or RQ/GTl of one of 
these...fPUs. Mode 0 may be s~ified when 
RQ/GT of one 8089 is tied to RQ/GT of another 
8089. When mode 0 is used with a CPU, the CPU 
is designated the master, and the lOP is 
designated a slave. When mode 0 is used with 
another lOP, one lOP is the master, and the other 
is the slave. Master/slave designation also is made 
at initialization time as discussed in section 3.6. 
The master has the bus when the system is in­
itialized and keeps the bus until it is requested by 
the slave. When the slave requests the bus, the 
master grants it if the master is idle. In this sense, 
the CPU becomes idle at the end of the current 
bus cycle. An lOP master, on the other hand, 
does not become idle until both channels have 
halted program execution or are waiting for DMA 
requests. Once granted the bus, the slave (always 
an lOP) uses it until both channels are idle, and 
then releases it to the master. In mode 0, the 
master has no way of requesting the slave to 
return the bus. 

Mode 1 operation of the request/grant lines may 
only be used to arbitrate use of a private I/O bus 
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between two lOPs. In this case, one lOP is 
designated the master, and the other is designated 
the slave. However, the only difference between a 
master and a slave running in mode 1 is that the 
master has the bus at initialization time. Both 
processors may request the bus from each other at 
any time. The processor that has the bus will 
grant it to the requester as soon as one of the 
following occurs on either channel: 

• an unchained channel program instruction is 
completed, or 

• a channel goes idle due to a program halt or 
the completion of a synchronized transfer 
cycle (the channel waits for a DMA request). 

Execution of a chained channel program, a DMA 
termination sequence, a channel attention 
sequence, or a synchronized DMA transfer (i.e., a 
high-priority operation) on either channel 
prevents the lOP from granting the bus to the 
requesting lOP. 

The handshaking sequence in mode 1 is: 

• the ~uesting processor pulses once on 
RQ/GT; 

• the processor with the bus grants it by 
pulsing once; and 

• if the processor granting the bus wants it 
back immediately (for example, to fetch the 
next instruction), it will pulse RQ/GT again, 
two clocks after the grant pulse. 

The fundamental difference between the two 
modes is the frequency with which the bus can be 
switched between the two processors when both 
are active. In mode 0, the processor that has the 
bus will tend to keep it for relatively long periods 
if it is executing a channel program. Mode 1 in 
effect places unchained channel programs at a 
lower priority since the processor will give up the 
bus at the end of the next instruction. Therefore, 
when both processors are running channel pro­
grams or synchronized DMA, they will share the 
bus more or less equally. When a processor 
changes to what would typically be considered a 
higher-priority activity such as chained program 
execution or DMA termination, it will generally 
be able to obtain the bus quickly and keep the bus 
for the duration of the more critical activity. 
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8289 Bus Arbiter 

When an lOP is configured remotely, an 8289 Bus 
Arbiter is used to control its access to the shared 
system bus (the CPU also has its own 8289). In a 
remote cluster of two lOPs or an lOP and a CPU, 
one 8289 controls access to the system bus for 
both processors in the cluster. The 8289 has 
several operating modes; when used with an 8089, 
the 8289 is usually strapped in its lOB (I/O 
Peripheral Bus) mode. 

The 8289 monitors the lOP's status lines. When 
these indicate that the lOP needs a cycle on the 
system bus, and the lOP does not presently have 
the bus, the 8289 activates a bus request signal. 
This signal, along with the bus request lines of 
other 8289s on the same bus, can be routed to an 
external priority-resolving circuit. At the end of 
the current bus cycle, this circuit grants the bus to 
the requesting 8289 with the highest priority. 
Several different prioritizing techniques may be 
used; in a typical system, an lOP would have 
higher bus priority than a CPU. If the 8289 does 
not obtain the bus for its processor, it makes the 
bus appear "not ready" as if a slow memory were 
being accessed. The processor's clock generator 
responds to the "not ready" condition by insert­
ing wait states into the lOP's bus cycle, thereby 
extending the cycle until the bus is acquired. 

Bus Arbitration for lOP Configurations 

When the CPU initializes an lOP, it must inform 
the lOP whether it is a master or a slave, and 
which request/grant mode is to be used. This sec­
tion covers the requirements and options 
available for each lOP configuration; section 3.6 
describes how the information is communicated 
at initialization time. 

Table 3-11 summarizes the bus arbitration 
requirements and options by lOP configuration. 
In the local configuration, all bus arbitration is 
performed by the request/ grant lines without 
additional hardware. One lOP may be connected 
to each of the CPU's RQ/GT lines. The lOP con­
nected to RQ/GTO will obtain the bus if both pro­
cessors make simultaneous requests. 

Since a s~le lOP in a remote configuration does 
not use RQ/GT, its mode may be set to 0 or 1 
without affect. The single remote lOP, however, 
must be initialized as a master. If two remote 
lOPs share an I/O bus, one must be a master and 
the other a slave; both must be initialized to use 
the same request/grant mode. Normally, mode 1 
will be selected for its improved responsiveness, 
and the designation of master will be arbitrary. If 
one lOP must have the I/O bus when the system 
comes up, it should be initialized as the master. 

When a remote lOP shares its I/O bus with a 
local CPU, it must be a slave and must use 
request/grant mode O. 

Bus Load Limit 

A locally configured lOP effectively has higher 
bus priority than the CPU since the CPU will 
grant the bus upon request from the lOP. One or 
two local lOPs can potentially monopolize the 
bus at the expense of the CPU. Of course, if the 
lOP activities are time-critical, this is exactly what 
should happen. On the other hand, there may be 
low-priority channel programs that have less 
demanding performance requirements. 

In such cases, the CPU may set a CCW bit called 
bus load limit to constrain the channel's use of the 
bus during normal (unchained) channel program 

Table 3-11. Bus Arbitration Requirements and Options 

Local Remote 
Remote With 

Local CPU 
lOP 

Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT 
Slave Mode Slave Mode Slave Mode 

IOP1 Slave 0 Master o or 1 Slave 0 

IOP2 Slave 0 Slave 
Same as 

N/A N/A 
Master 
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execution. When this bit is set, the channel 
decrements a 7-bit counter from 7F (127) to OH 
with each instruction executed. Since the counter 
is decremented once per clock period, the channel 
waits a minimum of 128 clock cycles before it exe­
cutes the next instruction. By forcing the execu­
tion time of all instructions to 128 clocks, the use 
of the bus is reduced to between 3 and 25 percent 
of the available bus cycles. 

Setting the bus load limit effectively enables a 
CPU to slow the execution of a normal channel 
program, thus freeing up bus cycles. This is of 
most use in local configurations, but also may be 
effective in remote configurations, particularly 
when channel programs are executed from system 
memory. Bus load limit has no effect on chained 
channel programs, DMA transfers, DMA ter­
mination, or channel attention sequences. 

Bus Lock 

Like the 8086 and 8088, the 8089 has a LOCK 
(bus lock) signal which can be activated by soft­
ware. The LOCK output is normally connected to 
the LOCK input of an 8289 Bus Arbiter. When 
LOCK is active, the bus arbiter will not release the 
bus to another processor regardless of its priority. 
A channel automatically locks the bus during exe­
cution of the TSL (test and set while locked) 
instruction and may lock the bus for the duration 
of a DMA transfer. 

If bit 9 of register CC is set, the 8089 activates its 
LOCK output during a DMA transfer on that 
channel. If the transfer is synchronized, LOCK is 
active from the time that the first DRQ is 
recognized. If the transfer is unsynchronized, 
LOCK is active throughout the entire transfer 
(there are no idle periods in an un synchronized 
transfer). LOCK goes inactive when the channel 
begins the DMA termination sequence. 

A locked transfer ensures that the transfer will be 
completed in the shortest possible time and that 
the transferring channel has exclusive use of the 
bus. Once the channel obtains the bus and starts a 
locked transfer, the channel, in effect, becomes 
the highest-priority processor on that bus. 

The 8089 TSL (test and set while locked) 
instruction can be used to implement a 
semaphore. (See section 2.5 for a discussion of 
how a semaphore may be used to control the 
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access of multiple processors to ~hared 
resource.) The instruction activates LOCK and 
inspects the value of a byte in memory. If the 
value of the byte is OH, it is changed (set) to a 
value specified in the instruction and the follow­
ing instruction is executed. If the byte does not 
contain OH, control is transferred to another loca­
tion specified in the instruction. The bus is locked 
from the time the byte is read until it is either writ­
ten or control is transferred to ensure that another 
processor does not access the variable after TSL 
has read it, but before it has updated it (i.e., 
between bus cycles). The following line of code 
will repeatedly test a semaphore pointed to by GA 
until it is found to contain zero: 

TEST_FLAG: TSL [GAl. OFFH, TEST_FLAG 

When the semaphore is found to be zero, it is set 
to FFH and the program continues with the next 
instruction. 

3.6 Processor Control and 
Monitoring 

This section focuses on lOP/CPU interaction, 
i.e., how the CPU initializes the lOP and sub­
sequently sends commands to channels, and how 
the channels may interrupt the CPU. It also 
covers the channels' DMA control signals and the 
status signals that external devices can use to 
monitor lOP activities. 

Initialization 

Before the 8089 channels can be dispatched to 
perform I/O tasks, the lOP must be initialized. 
The initialization sequence (figure 3-29) provides 
the lOP with a definition of the system environ­
ment: physical bus widths, request/grant mode, 
and the location of the channel control block. 

The sequence begins when the lOP's RESET line 
is activated. This halts any operation in progress, 
but does not affect any registers. Upon the first 
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RESET_ 

lOP 

HALT 

WAIT FOR 
CHANNEL 

ATTENTION 

READ 
INITIALIZATION 

CONTROL 
BLOCKS 

CH1 BUSY-OH 

WAIT FOR 
CHANNEL 

ATTENTION 

CA+SEL 

CPU 

PREPARE 
INITIALIZATION 

CONTROL 
BLOCKS 

CH1 BUSY-FFH 

CH2 BUSY-OH 

ISSUE 
CHANNEL 

ATTENTION 

lOP IS READY; 
CPU MAY INITIALIZE 

ANOTHER lOP 

Figure 3-29. Initialization Sequence 

RESET after power-up, the content of all lOP 
registers is undefined. Register contents are 
preserved if the lOP is subsequently RESET, 
except that RESET always clears the chain bit in 
register CC. 

The lOP initializes itself by reading information 
from initialization control blocks located in the 
system space (see. figure 3-30). The three blocks 
are the SCP (system configuration pointer), SCB 
(system configuration block) and the CB (channel 
control block). The CB is normally RAM-based; 
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the SCP and the SCB may be in RAM or ROM. It 
is the CPU's responsibility to properly setup the 
control blocks. 

The CPU starts the initialization sequence by issu­
ing a channel attention to channell (SEL low) or 
to channel 2 (SEL high). The CPU typically 
accesses the channels as two consecutive addresses 
in its I/O or memory space. An OUT instruction 
(for an I/O-mapped lOP) or a memory reference 
instruction (such as MOV) then issues the channel 
attention. 
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SYSTEM 
CONFIGURATION 

POINTER 
(FIXED LOCATION) 

SYSTEM 
CONFIGURATION 

BLOCK 
(USER·DEFINED LOCATION) 

CHANNEL 
CONTROL 

BLOCK 
(USER·DEFINED LOCATION) 

C 
H 
A 
N 
N 
E 
L 
2 

C 
H 
A 
N 
N 
E 
L 
1 

HIGH SYSTEM MEMORY 

(RESERVED) 

SCB SEGMENT BASE 

SCB OFFSET 

(RESERVED) I SYSBUS 

8086/8088 
RESET LOCATION 

CB SEGMENT BASE 

CB OFFSET 

(RESERVED) I SOC 

(RESERVED) 

PB SEGMENT BASE 

PB OFFSET 

BUSY I CCW 

(RESERVED) 

PB SEGMENT BASE 

PB OFFSET 

BUSY I CCW 

LOW SYSTEM MEMORY 

F 

F 

}- F 

F 

F 

F 

F 

F 

}-t-

1-

}---

}--

Figure 3-30. Initialization Control Blocks 

FFFEH 

FFFCH 

FFFAH 

FFF8H 

FFF6H 

FFF4H 

FFF2H 

FFFOH 

If channel 1 is selected (SEL=low), the lOP con­
siders itself a master (as discussed in section 3.5). 
If channel 2 is selected (SEL=high), the lOP 
operates as a slave. The lOP ignores, and does 
not latch, any subsequent channel attentions that 
occur during initialization. 

If the lOP is a master, it assumes that it has the 
bus immediately. If it is a slave, it pulses RQ/GT 
to request the bus from the CPU (local configura­
tion) or the other lOP (remote configuration). 
When the lOP has obtained the bus, it assumes 
that the system bus is eight bits wide and reads the 
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SYSBUS field (figure 3.31) from location 
FFFF6H in system memory. This byte reUs the 
lOP the actual physical width of the system bus; 
aU subsequent accesses take advantage of a 16-bit 
bus if it is available; i.e., even-addressed words 
are fetched in single bus cycles. It is therefore 
advantageous to word-align the control blocks. 

7 

o o o o o 

W = 0 = 8-BIT SYSTEM BUS 
W = 1 = 18-BIT SYSTEM BUS 

o 

Figure 3-31. SYSBUS Encoding 

o 

w 

Next, the lOP reads the SCB address located at 
FFFF8H. This is a standard doubleword pointer, 
and the lOP constructs a 20-bit physical address 
from it by shifting the segment base left four bits 
and adding the offset word of the pointer. 

Having obtained the SCB address, the lOP reads 
the SOC (system operation command). This byte 
(see figure 3-32) teUs the lOP the request/grant 
mode and the width of the I/O bus. 

7 

o o o o o 

R = REQUEST/GRANT MODE 
I = 0 = 8-BIT I/O BUS 
I = 1 = 111-BIT I/O BUS 

R 

Figure 3-32. SOC Encoding 

o 

Then the lOP reads the doubleword pointer to the 
channel control block, converts the pointer into a 
20-bit physical address, and stores it in an internal 
register. This register is not accessible to channel 
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programs and is only loaded during initialization. 
The CB, therefore, cannot be moved during exe­
cution except by reinitializing the lOP. 

After loading the address of the CB, the lOP 
clears the channell BUSY flag to OH. The other 
fields in the CB are used when a channel is dis­
patched and are not read or altered in the 
initialization sequence. 

After the CPU has started the initialization 
sequence, it should monitor channell's BUSY 
flag in the CB to determine when the sequence has 
been completed. When the BUSY flag has been 
cleared, the CPU can dispatch either channel. It 
also can begin the initialization of another lOP. 
Since each lOP normally has a separate CB, the 
CPU must allocate the CB and update the pointer 
in the SCB before initializing the next lOP. Alter­
natively, mUltiple SCBs could be employed, each 
pointing to a different CB area. In this case the 
CPU would update the pointer in the SCP before 
initializing the next lOP. It follows from this that 
in multi-lOP systems, either the SCB or SCP, or 
both, must be RAM-based. When all lOPs have 
been initialized, the CPU may use RAM occupied 
by the SCB for another purpose. 

Channel Commands 

After initialization, any channel attention is 
interpreted as a command to channel 1 
(SEL=low) or to channel 2 (SEL=high). As 
discussed in section 3.2, the channel attention, 
depending on the activities of both channels, may 
not be recognized immediately. The channel 
attention is latched, however, so that it will be 
serviced as soon as priorities allow. 

When the channel recognizes the CA, it sets its 
BUSY flag in the CB to FFH. This does not pre­
vent the CPU from issuing another CA, but pro­
vides status information only. In its response to a 
CA, the channel reads various control fields from 
system memory. It is the responsibility of the 
CPU to ensure that the appropriate fields are 
properly initialized before issuing the CA. 

After setting its BUSY flag, the channel reads its 
CCW from the CB. It examines the command 
field (see figure 3-33) and executes the command 
encoded there by the CPU. 
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7 

CF COMMAND FIELD 
000 UPDATE PSW 

o 

001 START CHANNEL PROGRAM LOCATED IN I/O SPACE. 
010 (RESERVED) 
011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE. 
100 (RESERVED) 
101 RESUME SUSPENDED CHANNEL OPERATION 
110 SUSPEND CHANNEL OPERATION 
111 HALT CHANNEL OPERATION 

ICF INTERRUPT CONTROL FIELD 
00 IGNORE, NO EFFECT ON INTERRUPTS. 
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED. 
10 ENABLE INTERRUPTS. 
11 DISABLE INTERRUPTS. 

B BUS LOAD LIMIT 
o NO BUS LOAD LIMIT 
1 BUS LOAD LIMIT 

P PRIORITY BIT 

Figure 3-33. Channel Command Word Encoding 

Figure 3-34 illustrates the channel's response to 
each type of command. Note that if CF contains a 
reserved value (010 or 100), the channel's 
response is unpredictable. 

The CPU can use the "update PSW" command 
to alter the bus load limit and priority bits in the 
PSW (see figure 3-17) without otherwise affecting 
the channel. This command also allows the CPU 
to control interrupts originating in the channel; 
this topic is discussed in more detail later in this 
section. 

The two "start program" commands differ only 
in their affect on the TP tag bit. If CF=OOI, the 
channel sets the tag to 1 to indicate that the pro­
gram resides in the 110 space. If CF=Oll, the tag 
is cleared to 0, and the program is assumed to be 
in the system space. The channel converts the 
doubleword parameter block pointer to a 20-bit 
physical address and loads this into PP. It loads 
the doubleword task block (channel program) 
pointer into TP, updates the PSW as specified by 
the ICF, Band P fields of the CCW and starts the 
program with the instruction pointed to by TP . 
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The CPU may suspend a channel operation 
(either program execution or DMA transfer) by 
setting CF to 110. The channel saves its state (TP, 
its tag bit, and PSW) in the first two words of the 
parameter block (see figure 3-18 for format) and 
clears its BUSY flag to OH. Note the following in 
regard to a suspended operation: 

• The content of the doubleword pointer to the 
beginning of the channel program is replaced 
by the channel state save data. Therefore, a 
suspended operation may be resumed, but 
cannot be start~d from the beginning without 
recreating the doubleword pointer. 

• TP is the only register saved by this 
operation. If another channel program is 
started on this channel, the other registers, 
including PP, are subject to being over­
written. In general, suspend is used to tem­
porarily halt a channel, not to "interrupt" it 
with another program. Section 3.10 provides 
an example of a program that can be used to 
save another program's registers. 



COMMAND 

8089 INPUT/OUTPUT PROCESSOR 

CHANNEL 

PP 

CHANNEL 
CONTROL 

BLOCK 

(RESERVED) 1 
r 

PARAMETER 
BLOCK 

UPDATE PSW 
(CF = 000) rn ... 1 __ T_p_-", 

PARAMETER - BLOCK -
POINTER 

BUSY I CCW 

4 

2 TB POINTER 
r-- OR -
CHANNEL STATE 0 

T 
START PROGRAM A 
(CF=001/011) G 

(CR=110) G ""'" '"'''''' f 
RESUME OPERATION 
(CF=101) 

U1~T 

PP 

~{ I TP 

PP 

~ 
PP 

8 

o 

(RESERVED) 6 1 ! PARAMETER 4 
, 

BLOCK 

{ POINTER 2 TASK 2 
- BLOCK -

POINTER 0 

(RESERVED) I 1 
PARAMETER 4 

, 'r 
f- BLOCK -

-:i{ 
POINTER 2 

I BUSY I - C~~~fEEL-
CCW 0 

(RESERVED) r 
PARAMETER 4 

BUSY I CCW 0 '--___ --' 0 

TP Ii If- P~~~:R -I. 2. { 2 . ., r -C~~~ikEL -

~ ____________ L-L-____________ ~ ! 
HALT OPERATION 
(CF=111) 

mG
T 

PP (RESERVED) 

PARAMETER 
~ BLOCK -

TP POINTER 

BUSY I CCW 

Figure 3-34. Channel Commands 
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• Suspending a DMA transfer does not affect 
any 110 devices (an 110 device will act as 
though the transfer is proceeding). The CPU 
must provide for conditions that may arise if, 
for example, a device requests a DMA 
transfer, but the channel does not 
acknowledge the request because it has been 
suspended. Similarly, an I/O device may be 
in a different condition when the operation is 
resumed. 

A suspended operation may be resumed by setting 
CF to 101. This command causes the channel to 
reload TP, its tag bit, and the PSW from the first 
two words of PB. Resuming an operation that has 
not been suspended will give unpredictable results 
since the first two words of PB will not contain 
the required channel state data. A resume com­
mand does not affect any channel registers other 
than TP. 

The CPU may abort a channel operation by 
issuing a "halt" command (CF=lll). The chan­
nel clears its BUSY flag to OH and then idles. 
Again, the CPU must be prepared for the effect 
aborting a DMA transfer may have on an I/O 
device. 

ORQ (OMA Request) 

The synchronizing device in a DMA transfer uses 
the DRQ line to indicate when it is ready to send 
or receive the next byte or word. The channel 
recognizes a signal on this line only during a 
DMA transfers, i.e., after the instruction follow­
ing XFER has been executed and before a ter-· 
mination condition has occurred. The channels 
have separate DMA request lines (DRQI and 
DRQ2). 

EXT (External Terminate) 

An external device (typically the synchronizing 
device) can terminate a DMA transfer by signal­
ing on this line. Each channel has its own external 
terminate line (EXTl and EXT2). The channel 
stops the transfer as soon as the current fetch or 
store cycle is completed. An external terminate in 
an unsynchronized transfer could result in a loss 
of data, although this would not be a typical use 
of EXT. In a synchronized transfer, the syn­
chronizing device will normally issue EXT instead 
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of DRQ following the last transfer cycle. If EXT 
is activated during a transfer cycle, a fetched byte 
may not be stored as explained in section 3.4. 

A channel does not recognize EXT if it is not per­
forming a DMA transfer. If EXTl and EXT2 are 
activated simultaneously, EXTI is recognized 
first. 

Interrupts 

Each channel has a separate system interrupt line 
(SINTRI and SINTR2). A channel program may 
generate a CPU interrupt request by executing a 
SINTR instruction. Whether this instruction 
actually activates the SINTR line, however, 
depends upon the state of the interrupt control bit 
(bit 3 of the PSW; see figure 3-17). If this bit is 
set, interrupts from the channel are enabled, and 
execution of the SINTR instruction activates 
SINTR. If the interrupt control bit is cleared, the 
SINTR instruction has no effect; interrupts from 
the channel are disabled. 

The CPU can alter a channel's interrupt control 
bit by sending any command to the channel with 
the value of ICF (interrupt control field) in the 
CCW set to 10 (enable) or II (disable). Thus, the 
CPU can prevent interrupts from either channel. 

Once activated, SINTR remains active until the 
CPU sends a channel command with ICF set to 01 
(interrupt acknowledge). When the channel 
receives this command, it clears the interrupt ser­
vice bit in the PSW (figure 3-17) and removes the 
interrupt request. Disabling interrupts also clears 
the interrupt service bit and lowers SINTR. 

Status Lines 

The lOP emits signals on the SO-S2 status.\ines to 
indicate to external devices the type of bus cycle 
the processor is starting. Table 3-12 shows the 
signals that are output for each type of cycle. 
These status lines are connected to an 8288 Bus 
Controller. The bus controller decodes these lines 
and outputs the signals that control components 
attached to the bus. The lOP indicates "instruc­
tion fetch" on these lines when it is reading and 
writing memory operands as well as when it is fet-
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ched instructions. In the remote configuration, an 
8289 Bus Arbiter monitors th~ so-Si status lines 
to determine when a system bus access is required. 

Table 3-12. Status Signals SO-S2 

S2 S1 SO Type of Bus Cycle 

0 0 0 Instruction fetch from 1/0 space 

0 0 1 Data fetch from 1/0 space 

0 1 0 Data store to 1/0 space 

0 1 1 (not used) 

1 0 0 Instruction fetch from system 
space 

1 0 1 Data fetch from system space 

1 1 0 Data store to system space 

1 1 1 Passive; no bus cycle run 

Status lines S3-S6 indicate whether the bus cycle is 
DMA or non-DMA, and which channel is run­
ning the cycle (see table 3-13). Note that when the 
lOP is not running a bus cycle (e.g., when it is idle 
or when it is executing an internal cycle that does 
not use the bus), the status lines reflect the last 
bus cycle run. 

Table 3-13. Status Signals S3-S6 

S6 S5 S4 S3 Bus Cycle 

1 1 0 0 DMA cycle on channel 1 

1 1 0 1 Dfy'lA cycle on channel 2 

1 1 1 0 Non-DMA cycle on channel 1 

1 1 1 1 Non-DMA cycle on channel 2 

3.7 Instruction Set 

This section divides the lOP's 53 instructions into 
five functional categories: 

I. data transfer, 

2. arithmetic, 

3. logic and bit manipulation, 

4. program transfer, 

5. processor control. 
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The description of each instruction in these 
categories explains how the instruction operates 
and how it may be used in channel programs. 
Instructions that perform essentially the same 
operation (e.g., ADD and ADDB, which add 
words and bytes respectively), are described 
together. A reference table at the end of the sec­
tion lists every instruction alphabetically and pro­
vides execution time, encoded length, and sample 
ASM-89 coding for each permissable operand 
combination. For information on how the 8089 
machine instructions are encoded in memory, see 
section 4.3. 

In reading this section, it is important to recall 
that the instruction set does not differentiate 
between memory addresses and I/O device 
addresses. Instructions that are described as 
accepting byte and word memory operands may 
also be used to read and write I/O devices. 

Data Transfer Instructions 

These instructions move data between memory 
and channel registers. Traditional byte and word 
moves (including memory-to-memory) are 
available, as are special instructions that load 
addresses into pointer registers and update tag 
bits in the process. 

MOV destination, source 

MOV transfers a byte or word from the source to 
the destination. Four instructions are provided: 

MOV 
MOVB 
MOVI 
MOVBI 

Move Word Variable, 
Move Byte Variable, 
Move Word Immediate, 
Move Byte Immediate. 

Figure 3-35 shows how these instructions affect 
register operands. Notice that when a pointer 
register is specified as the destination of a MOV, 
its tag bit is unconditionally set to I. MOV 
instructions are therefore used to load I/O space 
addresses into pointer registers-. 
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Register is Destination Register is Source 

Tag 19 15 7 0 Tag 19 15 7 o 
Byte __ -,-_____ -,-____ ---, 

Operation ~ 1J ~S ~ ~ sis S S S S S S SiR R R R R R R R I ~xJ0~~xlx X X X X X X XIT T T T T T TTl 

~XJG~~XITTTTTTTTITTTTTTTT I 

T = bit is transferred to destination operand 
R = bit is replaced by source operand 
S = bit is sign extension of high-order bit transferred 
X = bit is ignored 
1 = bit is unconditionally set 

Figure 3-35. Register Operands in MOV Instructions 

MOVP destination, source 

MOVP (move pointer) transfers a physical 
address variable between a pointer register and 
memory. If the source is a pointer register, its 
content and tag bit are converted to a physical 
address pointer (see figure 3-23). If the source is a 
memory location, the three bytes are converted to 
a 20-bit physical address and a tag value, and are 
loaded into the pointer register and its tag bit. 
MOVP is typically used to save and restore 
pointer registers. 

LPD destination, source 

LPD (load pointer with doubleword) converts a 
doubleword pointer (see figure 3-22) to a 20-bit 
physical address and loads it into the destination, 
which must be a pointer register. The pointer 
register's tag bit is unconditionally cleared to 0, 
indicating a system address. Two instructions are 
provided: 

LPD 

LPDI 

Load Pointer With Doubleword 
Variable 
Load Pointer With Doubleword 
Immediate 
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An 8086 or 8088 can pass any address in its 
megabyte memory space to a channel program in 
the form of a doubleword pointer. The channel 
program can access the location by using LPD to 
load the location address into a pointer register. 

Arithmetic Instructions 

The arithmetic instructions interpret all operands 
as unsigned binary numbers of 8, 16 or 20 bits. 
Signed values may be represented in standard 
two's complement notation with the high-order 
bit representing the sign (O=positive, l=negative). 
The processor, however, has no way of detecting 
an overflow into a sign bit so this possibility must 
be provided for in the user's software. 

The 8089 performs arithmetic operations to 20 
significant bits as follows. Byte and word 
operands are sign-extended to 20 bits (e.g., bit 7 
of a byte operand is propagated through bits 8-19 
of an internal register). Sign extension does not 
affect the magnitude of the operand. The opera­
tion is then performed, and the 20-bit result is 
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returned to the destination operand. High-order 
bits are truncated as necessary to fit the result in 
the available space. A carry out of, or borrow 
into, the high-order bit of the result is not 
detected. However, if the destination is a register 
that is larger than the source operand, carries will 
be reflected in the upper register bits, up to the 
size of the register. 

Figure 3-36 shows how the arithmetic instructions 
treat registers when they are specified as source 
and destination operands. 

ADD destination, source 

The sum of the two operands replaces the destina­
tion operand. Four addition instructions are 
provided: 

ADD 
ADDB 
ADD! 
ADDBI 

Add Word Variable 
Add Byte Variable 
Add Word Immediate 
Add Byte Immediate 

Register is Destination 

Tag 19 15 7 0 

INC destination 

The destination is incremented by 1. Two instruc­
tions are available: 

INC 
INCB 

Increment Word 
Increment Byte 

DEC destination 

The destination is decremented by 1. Word and 
byte instructions are provided: 

DEC 
DECB 

Decrement Word 
Decrement Byte 

Logical and Bit Manipulation 
Instructions 

The logical instructions include the boolean 
operators AND, OR and NOT. Two bit manipu­
lation instructions are provided for setting or 

Register is Source 

Tag 19 15 7 o 
Byte r::l r- -

Operation LXj~~~ RIR R R R R R R RIR R R R R R R R I rX; rx X Xxix X X X X X X xlp P P P P P P P I L .... .1.: ___ -L.. ____ .........J.L....-____ --' 

Word 

Operation ~xJ~~~ RIR R R R R R R RIR R R R R R R R I 
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X = bit is ignored in operation 
R = bit is replaced by operation result 
P = bit participates in operation 

Figure 3-36. Register Operands in Arithmetic Instructions 
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clearing a single bit in memory or in an I/O device 
register. As shown in figure 3-37, the logical 
operations always leave the upper four bits of 
20-bit destination registers undefined. These bits 
should not be assumed to contain reliable values 
or the same values from one operation to the 
next. Notice also that when a register is specified 
as the destination of a byte operation, bits 8-15 
are overwritten by bit 7 of the result. Bits 8-15 can 
be preserved in AND and OR instructions by 
using word operations in which the upper byte of 
the source operand is FFH or OOH, respectively. 

AND destination, source 

The two operands are logically ANDed and the 
result replaces the destination operand. A bit in 
the result is set if the bits in the corresponding 
positions of the operands are both set, otherwise 
the result bit is cleared. The following AND 
instructions are available: 

AND 
ANDB 
ANDI 
ANDBI 

Logical AND Word Variable 
Logical AND Byte Variable 
Logical AND Word Immediate 
Logical AND Byte Immediate 

Register is Destination 

Tag 19 15 7 0 

AND is useful when more than one bit of a device 
register must be cleared while leaving the remain­
ing bits intact. For example, ANDing an 8-bit 
register with EEH only clears bits 0 and 4. 

OR destination, source 

The two operands are logically ORed, and the 
result replaces the destination operand. A bit in 
the result is set if either or both of the correspond­
ing bits of the operands are set; if both operand 
bits are cleared, the result bit is cleared. Four 
types of OR instructions are provided: 

OR 
ORB 
ORI 
ORBI 

Logical OR Word Variable 
Logical OR Byte Variable 
Logical OR Word Immediate 
Logical OR Byte Immediate 

OR can be used to selectively set multiple bits in a 
device register. For example, ORing an 8-bit 
register with 30H sets bits 4 and 5, but does not 
affect the other bits. 

Register is Source 

Tag 19 15 7 o 
Byte r A r. - - -

Operation L~LU~~ uis S S SS SS SIRR RRRR RR I [XJ ~ ~~ xix x X X X X X xlp p p p p p p pi 

Word r ;J r. -­
Operation L~ ~ ~ ~ U I R R R R R R R R I R R R R R R R R I [~~~ xlp p p p p p p pip p p p p p p p I 

X = bit is ignored in operation 
U = bit is undefined following operation 
R = bit participates in operation and is replaced by result 
S = bit is sign-extension of high-order result bit 
P = bit participates in operation, but is unchanged 

Figure 3-37. Register Operands in Logical Instructions 
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NOT destination/destination, source 

NOT inverts the bits of an operand. If a single 
operand is coded, the inverted result replaces the 
original value. If two operands are coded, the 
inverted bits of the source replace the destination 
value (which must be a register), but the source 
retains its original value. In addition to these two 
operand forms, separate mnemonics are provided 
for word and byte values: 

NOT 
NOTB 

Logical NOT Word 
Logical NOT Byte 

NOT followed by INC will negate (create the 
two's complement of) a positive number. 

seTa destination, bit-select 

The bit-select operand specifies one bit in the 
destination, which must be a memory byte, that is 
unconditionally set to 1. A bit-select value of 0 
specifies the low-order bit of the destination while 
the high-order bit is set if bit-select is 7. SETB is 
handy for setting a single bit in an 8-bit device 
register. 

CLR destination, bit-select 

CLR operates exactly like SETB except that the 
selected bit is unconditionally cleared to O. 

Program Transfer Instructions 

Register TP controls the sequence in which chan­
nel program instructions are executed. As each 
instruction is executed, the length of the instruc­
tion is added to TP so that it points to the next 
sequential instruction. The program transfer 
instructions can alter this sequential execution by 
adding a signed displacement value to TP. The 
displacement is contained in the program transfer 
instruction and may be either 8 or 16 bits long. 
The displacement is encoded in two's complement 
notation, and the high-order bit indicates the sign 
(O=positive displacement, 1 =negative displace­
ment). An 8-bit displacement may cause a 
transfer to a location in the range -128 through 
+127 bytes from the end of the transfer instruc­
tion, while a 16-bit displacement can transfer to 
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any location within -32,768 through +32,767 
bytes. An instruction containing an 8-bit displace­
ment is called a short transfer and ail instruction 
containing a 16-bit displacement is called a long 
transfer. 

The program transfer instructions have alternate 
mnemonics. If the mnemonic begins with the let­
ter "L," the transfer is long, and the distance to 
the transfer target is expressed as a 16-bit 
displacement regardless of how far away the 
target is located. If the mnemonic does not begin 
with "L," the ASM-89 assembler may build a 
short or long displacement according to rules 
discussed in section 3.9. 

The "self-relative" addressing technique used by 
program transfer instructions has two important 
consequences. First, it promotes position­
independent code, i.e., code that can be moved in 
memory and still execute correctly. The only 
restriction here is that the entire program must be 
moved as a unit so that the distance between the 
transfer instruction and its target does not 
change. Second, the limited addressing range of 
these instructions must be kept in mind when 
designing large (over 32k bytes of code) channel 
programs. 

CALL/LCALL TPsave, target 

CALL invokes an out-of-line routine, saving the 
value of TP so that the subroutine can transfer 
back to the instruction following the CALL. The 
instruction stores TP and its tag bit in the TPsave 
operand, which must be a physical address 
variable, and then transfers to the target address 
formed by adding the target operand's displace­
ment to TP. The subroutine can return to the 
instruction following the CALL by using a 
MOVP instruction to load TPsave back into TP. 

Notice that the 8089's facilities for implementing 
subroutines, or procedures, is less sophisticated 
than its counterparts in the 8086/8088. The prin­
cipal difference is that the 8089 does not have a 
built in stack mechanism. 8089 programs can 
implement a stack using a base register as a stack 
pointer. On the other hand, since channel pro­
grams are not subject to interrupts, a stack will 
not be required for most channel programs. 
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JMP/LJMP target 

JMP causes an unconditional transfer (jump) to 
the target location. Since the task pointer is not 
saved, no return to the instruction following the 
JMP is implied. 

JZlLJZ source, target 

JZ (jump if zero) effects a transfer to the target 
location if the source operand is zero; otherwise 
the instruction following JZ is executed. Word 
and byte values may be tested by alternate 
instructions: 

JZ/LJZ 
JZB/LJZB 

Jump/Long Jump if Word Zero 
Jump/Long Jump if Byte Zero 

If the source operand is a register, only the low­
order 16 bits are tested; any additional high-order 
bits in the register are ignored. To test the low­
order byte of a register, clear bits 8-15 and then 
use the word form of the instruction. 

JNZlLJNZ source, target 

JNZ operates exactly like JZ except that control is 
transferred to the target if the source operand 
does not contain all O-bits. Word and byte sources 
may be tested using these mnemonics: 

JNZlLJNZ Jump/Long Jump if Word Not 
Zero 

JNZB/LJNZB Jump/Long Jump if Byte Not 
Zero. 

JMCE/LJMCE source, target 

This instruction (jump if masked compare equal) 
effects a transfer to the target location if the 
source (a memory byte) is equal to the lower byte 
in register MC as masked by the upper byte in 
MC. Figure 3-15 illustrates how O-bits in the 
upper half of MC cause the corresponding bits in 
the lower half of MC and the source operand to 
compare equal, regardless of their actual values. 
For example, if bits 8-15 of MC contain the value 
01H, then the transfer will occur if bit 0 of the 
source and register MC are equal. This instruction 
is useful for testing multiple bits in 8-bit device 
registers. 
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JMCNE/LJMCNE source, target 

This instruction causes a jump to the target loca­
tion if the source is not equal to the mask/ 
compare value in MC. It otherwise operates iden­
tically to JMCE. 

JBT ILJBT source, bit-select, target 

JBT (jump if bit true) tests a single bit in the 
source operand and jumps to the target if the bit 
is a 1. The source must be a byte in memory or in 
an I/O device register. The bit-select value may 
range from 0 through 7, with 0 specifying the low­
order bit. This instruction may be used to test a 
bit in an 8-bit device register. If the target is the 
JBT instruction itself, the operation effectively 
becomes "wait until bit is 0." 

JNBT ILJNBT source, bit-select, target 

This instruction operates exactly like JBT, except 
that the transfer is made if the bit is not true, i.e., 
if the bit is O. 

Processor Control Instructions 

These instructions enable channel programs to 
control lOP hardware facilities such as the LOCK 
and SINTRI-2 pins, logical bus width selection, 
and the initiation of a DMA transfer. 

TSL destination, set-value, target 

Figure 3-38 illustrates the operation of the TSL 
(test and set while locked) instruction. TSL can be 
used to implement a semaphore variable that 
controls access to a shared resource in a 
multiprocessor system (see section 2.5). If the 
target operand specifies the address of the TSL 
instruction, the instruction is repetively executed 
until the semaphore (destination) is found to con­
tain zero. Thus the channel program does not 
proceed until the resource is free. 

WID source-width, dest-width 

WID (set logical bus widths) alters bits 0 and 1 of 
the PSW, thus specifying logical bus widths for a 
DMA transfer. The operands may be specified as 
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ACTIVATE 
COCK 

FETCH 
DESTINA TlON 

ASSIGN, 
SET·VALUETO 
DESTINA TION 

STORE 
OESTINA TION 

DE·ACTIVATE 
meR 

# OH DE·ACTIVATE 
LOCK 

NEXT SEQUENTIAL INSTRUCTION 

Figure 3-38. Operation of TSL Instruction 

8 or 16 (bits), with the restriction that the logical 
width of a bus cannot exceed its physical width. 
The logical bus widths are undefined following a 
processor RESET; therefore the WID instruction 
must be executed before the first transfer. 
Thereafter the logical widths retain their values 
until the next WID instruction or processor 
RESET. 

XFER (no operands) 

XFER (enter DMA transfer mode after following 
instruction) prepares the channel for a DMA 
transfer operation. In a synchronized transfer, 
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the instruction following XFER may ready the 
synchronizing device (e.g., send a "start" com­
mand or the last of a series of parameters). Any 
instruction, including NOP and WID, may follow 
XFER, except an instruction that alters GA, GB 
orGC. 

SINTR (no operands) 

This instruction sets the interrupt service bit in the' 
PSW and activates the channel's SINTR line if 
the interrupt control bit in the PSW is set. If the 
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interrupt control bit is cleared (interrupts from 
this channel are disabled), the interrupt service bit 
is set, but SINTRI-2 is not activated. A channel 
program may use this instruction to interrupt a 
CPU. 

NOP (no operands) 

This instruction consumes clock cycles but per­
forms no operation. As such, it is useful in timing 
loops. 

HLT (no operands) 

This instruction concludes a channel program. 
The channel clears its BUSY flag and then idles. 

Instruction Set Reference Information 

Table 3-16 lists every 8089 instruction 
alphabetically by its ASM-89 mnemonic. The 
ASM-89 coding format is shown (see table 3-14 
for an explanation of operand identifiers) along 

with the instruction name. For every combination 
of operand types (see table 3-15 for key), the 
instruction's execution time and its length in 
bytes, and a coding example are provided. 

The instruction timing figures are the number of 
clock periods required to execute the instruction 
with the given combination of operands. At 
5 MHz, one clock period is 200 ns; at 8 MHz a 
clock period is 125 ns. Two timings are provided 
when an instruction operates on a memory word. 
The first (lower) figure indicates execution time 
when the word is aligned on an even address and 
is accessed over a 16-bit bus. The second figure is 
for odd-addressed words on 16-bit buses and any 
word accessed via an 8-bit bus. 

Instruction fetch time is shown in table 3-17 and 
should be added to the execution times shown in 
table 3-16 to determine how long a sequence of 
instructions will take to run. (Section 3.2 explains 
the effect of the instruction queue on 16-bit 
instruction fetches.) External delays such as bus 
arbitration, wait states and activity on the other 
channel will increase the elapsed time over the 
figures shown in tables 3-16 and 3-17. These 
delays are application dependent. 

Table 3-14. Key to ASM-89 Operand Identifiers 

IDENTIFIER USED IN EXPLANATION 

destination data transfer, A register or memory location that may contain data operated on 
arithmetic, by the instruction, and which receives (is replaced by) the result 
bit manipulation of the operation. 

source data transfer, A register, memory location, or immediate value that is used in 
arithmetic, the operation, but is not altered'by the instruction. 
bit manipulation 

target program transfer Location to which control is to be transferred. 

TPsave program transfer A 24-bit memory location where the address of the next sequen-
tial instruction is to be saved. 

bit-select bit manipulation Specification of a bit location within a byte; O=least-significant 
(rightmost) bit, 7=most-significant (leftmost) bit. 

set-value TSL Value to which destination is set if it is found O. 

source-width WID Logical width of source bus. 

dest-width WID Logical width of destination bus. 
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Table 3-15. Key to Operand Types 

IDENTIFIER EXPLANATION 

(no operands) No operands are written 

register Any general register 

ptr-reg A pointer register 

immed8 A constant in the range O-FFH 

immed16 A constant in the range O-FFFFH 

mem8 An 8-bit memory location (byte) 

mem16 A 16-bit memory location (word) 

mem24 A 24-bit memory location (physical address pointer) 

mem32 A 32-bit memory location (doubleword pointer.) 

label A label within -32,768 to +32,767 bytes of the end of the instruction 

short-label A label within -128 to +127 bytes of the end of the instruction 

0-7 A constant in the range: 0-7 

8/16 The constant 8 or the constant 16 

Table 3-16. Instruction Set Reference Data 

ADD destination, source Add Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 ADD BC, [GA].LENGTH 
mem16, register 16/26 2-3 ADD [GBJ, GC 

ADDB destination, source Add Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ADDB GC, [GA].N_CHARS 
mem8, register 16 2-3 ADDB [PP].ERRORS, MC 

ADDBI destination, source Add Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ADDBI MC,10 
mem8, immed8 16 3-4 ADDBI [PP+IX+].RECORDS,2CH 

ADDI destination, source Add Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ADD I GB,OC25BH 
mem16, immed16 16/26 4-5 ADDI [GB].POINTER,5899 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

AND destination, source logical AND Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 AND MC, [GA].FlAG_WORD 
mem16, register 16/26 2-3 AND [GC].STATUS, BC 

ANDB destination, source logical AND Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 AND BC, [GC] 
mem8, register 16 2-3 AND [GA+IX].RESUlT, GA 

ANDBI destination, source logical AND Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 GA,01100000B 
mem8, immed8 16 3-4 [GC+IX],2CH 

ANDI destination, source logical AND Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 IX,OH 
mem16, immed16 16/26 4-5 [GB+IX].TAB,40H 

CALL TPsave, target Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 3-5 CAll [GC+IX].SAVE, GET_NEXT 

CLR destination, bit select Clear Bit To Zero 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 ClR [GAl. 3 

DEC destination Decrement Word By 1 

Operands Clocks Bytes Coding Example 

register 3 2 
mem16 16/26 2-3 DEC [PP].RETRY 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

DECB destinlltion Decrement Byte By 1 

Operands Clocks Bytes Coding Example 

mema 16 2-3 DECB [GA+IX+l.TAB 

HLT (no operands) Halt Channel Program 

Operands Clocks Bytes Coding Example 

(no operands) 11 2 HLT 

INC destination Increment Word by 1 

Operands Clocks Bytes Coding Example 

register 3 2 INC GA 
mem16 16/26 2-3 INC [GAl.COUNT 

INCB destination Increment Byte by 1 

Operands Clocks Bytes Coding Example 

mema 16 2-3 INCB [GBl.POINTER 

JBT source, bit-select, target Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mema, 0-7, label 14 3-5 JBT [GA].RESULLREG, 3, DATA_VALID 

JMCE source, target Jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mema, label 14 3-5 JMCE [GBl.FLAG, STOP _SEARCH 

JMCNE source, target Jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

memB, label 14 3-5 JMCNE [GB+IX], NEXT_ITEM 

JMP target Jump Unconditionally 

Operands Clocks Bytes Coding Example 

label 3 ,3-4 JMP READ_SECTOR 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

JNBT source, bit-select, target Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 3-5 JNBT [GC], 3, RE_READ 

JNZ source, target Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JNZ BC, WRITE_LINE 
mem16, label 12/16 3-5 JNZ [PP].NUM_CHARS, PUT _BYTE 

JNZB source, target Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 3-5 JNZB [GAl. MORE_DATA 

JZ source, target Jump if Word is Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JZ BC, NEXT_LINE 
mem16, label 12/16 3-5 JZ [GC+IX].INDEX, BUF _EMPTY 

JZB source, target Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 3-5 JZB [PP].L1NES_LEFT, RETURN 

LCALL TPsave, target Long Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 4-5 LCALL [GC].RETURN_SAVE,INIT_8279 

LJBT source, bit-select, target Long Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA_OK 

LJMCE source, target Long jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 4-5 LJMCE [GBl. BYTE_FOUND 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

LJMCNE source, target Long jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 4-5 LJMCNE [GC+IX+], SCAN_NEXT 

LJMP target Long Jump Unconditional 

Operands Clocks Bytes Coding Example 

label 3 4 LJMP GET _CURSOR 

LJNBT source, bit-select, target Long Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJNBT [GCl, 6, CRCC_ERROR 

LJNZ source, target Long Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJNZ BC, PARTIAL_XMIT 
mem16, label 12/16 4-5 LJNZ [GA+IXl.N_LEFT, PUT_DATA 

LJNZB source, target Long Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJNZB [GB+IX+l.ITEM, BUMP_COUNT 

LJZ source, target Long Jump if Word Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJZ IX, FIRST_ELEMENT 
mem16, label 12/16 4-5 LJZ [GBl.XMIT_COUNT, NO_DATA 

LJZB source, target Long Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJZB [GAl, RETURN_LINE 

LPD destination, source Load Pointer With Doubleword Variable 

Operands Clocks Bytes Coding Example 

ptr-reg, mem32 20/28' 2-3 LPD GA, [PPl.BUF _START 

*20 clocks if operand is on even address; 28 if on odd address 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

LPDI destination, source Load Pointer With Doubleword Immediate 

Operands Clocks Bytes Coding Example 

ptr-reg, immed32 12/16' 6 LPDI GB, DISK_ADDRESS 

'12 clocks if instruction is on even address; 16 if on odd address 

MOV destination, source Move Word 

Operands Clocks Bytes Coding Example 

register, mem16 8/12 2-3 MOV IX, [GC] 
mem16, register 10/16 2-3 MOV [GA].COUNT, BC 
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB] 

MOVB destination, source Move Byte 

Operands Clocks Bytes Coding Example 

register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT 
mem8, register 10 2-3 MOVB [PP].RETURN_CODE, GC 
mem8, mem8 18 4-6 MOVB [GB+IX+J, [GA+IX+] 

MOVBI destination, source Move Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 MOVBI MC, 'A' 
mem8, immed8 12 3-4 MOVBI [PP].RESULT,O 

MOVI destination, source Move Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 MOVI BC,O 
mem16, immed16 12/18 4-5 MOVI [GBJ, OFFFFH 

MOVP destination, source Move Pointer 

Operands Clocks Bytes Coding Example 

ptr-reg, mem24 19/27' 2-3 MOVP TP, [GC+IX] 
mem24, ptr-reg 16/22' 2-3 MOVP [GB].SAVE_ADDR, GC 

'First figure is for operand on even address; second is for odd-addressed operand. 

NOP (no operands) No Operation 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 NOP 
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Table 3-16. Instruction Set Reference Data (Cont'd.) 

NOT destination/destination, source Logical NOT Word 

Operands Clocks Bytes Coding Example 

register 3 2 NOT MC 
mem16 16/26 2-3 NOT [GA].PARM 
register, mem16 11/15 2-3 NOT BC, [GA+IX].LlNES_LEFT 

NOTB destination / destination, source Logical NOT Byte 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 NOTB [GA].PARM_REG 
register, mem8 11 2-3 NOTB IX, [GB].STATUS 

OR destination, source Logical OR Word 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 OR MC, [GC].MASK 
mem16, register 16/26 2-3 OR [GC], BC 

ORB destination, source Logical OR Byte 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ORB IX, [PP].POINTER 
mem8, register 16 2-3 ORB [GA+IX+], GB 

ORBI destination, source Logical OR Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ORBI IX,00010001B 
mem8, immed8 16 3-4 ORBI [GB].COMMAND,OCH 

ORI destination, source Logical OR Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ORI MC, OFFODH 
mem16,immed16 16/26 4-5 ORI [GA], 1000H 

SETB destination, bit-select Set Bit to 1 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 SETB [GA].PARM_REG,2 

SINTR (no operands) Set Interrupt Service Bit 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 SINTR 
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Table3-16. Instruction Set Reference Data (Cont'd.) 

TSL destination, set-value, target Test and Set While Locked 

Operands Clocks Bytes Coding Example 

mem8, immed8, short-label 14/16* 4-5 TSL [GAj.FLAG,OFFH, NOT_READY 

*14 clocks if destination *" 0; 16 clocks if destination = 0 

WID source-width, dest-width 

Operands 

8/16,8/16 

XFER (no operands) 

Operands 

(no operands) 

Table 3-17. Instruction Fetch Timings 
(Clock Periods) 

BUSWIDTH 
INSTRUCTION 

LENGTH 16 

(BYTES) 
8 

(1) 

2 14 7 
3 18 14 
4 22 14 
5 26 18 

Clocks 

4 

Clocks 

4 

(2) 

11 
11 
15 
15 

(1) First byte of instruction is on an even 
address. 

(2) First byte of instruction is on an odd address. 
Add 3 clocks if first byte is not in queue (e.g., 
first instruction following program transfer). 

3.8 Addressing Modes 

8089 instruction operands may reside in registers, 
in the instruction itself or in the system or I/O 
address spaces. Operands in the system and I/O 
spaces may be either memory locations or I/O 
device registers and may be addressed in four dif­
ferent ways. This section describes how the chan-

Set Logical Bus Widths 

Bytes Coding Example 

2 WID 8,8 

Enter DMA Transfer Mode After Next Instruction 
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Bytes Coding Example 

2 XFER 

nel processes different types of operands and how 
it calculates addresses using its addressing modes. 
Section 3.9 describes the ASM-89 conventions 
that programmers use to specify these operands 
and addressing modes. 

Register and Immediate Operands 

Registers may be specified as source or destina­
tion operands in many instructions. Instructions 
that operate on registers are generally both 
shorter and faster than instructions that specify 
immediate or memory operands. 

Immediate operands are data contained in 
instructions rather than in registers or in memory. 
The data may be either 8 or 16 bits in length. The 
limitations of immediate operands are that they 
may only serve as source operands and that they 
are constant values. 

Memory Addressing Modes 

Whereas the channel has direct access to register 
and immediate operands, operands in the system 
and I/O space must be transferred to or from the 
lOP over the bus. To do this, the lOP must 
calculate the address of the operand, called its 
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effective address (EA). The programmer may 
specify that an operand's address be calculated in 
any of four different ways; these are the 8089'8 
memory addressing modes. 

The Effective Address 

An operand in the system space has a 20-bit effec­
tive address, and an operand in the lIO space has 
a 16-bit effective address. These addresses are 
unsigned numbers t):lat represent the distance (in 
bytes) of the low-order byte of the operand from 
the beginning of the.address space. Since the 8089 
does not "see" the segmented structure of the 
system space that it may share with an 8086 or 
8088, 8089 effective addresses are equivalent to 
8086/8088 physical addresses. 

All memory addressing modes use the content of 
one of the pointer registers, and the state of that 
register's tag bit determines whether the operand 
lies in the system or the I/O space. If the operand 
is in the I/O space (tag = 1), bits 16-19 of the 
pointer register . are ignored .in the effective 
address calculation. Section 4.3 describes the two 
fields (AA and MM) in the encoded machine 
instruction that specify addressing mode and base 
(pointer) register. 

R/B/P WB AA W OPCODE MM 

Based Addressing 

In based addressing (figure 3-39), the effective 
address is taken directly from the content of GA, 
GB, GC or PP. Using this addressing mode, one 
instruction may access different locations if the 
register is updated before the instruction exec~tes. 
LPD, MOV,' MOVP or arithmetic instructions 
might be used to change the value of the base 
register. 

Offset AddreSSing 

In this mode (figure 3-40) an 8-bit unsigned value 
contained in the instruction is added to the con­
tent of a base register to form the effective 
address. The offset mode provides a convenient 
way to address elements in structures (a 
parameter block is a typical example of a struc­
ture). As shown in figure 3-41, a base register s;an 
be pointed at the base (first element) in the struc­
ture, and then different offsets can be used to 
access the elements within the structure. By 
changing the base address, the same structure can 
be relocated elsewhere in memory. 

Indexed Addressing 

An indexed address is fOlmed by adding the con­
tent of register IX (interpreted as an unsigned 
quantity) to a base register as shown in figure 
3-42. Indexed addressing is often used to accesS 

MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB I OR EA 

GC 
OR 

PP 

Figure 3-39. Based Addressing 
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MM MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 
OR 

GC 
OR 
PP 

---f--~(+ 

Figure 3-40. Offset Addressing 

~ 
HIGH ADDRESSES 

.----.+ 6 ERROR I LlNECT 

+4 BUFF_PTR 

+ 2 POSITIONI CURSOR 

r-
I ..... _-.,...-_... r --+ 0 END_BUS 

I I 
I I 

LOW ADDRESSES 
~ 

I I 
I I 
I EA I 
I I L _______________ ~ 

Figure 3-41. Accessing a Structure with Offset Addressing 

,~ 

,~ 

array elements (see figure 3-43). A base register 
locates the beginning of the array and the value in 
IX selects one element, i.e., it acts as the array 
subscript. The ith element of a byte array is 
selected when IX contains (i - 1). To access the 
ith element of a word array, IX should contain 
«i - 1) * 2). 

Indexed Auto-Increment Addressing 
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In this variation of indexed addressing, the effec­
tive address is formed by summing IX and a base 
register, and then IX is incremented automat­
ically. (See figure 3-44.) The addition takes place 
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after the EA is calculated. IX is incremented by 1 
for a byte operation, by 2 for a word operation 
and by 3 for a MOVP instruction. This addressing 

.10 
R/B/P WB AA W OPCODE MM 

mode is very useful for "stepping through" suc­
cessive elements of an array (e.g., a program loop 
that sums an array). 

MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB +-1 OR IX 

GC 

OR 

PP 

Figure 3-42. Indexed Addressing 

r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IX 

I 

I 
EA I • 

-----. 

HIGH ADDRESSES ~ 

ARRAY (g) 

ARRAY (8) 

ARRAY (7) 

ARRAY (6) 

ARRAY (5) 

ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

_lWORD_ 

" ," 
LOW ADDRESSES 

Figure 3-43. Accessing a Word Array with Indexed Addressing 
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R/B/P WB AA W OPCODE MM MACHINE INSTRUCTION FORMAT 

GA 

OR 

GB 
OR 

GC 
OR 

PP 

EA 

~ ___ IX ____ ~~~ __ D_EL_T_A __ ~ 

Figure 3-44. Indexed Auto-Increment Addressing 

3.9 Programming Facilities 

The compatibility of the 8089 with the 8086 and 
8088 extends beyond the hardware interface. 
Comparing figure 3-45, with figure 2-45, one can 
see that, except for the translate step, the software 
development process is identical for both 
8086/8088 and 8089 programs. The ASM-89 
assembler produces a relocatable object module 
that is compatible with the 8086 family software 
development utilities LIB-86, LINK-86, LOC-86 
and OH-86, described in section 2.9. All of these 
development tools run on an Intellec® 800 or 
Series II microcomputer development system. 

This section surveys the facilities of the ASM-89 
assembler and discusses how LINK-86 and 
LOC-86 can be used in 8089 software develop­
ment. For a complete description of the 8089 
assembly language, consult 8089 Assembly 
Language User's Guide, Order No. 9800938, 
available from Intel's Literature Department. 
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ASM-89 

The ASM-89 assembler reads a disk file contain­
ing 8089 assembly language statements, translates 
these statements into 8089 machine instructions, 
and writes the result into a second disk file. The 
assembly input is called a source module, and the 
principal output is a relocatable object module. 
The assembler also produces a file that lists the 
module and flags any errors detected during the 
assembly. 

Statements 

Statements are the building blocks of ASM-89 
programs. Figure 3-46 shows several examples of 
ASM-89 statements. The ASM-89 assembler gives 
programmers considerable flexibility in format­
ting program statements. Variable names and 
labels (identifiers) may be up to 31 characters 
long, the underscore (_) character may be used 
to improve the readability of longer names (e.g., 
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WAIT_UNTIL_READY). The component 
parts of statements (fields) need not be located at 
particular "columns" of the statement. Any 
number of blank characters may separate fields 

and multiple identifiers within the operand field. 
Long statements may be continued onto the next 
link by coding an ampersand (&) as the first 
character of the continued line. 

(FROM PL/M·88 Ii ASM-8a TRANSLATORS) 

EDIT TRANSLATE LINK 

..... -1-1 LlNK-86 

Figure 3-45. 8089 Software Development Process 

; THIS STATEMENTCONTAINSACOMMENT FIELD ONLY 
ADDI BC,5 ; TYPICAL ASM89 INSTRUCTION 

ADDI BC, 5 ; NO "COLUMN" REQUIREMENTS 
MOV [GAl.STATUS, 
& 6 
SOURCE EQU GA 
L1NE_BUFFER_ADDRESS DD 

; A CONTINUED STATEMENT 
; A SIMPLE ASM89 DIRECTIVE 
; A LONG IDENTIFIER 

Figure 3-46. ASM-89 Statements 
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A statement whose first non-blank character is a 
semicolon is a comment statement. Comments 
have no affect on program execution and, in fact, 
are ignored by the ASM-89 assembler. Never­
theless, carefully selected comments are included 
in all well written ASM-89 programs. They sum­
marize, annotate and clarify the logic of the pro­
gram where the instructions are too 
"microscopic" to make the operation of the pro­
gram self-evident. 

An ASM-89 instruction statement (figure 3-47) 
directs the assembler to build an 8089 machine 
instruction. The optional label field assigns a 
symbolic identifier to the address where the 
instruction will be stored in memory. A labelled 
instruction can be the target of a program 
transfer; the transferring instruction specifies the 
label for its target operand. In figure 3-47 the 
labelled instruction conditionally transfers to 
itself; the program will loop on this one instruc-

tion as long as bit 3 of the byte addressed by 
[GAl.STATUS is not true. The mnemonic field of 
an instruction statement specifies the type of 8089 
machine instruction that the assembler is to build. 

The operand field may contain no operands or 
one or more operands as required by the instruc­
tion. Multiple operands are separated by commas 
and, optionally, by blanks. Any instruction state­
ment may contain a comment field (comment 
fields are initiated by a semicolon). 

An ASM-89 directive statement (figure 3-48) does 
not produce an 8089 machine instruction. Rather, 
a directive gives the assembler information to use 
during the assembly. For example, the DS (define 
storage) directive in figure 3-48 tells the assembler 
to reserve 80 bytes of storage and to assign a sym­
bolic identifier (INPUT_BUFFER) to the first 
(lowest-addressed) byte of this area. The ASM-89 
assembler accepts 14 directives; the more com­
monly used directives are discussed in this section. 

;WAIT UNTIL READY I 

[ COMMENT (OPTIONAL) 

OPERANDS (REQUIRED/PROHIBITED) 

L...---------------MNEMONIC (REQUIRED) 

'-------------------- LABEL (OPTIONAL) 

Figure 3-47. ASM-89 Instruction Format 

INPUT_BUFFER: DS 80 

COMMENT (OPTIONAL) 

1...-______ OPERANDS (REQUIRED/PROHIBITED) 

L..-_________ MNEMONIC (REQUIRED) 

"'--------------___ LABEL/NAME (REQUIRED/PROHIBITED) 

Figure 3-48. ASM-89 Directive Format 
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The first field in. a directive may be a label or a 
name; individual directives may require or pro­
hibit names, while labels are optional for direc­
tives.that accept them. A label ends in a colon like 
an instruction statement label. However, a direc­
tive label cannot be specified as the target of a 
program transfer. A name does not have a colon. 
The second field is the directive mnemonic, and 
the assembler distinguishes between instructions 
and directives by this field. Any operands 
required by the directive are written next; multiple 
operands are separated by commas and, option­
ally, l>Y blanks. A comment may be included in 
any directive by beginning the text with a 
semicolon. 

Constants 

Binary, decimal, octal and hexadecimal numeric 
constants (figure 3-49) may be written in ASM-89. 
instructions and directives. The assembler can 
add and subtract constants at assembly time. 
Numeric constants,including the· results of 
arithmetic operations, must be representable in 16 
bits. Positive numbers cannot exceed 65,535 
(decimal); negative numbers, whieh the assembler 
represents in two's complement notation, cannot 
be "more negative" than -32,768 (decimal). 

Character constants are enclosed in single quote 
marks as shown in figure 3-49. Strings of 
characters up to 255 bytes long may be written 
when initializing storage. Instruction operands, 
however, can only be one or two characters long 
(for byte and word instructions respectively). 

As an aid to program clarity, The EQU (equate) 
directive may be used to give names to constants 
(e.g., DISK_STATUS EQU OFF20H). 

Defining Data 

Four ASM-89 directives reserve space for memory 
variables in the ASM-89 program (see figure 
3-50). The DB,DW and DD directives allocate 
units of bytes, words and doublewords, respec­
tively, initialize the locations, and optionally label 
them so that they may be referred to by name in 
instruction statements. The label of a storage 
directive always refers to the first (lowest­
addressed) byte of the area reserved by the 
directive. 

The DB and DW directives may be used to define 
byte- and word-constant scalars (individual data 
items) and arrays (sequences of the same type of 
item). For example, a character string constant 
could be defined as a byte array: 

SIGN_ON_MSG: DB 'PLEASE ENTER PASSWORD' 

The DD directive is typically used to define the 
address of a location in the system space, i.e., a 
doubleword pOinter variable. The address may be 
loaded into a pointer register with the LPD 
instruction. 

The DS directive reserves, and optionally na~es, 
storage in units of bytes, but does not initialize 
any of the reserved bytes. DS is typically used for 
RAM-based variables such as buffers. As there is 
no special directive for defining a physical address 
pointer, DS is typically used to reserve the three 
bytes used by the MOVP instruction. 

MOVBI GA, 'A' ; CHARACTER 
MOVBI GA, 41 H ; HEXADECIMAL 
MOVBI GA, 65 ; DECIMAL 
MOVBI GA,65D ; DECIMAL ALTERNATIVE 
MOVBI GA,101Q ; OCTAL 
MOVBI GA, 1 Q1 0 ; OCTAL ALTERNATIVE 
MOVBI GA, 01000001 B ; BINARY 
; NEXT TWO STATEMENTS ARE EQUIVALENT AND 

ILLUSTRATE TWO'S COMPLEMENT REPRESENTATION 
, OF NEGATIVENUMI3ERS 
MOVBI GA,-5 
MOVBI GA,11111011B 

Figure 3-49. ASM89 Constants 
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; ASM89 DIRECTIVE ; MEMORY CONTENT (HEX) 
ALPHA: DB 1 ; 01 

DB -2 ; FE (TWO'S COMPLEMENT) 
DB 'A', 'B' ; 4142 

BETA: DW 1 ; 0100 
DW -5 ; FAFF 
DW 'AB' ; 4241 
DW 400,500 ; 2410F401 
DW 400H,500H ; 00040005 

gamma: DW BETA ; OFFSET OF BET A ABOVE, 
; FROM BEGINNING OF PROGRAM 

DELTA DD GAMMA ; ADDRESS (SEGMENT & OFFSET) 
;OFGAMMA 

ZETA: DS 80 ; 80 BYTES, UNINITIALIZED 

Figure 3-50. ASM-89 Storage Directives 

Structures 

An ASM-89 structure is a map or template that 
gives names and relative locations to a collection 
of related variables that are called structure 
elements or members. Defining a structure, 
however, does not allocate storage. The structure 
is, in effect, overlaid on a particular area of 
memory when one of its elements is used as an 
instruction operand. Figure 3-51 shows how a 
structure representing a parameter block could be 
defined and then used in a channel program. The 

OFFSETS. 

+10 

+8 

+6 

+4 

+2 

MEMORY MAP 

HIGHER ADDRESSES , 

BUFFER_LEN 

BUFFER_START 

COMMAND I RESULT 

TP _RESERVED 

LOWER ADDRESSES 

USING "HARD-CODED" OFFSETS 

LPD GA, [PPJ.6 
MOVBI [PPJ.5,O 

assembler uses the structure element name to pro­
duce an offset value (structures are used with the 
offset addressing mode). Compared to "hard· 
coded" offsets, structures improve program clar­
ity and simplify maintenance. If the layout of a 
memory block changes, only the structure defini­
tion must be modified. When the program is 
reassembled, all symbolic references to the struc­
ture are automatically adjusted. When multiple 
areas of memory are laid out identically, a single 
structure can be used to address any area by 
changing the content of the pointer (base) register 
that specifies the structure's "starting address." 

STRUCTURE DEFINITION 

PARM_BLOCK 
TP _RESERVED: 
COMMAND: 
RESULT: 
BUFFER_START: 
BUFFER_LEN: 

PARM_BLOCK 

STRUC 
OS 4 
OS 1 
OS 1 
OS 4 
OS 2 
ENDS 

USING STRUCTURE ELEMENT NAMES 

LPD GA, [PPJ.BUFFER_START 
MOVBI [PPJ.RESULT,O 

Figure 3-51. ASM-89 Structure Definition and Use 
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Addressing Modes 

Table 3-18 summarizes the notation a program­
mer uses to specify how the effective address of a 
memory operand is to be computed. Examples of 
typical ASM-89 coding for each addressing mode, 
as well as register and immediate operands, are 
provided in figure 3-52._Notice that a bracketed 
reference to a register indicates that the content of 
the register is to be used to form the effective 
address of a memory operand, while an 
unbracketed register reference specifies that the 
register itself is the operand. 

The following examples summarize how the 
memory addressing modes can be used to access 
simple variables, structures and arrays. 

• If GA contains the address of a memory 
operand, then [GA] refers to that operand. 

• If GA contains the base address of a 
structure, then [GA].DATA refers to the 
DAT A element (field) in that structure. If 
DAT A is six bytes from the beginning of the 
structure, then [GA].6 refers to the same 
location. 

• If GA contains the starting address of an 
array, then [GA+IX] addresses the array ele­
ment indexed by IX. For example, if IX con- . 
tains the value 4H, the effective address 
refers to the fifth element of a byte array, or 
the third element of a word array. [GA+IX+] 
selects the same element and additionally 
auto-increments IX by 1 (byte operation), 2 
(word operation) or 3 (MOVP instruction) in 
anticipation of accessing the next array 
element. 

Note that any pointer register could have been 
substituted for GA in the previous examples. 

Table 3-18. ASM-89 Memory Addressing 
Mode Notation 

Notation Addressing Mode 

[ptr-reg] Based 
[ptr-reg].offset Offset 
[ptr-reg + IX] Indexed 
[ptr-reg + IX +] Indexed Post Auto-increment 

ptr-reg 
offset 

= GA, GB, GC or PP 
= 8-bit signed value; may be struc­

ture element 

Program Transfer Targets 

As discussed in section 3.7, program transfer 
instructions operate by adding a signed byte or 
word displacement to the task pointer. Table 3-19 
shows how the ASM-89 assembler determines the 
sign and size of the displacement value it places in 
a program transfer machine instruction. In the 
table, the terms "backward" and "forward" 
refer to the location of a label specified as a 
transfer target relative to the transfer instruction. 
"Backward" means the label physically precedes 
the instruction in the source module, and "for­
ward" means the label follows the instruction in 
the source text. The distances are from the end of 
the transfer instruction; the distance to the 
instruction immediately following the transfer is 
o bytes. 

ADDI 
ADD 
ADDBI 
ADDB 
ADDB 
ADD 
ADDI 
ADDB 

GA,5 ; REGISTER, IMMEDIATE 
GC, [GB] ; REGISTER, MEMORY (BASED) 
[PP],10 ; MEMORY (BASED), IMMEDIATE 
IX, [GB].5 ; REGISTER, MEMORY (OFFSET) 
BC, [GC].COUNT ; REGISTER, MEMORY (OFFSET) 
[GC+ IX], BC ; MEMORY (INDEXED), REGISTER 
[GA+ IX+ ],5 ; MEMORY (INDEXED AUTO-INCREMENT), IMMED 
[PP].ERROR, [GA] ; MEMORY (OFFSET), MEMORY (BASED) 

Figure 3-52. ASM-89 Operand Coding Examples 
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Two important points can be drawn from table 
3-19. First, a target must lie within 32k bytes of a 
transfer instruction; this should not prove restric­
tive except in very large programs. Second, one 
byte can be saved in the assembled instruction by 
writing the short mnemonic when the target is 
known to be within -128 through +127 assembled 
bytes of the transfer. 

It is also important to note that a program 
transfer target must reside in the same module as 
the transferring instruction, i.e., the target 
address must be known at assembly time. 

Procedures 

An ASM-89 program may invoke an out-of-line 
procedure (subroutine) with the CALLILCALL 
instruction. The first instruction operand 
specifies a memory location where the content of 
TP will be stored as a physical address pointer 
before control is transferred to the procedure. 
The procedure may return to the instruction 
following the CALL/LCALL by using the 
MOVP instruction to restore TP from the save 
area. Figure 3-53 illustrates one approach to pro­
cedure linkage. 

A channel program may use the first two words of 
its parameter block (pointed to by P.P) as a task 
pointer save area. However, this is not recom­
mended if there is any chance that the CPU will 

issue a "suspend" command to the channel; this 
command stores the current value of TP in the 
same location, possibly overwriting a return 
address. 

As in any program transfer, the target of a 
CALL/LCALL instruction must be contained in 
the same module and within 32k bytes of the 
instruction. 

Segment Control 

The relocatable object module produced by the 
ASM-89 assembler consists of a single logical seg­
ment. (A segment is a storage unit up to 64k bytes 
long; for a more complete description, refer to 
sections 2.3 and 2.7.) The ASM-89 SEGMENT 
and ENDS directives name the segment as shown 
in figure 3-54. Typically, all instructions and most 
directives are coded in between these directives. 
The END directive, which terminates the 
assembly, is an exception. 

The LOC-86 utility can assign this logical segment 
to any memory address that is a physical segment 
boundary (i.e., whose low-order four bits are 
0000). In a ROM-based system, variable data 
(which must be in RAM) can be "clustered" 
together at one "end" of the program as shown in 
figure 3-55. The ORG directive can then be used 
to force assembly of the variables to start at a 
given offset from the beginning of the segment 
(2,000 hexadecimal bytes in figure 3-55). As the 

Table 3-19. Program Transfer Displacement 

Target Location 

Mnemonic 
Direction Distance 

Displacement 
Form Sign Bytes 

Backward ~128 - 1 
Forward ~127 + 1 

Short Backward ~32,768 _. 2 
(e.g., JMP) Forward ~32,767 Error 

Backward >32,768 Error 
Forward >32,767 Error 

Backward ~128 - 2 
Forward ... 127 + 2 

Long Backward ... 32,768 - 2 
(e.g., LJMP) Forward ~32,767 + 2 

Backward >32,768 Error 
Forward >32,767 Error 
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CALL SAVE: DS 3 ; TP SAVE AREA 

; SET UP TP SAVE AREA 
NOTE: EXAMPLE ASSUMES PROGRAM 

IS IN 1/0 SPACE. USE LPDI 
IF IN SYSTEM SPACE. 

, MOVI GC, CALLSAVE ; LOAD ADDRESS TO GC 
; CALL IT. 

LCALL [GC],DEMO 

HL T ; LOGICAL END OF PROGRAM 

; DEFINE THE PROCEDURE. 
DEMO: 
; PROCEDUR.E INSTRUCTIONS GO HERE. 
; NOTE: PROCEDURE MUST NOT UPDATE GC 
; AS IT POINTS TO THE RETURN ADDRESS. 

; RETURN TO CALLER. 
MOVP TP, [GC] 

Figure 3-53. ASM-89 Procedure Example 

CHANNEL1 SEGMENT ; START OF SEGMENT 

ASM89 SOURCE STATEMENTS 

CHANNEL1 ENDS 
END 

; END OF SEGMENT 
; END OF ASSEMBLY 

Figure 3-54. ASM-89 SEGMENT and ENDS Directives 

figure shows, the segment can then be located so 
that instructions and constants fall into the ROM 
portion of memory, while the variable part of the 
segment is located in RAM. The entire segment, 
including any "unused" portions, of course, can­
not exceed 64k bytes. 

Intermodule Communication 

An ASM-89 module can make some of its 
addresses available to other modules by defining 
symbols with the PUBLIC directive. At a 
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minimum, a channel program must make the 
address of its first instruction available to the 
CPU module that starts the channel program. 
Figure 3-56 shows an ASM-89 module that con­
tains three channel programs labelled READ, 
WRITE and DELETE. The example shows how a 
PLlM-86 program and an ASM-86 program 
could define these "entry points" as EXTER­
NAL and EXTRN symbols respectively. When 
the modules are linked together, LINK-86 will 
match the externals with the publics, thus pro­
viding the CPU programs with the addresses they 
need. 
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DEMO: SEGMENT 
;CONSTANT DATA 

;INSTRUCTIONS 

ORG 2000H 
;VARIABLE DATA 

DEMO ENDS 
END 

HIGHER ADDRESSES 

(AVAILABL E) 

VARIABLES 
2000H t-------f 

(UNUSED) 

INSTRUCTIONS 

CONSTANTS 

(AVAILABLE) 

LOWER ADDRESSES 

Figure 3-55. Using the ASM-89 ORO Directive 

t 
RAM 

ROM 

ASM-89 MODULE DEFINES THREE PUBLIC SYMBOLS 

PUBLIC READ, WRITE, DELETE 

READ: ; ASM89 INSTRUCTIONS FOR "READ" OPERATION 

HLT 
WRITE: ; ASM89 INSTRUCTIONS FOR "WRITE" OPERATION 

HLT 
DELETE: ; ASM89 INSTRUCTIONS FOR "DELETE" OPERATION 

HLT 

Figure 3-56. ASM-89 PUBLIC Directive 
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PLlM-86 MODULE USES "WRITE" SYMBOL 

DECLARE (READ,WRITE,DELETE) POINTER EXTERNAL; 
DECLARE PARM$BLOCK STRUCTURE 

(TP$START POINTER, 
BUFFER$ADDR POINTER, 
BUFFER$LEN WORD); 

'"SET UP "WRITE" CHANNEL OPERATION"' 
PARM$BLOCK. TP$START = WRITE; 

ASM-86 MODULE USES "READ" SYMBOL 

EXTRN READ,WRITE,DELETE 

; PARM~BLOCK 
EVEN 

TP _START DD ? 
BUFFER_ADDRDD ? 
BUFFER_LEN DW? 

; FORCE TO EVEN ADDRESS 

; SET UP "READ" CHANNEL OPERATION 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTR TP _START, AX 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTR TP _START + 2, AX 

; 1ST WORD 

;2NDWORD 

Figure 3-56. ASM-89 PUBLIC Directive (Cont'd.) 

Conversely, an ASM-89 module can obtain the 
address of a public symbol in another module by 
defining it with the EXTRN directive. An external 
symbol, however, can only appear as the initial 
value operand of a DD directive (see figure 3-57). 
This effectively means that an ASM-89 program's 
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use of external symbols is limited to obtaining the 
addresses of data located in the system space. 
Another way of doing this, which may be 
preferable in many cases, is to have the CPU pro­
gram place system space addresses in the 
parameter block. 
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PLlM-86 PROGRAM DECLARES PUBLIC SYMBOL "BUFFER" 

DECLARE BUFFER (80) BYTE PUBLIC; 

ASM-89 PROGRAM OBTAINS ADDRESS OF PUBLIC SYMBOL "BUFFER" 

EXTRN BUFFER 

BUF _ADDRESS DO BUFFER 

LPD GA, BU F _ADDRESS ; POINT TO SYSTEM BU FFER 

Figure 3-57. ASM-89 EXTRN Directive 

Sample Program 

Figure 3-58 diagrams the logic of a simple 
ASM-89 program; the code is shown in figure 
3-59. The program reads one physical record (sec­
tor) from a diskette drive controlled by an 8271 
Floppy Disk Controller. No particular system 
configuration is implied by the program, except 
that the 8271 resides in the lOP's 110 space. 

Hardware address decoding logic is assumed to be 
set up as follows: 

• reading location FFOOH selects the 8271 
status register, 

• writing location FFOOH selects the 8271 
command register, 

• reading location FFOIH selects the 8271 
result register 

• writing location FFOIH selects the 8271 
parameter register 

• decoding the address FF04H provides the 
8271 DACK (DMA acknowledge) signal. 

Figure 3-58. ASM-89 Sample Program Flow 
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The program uses structures to address the 
parameter block and the 8271 registers. Register 
PP contains the address of the parameter block, 
and the program loads GC with FFOOH to point 
to the 8271 registers. The program's entry point 
(the label START) is defined as a PUBLIC sym­
bol so that the CPU program can place its address 
in the parameter block when it starts the program. 

Register IX is used as a retry counter.' If the 
transfer is not completed successfully (bit 3 of the 
8271 result register :I: 0), the program retries the 
transfer up to 10 times. 

Since the 8271 automatically requests a DMA 
transfer upon receipt of the last parameter, this 
parameter is sent immediately following the 
XFER command. 

8089 ASSEMBLER 

ISIS-II 8089 ASSEMBLER V1.0 ASSEMBLY OF MODULE FLOPPY 
OBJECT MODULE PLACED IN :FO:FLOPPY.OBJ 
ASSEMBLER INVOKED BY ASM89 FLOPPY.A89 

0000 

0000 
0004 
0008 
0009 
OOOA 
OOOB 

0000 
0001 
0002 

FFOO 
FF04 

0000 OA4F OA 00 

0004 B130 OAOO 

0008 5130 OOFF 

OOOC EABA 00 FC 

0010 OA4E 00 12 

0014 0293 08 02CE 01 

001A D130 2088 

Mnemonics © Intel, 1979 

1 
2 FLOPPY 
3 ; ••• 

SEGMENT 

4 ; ••• 8089 PROGRAM TO READ SECTOR FROM FLOPPY DISK 
5 ; ••• 
6 
7 
8 
9 

10, 
11 
12 
13 
14 
15 

;'" LAY OUT PARAMETER 
PARM BLOCK STRUC 

RESERVED TP: DS 
BUFF PTR: DS 
TRACK: DS 
SECTOR: DS 
RETURN CODE: DS 
PARM BLOCK ENDS 

16 ; ••• LAY OUT 8271 
17 FLOPPY REGS 

DEV,ICE 
STRUC 

DS 
DS 

ENDS 

18 COMMAND STAT: 
19 PARM RESULT: 
20 FLOPPY REGS 
21 
22 ;".8271 ADDRESSES. 

BLOCK. 

4 
4 
1 
1 
1 

REGISTERS. 

23 FLOPPY REG ADDR EQU OFFOOH 
24 DACK 8271 EQU OFF04H 
25 

;LOW-ADDRESSED REGISTER 
;DMA ACKNOWLEDGE 

26 ;'.'MAKE PROGRAM ENTRY POINT ADDRESS 
27 AVAILABLE TO OTHER MODULES. 
28 PUBLIC START 
29 
30 ;"'CLEAR RETURN CODE IN PARAMETER BLOCK. 
31 START: MOVBI [PP).RETURN CODE,O 
32 
33 ;"'INITIALIZE RETRY COUNT. 
34 MOVI lX, 10 
35 
36 ;"·POINT GC AT LOW-ORDER B271 REGISTER. 
37 MOVI GC, FLOPPY REG ADDR 
38 
39 
40 
4,1 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

; •• 'SEND COMMAND SEQUENCE TO 8271, HOLDING FINAL PARM. 
; ••• WAIT UNTIL 8271 IS NOT BUSY. 
RETRY: JNBT [GC j. COMMAND STAT, '7, RETR Y 
;"'SEND "READ SECTOR, DRIVE 0" COMMAND. 

MOVSI [GCj.COMMAND STAT,012H 
; ".SEND TRACK ADDRESS PARAMETER. 

MOVB [GCj.PARM RESULT,[PP).TRACK 

; ••• LOAD CHANNEL ,CONTROL REGISTER 
FROM PORT TO MEMORY, 
SYNCHRONIZ,E ON SOURCE, 
GA POINTS TO SOURCE, 
TERMINATE ON EXT, 
TERMINATION OFFSET O. 

MOVI CC,08820H 

SPECIFYING: 

Figure 3-59. ASM-89 Sample Program 
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001E AOOO 

0020 238B 04 
0023 1130 04FF 

0027 AABA 00 FC 

002B 6000 

002D 0293 09 02CE 01 

0033 6ABE 01 05 

0037 A03C 

0039 A840 DO 

003C EABA 00 FC 

0040 OA4E 00 2C 

0044 BABA 00 FC 

OQ48 0292 01 02CF OA 

004E 4000 

0050 2048 

0052 

SYMBOL TABLE 
------------

DEFN VALUE TYPE NAME 

10 0004 SYM BUFF PTR 
18 0000 SYM COMMAND STAT 
24 FF04 SYM DACK_8271 
83 003C SYM EXIT 

2 0000 SYM FLOPPY 
17 0000 STR FLOPPY REGS 
23 FFOO SYI~ FLOPPY-REG ADDR 

8 0000 STR PARM BLOCK-
19 0001 SYM PARM-RESULT 
9 0000 SYM RESERVED TP 

41 OOOC SYM RETRY 
13 OOOA SYM RETURN CODE 
12 0009 SYM SECTOR 
31 0000 PUB START 
11 0008 SYM TRACK 
63 0027 SYM WAITl 
89 0044 SYM WAIT2 

ASSEMBLY COMPLETE; NO ERRORS FOUND 

55 
56 
57 
~8 
59 
60 
01 
02 
63 
64 
05 
66 
67 
08 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
~2 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

;***SET SOURCE BUS = 8, DEST BUS = 16. 
WID 8,16 

; ***POINT GB AT DESTINATION, GA AT SOURCE. 
LPD GB,[PP].BUFF PTR 
MOVI GA, DACK_8271-

;***INSURE THAT 8271 IS READY FOR LAST PARAMETER. 
WAIT1: JNBT [GC].COMMAND_STAT,5,WAITl 

;***PREPARE FOR DMA. 
XFER 

;***START DMA BY SENDING FINAL PARAMETER TO 8271. 
MOVB [GCJ.PARM_RESULT,[PP].SECTOR 

;***PROGRAM RESUMES HERE FOLLOWING EXT. 

;***IF TRANSFER IS OK THEN EXIT, ELSE TRY AGAIN. 
JBT [GCJ.PARM_RESULT,3,EXIT 

;***DECREMENT RETRY COUNT. 
DEC IX 

; '''TRY AGAIN IF COUNT NOT EXHAUSTED. 
JNZ IX, RETRY 

; ***WAIT UNTIL 8271 IS NOT BUSY. 
EXIT: JNBT [GC J. COMMAND STAT,7,EXIT -

; ***SEND "READ RESULT" COMMAND TO 8271. 
MOVBI [GCJ.COMMAND_STAT,02CH 

;***WAIT FOR RESULT. 
WAIT2: JNBT [GCJ.COHMAND_STAT,4,WAIT2 

;***POST RESULT IN PARAMETER BLOCK FOR CPU. 
MOVB [PP]. RETURN __ CODE, [GC J. PARM _RESULT 

;***INTERRUPT CPU. 
SINTR 

;***STOP EXECUTION. 

FLOPPY 

HLT 

ENDS 
END 

Figure 3-59. ASM-89 Sample Program (Cont'd.) 
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linking and Locating ASM-89 Modules 

The LINK-86 utility program combines multiple 
relocatable object modules into a single 
relocatable module. The input modules may con­
sist of modules produced by any of the 8086 fam­
ily language translators: ASM-89, ASM-86, or 
PLlM-86. LINK-86's principal function is to 
satisfy external references made in the modules. 
Any symbol that is defined with the EXTRN 
directive in ASM-89 or ASM-86 or is declared 
EXTERNAL in PLlM-86 is an external 
reference, i.e., a reference to an address con­
tainerl in another module. Whenever LINK-86 
encounters an external reference, it searches the 
other modules for a PUBLIC symbol of the same 
name. If it finds the matching symbol, it replaces 
the external reference with the address of the 
object. 

The most common occurrence of an external 
reference in a system that employs one or more 
8089s is the channel .program address. In order 
for a CPU program to start a channel program, it 
must ensure that the address of the first channel 
program instruction is contained in the first two 
words of the parameter block. Since the channel 
program is assembled separately, the translator 
that processes the CPU program will not typically 
know its address. If this address is defined as an 

external symbol (see figure 3-56), LINK-86 will 
obtain the address from the ASM-89 channel pro­
gram when the two are linked together. (The 
ASM-89 program must, of course, define the 
symbol in a PUBLIC directive.) 

Other external references may arise when one 
module uses data (e.g., a buffer) that is contained 
in another module, and (in PLlM-86 and 
ASM-86 modules) when one module executes 
another module, typically by a CALL statement 
or instruction. 

When an 8089 module (or modules) is to be 
located in the system space, it may be linked 
together with PLlM-86 or ASM-86 modules as 
described above and shown in figure 3-60. 
LINK-86 resolves. external references and com­
bines the input modules into a single relocatable 
object module. This module can be input to 
LOC-86 (LOC-86 assigns final absolute memory 
addresses to all of the instructions and data). This 
absolute object module may, in turn, be pro­
cessed by the OH-86 utility to translate the 
module into the hexadecimal format. This format 
makes the module readable (the records are writ­
ten in ASCII characters) and is required by some 
PROM programmers and RAM loaders. Intel's 
Universal PROM Programmer (UPP) and iSBC 
957™ Execution Package (loader) use the hexa­
decimal format. 

TO SYSTEM 
SPACE 

Figure 3-60. Creating a Single Absolute Object Module 
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If the 8089 code is to reside in its lIO space, a dif­
ferent technique is required since separate 
absolute object modules must be produced for the 
system and 1/0 spaces. Figure 3-61 shows how to 
link and locate when there are external references 
between lIO space modules and system space 
modules. 

The normal link and locate sequence is followed 
and culminates in the production of an absolute 
module in hexadecimal format. Since the records 
in this file are human-readable, the file can be 
edited using the ISIS-II text editor. The editing 
task involves finding the 8089 lIO space records 
in the file, writing them to one file, and then 
writing the 8086/8088 records (destined for the 
system space) to another file. MCS-86 Absolute 
Object File Formats, Order No. 9800921, 
available from Intel's Literature Department, 
describes the records in absolute (including hexa­
decimal) object modules. 

When using the previous method, it is likely that 
LOC-86 will issue messages warning that 
segments overlap. For example, the 8089 code 
would typically be located starting at absolute 
location OH of the 1/0 space. However, the 
8086/8088 interrupt pointer table occupies these 
low memory addresses in the system space. Since 
LOC-86 has no way to know that the segment will 
ultimately be located in different address spaces, 
it will warn of the conflict; the warning may be 
ignored. 

An alternative to linking the modules together 
and then separating them is to link system space 
modules separately from lIO space modules as 
shown in figure 3-62. This approach avoids the 
manual edit of the absolute object module and the 

FROM 
PlIM-66 

FROM 
ASM·86 

FROM 
ASM·89 

segment conflict messages from LOC-86. It 
requires, however, that modules in the two spaces 
not use the EXTRN/PUBLlC mechanism to refer 
to each other. Modules in the same space can 
define external and public symbols, however. 

External references from lIO space modules to 
system space modules can be eliminated if the 
CPU programs pass all system space addresses in 
parameter blocks. In other words, a channel pro­
gram can obtain any address in the system space if 
the address is in the parameter block. Using this 
approach allows the system space addresses to be 
changed during execution. If the addresses are 
constant values, they may also be altered as 
system development proceeds without relinking 
the channel programs. 

External references from system space modules to 
addresses in the 1/0 space may be eliminated by 
assigning these addresses values that are known at 
assembly or compilation time. Figure 3-63 
illustrates how the ASM-89 ORO directive can be 
used to force the first instruction (entry point) of 
a channel program to an absolute address. In the 
case of the example, one module contains two 
entry points labelled "READ" and "WRITE." 
Assuming the module is located at absolute 
address OH in the lIO space, the channel pro­
grams will begin at 200H and 600H respectively. 
In the example, these values have been chosen 
arbitrarily; in a typical application they would be 
based on the length of the programs and the loca­
tion of RAM and ROM areas. By starting the pro­
grams at fixed addresses that are known to the 
CPU programs that activate them, the channel 
programs can be reassembled without needing to 
relink the CPU programs. 

TO SYSTEM 
SPACE 

TallO 
SPACE 

Figure 3-61. Creating Separate Absolute Object Modules-External References in Relocatable 
Modules 
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FROM 
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FROM 
ASM-89 
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TO SYSTEM 
SPACE 

TO 1/0 
SPACE 

Figure 3-62. Creating Separate Absolute Object Modules-No External References in Relocatable 
Modules· 

ASM-89 ENTRY POINT DEFINITIONS 

ORG200H 
READ: 

; INSTRUCTIONS FOR·'READ" CHANNEL PROGRAM 

ORG 600H 
WRITE: 

; INSTRUCTIONS FOR "WRITE" CHANNEL PROGRAM 

ASM-86DEFINITION OF ENTRY POINT ADDRESSES 

DD 200H 
DD 600H 

PLlM-86 DECLARATION OF ENTRY POINT ADDRESSES 

DECLARE READ$ADDR POINTER; 
DECLARE WRITE$ADDR POINTER; 
READ$ADDR = 200H; 
WRITE$ADDR = 600H; 

Figure 3-63. Using Absolute Entry Point Addresses 
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3.10 Programming Guidelines 
and Examples 

This section provides two types of 8089 program­
ming information. A series of general guidelines, 
which apply to system and program design, is 
presented first. These guidelines are followed by 
specific coding examples that illustrate program­
ming techniques that may be applied to many dif­
ferent types of applications. 

Programming Guidelines 

The practices in this section are recommended to 
simplify system development and, particularly, 
for system maintenance and enhancement. Soft­
ware that is designed in accordance with these 
guidelines will be adaptable to the changing 
environment in which most systems operate, 
and will be in the best position to take 
advantage of new intel hardware and software 
products. 

Segments 

Although the lOP does not "see" the segmented 
organization of system memory, it should respect 
this logical structure. The lOP should only 
address the system space through pointers passed 
by the CPU in the parameter block. It should not 
perform arithmetic on these addresses or other­
wise manipulate them except for the automatic 
incrementing that occurs during DMA transfers. 
It is the responsibility of the CPU to pass 
addresses such that transfer operations do not 
cross segment boundaries. 

Self-Modifying Code 

Programs that alter their own instructions are dif­
ficult to understand and modify, and preclude 
placing the code in ROM. They may also inhibit 
compatibility with future Intel hardware and soft­
ware products. 

Note also that when the 8089 is on a 16-bit bus, its 
instruction fetch queue can interfere with the 
attempt of one instruction to modify the next 
sequential instruction. Although the instruction 
may be changed in memory, its unmodified first 
byte will be fetched from the queue rather than 
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memory if it is on an odd address. The processor 
will thus execute a partially-modified instruction 
with unpredictable results. 

1/0 System Design 

Section 2.10 notes that I/O systems should be 
designed hierarchically. Application programs 
"see" only the topmost level of the structure; all 
details pertaining to the physical characteristics 
and operation of I/O devices are relegated to 
lower levels. Figure 3-64 shows how this design 
approach might be employed in a system that uses 
an 8089 to perform I/O. The same concept can be 
expanded to larger systems with multiple lOPs. 

The application system is clearly separated from 
the I/O system. No application programs per­
form I/O; instead they send an I/O request to the 
I/O supervisor. (In systems with file-oriented 
I/O, the request might be sent to a file system that 
would then invoke the I/O supervisor.) The 1/0 
request should be expressed in terms of a logical 
block of data-a record, a line, a message, etc. It 
should also be devoid of any device-dependent 
information such as device address, sector size, 
etc. 

The I/O supervisor transforms the application 
program's request for service into a parameter 
block and dispatches a channel program to carry 
out the operation. The 1/0 supervisor controls 
the channels; therefore, it knows the cor­
respondence between channels and I/O devices, 
the locations of CBs and channel programs, and 
the format of all of the parameter blocks. The 
I/O supervisor also coordinates channel 
"events," monitoring BUSY flags and respond­
ing to channel-generated interrupt requests. The 
1/0 supervisor does not, however, communicate 
with I/O devices that are controlled by the chan­
nels. If the CPU performs some I/O itself (this 
should be restricted to devices other than those 
run by the channels), the 1/0 supervisor invokes 
the equivalent of a channel program in the CPU 
to do the physical I/O. Note that although the 
1/0 supervisor is drawn as a single box in figure 
3-64, it is likely to be structured as a hierarchy 
itself, with separate modules performing its many 
functions. 

The software interface between the CPU's I/O 
supervisor and an lOP channel program should 
be completely and explicitly defined in the 
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parameter block. For example, the 110 supervisor 
should pass the addresses of all system memory 
areas that the channel program will use. The 
channel program should not be written so that it 
"knows" any of these addresses, even if they are 
constants. Concentrating the interface into one 
place like this makes the system easier to under­
stand and reduces the likelihood of an undesirable 
side effect if it is modified. It also generalizes the 
design so that it may be used in other application 
systems. 

Figure 3-64 shows a simple channel program run­
ning on channel 1 and a more complex program 
running on channel 2. Channell's program per­
forms a single function and is therefore designed 
as a simple program. The program on channel 2 
performs three functions (e.g., "read," "write," 
"delete") and is structured to separate its func­
tions. The functions might be implemented as 
procedures called by the "channel supervisor" 
depending on the content of the parameter block. 
Notice that to the 110 supervisor, both programs 
appear alike; in particular, both have a single 
entry point. 

In some channel programs, different functions 
will need different information passed to them in 
the parameter block. Figure 3-65 shows. one 
technique that accommodates different formats 
while still allowing the channel supervisor to 
determine which procedure to call from the PB. 
The parameter block is divided into fixed and 
variable portions, and a function code in the fixed 
area indicates the type of operation that is to be 
performed. Part of the fixed area has been set 
aside so that additional parameters can be added 
in the future. 

Programming Examples 

The first example in this section illustrates how a 
CPU can initialize a group of lOPs and then 
dispatch channel programs. This code is written 
in PLlM-86. 

The remaining examples, written in ASM-89, 
demonstrate the 8089 instruction set and address­
ing modes in various commonly-enc0\l:ntered pro­
gramming situations. These include: 

• memory-to-memory transfers 

• saving and restoring registers 
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Figure 3-65. Variable Format Parameter Block 

Initialization and Dispatch 

The PLlM-86 code in figure 3-66 initializes two 
lOPs and dispatches two channel programs on 
one of the lOPs. The same general technique can 
be used to initialize any number of lOPs. The 
hypothetical system that this code runs on is con­
figured as follows: 

• 8086 CPU (16-bit system bus); 

• two remote lOPs share an 8-bit local 110 bus 
via the request/grant lines operating in 
mode 1; 

• 8089 channel attentions are mapped into four 
port addresses in the CPU's 110 space; 

• channel programs reside in the 8089 I/O 
space; 

• one 8089 controls a CRT terminal, one 
channel running the display, the other scan­
ning the keyboard and building input 
messages; 

• the function of the second 8089 is not defined 
in the example. 
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The code declares one CB (channel control block) 
for each 8089. The CBs are declared as two­
element arrays, each element defining the struc­
ture of one channel's portion of the CB. The SCB 
(system configuration block)· and SCP (system 
configuration pointer) are also declared as struc­
tures. The SCP is located at its dedicated system 
space address of FFFF6H. The other structures 
are not located at specific addresses since they are 
all linked together by a chain of pointers 
"anchored" at the SCP. 

Two simple parameter blocks define messages to 
be transmitted between the PL/M-86 program 
and the CRT. Each PB contains a pointer to the 
beginning of the message area and the length of 
the message. In the case of the keyboard (input) 
message, the channel program builds the message 
in the buffer pointed to by the pointer in the PB 
and returns the length of the message in the PB. 

The code initializes one lOP at a time since the 
chain of control blocks read by the lOP during 
initialization must remain static until the process 
is complete. To initialize the first lOP, the code 
fills in the SYSBUS and SOC fields and links the 
blocks to each other using the PL/M-86 @ 
(address) operator.. It sets channel I's BUSY flag 
to FFH so that it can monitor the flag to deter­
mine when the initialization has been completed 
(the lOP clears the flag to OH when it has 
finished). Channel 2's BUSY flag is cleared, 
although this could just as well have been done 
after the initialization. (the lOP does not alter 
channel 2's BUSY flag 'eluring initialization). The 
code starts the lOP by issuing a channel attention 
to channel I to indicate that the lOP is a bus 
master. PL/M-86's OUT function is used to select 
the port address to which the lOP's CA and SEL 
lines have been mapped. The data placed em the 
bus (OH) is ignored by the lOP. It then waits until 
the lOP clears the channell BUSY flag. 

The second lOP is initialized in the same manner, 
first changing the pointer in the SCB to point to 
the second lOP's channel control block. If this 

lOP were on a different 110 bus, the SOC field 
would have been altered if a different 
request/grant mode were being used or if the lOP 
had a 16-bit I/O bus. The second lOP is a slave so 
its initialization is started by issuing a CA to chan­
nel 2 rather than channel I. 

After both lOPs are ready, the code dispatches 
two channel programs (not coded in the example); 
one program is dispatched to each channel of one 
of the lOPs. To avoid external references, the 
system has been set up so that the PL/M-86 code 
"knows" the starting addresses of these channel 
programs (200H and 600H). The code uses the 
PLlM-86 LOCKSET function to: 

• lock the system bus; 

• read the BUSY flag; 

• set the BUSY flag to FFH if it is clear; 

• unlock the system bus. 

This operation continues until the BUSY flag is 
found to be clear (indicating thatthe channel is 
available). Setting the flag immediately to FFH 
prevents another processor (or another task in 
this program activated as a result of an interrupt) 
from using the channel. The code fills in the 
parameter block with the address and length of 
the message to be displayed, sets the CCW and 
then links the channel program (task block) start 
address to the parameter block and links the 
parameter block to the CB. The channel is dis­
patched with the OUT function that effects a 
channel attention for channel I. 

A similar procedure is followed to start channel 2 
scanning the terminal keyboard. In this case, the 
code allows channel 2 to generate an interrupt 
request (which it might do to signal that a message 
has been assembled). An interrupt procedure 
would then handle the interrupt request. 

I*ASSIGN NAMES TO CONSTANTS* I 
DECLARE CHANNEL$BUSY 
DECLARE CHANNEL$CLEAR 
DECLARE CR /*CARR. RET.*/ 
DECLARE LF /*LlNE FEED* / 
DECLARE DISPLAY$TB 
DECLARE KEYBD$TB 

LlTERALLY'OFFH'; 
LlTERALLY'OH'; 
LITERALLY 'ODH'; 
LlTERALLY'OAH'; 
LlTERALLY'200H'; 
LlTERALLY'600H'; 

Figure 3-66. Initialization and Dispatch Example 
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DECLARE I*IOP CHANNEL ATTENTION ADDRESSES* I 
IOP$A$CH1 LITERALLY 'OFFEOH', 
IOP$A$CH2 LITERALLY 'OFFE1 H', 
IOP$B$CH1 LITERALLY 'OFFE2H', 
IOP$B$CH2 LITERALLY 'OFFE3H'; 

DECLARE I*CHANNEL CONTROL BLOCK FOR 10P$A) 
CB$A(2) STRUCTURE 
(BUSY BYTE, 
CCW BYTE, 
PB$PTR POINTER, 
RESERVED WORD); 

DECLARE I*CHANNEL CONTROL BLOCK FOR 10P$B* I 
CB$B(2) STRUCTURE 
(BUSY BYTE, 
CCW BYTE, 
PB$PTR POINTER, 
RESERVED WORD); 

DECLARE I*SYSTEM CONFIGURATION BLOCK* I 
SCB STRUCTURE 
(SOC BYTE, 
RESERVED BYTE, 
CB$PTR POINTER); 

DECLARE I*SYSTEM CONFIGURATION POINTER* I 
SCP STRUCTURE 
(SYSBUS BYTE, ' 
SCB$PTR POINTER) AT (OFFFF~H); 

DECLARE MESSAGE$PB STRUCTURE 
(TB$PTR POINTER, 
MSG$PTR POINTER, 
MSG$LENGTH WORD); 

DECLARE KEYBD$PB STRUCTUE 
(TP$PTR POINTER, 
BUFF _PTR POINTER, 
MSG$SIZE WORD); 

. DECLARE SIGN$ON BYTE (*) DATA 
(CR, LF, 'PLEASE ENTER USER ID'); 

DECLARE KEYBD$BUFF BYTE (256); 

1* 
*INITIALIZE 10P$A, THEN 10P$B 

*1 

I*PREPARE CONTROL BLOCKS FOR 10P$A* I 
SCP .SCB$PTR = @ SCB; 
SCP.SYSBUS = 01H· 1*16-BIT SYSTEM BUS* I 
SCB.SOC = 02H; I*RQ/GT MODE1, 8-BIT 1/0 BUS* I 
SCB.CB$PTR = @ CBSA(O); 
CB$A(O).BUSY = CHANNEL$BUSY 
CB$A(1 ).BUSY = CHANNEL$CLEAR; 

Figure 3-66. Initialization and Dispatch Example (Cont'd.) 
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I*ISSUE CA FOR CHANNEL1, INDICATING lOP IS MASTER* 1 
OUT (lOP$A$CH1) = OH; 

I*WAIT UNTIL FINISHED* 1 
DO WHILE CB$A(O).BUSY = CHANNEL$BUSY; 

END; 

I*PREPARE CONTROL BLOCKS FOR 10P$B* 1 
SCB.CB$PTR = @CBSB(O); 
CB$B(O).BUSY = CHANNEL$BUSY; 
CB$B(1).BUSY = CHANNEL$CLEAR; 

I*ISSUE CA FOR CHANNEL2, INDICATING SLAVE STATUS* 1 
OUT (lOP$B$CH2) = OH; 

I*WAIT UNTIL lOP IS READY* 1 
DO WHILE CB$B(O).BUSY = CHANNEL$BUSY; 

END; 

1* 
*SEND SIGN ON MESSAGE TO CRT CONTROLLED 
*BY CHANNEL 1 OF 10P$A 
*1 . 

I*WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY* 1 
DO WHILE LOCKSET (@CB$A(O).BUSY, CHANNEL$BUSY); 

END; 

I*SET CCW AS FOLLOWS: 
* PRIORITY = 1 , 
* NO BUS LOAD LIMIT, 
* DISABLE INTERRUPTS, 
* START CHANNEL PROGRAM IN 1I0SPACE*1 

CB$A(O).CCW = 10011001 B; 

1*L1NK MESSAGE PARAMETER BLOCK TO CB* 1 
CB$A(O).PB$PTR = @ MESSAGE$PB; 

I*FILL IN PARAMETER BLOCK* 1 
MESSAGE$PB.TB$PTR = DISPLAY$TB; 
MESSAGE$PB.MSG$PTR = @SIGN$ON; 
MESSAGE$PB. MSB$LENGTH = LENGTH (SIGN$ON); 

J*DISPATCH THE CHANNEL * 1 
OUT (IOP$A$CH1) = OH; 

1* 
*DISPATCH CHANNEL 2 OF 10P$A TO 
*CONTINUOUSLY SCAN KEYBOARD, INTERRUPTING 
*WHEN A COMPLETE MESSAGE IS READY 
*1 

I*WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY* 1 
DO WHILE LOCKSET (@ CB$A(1).BUSY, CHANNEL$BUSY); 

END; 

Figure 3-66. Initialization and Dispatch Example (Cont'd.) 
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I*SET CCW AS FOLLOWS: 
* PRIORITY = 0 
* BUS LOAD LIMIT, 
* ENABLE INTERRUPTS, 
* START CHANNEL PROGRAM IN 1/0 SPACE* I 

CB$A(1).CCW = 00110001 B; 
I*LlNK KEYBOARD PARAMETER BLOCK TO CB* I 
CB$A(1).PB$PTR = @ KEYBD$PB; 
I*FILL IN PARAMETER BLOCK* I 
KEYBD$PB.TB$PTR = KEYBD$TB; 
KEYBD$PB.BUFF$PTR = @ KEYBD$BUFF; 
KEYBD$PB.MSG$SIZE = OH; 
I*DISPATCH THE CHANNEL* I 
OUT (IOP$A$CH2) = OH; 

Figure 3-66. Initialization and Dispatch Example (Cont'd~) 

Memory-to-Memory Transfer 

Figure 3-67 shows a channel program that per­
forms a memory-to-lJ1emory block transfer in 
seven instructions. The program moves up to 64k 
bytes between any two locations in the system 
space. A 16-bit system bus is assumed, and the 
CPU is assumed to be monitoring the channel's 
BUSY flag to determine when the program has 
finished. 

To attain maximum transfer speed, the program 
locks the bus during each transfer cycle. This 
ensures that another processor does not acquire 
the bus in the interval between the DMA fetch 
and store operations. By setting this channel's 
priority bit in the CCW to 1 and the other chan­
nel's to 0, the CPU could effectively prevent the 
other channel from running during the transfer. 
Byte count termination is selected so that the 
transfer will stop when the number of bytes 
specified by the CPU has been moved. Since there 
is only a single termination condition, a termina­
tion offset of 0 is specified. The transfer begins 
after the WID instruction, and the HL T instruc­
tion is executed immediately upon termination. 

Saving and Restoring Registers 

A CPU program can "interrupt" a channel pro­
gram by issuing a "suspend" channel command. 
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The channel responds to this command by saving 
the task pointer and PSW in the first two words 
of the parameter block. The suspended program 
can be restarted by issuing a "resume" command 
that loads TP and the PSW from the save area. 

If the CPU wants to execute another channel pro­
gram between the suspend and resume opera­
tions, the suspended program's registers will 
usually have to be saved first. If the "interrupt­
ing" program "knows" that the registers must be 
saved, it can perform the operation and also 
restore the registers before it halts. 

A more general solution is shown in figure 3-68. 
This is a program that does nothing but save the 
contents of the channel registers. The registers are 
saved in the parameter block because PP is the 
only register that is known to point to an available 
area of memory. A similar program could be writ­
ten.to restore registers from the same parameter 
block. 

Using this approach, the CPU would "interrupt" 
a running program as follows: 

• suspend the running program, 

• run the register save program, 

• run the "interrupting" program, 

• run the register restore program, 

• resume the suspended program. 
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MEMEXAMP SEGMENT 
;**MEMORY-TO-MEMORY TRANSFER PROGRAM** 
PB STRUC 
TP _RESERVED: OS 4 
FROM_ADDR: OS 4 
TO_ADDR: OS 4 
SIZE: OS 2 
PB: ENDS 

;POINT GA AT SOURCE, GB AT DESTINATION. 
LPD GA, [PPl.FROM_ADDR 
LPD GB, [PP .TO_ADDR 

;LOAD BYTE COUNT INTO BC. 
MOV BC, [PP].SIZE 

;LOAD CC SPECIFYING: 
; MEMORYTO MEMORY, 
; NO TRANSLATE, 
; UNSYNCHRONIZED, 
; GA POINTS TO SOURCE, 
; LOCK BUS DURING TRANSFER, 
; NO CHAJNING, 
; TERMINATING ON BYTE COUNT,OFFSET = O. 

MOV . CC,OC208H 
;PREPARE CHANNEL FOR TRANSFER. 

XFER 

;SET LOGICAL BUS WIDTH. 
WID 16,16 

;STOP EXECUTION AFTER DMA. 
HLT 

MEMEXAMP ENDS 
END 

Figure 3-67. Memory-to-Memory Transfer Example 

SAVEREGS SEGMENT 
;SAVE ANOTHER CHANNEL'S REGISTERS IN PB 
PB STRUC 
TP _RESERVED: OS 4 
GA_SAVE: OS 3 
GB_SAVE: OS 3 
GC_SAVE: OS 3 
IX_SAVE: OS 2 
BC_SAVE: OS 2 
MC~SAVE: OS 2 
CC_SAVE: OS 2 
PB ENDS 

SAVEREGS 

MOVP 
MOVP 
MOVP 
MOV 
MOV 
MOV 
MOV 
HLT 
ENDS 
END 

PP .GA_SAVE, GA 
PP .GB_SAVE, GB 
PP .GC_SAVE, GC 
PP .IX_SAVE, IX 
PP .BC_SAVE, BC 
PP .MC_SAVE, MC 
PP .CC_SAVE, CC 

Figure 3-68. Register Save Example 
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CHAPTER 4 
HARDWARE REFERENCE INFORMATION 

4.1 Introduction 

This chapter presents specific hardware informa­
tion regarding the operation and functions of the 
8086 family processors: the 8086 and 8088 Central 
Processing Units (CPUs) and the 8089 110 Pro­
cessor (lOP). Abbreviated descriptions of the 
8086 family support circuits and their circuit 
functions appear where appropriate within the 
processor descriptions. For more specific 
information on any of the 8086 family support 
circuits, refer to the corresponding data sheets in 
Appendix B. 

4.2 8086 and 8088 CPUs 

The 8086 and 8088 CPUs are characterized by a 
20-bit (1 megabyte) address bus and an identical 
instruction/function format, and differ essential­
ly from one another by their respective data bus 
widths (the 8086 uses a 16-bit data bus, and the 
8088 uses an 8-bit data bus). Except where 
expressly noted, ,the ensuing descriptions are 
applicable to both CPUs. 

Both the 8086 and 8088 feature a combined or 
"time-multiplexed" address and data ,bus that 
permits a number of the pins to serve dual func­
tions and consequently allows the complete CPU 
to be incorporated into a single, 40-pin package. 
As explained later in this chapter, a number of the 
CPU's control pins are defined according to the 
strapping of a single input pin (the MN/MX pin). 
In the "minimum mode," the CPU is configured 
for small, single-processor systems, and the CPU 
itself provides all control signals. In the "max­
imum mode," an Intel® 8288 Bus Controller, 
rather than the CPU, provides the control signal 
outputs and allows a number of the pins pre­
viously delegated to these control functions to be 
redefined in order to support multiprocessing 
applications. Figures 4-1 and 4-2 describe the pin 
assignments and signal definitions for the 8086 
and 8088, respectively. 

CPU Architecture 

As shown in figures 4-3 and 4-4, both CPUs 
incorporate two separate processing units: the 
Execution Unit or "EU" and the Bus Interface 
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Unit or "BIU." The EU for each processor is 
identical. The BIU for the 8086 incorporates a 16-
bit data bus and a 6-byte instruction queue 
whereas the 8088 incorporates an 8-bit data bus 
and a 4-byte instruction queue. 

The EU is responsible for the execution of all 
instructions, for providing data and addresses to 
the BIU, and for manipulating the general 
registers and the flag register. Except for a few 
control pins, the EU is completely isolated from 
the "outside world." The BIU is responsible for 
executing all external bus cycles and consists of 
the segment and communications registers, the 
instruction pointer and the instruction object 
code queue. The BIU combines segment and off­
set values in its dedicated adder to derive 20-bit 
addresses, transfers data to and from the EU on 
the ALU data bus and loads or "prefetches" 
ipstructions into the queue from which they are 
fetched by the EU . 

The EU, when it is ready to execute an instruc­
tion, fetches the instruction object code byte from 
the BIU's instruction queue and then executes the 
instruction. If the queue is empty when the EU is 
ready to fetch an instruction byte, the EU waits 
for the instruction byte to be fetched. In the 
course of instruction execution, if a memory loca­
tion or 110 port must be accessed, the EU 
requests the BIU to perform the required bus 
cycle. 

The two processing sections of the CPU operate 
independently. In the 8086 CPU, when two or 
more bytes of the 6-byte instruction queue are 
empty and the EU does not require the BIU to' 
perform a bus cycle, the BIU executes instruction 
fetch cycles to refill. the queue. In the 8088 CPU, 
when one byte of the 4-byte instruction queue is 
empty, the BIU executes an instruction fetch 
cycle; Note that the 8086 CPU, since it has a 16-
bit data bus,' can access two instruction object 
code bytes in a single bus cycle, while the 8088 
CPU, since it has an 8~bit data bus, accesses one 
instruction object code byte per bus cycle. If the 
EU issues a request for bus access while the BIU is 
in the process of an instruction fetch bus cycle, 
the BIU completes the cycle before honoring the 
EU's request. 
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Common Signals 

Name Function Type 

AD15-ADO Address/Data Bus Bidirectional, 
3·State 

A19/S6- Address/Status Output, 
A16/S3 3·State 

BHE/S7 BlJ~ High Enable/ Output, 
Status 3·State 

MN/MX Minimum/Maximum Input Mode Control 

RD Read Control Output, 
3·State 

TEST Wait ()n Test Control Input 
READY wait State Control Input 
RESET System Reset Input 

NMI Non·Maskable Input Interrupt Request' 
INTR InterrJpt Req'uast Input 
ClK System Clock Input 
Vee 't5V Input 
GND Gro\md 

Minimum Mode, Signals (M N/MX = V cd 
Name Function Type 

HOLD Hold Requast Input 
HLDA Hold Acknowledge 'Output 

WR Write Control Output, 
3;State 

MilO MemoryllO Control Output, 
3·State 

DT/R Data Transmit/ Output, 
Rec.eive 3·State 

DEN Data Enable Output, ' 
3·State 

ALE Address Latch Output Enable 
INTA Interrupt Acknowledge Output 

Maximum Mode Signals (MN/MX =GND) 

Name Function TYPe 

RQ/G'i'T,O Request/Grant Bus Bidirectional Access Control 

IO'CR Bus Priority Lock Output, 
Control 3·State 

52-SO Bus Cycle Status ' Output, 
3·State , 

QS1, QSO Instruction Queue Output Status 

GND 

AD14 

AD13 

AD12 

ADll 

AD10 

AD9 

ADa 

AD7 

AD6 

ADS 

AD4 

AD3 

AD2 

AD1 

ADO 

NMI 

INTR' 

eLK 

GND 

vcc 

AD15 

A16/S3 

A17/S4 

Ala/S5 

A19/S6 

BHE/S7 

MN/MX 

iiii 

8086 HOLD (iiQ / GTo) 
CPU 

HLDA (RO/iffi) 

\iii '(LOCK) 

M/iO (52) 

DTIR (51) 

DEN (SO) 

ALE (OSO) 

iNi'A (OSl) 

'fffi ' 

READY 

RESET 

MAXIMUM MODE PIN FUNCTIONS (e.g.,UiCK) 
ARE SHOWN IN PARENTHESES 

Figure 4-1. 8086 Pili Definitions 
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Common Signals 

Name Function Type 

AD7-ADO Address/Data Bus Bidirectional, 
3-State 

A15-A8 Add'ress Bus Output, 
3-State 

A19/S6- Address/Status Output, 
A16/S3 3-State 

MN/MX Minimum/Maximum Input Mode Control 

RD Read Control Output, 
3-State GND vcc 

TEST Wait On Test Control Input 
A14 A15 

READY Wait State Control Input 
RESET System Reset Input 

A13 A16/S3 

NMI Non-Maskable Input Interrupt Request 
A12 AU/S4 

A11 A18/S5 

INTR Interrupt Request Input 
ClK System Clock Input 

A10 A19/S6 

Vee +5V Input A9 SSO (HIGH) 

GND Ground A8 MN/MX 

AD7 iiii 
Minimum Mode Signals (MN/MX = VCC) 

Name Function Type 
AD6 8088 HOLD (RQ/GTO) 

CPU 
AD5 HLDA (RQ/GT1) 

HOLD Hold Request Input AD4 WR (LOCK) 

HlDA Hold Acknowledge Output 
AD3 IO/M (52) 

WR Write Control Output, 
3-State AD2 DT/R (51) 

10/M 10/Memory Control Output, 
3-State 

AD1 DEN (SO) 

DT/A Data Transmit/ Output, 
Receive 3-State 

ADO ALE (OSO) 

NMI INTA (OS1) 

DEN Data Enable Output, 
3-State INTR TEST 

ALE Address latch Output Enable 
CLK READY 

RESET 
INTA Interrupt Acknowledge Output 

SSO SO Status Output, 
3-State 

Maximum Mode Signals (MN/MX = GND) 
MAXIMUM MODE PIN FUNCTIONS (e.g., LOCK) 
ARE SHOWN IN PARENTHESES 

Name Function Type 

RQ/GT1,0 Request/Grant Bus Bidirectional Access Control 

lOCK Bus Priority lock Output, 
Control 3-State 

S2-S0 Bus Cycle Status Output, 
3-State 

QS1, QSO Instruction Queue Output Status 

Figure 4-2. 8088 Pin Definitions 
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GENERAL 
REGISTERS 

GENERAL 
REGISTERS 

AH AL 

BH BL 

CL 

DH DL 

SP 
DATA BUS 

BP 

DI 

" 

AlU DATA BUS 

(1681TSI 

EXECUTION UNIT 
(EU) 

CS 

DS 

ES 

INTERNAL 
COMMUNICATIONS 

REGISTERS 

(16 BITS) 

BUS INTERFACE UNIT 
(B1U) 

Figure 4-3. 8086 Elementary Block Diagram 

AH AL 

BH BL 

CH 

DH DL 

SP 

8P 

DI 

SI 

ALU DATA BUS 

(16 BITS) 

eXECUTION UNIT 
(EU) 

CS 

DS 

ES 

IP 

INTERNAL 
COMMUNICATIONS 

REGISTERS 

DATA BUS 

(8 BITS) 

BUS INTERFACE UNIT 
(BIU) 

Figure 4-4. 8088 Elementary Block Diagram 
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Bus Operation 

To explain the operation of the time-multiplexed 
bus, the BIU's bus cycle must be examined. 
Essentially, a bus cycle is an asynchronous event 
in which the address of an I/O peripheral or 
memory location is presented, followed by either 
a read control signal (to capture or "read" the 
data from the addressed device) or a write control 
signal and the associated data (to transmit or 
"write" the data to the addressed device). The 
selected device (memory or I/O peripheral) 
accepts the data on the bus during a write cycle or 
places the requested data on the bus during a read 
cycle. On termination of the cycle, the device 
latches the data written or removes the data read. 

As shown in figure 4-5, all bus cycles consist of a 
minimum of four clock cycles or "T -states" iden­
tified as Tl, T2' T3 and T4' The CPU places the 
address of the memory location or I/O device on 
the bus during state T l' During a write bus cycle, 
the CPU places the data on the bus from state T 2 
until state T 4' During a read bus cycle, the CPU 
accepts the data present on the bus in states T 3 

and T 4' and the multiplexed address/data bus is 
floated in state T 2 to allow the CPU to change 
from the write mode (output address) to the read 
mode (input data). 

It is important to note that the BIU executes a bus 
cycle only when a bus cycle is requested by the EU 
as part of instruction execution or when it must 
fill the instruction queue. Consequently, clock 
periods in which there is no BIU activity can 
occur between bus cycles. These inactive clock 
periods are referred to as idle states (TI)' While 
idle clock states result from several conditions 
(e.g., bus access granted to a coprocessor), as an 
example, consider the case of the execution of a 
"long" instruction. In the following example, an 
8-bit register multiply (MUL) instruction (which 
requires between 70 and 77 clock cycles) is exe­
cuted by the 8086. Assuming that the multiplica­
tion routine is entered as a result of a program 
jump (which causes the instruction queue to be 
reinitialized when the jump is executed) and, as 
will be explained later in this chapter, that the 
object code bytes are aligned on even-byte bound­
aries, the BIU's bus cycle sequence would appear 
as shown in figure 4-6. 

----BUS CyCLE----' ----BUS CyCLE------I 

r'\ r., r., 
I 

.J 

EU AS A RESULT OF THE JMP 
ACTIVITY INSTRUCTION, THE EU 

REINITIALIZES THE QUEUE 
DURING EXECUTION OF 
THE JUMP. 

Figure 4-5. Typical BIU Bus Cycles 

2 4 I 5 7 8 I 9 10 11 
EU FETCHES THE FIRST TWO BYTES FROM THE aUEUE (THE MUL INSTRUCTION) AND 
COMPLETES INSTRUCTION EXECUTION IN 70 TO 77 CLOCK CYCLES. 

EU FETCHES THE NEXT 
OBJECT CODE BYTES 
FROM THE QUEUE AND 
BEGINS EXECUTING THE 
NEXT INSTRUCTION. 

BIU 
ACTIVITY 

SINCE THE QUEUE IS BIU FETCHES TWO OBJECT BIU FETCHES TWO MORE 
OBJECT CODE BYTES. 
QUEUE IS NOW FULL (SIX 
BYTES). 

81U IS IDLE FOR 62-69 CLOCK CYCLES BIU FETCHES TWO OBJECT 
EMPTY, THE 81U FETCHES CODE BYTES. QUS:UE WHILE THE EU COMPLETES EXECUTION OF CODE BYTES TO REFILL 
TWO OBJECT CODE BYTES AGAIN CONTAINS FOUR THE MUL INSTRUCTION. THE QUEUE. THE QUEUE IS 

AGAIN FULL (THE MUL INSTRUCTION) IN BYTES. 
ONE BUS CYCLE AND I 
COMPLETES A SECOND 
BUS CYCLE. THE QUEUE 
CONTAINS FOUR BYTES. 

Figure 4-6. BIU Idle States 
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In addition to the idle state previously described, 
both the 8086 and 8088' CPUs include a 
mechanism fQr inserting additional T -states in the 
bus cycle to compensate for devices (memory or 
I/O) that cannot transfer data at the maximum 
rate. These extra T -states are called wait states 
(TW) and, when required, are inserted between 
states T3 and T4' During a wait state, the data on 
the bus, remains unchanged. When the device can 
complete the transfer (present or accept the data), 
it signals the CPU to exit the wait state and to 
enter state T4' 

As shown in the following timing diagrams, the 
actual bus cycle timing differs between a read and 
a write bus cycle and varies between the two 
CPUs. Note that the timing diagrams illustrated 
are for the minimum mode. (Maximum mode 
timing is described later in this chapter.) 

Referring to figures 4-7 and 4-8, the 8086 CPU 
places a 20-bit address on the multiplexed 
address/ data bus during state T l' During state 
T2' the CPU removes the address from the bus 
and either three-states (floats) the lower 16 
address/ data lines in preparation for a read cycle 
(figure 4-7) or places write data on these lines 

(figure 4-8). At this time, bus cycle status is 
available on the address/status lines. During state 
T3' bus cycle status is maintained on the 
address/status lines and either the write data is 
maintained or read data is sampled on the lower 
16 address/data lines. The bus cycle is terminated 
in state T 4 (control lines are disabled and the 
addressed device deselects from the bus). 

The 8088 CPU, like the 8086, places a 20-bit 
address on the multiplexed address/data bus dur­
ing state T 1 as shown in figures 4-9 and 4-10. 
Unlike the 8086, the 8088 maintains the address 
on the address lines (A IS-A8) for the entire bus 
cycle. During state T2' the CPU removes the 
address on the address/data lines (AD7-ADO) and 
either floats these lines in preparation for a read 
cycle (figure 4-9) or places write data on these 
lines (figure 4-10). At this time, bus cycle status is 
available on the address/status lines. During state 
T3, bus cycle status is maintained on the 
address/status lines and either write data is main­
tained or read data is sampled on the 
address/data lines. The bus cycle is terminated in 
state T 4 (control lines are disabled and the 
addressed device deselects from the bus). 

I---------oNE BUSCYCLE---------! 

eLK 

A1~S:'~~~ =:J---< ADDR'ESS, iiliEoUT X'-_____ ST_"_JU_S_OU_T ____ ...J>-
AD15-ADo -----f<I..-_-~:,A~D;;;D0R~E;S~S;-;;O~U:T;-_-_)) ------1<'-__ D_ATA_'_N _ ..... )>-----

ALE I \~ __ ~ ____ ~----~r 
M/iO ~ ______ LO_W_=_"O_R_EA_D_, H_IG_H=_M_EM_O_RY_R_EA_D ______ C 

\l-: ----~I 
DJ/R ---\ :---___ ~, ___ ----------------~----Ll 

-----,1..--------"""\ / 
11m ___ -1 \-_____ ---J 

Figure 4-7. 8086 Read Bus Cycle 
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elK 

A19/S6-A1S/S3 ~ ADDRESS, BHE OUT X STATUS OUT ANOB'REf57 ~ ...... ___________ --' 

A015-AOO ~ ADDRESS OUT X .... _____ DA_TA_O_U_T ____ --' 

ALE / 
_----J \~------------------' 

M/iO ~'--_____ "_OW_=_'_'O_W_R'_TE_. H_'G_H_=_ME_M_OR_y_W_R'_TE _____ ---' 

\'----------' 
----~j---------------------~ 

DT/A I 
___ J 

DEN --- - - "'7/-----""'1\ 
____ ~ ..... _____________ --J 

Figure 4-8. 8086 Write Bus Cycle 

A majority of system memories and peripherals 
require a stable address for the duration of the 
bus cycle (certain MCS-85™ components can 
operate with a multiplexed address/data bus). 
During state T 1 of every bus cycle, the ALE 
(Address Latch Enable) control signal is output 
(either directly from the microprocessor in the 
minimum mode or indirectly through an 8288 Bus 
Controller in the maximum mode) to permit the 
address to be latched (the address is valid on the 
trailing-edge of ALE). This "demultiplexing" of 
the address/data bus can be done remotely at 
each device in the system or locally at the CPU 
and distributed throughout the system as a 
separate address bus. For optimum system per­
formance and for compatibility with multi­
processor systems' or with the Intel Multibus 
architecture, the locally-demultiplexed address 
bus is recommended. To latch the address, Intel ® 
8282 (non-inverting) or 8283 (inverting) Octal 
Latches are offered as part of the 8086 product 
family and are implemented as shown in figure 
4-11. These circuits, in addition to providing the 
desired latch function, provide increased current 
drive capability and capacitive load immunity. 

4-7 

The data bus cannot be demultiplexed due to the 
timing differences between read and write cycles 
and the various read response times among 
peripherals and memories. Consequently, the 
multiplexed data bus either can be buffered or 
used directly. When memory and I/O peripherals 
are connected directly to an unbuffered bus, it is 
essential that during a read cycle, a device is 
prevented from corrupting the address present on 
the bus during state T l' To ensure that the 
address is not corrupted, a device's output drivers 
should be enabled by an output enable function 
(rather than the device's chip select function) con­
trolled by the CPU's read signal. (The MCS-86 
family processors guarantee that the read signal 
will not be valid until after the address has been 
latched by ALE.) Many Intel peripheral, 
ROM/EPROM, and RAM circuits provide an 
output enable function to allow interface to an 
unbuffered multiplexed address/data bus. The 
alternative of using a buffered data bus should be 
considered since it simplifies the interfacing 
requirements and offers both increased drive cur­
rent capability and capacitive load immunity. The 
Intel® 8286 (non-inverting) and 8287 (inverting) 
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1---------- ONE BUSCYClE---------~ 

T, T2 T4 

ClK 

A19/S6-A16/S3 ~,--_A_O_O_RE_S_S_OU.;..T_-IXII..-_____ S_TA_J_US_O_U_T _____ --J}--

A15-Aa ~ ADDRESS OUT }--

AD7-ADO ADDRESS OUT DATA IN 

ALE , \~~ ____________ ~r-
101M ~,--______ lO_W_=_M_E_M_O_RY_R_E_A_O'_H_'G_H_=_'IO_RE_A_O _______ -'C 

\~ ______ ____J, 
---, ,---

OTI~ \ , ___ ~I ________________________ -'L' ___ _ 

DEN =~~~-JT/------------'\ .. ________ .... /r---T\~~= 
Figure 4-9.8088 Read Bus Cycle 

I----------ONE BUS CYClE----------­

T2 

ClK 

A'9ISS-A'SIS3 .~,--_A_D_D_RE_S_S_OU_T_-IX'I..-_____ S_TA_J_US_O_U_T _____ ~}--

A'5-AS ~ _________ AO_O_R_ES_S_O_U_T ________ ~}--

ADT-ADO ~ __ A_O_D_RE_S_S_O_UT_-IX,,--_____ DA_J_A_O_UT ______ --,}-

ALE , \~ ______________ ~r-
101M ~,--______ l_OW_=_ME_M_O_R_Y _W_RI_TE_, _HI_GH_=_'_IO_W_R_'T_E __________ C 

\'-------', 
~,-----~------------------~'r---

~~ , , ___ ~ L.;.. __ 

-----r,---------------------.\ ,---
DEN ____ J '-______ ----1' 

Figure 4-10.8088 Write Bus Cycle 
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Octal Bus Transceivers, shown in figure 4-12, are 
expressly designed to buffer the data bus. These 
transceivers use the CPU's DEN (Data Enable) 
and DT lif (Data Transmit/Receive) control 
signals to enable and control the direction of data 
on the bus. These signals provide the proper tim­
ing relationship to guarantee isolation of the 
address that is present on the multiplexed bus 
during state T 1. 

o Vee r 11 1 
MNIMX 

AD - eLK 

- 8284 WR 
RES CLOCK - READY 101M 

GENERATOR - RESET 

8088 
epu ALE 

ADDRESS 
A19-A16 

ADDRESS 
A15-Aa ~ 

AD7-ADO 
1.<1 ADDRESSIOATA It. 
I~ , 

Except where noted, all subsequent discussions 
and e.'{amples in this chapter assume a locally 
demultiplexed address bus and a buffered data 
bus. The resultant address and data buses from 
the address latches and data transceivers to the 
memory and 110 devices will be referred to collec­
tively as the "system" bus. 

STS 
ADDRESS BUS 

8282 

~.J,.~~ ~ ! ~ OR ~ 8283 
(2 OR 3) 

SEl RDWR 

DE 
MEMORY 110 PERIPHERAL 

1 DATA DATA 

~ ~ 

Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus 

o Vee 

Vee r I~ r 
MNIMX AD r-- eLK 

8284 \VA 
~ RES CLOCK r--- READY M/iO GENERATOR 

r-- RESET 

I 8086 SHE 
ALE STS epu 

I AdDRESS BUS ADDRESS I> 
A19-A16 8282 

OR 

j Jj I SHE 
8283 

A D15-ADO 
I ~ ADDRESSIOATA I> 

5Th 01- • OE .. 
! 

MEMORY 110 PERIPHERAL 

DATA DATA 

~ ! DATA BUS ! 
8286 

T OR 
8287 .... OE V" 
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Clock Circuit 

To establish the bus cycle time, the CPU requires 
an external clock signal. As an integral part of the 
8086 family, Intel offers the 8284 Clock 
Generator/Driver for this purpose. In addition to 
providing the primary (system) clock signal, this 
device provides both the hardware reset interface 
and the mechanism for the insertion of wait states 
in the bus cycle. 

The clock generator/driver requires an external 
series-resonant crystal input (or external frequen­
cy source) at three times the required system clock 
frequency (i.e., to operate the CPU at 5 MHz, a 
15 MHz fundamental frequency source is 
required). The divided-by-three output (CLK) 
from the 8284 is routed directly to the CPU's 
CLK input. The clock generator/driver provides a 
second clock output called PCLK (Peripheral 
Clock) at one half the frequency of the CLK out­
put and a buffered TTL level OSC (oscillator) 
output at the applied crystal input frequency. 
These outputs are available for use by system 
devices. 

The 8284's hardware reset function is accom­
plished with an internal Schmitt trigger circuit 
that is activated by the RES (Reset) input. When 
this input is pulled low (i.e., a contact closure to 
ground), the RESET output is activated syn­
chronously with the CLK signal. This signal must 
be active for four clock cycles and causes the CPU 
to fetch and execute the instruction at location 
FFFFOH. An external RC circuit is connected to 
the RES input to provide the power-on reset func­
tion (on power-on, the RES input must be active 
for 50 microseconds). The RESET output is 
coupled directly to the RESET input of the CPU 
as well as being available to system peripherals as 
the system reset signal. 

The insertion of wait states in the CPU's bus cycle 
is accomplished by deactivating one of the 8284's 
RDY inputs (RDYI or RDY2). Either of these 
inputs, when enabled by its corresponding AENI 
or AEN2 input, can be deactivated directly by a 
peripheral device when it must extend the CPU's 
bus cycle (when it is not ready to present or accept 
data) or by a "wait state generator" circuit (a 
logic circuit that holds the RDY input inactive for 
a given number of clock cycles). 

The READY output, which is synchronized to the 
CLK signal is coupled directly to the CPU's 
READY input. As shown in figure 4-13, when the 
addressed device needs to insert one or more wait 
states in a bus cycle, it deactivates the 8284's RDY 
input prior to the end of state T2 which causes the 
READY output to be deactivated at the end of 
state T2. The resultant wait state (TW) is inserted 
between states T3 and T4. To exit the wait state, 
the device activates the 8284's RDY input which 
causes the READY input to the CPU to go active 
at the end of the current wait state and allows the 
CPU to enter state T 4. 

Minimum/Maximum Mode 

A unique feature of the 8086 and 8088 CPUs is 
the ability of a user to define a subset of the 
CPU's control signal outputs in order to tailor the 
CPU to its intended system environment. This 
"system tailoring" is acc0l!!.l2lished by the strap­
ping of the CPU's MN/MX (minimum/max­
imum) input pin. Table 4-1 defines the 8086 and 
8088 pin assignments in both the minimum and 
maximum modes. 

I-------ONE BUS CYCLE------I 

T3 

elK 

ROV 'NPUT _____ ....",="" '" ,. 
READY OUTPUT _______ ...., 

\'--__ ---'1 

Figure 4-13. Wait State Timing 
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Table 4-1. Minimum/Maximum Mode Pin Assignments 

8086 

Mode 
Pin 

Minimum Maximum 

31 HOLD RQ/GTO 
30 HLDA RQ/GT1 
29 WR LOCK 
28 MilO S2 
27 DT/R 51 
26 DEN SO 
25 ALE QSO 
24 INTA QS1 

Minimum Mode 

In the minimum mode (MN/MX pin strapped to 
+5V), the CPU supports small, single-processor 
systems that consist of a few devices and that use 
the system bus rather than support the 
Multibus™ architecture. In the minimum mode, 
the CPU itse!f..-Aenerates all bus control 
signals (DT/R, DEN, ALE and either MilO or 
101M) and the command output signal (RD, WR 
or INT A), and provides a mechanism for 
requesting bus access (HOLD/HLDA) that is 
compatible with bus master type controllers (e.g., 
the Intel® 8237 and 8257 DMA Controllers). 

In the minimum mode, when a bus master 
requires bus access, it activates the HOLD input 
to the CPU (through its request logic). The CPU, 
in response to the "hold" request, activates 
HLDA as an acknowledgement to the bus master 
requesting the bus and simultaneously floats the 
system bus and control lines. Since a bus request 
is asynchronous, the CPU samples the HOLD 
input on the positive transition of each CLK 
signal and, as shown in figure 4-14, activates 
HLDA at the end of either the current bus cycle 
(if a bus cycle is in progress) or idle clock period. 
The hold state is maintained until the bus master 
inactivates the HOLD input at which time the 
CPU regains control of the system bus. Note that 
during a "hold" state, the CPU will continue to 
execute instructions until a bus cycle is required. 

Note that in the minimum mode, the I/O-memory 
control line for the 8088 CPU is the converse of 
the corresponding control line for the 8086 CPU 
(MilO on the 8086 and 101M on the 8088). This 
was done to provide the 8088 CPU, since it is an 
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8088 

Mode 
Pin 

Minimum Maximum 

31 HOLD RQ/GTO 
30 HLDA RQ/GT1 
29 WR LOCK 
28 101M S2 
27 DT/A" S1 
26 DEN SO 
25 ALE QSO 
24 INTA QS1 
34 SSO High State 

8-bit device, compatibility with existing 
MCS-85™ systems and specific MCS-85™ family 
devices (e.g., the Intel® 8155156). 

Maximum Mode 

In the maximum mode (MN/MX pin strapped to 
ground), an Intel® 8288 Bus Controller is added 
to provide a sophisticated bus control function 
and compatibility with the Multibus architecture 
(combining an Intel® 8289 Arbiter with the 8288 
permits the CPU to support multiple processors 
on the system bus). As shown in figure 4-15, the 
bus controller, rather than the CPU, provides all 
bus control and command outputs, and allows the 
pins previously delegated to these functions to be 
redefined to support multiprocessing functions. 

S2, S1 and SO 

ReferringJ,oJ'igure 4-15, the 8288 Bus Controller 
uses the S2, SI and SO status bit outputs from the 
CPU (and the 8089 lOP) to generate all bus con­
trol and command output signals required fm a 
bus cycle. The status bit outputs are decoded as 
outlined in table 4-2. (For a detailed description 
of the operation of the 8288 Bus Controller, refer 
to the associated data sheet in Appendix B.) 

The 8088 CPU, in the minimum mode, provides 
an SSO status output. This output is equivalent to 
SO in the maximum mode and can be decoded 
with DT IN: and 101M (inverted), which are 
equivalent to Si and S2 respectively, to provide 
the same CPU cycle status information defined in 
table 4-2. This type of decoding could be used in a 
minimum mode 8088-based system to allow 
dynamic RAM refresh during passive CPU cycles. 
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Figure 4-15. Elementary Maximum Mode System 

Table 4-2. Status Bit Decoding 

Status Inputs 
CPU Cycle 8288 Command 

S1 SO 

0 0 Interrupt Acknowledge INTA 
0 1 Read 1/0 Port 10RC 
1 0 Write 1/0 Port 10WC,AIOWC 
1 1 Halt None 
0 0 Instruction Fetch MRDC 
0 1 Read Memory MRDC 
1 0 Write Memory MWTC,AMWC 
1 1 Passive None 
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- ----RQ/GT1, RQ/GTO 

The Request/Grant signal lines (RQ/GTO and 
RQ/GTl) provide the CPU's bus access 
mechanism in the maximum mode (replacing the 
HOLD/HLDA function available in the 
minimum mode) and are designed expressly for 
multiprocessor applications using the 8089 110 
Processor in its local mode or other processors 
that can support this function. These lines are 
unique in that the request/grant function is 
accomplished over a single line (RQ/GTO 
or RQ/GTl) rather than the two-line 
HOLD/HLDA function. 

As shown in figure 4-16, the request/grant 
sequence is a three-phase cycle: request, grant and 
release. The sequence is initiated by another pro­
cessor on the s~em bus when it outputs a pulse 
on one of the RQ/GT lines to request bus access 
(request phase). In response, the CPU outputs a 
pulse (on the same line) at the end of either the 
current bus cycle (if a bus cycle is in progress) or 
idle clock period to indicate to the requesting pro­
cessor that it has floated the system bus and that it 
will logically disconnect from the bus controller 
on the next clock cycle (grant phase) and enter a 

"hold" state. Note that the CPU's execution unit 
(EU) continues to execute the instructions in the 
queue until an instruction requiring bus access is 
encountered or until the queue is empty. In the 
third (release) phase, the request~ processor 
again outputs a pulse on the RQ/GT line. This 
pulse alerts the CPU that the processor is ready to 
release the bus. The CPU regains bus access on its 
next clock cycle. Note that the exchange of pulses 
is synchronized and, accordingly, both the CPU 
and requesting processor must be referenced to 
the same clock signal. 

The request/ grant lines are prioritized with 
RQ/QTIj taking precedence over RQ/GTl. If a 
request arrives on both lines simultaneously, the 
processor o~RQ/GTO is granted the bus (the 
request on RQ/GTl is granted when the bus is 
released by the first processor following ~ne~ 
two clock channel transfer delay). Both RQ/GT 
lines (and the HOLD line in minimum mode) have 
a higher priority than a pending interrupt. 

Request/grant latency (the time interval between 
the receipt of a request pulse and the return of a 
grant pulse) for several conditions is given in table 
4-3. 

I T40R TI I 
CLK JLf\L 

RQ/GT :\D 
COPROCESSOR REQUESTS CPU GRANTS BUS COPROCESSOR RELEASES 

BUS ACCESS TO COPROCESSOR BUS 

Figure 4-16. Request/Grant Timing 

Table 4-3. Request/Grant Latency 

Operating Condition 
Request/Grant Delay 

8086 8088 

Normal Instruction Processing-LOCK inactive 3-6 (10*) clocks 3-10 clocks 

INTA Cycle Executing-LOCK active 15 clocks 15clocks 

Locked XCHG Instruction Processing-LOCK active 24-31 (39*) clocks 24-39 clocks 

*The number of clocks in parentheses applies when the instruction being executed references a word 
operand at an odd address boundary. 
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Latency during normal instruction processing 
(LOCK inactive) can be as short as three clock 
cycles (e.g., during execution of an instruction 
that does not reference memory) and no more 
than ten clock cycles. Whenever the LOCK out­
put is active (LOCK is activated during an inter­
rupt acknowledge cycle or during execution of an 
instruction with a Lock prefix), latency is 
increased. In the case of the execution of a locked 
XCHG instruction (used during semaphore 
examination), maximum latency is limited to 39 
clock cycles. Greater latencies occur when a 
"long" instruction is locked. This, however, is 
neither necessary nor recommended. 

At the end of processor activity, the 8086 or 
8088 will not redirve its control and data buses 
until two clock cycles following receipt of the 
release pulse (or two clock cycles after HOLD 
goes inactive in the minimum mode). 

A Hold request is honored immediately following 
CPU reset if the HOLD line is active when the 
RESET line goes inactive. This action facilitates 
the downloading of programs and, more 
specifically, the setting of memory location 
FFFFOH prior to CPU activation. Note that the 
same result can be effected in the maximum mode 
through the RQ/GT line by generating the request 
pulse in the first or second clock cycle after 
RESET goes inactive. 

LOCK 

The LOCK output is used in conjunction with an 
Intel 8289® Bus Arbiter to guarantee exclusive 
access of a shared system bus for the duration of 
an instruction. This output is software controlled 
and is effected by preceding the instruction 
requiring exclusive access with a one byte "lock" 
prefix (see instruction set description in Chapter 
2). 

When the lock prefix is decoded by the EU, the 
EU informs the BIU to activate the LOCK output 
during the next clock cycle. This signal remains 
active until one clock cycle after the execution of 
the associated instruction is concluded. 

QS1, QSO 

The QSl and QSO (Queue Status) outputs permit 
external monitoring of the CPU's internal 
instruction queue to allow instruction set exten-
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sion processing by a coprocessor. (The 
corresponding Intel ICE modules use these status 
bits during "trace" operations.) The encoding of 
the QSl and QSO bits is shown in table 4-4. 

Table 4-4. Queue Status Bit Decoding 

QS1 QSO Queue Status 

o (low) 0 No Operation. During the last 
clock cycle, nothing was taken 
from the queue. 

0 1 First Byte. The byte taken from the 
queue was the first byte of the 
instruction. 

1 (high) 0 Queue Empty. The queue has 
been reinitialized as a result of the 
execution of a transfer instruction. 

1 1 Subsequent Byte. The byte taken 
from the queue was a subsequent 
byte of the instruction. 

The queue status is valid during the clock cycle 
after the indicated activity has occurred. 

External Memory Addressing 

The 8086 and 8088 CPUs have a 20-bit address 
bus and are capable of accessing one megabyte of 
memory address space. 

The 8086 memory address space consists of a 
sequence of up to one million individual bytes in 
which any two consecutive bytes can be accessed 
as a 16-bit data word. As shown in figure 4-17, 
the memory address space is physically divided 
into two banks of up to 512k bytes each. 

One bank is associated with the lower half of the 
CPU's 16-bit data bus (data bits D7-DO), and the 
other bank is associated with the upper half of the 
data bus (data bits DI5-D8). Address bits A19 
through Al are used to simultaneously address a 
specific byte location in both the upper and lower 
banks, and the AOaddress bit is not used in 
memory addressing. Instead, AO is used in 
memory bank selection. The lower bank, which 
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Figure 4-17.8086 Memory Interface 

contains even-address bytes, is selected when 
AO=O. The upper bank, containing odd address 
bytes (AO=l), is selected by a separate signal, Bus 
High Enable (BHE). Table 4-5 defines the 
BHE-AO bank selection mechanism. 

Table 4-5. Memory Bank Selection 

BHE AO Byte Transferred 

o (low) 0 Both bytes 
0 1 Upper byte to/from odd address 
1 (high) 0 Lower byte to/from even address 
1 1 None 

When accessing a data byte at an even address, 
the byte is transferred to or from the lower bank 
on the lower half of the data bus (D7-DO). In this 
case, the inactive level of the AO address bit 
enables the addressed byte in the lower bank, and 
the inactive level of the BHE signal disables the 
addressed byte in the upper bank. Conversely, 
when performing a byte access at an odd address, 
the data byte is transferred to or from the upper 
bank on the upper half of the data bus (D15-D8). 
The active level of the BHE signal enables the 
upper bank, and the active level of the AO address 
bit disables the lower bank. 

As indicated in table 4-5, the. 8086 can access a 
byte in both the upper and lower banks 
simultaneously as a 16-bit word. When the low­
order byte of the word to be accessed is on an 
even address boundary (that is, when the low-
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order byte is in the lower bank), the word is said 
to be "aligned" and can be accessed in a single 
operation (a single bus cycle). As with the byte 
transfers previously described, address bits A19 
through Al address both banks, except that now 
BHE is active (selecting the upper bank) and AO is 
inactive (selecting the lower bank) to access both 
bytes. 

When the low-order byte of the word to be 
accessed is on an odd address boundary (when the 
low-order byte is in the upper bank), the word is 
"not aligned" and must be accessed in two bus 
cycles. During the first cycle, the low-order byte 
of the word is transferred to or from the upper 
bank as described for a byte access at an odd 
address (AO and BHE active). The memory 
address is then incremented, which causes AO to 
shift to an inactive level (selecting the lower 
bank), and a byte access at an even address is per­
formed during the next bus cycle to transfer the 
word's high-order byte to or from the lower bank. 
The above sequence is initiated automatically by 
the 8086 whenever a word access at an odd 
address is performed. Also, the directing of the 
high- and low-order bytes of the 8086's internal 
word registers to the appropriate halves of the 
data bus is performed automatically and, except 
for the additional four clock cycles required to 
execute the second bus cycle, the entire operation 
is transparent to the program. 

The 8088 memory address space is logically 
organized as a linear array of up to one million 
bytes. Since the 8088 uses an 8-bit-wide data bus, 
memory consists of a single bank. Address bit AO 
is used to address memory, and a BHE signal is 
not provided. 

Word (16-bit) operands can be located at odd- or 
even-address boundaries. The low-order byte of 
the word is stored in the lower-valued address 
location, and the high-order byte is stored in the 
next, higher-valued address location. The 8088 
automatically executes two bus cycles when 
accessing word operands. 

I/O Interfacing 

The 8086 and 8088 CPUs support both I/O 
mapped I/O and memory mapped I/O. I/O 
mapped I/O permits an I/O device to reside in a 
separate address space (first 64k of address 
space), and the standard I/O instruction set is 
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available for device communications. Memory 
mapped 1/0 permits an 110 device to reside 
anywhere in memory and allows the complete 
CPU instruction set to be used for 1/0 
operations. 

The 8086 supports both 8-bit and 16-bit 1/0 
devices. An 8-bit 110 device may be associated 
with either the upper or ·lower half of the data 
bus. (Assigning an equal number of devices to 
each half of the data bus distributes bus loading.) 
When an 1/0 device is assigned to the lower half 
of the bus (D7-DO), aU 110 addresses must be 
even (AO equal "0"), and when an 1/0 device is 
assigned to the upper half of the bus, all 110 
addresses must be odd (AO equal" 1 "). Note that 
since AO always will be either a "1" or a "0" for 
a specific device, it cannot be used as an address 
input to select registers within the I/O device. 
When an 110 device on the upper. half of the bus 
and an 1/0 device on the lower half of the bus are 
assigned addresses that differ only by the state,of 
AO (adjacent odd and even addresses), AO and 
BHE both must be conditions of device selection 
to prevent a write operation to one device from 
overwriting data in the other device. 

To permit data transfers to 16-bit I/O devices to 
be performed in a single bus cycle, the device is 
assigned an even address .. To ensure that the 110 
device is selected only for word transfers, AO and 
BHE both must be conditions of device selection. 

The 8088, since its data bus is eight bits wide, is 
designed to support 8-bit 110 devices and places 
no restrictions on odd or even addresses. 

When the 8086 or the 8088 is operated in the 
minimum mode, the CPU's read and write com­
mands (RD and WR) are common for memory 
and 110 devices. If the memory and 1/0 address 
spaces ..QY,erlap, device selection must be qualified 
by MilO (8086) or 101M (8088) to determine if 
the device is memory or 110. This restriction does 
not apply to systems in which 1/0 and memory 
addresses' do not overlap or to systems that use 
memory-mapped 1/0 exclusively. In the max­
imum mode, the CPU generates (through the bus 
controller) separate memory readlwrite and 110 
readlwrite commands in place of the MilO or 
101M signal. In a maximum mode system, an 1/0 
device is assigned to an 110 address or to a 
memory address (memory mapped 1/0) by con­
necting either the memory or 110 re~d/write como. 
mand lines to the device's command inputs. 

4-16 

When the 1/0 and memory address spaces 
overlap, device selection is determined by the 
appropriate read/write command set. 

Interrupts 

CPU interrupts can be software or hardware 
initiated. Software interrupts originate directly 
from program execution (i.e., execution of a 
breakpointed instruction) or indirectly through 
program logic (i.e., attempting to divide by zero). 
Hardware interrupts originate from external logic 
and are classified as either non-maskable or 
maskable. All interrupts, whether software or 
hardware initiated, result in the transfer of con­
trol to a new program location. A 256-entry vec'­
tor table, which contains address pointers to the 
interrupt routines, resides in absolute locations 0 
through 3FFH. Each entry in this table consists of 
two 16-bit address values ,(four bytes) that are 
loaded into the code segment (CS) and the 
instruction pointer (IP) registers. as the int~rrupt 
routine address when an. interrupt is accepted. 
Figure 4-18 illustrates the organization of tbe 256-
entry vector table. 
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Figure 4-18. Interrupt Vector Table 
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As shown in figure 4-18, the first five interrupt 
vectors are assoCiated with the software-initiated 
interrupts and the hardware non-mask able inter­
rupt (NMI). The next 27 interrupt vectors are 
reserved by Intel and should not be used if com­
patibility with future Intel products is to be main­
tained. The remaining interrupt vectors (vectors 
32 thorugh 255) are available for user interrupt 
routines. 

The non-mask able interrupt (NMI) occurs as a 
result of a positive transition at the CPU's NMI 
input pin. This input is asynchronous and, in 
order to ensure that it is recognized, is required to 
have a minimum duration of two clock cycles. 
NMI is typically used with power fail circuitry, 

. error correcting memory or bus parity detection 
logic to allow fast response to these fault condi­
tions. When NMI is activated, control is trans­
ferred to the interrupt service routine pointed to 
by vector 2 following execution of the current 
instruction. When a non-maskable interrupt is 
acknowledged, the current contents of the flags 
register are pushed onto the stack (the stack 
pointer is decremented by two), the interrupt 
enable and trap bits in the flags register are 
cleared (disabling maskable and single-step inter­
rupts), and the vector 2 CS and IP address 
pointers are loaded into the CS and IP registers as 
the interrupt service routine address. 

CLK 

The CPU provides a single interrupt request input 
(INTR) that can be software masked by clearing 
the interrupt enable bit in the flags register 
through the execution of a CLI instruction. The 
INTR input is level triggered and is synchronized 
internally to the positive transition of the CLK 
signal. In order to be accepted before the next 
instruction, INTR must be active during the clock 
period preceding the end of the current instruc­
tion (and the interrupt enable bit must be set). 

As shown in figure 4-19, when a maskable inter­
rupt is acknowledged, the CPU executes two 
interrupt acknowledge bus cycles. 

During the first bus cycle, the CPU floats the 
address/ data bus and activates the INT A (Inter­
rupt Acknowledge) command output during 
states T2 through T4' In the minimum mode, the 
CPU will not recognize a hold request from 
another bus master until the full interrupt 
acknowledge sequence is completed. In the max­
imum mode, the CPU activates the LOCK output 
from state T2 of the first bus cycle until state T2 
of the second bus cycle to signal all 8289 Bus 
Arbiters in the system that the bus should not be 
accessed by any other processor. During the 
second bus cycle, the CPU again activates its 
INT A command output. In response to the 

ALEI' n r 
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Figure 4-19, Interrupt Acknowledge Sequence 
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second INT A, the external interrupt system (e.g., 
an Intel® 8259A Programmable Interrupt Con­
troller) places a byte on the data bus that iden­
tifies the source of the interrupt (the vector 
number or vector "type"). This byte is read by 
the CPU and then multiplied by four with the 
resultant value used as a pointer into the interrupt 
vector table. Before calling the' corresponding 
interrupt routine, the. CPU saves the machine 
status by pushing the current contents of the flags 
register onto the stack. The CPU then clears the 
interrupt enable and trap bits in the flags register 
to prevent subsequent .maskable and sing~e-step 
interrupts, and establishes the interrupt routine 
return linkage by pushing the current CS and IP 
register contents onto the stack before loading the 
new CS and IP register values from the vector 
table. 

I 

The four classes of interrupts are prioritized with 
software-initiated interrupts having the highest 
priority and with maskable and single-step inter­
rupts sharing the lowest priority (see section 2.6). 
Since the CPU disables maskable and single-step 
interrupts when acknowledging any interrupt, if 
recognition of maskable interrupts or single-step 
operation is required as part of the interrupt 
routine, the routine first must set these bits. 

The processing times for the various classes of 
interrupts are given in table 4-6. (These times also 
are Included with the 8086/8088 instruction times 
cited in section 2.7.) 

Table 4-6. Interrupt Processing Time 

Interrupt Class Processing Time 

External Maskable Interrupt 
(lNTR) 61 clocks 

Non-Maskable Interrupt (NMI) 50 clocks 

INT (with vector) 51 clocks 
INT Type 3 52 clocks 
INTO 53 clocks 

Single Step 50 clocks 

Note that the times shown in table 4-6 represent 
only the time required to process the interrupt 
request after it has been recognized. To determine 
interrupt latency (the time interval between the 
posting of the interrupt request and the execution 
of "useful" instructions within the interrupt 
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routine), additional time must be included for the 
completion on an instruction being executed when 
the interrupt is posted (interrupts are generally 
processed' only at instruction boundaries), for 
saving the contents of any additional registers 
prior to interrupt processing (interrupts 
automatically save only CS, IP and Flags) and for 
any wait states that may be incurred during inter­
rupt processing. 

Machine Instruction Encoding and 
Decoding . . 

Writing a MOV instruction in ASM-86 in the 
form: 

MOV destination,source 

will cause the assembler to generate 1 of 28 pos­
sible forms of the MOV machine instruction. A 
programmer rarely needs to know the details of 
machine instruction formats or encoding. An 
exception may occur during debugging when it 
may be necessary to monitor instructions fetched 
on the bus, read unformatted memory dumps, 
etc. This section provides the information 
necessary to translate or decode an 8086 or 8088 
machine instruction. • 

To pack instructions into memory as densely as 
possible, the 8086 and 8088 CPUs utilize aneffi­
cient coding technique. Machine instructions vary 
from one to six bytes in length. One-byte instruc­
tions, which generally operate on single registers 
or flags, are simple to identify. The keys to 
decoding longer instructions are in the first two 
bytes. The format of these bytes can varY,but 
most instructions follow the format shown in 
figure 4-20. 

The first six bits of a multibyte instruction 
generally contain an opcode that identifies the 
basic instruction type: ADD, XOR, etc. The 
following bit, called the D field, generally 
specifies the "direction" of the operation: 1 = the 
REG field in the second byte identifies the 
destination operand, 0 = the REG field identifies 
the source operand. The W field distinguishes 
between byte and word operations: 0 = byte, 1 = 
word. 

One of three additional single-bit fields, S, V or 
Z, appears in some instruction formats. S is used 
in conjunction with W to indicate sign extension 
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of immediate fields in arithmetic instructions. V 
distinguishes between single- and variable-bit 
shifts and rotates. Z is used as a compare bit with 

the zero flag in conditional repeat and loop 
instructions. All single-bit field settings are sum­
marized in table 4-7. 

BYTE 3 BYTE 4 BYTE 5 BYTE 6 
r-TTM;;';'"T'"I""T-r~~;';-I""T'" - - - - - -,- - - - - - r - - - - -..., - - - - - - 1 

I I I I 
.......................... -t-H-'-+''--'--t-&.-.L-I LOW DISP/DATA I HIGH DISP/DATA I LOW DATA I HIGH DATA I 

I I I I 
'--'!"""-""""""""P"'''''-",!-''''-''''I'''''''- - - - - - - - - - - - ~ - - - - - -'- - - - - _.J 

~ REGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION 

REGISTER OPERAND/EXTENSION OF OPCODE 

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH 

WORD/BYTE OPERATION 

L-______ DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER 

L-_________ OPERATION (INSTRUCTION) CODE 

Figure 4-20. TypicalSOS6/S0SS Machine Instruction Format 

Table 4-7. Single-Bit Field Encoding 

Field Value Function 

S 
0 No sign extension 
1 Sign extend 8-bit immediate data to 16 bits if W=1 

W 
0 Instruction operates on byte data 
1 Instruction operates on word data 

0 
0 Instruction source is specified in REG field 
1 Instruction destination is specified in REG field 

V 
0 Shift/rotate count is one 
1 Shift/rotate count is specified in CL register 

Z 
0 Repeatlloop while zero flag is clear 
1 Repeatlloop while zero flag is set 
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The second byte of the instruction usually iden­
tifies the instruction's operands: The MOD 
(mode) field indicates whether one of the 
operands is in memory or whether both operands 
are registers (see. table 4-8). The REG (register) 
field identifies a register that is one of the instruc­
tion operands (see table 4-9). In a number of 
instructions, chiefly the immediate-to-memory 
variety, REG is used as an extension of the 
opcode to identify the type of operation. The 
encoding of the RIM (register Imemory) field (see 
table 4-10) depends on how the mode field is set. 
If MOD = 11 (register-to-register mode), then 
RIM identifies the second register operand. If 
MOD selects memory mode, then RIM indicates 
how the effective address of the memory operand 
is to be calculated. Effective address calculation 
is covered in detail in section 2.8. 

Bytes 3 through 6 of an instruction are optional 
fields that usually contain the displacement value 
of a memory operand and I or the actual value of 
an immediate constant operand. 

Table 4-8. MOD (Mode) Field Encoding 

CODE EXPLANATION 

00 Memory Mode, no displacement 
follows* 

01 Memory Mode, 8-bit 
displacement follows 

10 Memory Mode, 16-bit 
displacement follows 

11 Register Mode (no 
displacement) 

*Except when RIM = 110, then 16-bit 
displacement follows 

Table 4-9. REG (Register) Field Encoding 

REG W=O W=1 

000 AL AX 
001 CL CX 
010 OL OX 
011 BL BX 
100 AH SP 
101 CH BP 
110 OH SI 
111 BH 01 

There may be one or two displacement bytes; the 
language translators generate one byte whenever 
possible. The .. MOD field. i.ndicates how many 
displacement bytes are present. Following Intel 
convention, if the displacement is two bytes, the 
most-significant byte is stored second in the 
instruction. If the displacement is only a single 
byte, the 8086 or 8088 automatically sign-extends 
this quantity to 16-bits before using the informa­
tion in further address calculations. Immediate 
values always follow any displacement values that 
may be present. The second byte of a two-byte 
immediate value is the most significant. 

Table 4-12 lists the instruction encodings for all 
8086/8088 instructions. This table can be used to 
predict the machine encoding of any ASM-86 
instruction. Table 4-13 lists the 8086/8088 
machine instructions in order by the binary value. 
of their first byte. This table can be used to 
decode any machine instruction from its binary 
representation. Table 4-11 is a key to the 
abbreviations used in tables 4-12 and 4-13. Table 
4-14 is a more compact instruction decoding 

. guide. 

Table 4-10. R/M (Register/Memory) Field Encoding 

MOD=11 EFFECTIVE ADDRESS CALCULATION 

RIM W=O W=1 RIM MOD=OO MOD=G1 MOD=1Q 

000 AL AX 000 (aX)+(SI) (BX) + (SI) + 08 (BX)+(SI)+ 016 
001 CL CX 001 (BX)+(OI) (BX) + (01) + 08 (BX)+(01)+016 
010 OL OX 010 (BP)+(SI) (BP)+(SI)+08 (BP)+(SI)+016 
011 BL BX 011 (BP)+(OI) (BP) + (01) + 08 (BP)+(01)+016 
100 AH SP 100 (SI) (SI)+08 (51)+016 
101 CH BP 101 (01) (01)+08 (01)+016 
110 OH SI 110 OiRECT AOORESS (BP)+08 (BP)+016 
111 BH 01 111 (BX) (BX)+08 (BX)+D16 



IDENTIFIER 

MOD 

REG 

R/M 

SR 

W,S,D,V,Z 

DATA-8 

DATA-SX 

DATA-LO 

DATA-HI 

(DISP-LO) 

(DISP-HI) 

IP-LO 

IP-HI 

CS-LO 

CS-HI 

IP-INC8 

IP-INC-LO 

IP-INC-HI 

ADDR-LO 

ADDR-HI 

xxx 
YYY 
REG8 

REG16 

MEM8 

MEM16 

IMMED8 

IMMED16 

SEGREG 

DEST-STR8 
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Table 4-11. Key to Machine Instruction Encoding and Decoding 

EXPLANATION 

Mode field; described in this chapter. 

Register field; described in this chapter. 

Register/Memory field; described in this chapter. 

Segment register code: OO=ES, 01=CS, 10=SS, 11 =DS. 

Single-bit instruction fields; described in this chapter. 

8-bit immediate constant. 

8-bit immediate value that is automatically sign-extended to 16-bits 
before use. 

Low-order byte of 16-bit immediate constant. 

High-order byte of 16-bit immediate constant. 

Low-order byte of optional 8- or 16-bit unsigned displacement; MOD 
indicates if present. 

High-order byte of optional 16-bit unsigned displacement; MOD 
indicates if present. 

Low-order byte of new IP value. 

High-order byte of new IP value 

Low-order byte of new CS value. 

High-order byte of new CS value. 

8-bit signed increment to instruction pointer. 

Low-order byte of signed 16-bit instruction pointer increment. 

High-order byte of signed 16-bit instruction pointer increment. 

Low-order byte of direct address (offset) of memory operand; EA not 
calculated. 

High-order byte of direct address (offset) of memory operand; EA not 
calculated. 

Bits may contain any value. 

First 3 bits of ESC opcode. 

Second 3 bits of ESC opcode. 

8-bit general register operand. 

16-bit general register operand. 

8-blt memory operand (any addressing mode). 

16-bit memory operand (any addressing mode). 

8-bit immediate operand. 

16-bit immediate operand. 

Segment register operand. 

Byte string addressed by 01. 
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Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont'd.) 

IDENTIFIER EXPLANATION 

SRC-STRB Byte string addressed by SI. 

OEST-STR16 Word string addressed by 01. 

SRC-STR16 Word string addressed by SI. 

SHORT-LABEL Label within ±127 bytes of instruction. 

NEAR-PROC Procedure in current code segment. 

FAR-PROC Procedure in another code segment. 

NEAR-LABEL Label in current code segment but farther than -12B to +127 bytes 
from instruction. 

FAR-LABEL Label in another code segment. 

SOURCE-TABLE XLAT translation table addressed by BX. 

OPCOOE ESC opcode operand. 

SOURCE ESC register or memory operand. 

Table 4-12.8086 Instruction Encoding 

DATA TRANSFER 

MOV = Move: 765432107654321076543210765432107654321076543210 

Registerfmemory to/from register 100010dw mod reg rim (DISP·LO) (DISP·HI) I 
Immediate to register/memory 1 1 0 0 0 1 1 w mod o 0 0 rim (DISP·LO) (DISP·HI) I data I dataifw=1 

J 
Immediate to register 1 0 1 1 w reg data data if w = 1 

Memory to accumulator 1010000w addr·lo addr-hi 

Accumulator to memory 1010001w addr-Io addr-hi 

Aegisterlmemory to segment register 1 0 0 0 1 1 1 0 mod 0 SR rim (DISP·LO) (DISP·HI) I 
Segment register to register/memory 10001100 mod 0 SR rim (DISP·LO) (DISP·HI) J 

PUSH = Push: 

Register/memory 11111111 mod 1 1 a rIm I (DISP·LO) I (DISP·HI) J 
Register 01010 re9 

Segment register 000reg110 

POP = Pop: 

Register/memory 1 0 0 0 1 1 1 1 mod a 0 0 rIm J (DISp·LO) I (DISP·HI) I 
Register o 1 0 1 1 reg 

Segment register 000re9111 
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Table 4-12.8086 Instruction Encoding (Cont'd.) 

DATA TRANSFER (Cont'd.) 

XCHG =- ExChlnge: 75S432tO 785432tO 78S432tO 78543210 71,432tO 71'43210 

Reglsterl memory with register 

Register with accumulator 

IN == Input from: 

Fixed port 

Variable port 

OUT = Output tD: 

Fixed port 1 1 1 0 0 1 1 w DATA·S 

Variable port 1 1 1 0' 1 1 w 

XLAT = Translate byte to AL 1 1 0 1 0 1 1 1 

LEA = Load EA to register 1 0 0 0 1 1 0 1 mod reg rim (DISP·LO) (DISP-HI) 

LOS = Load pointer to OS 1 1 0 0 0 1 0 1 mod reg rim (DISP·LO) (DISP·HI) 

LES = Load pointer to ES 11000100 mod reg rim (DlSP·LD) (DISP·HI) 

LAHF • Load AH with flags 1 0 0 1 1 111 

SAHF = Store AH Into flags 1 0 0 1 1 1 1 0 

PUSHF =- Push flags 1 0 0 1 1 1 0 0 

POPF • Pop flags 1 0 0 1 1 1 0 1 

ARITHMETIC 

ADD. Add: 

Regl memory with register to either OOOOOOdw mod reg rim (DISP-LO) (DISP·HI) I 
Immediate to register/memory 100000sw mod o 0 0 rim (DISP·LO) (DISp·HI) I data T data If s: w=01 1 
Immediate to accumulator 0000010w data data ifw"" 

Aoe =- AcId with carry: 

Reg/ memory with register to either 000100dw mod rog rim (DISP·LO) (DISP·HI) I 
Immediate to register/memory 100000sw mod o 1 0 rim (DISP·LD) (DlSP·HI) 1 data I data If 8: w-01 I 
Immediate to accumulator 0001010w data data It w-, 

INC. Increment: 

Reglster/memory 1111111 w mod 0 0 0 rim I (DISP-LD) I (DISP·HI) I 
Register 01000rog 

AAA • ASCII adjust for add o 0 1 1 0 1 1 1 

OM = Decimal adjust for add o 0 1 o 0 1 1 1 
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Table 4-12.8086 Instruction Encoding (Cont'd.) 

ARITHMETIC (Conl'd.) 

SUB = Subtract: 78543210 78543210 78543210 78543210 78543210 78543210 

Reg I memory and register to either 001010dw mod reg rim IOISP-LO) IOISP-HI) 

Immediate from reglsterfmemory 100000sw mod 1 0 1 rim IOISP-LO) IOISP-HI) data I data if s: w=Ol I 
Immediate from accumulator 0010110w data datalfw=l 

sss = Subtract with borrow: 

Reg/memory and register to either 0OO110dw mod reg rim IOISP-LO) IOISP-HI) I 
Immediate from register/memory 100000sw mod o 1 1 rim IOISP-LO) IOISP-HI) I data 1 data if s: w=Ol J 
Immediate from accumulator 0001110w data data if w=l 

DEC Oecremenl: 

Register/memory 1 1 1 1 1 1 1 w mod 0 0 1 rIm i IOISP-LO) I IOISP-HI) I 
Register 01001reg 

NEG Change sign 1 1 1 1 01 1 w mod 0 1 1 rIm I IOISP·LO) I IOISP-HI) I 

CMP ;;; Compara: 

Register/memory and register 001110dw mod reg rim IOISP-LO) IOISP-HI) 

Immediate with register/memory 100000sw mod 1 11 rim IOISP-LO) IOISP-HI) data I data if s: w=l I 
Immediate with accumulator o 0 1 1 1 lOw data 

AAS ASCII adjust for ;;ubtract o 0 1 111 11 

CAS Decimal adjust for subtract o 0 1 o 1 1 11 

MUL Multiply (unsigned) 1111 01 1 w mod 1 0 0 rim IOISP-LO) IOISP-HI) 

IMUL Integer multiply (signed) 1111 o 1 1 w mod 1 o 1 rim IOISP-LO) IOISP-HI) 

AAM ASCII adjust for multiply 1 1 0 1 0 1 0 0 00001010 IOISP-LO) IOISP-HI) 

DIV Divide (unsigned) 1 1 1 1 01 1 w mod 1 1 0 rIm IOISP-LO) IOISP-HI) 

IDIV Integer divide (signed) 1 1 1 1 0 1 1 w mod 1 11 rim IOISP-LO) IOISp·HI) 

AAD ASCII adjust for divide 1 1 0 1 o 1 0 1 00001010 IOISP-LO) IOISP-HI) 

caw Convert byte to word 1 0 0 1 1 o 0 0 

CWD Convert word to double word 1 0 0 1 1 o 0 1 

LOGIC 

NOT Invert 1 1 1 1 01 1 w mod 0 1 o rIm IOISP-LO) IOISP-HI) 

SHLJSAl Shift loglcallarithmetic left 11 0100vw mod 1 o 0 rim IOISP-LO) IOISP-HI) 

SHR Shift logical right 110100vw mod 1 o 1 rim IOISp·LO) IOISP-HI) 

SAR Shift arithmetic right 1 1 0 1 o 0 v w mod 1 1 1 rim IOISP-LO) IOISp·HI) 

ROl Rotate left 1 1 0 1 o 0 v w mod 0 0 0 rim IOISP·LO) IOISP-HI) 
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Table 4"12. 8086 Instruction Encoding (Cont'd.) 

LOGIC (Conl'd,) 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5·4 3 2 1 0 

ROR Rotate ,right 1 1 a 1 o 0 v w mod o 0 1 rim (DISP-LOI (DISP-HII 

RCL Rotate through carry flag left I I o 1 o 0 v w mod 0 1 a rIm (DISP-LOI (DISP-HII 

RCR Rotate through carry right 1 1 0 1 a a v w mod o 1 1 rim (DISP-LOI (DISP-HII 

AND = And: 

Reg/memory with register to either 0010QOdw mod reg rim (DISP-LOI IDISP-HII I 
Immediate to registerl memory 1000000w mod 1 o 0 rim (DISP-LOI (DISP-HII I data I data jf w=1 I 
Immediate 10 accumulator 0010010w data data if w=1 

TEST = And function to flags no result: 

Register/memory and register OOQ100dw mod reg rim IDISP-LO) I (DISP-HI) I 
Immediate data and register/memory 1 I 1 1 01 1 w mod o 0 0 rim (DISP-LO) I (DISP-HII I data I data if w=1 1 
Immediate data and accumulator I 0 1 o 1 0 0 w data 

OR = Or: 

Reg! memory and register to either 0OOO10dw mod reg rim (OISP-LO) (DISP-HI) I 
Immediate to register Imemory 1QOOOOOw mod o 0 1 rim (DISP-LO) (DISP-HI) I data I data ifw=1 I 
Immediate to accumulator 0OOO11Qw data data if w=1 

XOR = Exclusive or: 

Reg/memory and register to either o 0 1 1 a 0 d w mod reg rim (DISP-LOI (DISP-HII I 
Immediate to register/memory o 0 I 1 0 1 0 w data (DISP-LO) (DISP-HII I data I data ifw=1 I 
Immediate to accumulator o 0 1 1 0 1 0 w data data if w=1 

STRING MANIPULATION 

REP = Repeat 1 1 1 1 0 a 1 z 

MOVS=Move byte/word 1 0 1 o 0 1 0 w 

CMPS=Compare byte/word I 0 1 o 0 1 1 w 

SCA5=Scan byte/word I 0 .1 o I 11 w 

LOOS=Load bytelwd to ALIAX I 0 1 o 1 lOw 

STDS=Stor bytelwd from ALIA I 0 1 a 1 0 1 w 
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Table 4-12.8086 Instruction Encoding (Cont'd.) 

CONTROL TRANSFER 

CALL = Call: 765432107654321076543210765432107654321078543210 

Direct within segment 

Indirect within segment 

Direct intersegment 

Indirect intersegment 

JMP = Unconditional Jump: 

Direct within segment 

Direct within segment-short 

Indirect within segment 

Di~ect intersegment 

Indirect intersegment 

RET = Return trom CALL: 

Within segment 

Within seg adding immecl to SP 

Intersegment 

Intersegment adding Immediate to SP 

JE/JZ=Jump on equal/zero 

JL/JNGE=Jump on less/not greater or equal 

JLE/JNG =Jump on less or equal/not greater~ 

JB/JNAE=Jump on below/not above or equal 

JBE/JNA.=Jump on below or equal/nol above 

JP/JPE=Jump on parity/parity eVen 

JO=Jump on overflow 

JS=Jump on sign 

JNE/JNZ_Jump on not equallnot zerO 

JNL/JGE-Jump on npt less/greater or equal 

JNLE/JG _Jump on not le88 or equal/greater 

JNB/JAE_Jump on not below/above oreque! 

JNBE/JA=Jump on not below or equal/above 

JNP/JPO-Jump on not par/par odd 

JNO_Jumpon not overflow 
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11 1 0 1 o 0 0 

11 11 1111 

1 00 11 o 1 0 

11111 1 11 

1 1 1 0 1 o 0 1 

111 o 1 o 1 1 

11 111 111 

11 1 0 1 01 0 

111111 1 1 

11000011 

11 o 0 0 0 1 0 

11 o 0 1 o 1 1 

11 o 0 1 o 1 0 

o 1 11 o 1 o 0 

o 1 1 111 o 0 

o 1 111 1 1 0 

o 1 1 1 0 0 1 0 

o 1 1 1 0 1 1 0 

o 1 1 1 10 1 0 

o 1 1 1 0 0 0 0 

o 1 1 1 1 0 0 0 

o 1 1 1 0 1 o 1 

o 1 1 111 o 1 

o 1 111111 

o 1 1 1 0 0 1 1 

o 1 1 1 0 1 1 1 

o 1 1 1 1 0 1 1 

o 1 1 1 0 0 0 1 

IP-INC-LO IP-INC-HI 

mod o 1 0 rim (DISP-LO) (DISP-HI) I 
Ip·lo Ip·hi 

CS·lo CS·hi 

mod o 1 1 rim (DISP-LO) (DISP-HI) I 

IP-ING-LO Ip·INC·HI 

IP-INC8 

mod 1 0 0 rim (DISP-LO) (DISP-HI) I 
lp·lo Ip·hi 

CS·lo CS-hl 

mod 1 0 1 rim (DISP-LO) (DISP-HI) I 

data·lo data·hi I 
data·lo data·hi I 
IP-INC8 

IP-INC8 

IP-INCB 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INC8 

IP-INCB 

IP~INCB 

IP-INC8 

IP-INC8 
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Table 4-12.8086 Instruction Encoding (Cont'd.) 

CONTROL TRANSFER (Cont'd.) 

RET = Return from CALL: 76543210 76543210 76543210 76543210 76543210 76543210 

JNS=Jumpon not sign o 1 1 1 1 0 0 1 IP-INC8 

LOOP= Loop ex times 1 1 1 0 0 0 1 0 IP-INC8 

LOOPZ/LOOPE = Loop while zero/equal 11100001 IP-INC8 

LOOPNZ/LOOPNE = Loop while not zero/aqua I 11100000 IP-INC8 

JCXZ=Jump on ex zero 11100011 IP-INC8 

INT' = Interrupt: 

Type specified 1 1 0 0 1 1 0 1 DATA-8 I 
Type3 1 1 a 0 1 1 0 0 

INTO= Interrupt on overflow 1 1 0 0 1 1 1 0 

IRET = Interrupt return 1 1 0 0 1 1 1 1 

PROCESSOR CONTROL 

CLC = Clear carry 1 1 1 1 1 0 0 a 

CMC =Complement carry 1 1 1 1 0 1 0 1 

STC = Set carry 1 1 1 1 1 0 0 1 

CLD =Clear direction 1 1 1 1 1 1 0 0 

5TO=5et direction 1 1 1 1 1 1 0 1 

CL1=Clear interrupt 1 1 1 1 1 0 1 0 

STI=Set Interrupt 1 1 1 1 1 0 1 1 

HLT=Halt 11110100 

WAIT=Wait 1 0 0 1 1 0 1 1 

ESC = Escape (to extern~1 device) 1 1 0 1 1 x x x modyyyr/m I (DISP-LO) I (DISP-HI) I 
lOCK=Bus lock prefix 1 1 1 1 0 0 0 0 

SEGMENT=Override prefix 001re9 11 O 

Table 4-13. Machine Instruction Decoding Guide 

1ST BYTE 
2ND BYTE BYTES 3, 4, 5, 6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

00 0000 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG8/MEM8,REG8 
01 0000 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG16/MEM16,REG16 
02 0000 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG8,REG8/MEM8 
03 0000 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADD REG16,REG16/MEM16 
04 0000 0100 DATA-8 ADD AL,IMMED8 
05 0000 0101 DATA-LO DATA-HI ADD AX,IMMED16 
06 0000 0110 PUSH ES 
07 0000 0111 POP ES 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

08 0000 1000 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8/MEM8,REG8 
09 0000 1001. MOD REG RIM (DISP-LO),(DISP-HI) OR REG16/MEM16,REG16 
OA 0000 1010 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8,REG8/MEM8 
OB 0000 1011 MOD REG RIM (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16 
OC 0000 1100 DATA-8 OR AL,IMMED8 
00 0000 1101 DATA-LO DATA-HI OR AX,IMMED16 
OE 0000 1110 PUSH CS 
OF 0000 1111 (not used) 
10 0001 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8/MEM8,REG8 
11 0001 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16/MEM16,REG16 
12 0001 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8,REG8/MEM8 
13 0001 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16 
14 0001 0100 DATA-8 ADC AL,IMMED8 
15 0001 0101 DATA-LO DATA-HI ADC AX,IMMED16 
16 0001 0110 PUSH SS 
17 0001 0111 POP SS 
18 0001 1000 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8/MEM8,REG8 
19 0001 1001 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16 
1A 0001 1010 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8,REG8/MEM8 
1B 0001 1011 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16 
1C 0001 1100 DATA-8 SBB AL,IMMED8 
10 0001 1101 DATA-LO DATA-HI SBB AX,IMMED16 
1E 0001 1110 PUSH OS 
1F 0001 1111 POP OS 
20 0010 0000 MOD REG RIM (DISP-LO),(DISP-HI) AND REG8/MEM8,REG8 
21 0010 0001 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16/MEM16,REG16 
22 0010 ·0010 MOD REG RIM (DISP-LO),(DISP-HI) AND REG8,REG8/MEM8 
23 0010 0011 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16,REG16/MEM16 
24 0010 0100 DATA-8 AND AL,IMMED8 
25 0010 0101 DATA-LO DATA-HI AND AX,IMMED16 
26 0010 0110 ES: (segment override 

prefix) 
27 0010 0111 DAA 
28 0010 1000 MOD REG RIM (DISP-LO), (DISP-H I) SUB REG8/MEM8,REG8 
29 0010 1001 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG16/MEM16,REG16 
2A 0010 1010 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG8,REG8/MEM8 
2B 0010 1011 MOD REG RIM (DISP-LO,(DISP-HI) SUB REG16,REG16/MEM16 
2C 0010 1100 DATA-8·· SUB AL,IMMED8 
20 0010 1101 DATA-LO DATA-HI SUB AX,IMMED16 
2E 0010 1110 CS: (segment override 

prefix) 
2F 0010 1111 DAS 
30 0011 0000 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG8/MEM8,REG8 
31 0011 0001 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16 
32 0011 0010 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG8,REG8/MEM8 
33 0011 0011 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16 
34 0011 0100 DATA-8 XOR AL,IMMED8 
35 0011 0101 DATA-LO DATA-HI XOR AX,IMMED16 ' 
36 0011 0110 SS: (segment override 

prefix) 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

37 0011 0110 AAA 
38 0011 1000 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8/MEM8,REG8 
39 0011 1001 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16 
3A 0011 1010 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8,REG8/MEM8 
3B 0011 1011 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16 
3C 0011 1100 DATA-8 CMP AL,IMMED8 
3D 0011 1101 DATA-LO DATA-HI CMP AX,IMMED16 
3E 0011 1110 OS: (segment override 

prefix) 
3F 0011 1111 AAS 
40 0100 0000 INC AX 
41 0100 0001 INC CX 
42 0100 0010 INC OX 
43 0100 0011 INC BX 
44 0100 0100 INC SP 
45 0100 0101 INC BP 
46 0100 0110 INC SI 
47 0100 0111 INC 01 
48 0100 1000 DEC AX 
49 0100 1001 DEC CX 
4A 0100 1010 DEC OX 
4B 0100 1011 DEC BX 
4C 0100 1100 DEC SP 
40 0100 1101 DEC BP 
4E 0100 1110 DEC SI 
4F 0100 1111 DEC 01 
50 0101 0000 PUSH AX 
51 0101 0001 PUSH CX 
52 0101 0010 PUSH OX 
53 0101 0011 PUSH BX 
54 0101 0100 PUSH SP 
55 0101 0101 PUSH BP 
56 0101 0110 PUSH SI 
57 0101 0111 PUSH 01 
58 0101 1000 POP AX 
59 0101 1001 POP CX 
5A 0101 1010 POP OX 
5B 0101 1011 POP BX 
5C 0101 1100 POP SP 
50 0101 1101 POP BP 
5E 0101 11'10 POP SI 
5F 0101 1111 POP 01 
60 0110 0000 " (not used) 
61 0110 0001 (not used) 
62 0110 0010 (not used) 
63 0110 0011 (not used) 
64 0110 0100 (not used) 
65 0110 0101 (not used) 
66 0110 0110 (not used) 
67 0110 0111 (not used) 
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Table 4-13.Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

68 0110 1000 (not used) 
69 0110 1001 (not used) 
6A 0110 1010 (not used) 
6B 0110 1011 (not used) 
6C 0110 1100 (not used) 
60 0110 1101 (not used) 
6E 0110 1110 (not used) 
6F 0110 1111 (not used) 
70 0111 0000 IP-INC8 JO SHORT-LABEL 
71 0111 0001 IP-INC8 JNO SHORT-LABEL 
72 0111 0010 IP-INC8 JB/JNAEI SHORT-LABEL 

JC 
73 0111 0011 IP-INC8 JNB/JAEI SHORT-LABEL 

JNC 
74 0111 0100 IP-INC8 JE/JZ SHORT-LABEL 
75 0111 0101 IP-INC8 JNE/JNZ SHORT-LABEL 
76 0111 0110 IP-INC8 JBE/JNA SHORT-LABEL 
77 0111 0111 IP-INC8 JNBE/JA SHORT-LABEL 
78 0111 1000 IP-INC8 JS SHORT-LABEL 
79 0111 1001 IP-INC8 JNS SHORT-LABEL 
7A 0111 1010 IP-INC8 JP/JPE SHORT-LABEL 
7B 0111 1011 IP-INCIf JNP/JPO SHORT-LABEL 
7C 0111 1100 IP-INC8 JLlJNGE SHORT-LABEL 
70 0111 1101 IP-INC8 JNLlJGE SHORT-LABEL 
7E 0111 1110 IP-INC8 JLE/JNG SHORT-LABEL 
7F 0111 1111 IP-INC8 JNLE/JG SHORT-LABEL 
80 1000 0000 MODOOOR/M (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 001 RIM . (DISP-LO),(DISP-HI), OR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 011 RIM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 100 RIM (DISP-LO),(DISP-HI), AND REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 110 RIM (DISP-LO),(DISP-HI), XOR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
81 1000 0001 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD 001 RIM (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMED16 

DATAcLO,DATA-HI 
81 1000 0001 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 
HEX BINARY 

81 1000 0001 MOD100 RIM (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 110 RIM (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

82 1000 0010 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 001 RIM (not used) 
82 1000 0010 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG81 MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 011 RIM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD100 RIM (not used) 
82 1000 0010 MOD 101 f'l/M (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD 110 RIM (not used) 
82 1000 0010 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
83 1000 0011 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 001 RIM (not used) 
83 1000 0011 MOD010 RIM (DISP-LO), (DISP-HI), ADC REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 100 RIM (not used) 
83 1000 0011 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD110 RIM (not used) 
83 1000 0011 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED8 

DATA-SX 
84 1000 0100 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG8/MEM8,REG8 
85 1000 0101 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16 
86 1000 0110 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG8,REG8/MEM8 
87 1000 0111 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16 
88 1000 1000 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG81 M EM8, REG8 
89 1000 1001 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16 
8A 1000 1010 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG8,REG8/MEM8 
8B 1000 1011 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16 
8C 1000 1100 MODOSRR/M (DISP-LO),(DISP-HI) MOV REG16/MEM16,SEGREG 
8C 1000 1100 MOD 1-- RIM (not used) 
8D 1000 1101 MOD REG RIM (DISP-LO),(DISP-HI) LEA REG16,MEM16 
8E 1000 1110 MODOSR RIM (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16 
8E 1000 1110 MOD 1-- RIM (not used) 
8F 1000 1111 MOD 000 RIM (DISP~LO),(DISP-HI) POP REG16/MEM16 
8F 1000 1111 MOD 001 RIM (not used) 
8F 1000 1111 MOD 010 RIM (not used) 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

8F 1000 1111 MOD 011 RIM (not used) 
8F 1000 1111 MOD100 RIM (not used) 
8F 1000 1111 MOD101 RIM (not used) 
8F 1000 1111 MOD 110 RIM (not used) 
8F 1000 1111 MOD111 RIM (not used) 
90 1001 0000 NOP (exchange AX,AX) 
91 1001 0001 XCHG AX,CX 
92 1001 0010 XCHG AX,DX 
93 1001 0011 XCHG AX,BX 
94 1001 0100 XCHG AX,SP 
95 1001 0101 XCHG AX,BP 
96 1001 0110 XCHG AX,SI 
97 1001 0111 XCHG AX,DI 
98 1001 1000 CBW 
99 1001 1001 CWO 
9A 1001 1010 DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC 

SEG-HI 
9B 1001 1011 WAIT 
9C 1001 1100 PUSHF 
90 1001 1101 POPF 
9E 1001 1110 SAHF 
9F 1001 1111 LAHF 
AO 1010 0000 ADDR-LO ADDR-HI MOV AL,MEM8 
A1 1010 0001 ADDR-LO ADDR-HI MOV AX,MEM16 
A2 1010 0010 ADDR-LO ADDR-HI MOV MEM8,AL 
A3 1010 0011 ADDR-LO ADDR-HI MOV MEM16,AL 
A4 1010 0100 MOVS DEST -STR8,SRC-STR8 
A5 1010 0101 MOVS DEST-STR16,SRC-STR16 
A6 1010 0110 CMPS DEST -STR8,SRC-STR8 
A7 1010 0111 CMPS DEST-STR16,SRC-STR16 
A8 1010 1000 DATA-8 TEST AL,IMMED8 
A9 1010 1001 DATA-LO DATA-HI TEST AX,IMMED16 
AA 1010 1010 STOS DEST-STR8 
AB 1010 1011 STOS DEST-STR16 
AC 1010 1100 LODS SRC-STR8 
AD 1010 1101 LODS SRC-STR16 
AE 1010 1110 SCAS DEST-STR8 
AF 1010 1111 SCAS DEST-STR16 
BO 1011 0000 DATA-8 MOV AL,IMMED8 
B1 1011 0001 DATA-8 MOV CL,IMMED8 
B2 1011 0010 DATA-8 MOV DL,IMMED8 
B3 1011 . 1011 DATA-8 MOV BL,IMMED8 
B4 1011 0100 DATA-8 MOV AH,IMMED8 
B5 1011 0101 DATA-8 MOV CH,IMMED8 
B6 1011 0110 DATA-8 MOV DH,IMMED8 
B7 1011 0111 DATA-8 MOV BH,IMMED8 
B8 1011 1000 DATA-LO DATA-HI MOV AX,IMMED16 
B9 1011 1001 DATA-LO DATA-HI MOV CX,IMMED16 
BA 1011 1010 DATA-LO DATA-HI MOV DX,IMMED16 
BB 1011 1011 DATA-LO DATA-HI MOV BX,IMMED16 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 A~M-86INSTRUCTION FORMAT HEX BINARY 

BC 1011 1100 DATA-LO DATA-HI MOV SP,IMMED16 
BD 1011 1101 DATA-LO DATA-HI MOV BP,IMMED16 
BE 1011 1110 DATA-LO DATA-HI MOV SI,IMMED16 
BF 1011 1111 DATA-LO DATA-HI MOV DI,IMMED16 
CO 1100 0000 (not used) 
C1 1100 0001 (not used) 
C2 1100 0010 DATA-LO DATA-HI RET IMMED16 (intraseg) 
C3 1100 0011 RET (intrasegment) 
C4 1100 0100 MOD REG RIM (DISP-LO),(DISP-HI) LES REG16,MEM16 
C5 1100 0101 MOD REG RIM (DISP-LO),(DISP-H I) LDS REG16,MEM16 
C6 1100 0110 MODOOOR/M (DISP-LO),(DISP-HI), MOV MEM8,IMMED8 

DATA-8 
C6 1100 0110 MOD 001 RIM (not used) 
C6 1100 0110 MOD010 RIM (not used) 
C6 1100 0110 MOD011 RIM (not used) 
C6 1100 0110 MOD 100 RIM (not used) 
C6 1100 0110 MOD101 RIM (not used) 
C6 1100 0110 MOD 110 RIM (not used) 
C6 1100 0110 MOD 111 RIM (not used) 
C7 1100 0111 MOD 000 RIM (DISP-LO),(DISP-HI), MOV MEM16,IMMED16 

DATA-LO,DATA-HI 
C7 1100 0111 MOD 001 RIM (not used) 
C7 1100 0111 MOD 010 RIM (not used) 
C7 1100 0111 MOD011 RIM (not us~d) 
C7 1100 0111 MOD 100 RIM (not used) 
C7 1100 0111 MOD101 RIM (not used) 
C7 1100 0111 MOD110R/M (not used) 
C7 1100 0111 MOD111 RIM (not used 
C8 1100 1000 (not used) 
C9 1100 1001 (not used) 
CA 1100 1010 DATA-LO DATA-HI RET IMMED16 (intersegment) 
CB 1100 1011 RET (intersegment) 
CC 1100 1100 INT 3 
CD 1100 1101 DATA-8 INT IMMED8 
CE 1100 1110 INTO 
CF 1100 1111 IRET 
DO 1101 0000 MODOOO RIM (DISP-LO),(DISP-HI) ROL REG8/MEM8,1 
DO 1101 0000 MOD001 RIM (DISP-LO),(DISP-HI) ROR REG8/MEM8,1 
DO 1101 0000 MOD010R/M (DISP-LO),(DISP-HI) RCL REG8/MEM8,1 
DO 1101 0000 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG8/MEM8,1 
DO 1101 0000 MOD 100 RIM (DISP-LO),(DISP-HI) SALISHL REG8/MEM8,1 
DO 1101 0000 MOD 101 RIM (DISP-LO),(DISP-HI) SHR REG8/MEM8,1 
DO 1101 0000 MOD110 RIM (not used) 
DO 1101 0000 MOD 111 RIM (DISP-LO),(DISP-HI) SAR REG8/MEM8,1 
D1 1101 0001 MOD 000 RIM (DISP-LO),(DISP-HI) ROL REG16/MEM16,1 
D1 1101 0001 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG16/MEM16,1 
D1 1101 0001 MOD010 RIM (DISP-LO),(DISP-HI) RCL REG16/MEM16,1 
D1 1101 0001 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG16/MEM16,1 
D1 1101 0001 MOD100 RIM (DISP-LO),(DISP-HI) SALISHL REG16/MEM16,1 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 
... 

1ST BYTE 
2NO BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

01 1101 0001 M00101 RIM (OISP~LO),(OISP-HI) SHR REG16/MEM16,1 
01 1101 0001 M00110R/M (not used) 
01 1101 0001 MOO,111 RIM (OISP-LO),(OISP-HI) SAR REG16/MEM16,1 
02 1101 0010 MOD 000 RIM (OISP-LO),(OISP-HI) ROL REG8/MEM8,CL 
02 1101 0010 MOD 001 RIM (OISP-LO),(OISP-HI) ROR REG8/MEM8,CL 
02 1101 0010 MOO010R/M (OISP-LO),(OISP-HI) RCL REG8/MEM8,CL 
02 1101 0010 M00011 RIM (OISP-LO),(OISP-HI) RCR REG8/MEM8,CL 
02 1101 0010 M00100 RIM (OISP-LO),(OISP-HI) SALISHL REG8/MEM8,CL 
02 1101 0010 M00101 RIM (OISP-LO),(OISP-HI) SHR REG81 M EM8,CL 
02 1101 0010 M00110 RIM (not used) 
02 1101 0010 M00111 RIM (OISP-LO),(OISP-HI) SAR REG8/MEM8,CL 
03 1101 0011 MOD 000 RIM (OISP-LO),(OISP-HI) ROL REG16/MEM"16,CL 
03 1101 0011 MOD 001 RIM (OISP-LO),(OISP-HI) ROR REG16/MEM16,CL 
03 1101 0011 MOD 010 RIM (OISP-LO),(OISP-HI) RCL REG16/MEM16,CL 
03 1101 0011 M00011 RIM (OISP-LO),(OISP-HI) RCR REG16/MEM16,CL 
03 1101 0011 M00100 RIM (OISP-LO),(OISP-HI) SALISHL REG16/MEM16,CL 
03 1101 0011 MOO 101 RIM (OISP-LO),(OISP-HI) SHR REG16/MEM16,CL 
03 1101 0011 M00110 RIM (not used) 
03 1101 0011 M00111 RIM (OISP-LO),(OISP-HI) SAR REG16/MEM16,CL 
04 1101 0100 00001010 AAM 
05 1101 0101 00001010 AAO 
06 1101 0110 . (not used) 
07 1101 0111 XLAT SOURCE-TABLE 
08 1101 1000 MOD 000 RIM 

1XXX MOOYYY RIM (OISP-LO), (OISP-HI) ESC OPCOOE,SOURCE 
OF 1101 1111 M00111 RIM 
EO . 1110 0000 IP-INC-8 LOOPNEI SHORT-LABEL 

LOOPNZ 
E1 1110 0001 IP-INC-8 LOOPEI SHORT-LABEL 

LOOPZ 
E2 1110 0010 IP-INC-8 LOOP SHORT-LABEL 
E3 .1110 0011 IP-INC-8 JCXZ SHORT ~LABEL 
E4 1110 0100 OATA-8 IN AL,IMME08 
E5 1110 0101 OATA-8 IN AX,IMME08 
E6 1110 0110 DATA-8 OUT AL,IMME08 
E7 1110 0111 OATA-8 OUT AX,IMME08 
E8 1110 1000 IP-ING-LO IP-INC-HI CALL NEAR-PROC 
E9 1110 1001 IP-INC-LO IP-INC-HI JMP NEAR-LABEL 
EA 1110 10~0 IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL 
EB 1110 1011 IP-INC8 JMP SHORT-LABEL 
EC 1110 1100 IN AL,OX 
ED 1110 1101 IN AX,OX 
EE 1110 1110 OUT AL,OX 
EF 1110 1111 OUT AX,OX 
FO 1111 0000 LOCK (prefix) 
F1 1111 0001 (not used) 
F2 1111 0010 REPNE/REPNZ 
F3 1111 0011 REP/REPE/RERZ 
F4 1111 0100 HLT 
F5 1111 0101 CMC 
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Table 4-13. Machine Instruction Decoding Guide (Cont'd.) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

F6 1111 0110 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REG8/MEM8,IMMED8 
DATA-8 

F6 1111 0110 MOD 001 RIM (not used) 
F6 1111 0110 MOD010 RIM (DISP-LO),(DISP-HI) NOT REG8/MEM8 
F6 1111 0110 MOD011 RIM (DISP-LO),(DISP-HI) NEG REG8/MEM8 
F6 1111 0110 MOD100R/M (DISP-LO),(DISP-HI) MUL REG8/MEM8 
F6 1111 0110 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG8/MEM8 
F6 1111 0110 MOD110 RIM (DISP-LO),(DISP-HI) DIV REG8/MEM8 
F6 1111 0110 MOD111 RIM (DISP-LO),(DISP-HI) IDIV REG8/MEM8 
F7 1111 0111 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
F7 1111 0111 MOD 001 RIM (not used) 
F7 1111 0111 MOD010R/M (DISP-LO) ,(DISP-H I) NOT REG16/MEM16 
F7 1111 0111 MOD 011 RIM (DISP-LO),(DISP-HI) NEG REG16/MEM16 
F7 1111 0111 MOD 100 RIM (DISP-LO),(DISP-HI) MUL REG16/MEM16 
F7 1111 0111 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG16/MEM16 
F7 1111 0111 MOD110 RIM (DISP-LO),(DISP-HI) DIV REG16/MEM16 
F7 1111 0111 MOD111 RIM (DISP-LO),(DISP-HI) IDIV REG16/MEM16 
F8 1111 1000 CLC 
F9 1111 1001 STC 
FA 1111 1010 CLI 
FB 1111 1011 STI 
FC 1111 1100 CLD 
FD 1111 1101 STD 
FE 1111 1110 MOD 000 RIM (DISP-LO),(DISP-HI) INC REG8/MEM8 
FE 1111 1110 MOD 001 RIM (DISP-LO),(DISP-HI) DEC REG8/MEM8 
FE 1111 1110 MOD010 RIM (not used) 
FE 1111 1110 MOD011 RIM (not used) 
FE 1111 1110 MOD100 RIM (not used) 
FE 1111 1110 MOD101 RIM (not used) 
FE 1111 1110 MOD110R/M (not used) 
FE 1111 1110 MOD111 RIM (not used) 
FF 1111 1111 MOD 000 RIM (DISP-LO),(DISP-HI) INC MEM16 
FF 1111 1111 MOD 001 RIM (DISP-LO),(DISP-HI) DEC MEM16 
FF 1111 1111 MOD010 RIM (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra) 
FF 1111 1111 MOD011 RIM (DISP-LO),(DISP-HI) CALL MEM16 (intersegment) 
FF 1111 1111 MOD100R/M (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra) 
FF 1111 1111 MOD101 RIM (DISP-LO),(DISP-HI) JMP MEM16 (intersegment) 
FF 1111 1111 MOD110R/M (DISP-LO),(DISP-HI) PUSH MEM16 
FF 1111 1111 MOD111 RIM (not used) 
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Lo 
HI 0 1 2 

0 ADD ADD ADD 
b.t.rlm w.t.rlm b.t.rlm 

1 AoC AoC AoC 
b.f.rlm w.t.rlm b.t.rlm 

2 AND AND AND 
b.t.rlm w.t.rlm b.t.rlm 

3 XOR XOR XOR 
b.t.rlm w.t.rlm b.t.rlm 

4 INC INC INC 
AX CX OX 

5 PUSH PUSH PUSH 
AX CX OX 

8 

7 JO JNO JBI 
JNAE 

8 Immed Immed Immed 
b.rlm w.rlm b.rlm 

9 XCHG XCHG XCHG 
AX CX OX 

A MOV MOV MOV 
m -AL m -AX AL - m 

B MOV MOV MOV 
i - AL i _ CL i - oL 

C RET. 
(i+SP) 

0 Shift Shift Shift 
b W b.v 

E LOOPNZI LOOPZI LOOP LOOPNE LOOPE 
F LOCK REP 
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Table 4-14. Machine Instruction Encoding Matrix 

3 4 5 6 7 8 9 A B 
ADD ADD ADD PUSH POP OR OR OR OR 

w.t.rlm b. ia w.ia ES ES b.t.rlm w.t.rlm b.t.rlm w.l.r/m 
AoC AoC AoC PUSH POP SBB SBB SBB SBB 

w.t.rlm b.i w,i 5S SS b.t.rlm w.t.rlm b.t.rlm w.t.rlm 
AND AND AND SEG oAA SUB SUB SUB SUB 

w.t.rlm b.i w,i "ES b.t.rlm w.t.rlm b.t.r!m w.t.rlm 
XOR XOR XOR SEG AAA CMP CMP CMP CMP 

w.t.rlm b.i w,i "SS b.t.rlm w.t.rlm b.t.rlm w.t.rlm 
INC INC INC INC INC DEC DEC DEC DEC 
BX SP BP SI DI AX CX OX BX 

PUSH PUSH PUSH PUSH PUSH POP POP POP POP 
BX SP BP SI 01 AX CX OX BX 

JNBI JEI JNEI JBEI JNBEI JS JNS JPI JNPI 
JAE JZ JNZ JNA JA JPE JPO 

Immed TEST TEST XCHG '·XCHG MOV MOV MOV MOV 
is,rlm b.rlm w.rlm b.rlm 
XCHG XCHG XCHG XCHG 

BX SP BP SI 
MOV MOVS MOVS CMPS 

AX - m 
MOV MOV MOV MOV 

i - BL i -AH i - CH i - oH 

RET LES LOS MOV 
b.i.rlm 

Shift AAM AAo 
~,v 

JCXZ IN IN OUT 
b W b 

REP HLT CMC 
Grp t 

z b.rlm 

where' 
modDr/m 000 001 

Immed ADD DR 
Shift ROl ROR 
Grpl TEST -
Grp2 INC DEC 

b = byte operation 
d = direct 
I = Irom CPU reg 
i= immediate 

010 
ADC 
RCl 
NOT 

CAll 
id 

ia = immed. to accum. 
id = indirect 
is = immed. byte. sign ext. 
I = long ie. intersegment 

w.rlm 
XCHG 

01 

CMPS 

MOV 
i - BH 

MOV 
w.i.r/m 

XLAT 

OUT 
W 

Grp 1 
w.rlm 

011 
SBB 
RCR 
NEG 

CAll 
Ud 

b.t.rlm w.t.rlm b.t.rlm w.t.rlm 

CBW CWO CALL WAIT I.d 
TEST TEST STOS STOS b,I,. W,I,. 

MOV MOV MOV MOV 
i-AX i - CX i-OX i - BX 

RET. RET 
1.(i+SP) I 

ESC ESC ESC ESC 
0 t 2 3 

CALL JMP JMP JMP 
d d I.d si.d 

CLC STC CLI STI 

100 101 110 111 
AND SUB XdR CMP, 

SHLISAl SHR - SAR 
MUl IMUl DIV IDIV 
JMP JMP PUSH -

id 1,ld 

m = memory 
rim = EA is second byte 
si = short intrasegment 
sr = segment register 
t = to CPU reg 
v = variable 
w = word operation 
z = zero 
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C 0 E F 
OR OR PUSH .. 
b.i w.i CS 

SBB SBB PUSH POP 
b.i w,j OS OS 

SUB SUB SEG oAS 
b.i w.i ~CS 

CMP CMP SEG AAS b;i w.i ~OS 

DEC DEC DEC DEC 
SP BP SI 01 

POP poi> POP POP 
SP BP SI 01 

JLI JNLI JLEI JNLEI 
JNGE JGE JNG JG . 

MOV LEA MOV POP 
sr,l,rlm ar.t,r/m rim 

PUSHF POPF SAHF LAHF 

LODS LODS SCAS' SCAS 

MOV MOV MOV MOV 
i - SP i - BP i -SI' i - 01 

INT INT INTO IRET Type 3 (Any) 
ESC ESC ESC ESC 
'4 5 6 7 

IN IN OUT OUT 
v,b V,W v,b V,W 

CLo sm Grp2 Grp 2 
b,rlm w.rlm 
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8086 Instruction Sequence 

Figure 4-22 illustrates the internal operation and 
bus activity that occur as an 8086 CPU executes a 
sequence of instructions. This figure presents the 
signals and timing relationships that are impor­
tant in understanding 8086 operation. The follow­
ing discussion is intended to help in the interpreta­
tion of the figure. 

Figure 4-22 shows the repeated execution of an 
instruction loop. This loop is defined in both 
machine code and assembly language by figure 
4-21. A loop was chosen both to demonstrate the 
effects of a program jump on the queue and to 
make the instruction sequence easy to follow. The 
program sequence shown was selected for several 
reasons. First, consisting of seven instructions 
and 16 bytes, the sequence is typical of the tight 
loops found in many application programs. 
Second, this particular sequence contains several 
short, fast-executing instructions that 
demonstrate both the effect of the queue on CPU 
performance and the interaction between the exe­
cution unit (EU) fetching code from the queue 
and the bus interface unit (BIU) filling the queue 
and performing the requested bus cycles. Last, 
for the purpose of this discussion, code, stack, 
and memory data references were arranged to be 
aligned on even word boundaries. 

ASSEMBLY LANGUAGE 

MOV AX, OF802H 
PUSH AX 
MOVCX, BX 
MOVDX,CX 
ADD AX, [SI] 
ADD SI, 8M6H 
JMP $ -14 

MACHINE CODE 

B802F8 
50 
8BCB 
8BD1 
0304 
81C68680 
EBFO 

Figure 4-21. Instruction Loop Sequence 

Figure 4-22 can be more easily interpreted' by 
keeping the following guidelines in mind. 

• The queue status lines (QSO, QSl) are the key 
indicators of EU activity. 

• Status lines S2 through SO are the main 
indicators of 8086/8088 bus activity. 

• Interaction of the BIU and EU is via> the 
queue for pre fetched opcodes and via the EU 
for requested bus cycles for data operands. 
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Keeping these guidelines in mind, the instruction 
sequence depicted in figure 4-22 can be described 
as follows. Starting the loop arbitrarily in clock 
cycle 1 with the queue reinitialization that occurs 
as part of the JMP instruction, JMP instruction 
execution is completed by the EU, while the BIU 
performs an opcode fetch to begin refilling the 
queue. (Note that a shorthand notation has been 
used in the figure to represent the two queue 
status lines and the three status lines-active 
periods on any of these lines are noted and the 
binary value of the lines is indicated above each 
active region.) 

In clock cycle 8, the queue status lines indicate 
that the first byte of the Mbv immediate instruc­
tion has been removed from the queue (one clock 
cycle after it was placed there by the BIU fetch) 
and that execution of this instruction has begun. 
The second byte of this instruction is taken from 
the queue in clock cycle 10 and then, in clock 
cycle 12, the EU pauses to wait one clock cycle for 
the BIU's second opcode fetch to be completed 
and for the third byte of the MOV immediate 
instruction to be available for execution 
(remember the queue status lines indicate queue 
activity that 'has occurred in the previous clock 
cycle). 

Clock cycle 13 begins the execution of the PUSH 
AX instruction, and in clock cycle 15, the BIU 
begins the fourth opcode fetch. The BIU finishes 
the fourth fetch in clock cycle 18 and prepares for 
another fetch when it receives a request from the 
EU for a memory write (the stack push). Instead 
of completing the opcode fetch and forcing the 
EU to wait four additional clock cycles, the BIU 
immediately aborts the fetch cycle (resulting in 
two idle clock cycles (TI) in clock cycles 19 and 
20) and performs the required memory write. This 
interaction between the EU and BIU results in a 
single clock extension to the execution time of the 
PUSH AX instruction, the maximum delay 'that 
can occur in response to an EU bus cycle request. 

Execution continues in clock cycle 24 with the 
execution of back-to-back, register-to-register 
MOV instructions'. The first of these instructions 
takes full advantage of the pre fetched opcode to 
complete this operation in two clock cycles. The 
second MOV instruction, however, depletes the 
queue and requires two additional clock cycles 
(clock cycles 28 and 29). 

Mnemonics © Intel, 1978 
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Figure 4-22. Sample Instruction Sequence Execution 

In clock cycle 30, the ADD memory indirect to 
AX instruction begins. In the time required to 
execute this instruction, the BIU completes two 
opcode fetch cycles and a memory read and 
begins a fourth opcode fetch ,cycle, Note that in 
the case of the memory read, the EU's request for 
a bus cycle occurs at a point ill the BIU fetch cycle 
where it can be incorporated directly (idle states 
are not required and no ED delay is imposed). 

In clock cycle 44, the ED begins the ADD 
immediate instruction, taking four bytes from the 
queue and completing instruction execution in 
four clock cycles. Also during this time, the BID 
senses a full queue in clock cycle 45 and enters a 
series of bus idle states (five or six bytes constitute 
a full queue in the 8086; the BID waits until it can 
fetch a full word of opcodebefore accessing the 
bus). 

At clock cycle 47, the BID again begins a bus 
cycle sequence, one that is destined to, be an 
"overfetch" since the, ED is executing a JMP 
instruction. As part' of the JMP instruction" the 
queue reinitialization (which began the instruc­
tion sequence) occurs. 

The entire sequence of instructions has taken 55 
clock cycles. Eighteen opcode bytes were fetched, 
one word memory read occurred, and one word 
stack write was performed. 

This example was,by design, partially bus limited 
and indicates the types of ED and BID interaction 
that can occur in this situation. Most application 
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code sequences, however, use a higher proportion 
of more complex, longer-executing instructions 
and addressing modes, and therefore tend to be 
execution limited. In this case, less BID-ED 
interaction is required, the queue more often is 
full, and more idle states occur on the bus. 

The previous example sequence can be easily 
extended to incorporate wait states in the bus 
access cycles. In the case of a single wait state, 
each bus cycle would be lengthened to five clock 
cycles with a wait state (TW) inserted between 
every T 3 and T 4 state of the bus cycle. As a first 
approximation, the instruction sequence exection 
time would appear to be lengthened by 10 clock 
cycles, one cycle for each useful read or write bus 
cycle that occurs. Actually, this approximation 
for the number of wait states inserted is incorrect 
since the queue can compensate for wait states by 
making use of previously idle bus time. For the 
example sequence, this compensation reduced the 
actual execution time by one wait state, and the 
sequence was completed in 64 clock cycles, one 
less than the approximated 65 clock cycles. 

4.3 80891/0 Processor 

The Intel® 8089 110 Processor (lOP) combines 
the functions of a DMA controller with the pro­
cessing capabilities of a microprocessor. In addi­
tion to the normal DMA function of transferring 
data, the 8089 is capable of dynamically 
translating arid comparing the data as it is 
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Figure 4-22. Sample Instruction Sequence Execution 

transferred and of supporting a number of ter­
minate conditions including byte count expired, 
data compare or miscompare and the occurrence 
of an external event. The 8089 contains two 
separate DMA channels, each with its own 
register set. Depending on the established 
priorities (both inherent and program deter­
mined), the two channels can alternate 
(interleave) their respective operations. 

Designed expressly to relieve the 8086 or 8088 
CPU of the overhead associated with 110 opera­
tions, the 8089, when configured in the remote 
mode, can perform a complete 110 task while the 
CPU is performing data processing tasks. The 
8089, when it has completed its I/O task, can then 
interrupt the CPU. 

Transfer flexibility is an integral part of the 
8089's design. In addition to routine transfers 
between an I/O peripheral and memory, transfers 
can be performed between two I/O devices or 
between two areas of memory. Transfers between 
dissimilar bus widths are automatically handled 
by the 8089. When data is transferred from an 
8-bit peripheral bus to a 16-bit memory, bus, the 
8089 reads two bytes from the peripheral, 
assembles the bytes into a 16-bit word and then 
writes the single word to the addressed memory 
location. Also, both 8- and 16-bit peripherals can 
reside on the same (16-bit) bus; byte transfers are 
performed with the 8-bit peripheral, and word 
transfers are performed with the 16-bit 
peripheral. 
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System Configuration 

The 8089 can be implemented in one of two 
system configurations: a "local" mode in which 
the 8089 shares the system bus with an 8086 or 
8088 CPU and a "remote" mode in which the 
8089 has exclusive access to its own dedicated bus 
as well as access to the system bus. Note that in 
either the local or remote mode, the 8089 can 
address a full' megabyte of system memory and 
64k bytes of 110 space. 

Local Mode 

In the local mode, the 8089 acts as a slave to an 
8086 or 8088 CPU that is operating in the max­
imum mode. In this configuration, the 8089 
shares the system address latches, data 
transceivers and bus controller with the CPU as 
shown in figure 4-23. 

Since the lOP and CPU share the system bus, 
either the lOP or the CPU will have access to the 
bus at anyone time. When one processor is using 
the bus, the other processor floats its 
address/ data and control lines. Bus access 
between the lOP and CPU is determined through 
the request/grant function. Recalling the CPU's 
request/grant sequence, the lOP requests the bus 
from the CPU, the CPU grants the bus to the 
lOP, and the lOP relinquishes the bus to the CPU 
when its operation is complete. Remember that 
the CPU cannot request the bus from the lOP 
(the CPU is only capable of granting the bus and 
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Figure 4-23. Typical 8088/8089 Local Mode Configuration 

must wait for the lOP to release the bus). Also, 
since the request/grant pulse exchange must be 
synchronized, both the CPU and lOP must be 
referenced to the samec10ck signal. 

The 8089 lOP, when used in the local mode; can 
be added to an 8086 or 8088 maximum mode con­
figuration with little'affect on component count 
(channel attention decoding logic as required) and 
offers the benefits of intelligent DMA 
(scan/match, translate, variable termination con­
ditions), modular' programming in a full 
megabyte of memory address space and a set of 
optimizedIlO instructions that are unavailable to 
the8086 and 8088 CPUs. Themajor disadvantage 
to the local configuration is that since the system 
bus is shared, bus contention always exists, 
between the CPUiand lOP. The use,of the bus 
load limit field in, the channel control word can 
help reduce lOP bus acceSs dUring task block pro­
gram execut~on (bus load limiting has no affect on 
DMA transfers) although, for I/O intensive 
systems, the remote mode should be considered. 
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Remote Mode 

The 8089, when used in the remote mode, pro­
vides a multiprocessor system with true parallel 
processing. In this mode, the 8089 has a separate 
(local) bus and memory for I/O peripheral com­
munications, and the system bus is completely 
isolated from the I/O peripheral(s). Accordingly, 
I/O transfers between an I/O peripheral and the 
lOP's local memory can occur simultaneously 
with CPU operations on the system bus. 

As shown in figure 4-24, to interface the 8089 to 
the system bus, data transceivers and address 
latches are used to separate the lOP's local bus 
from the system bus, an 8288 Bus Controller is 
used to generate the bus control signals for both 
the local and system buses as well as to govern the 
operation of the transceivers/latches, an,d an 8289 
Bus Arbiteds used to control access to the system 
bus (each processor in the system would ,have an 
associated 8289 Bus Arbiter). To interface the 
8089 to its local bus, another set of add~ess 
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Figure 4-24. Typical 8089 Remote Mode Configuration 

latches is required (unless MCS-85™ multiplexed 
address components are exclusively interfaced) 
and, depending on the bus loading demands, one 
(8-bit bus) or two (l6-bit bus) data transceivers 
would be used. 

In the remote mode, the lOP's local bus is treated 
as 1/0 space (up to 64k bytes), and the system bus 
is treated as memory space (l megabyte). The 
8288 Bus Controller's 110 command outputs con­
trol the local (110) bus, and its memory command 
outputs control the system (memory) bus. The 
8289 Bus Arbiter, which is operated in its lOB 
(1/0 ~ripheral bus) mode, also decodes the 
lOP's S2 through SO status outputs. In this mode, 
the 8289 will not request the multimaster system 
bus when the lOP indicates an operation on its 
local bus. If the lOP's bus arbiter currently has 
access to the system bus, the CPU's arbiter (or 
any other arbiter in the system) can acquire use of 
the system bus at this time (a bus arbiter main­
tains bus access until another arbiter requests the 
bus). 
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Bus Operation 

The 8089 utilizes the same bus structure as an 
8086 or 8088 CPU that is configured in the max­
imum mode and performs a bus cycle only on de­
mand (e.g., to fetch an instruction during task 
block execution or to perform a data transfer)_ 
The bus cycle itself is identical to an 8086 or 8088 
CPU's bus cycle in that all cycles consist of four 
T -states and use the same time-multiplexing 
technique of the addressdata lines. As shown in 
the following timing diagrams, the address (and 
ALE signal) is output during state T 1 for either a 
read or write cycle. Depending on the type of 
cycle indicated, the addressldata lines are floated 
during state T2 for a read cycle (figure 4-25) or 
data is output on these lines during a write cycle 
(figure 4-26). During state T3, write data is main­
tained or read data is sampled, and the busy cycle 
is concluded in state T 4' 

Since the 8089 is capable of transferring data to or 
from both 8-bit and 16-bit buses, when an 8-bit 
physical bus is specified (bus width is specified 
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during the initialization sequence), the address 
present on the AD15 through AD8 address/data 
lines is maintained for the entire bus cycle as 
shown in figure 4-25 and, unless added drive 
capability is required, the associated address latch 
can be eliminated. An 8-bit data bus is compatible 
with the 8088 CPU and with the MCS-85™ 
multiplexed address peripherals (8155, 8185, 
etc.). 

The 8089 operates identically to the 8086 CPU 
with respect to the use of the low- and high-order 
halves of the data bus. Table 4-14 defines the data 
bus use for the various combinations of bus width 
and address boundary. 

The S2 through SO status lines define the bus cycle 
to be performed. These lines are used by an 8288 
Bus Controller to generate all memory and I/O 
command and control signals, and are decoded 
according to table 4-15. 

Table 4-14. Data Bus Usage 

Physical Bus Width' 
Logical Address 

Bus Width' Boundary 16 
8 

I Byte Transfer Word Transfer 

Even 
AD7-ADO = DATA AD7-ADO = DATA 

N/A (SHE not used) (SHE h.igh) 
8 

Odd 
AD7-ADO = DATA . AD15-AD8 = DATA 

N/A (SHE not used) (SHE low) 

Even Illegal 
AD7-ADO = DATA AD15-ADO = OAT A 

(SHE high) (SHE low) 
16 

Odd Illegal 
AD15-AD8 = DATA 

N/A' (SHE low) 

Notes: 

1. Logical bus width is specified by the WID instruction prior to the DMA transfer. 

2. Physical bus width is specified when the 8089 is initialized. 

3. A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans­
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the .second byte is the high­
order byte on the low-order data bus (AD7-ADO). The 8089 automatically assemb.les the two bytes in 
their proper order. 

Table 4-15. Bus Cycle Decoding 

Status Output 
Bus Cycle Indicated 

Bus Controller 

S2 S1 SO Command Output 

0 0 0 Instruction fetch from I/O space INTA 
0 0 1 Data read from I/O space IORC 
0 1 0 Data write to I/O space IOWC,AIOWC 
0 1 1 Not uSed None 
1 0 0 Instruction fetch from system memory MRDC 
1 0 1 Data read from system memory MRDe 
1 1 0 Data write to system memory MWTC,AMWC 
1 1 1 Passive None 
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Note that the 8089 indicates. an instruction fetch 
from 1/0 space as a status of zero (S2, SI and' SO 
equal 0). Since the 8288 Bus Controller decodes 
an input status value of zero as an interrupt 
acknowledge bus cycle, the bus controller's INTA 
output must be OR'ed with its IORC output to 
permit fetching of task block instructions from 
local 8089 memory (remote configuration) or 
system 110 space (local and remote 
configtirations). . 

The S2 through SO status lines become active in 
state T 4 if a subsequent bus cycle is to be per­
formed. These lines are set to the passive state (all 
"ones") in the state immediately prior to state T 4 
of the current bus cycle (state T 3 or T w) and are 
floated when the 8089 does not have access to the 
bus. 

The S6 through S3 status lines are multiplexed 
with the high-order address bits (AI9-AI6) and, 
accordingly, become valid in state T2 of the bus 
cycle. The S4 and S3 status lines reflect the type of 
bus cycle being performed on the corresponding 
channel as indicated in table 4-16. 

Table 4-16. Type of Cycle Decoding 

Status Output 
Type of Cycle 

S4 S3 

0 a DMA on Channel 1 
0 1 DMA on Channel 2 
1 0 Non-DMA on Channel 1 
1 1 Non-DMA on Channel 2 

The S6 and S5 status lines are always" 1" on the 
8089. Since these lines are not both "1" on the 
other processors in the 8086 family (S6 is always 
"0" on the 8086 and 8088 CPUs), these status 
lines can be used as a "signature" in a 
multiprocessor environment to identify' the type 
of processor performing the bus cycle. 

The 8089 includes the same provision as do the 
8086 and 8088 CPUs for the insertion of wait 
states (T w) in a bus cycle when the associated 
memory or I/O device cannot respond within the 
alloted time'interval or when, in the remote mode, 
the 8089 must wait for access to the system bus. 
An 8284 Clock Generator/Driver is used to con­
trol the insertion of wait states which, when 
r~quired, are inserted between states T3 and T4' 
The actual insertion of wait states is accomplished 
by deactivating one of the 8284's RDY inputs 
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(RDYI or RDY2). Either of these inputs, when 
enabled by its corresponding AENI or AEN2 
input, can be deactivated directly by the memory 
or 110 device when it must extend the 8089's bus 
cycle (when the addressed device is not ready to 
present or accept data). The 8284's READY out­
put, which is synchronized to the CLK signal, is 
directly connected to the 8089'8 READY input. 
As shown in figure 4-27, when the addressed 
device requires one or more wait states to be 
inserted into a bus cycle, it deactivates the 8284's 
RDY input prior to the end of state T2' The 
READY output from the 8284 is subsequently 
deactivated at the end of state T 2 which causes the 
8089 to insert wait states following state T3' To 
exit the wait state, the device activates the 8284's 
RDY input which causes the READY input to the 
8089 to go active on the next clock cycle and 
allows the 8089 to enter state T 4' 

elK 
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Figure 4-27. Wait State Timing 

Periods of inactivity can occur between bus 
cycles. These inactive periods are referred to as 

. idle states (T I) and, as with the 8086 and 8088 
CPUs, can result from the execution of a "long" 
instruction or the loss of the bus to another pro­
cessor during task block instruction execution. 
Additionally, the 8089 can experience idle states 
when it is in the DMA mode and it is waiting for a 
DMA request from the addressed 110 device or 
when the bus load limit (BLL) function is .enabled 
for a channel performing task block instruction 
execution and the other channel is idle. 

InitiaUzation 

Initialization of the lOP is generally the respon­
,sibilityof the host processor which, as. stated in 
Chapter 3, prepares the communications data 
structure in shared memory. Initialization of the 
lOP itself begins with the activation of its RESET 
input. This input (originating typically from an 
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8284 Clock Generator/Driver) must be held active 
for at least five clock cycles to allow the 8089's 
internal reset sequence to be completed. Note that 
like the 8086 and 8088 CPUs, the RESET input 
must be held active for at least 50 microseconds 
when power is first applied. Following the reset 
interval, the host processor signals the lOP to 
begin its initialization sequence by activating the 
8089's CA (Channel Attention) input. The 8089 
will not recognize a pulse at its CA input until one 
clock cycle after the RESET input returns to an 
inactive level. Note that the minimum width for a 
CA pulse is one clock cycle and that this pulse 
may go active prior to RESET returning to an 
inactive level provided that the negative-going, 
trailing-edge of the CA pulse does not occur prior 
to one clock cycle after RESET goes inactive. 
Figure 4-28 illustrates the timing for this portion 
of the initialization sequence. 

elK 

RESET ~8~~,~i ~~~~ \ 
CYCLES '-------1-' eLK MIN-I 

-----------~~~~CA CA ________ , ___ J~~~~ RECOGNIZED 

Figure 4-28. RESET -CA Initialization Timing 

Coincident with the trailing edge of the first 
CA pulse following reset, the 8089 samples its 
SEL (Select) input from the host processor to 
determine master/slave status for its 
request/ grant circuity. If the SEL input is low, 
the 8089 is designated a "master," and if the SEL 
input is high, the 8089 is designated a "slave." As 
a master, the 8089 assumes that it has the bus 
initially, and it will subsequently grant the bus to 
a requesting slave when the bus becomes available 
(i.e., the 8089 will respond to a "request" pulse 
on its RQ/GT line with a "grant" pulse). A single 
8089 in the remote configuration (or one of two 
8089s in a remote configuration) would be 
designated a master. As a slave, the 8089 can only 
request the bus from a master processor (i.e., the 
8089 initiates the request/grant sequence by out­
putting a "request" pulse on its RQ/GT line). An 
8089 that shares a bus with an 8086 or 8088 (or 
one of two 8089s in a remote configuration) 
would be designated a slave. Note that since the 
8086 and 8088 CPUs can grant the bus only in 
response to a request, whenever an 8086 or 8088 
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and an 8089 share a common bus, the 8089 must 
be designated the slave. Also, when the RQ/GT 
line is not used (i.e., a single 8089 in the remote 
configuration), the 8089 must be designated a 
master. 

In addition to determining master/slave status, 
the CA pulse also causes the 8089 to begin execu­
tion of its internal ROM initialization sequence. 
Note that since the 8089 must have access to the 
system bus in order to perform this sequence, the 
8089 immediately initiates a request/grant 
sequence (if designated a slave) and, if required, 
then requests the bus through the 8289 Arbiter. 
(If designated a master, the 8089 requests the bus 
through the 8289 Arbiter.) In the execution of the 
initialization sequence, the 8089 first fetches the 
SYSBUS byte from location FFFF6H. The W bit 
(bit 0) of this byte specifies the physical bus width 
of the system bus. Depending on the bus width 
specified, the 8089 then fetches the address of the 
system configuration block (SCB) contained in 
locations FFFF8H through FFFFBH in either two 
bus cycles (16-bit bus, W bit equal 1) or four bus 
cycles (8-bit bus, W bit equal 0). The SCB offset 
and segment address values fetched are combined 
into a 20-bit physical address that is stored in an 
internal register. Using this address, the 8089 next 
fetches the system operation command (SOC) 
byte. As explained in Chapter 3, this byte 
specifies both the request/grant operational mode 
(R bit) and the physical width of the I/O bus (I 
bit). After reading the SOC byte, the 8089 fetches 
the channel control block (CB) offset and seg­
ment address values. These values are combined 
into a 20-bit physical address and are stored in 
another internal register. To inform the host CPU 
that it has completed the initialization sequence, 
the 8089 clears the Channel 1 Busy flag in the 
channel control block by writing an all "zeroes" 
byte to CB + 1. 

After the lOP has been initialized, the system 
configuration block may be altered in order to in­
itialize another lOP. Once an lOP has been in­
itialized, its channel control block in system 
memory cannot be moved since the CB address, 
which is internally stored by the lOP during the 
initialization sequence, is automatically accessed 
on every subsequent CA pulse. 
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As previously stated, the generation of the CA 
and SEL inputs to the lOP are the responsibility 
of the host CPU. Typically. these signals result 
from the CPU's execution of an liD write· 
instruction to one of two adjacent liD ports (liD 
port addresses that only differ by AD). Figure 4-29 
illustrates a simple decoding circuit that could be 
used to generate the CA and SEL signals. Note 
that by qualifying the CA output with 10WC, the 
SEL output, since it is latched for the entire liD 
bus cycle, is guaranteed to be stable on the trailing 
edge of the CA pulse. 
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A6 

AS 

A4 

A3 

A2 

Al 

iOm: 

AO 

530 

PORT FC = CHANNEL 1 CA 
PORT FD = CHANNEL 2 CA 

CA 

• 5EL 

Figure 4-29. Channel Attention Decoding Circuit 

1/0 Dispatching 

During normal operation, the liD supervisory 
program running in the host CPU will receive a 
request to perform a specific I/O operation on 
one of the 8089's channels. In response to this 
request, the supervisory program will typically 
perform the following sequence of operations: 

• Check the availability of the specified 
channel by examining the channel's busy flag 
in the Channel Control Block. If it is possible 
for another processor to access the channel, a 
semaphore operation (implemented by a 
locked XCHG instruction) is used to check 
channel availability. 

• Load the variable parameters required for 
the intended operation into the channel's 
parameter block. 

• Load the channel command word (CCW) 
into the channel control block. 

• Establish the necessary linkages by writing 
the starting address of the channel program 
(task block) in the first four bytes of the 
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parameter block and writing the address of 
the parameter block in the channel control 
block. 

• Issue a channel attention (CA) to the 
specified channel. 

In response to the CA, the 8089 interrupts any 
current activity at its first opportunity (see "Con­
current Channel Operation" in section 3.2) and 
begins execution of an internal instruction 
sequence that fetches and decodes the channel 
command word (CCW) and then performs the 
operation indicated (i.e., start, halt or continue 
channel program execution). 

If the CCW specifies start channel program (start 
task block execution), the address of the 
parameter block is fetched from the channel 
control block, the address of the first channel 
program instruction (contained in the first four 
bytes of the parameter block) is fetched and then 
loaded into the TP (task pointer) register and, 
finally, task block execution is initiated from 
either system or I/O space. Task block execution 
continues, subject to the activity on the other 
channel as described in "Concurrent Channel 
Operation," until a XFER instruction is 
executed. Following execution. of this instruction, 
the next sequential channel program instruction is 
executed before the channel enters the DMA 
transfer mode. 

If the CCW specifies halt channel, the current 
operation on the specified channel is halted. If the 
channel is performing task block execution (either 
chained or not chained), channel operation is 
stopped at an instruction boundary, and if the 
channel is performing a DMA transfer, channel 
operation is stopped at a DMA transfer cycle 
boundary. Note that a channel will not stop a 
locked DMA transfer until the operation is com­
pleted. There are two unique halt channel com­
mands. One command simply halts the channel 
and clears the busy flag in the channel control 
block. This command is used when the halted 
operation is to be discarded. The other command 
halts the channel, saves the task pointer and pro­
gram status word (PSW) byte, and clears the busy 
flag. This command is used when the halted 
operation is to be resumed. Note that this halt 
command will not affect the integrity of resumed 
task block execution or a memory-to-memory 
DMAtransfer, but could affect the integrity of a 
synchronized DMA transfer (a DMA request 
occuring while the channel is halted could be 
missed). 
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If the CCW specifies continue channel, an opera­
tion that has been previously halted is resumed 
(and the busy flag is set). Since this command 
restores the task pointer and PSW, it should be 
used only if the task pointer and PSW have been 
saved by a previous halt command. 

Table 4-17 outlines the various CCW command 
execution times. Note that the times listed in the 
table for the halt commands do not include the 
time required to complete any current channel 
activity when the channel attention is received 
(completion of the current DMA transfer cycle or 
task block instruction). 

DMA Transfers 

The number of bytes transferred during a single 
DMA cycle is determined by both the source and 
destination logical bus widths as well as by the 

address boundary (odd or even address). The 
8089 performs DMA transfers between dissimilar 
bus widths by assembling bytes or disassembling 
words in its internal assembly register file. As 
explained in Chapter 3, the DMA source and 
destination bus widths are defined by the execu­
tion of a WID instruction during task block 
(channel command) execution. Note that the bus 
widths specified remain in force until changed by 
a subsequent WID instruction. Table 4-18 defines 
the various byte (B) and word (W) 
source/destination transfer combinations based 
on address boundary and bus width specified. 

The 8089 additionally optimizes bus accesses dur­
ing transfers between dissimilar bus widths 
whenever possible. When either the source or 
destination is a 16-bit memory bus (auto­
incrementing) that is initially aligned on an odd 

Table 4-17. CCW Command Execution Times 

CCWCommand Minimum Time' Maximum Time" 

CANOP 48 + 2n clocks 48 + 2n clocks 
CA Halt (no save) 48 + 2n clocks 48 + 2n clocks 

CA Halt (with save) 94 + 5n clocks 100 + 6n clocks 
CA Start (memory) 108 + 6n clocks 124 + 10nclocks 

CA Start (1/0) 96 + 5n clocks 108 + 8n clocks 
CAContinue 95 + 5n clocks 103 + 6n clocks 

Notes: 
n is the number of wait states per bus cycle. 

* Minimum time occurs when both the channel control block and parameter block addresses are aligned on 
an even address boundary and a 16-bit bus is used. 

Maximum time occurs when both the channel control block and parameter block addresses are aligned 
on an odd address boundary on a 16-bit bus or when an 8-bit bus is used. 

Table 4-18. DMA Assembly Register Operation 

Logical Bus Width 
Address Boundary (Source ..... Destination) 

(Source .... Destination) 
8 ..... 8 8 ..... 16 16- 8 16 ..... 16 

Even .... Even S ..... S S/B ..... W W ..... S/B W ..... W 
Even .... Odd S .... S S ..... S W .... S/S w ..... SIS 
Odd ..... Even B ..... B S/B ..... W S ..... B S/B ..... W 
Odd ..... Odd S ..... S S ..... S S ..... S S ..... S 
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address boundary (causing the first transfer cycle 
to be byte-to-byte), following the first transfer 
cycle, the memory address will be aligned on an 
even address boundary, and word transfers will 
subsequently occur. For example, when perform­
ing a memory-to-port transfer from a 16-bit bus 
to an 8-bit bus with the source beginning on an 
odd address boundary, the first transfer cycle will 
be byte-to-byte (B -+ B) as indicated in table 4-18, 
but subsequent transfers will be word-to­
bytelbyte (W -+ BIB). 

All DMA transfer cycles consist of at least two 
bus cycles; one bus cycle to fetch (read) the data 
form the source into the lOP, and one bus cycle 
to store (write) the data previously fetched from 
the lOP into the destination. Note that in all 
transfers, the data passes through the lOP to 
allow masklcompare and translate operations to 
be optionally performed during the transfer as 
well as to allow the data to be assembled or 
disassembled. 

The lOP performs DMA transfers in one of three 
modes: unsynchronized, source synchronized or 
destination synchronized (the transfer mode is 
specified in the channel control register). The un­
synchronized mode is used when both the source 
and destination devices do not provide a data re­
quest (DRQ) signal to the lOP as in the case of a 
memory-to-memory transfer. In the synchronized 
transfer modes, the source (source synchronized) 
or destination (destination synchronized) device 
initiates the transfer cycle by activating the lOP's. 
DRQl (channell) or DRQ2 (channel 2) input. 

elK 

DRQ~ 
(FROM 110 DEVICE) 

The DRQinput is asynchronous and usually 
originates from an 1/0 device controller rather 
than from a memory circuit. This input is latched 
on the positive transition of the clock (CLK) 
signal and therefore must remain active for more 
than one clock period (more than 200. 
nanoseconds when using a 5 MHz clock) in order 
to guarantee that it is recognized. 

During state T 1 of the associated fetch bus cycle 
(source synchronized) or store bus cycle (destina­
tion synchronized), the lOP outputs the address 
of the 1/0 device (the port address). This address 
must be decoded (by' external circuitry) to 
generate the DMA acknowledge (DACK) signal 
to the liD controller as the response to the con­
troller's DMA request. An lIO controller will 
typically use DACK as a conditional input for the 
removal of DRQ. (After receipt of the DACK 
signal, most Intel peripheral controllers deac­
tivate DRQ following receipt of the correspon­
ding read or write signal.) Figures 4-30 and 4-31 
illustrate the DRQ/DACK timing for both source 
synchronized (Le., port-to-memory) and destina­
tion synchronized (Le., memory-to-port) 
transf~rs. 

Table 4-19 defines the DMA transfer cycles in 
terms of the number of bus and clock cycles re­
quired. Note that the number of clocks required 
to complete a transfer cycle does not take into ac­
count the effects of possible concurrent opera­
tions on the other channel or wait states within 
any of the bus cyCles. 

• DAeK I \ 
(DECODED 110 ADDRESS) ---1 VALID 110 ADDRESS PRESENt '-________ -"" 

NOTES: 

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT 
TRANSFER CYCLE BEGINS. IF ORO IS RECEIVED PRIOR to STAte T4 OF THE CURRENT 
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE 
CURRENT STORe CYCLE. 

2. IF THE 8089 IS IDLE WHEN ,ORO IS'RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED. 

Figure 4-30. Soutce Synchronized Transfer Cycle 
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elK 

ORO HOLD -1 __ 1 1-2IDLE~I-4 tOLE-I_SIDLE CLOCKS3-_ 
FROM WRITE I CLOCKS3 CLOCKSJ 

ORO' -------------i~[!!=~ ,r~;Q_:_;;;N_;;~R:~~;;_YCLE-I+-------~~=~ ,r-----
(FROM 110 DEVICE) ~ ~ • ~ ~ 

(DECODED 110 ADO~:~~ _________ --JJ VALID 110 ADDRESS PRESENT \I.. ___________ .J! 

NOTES: 1. FIRST OMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK 
INSTRUCTION IS EXECUTED. 

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1. 

3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS 
CYCLE 2 BEGINS. IF ORO 15 RECEIVED PRIOR TO STATE T4 OF STORE BUS CYCLE 1, 
STORE BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING FETCH BUS CYCLE 2. 

4. IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED STORE BUS CYCLE IS INITIATED. 

Figure 4-31. Destination Synchronized Transfer Cycle 

Table 4-19. DMA Transfer Cycles 

Transfer Mode 

L 

Logical Bus Width 
Unsynchronized Source Synchronized Destination Synchronized 

Source Destination 
Bus Cycles TotaP Bus Cycles Total' Bus Cycles Total' 
Required Clocks Required Clocks Required Clocks 

8 8 2(1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 
8 16' 3 (2 fetch, 1 store) 12 3 (2 fetch, 1 store) 16' 3 (2 fetch, 1 store) 12 

16' 8 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 16' 
16' 16' 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 

Notes: 
1. The "Total Clocks Required" does not include wait states. One clock cycle per wait state must be 

added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a 
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the 
first fetch cycle of any memory-to-memory transfer requires seven clock cycles). 

2. When performing a translate operation, one additional 7-clock bus cycle must be added to the values 
specified in the table. 

3. Word transfers in the table assume an even address word boundary. Word transfers to or from odd 
address boundaries are performed as indicated in table 4-18 and are subject to the bus cycle/clock 
requirements for byte-to-byte transfers. 

4. Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between 
dissimilar logical bus widths) insert four idle clock cycles between the two synchronized bus cycles 
to allow additional time for the synchronzing device to remove its initial DMA request. 
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DACK latency is defined as the time required for 
the 8089 to acknowledge, by outputting the 
device's corresponding port address, a DMA 
request at its DRQ input. This response latency is 
dependent on a number of factors including the 
transfer cycle being performed, activity on the 
other channel, memory address boundaries, wait 
states present in either bus cycle and bus arbitra­
tion times. 

Generally, when the other channel is idle, the 
maximum DACK latency is five clock cycles (l 
microsecond at 5 MHz), excluding wait states and 
bus arbitration times. An exception occurs when 
performing a word transfer to or from an odd 
memory address boundary. This operation, since 
two store (source synchronized) or two fetch 
(destination synchronized) bus cycles are required 
to access memory, has a maxirimm possible laten­
cy of nine clock cycles. When the other channel is 
performing DMA transfers of equal priority 
("P" bits equal), interleaving occurs at bus cycle 
boundaries, and the maximum latency is either 
nine clock cycles when' the other channel is per­
forming a normal 4-clock fetch or store bus cycle 
or twelve clock cycles when the other channel is 
performing the first fetch cycle of a memory-to­
memory transfer. If the other channel is perform­
ing "chained" task block instruction execution of 
equal priority, maximum latency can be as high as 
12 clock cycles (channel command instruction 
execution is interrupted at machine cycle boun­
daries which range from two to eight clock 
cycles). 

DMA Termination 

As stated in Chapter 3, a channel can exit the 
DMA transfer mode (and return to task block 
execution) on any of the following terminate 
conditions: 

• Single cycle transfer 

• 
• 
• 

Byte count expired 

Mask/compare match or mismatch 

External event 

The terminate conditions are specified by in­
dividual fields in: the channel control register. 
More than one terminate condition can be 
specified for a transfer (e.g., a transfer can be ter­
minated when a specific byte count is reached or 
on the occurrence of an external event). When 
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more than one terminate condition is possible, 
displacements (which are added to the task 
pointer register value) are specified to cause task 
block execution to resume at a unique entry point . 
for each condition. Three reentry points are 
available: TP, TP + 4 and TP+ 8. The time inter­
val between the occurrence of a terminate condi­
tion and the resumption of task block !!xecution is 
12 clock cycles for reentry point TP and 15 clock 
cycles for reentry points TP + 4 and TP + 8. 

Peripheral Interfacing 

When interfacing a peripheral to an 8-bit physical 
data bus, the 8089 uses only the lower half of the 
address/data lines (AD7-ADO) as the bidirec­
tional data bus, and the upper half of' the ad­
dress/data lines (AD15-AD8) maintain address 
information for the entire bus cycle. Consequent­
ly, with this bus configuration, only one octal 
latch (e.g., an Intel® 8282/83 Octal Latch) is re­
quired since only the lower half of the ad­
dress/ data lines is time-multiplexed (unless the 
address bus requires the increased current drive 
capability and capacitive load immunity provided 
by the latch). 

When interfacing a peripheral to a 16-bit data 
bus, both the lower and upper halves of the ad­
dress/data lines are time-multipelxed, and two,oc­
tal.latches are required. Note that unlike, the 8086 
and 8088 CPUs, the 8089 does not time-multiplex 
BHE (this signal is valid for the entire bus cycle). 
Both 8- and 16-bit peripherals can be interfaced to 
a 16-bit bus. An 8-bit peripheral can be connected 
to either the upper or lower half of the bus. An 8. 
bit peripheral on the lower half of the bus must 
use an even source/destination address, and an 8-
bit peripheral on the upper half of the bus must 
use an odd source/destination address. To take 
advantage of word transfers, a 16-bit peripheral 
must use an even source/destination address. 

To prepare a peripheral device for a DMA 
transfer, command and parameter'data is written 
to the device's command/status port. This is 
usually accomplished using pointer register GC. 
Recalling that the 8089 executes one additional 
task block instruction fOllowing execution of the 
XFER instruction (the XFER instruction' causes 
the 8089 to enter the DMA mode), this additional 
instruction is used to ·access the command port of 
an I/O device that immediately begins DMA 
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operation on receipt of the last command (the 
8271 Floppy Disk Controller begins its DMA 
transfer on receipt of the last command 
parameter). Since a translate DMA operation re­
quires the use of all three pointer registers (GA 
and GB specify the source and destination ad­
dresses; GC specifies the base address of the 
translation table), when it is necessary to use the 
last task block instruction to start the device, 
command port access can be accomplished 
relative to one of the pointer registers or relative 
to the PP register. If the device's data port ad­
dress (GA or GB) is below the device's command 
port address, either an offset or an indexed 
reference can be used to access the command 
port. 

A peripheral's (or peripheral controller's) DMA 
communication protocol with the 8089 is as 
follows: 

• The peripheral (when source or destination 
synchronized) initiates a DMA transfer cycle 
by activating the 8089's DRQ (DMA request) 
input. 

• The 8089 acknowledges the request by 
placing the peripheral's assigned data port 
address on the bus during state T 1 of the cor­
responding fetch (source synchronized) or 
store (destination synchronized) bus cycle. 
The peripheral is responsible for decoding 
this address as the DMA acknowledge 
(DACK) to its request. 

• The data is transferred between the 
peripheral and the 8089 during the T 2 
through T 4 state interval of the bus cycle. 
The peripheral must remove its DMA request 
during this interval. 

• The peripheral, when ready, requests another 
DMA transfer cycle by again activating the 
DRQ input, and the above sequence is 
repeated. 

• The peripheral can, as an option, end the 
DMA transfer by activating the 8089's EXT 
(external terminate) input. 

The 8089 can support mulitple peripheral devices 
on a single channel provided that only one device 
is in the active transfer mode at anyone time. To 
interface multiple devices, the DMA request 
(DRQ) lines are OR'ed together as are the exter­
nal terminate (EXT) lines. Unique port addresses 
are, however, assigned to each device so that an 
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individual DMA acknowledge (DACK) is return­
ed to only the active device. DACK decoding can 
be accomplished with an Intel ® 8205 Binary 
Decoder or a ROM circuit. Note that the 8089 can 
only determine which device has requested service 
or terminated by the context of the task block 
program. 

Most peripheral devices interfaced to the 8089 will 
use the decoded DMA acknowledge signal 
(DACK) as the "chip select" input. Peripheral 
devices that do not follow this convention must 
use DACK as a conditional input of chip select. 

While most interrupts associated with the 8089 
will be DMA requests or external terminates, non­
DMA related interrupts can additionally be 
supported. 

One technique that would be used when an 8089 is 
the local configuration (or when an 8086 or 8088 
and an 8089 are locally connected as a remote 
module) is to allow the CPU to accept the inter­
rupt and then direct the 8089 to the interrupt ser­
vice routine. Another technique is to allow the 
8089 to "poll" the device to determine when an 
interrupt has occurred (most peripheral con­
trollers have an interrupt pending bit in a status 
word). The 8089's bit testing instructions are 
ideally suited for polling. 

When the 8089 is in a remote configuration, non­
DMA related interrupts can be supported with the 
addition of an Intel® 8259A Programmable 
Interrupt Controller. Systems that require this 
type of interrupt structure would dedicate one of 
the 8089's channels to interrupt servicing. In 
implementing this structure, the interrupt output 
from the 8259A is directly connected to the chan­
nel's external terminate (EXT) input, and the 
channel's DMA request (DRQ) input is not used. 
A task block program is initially executed to per­
form a source-synchronized DMA transfer (with 
an external terminate) on the "interrupt" channel 
to "arm" the interrupt mechanism. Since the 
DRQ input is not used, when the channel enters 
the DMA transfer mode, the channel idles while 
waiting for the first DMA request (which never 
occurs). The other channel, since the interrupt 
channel is idle, operates at maximum throughput. 
When an interrupt occurs, the "pseudo" DMA 
transfer is immediately terminated, and task 
block instruction execution is resumed. The task 
block program would write a "poll" command to 
the 8259A's command port and then read the 
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8259A's data port to acknowledge the interrupt 
and to determine the device responsible for the 
interrupt (the device is identified by a 3-bit binary 
number in the associated data byte). The device 
number read would be used by the task block pro­
gram as a vector into a jump table for the device's 
interrupt service routine. Pertinent interrupt data 
could be written into the associated parameter 
block for subsequent examination by the host 
processor. 

The interrupt mechanism previously described, 
since it uses the 8089's external terminate func­
tion, provides an extremely fast interrupt 
response time. 

Note that when using dynamic RAM memory 
with the 8089, an Intel® 8202 Dynamic RAM 
Controller can be used to simplify the interface 
and to perform the RAM refresh cycle. When 
maximum transfer rates are required, the RAM 
refresh cycle can be externally initiated by the 
8089. By connecting the decoded DACK (DMA 
acknowledge) signal to the 8202's REFRQ 
(refresh request) input, the refresh cycle will occur 
coincident with the 110 device bus cycle and 
therefore will not impose wait states in the 
memory bus cycle. 

Instruction Encoding 

Most 8089 programming will be performed at the 
assembly language level using ASM-89, the 8089 
assembler. During program debugging, however, 
it may be necessary to work directly with machine 
instructions when monitoring the bus, reading un­
formatted memory dumps, etc. This section con­
tains both a table to encode any ASM-89 instruc­
tion into its corresponding machine instruction 

(table 4-24) and a table to "disassemble" any 
machine instruction back into its associated 
assembly language equivalent (table 4-26). 

Figure 4-32 shows the format of a typical 8089 
machine instruction. Except for the LPDI and 
memory-to-memory forms of the MOY and 
MOYB instructions that are six bytes long, all 
8089 machine instructions consist of from two to 
five bytes. The first two bytes are always present 
and are generally formatted as shown in figure 
4-32 (table 4-24 contains the exact encoding of 
every instuction). 

Bits 5 through 7 of the first byte of an instruction 
comprise the R/B/P field. This field identifies a 
register, bit select or pointer register operand as 
outlined in table 4-20. 

Table 4-20. R/B/P Field Encoding 

Code Register Bit Pointer 

000 GA 0 GA 
001 GB 1 GB 
010 GC 2 GC 
011 BC 3 NJA 
100 TP 4 TP 
101 IX 5 NJA 
110 CC 6 NJA 
111 MC 7 NJA 

The WB field (bits 3 and 4 of the first byte) in­
dicates how many displacement! data bytes are 
present in the instruction as outlined in table 4-21. 
The displacement bytes are used in program 
transfers; one byte is present for short transfers, 
while long transfers contain a two-byte (word) 
displacement. As mentioned in Chapter 3, the 

BYTE 1 

I I I I I I 

R/B/PI WB I AA Iw 

BYTE 2 

III II II 

IMM 

- ~Y~:" - 4- - .!~ ~ - +- - ~:; ~ - -l 

11~111lllllllllllll111~ 1 
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OPCODE OFFSET I LOW DISPIDATA I HIGH DISPIDATA I 
_____ L _____ ~ _____ ~ 

L BASE REGISTER FOR MEMORY OPERAND 

OPERATION (INSTRUCTION) CODE 

WIDTH (BYTE OR WORD OPERANDS) 

MEMORY ADDRESSING MODE 

NUMBER OF DISPLACEMENT IDATA BYTES 

REGISTER, BIT, POINTER SELECT 

Figure 4-32. Typical 8089 Machine Instruction Format 
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displacement is stored in two's complement nota­
tion with the high-order bit indicating the sign. 
Data bytes contain the value of an immediate con­
stant operand. A byte immediate instruction 
(e.g., MOVBI) will have one data byte, and a 
word immediate instruction (e.g., ADD!) will 
have two bytes (a word) of immediate data. An 
instruction may contain either displacement or 
data bytes, but not both (the TSL instruction is an 
exception and contains one byte of displacement 
and one byte of data). If an offset byte is present, 
the displacement/data byte(s) always follow the 
offset byte. 

Table 4-21. WB Field Encoding 

Code Interpretation 

00 No displacement/data bytes 
01 One displacement/data byte 
10 Two displacement/data bytes 
11 TSL instruction only 

The AA field specifies the addressing mode that 
the processor is to use in order to construct the ef­
fective address of a memory operand. Four ad­
dressing modes are available as outlined in table 
4-22. (Address modes are described in detail in 
section 3.8.) . 

Table 4-22. AA Field Encoding 

Code Interpretation 

00 Base register only 
01 Base register plus offset 
10 Base register plus IX 
11 Base register plus IX, 

auto-increment 

Bit 0 of the first instruction byte indicates whether 
the instruction operates on a byte (W=O) or a 
word (W=I). 

Bits 7 through 2 of the second instruction byte 
specify the instruction opcode. The opcode, in 
conjunction with the W field of the first byte, 
identifies the instruction. For example, the op­
code "111011" denotes the decrement instruc­
tion; if W=O, the assembly language instruction is 
DECB, while if W=I, the instruction is DEC. 
Table 4-26 lists, in hexadecimal order, the opcode 
of every assembly language instruction. 

The MM field (bits 0 and 1) indicates which 
pointer (base) register is to be used to construct 
the effective address of a memory operand. Table 
4-23 defines the MM field encoding. (Memory 
operand addressing is described in section 3.8.) 

Table 4-23. MM Field Encoding 

Code Base Register 

00 GA 
01 GB 
10 GC 
11 pp 

When the AA field value is "01" (base register 
+ offset addressing), the third byte of the instruc­
tion contains the offset value. This unsigned value 
is added to the content of the base register 
specified by the MM field to form the effective 
address of the memory operand. 

When the AA field value is "10," the IX register 
value is added to the content of the base register 
specified by the MM field to provide a 64k range 
of effective addresses. (Note that the upper four 
bits of the IX register are not sign-extended.) 

When the AA field value is "11," the IX register 
value is added to the base register value to form 
the effective address as described for an AA field 
value of "10." In this addressing mode, however, 
the IX register value is incremented by one after 
every byte accessed. 

Table 4-24. 8089 Instruction Encoding 
DATA TRANSFER INSTRUCTIONS 

MOV = Move word variable 78543210 78543210 78543210 78543210 78543210 78543210 

Memory to register RRROOAAI 100000MM offset it AA-01 

Register to memory RRROOAAI 1 000.0 1 M M 6ff.olll AA=OI 

Memory to memory OOOOOAAI 100100MM offset if AA""01 00000 A A 1 1" 0 0 1 1 M M I off.otiIAA-Ol I 
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Mova • Move byte variable 

Memory to register 

Register to memory 

Memory to memory 

Moyai III: Move byte Immediate 

Immediate to register 

Immediate to memory 

: MOVI = Move word Immediate 

Immediate to register 

Immediate to memory 

MOVP.= Move pointer 

Memory to pointer register 

Pointer register to memory 

LPD III: Load pointer with doublaword variable 

HARDWARE REFERENCE INFORMATION 

Table 4-24. 8089 Instruction Encoding (Cont'd.) 

78643210 78643210 78543210 78643210 78543210 78643210 

RRROOAAO 100000MM off •• tIfAA-01 

RRROOAAO 100001MM off •• tIfAA=01 

OOOOOAAO 100100MM offset If AA ... 01 00000 A A 0 11 1001 1 M M"' offsstlfAA=01 

off •• t If AA=OI 

LPDI = load pOtnler with doubleword Immediate 

ARITHMETIC INSTRUCTIONS 

ADD. Add word variable 

Memory to ,register 

Register to memory 

ADDB = Add byte variable 

Memory to fegister 

Register to memory 

ADDI l1li: Add word Immediate 

Immediate to register 

Immediate to memory 
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ADDBI = Add byte immediate 

Immedalte to register 

Immediate to memory 

INC = Increment word by 1 

Register 

Memory 

INCB • Increment byte by 1 

DEC = Decrement word by 1 

Register 

Memory 

OEca = Decrement byte by 1 

HARDWARE REFERENCE INFORMATION 

Table 4-24.8089 Instruction Encoding (Cont'd.) 

78543210 78543210 78543210 78543210 78543210 78543210 

100000 A A 0 11 1 1 01 0 M M I oH.elifAA=Ol 

100000 A A 01111011 M M I olf.etif AA-01 

LOGICAL AND BIT MANIPULATION iNSTRUCTIONS 

AND. AND word variable 

Memory to register 

Register to memory 

ANDB • AND byte variable 

Memory to register 

Regi8terto memory 

ANDI • AND word Immediate 

Immediate to register 

Immediate to memory 

ANDBI = AND byle immediate 

Immediate to register 

Immediate to memory 

OR = OR word variable 

Memory to register 

Register to memory 
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Table 4-24.8089 Instruction Encoding (Cont'd.) 

LOGICAL AND BIT MANIPULATION INSTRUCTIONS (Conl'd.) 

ORB = OR byte variable 76543210 76543210 76543210 76543210 76543210 76543210 

Memory to register 

Register to memory 

ORI = OR word immediate 

Immediate to register 

Immediate to memory 

ORBI = OR byte immediate 

Immediate to register 

Immediate to memory 

NOT = NOT word variable 

Register RRROOOOO o 0 1 0 1 1 0 0 

Memory o 0 0 0 0 A A 1 1 1 0 1 1 1 M M offset if AA=01 I 
Memory to register RRROOAA1 1 0 1 0 1 1 M M offset if AA=01 I 
NOTB = NOT byte variable 

Memory 

Memory to register 

seTS = Set bit to 1 IBBBOOAAOl111101MM offset if AA=01 

eLR = ClearbittoO BBBOOAAO 1111110MM offset if AA=01 

PROGRAM TRANSFER INSTRUCTIONS 

·CALL = Call 

LCALL = Long call 

·JMP = Jump unconditional l' 0001 000 1001 00000 disp-8 

LJMP = Long jump unconditional 1'001000'100'00000 dlsp-Io 

*The ASM-89 Assembler will automatically generate the long form of a program transfer instruction ,when the 

target is known to be beyond the byte-displacement range. 
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Table 4-24.8089 Instruction Encoding (Cont'd.) 

PROGRAM TRANSFER INSTRUCTIONS (Conl'd.l 

*JZ = Jump if word IsO 

Label to register 

7 8 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 8· 5 4 3 2 1 0 7 8 5 4 3 2 1 0 7 8 5 4 3 2 1 0 

label to memory 

LJZ = Long jump if word Is 0 

Label to register 

Label to memory 

-JZB. Jump if byte IsO 

UZB = Long jump if byte is 0 

*JNZ = Jump If word natO 

Label to register 

Label to memory 

UNZ = Long jump If word not 0 

Label to register 

Label to memory 

*JNZB = Jump If byte notO 

UNZ8 = Long jump if byte not 0 

*JMCE = Jump If masked compare equal 

LJMCE = Long jump If masked compare equal 

*JMCNE = Jump If masked compare notequai 

WMCNE = Long jump if masked compare not equal 

*JBT = Jump If bit Is 1 

disp-8 

offset If AA=01 

offset if AA-01 

-The ASM-89 Assembler will automatically gen~rate the long form of a program transfer Instruction when the 

target Is known to be beyond the byte-displacem.ent range. 
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Table 4-24.8089 Instruction Encoding (Cont'd.) 

PROGRAM TRANSFER INSTRUCTIONS (Cont'd.) 

78543210 76543210 78543210 7854~210 78543210 78543210 

LJBT = Long jump if hit Is 1 

·JNBT = Jump if bit is notl 

LJNBT = Long jump if bit is not 1 

PROCESSOR CONTROL INSTRUCTIONS 

TSl = Test and set while locked 

WID = Set logical bus widths 11 S O' 0 0 0 0 0 I 0 0 0 0 0 0 0 0 

'S=source width, D=destination width; 0=8 bits, 1=16 bits 

XFER = Enter OMA mode 101100000100000000 

SINTR = Set interrupt service bit 101000000100000000 

HLT = Halt channel program 100100000101001000 

NOP = No operation 100000000100000000 

'The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-dlsplacement range. 

Table 4-26 lists all of the 8089 machine instruc­
tions in hexadecimal/binary order by their second 
byte. This table may be used to "decode" an 
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Table 4-25. Key to 8089 Machine Instruction Decoding Guide 

Identifier Explanation 

5 Logical width of source bus; 0=8, 1=16 
0 Logical width of destination bus; 0=8, 1=16 

PPP Pointer register encoded in RI B/P field 
RRR Register encoded in RI B/P field 
AA AA (addressing mode) field 

BBB Bit select encoded in RI B/P field 
offset-Io Low-order byte of offset word in doubleword pOinter 
offset-hi High-order byte of offset word in doubleword pointer 

segment-Io Low-order byte of segment word in doubleword pointer 
segment-hi High-order byte of segment word in doubleword pointer 

data-8 8-bit immediate constant 
data-Io Low-order byte of 16-bit immediate constant 
data-hi High-order byte of 16-bit immediate constant 
disp-8 8-bit signed displacement 
disp-Io Low-order byte of 16-bit signed displacement 
disp-hi High-order byte of 16-bit signed displacement 
(offset) Optional 8-bit offset used in offset addressing 

Table 4-26. 8089 Machine Instruction Decoding Guide 

Byte 1 
Byte 2 

ASM89 Instruction Format 
Hex Binary 

Bytes 3, 4, 5, 6 

00000000 00 00000000 NOP 
01000000 00 00000000 51NTR 

15DOOOOO 00 00000000 WID source-width,dest-width 
01100000 00 00000000 XFER 

01 00000001 

} + + not used 
07 00000111 

PPP10001 08 00001000 offset-Io,offset-hi,segment-Io,segment-hi LPDI ptr-reg,immed32 
09 00001001 

} + + not used 
1F 00011111 

RRR01000 20 00100000 data-8 ADDBI register,immed8 
RRR10001 20 00100000 data-Io,data-hi ADOI register,immed16 
10001000 20 00100000 disp-8 JMP short-label 
10010001 20 00100000 disp-Io,disp-hi LJMP long-label 

21 00100001 

} + + not used 
23 00100011 

RRR01000 24 00100100 data-8 ORBI register,immed8 
RRR10001 24 00100100 data-Io,data-hi ORI register,immed16 

25 00100101 

} + + not used 
27 00100111 

RRR01000 28 00101000 data-8 ANDBI register,immed8 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

RRR10001 28 00101000 data-Io,data-hi ANDI register,immed16 
29 00101001 

} + + not used 
2B 00101011 

RRROOOOO 2C 00101100 NOT register 
20 00101101 

} + + not used 
2F 00101111 

RRR01000 30 00110000 data-8 MOVBI register,immed8 
RRR10001 30 00110000 data-Io,data-hi MOVI register,immed16 

31 00110001 

} + + not used 
37 00110111 

RRROOOOO 38 00111000 INC register 
39 00111001 

} + + not used 
3B 00111011 

RRROOOOO 3C 00111100 DEC register 
3D 00111101 

} + + not used 
3F 00111111 

RRR01000 40 01000000 disp-8 JNZ reg ister, short-label 
RRR10000 40 01000000 disp-Io,disp-hi LJNZ register, long-label 

41 01000001 

} + t not used 
43 01000011 

RRR01000 44 01000100 disp-8 JZ register ,short-label 
RRR10000 44 01000100 disp-Io,disp-hi LJZregister,short-label 

45 01000101 

} + + not used 
47 01000111 

00100000 48 01001000 HLT 
49 01001001 

} + + not used 
4B 01001011 

00001AAO 4C 010011MM 

} } + + + (offset) ,data-8 MOVBI mem8,immed8 
00001AAO 4F 010011 MM 
00010AA1 4C 010011 MM 

} } t + + (offset),data-Io,data-hi MOVI mem16,immed16 
00010AA1 4F 010011 MM 

50 01010000 

} + + not used 
7F 01111111 

RRROOAAO 80 100000MM 

} } + + (offset) MOVB register,mem8 
RRROOAAO 83 100000MM 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

RRROOAA1 80 100000MM 

} } + + + (offset) MOV register,mem16 
RRROOAA1 83 100000MM 
RRROOAAO 84 100001 MM 

} } + t + (offset) MOVB mem8,register 
RRROOAAO 87 100001 MM 
RRROOAA1 84 100001 MM 

} } + + + (offset) MOV mem16, register 
RRROOAA1 87 100001 MM 
PPPOOAA1 88 100010MM 

} } + + + (offset) LPD ptr-reg,mem32 
PPPOOAA1 8B 100010MM 
PPPOOAA1 8C 100011MM 

} } + + + (offset) MOVP ptr-reg,mem24 
PPPOOAA1 8F 100011 MM 
OOOOOAAO 90 100100MM 

} } + t t (offset),OOOOOAAO, 110011 MM,(offset) MOVB mem8,mem8 
OOOOOAAO 93 100100MM 
00000AA1 90 100100MM 

} } t t t (offset),OOOOOAA 1,110011 MM,(offset) MOV mem16,mem16 
00000AA1 93 100100MM 
00011AAO 94 100101 MM 

} } + + t (offset) ,data-8,disp-8 TSL mem8,immed8,short-label 
00011AAO 97 100101 MM 
PPPOOAA1 98 100110MM 

} } t t t (offset) MOVP mem24, ptr-reg 
PPPOOAA1 9B 100110MM 
10001AA1 9C 100111MM 

} } + t + (offset),disp-8 CALL mem24,short-label 
10001AA1 9F 100111MM 
10010AA1 9C 100111MM 

} } + t t (offset),d isp-Io,d isp-h i LCALL mem24,long-label 
10010AA1 9F 100111MM 

RRROOAAO AO 101000MM 

} } t t t (offset) ADDB register,mem8 
RRROOAAO A3 101000MM 
RRROOAA1 AO 101000MM } } t t t (offset) ADD register,mem16 
RRROOAA1 A3 101000MM 
RRROOAAO A4 101001MM 

} } t t + (offset) ORB register,mem8 
RRROOAAO A7 101001MM 
RRROOAA1 A4 101001MM 

} } t t t (offset) OR register,mem16 
RRROOAA1 A7 101001 MM 
RRROOAAO A8 101010MM 

} } + + + (offset) ANDB mem8,register 
RRROOAAO AB 101010MM 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

RRROOAA1 A8 101010MM 

} } t t t (offset) AND mem16,register 
RRROOAA1 AB 101010MM 
RRROOAAO AC 101011MM 

} } t t t (offset) NOTB register,mem8 
RRROOAAO AF 101011 MM 
RRROOAA1 AC 101011 MM 

} } t t t (offset) NOT register,mem16 
RRROOAA1 AF 101011MM 
00001AAO BO 101100MM 

} } t t t (offset),disp-8 JMCE mem8,short-label 
00001AAO B3 101100MM 
00010AAO BO 101100MM 

} } t t t (offset),disp-Io,disp-hi LJMCE mem8, long-label 
00010AAO B3 101100MM 
00001AAO B4 101101 MM 

} } t t t (offset),disp-8 JMCNE mem8,short-label 
00001AAO B7 101101 MM 
00010AAO B4 101101 MM 

} } t t t (offset),disp-Io,disp-hi LJMCNE mem8, long-label 
00010AAO B7 101101 MM 

BBB01AAO B8 101110MM 

} } t t t (offset),disp-8 JNBT mem8,bit-select,short-label 
BBB01AAO BB 101110MM 
BBB10AAO B8 101110MM 

} } t t t (offset) ,disp-Io,d isp-h i LJNBT mem8,bit-select,long-label 
BBB10AAO BS 101110MM 
BBB01AAO BC 101111MM 

} } t t t (offset),disp-8 JBT mem8, bit-select, short-label 
BBB01AAO BF 101111MM 
BBB10AAO BC 101111 MM 

} } t t t (offset) ,disp-Io,d isp-hi LJBT mem8,bit-select,long-label 
BBB10AAO BF 101111MM 
00001AAO CO 110000MM 

} } t t t (offset) ,data-8 ADDBI mem8,immed8 
00001AAO C3 110000MM 
00010AA1 CO 110000MM 

} } t t t (offset) ,data-Io,data-h i ADDI mem16,immed16 
00010AA1 C3 110000MM 
00001AAO C4 110001 MM 

} } t t t (offset),data-8 ORBI mem8,immed8 
00001AAO C7 110001 MM 
00010AA1 C4 110001 MM 

} } t t t (offset), data-Io, data-h i ORI mem16,immed16 
00010AA1 C7 110001MM 
00001AAO C8 110010MM 

} } t t t (offset),data-8 ANDBI mem8,immed8 
00001AAO CB 110010MM 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte 2 

Bytes 3, 4, 5, & ASM89 Instruction Format 
Hex Binary 

00010AA1 C8 110010MM 
} (offset),data-Io,data-hi } t t + ANDI mem16,immed16 

00010AA1 CB 110010MM 
CC 11001100 

} t + not used 
CF 11001111 

RRROOAAO DO 110100MM 

} } + t + (offset) ADDB mem8,register 
RRROOAAO 03 110100MM 
RRROOAA1 DO 110100MM 

} } + + + (offset) ADD mem16,register 
RRROOAA1 03 110100MM 
RRROOAAO 04 110101MM 

} } + + + (offset) ORB mem8,register 
RRROOAAO 07 110101MM 
RRROOAA1 04 110101 MM 

} } t + t (offset) OR mem16,register 
RRROOAA1 07 110101 MM 
RRROOAAO 08 110110MM 

} } ANDB mem8,register t + t (offset) 
RRROOAAO DB 110110MM 
RRROOAA1 08 110110MM 

} (offset) } AND mem16,register t + + 
RRROOAA1 DB 110110MM 
RRROOAAO DC 110111 MM 

} (offset) } + + + NOTB mem8,register 
RRROOAAO OF 111l111MM 
RRROOAA1 DC 110111MM 

} } + + t (offset) NOT mem16,register 
RRROOAA1 OF 110111MM 
00001AAO EO 111000MM } } JNZB mem8,short-label + + + (offset),disp-8 
00001AAO E3 111000MM 
00001AA1 EO 111000MM 

} } + + + (offset).disp-8 JNZ mem16,short-label 
00001AA1 E3 111000MM 
00010AAO EO 111000MM 

} } + t + (offset),disp-Io,disp-hi LJNZB mem8,long-label 
00010AAO E3 111000MM 
00010AA1 EO 111000MM } } + + + (offset),disp-Io,disp-hi LJNZ mem16,longlabel 
00010AA1 E3 111000MM 
00001AAO E4 111001MM 

} } JZB mem8,short-label t t t (offset),disp-8 
00001AAO E7 111001MM 
00001AA1 E4 111001MM 

} (offset),disp-8 } JZ mem16,short-label t t t 
00001AA1 E7 111001MM 
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Table 4-26.8089 Machine Instruction Decoding Guide (Cont'd. 

Byte 1 
Byte 2 

Bytes 3, 4, 5, 6 ASM89 Instruction Format 
Hex Binary 

00010AAO E4 111001MM 

} } t t t (offset),d isp-Io,disp-h i LJZB mem8,long-label 
00010AAO E7 111001 MM 
00010AA1 E4 111001MM 

} } t t t (offset),disp-Io,disp-hi LJZ mem16,long-label 
00010AA1 E7 111001 MM 
OOOOOAAO E8 111010MM 

} } t t t (offset) INCB mem8 
OOOOOAAO EB 111010MM 
00000AA1 E8 111010MM 

} } t t t (offset) INC mem16 
00000AA1 EB 111010MM 
OOOOOAAO EC 111011MM 

} } DECB t t t (offset) mem8 
OOOOOAAO EF 111011MM 
00000AA1 EC 111011MM 

} (offset) } DEC t t t mem16 
00000AA1 EF 111011MM 

FO 11110000 
} not used t t 

F3 11110000 
BBBOOAAO F4 111101MM 

} (offset) } SETB mem8,0-7 t t t 
BBBOOAAO F7 111101MM 
BBBOOAAO F8 111110MM 

} (offset) } GLR mem8,0-7 t t t 
BBBOOAAO FB 111110MM 

FC 11111100 
} not used t t 

FF 11111111 
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AP·67 

1. INTRODUCTION 

The 8086 family, Intel's new series of microprocessors 
and system components, offers the designer an ad­
vanced system architecture which can be structured to 
satisfy a broad range of appllcatlons_ The variety of 
speed, configuration and component selections avail­
able within the family enables optimization of a specific 
design to both cost and performance objectives. More 
important however, the 8086 family concept allows the 
designer to develop a family of systems providing multi­
ple levels of enhancement within a single design and a 
growth path for future designs. 

This application note Is directed toward the implemen­
tation of the system hardware and will provide' an in­
troduction to a representative sample of the systems 
configurable with the 8086 CPU member of the family. 
Application techniques and timing analysis will be given 
to aid the designer In understanding the system require­
ments, advantages and limitations. Additional Intel 
publications the reader may wish to reference are the 
8086 User's Manual (9800722A), 8086 Assembly Lan-

guage Reference Guide (9800749A), AP-28A MULTI­
BUS™ Interfacing (98005876B), INTEL MULTIBUS™ 
SPECIFICATION (9800683), AP-45 Using the 8202 Dy­
namic RAM Controller (9800809A), AP-51 Designing 
8086, 8088, 8089 Multiprocessor Systems with the 8289 
Bus Arbiter and AP-59 Using the 8259A Programmable 
Interrupt Controller. References to other Intel publica­
tions will be made throughout this note. 

2. 8086 OVERVIEW AND BASIC SYSTEM CONCEPTS 

2A. 8086 Bus Cycle Definition 

The 8086 is a true 16-bit microprocessor with 16-blt In­
ternal and external data paths, one megabyte of memory 
address space (2**20) and a separate 64K byte (2**16) 
I/O address space. The CPU communicates with its ex­
ternal environment via a twenty-bit time multiplexed ad­
dress, status and data bus and a command bus. To 
transfer data or feich instructions, the CPU executes a 
bus cycle (Fig. 2A 1). The minimum bus cycle consists of 
four CPU clock cycles called T states. During the first T 
state (T1), the CPU asserts an address on the twenty-bit 

!--T,_ - -T2-- ~T,rrw T4-I-

READ 
CYCLE 

WRITE 
CYCLE 

CLK 
-----' 

A191S6,A161S3 

READY 
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---DTIR ---

lL' 

)( 
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-

~ ~ ...,v----- ..,~ 
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- D -

--- )(r..UiAr" r-----ADDRESS A15-Ao \ FLOAT IX DA A IN D15'Do --1--- r-- -----
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V 

Figure 2A 1. Basic 8086 Bus Cycle 
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multiplexed address/data/status bus. For the second T 
state (T2), the CPU removes the address from the bus 
and either three-states its outputs on the lower sixteen 
bus lines in preparation for a read cycle or asserts write 
data. Data bus transceivers are enabled in either T1 or 
T2 depending on the 8086 system configuration and the 
direction of the transfer (into or out of the CPU). Read, 
write or interrupt acknowledge commands are always 
enabled in T2. The maximum mode 8086 configuration 
(to be discussed later) also provides a write command 
enabled in T3 to guarantee data setup time prior to com­
mand activation. 

During T2, the upper four multiplexed bus lines switch 
from address (A19-A16) to bus cycle status 
(S6,S5,S4,S3). The status information (Table 2A1) is 
available primarily for diagnostic monitoring. However, 
a decode of S3 and S4 could be used to select one of 
four banks of memory, one assigned to each segment 
register. This technique allows partitioning the memory 
by segment to expand the memory addressing beyond 
one megabyte. It also provides a degree of protection by 
preventing erroneous write operations to one segment 
from overlapping into another segment and destroying 
information in that segment. 

The CPU continues to provide status information on the 
upper four bus lines during T3 and will either continue 
to assert write data or sample read data on the lower six­
teen bus lines. If the selected memory or I/O device is 
not capable of transferring data at the maximum CPU 
transfer rate, the device must signal the CPU "not 
ready" and force the CPU to insert additional clock 
cycles (Wait states TW) after T3. The 'not ready' indica­
tion must be presented to the CPU by the start of T3. 
Bus activity during TW is the same as T3. When the 
selected device has had sufficient time to complete the 
transfer, it asserts" Ready" and allows the CPU to con­
tinue from the TW states. The CPU will latch the data on 
the bus during the last wait state or during T3 if no wait 
states are requested. The bus cycle is terminated in T4 
(command lines are disabled and the selected external 
device deselects from the bus). The bus cycle appears 
to devices in the system as an asynchronous event con­
sisting of an address to select the device followed by a 
read strobe or data and a write strobe. The selected 
device accepts bus data during a write cycle and drives 
the desired data onto the bus during a read cycle. On ter­
mination of the command, the device latches write data 
or disables its bus drivers. The only control the device 
has on the bus cycle is the insertion of wait cycles. 

The 8086 CPU only executes a bus cycle when instruc­
tions or operands must be transferred to or from 
memory or I/O devices. When not executing a bus cycle, 

. the bus interface executes idle cycles (TI). During the 
idle cycles, the CPU continues to drive status informa­
tion from the previous bus cycle on the upper address 
lines. If the previous bus cycle was a write, the CPU con­
tinues to drive the write data onto the multiplexed bus 
until the start of the next bus cycle. If the CPU executes 
idle cycles following a read cycle, the CPU will not drive 
the lower 16 bus lines until the next bus cycle is 
required. 

A-6 

Since the CPU prefetches up to six bytes of the instruc­
tion stream for storage and execution from an internal 
instruction queue, the relationship of instruction fetch 
and associated operand transfers may be skewed in 
time and separated by additional instruction fetch bus 
cycles. In general, if an instruction is fetched into the 
8086's internal instruction queue, several additional in­
structions may be fetched before the instruction is 
removed from the queue and executed. If the instruction 
being executed from the queue is a jutnp or other con­
trol transfer instruction, any instructions remaining in 
the queue are not executed and are discarded with no ef­
fect on the CPU's operation. The bus activity observed 
during execution of a specific instruction is dependent 
on the preceding instructions but is always deter­
ministic within the specific sequence. 

S3 

o 
1 

o 

S4 

o 
o 

Table 2A1 

Alternate (relative to the ES segment) 

Stack (relative to the SS segment) 

Code/None (relative to the CS seg-
ment or a default of zero) 

Data (relative to the OS segment) 

S5 = IF (interrupt enable flag) 
S6 = 0 (indicates the 8086 is on the bus) 

2B_ 8086 Address and Data Bus Concepts 

Since the majority of system memories and peripherals 
require a stable address for the duration of the bus 
cycle, the address on the multiplexed address/data bus 
during T1 should be latched and the latched address 
used to select the desired peripheral or memory loca­
tion. Since the 8086 has a 16-bit data bus, the multi­
plexed bus components of the 8085 family are not ap­
plicable to the 8086 (a device on address/data bus lines 
8-15 will not be able to receive the byte selection ad­
dress on lines 0-7). To demultiplex the bus (Fig. 2B1a), 
the 8086 system provides an Address Latch Enable 
signal (ALE) to capture the address in either the 8282 or 
8283 8-bit bi-stable latches (Diag. 2B1). The latches are 
either inverting (8283) or non-inverting (8282) and have 
outputs driven by three-state buffers that supply 32 mA 
drive capability and can switch a 300 pF capacitive load 
in 22 ns (inverting) or 30 ns (non-inverting). They prop­
agate the address through to the outputs while ALE is 
high and latch the address on the falling edge of ALE. 
This only delays address access and chip select 
decoding by the propagation delay of the latch. The out­
puts are enabled through the low active OE input. The 
demultiplexing of the multiplexed address/data bus 
(Iatchings of the address from the multiplexed bus), can 
be done locally at appropriate points in the system or at 
the CPU with a separate address bus distributing the ad­
dress throughout the system (Fig. 2B1b). For optimum 
system performance and <:ompatibility with multiproc­
essor and MULTIBUS™ configurations, the latter tech­
nique is strongly recommended over the first. The re­
mainder of this note will assume the bus is demul­
tiplexed at the CPU. 
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The programmer views the 8086 memory address space 
as a sequence of one million bytes in which any byte 
may contain an eight bit data element and any two con­
secutive bytes may contain a 16-bit data element. There 
is no constraint on byte or word addresses (boundaries). 
The address space is physically implemented on a six­
teen bit data bus by dividing the addrllss space into two 
banks of up to 512K bytes (Fig. 2B2). One bank is con­
nected to the lower half of the sixteen-bit data bus (07-0) 
and contains even addressed bytes (AD = 0). The other 
bank is connected to the upper half of the data bus 
(015-8) and contains odd addressed bytes (AD = 1). A 
specific byte within each bank is selected by address 
lines A19-A1. To perform byte transfers to even ad­
dresses (Fig. 2B3a), the information is transferred over 
the lower half of the data bus (07-0). AD (active low) is 
used to enable the bank connected to the lower half of 
the data bus to participate in the transfer. Another 
signal provided by the 8086, Bus High Enable (BHE), is 
used to disable the bank on the upper half of the data 
bus from participating in the transfer. This is necessary 
to prevent a write operation to the lower bank from 
destroying data in the upper bank. Since BHE is a 
multiplexed signal with timing identical to the A19-A16 
address lines, it also should be latched with ALE to pro­
vide a stable signal during the bus cycle. Ouring T2 
through T4, the BHE output is multiplexed with status 
line S7 which is equal to BHE. To perform byte transfers 
to odd addresses (Fig. 2B3b), the information is trans­
ferred over the upper half of the data bus (015-08) while 
BHE (active low) enables the upper bank and AD 
disables the lower bank. Oirecting the data transfer to 
the appropriate half of the data bus and activation of 
BH E and AD is performed by the 8086, transparent to the 
programmer. As an example, consider loading a byte of 
data into the CL register (lower half of the CX register) 
from an odd addressed memory location (referenced 
over the upper half of the 16-bit data bus). The data is 
transferred into the 8086 over the upper 8 bits of the 
data bus, automatically redirected to the lower half of 
the 8086 internal 16-bit data path and stored into the CL 
register. This capability also allows byte 1/0 transfers 
with the AL register to be directed to 1/0 devices con­
nected to either the upper or lower half of the 16-bit data 
bus. 

To access even addressed sixteen bit words (two con­
secutive bytes with the least significant byte at an even 

T3 Tw T, 

~ lr-i~ ~ 

--- ---
DATA IN OR OUT v, X -X--

'--- --- - \--_-

r--

\ I ALE -

Diagram 2B1. ALE Timing 
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byte address),A19-A1 select the appropriate byte within 
each bank and AO and SHE (active low) enable both 
banks simultaneously (Fig. 2S3c). To access an odd ad­
dressed 16-bit word (Fig. 2S3d), the least significant 
byte (addressed by A 19-A 1) is first transferred over the 
upper half of the bus (odd addressed byte, upper bank, 
SHE low active and AO= 1). The most significant byte is 
accessed by incrementing the address (A19-AO) which 
allows A19-A1 to address the next physical word loca­
tion (remember, AO was equal to one which indicated a 
word referenced from an odd byte boundary). A second 
bus cycle is then executed to perform the transfer of the 
most significant byte with the lower bank (AO is now ac­
tive low and SHE is high). The sequence is automatically 
executed by the 8086 whenever a word transfer is ex­
ecuted to an odd address. Directing the upper and lower 
bytes of the 8086's internal sixteen-bit registers to the 
appropriate halves of the data bus is also performed 
automatically by the 8086 and is transparent to the pro­
grammer. 

(A) LOGICAL ADDRESS SPACE 
(8) PHYSICAL IMPLEMENTATION OF THE 

ADDRESS SPACE 

512K BYTES 512K BYTES 
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1 MEGABYTE 

1\ 

-V 

1 

FFFFF 
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Figure 2B2. 8086 Memory 
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Figure 2B3d. Odd Addressed Word Transfer 

During a byte read, the CPU floats the entire sixteen-bit 
data bus even though data is only expected on the upper 
or lower half of the data bus. As will be demonstrated 
later, this action simplifies the chip select decoding re­
quirements for read only devices (ROM, EPROM). During 
a byte write operation, the 8086 will drive the entire 
sixteen-bit data bus. The information on the half of the 
data bus not transferring data is indeterminate. These 
concepts also apply to the I/O address space. Specific 
examples of I/O and memory interfacing are considered 
in the corresponding sections . 

2C. System Data Bus Concepts 

When referring to the system data bus, two implemen­
tation alternatives must be considered; (a) the multi­
plexed address/data bus (Fig. 2C1a) and a data bus buf­
fered from the multiplexed bus by transceivers (Fig. 
2C1b). 

If memory or 1/0 devices are connected directly to the 
multiplexed bus, the designer must guarantee the 
devices do not corrupt the address on the bus during T1. 
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Figure 2Cla. Multiplexed Data Bus 

BUFFERED DATA BUS 

8282 

Figure 2Clb. Bull.red Data Bua 
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T2 

To avoid this, device output drivers should not be enabl­
ed bY the device chip select, but should have an output 
enable controlled by the system read signal (Fig. 2C2). 
The' 8086 timing guarantees that read Is not valid ,until 
after the address Is latched by ALE (Olag. 2C1). All Intel 
peripherals, EPROM products and RAM's for microproc­
essors provide output enable or read inputs to allow 
connection to the multiplexed bus. 

ALE----I 

ADDRESS BUS 

iiii------01 

Figure 2C2. Device. with Output Enable. on the Multiplexed Bua 

Several techniques are available for interfacing devices 
without output enables to the multiplexed bus but each 
introduces other restrictions or limitations. Consider 
Figure 2C3 which has chip select gated with read and 
write. Two problems exist with this technique. First, the 
chip select access time is reduced to the read access 
time, and may require a faster device if maximum 
system performance (no walt states) is to be achieved 
(Olag. 2C2). Second, the designer must verify that chip 
select to write setup and hold times for the device are 
not violated (Oiag. 2C3). Alternate techniques can be ex­
tracted from the bus Interfacing techniques given later 
In this section but are subject to the associated restric­
tions. In general, the best solution is obtained with 
devices having output enables. 

A subsequent limitation on the multiplexed bus Is the 
8086's drive capability of 2.0 mA and capacitive loading 
of 100 pF to guarantee the specified A.C. character­
Istics. Assuming capacitive loads of 20 pF per 1/0 
device, 12 pF per address latch and 5-12 pF per memory 
device, a system mix of three peripherals and two to 
four memory devices (per bus line) are close to the 
loading limit. 

T3 T4 

,----
-----

Diagram 2Cl. Relationship of ALE to READ 
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ADDRESS 

ALE 

'--_________ ..J\ MULTIPLEXED BUS 

Figure 2C3. Device. without Output Enable. on the Multiplexed Bu. 

ADDRESS---\ .... _____________ _ 

DATA----------+--~ 

1 ACCESS TIME FOR CS GENERATED FROM ADDRESS DECODE. 

2 ACCESS TIME IF CS IS GATED WITH RD/WH. 

Diagram 2C2. Access Time: CS Gated with iiiilWR 

ADDR~'_ _____ ~--------
WR---~----, ~ 

sa lu 
1 CS lS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE 

DELAYS LATER. 

2 CS REMAINS VALID AFTER WRITE ONE OR TWO GATE DELAYS. 

Diagram 2C3. CS to WR Set·Up and Hold 

To satisfy the capacitive loading and drive requirements 
of larger systems, the data bus must be buffered. The 
8286 non-Inverting and 8287 inverting octal transceivers 
are offered as part of the 8086 family to satisfy this re­
quirement. They have three-state .output buffers that 
drive 32 mA on the bus interface arid .10 mA 011 the CPU 
interface ano can switch capacitive loads of 300 pF at 
the bus interface and 100 pF on the CPU interlace in 22 
ns (8287) or 30 ns (8286). To enable and cont~onthe direc­
tion of the transceivers, the 8086 systemprov,ldes Data 
ENable (DEN) and Data Transmit/Receive(DTiRj slgnliis 
(Fig. 2C1 b). These signals provide the appropriate tim­
ing to guarantee isolation of the multiplexed'bus from 
the system during T1 and elimination of bus contention 
with the CPU during read and write (Diag. 2C4). Although 
the memory and peripheral devices are isolated from the 
CPU (Fig. 2C4), bus contention 'may stlll exist in the 
system if the devices do riot have an output enable con­
trol other than chip select. AS an example, bus contlln­
tion will exist during transition from one chip select to 
another (the newly selected device begins driving the 
bus before the previous device has disabled its drivers). 
Another, more severe case exists during a write.cycle. 
From chip select to write active, a dJlvice whose outputs 
are controlled only by chip select, will drive the bus 
simultaneously with write data being driven through the 
transceivers by the CPU (Dlag. 2C5). The same tech­
nique given for circumventing these problems ,on the 
multiplexed bus can be applied here with the' same limi-
tations. ' 

One last extension to the bus implementation Is a sec- ' 
ond level of buffering to reduce the total load seen by , 
devices on the system bus (Fig. 2C5). This Is typically 
done for multiboard systems and Isolation of memory 
arrays. The concerns with this configuration are the, ad­
ditional delay for access and more important, conVol of 
the second transceiver in relationship to the system blls 
and the device being interfaced to the system bus. 
Several techniques for controlling the transoeiver are 
given in Figure 2C6. This first technique (Fig. 2C6a) 
simply distributes DEN and DTIR ·throughout the 
system. DT/R is inverted to prQvide proper direQtiori con­
trol for the second level transceivers. The seconG·exam­
pie (Fig. 2C6b) provides control for devices with output 
enables. RD is used to normally direct data from, the 
system bus to the periptleral. The .buffElT is sel!lcted 
whenever a device on the local bus is Chip $elected. Bus 
contention Is possible on the device~s local bus during a 
read as the read simultaneously enables the device out­
put and changes the transceiver direction. The conten­
tion may also occur as the read is·terminated. 

For devices without output enables, the same technique 
can be applied (Fig. 2C6c) If the chip select to the device 
Is conditioned by read or write. Controlling the chip 
select with read/wrlte prevents the device from driving 
against the transceiver prior to the command being 
received. The, limitations with this technique are access 
limited to read/write time and limited CS to write setup 
and hold times. 
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Figure 2C4. Devices with Output Enables on the System Bus Diagram 2C5. 
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Figura 2C8a. Controlling System Transceivers with DEN and DT/R 
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Figura 2C8c. Bullering Dovlces without OEiiiii and with Common 
or Separate Inpul/Output 

An alternate technique applicable to devices with and 
without output enables is shown in Figure 2C6d. RD 
again controls the direction of the transceiver but it is 
not enabled until a command and chip select are active. 
The possibility for bus contention stl II exists but is 
reduced to variations in output enable vs. direction 
change time for the transceiver. Full access time from 
chip select is now available, but data will not be valid 
prior to write and will only be held valid after write by the 
delay to disable the transceiver. 

C!--------~----------------------~ 

SYSTEM DATA 8US 

828617 

MEMORY/I/O 
DEVICE 

Figure 2C6d. Bullerlng Devices without OEiRD and with Common 
or Separate Inpul/Output 

One last technique is given for devices with separate in­
puts and outputs (Fig. 2C6e). Separate bus receivers and 
drivers are provided rather than a single transceiver. The 
receiver is always enabled while the bus driver is con­
trolled by RD and chip select. The only possibility for 
bus contention in this system occurs as multiple 
devices on each line of the local read bus are enabled 
and disabled during chip selection changes. 

Throughout this note, the multiplexed bus will be con­
sidered the local CPU bus and the demultlplexed ad­
dress and buffered data bus will be the system bus. For 
additional Information on bus contention and the 
system problems associated with it, refer to Appendix 1. 
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2D. Multiprocessor Environment 

The 8086 architecture supports multiprocessor systems 
based on the concept of a shared system bus (Fig. 2D1). 
All CPU's in the system communicate with each other 
and share resources via the system bus. The bus may be 
either the Intel Multibus™ system bus or an extension 
of the system bus defined in the previous section. The 
major addition required to the demultlplexed system 
bus is arbitration logic to controi access to the system 
bus. As each CPU asynchronously requests access to 
the shared bus, the arbitration logic resolves priorities 
and grants bus access to the highest priority CPU. Hav· 
ing gained access to the bus, the CPU completes its 
transfer and wlli either relinquish the bus or wait to be 
for{:ed to relinquish the bus. For a discussion on 
Multibus ™ arbitration techniques, refer to AP-28A, Intel 
Multibus™ Interfacing. 

SHARED 
PERIPHERALS 

Figura 2D1. 8086 Family Muillprocessor Systam 

To support a muitimaster interface to the Multibus 
system bus for the 8086 family, the 8289 bus arbiter is 
included as part of the family. The 8289 is compatible 
with the 8086's iocal bus and in conjunction with the 
8288 bus controller, implements the Multibus protocol 
for bus arbitration. The 8289 provides a variety of arbitra­
tion and prioritization techniques to allow optimization 
of bus availability, throughput and utilization of shared 
resources. Additional features (implemented through 

strapping options) extend the configuration options 
beyond a pure CPU interface to the multlmaster system 
bus for access to shared resources to Include concur­
rent support of a local CPU bus for private resources. 
For specific configurations and additional Information 
on the 8289, refer to application note AP-51. 

3. 8088 SYSTEM DETAILS 

3A. Operating Mode. 

Possibly the most unique feature of the 8086 Is the abili­
ty to select the base machine configuration most suited 
to the application. The MN/MX input to the 8086 Is a 
strapping option which allows the designer to select 
between two functional definitions of a subset of the 
8086 outputs. 

MINIMUM MODE 

The minimum mode 8086 (Fig. 3A1) is optimized for 
small to medium (one or two boards), single CPU 
systems. Its system architecture Is directed at satiSfy­
Ing the requirements of the lower to middle segment of 
high performance 16-bit applications. The CPU main­
tains the full megabyte memory space, 64K byte I/O 
space and 16-bit data path. The CPU directly provides all 
bus control (DT/R, DEN, ALE, M/io), commands 
(RD,WR,INTA) and a simple CPU preemption mech­
anism (HOLD, HLDA) compatible with existing DMA 
controllers. 

MAXIMUM MODE 

The maximum mode (Fig. 3A2) extends the system ar­
chitecture to support multiprocessor configurations, 
and local instruction set extension processors (co­
processors). Through addition of the 8288 bipolar bus 
controller, the 8086 outputs assigned to bus control and 
commands in the minimum mode are redefined to allow 
these extenSions and enhance general system perform­
ance. Specifically, (1) two prioritized levels of processor 
preemption (RQ/GTO, RQ/clff) allow multiple proc­
essors to reside on the 8086's local bus and share its in­
terface to the system bus, (2) Queue status (QSO,QS1) is 
available to allow external devices like ICE™-86 or 
special instruction set extension co-processors to track 
the CPU instruction execution, (3) access control to 
shared resources in multiprocessor· systems Is sup­
ported by a hardware bus lock mechanism and (4) 
system command and configuration options are ex­
panded via an ciliary devices like the 8288 bus controller 
and 8289 bus arbiter. 

The queue status indicates what Information is being 
removed from the internal queue and when the queue Is 
being reset due to a transfer of control (Table 3A 1). By 
monitoring the SO,51,52 status lines for Instructions 
entering the 8086 (1,0,0 indicates code access while AO 
and BHE indicate word or byte) and QSO, QS1 for in­
structions leaving the 8086's internal queue, it is possi­
ble to track the instruction execution. Since Instruc­
tions are executed from the 8086's internal queue, the 
queue status is presented each CPU clock cycle and is 
not related to the bus cycle activity. This mechanism (1) 
allows a co-processor to detect execution of an 
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ESCAPE instructiOn which directs the co-processor to 
perform a specific task and (2) allows ICE-B6 to trap ex­
ecution ofa specific memory location. An example of a 
circuit used by ICE is given in Figure 3A3. The first up 
down counter tracks the depth of the. queue while the 
second captures the queue depth on a match. The sec­
ond counter decrements on further fetches from the 
queue until the queue is flushed or the count goes to 
zero indicating execution of the match address. The 
first counter decrements on fetch from the queue 
(OSO= 1) and increments on code fetches into the 

queue. Note that a normal code fetch will transfer two 
bytes into the queue so two clock increments are given 
to the counter (T201 and T301) unless a single byte is 
loaded over the upper half of the bus (AO-P is high). 
Since the execution unit (EU) is not synchronized to the 
bus interface unit (BIU), a fetch from the queue can oc­
cur simultaneously with a transfer into the queue. The 
exclusive-or gate driving the. ENP input of the first 
counter allows these simultaneous operations to cancel 
each other and not modify the queue depth. 
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TABLE 3A1. QUEUE STATUS 

QS1 QSO 

o (LOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

The queue status is valid during the CLK cycle after 
which the queue operation is performed. 

To address the problem of controlling access to shared 
resources, the maximum mode 8086 provides a hard· 
ware LOCK output. The LOCK output Is activated 
through the instruction stream by execution of the 
LOCK prefix instruction. The LOCK output goes active 
in the first CPU clock cycle following execution of the 
prefix and remains active until the clock following the 
completion of the instruction following the LOCK prefix. 
To provide bus access control in multiprocessor 
systems, the LOCK signal should be incorporated into 
the system bus arbitration logic resident to the CPU. 

During normal multiprocessor system operation, pri­
ority of the shared system bus is determined by the ar­
bitration circuitry on a cycle by cycle basis. As each 
CPU requires a transfer over the system bus, It requests 
access to the bus via its resident bus arbitration logic. 
When the CPU gains priority (determined by the system 
bus arbitration scheme and any associated logic), It 
takes control of the bus, performs its bus cycle and 
either maintains bus control, voluntarily releases the 
bus or Is forced off the bus by the loss of priority. The 
lock mechanism prevents the CPU from losing bus con­
trol (either voluntarily or by force) and guarantees a CPU 
the ability to execute multiple bus cycles (during execu-

tion of the locked instruction) without intervention and 
possible corruption of the data by another CPU. A 
classic use of the mechanism is the 'TEST and SET 
semaphore' during which a CPU must read from a 
shared memory location and return data to the location 
without allowing another CPU to reference the same 
location between the TEST operation (read) and the SET 
operation (write). In the 8086 this is accomplished with a 
locked exchange instruction. 

LOCK XCHG reg, MEMORY; reg Is any register 
;MEMORY Is the address of the 
;8~maphore 

The activity of the LOCK output is shown in Diagram 
3A1. Another Interesting use of the LOCK for multiproc­
essor systems is a locked block move which allows high 
speed message transfer from one CPU's message buf­
fer to another. 

During the locked instruction, a request for processor 
preemption (RQ/GT) is recorded but not acknowledged 
u.ntil completion of the locked instruction. The LOCK 
has no direct affect on interrupts. As an e~.Eie, a 
iocked HALT instruction will cause HOLD (or RQ/GT) re­
quests to be ignored but will allow the CPU to exit the 
HALT state on an interrupt. In general, prefix bytes are 
considered extensions of the Instructions they precede. 
Therefore, interrupts that occur during execution of a 
prefix are not acknowledged (assuming interrupts are 
enabled) until completion of the instruction following 
the prefixes (except for instructions which allow servic­
Ing interrupts during their execution, I.e., HALT, WAIT 
and repeated string primitives). Note that multiple prefix 
bytes may precede an instruction. As another example, 
consider a 'string primitive' preceded by the repetition 

.-------l:><>------'2'+CLK 

============:jr=~!--------------t-=-=~~~----~9 ~AD 
748188 

QCTO 

MHBYTE AND 1 - MATCH CONDITIONS 
CLKA - CPU CLOCK 
OSl, aso - CPU QUEUE STATUS 

~_T~ : 6:J~~~~J: :~S~(CLOCK LOW TIME_Ol) 

C ACCESS - CODE ACCESS 
OCTO - QUEUE MATCH 
AO·P - SINGLE BYTE ON UPPER HALF OF THE BUS 

~::======1[:J~~~~1---------------------------------------------~-------SllH 13 C ACCESS 

iIDi ______ ....:.13, 

74$04 

Figure 3A3. Example Circuit to Track the 8088 Queue 
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prefix (REP) which is interruptible after each execution 
of the string primitive. This holds even if the REP prefix 
is combined with the lOCK prefix and prevents inter­
rupts from being locked out during a block move or 
other repeated string operation. As long as the opera­
tion is not interrupted, lOCK remains active. Further in­
formation on the operation of an interrupted string 
operation with multiple prefixes is presented in the sec­
tion dealing with the 8086 interrupt structure. 

Three additional status lines (SO, S1, S2) are defined to 
provide communications with the 8288 and 8289. The 
status lines tell the 8288 when to initiate a bus cycle, 
what type of command to issue and when to terminate 
the bus cycle. The 8288 samples the status lines at the 
beginning of each CPU clock (ClK). To initiate a bus cy­
cle, the CPU drives the status lines from the passive 
state (SO, S1, S2 = 1) to one of seven possible command 
codes (Table 3A2). This occurs on the rising edge of the 
clock during T4 of the previous bus cycle or a TI (idle cy­
cle, no current bus activity). The 8288 detects the status 
change by sampling the status lines on the high to low 
transition of each clock cycle. The 8288 starts a bus cy­
cle by generating ALE and appropriate buffer direction 
control in the clock cycle immediately following detec­
tion of the status change (T1). The bus transceivers and 
the selected command are enabled in the next clock 
cycle (T2) (or T3 for normal write commands). When the 
status returns to the passive state, the 8288 will ter­
minate the command as shown in Diagram 3A2. Since 
the CPU will not return the status to the passive state 
until the 'ready' indication is received, the 8288 will 
maintain active command and bus control for any 
number of walt cycles. The status lines may also be 
used by other processors on the 8086's local bus to 
monitor bus activity and control the 8288 If they gain 
control of the local bus. 

CLK 

QSO 

LOCK 

LOCK 
PREFIX 

BYTE FROM 
QUEUE, 

NOP BYTE 
FROM THE 

QUEUE 
(LOCKED NOP) 

TABLE 3A2. STATUS LINE DECODES 

S2 SI So 

o (lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 Port 
0 1 0 Write 1/0 Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

The 8288 provides the bus control (DEN, DT/R, ALE) and 
commands (INTA, MRDC, 10RC, MWTC, AMWC, iOWC, 
AIOWC) removed from the CPU. The command structure 
has separate read and write commands for memory and 
1/0 to provide compatibility with the Multibus command 
structure. 

The advanced write commands are enabled one clock 
period earlier than the normal write to accommodate the 
wider write pulse widths often required by peripherals 
and static RAMs. The normal write provides data setup 
prior to write to accommodate dynamic RAM memories 
and I/O devices which strobe data on the leading edge of 
write. The advanced write commands do not guarantee 
that data is valid prior to the leading edge of the com­
mand. The DEN signal in the maximum mode is inverted 
from the minimum mode to extend transceiver control 
by allowing logical conjunction of DEN with other 
signals. While not appearing to be a significant benefit 
In the basic maximum mode configuration, introduction 
of interrupt control and various system configurations 
will demonstrate the usefulness of quallfylng'DEN. 
Diagram 3A3 compares the timing of the minimum and 
maximum mode bus transfer commands. Although the 

~--------~~ 
I----__________________ ,~ 

LOCKED INSTRUCTION 

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE. 

2 THE LOCK OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS. 

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND 
ACTIVATION OF THE i:OCK SIGNAL. 

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK 
CYCLE, THE i:OCK OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START 
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE 
FOLLOWING THE INSTRUCTION. 

5 IF THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE, THE 
L6CR OUTPUTSTI'LL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING 
FETCHED. 

8 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION 
OF A LOCKED INSTRUCTION. THE L6CR MERELY LOCKS THE BUS TO THIS CPU FOR 
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION. 

Diagram 3A 1. 8088 Lock Activity 
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maximum mode configuration is designed for multi­
processor environments, large single CPU designs 
(either Multibus systems or greater than two PC boards) 
should also.use the maximum mode. Since the 8288 is a 
bipolar dedicated controller device, its output drive for 
the commands (32 mAl and tolerances on AC character­
istics (timing parameters and worse case delays) pro­
vide better large system performance than the minimum 
mode 8086. 

CLK 

ALE 

READY 

In addition to assuming the functions removed from the 
CPU, the 8288 provides additional strapping options and 
controls to support multiprocessor configurations and 
peripheral devices on the CPU local bus. These capa­
bilities allow assigning resources (memory or 1/0) as 
shared (available on the Multibus system bus) or private 
(accessible only by this CPU) to reduce contention for 
access to the. Multibus system bus and improve multi­
CPU system performance. Specific configuration possi­
bilities are discussed in AP-51. 

GOES INACTIVE IN THE STATE 
JUST PRIOR TO T 4 

o 
WAIT 

READY 

Diagram 3A2. Status Line Activation and Termination 

MN 
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8086 
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8086 
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CLK (8284 OUTPUn 

TCVCTX- 110 ns 

35 os TCLMH 35 

TCLMH_ 35_ 

~ORAIOWC --------~------------4-,1 

TCLML 35 - TCLMH 

Diagram 3A3. 8086 Minimum and Maximum Mode Command Timing 
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3B. Clock Generation 

The 8086 requires a clock signal with fast rise and fall 
times (10 ns max) between low and high voltages of 
- 0.5 to + 0.6 low and 3.9 to VCC + 1.0 high. The max· 
imum clock frequency of the 8086 is 5 MHz and 8 MHz 
for the 8086·2. Since the design of the 8086 incorporates 
dynamic cells, a minimum frequency of 2 MHz is reo 
quired to retain the state of the machine. Due to the 
minimum frequency requirement, single stepping or 
cycling of the CPU may not be accomplished by dis· 
abling the clock. The timing and voltage requirements of 
the CPU clock are shown in Figure 3B1. In general, for 
frequencies below the maximum, the CPU clock need 
not satisfy the frequency dependent pulse width limi· 
tations stated in the 8086 data sheet. The values 
specified only reflect the minimum values which must 
be satisfied and are stated in terms of the maximum 
clock frequency. As the clock frequency approaches the 
maximum frequency of the CPU, the clock must con· 
form to a 33% duty cycle to satisfy the CPU minimum 
clock low and high time specifications. 

10n8 MAX 

1.5 

.6t---~~~~~~~~~--------1i----.~ 1 __ ----- :gg~: :~~ -----., 

Figure 381. 8086 Clock 

An optimum 33% duty cycle clock with the required 
voltage levels and transition times can be obtai ned with 
the 8284 clock generator (Fig. 3B2). Either an external 
frequency source or a series resonant crystal may drive 
the 8284. The selected source must oscillate at 3X the 
desired CPU frequency. To select the crystal Inputs of 
the 8284 as the frequency source for clock generation, 
the Fie Input to the 8284 must be strapped to ground. 
The strapping option allows selecting either the crystal 
or the external frequency Input as the source for clock 
generation. Although the 8284 provides an Input for a 
tank circuit to accommodate overtone mode crystals, 
fundamental mode crystals are recommended for more 
accurate and stable frequency generation. When selec· 
ting a crystal for use with the 8284, the series resistance 
should be as low as possible. Since other circuit com· 
ponents will tend to shift the operating frequency from 
resonance, the operating impedance will typically be 
higher than the specified series resistance. If the at· 
tenuatlon of the oscillator's feedback circuit reduces 
the loop gain to less than one, the oscillator will fail. 
Since the oscillator delays in the 8284 appear as induc· 
tive elements to the crystal, causing it to run at a fre· 
quency below that of the pure series resonance, a 
capaCitor should be placed in series with the crystal and 
the X2 input of the 8284. This capaCitor serves to cancel 
this Inductive element. The value of the capaCitor (Cl) 

must not cause the impedance of the feedback circuit to 
reduce the loop gain below one. The impedance of the 
capaCitor is a function of the operating frequency and 
can be determined from the following equation: 

XCl= 1/2n'F'Cl 

17 
X, osc 12 

8284 8088 XTAl CJ 

Y 18 ClK 19 ClK 

X2 
Cl 

13 Fft 

Figure 382. 8284 Clock Generalor 

It is recommended that the crystal series resistance 
plus XCl be kept less than 1 K ohms. This capaCitor also 
serves to debias the crystal and prevent a DC voltage 
bias from straining and perhaps damaging the crystal­
line structure. As the crystal frequency increases, the 
amount of capaCitance should be decreased. For exam­
ple, a 12 MHz crystal may require Cl '" 24 pF while 22 
MHz may require Cl'" 8 pF. If very close correlation 
with the pure series resonance is not necessary, a 
nominal CL value of 12-15 pF may be used with a 15 MHz 
crystal (5 MHz 8086 operation). Board layout and compo­
nent variances will affect the actual amount of induc­
tance and therefore the series capacitance required to 
cancel it out (this Is especially true for wire-wrapped 
layouts). 

Two of the many vendors which supplycrystals for Intel 
microprocessors are listed in Table 3B1 along with a list 
of crystal part numbers for various frequencies which 
may be of interest. For additional information on speci· 
fying crystals for Intel components refer to application 
note AP-35. 

TABLE 3Bl. CRYSTAL VENDORS 

f Parallel! Crystek(l) CTS Knlght,(2) 
Series Corp. Inc. 

15.0 MHz S CY15A MP150 
18.432 S CY19B' MP184' 
24.0 MHz S CY24A MP240 

'Inlel also supplies a crystal numbered 8801 for this application. 

Nol •• : 1. Address: 1000 Crystal Drive, Fort Meyers, Florida 33901 
2. Address: 400 Reimann Ave., Sandwich, illinois 

If a high accuracy frequency source, externally variable 
frequency source or a common source for driving mUl­
tiple 8284's is desired, the External Frequency Input 
(EFI) of the 8284 can be selected by strapping the FICin­
put to 5 volts through ",1 K ohms (Fig. 3B3). The external 
frequency source should be TTL compatible, have a 
50% duty cycle and oscillate at three times the desired 
CPU operating frequency. The maximum EFI frequency 
the 8284 can accept is slightly above 24 MHz with 
minimum clock low and high times of 13 ns. Although 
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no minimum EFI frequency is specified, it should not 
violate the CPU minimum clock rate. If a common fre· 
quency source is used to drive multiple 8284's 
distributed throughout the system, each 8284 should be 
driven by its own line from the source. To minimize 
noise in the system, each line should be a twisted pair 
driven by a buffer like the 74LS04 with the ground of the 
twisted pair connecting the grounds of the source and 
receiver. To minimize clock skew, the lines to all 8284's 
should be of equal length. A simple technique for gen­
erating a master frequency source for additional 8284's 
is shown in Figure 384. One 8284 with a crystal is used 
to generate the desired frequency. The oscillator output 
of the 8284 (OSC) equals the crystal frequency and is 
used to drive the external frequency to all other 8284's 
in the system. 

+5 

x, 
leo 

EXTERNAL Fie 18 
FREQUENCY---""'-! EFI ClK i-=---~ ClK 

SOURCE 

8284 8088 

Figure 3B3. 8284 with External Frequency Source 
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EFI ClK 

8284 
Fie 

~---'-'-IEFI ClK 

+5 

8284 

Fie 

EFI ClK 
8284 

13 Fie 

'K 

Figure 384. External Frequency lor Multiple 8284s 

OSC 

ClK 

PClK 

The oscillator output is inverted from the oscillator 
signal used to drive the CPU clock generator circuit. 
Therefore, the oscillator output of one 8284 should not 
drive the EFI input of a second 8284 If both are driving 
clock inputs of separate CPU's that are to be syn-

, chronized. The variation on EFI to' CLK delay over a 
range of 8284's may approach 35 to 45 ns. If, however, all 
8284's are of the same package type, have the same 
relative supply voltage and operate in the same tem­
perature environment, the variation will be reduced to 
between 15 and 25 ns. 

There are three frequency outputs from the 8284, the 
oscillator (OSC) mentioned above, the system clock 
(CLK) which drives the CPU, and a peripheral clock 
(PCLK) that runs at one half the CPU clock frequency. 
The oscillator output is only driven by the crystal and Is 
not affected by the FIe strapping option. If a crystal is 
not connected to the 8284 when the external frequency 
input is used, the oscillator output Is Indetermlnate_ The 
CPU clock is derived from the selected frequency 
source by an internal divide by three counter. The 
counter generates the 33% duty cycle clock which is op­
timum for the CPU at maximum frequency. The 
peripheral clock has a 50% duty cycle and is derived 
from the CPU clock. Diagram 380 shows the relation­
ship of CLK to OSC and PCLK to CLK. The maximum 
skew is 20 ns between OSC and CLK, and 22 ns between 
CLK and PCLK. 

Since the state of the 8284 divide by three counter is In­
determinate at system initialization (power on), an exter­
nal sync to the counter (CSYNC) is provided to ailow 
synchronization of the CPU clock to an external event. 
When CSYNC is brought high, the CLK and PCLK out­
puts are forced high. When CSYNC returns low, the next 
positive clock from the frequency source starts clock 
generation. CSYNC must be active for a minimum of two 
periods of the frequency source. If CSYNC is asynchro­
nous to the frequency source, the circuit in Figure 385 
should be used for synchronization. The two latches 
minimize the probability of a meta-stable state in the 
latch driving CSYNC. The latches are clocked with the 
inverse of the frequency source to guarantee the 8284 
setup and hold time of CSYNCto the frequency source 
(Dlag. 381). If a single 8284 is to be synchronized to an 
external event and an external frequency source Is not 
used, the osciilator output of the 8284 may be used to 

Diagrem 380. OSC - ClK and ClK - PClK Relationships 
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synchronize CSYNC (Fig. 386). Since the oscillator out· 
put Is inverted from the internal oscillator signal, the In· 
verter in the previous example Is not required. If multiple 
8284's are to be synchronized, an external frequency 
source must drive all 8284's and a single CSYNC syn­
chronization circuit must drive the CSYNC Input of all 
8284's (Fig. 3B7). Since activation of CSYNC may cause 
violation of CPU minimum clock low time, it should only 
be enabled during reset or CPU clock high. CSYNC must 
also be disabled a minimum of four CPU clocks before 
the end of reset to guarantee proper CPU reset. 

EXTERNAL 
SYNC-----I 

CONDITION 
EXTERNAL 

FREQUENCY 

+5 

lK 

TO 
CSYNC 
INPUT 

TO L-____________ EFI 

Figure 3BS. Synchronizing CSYNC with EFI 
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CIYNC J 
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-+I 
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I--TYHEH 
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·MAX tS SPEC'ED TO GUARANTEE MAX 8088 CLOCK FREQUENCY 

Diagram 3Bl. CSYNC Setup and Hold to EFI 
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Y 18 
X. 
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Figure 3B8. EFI .rom 8284 Oscillator 

,. 
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C .... 
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13 FiC 
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Fillure 3B7. Synchronizing Multiple 82848 

Due to the fast transitions and high drive (5 rnA) of the 
8284 CLK output, it may be necessary to put a 10 to 100 
ohm resistor in series with the clock line to eliminate 
ringing (reSistor value depending on the amount of drive 
required). If multiple sources of CLK are needed with 
minimum skew, CLK can be buffered by a high drive 
device (74S241) with outputs tied to 5 volts through 100 
ohms to guarantee VOH = 3.9 min (8086 minimum clock 
input high voltage) (Fig. 3B8). A single 8284 should not 
be used to generate the CLK for multiple CPU's that do 
not share a common local (multiplexed) bus since the 
8284 synchronizes ready to the CPU and can only ac­
commodate ready for a single CPU. If multiple CPU's 
share a local bus, they should be driven with the same 
clock to optimize transfer of bus control. Under these 
circumstances, only one CPU will be using the bus for a 
particular bus cycle which allows sharing a common 
READY signal (Fig. 3B9). 

+5 

10011 

CLK 

8284 
10011 

+5 

10011 

Figure 3B8. Bull.rlng the 8284 ClK Output 
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MULTIPLEXED BUS 

Figur. 3B9. 8086 and Co·Processor on the Local Bus Share a 
Common 8284 

3C_ Reset 

The 8086 requires a high active reset with minimum 
pulse wi'~th of four CPU clocks except after power on 
which requires a 50 ,.,s reset pulse. Since the CPU inter­
nally synchronizes reset with the clock, the reset is in­
ternally active for up to one clock period after the exter­
nal reset. Non-Maskable Interrupts (NMI) or hold re­
quests on RQ/GT which occur during the internal reset, 
are not acknowledged. A minimum mode hold request 
or maximum mode RQ pulses active immediately after 
the internal reset will be honored before the first in­
struction fetch. 

From reset, the 8086 will condition the bus as shown in 
Table 3C1. The multiplexed bus will three-state upon 
detection of reset by the CPU. Other signals which 
three-state will be driven to the inactive state for one 
clock low interval prior to entering three-state (Fig_ 3C1)_ 
In the minimum mode, ALE and HLDA are driven inac­
tive and are not three-stated. In the maximum mode 
RQ/GT lines are held inactive and the queue status in: 
dicates no activity. The queue status will not indicate a 
reset of the queue so any user defined external circuits 
monitoring the queue should also be reset by the 
system reset. 22K ohm pull-up resistors should be con­
nected to the CPU command and bus control lines to 

CLOCK 

RESET INPUT 

INTERNAL RESET 

BUS 

guarantee the inactive state of these lines in systems 
where leakage currents or bus capacitance may cause 
the voltage levels to settle below the minimum high 
voltage of devices in the system. In maximum mode 
systems, the 8288 contains internal pull-ups on the 
SO-52 inputs to maintain the inactive state for these 
lines when the CPU floats the bus. The high state of the 
status lines during reset causes the 8288 to treat the 
reset sequence as a passive state. The condition of the 
8288 outputs for the passive state are shown in Table 
3C2. If the reset occurs during a bus cycle, the return of 
the status lines to the passive state will terminate the 
bus cycle and return the command lines to the inactive 
state_ Note that the 8288 does not three-state the com­
mand outputs based on the passive state of the status 
lines. If the designer needs to three-state the CPU off 
the bus during reset in a single CPU system, the reset 
signal should also be connected to the 8288's AEN input 
and the output enable of the address latches (Fig. 3C2). 
This forces the command and address bus interface to 
three-state while the inactive state of DEN from the 8288 
three-states the transceivers on the data bus. 

Table 3C1. 8086 Bus During Resat 

Signals Condition 

AD15.(J Three-State 
A19-1sfS6-3 Three-State 
BHE/57 Three-State 
52J(M/iQ) Driven to "1" then three-state 
511(DT/R) Driven to "1" then three-state 
SO/DEN Driven to "1" then three-state 
LOCKlWR Driven to "1" then three-state 
RD Driven to "1" then three-state 
INTA Driven to "1" then three-state 
ALE 0 
HLDA 0 
RQ/GTO 1 
RQ/GT1 1 
QSO 0 
QS1 0 

t LFLOATBUS 

~ DRIVE OUTPUT TO INACTIVE STATE 

Flgur. 3C1. 8086 Bus Conditioning on Res.t 
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TABLE 3C2. 8288 OUTPUTS. DURING PASSIVE MODE 

8284 

ALE 
DEN 
DTiR 
MCE/PDEN 
COMMANDS 

o 
o 
1 

0/1 
1 

,---------_-1 AEN 

8288 
·DEN 

OE 
8282 

RESET 1---4--1 RESET 

8086 

Figure 3C2. Re,el Disable lor Max Mode 8086 Bus Inlerface 

For multiple processor systems using arbitration of a 
multimaster bus, the system reset should be connected 
to the INIT input of the 8289 bus arbiter in addition to 
the 8284 reset input (Fig. 3C3). The low active INIT Input 
forces all 8289 outputs to their inactive state. The inac· 
tive state of the 8289 AEiii output will force the 8288 to 
three·state the command outputs and the address 
latches to three-state the address bus interface. DEN in­
active from the 8288 will three-state the data bus inter­
face. For the multimaster CPU configuration, the reset 
should be common to all CPU's (8289's and 8284's) and 
satisfy the maximum of either the CPU reset re­
quirements or 3 TBLBL (3 8289 bus clock times)+ 3 
TCLCL (3 8086 clock cycle times) to satisfy 8289 reset 
requirements. 

r _________ ------(SySTEM) 
RESET 

8284 

RESET 

RESET 

8086 

Figure 3C3. Resel Disable 01 lor Max Mode 8086 Bus Inlerface In 
Multi CPU Syslem 

If the 8288 command outputs are three-stated during 
reset, the command lines should be pulled up to Vee 
through 2.2K ohm reSistors. 

The reset signal to the 8086 can be generated by the 
8284. The 8284 has a schmitt trigger input (RES) for 
generating reset from a low active external reset. The 
hysteresis specified In the 8284 data sheet implies that 
at least .25 volts will separate the 0 and 1 Switching 
point of the 8284 reset input. Inputs without hysteresis 
will switch from low to high and high to low at approxi­
mately the same voltage threshold. The Inputs are 
guaranteed to switch at specified low and high voltages 
(VIL and VIH) but the actual switching point is anywhere 
in-between. Since VIL min is specified at .8 volts, the 
hysteresis guarantees that the reset will be active until 
the input reaches at least 1.05 volts. A reset will not be 
recognized until the input drops at least .25 volts below 
the reset inputs VIH of 2.6 volts. 

To guarantee reset from power up, the reset input must 
remain below 1.05 volts for 50 microseconds after Vee 
has reached the minimum supply voltage of 4.5 volts. 
The hysteresis allows the reset input to be driven by a 
simple RC circuit as shown in Figure 3C4. The 
calculated RC value does not inClude time for the power 
supply to reach 4.5 volts or the charge accumulated duro 
Ing this interval. Without the hysteresis, the reset out· 
put might oscillate as the input voltage passes through 
the switching voltage of the input. The calculated RC 
value provides the minimum required reset period of 50 
microseconds for 8284's that switch at the 1.05 volt 
level and a reset period of approximately 162 micro­
seconds for 8284's that switch at the 2.6 volt level. If 
tighter tolerance between the minimum and maximum 
reset times is necessary, the reset circuit shown in 
Figure 3C5 might be used rather than the simple RC cir· 
cuit. This circuit provides a constant current source and 
a linear charge rate on the capacitor rather than the in­
verse exponential charge rate of the RC circuit. The 
maximum reset period for this implementation is 124 
microseconds. 

+V 

RESET IN 
11 RES 

Ve!l) = Jl_.iit) 
8284 

I I = 50 ~s.c 
V = 4.5 
Ve = 1.05 
RC = 188 x 10- 8 
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Figure 3C4. 8284 Re.el Circuit 
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Figure 3CS. Constant Current Power·On Reset Circuit 

The 8284 synchronizes the reset input with the CPU 
clock to generate the RESET signal to the CPU (Fig. 
3C6). The output is also available as a general reset to 
the entire system. The reset has no effect on any clock 
circuits in the 8284. 

17 X, ClK 8 
SYSTEM 
RESET 

C 8284 19 
ClK 

Y 18 
X. 8086 

+5 13 10 21 
Fie RESET RESET 

-::-

11 m 
I 

Figure 3C6. 8088 Reset and System Reset 

CLOCK 

8086 READY 

3D. Reedy Implementation and Timing 

As discussed previously, the ready signal Is used in the 
system to accommodate memory and 110 devices that 
cannot transfer information at the maximum CPU bus 
bandwidth. Ready is also used In multiprocessor 
systems to force the CPU to wait for access to the 
system bus or Multibus system bus. To insert a wait 
state in the bus cycle, the READY signal to the CPU 
must be inactive (low) by the end of T2. To avoid inser· 
tion of a walt state, READY must be active (high) within 
a specified setup time prior to the positive transition 
during T3. Depending on the size and characteristics of 
the system, ready Implementation may take one of two 
approaches. 

The classical ready implementation is to have the 
system 'normally not ready.' When the selected device 
receives the command (RDIWRlINTA) and has had suffi· 
cient time to complete the command, It activates 
READY to the CPU, allowing the CPU to terminate the 
bus cycle. This implementation is characteristic of large 
multiprocessor, Multlbus systems or systems where 
propagation delays, bus access delays and device char· 
acteristics inherently slow down the system. For max· 
imum system performance, devices that can run with no 
wait states must return 'READY' within the previously 
described limit. Failure to respond In time will only 
result in the insertion of one or more walt cycles. 

An alternate technique is to have the system 'normally 
ready.' All devices are assumed to operate at the max· 
imum CPU bus bandwidth. Devices that do not meet the 
requirement must disable READY by the end of T2 to 
guarantee the insertion of wait cycles. This Implementa­
tion is typically applied to small single CPU systems 
and reduces the logic required to control the ready 
signal. Since the failure of a device requiring walt states 
to disable READY by the end of T2 will result in prema· 
ture termination of the bus cycle, the system timing 
must be carefully analyzed when using this approach. 

The 8086 has two different timing requirements on 
READY depending on the system implementation. For a 
'normally ready' system to Insert a walt state, the 
READY must be disabled within 8 ns (TRYLCL) after the 
end of T2 (start of T3) (Dlag. 301). To guarantee proper 

READY INACTIVE 8 no M"' .......... .. 30 ns 

\.- 119 ns TO OUARANTEE THE 
NEXT CYCLE IS To 

Diagram 3D1. Normally Ready System Inserting a Walt State 
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operation of the 8086, the READY input must not change 
from ready to not ready during the clock low time of T3. 
For a 'normally not ready' system to avoid walt states, 
READY must be active within 119 ns (TRYHCH) of the 

positive clock transition during T3 (Diag. 302). For both 
cases, READY must satisfy a hold time of 30 ns 
(TCHRYX) from the T3 or TW positive clock transition. 

CLOCK 

8088 READY 

Diagram 302. Normally Not Ready System Avoiding a Wail State 
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To generate a stable READY signal which satisfies the 
previous setup and hold times, the 8284 provides two 
separate system ready inputs (RDY1, RDY2) and a single 
synchronized ready output (READY) for the CPU. The 
ROY inputs are qualified with separate access enables 
(AEN1,AEN2, low active) to allow selecting one of the 
two ready signals (Fig. 301). The gated signals are 
logically OR'ed and sampled at the beginning of each 
ClK cycle to generate READY to the CPU (Diag. 303). 
The sampled READY Signal is valid within 8 ns (TRYlCl) 
after ClK to satisfy the CPU timing requirements on 
'not ready' and ready. Since READY cannot change until 
the next ClK, the hold time requirements are also satis· 
fied. The system ready inputs to the 8284 (RDY1,RDY2) 
must be valid 35 ns (TRIVCl) before T3 and AEN must be 
valid 60 ns before T3. For a system using only one ROY 
input, the associated AEN is tied to ground while the 
other AEN is connected to 5 volts through ",1 K ohms 
(Fig. 3D2a). If the system generates a low active ready 
Signal, it can be connected to the 8284 AEN input if the 
additional setup time required by the 8284 AEN input is 
satisfied. In this case, the associated ROY input would 
be tied high (Fig. 3D2b). Figura 301. Ready Inpuls to Ihe 8284 and OulpullO Ihe 8086 

CLOCK 

8284 READY OUT 
(TO 8088) 

---~o-- T.,rrw 

NOTE: THE 8284 DATA SHEET SPECIFIES READY OUT DELAY (TRYLCL) AS -8 •• 
'BEFORE' THE END OF T. WHICH IMPLIES THE TIMING SHOWN. 

Diagram 303. 8284 wllh 8086 Ready Timing 
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Figure 3D2a. Using RDY1/RDY2 to Generate Ready 
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Figure 3D2b. Using AEN1/AEN2 to Generate Ready 

The majority of memory and peripheral devices which 
fail to operate at the maximum CPU frequency typically 
do not require more than one wait state. The circuit 
given in Figure 303 Is an example of a simple wait state 
generator. The system ready line Is driven low whenever 
a device requiring one walt state is selected. The flip 
flop is cleared by ALE, enabling ROY to the 8284. If no 
wait states are required, the flip flop does not change. If 
the system ready is driven low, the flip flop toggles on 
the low to high clock transition of T2 to force one wait 
state. The next low to high clock transition toggles the 
flip flop again to Indicate ready and allow completion of 
the bus cycle. Further changes in the state of the flip 
flop will not affect the bus cycle. The circuit allows 
approximately 100 ns for chip select decode and condi­
tioning of the system ready (Dlag. 304). 

If the system is 'normally not ready,' the programmer 
should not assign executable code to the last six bytes 
of physical memory. Since the 8086 prefetches instruc­
tions, the CPU may attempt to access non-existent 
memory when executing code at the end of physical 

memory. If the access to non-existent memory fails to 
enable READY, the system will be caught in an in­
definite wait. 

RO ... TO 1214 

Figure 3D3. Single Walt State Generetor 

3E_ Interrupt Structure 

The 8086 interrupt structure is based on a table of inter­
rupt vectors stored in memory locations OH through 
003FFH. Each vector consists of two bytes for the in­
struction poi nter and two bytes for the code segment. 
These two values combine to form the address of the in­
terrupt service routine. This allows the table to contain 
up to 256 interrupt vectors which specify the starting ad­
dress of the service routines anywhere In the one mega­
byte address space of the 8086. If fewer than 256 differ­
ent Interrupts are defined in the system, the user need 
only allocate enough memory for the interrupt vector 
table to provide the vectors for the defined Interrupts. 
During Initial system debug, however, it may be desir­
able to assign all undefined interrupt types to a trap 
routine to detect erroneous interrupts. 

Each vector is associated with an interrupt type number 
which pOints to the vector's location in the interrupt vec­
tor table. The interrupt type number multiplied by four 
gives the displacement of the first byte of the associ­
ated interrupt vector from the beginning of the table. As 
an example, Interrupt type number 5 pOints to the sixth 
entry In the Interrupt vector table. The contents of this 
entry in the table points to the interrupt service routine 
for type 5 (Fig. 3E1). This structure allows the user to 
specify the memory address of each service routine by 
placing the address (Instruction pointer and code seg­
ment values) In the table location provided for that type 
interrupt. 

Diagram 3D4. 
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Figure 3El. Direction to Interrupt Service Routine through the 
Interrupt Vector Table 

All Interrupts In the 8086 must be assigned an Interrupt 
type which uniquely Identifies each Interrupt. There are 
three classes of Interrupt types In the 8086; predefined 
Interrupt types which are issued by specific functions 
within the 8086 and user defined hardware and software 
Interrupts. Note that any interrupt type including the 
predefined Interrupts can be Issued by the user's hard­
ware and/or software. 

PREDEFIN ED INTERRUPTS 

The predefined Interrupt types In the 8086 are listed 
below with a brief description of how each is Invoked. 
When Invoked, the CPU will transfer control to the 
memory location specified by the vector associated 
with the specific type. The user must provide the inter­
rupt service routine and Initialize the interrupt vector 
table with the appropriate service routine address. The 
user may additionally Invoke these interrupts through 
hardware or software. If the preassigned function Is not 
used in the system, the user may assign some other 
function to the associated type. However, for com­
patibility with future Intel hardware and software prod­
ucts for the 8086 family, Interrupt types 0-31 should not 
be assigned as user defined interrupts. 

TYPE 0 - DIVIDE ERROR 

This interrupt type Is Invoked whenever a division opera­
tion Is attempted during which the quotient exceeds the 
maximum value (ex. division by zero). The Interrupt is 
non-maskable and Is entered as part of the execution of 
the divide Instruction. If Interrupts are not reenabled by 
the divide error Interrupt service routine, the service 
routine execution time should be included In the worst 
case divide Instruction execution time (primarily when 
considering the longest Instruction execution time and 
its effect on latency to servicing hardware Interrupts). 

TYPE 1 - SINGLE STEP 

This interrupt type occurs one instruction after the TF 
(Trap Flag) is set In the flag register. It is used to allow 
software single stepping through a sequence of code. 
Single stepping Is initiated by copying the flags onto the 
stack, setting the TF bit on the stack and popping the 
flags. The Interrupt routine should be the single step 
routine. The interrupt sequence saves the flags and pro­
gram counter, then resets the TF flag to allow the single 
step routine to execute normally. To return to the 
routine under test, an interrupt return restores the IP, 
CS and flags with TF set. This allows the execution of 
the next instruction in the program under test before 
trapping back to the single step routine. Single Step Is 
not masked by the IF (Interrupt Flag) bit in the flag 
register. 

TYPE 2 - NMI (Non-Maskable Interrupt) 

This is the highest priority hardware interrupt and is 
non-maskable. The input is edge triggered but is syn­
chronized with the CPU clock and must be active for two 
clock cycles to guarantee recognition. The interrupt 
signal may be removed prior to entry to the service 
routine. Since the input must make a low to high transi­
tion to generate an interrupt, spurious transitions on the 
Input should be suppressed. If the Input is normally 
high, the NMI low time to guarantee triggering is two 
CPU clock times. This Input Is typically reserved for 
catastrophic failures like power failure or timeout of a 
system watchdog timer. 

TYPE 3 - ONE BYTE INTERRUPT 

This Is invoked by a special form of the software inter­
rupt Instruction which requires a single byte of code 
space. Its primary use is as a breakpoint interrupt for 
software debug. With full representation within a Single 
byte, the Instruction can map into the smallest instruc­
tion for absolute resolution In setting breakpoints. The 
Interrupt Is not maskable. 

TYPE 4 - INTERRUPT ON OVERFLOW 

This interrupt occurs if the overflow flag (OF) is set in 
the flag register and the INTO Instruction Is executed. 
The instruction allows trapping to an overflow error ser­
vice routine. The interrupt Is non-maskable. 

Interrupt types 0 and 2 can occur without specific action 
by the programmer (except for performing a divide for 
Type 0) while types 1,3, and 4 require a conscious act by 
the programmer to generate these interrupt types. All 
but type 2 are Invoked through software activity and are 
directly associated with a specific Instruction. 

USER DEFINED SOFTWARE INTERRUPTS 

The user can generate an interrupt through the software 
with a two byte Interrupt 'Instruction INT nn. The first 
byte is the INT opcode while the second byte (nn) con­
tains the type number of the Interrupt to be performed. 
The INT Instruction Is. not maskable by the interrupt 
enable flag. This instruction can be used to transfer con­
tr.ol to routines that are dynamically relocatable and 
whose location in memory is not known by the calling 
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program. This technique also saves the flags of the call­
ing program on the stack prior to transferring control. 
The called procedure must return control with an inter­
rupt return (IRET) instruction to remove the flags from 
the stack and fully restore the state of the calling pro­
gram. 

All interrupts invoked through software (all interrupts 
discussed thus far with the exception of NMI) are not 
maskable with the IF flag and initiate the transfer of 
control at the end of the instruction in which they occur. 
They do not initiate interrupt acknowledge bus cycles 
and will disable subsequent maskable Interrupts by 
resetting the IF and TF flags. The interrupt vector for 
these interrupt types is either implied or specified in the 
instruction. Since the NMI is an asynchronous event to 
the CPU, the point of recognition and initiation of the 
transfer of control is similar to the maskable hardware 
interrupts. 

USER DEFINED HARDWARE INTERRUPTS 

The maskable interrupts initiated by the system hard­
ware are activated through the INTR pin of the 8086 and 
are masked by the IF bit of the status register (interrupt 
flag). During the last clock cycle of each instruction, the 
state of the INTR pin is sampled. The 8086 deviates from 
this rule when the instruction is a MOV or POP to a seg­
ment register. For this case, the Interrupts are not 
sampled until completion of the following instruction. 
This allows a 32-bit pOinter to be loaded to the stack 
pOinter registers SS and SP without the danger of an in­
terrupt occurring between the two loads. Another excep­
tion is the WAIT instruction which waits for a low active 
input on the TEST pin. This instruction also continu­
ously samples the interrupt request during its execution 
and allows servicing interrupts during the wait. When an 
interrupt is detected, the WAIT instruction is again 
fetched prior to servicing the interrupt to guarantee the 
interrupt routine will return to the WAIT instruction. 

UNINTERRUPTABLE INSTRUCTION SEQUENCE 

MOV SS, NEW$STACK$SEGMENT 
MOV SP, NEW$STACK$POINTER 

Also, since prefixes are considered part of the instruc­
tion they precede, the 8086 will not sample the interrupt 
line until completion of the instruction the prefix(es) 
precede(s). An exception to this (other than HALT or 
WAIT) is the string primatives preceded by the repeat 
(REP) prefix. The repeated string operations will sample 
the interrupt line at the completion of each repetition. 
This includes repeat string operations which include the 
lock prefix. If multiple prefixes precede a repeated 
string operation, and the instruction is interrupted, only 
the prefix immediately preceding the string primative is 
restored. To allow correct resumption of the operation, 
the following programming technique may be used: 

LOCKED$BLOCK$MOVE: LOCK REP MOVS DEST. CS:SOURCE 
AND CX, CX 

JNZ LOCKED$BLOCK$MOVE 

The code bytes generated by the 8086 assembler for the 
MOVS instruction are (in descending order): LOCK 
prefix, REP prefix, Segment Override prefix and MOVS. 
Upon return from the interrupt, the segment override 
prefix is restored to guarantee one additional transfer is 
performed between the correct memory locations. The 
instructions following the move operation test the 
repetition count value to determine if the move was 
completed and return if not. 

If the INTR pin is high when sampled and the IF bit is set 
to enable interrupts, the 8086 executes an interrupt 
acknowledge sequence. To guarantee the interrupt will 
be acknowledged, the INTR input must be held active 
until the interrupt acknowledge is issued by the CPU. If 
the BIU is running a bus cycle when the interrupt condi­
tion is detected (as would occur if the BIU is fetching an 
instruction when the current instruction completes), the 
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Figure 3E2. Interrupt Acknowledge Sequence 
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interrupt must be valid at the 8086 2 clock cycles prior to 
T 4 of the bus cycle if the next cycle is to be an interrupt 
acknowledge cycle. If the 2 clock setup is not satisfied, 
another pending bus cycle will be executed before the 
interrupt acknowledge is issued. If a hold request is also 
pending (this might occur if an interrupt and hold re­
quest are made during execution of a locked instruc­
tion), the interrupt is serviced after the hold request is 
serviced. 

The interrupt acknowledge sequence is only generated 
in response to an interrupt on the 8086 INTR input. The 
associated bus activity is shown in Figure 3E2. The cy­
cle consists of two INTA bus cycles separated by two 
idle clock cycles. During the bus cycles the INTA com­
mand is issued rather than read. No address is provided 
by the 8086 during either bus cycle (BHE and status are 
valid), however, ALE is still generated and will load the 
address latches with indeterminate information. This 
condition requires that devices in the system do not 
drive their outputs without being qualified by the Read 
Command. As will be shown later, the ALE is useful in 
maximum mode systems with multiple 8259A priority in­
terrupt controllers. During the INTA bus cycles, DT/R 
and DEN are conditioned to allow the 8086 to receive a 
one byte interrupt type number from the interrupt 
system. The first INTA bus cycle signals an interrupt 
acknowledge cycle is in progress and allows the system 
to prepare to present the interrupt type number on the 
next INTA bus cycle. The CPu. does not capture informa­
tion on the bus during the first cycle. The type number 
must be transferred to the 8086 on the lower half of the 
16-bit data bus during the second cycle. This implies 
that devices which present interrupt type numbers to 
the 8086 must be located on the lower half of the 16-bit 
data bus. The timing of the INTA bus cycles (with excep­
tion of address timing) is similar to read cycle timing. 
The 8086 interrupt acknowledge sequence deviates 
from the form used on 8080 and 8085 in that no instruc­
tion is issued as part of the sequence. The 8080 and 
8085 required either a restart or call instruction be 
issued to affect the transfer of control. 

In the minimum mode system, the MilO signal will be 
low indicating I/O during the INTA bus cycles. The 8086 
internal LOCK signal will be active from T2 of the first 
bus cycle until T2 of the second to prevent the BIU from 
honoring a hold request between the two INTA cycles. 

In the maximum mode, the status lines SO-52 will re­
quest the 8288 to activate the INTA output for each cy­
cle. The LOCK output of the 8086 will be active from T2 
of the first cycle until T2 of the second to prevent the 
8086 from honoring a hold request on either RQ/GT in­
put and to prevent bus arbitration logic from relinquish­
ing the bus between INTA's in multi-master systems. 
The consequences of READY are identical to those for 
READ and WRITE cycles. 

Once the 8086 has the interrupt type number (from the 
bus for hardware interrupts, from the instruction stream 
for software interrupts or from the predefined con­
dition), the type number is multiplied by four to form the 
displacement to the corresponding interrupt vector in 
the interruot vector table. The four bytes of the interrupt 

vector are: least significant byte of the instruction 
pointer, most significant byte of the instruction pOinter, 
least significant byte of the code segment register, 
most significant byte of the code segment register. Dur­
ing the transfer of control, the CPU pushes the flags and 
current code segment register and instruction pointer 
onto the stack. The new code segment and instruction 
pOinter values are loaded and the single step and inter­
rupt flags are reset. Resetting the interrupt flag disables 
response to further hardware interrupts in the service 
routine unless the flags are specifically re-enabled by 
the service routine. The CS and IP values are read from 
the interrupt vector table with data read cycles. No seg­
ment registers are used when referencing the vector 
table during the interrupt context switch. The vector 
displacement is added to zero to form the 20-bit address 
and 54, 53= 10 indicating. no segment register selec­
tion. 

The actual bus activity associated with the hardware in­
terrupt acknowledge sequence is as follows: Two inter­
rupt acknowledge bus cycles, read new IP from the in­
terrupt vector table, read new CS from the interrupt vec­
tor table, Push flags, Push old CS, Opcode fetch of the 
first instruction of the interrupt service routine, and 
Push old IP. After saving the old IP, the BIU will resume 
normal operation of prefetching instructions into the 
queue and servicing EUrequests for operands. 55 (inter­
rupt enable flag status) will go inactive in the second 
clock cycle following reading the new CS. 

The number of clock cycles from the end of the instruc­
tion during which the interrupt occurred to the start of 
interrupt routine execution is 61 clock cycles. For soft­
ware generated interrupts, the sequence of bus cycles 
is the same except no interrupt aCknowledge bus cycles 
are executed. This reduces the delay to service routine 
execution to 51 clocks for INT nn and single step, 52 
clocks for INT3 and 53 clocks for INTO. The same inter­
rupt setup requirements with respect to the BIU that 
were stated for the hardware interrupts also apply to the 
software interrupts. If wait states are inserted by either 
the memories or the device supplying the interrupt type 
number, the given clock times will increase accordingly. 

When conSidering the precedence of interrupts for 
multiple simultaneous interrupts, the following guide­
lines apply: 1. INTR is the only maskable interrupt and if 
detected simultaneously with other interrupts, resetting 
of IF by the other interrupts will mask INTR. This causes 
INTR to be the lowest priority interrupt serviced after all 
other interrupts unless the other interrupt service 
routines reenable interrupts. 2. Of the nonmaskable in­
terrupts (NMI, Single Step and software generated), in 
general, Single Step has highest priority (will be ser­
viced first) followed by NMI, followed by the software in­
terrupts. This implies that a simultaneous NMI and 
Single Step trap will cause the NMI service routine to 
follow single step; a simultaneous software trap and 
Single Step trap will cause the software interrupt ser­
vice routine to follow single step and a simultaneous 
NMI and software trap will cause the NMI service 
routine to be executed followed by the software inter­
rupt service routine. An exception to this priority struc­
ture occurs if all three interrupts are pending. For this 
case, transfer of control to the software interrupt ser-
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vice routine followed by the NMI trap will cause both the 
NMI and software interrupt service routines to be ex· 
ecuted without single stepping. Single stepping 
resumes upon execution of the instruction following the 
instruction causing the software interrupt (the next in· 
struction in the routine being single stepped). 

If the user does not wish to single step before INTR ser· 
vice routines, the single step routine need only disable 
interrupts during execution of the program being single 
stepped and reenable interrupts on entry to the single 
step routine. Disabling the interrupts during the pro· 
gram under test prevents entry into the interrupt service 
routine while single step (TF= 1) is active. To prevent 
single stepping before NMI service routines, the single 
step routine must check the return address on the stack 
for the NMI service routine address and return control to 
that routine without single step enabled. As examples, 
consider Figures 3E3a and 3E3b. In 3E3a Single Step 
and NMI occur simultaneously while in 3E3b, NMI, INTR 
and a divide error all occur during a divide instruction 
being single stepped. 

TF,IF=l 

NMI 

NORMAL SINGLE STEP 
OPERATION 

Figure 3E3a. NMI During Single Stepping and Normal Single Step 
Oparatlon 
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Figura 3E3b. NMI, INTR, Single Step and Divide Error Simultaneous 
Interrupts 

SYSTEM CONFIGURATIONS 

To accommodate the INTA protocol of the maskable 
hardware interrupts, the 8259A Is provided as part of the 
8086 family. This component Is programmable to 
operate In both 8080/8085 systems and 6086 systems. 
The devices are cascadable In master/slave arrange· 
ments to allow up to 64 interrupts in the system. Figures 
3E4 and 3E5 are examples of 8259A's In minimum and 
maximum mode 6086 systems. The minimum mode con· 
figuration (a) shows an 8259A connected to the CPU's 
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multiplexed bus. Configuration (b) illustrates an 8259A 
connected to a demultiplexed bus system. These Inter· 
connects are also applicable to maximum mode 
systems. The configuration given for a maximum mode 
system shows a master 8259A on the CPU's multiplexed 
bus with additional slave 8259A's out on the buffered 
system bus. This configuration demonstrates several 
unique features of the maximum mode system Inter­
face. If the master 8259A receives interrupts from a mix 
of slave 8259A's and regular interrupting devices, the 
slaves must provide the type number for devices con­
nected to them while the master provides the type 
number for devices directly attached to its interrupt In­
puts. The master 8259A is programmable to determine if 
an Interrupt is from a direct input or a slave 8259A and 
will use this information to enable or disable the data 
bus transceivers (via the 'nand' function of DEN and 
EN). If the master must provide the type number, it will 
disable the data bus transceivers. If the slave provides 
the type number, the master will enable the data bus 
transceivers. The EN output is normally high to allow 

the 8086/8288 to control the bus transceivers. To select 
the proper slave when servicing a slave Interrupt, the 
master must provide a cascade address to the slave. If 
the 8288 is not strapped in the 1/0 bus mode (the 8288 
lOB Input connected to ground), the MCElPDEN output 
becomes a MCE or Master Cascade Enable output. This 
signal Is. only active during INTA cycles as shown In 
Figure 3E6 a,nd enables the master 8259A's cascade ad­
dress onto the 8086's 10ca.1 bus during ALE. This allows 
the address latches to capture the cascade address with 
ALE and allows use of the system address bus for 
selecting the proper slave 8259A. The MCE is gated with 
LOCK to minimize local bus contention between the 
8086 three-stating Its bus outputs and the cascade ad­
dress being enabled onto the bus. The first INTA bus cy; 
cle allows the master to resolve internal priorities and 
output a cascade address to be transmitted to ·tlie 
slaves on the sui:)sequent INTA bus cycle. For additional 
information on the 8259A, reference application note 
AP-59. 

I-__ .....L. ___ ..:;:]....L.:-_.=J....J:=--_~\ ADDRESS 

I---.,.-----..,.----.""T'---,/ BUS 

IJL------......::"""'--......::"---~\ DATA 
I'\r---------------,/ BUS 

.. 

b. 

Figure 3E4. Min Mode 8OB6 .wIth Master 8259A on the Local Bus and Sl •• e 8259As on the System Bus 
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INTERRUPT 

INTERRUPT 

~~~--~--+-------~-----r----~-----r--~ffiITA 

ADDRESS 
~'-------'--------r-r--------,-~------,/BUS 

I/I------------------~~--------~~------~\DATA 

r----------------------------------------,/BUS 

Figure 3E5. Max Mode 8086 with Master 8259A on the Local Bus and Sla.e 8259As on the System Bu. 

T1 I T2 T3 T4 TI T, T1 1 T, T, 

ALE f" _______ ---Jnl..-..--__ 
\~ ___ -----J/ 

iNTA 

FLOAT 
ADO-AD15 

\'--___ ---J/ \~-

Figure 3E6. MCE Timing to Gate 8259A CAS Addres. onto the 8086 Local Bu. 
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3F. Interpreting the 8086 Bus Timing Diagrams 

At first glance, the 8086 bus timing diagrams (Diag. 3F1 
min mode and Diag. 3F2 max mode) appear rather com· 
plex. However, with a few words of explanation on how 
to interpret them, they become a powerful tool in deter· 
mining system requirements. The timing diagrams for 
both the minimum and maximum modes may be divided 
into six sections: (1) address and ALE timing; (2) read cy· 
cle timing; (3) write cycle timing; (4) interrupt acknowl· 
edge timing; (5) ready timing; and (6) HOLD/HlDA or 
RQ/GT timing. Since the A.C. characteristics of the 
signals are specified relative to the CPU clock, the rela· 
tionship between the majority of signals can be de· 
duced by simply determining the clock cycles between 
the clock edges the signals are relative to and adding or 
subtracting the appropriate minimum or maximum 
parameter values. One aspect of system timing not com· 
pensated for in this approach is the worst case relation· 
ship between minimum and maximum parameter values 
(also known as tracking relationships). As an example, 
consider a signal which has specified minimum and 
maximum turn on and turn off delays. Depending on 
device characteristics, it may not be possible for the 
component to simultaneously demonstrate a maximum 
turn·on and minimum turn·off delay even though worst 
case analysis might imply the possibility. This argument 
is characteristic of MOS devices and is therefore ap· 
plicable to the 8086 A.C. characteristics. The message 
is: worst case analysis mixing minimum and maximum 
delay parameters will typically exc~ed the worst case 
obtainable and therefore should not be subjected to fur· 
ther subjective degradation to obtain worst·worst case 
values. This section will provide guidelines for specific 
areas of 8086 timing sensitive to tracking relationships. 

A. MINIMUM MODE BUS TIMING 

1. ADDRESS and ALE 

The address/ALE timing relationship is important to 
determine the ability to capture a valid address from the 
multiplexed bus. Since the 8282 and 8283 latches cap· 
ture the address on the trailing edge of ALE, the critical 
timing involves the state of the address lines when ALE 
terminates. If the address valid delay is assumed to be 
maximum TCLAV and ALE terminates at its earliest 
point, TCHllmin (assuming zero minimum delay), the 
address would be valid only TClCHmin·TClAVmax=8 
ns prior to ALE termination. This result is unrealistic in 
the assumption of maximum TClAV and minimum 
TCHlL To provide an accurate measure of the true 
worst case, a separate parameter specifies the 
minimum time for address valid prior to the end of ALE 
(TAVAl). TAVAl= TClCH·60 ns overrides the clock 
related timings and guarantees 58 ns of address setup 
to ALE termination for a 5 MHz 8086. The address is 
guaranteed to remain valid beyond the end of ALE by the 
TlLAX param~ter. This specification overrides the rela· 
tionship between TCHll and TClAX which might seem 
to imply the address may not be valid by the end of the 
latest possible ALE. TllAX holds for the entire address 
bus. The TClAXmin spec on the address indicates the 
earliest the bus will go invalid if not restrained by a slow 
ALE. TllAX and TClAX apply to the entire multiplexed 
bus for both read and write cycles. AD15-O is three· 

A-32 

stated for read cycles and immediately switched to 
write data during write cycles. AD19·16 immediately 
switch from address to status for both read and write 
cycles. The minimum ALE pulse width is guaranteed by 
TlHllmin which takes precedence over the value ob­
tained by relating TCllHmax and TCHllmin. 

To determine the worst case delay to valid address on a 
demultiplexed address bus, two paths must be con· 
sidered: (1) delay of valid address and (2) delay to ALE. 
Since the 8282 and 8283 are flow through latches, a valid 
address is not transmitted to the address bus until ALE 
is active. A comparison of address valid delay TCLAV· 
max with ALE active delay TCllHmax indicates TCLAV· 
max is the worst case. Subtracting the latch prop· 
agation delay gives the worst case address bus valid 
delay from the start of the bus cycle. 

2. Read Cycle Timing 

Read timing consists of conditioning the bus, activating 
the read command and establishing the data transceiver 
enable and direction controls. DT/R is established early 
in the bus cycle and requires no further consideration. 
During read, the DEN signal must allow the transceivers 
to propagate data to the CPU with the appropriate data 
setup time and continue to do so until the required data 
hold time. The DEN turn on delay allows TClCl+ 
TCHClmin - TCVCTVmax - TDVCl = 127 ns transceiver 
enable time prior to valid data required by the CPU. 
Since the CPU data hold time TClDXmin and minimum 
DEN turnoff delay TCVCTXmin are both 10 ns relative to 
the same clock edge, the hold time is guaranteed. Addi· 
tionally, DEN must disable the transceivers prior to the 
CPU red riving the bus with the address for the next bus 
cycle. The maximum DEN turn off delay (TCVCTXmax) 
compared with the minimum delay for addresses out of 
the 8086 (TClCl+ TCLAVmin) indicates the trans· 
ceivers are disabled at least 105 ns before the CPU 
drives the address onto the multiplexed bus. 

If memory or I/O devices are connected directly to the 
multiplexed address and data bus, the TAZRl parameter 
guarantees the CPU will float the bus before activating 
read and allowing the selected device to drive the bus. 
At the end of the bus cycle, the TRHAV parameter spec· 
ifies the bus float delay the device being deselected 
must satisfy to avoid contention with the CPU driving 
the address for the next bus cycle. The next bus cycle 
may start as soon as the cycle following T4 or any 
number of clock cycles later. 

The minimum delay from read active to valid data at the 
CPU is 2TClCl - TClRlmax - TDVCl = 205 ns. The 
minimum pulse width is 2TClCl-75ns=325 ns. This 
specification (TRlRH) overrides the result which could 
be derived from clock relative delays (2TClCl­
TClRlmax + TClRHmin). 

3. Write Cycle Timing 

The write cycle involves providing write data to the 
system, generating the write command and controlling 
data bus transceivers. The transceiver direction control 
Signal DTfFi is conditioned to transmit at the end of each 
read cycle and does not change during a write cycle. 
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This allows the transceiver enable signal DEN to be ac· 
tlve early In the cycle (while addresses are valid) without 
corrupting the address on the multiplexed bus. The 
write data and write command are both enabled from the 
leading edge of T2. Comparing minimum WR active 
delay TCVCTVmln with the maximum write data delay 
TCLDV Indicates that write data may be not valid until 
100 ns after write Is active. The devices in the system 
should capture data on the trailing edge of the write 
command rather than the leading edge to guarantee 
valid data. The data from the 8086 is valid a minimum of 
2TCLCL - TCLDVmax + TCVCTXmin = 300 ns before the 
trailing edge of write. The minimum write pulse width is 
TWLWH = 2TCLCL - 60 ns = 340 ns. The CPU maintains 
valid write data TWHDX ns after write. The TWHDZ spec· 
ification overrides the result derived by relating 
TCLCHmin and TCHDZmin which implies write data 
may only be valid 18 ns afterWR. The 8086 floats the bus 
after write only if being forced off the bus by a HOLD or 

RQ input. Otherwise, the CPU simply switches the out· 
put drivers from data to address at the beginning of the 
next bus cycle. As with the read cycle, the next bus cy· 
cle may start in the clock cycle following T4 or any clock 
cycle later. 

DEN is disabled a minimum of TCLCHmin + 
TCVCTXmin - TCVCTXmax = 18 ns after write to 
guarantee data hold time to the selected device. Since 
we are again evaluating a minimum TCVCTX with a max· 
imum TCVCTX, the real minimum delay from the end of 
write to transceiver disable is approximately 60 ns. 

4. Interrupt Acknowledge Timing 

The interrupt acknowledge sequence consists of two in· 
terrupt acknowledge bus cycles as previously de· 
scribed. The detailed timing of each cycle is identical to 
the read cycle timing with two exceptions: command 
timing and address/data bus timing. 

11 T2" T3 Tw T. 

ClK (8284 OUTPUT) 

MIlO 

ALE 

RDY (8284 INPUT) 
see NOTE4 

READY (8088 INPUT) 

READ CYCLE 

NOTE 1 

(WR, iN1'A=VOH) 
DT/A 

VCHv--\ _TClCl-:JHC1~~ ~ 

~ ~ -...::; TCHCTV '-- TCHCl I-- TClCH_ 

I 
TClAV- - I TClA;: i=-TDV TCHDX ...... -

BHE, A1 .... A1 I\. 57-53 

TCllH- Y TlHJL-=: I-T~lAX r--

TCHll-1 

/~---
I-- -TR1VCL 

I--TAVAl- VIH~i= ~~ ~ ~ vt~ _ 
I j--TClRIX 

TRYLCL- -

1 

- \ 

I. - -TCHRYX 

- lAVAL I--

~TRYHCHj TClAV. I- -TllAX-

I- - -TClAX TDVCl-- -TClDX-:-1 

A15-"" DATA IN '\I 

M FLOA:J-
TAZRl~ TCLRH- ~ f--TRHAV 

r----
=~TCHCTV TClRl f TRlRH 

1 
TCHCTV 

TCVCTV~ f TCVCTX- I 

Figure 3Fl. 8086 Bus Timing - Minimum Mode System 
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CLK (8284 OUTPUT) 

WRITE CYCLE 

NOTE 1 

(RiS, iNTA, 
DTIII=vOH) 

INTACYCLE 
NOTES 1 &3 

RiS,W1I.vOH 
liRE = VOL) 

MliO 

ALE 

AD15-ADo 

DTiii 

SOFTWARE HALT - (DEN = 
VOe: 1m, WlI, iiiiTA DTlft - VOH; AD,.-Ao" 

TI'S FOLLOW n, THEN NMI OR INTR 
BEGIN A NEW Tl. 

AD1S- ADo 
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TCLAZ 

FLOAT 

TCHCTV 

INVALID ADDRESS 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOl UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T" T., Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRIDATA BUS IS 
FLOATING DURING THE SECOND INTA CYCLE. CONTROL SIGNALS SHOWN 
FOR SECOND INTA CYCLE. 

4. SIGNALS AH284ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 3F1. 8086 Bus Timing - Minimum Mode System (Con't) 
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T, T, 

CLK 

I--TCLCL-TCH1CH2~ 

VCH~ ,f\ 
I- TCL2CL1 T 

r~ r\ 
VCL-I 1\----1 ,'----.) '--------.I "----'I L-

52,51,So (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

see NOTE 5 

ROY (8284 INPUT) 

"~.,,~ '''"' 1 

READ CYCLE 

8288 OUTPUTS 

SEE NOTES 5,6 

RD 

DT/R 

MRDC OR IORC 

DEN 

TCLAV- I------ TCHCL _TCLCH_ 

,_ TCHSV i--TCLSH 

-----,~---4----r_---+---4~7n~~r+----_r~-----­W;i;;f;!;7 SEE NOTE 8 

~---r---r--~4----r~~TU 

_______ ~-++_~,~T$~tXX--~,_T-CtL-DV----f_~----_r----_t--T-C-H-D-X-+~--"' 
L ii'HE, Al.-Al~ 5,,5, 

TSVLH --- _ r- TCHLL 
TCLLH- '\ 

\ 
\..._----

r-­
I~ __ -

Ii !--TR1VCL 

~K~~~~~ 
TRYlCL· _ 

-TCHRYX 

TYHSH
, -

TCLAv-1 ~ t==-
TRYHCH 

-- TCLAZ I-- I 

AD,.-Ao )----:F::-r"'O."AT:-~ 
TAZRL- -

----JL DATA IN 

TCLRH 

FLOAT I\-­
I------t<-lt-'TRHAV ----.j 

/ 
I ~~ ______________ +---JI\~I 

_ _________ TC_H_D_T_L_--__ I_{~~T-C+LR-Lr_------
,- TRLRHI-----+-----I 

TCHDTH 

A ~~r-----------_rJ 

TCLML-- -
TCLMH--

Ir-TCVNV--

----------------------------~¥ 
TCVNX---

Figure 3F2a. 8086 Bus Timing ~. Maximum Mode System (Using 8288) 
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WRITE CYCLE 

8288 0\I1'PUTS 
see NOTES 5,6 

INTACYCLE 

ClK 

Si,Ij,s, (EXCEPT HAL n 

AD1S-ADO 

DEN 

MWIC OR lowe 

AD16-ADo 
SEe NOTES 3 & 4 

MCEl 
Pl!EN 

DliA: 

82. oum.JlS '_ 

SEe NOTES s.SjINTA 

DEN 

VCl 
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T, T. T, 

Tw 

TCHDX-

DATA 

TCVNV- TCVNX-

FLOAT 

rDvcL- TC DX 

POINTER 
FLOAT 

TCVNX 

INVAUD ADDRESS 

TelAY 

~ r---------"""T\ ------. . \'--__ ---'1 \ _____ _ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T2. Ta. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

a. CASCADE ADDRESS IS VAUD BETWEEN FIRST AND SECOND INTA CYCLES. 
4, BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 lOCAL ADDR/DATA BUS IS 

"FLOAnNG DURING THE SECOND INTA CYCLE. CONTROL FOR POINTER ADDRESS 
IS· SHOWN FOR SECOND INTA CYCLE. 

5, SIGNALS AT 8214 OR 1288 ARE SHOWN FOR REFERENCE ONLY, 
8. THE ISSUANCE OF THE _ COMMAND AND CONTROL SIGNALS (MRIIe, 

IIWTC, owe, RIIIC, mwc, mI\Vll, IRn AND DEN) LAGS THE ACTIVE HIGH 
I288CEN, 

7, ALL nMING MEASUREMENTS ARE MADE AT ,.5V UNLESS OTHERWISE 
NOTED. . 

e. STATUSINAcnVe IN STATE.JUSTPRIOR TO To, 

Figura 3F2\I; !1088 Bus Tlmln. -l\IIaxlniU.~I"Mode System (Using 8288) (Con't) 
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The multiplexed address/data bus floats from the begIn­
ning (T1) of the INTA cycle (within TCLAZ ns). The upper 
four multiplexed address/status lines do not three-state. 
The address value on A19-A16 is indeterminate but the 
status Information will be valid (S3=O, S4=O, S5=IF, 
S6= 0, S7 = BHE= 0). The multiplexed address/data 
lines will remain in three-state until the cycle after T4 of 
the INTA cycle. This sequence occurs for each of the 
INTA bus cycles. The interrupt type number read by the 
8086 on the second INTA bus cycle must satisfy the 
bame setup and hold times required for data during a 
read cycle. 

The DEN and DT/R signals are enabled for each INTA cy­
cle and do not remain active between the two cycles. 
Their timing for each cycle is Identical to the read cycle. 

The INTA command has the same timing as the write 
command. It Is active within 110 ns of the start of T2 pro­
viding 260 ns of access time from command to data 
valid at the 8086. The command is active a minimum of 
TCVCTXmln = 10 ns into T4 to satisfy the data hold time 
of the 8086. This provides minimum INTA pulse width of 
300 ns, however taking signal delay tracking into con­
sideration gives a minimum pulse width of 340 ns. Since 
the maximum Inactive delay of INTA is TCVCTXmax= 
110 ns and the CPU will not drive the bus until 15 ns 
(TCLAVmln) Into the next clock cycle, 105 ns are avail­
able for interrupt devices on the local bus to float their 
outputs. If the data bus is buffered, DEN provides the 
same amount of time for local bus transceivers to three­
state their outputs. 

5. Ready Timing 

The detailed timing requirements of the 8086 ready 
signal and the system ready signal into the 8284 are 
described in Section 3D. The system ready signal Is 
typically generated from either the address decode of 
the selected device or the address decode and the com­
mand (RD, WR, INTA). For a system which Is normally 
not ready, the time to generate ready from a valid ad­
dress and not insert await state, is 2TCLCL­
TCLAVmax - TR1VCLmax = 255 ns. This time Is avail­
able for buffer delays and address decoding to deter­
mine if the selected device does not require a wait state 
and drive the RDY line high. If walt cycles are required, 
the user hardware must provide the appropriate ready 
delay. Since the address will not change until the next 
ALE, the RDY will remain valid throughout the cycle. If 
the system Is normally ready, selected devices requiring 
walt states also have 255 ns to disable the RDY line. The 
user circuitry must delay re-enabling RDY by the ap­
propriate number of wait states. 

If the RD command is used to enable the RDY signal, 
TCLCL- TCLRLmax- TRIVCLmax= 15 ns are available 
for external logic. If the WR command is used, TCLCL­
TCVCTVmax - TRIVCLmax = 55 ns are available. Com­
parison of RDY control by address 'or command in­
dicates that address decoding provides the best timing. 
If the system is normally not ready, address decode 
alone could be used to provide RDY for devices not re­
quiring walt states while devices requiring walt states 
may use a combination of address decode and com­
mand to activate a walt state generator. If the system is 

normally ready, devices not requiring wait states do 
nothing to RDY while devices needing wait states 
should disable RDY via the address decode and use a 
combination of address decode and command to ac­
tivate a delay to re-enable RDY. 

If the system requires no wait states for memory and a 
fixed number of wait states for AD and WR to ail I/O 
devices, the M/iO signal can be used as an early indica­
tion of the need for wait cycles. This allows a common 
circuit to control ready timing for the entire system 
without feedback of address decodes. 

6. Other Considerations 

Detailed HOLD/HLDA timing is covered in the next sec­
tion and is not examined here. One last signal con­
sideration needs to be mentioned for the minimum 
mode system. The TEST input is sampled by the 8086 
only during execution of the WAIT instruction. The TEST 
signal should be active for a minimum of 6 clock cycles 
during the WAIT instruction to guarantee detection. 

B. MAXIMUM MODE BUS TIMING 

The maximum mode 8086 bus operations are logically 
equivalent to the minimum mode operation. Detailed 
timing analysis now involves signals generated by the 
CPU and the 8288 bus controlier. The 8288 also provides 
additional control and command signals which expand 
the flexibility of the system. 

1. ADDRESS and ALE 

In the maximum mode, the address information con­
tinues to come from the CPU while the ALE strobe is 
generated by the 8288. To determine the worst case rela­
tionships between ALE and the address, we first must 
determine 8288 ALE activation relative to the SO-S2 
status from the CPU. The maximum mode timing 
diagram specifies two possible delay paths to generate 
ALE. The first is TCHSV + TSVLH measured from the ris­
ing edge of the clock cycle preceding n. The second 
path is TCl.LH measured from the start of n. Since the 
8288 initiates a bus cycle from t'he status lines leaving 
the passive state (SO-52 = 1), if the 8086 is late in issuing 
the status (TCHSVmax) while the clock high time is a 
minimum (TCHCLmin), the status will not have changed 
by the start of n and ALE is Issued TSVLH ns after the 
status changes. If the status changes prior to the begin­
ning of n, the 8288 will not issue the ALE until TCLLH 
ns after the start of T1. The resulting worst case delay to 
enable ALE (relative to the start of T1) is TCHSVmax+ 
TSVLHmax - TCHCLmin = 58 ns. Note, when calcu­
lating signal relationships, be sure to use the proper 
maximum mode values rather than equivalent minimum 
mode values. 

The trailing edge of ALE is triggered In the 8288 by the 
positive clock edge in n regardless of the delay to 
enable ALE. The resulting minimum ALE pulse width Is 
TCLCHmax-58ns=75ns assuming TCHLL=O. 
TCLCHmax must be used since TCHCLmln was all­
sumed to derive the 58 ns ALE enable delay. The ad­
dress is guaranteed to be valid TCLCHmin + 
TCHLLmln - TCLAVmal( = 8 ns prior to the trailing edge 
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of ALE to capture the address In the 8282 or 8283 
latches. Again we have assumed a very conservative 
TCHLL=O. Note, since the address and ALE are driven 
by separate devices, no tracking of A.C. characteristics 
can be assumed. 

The address hold time 10 the latches Is guaranteed by 
the address remaining valid until the end of T1 while 
ALE is disabled a maximum of 15 ns from the positive 
clock transition in T1 (TCHCLmin - TCHLLmax = 52 ns 
address hold time). The multiplexed bus transitions 
from address to status and write data cir three-state (for 
read) are identical to the minimum mode timing. Also, 
since the address valid delay (TCLAV) remains the 
critical path in establishing a valid address, the address. 
access times to valid data and ready are the same as·the 
minimum mode system. 

2. Read Cycle Timing 

The maximum mode system offers read signals 
generated by both the 8086 and the 8288. The 8086 RD 
output signal timing is identical to the minimum mode 
system. Since the A.C. characteristics .of the read com­
mands generated by the 8288 are significantly better 
than the 8086 output, access to devices on the demui­
tiplexed buffered system bus should use the 8288 com­
mands. The 8086 RD signal is available for devices 
which reside directly on the multiplexed bus. The 
following evaluations for read, write and interrupt 
acknowledge only consider the 8288 command timing. 

The 8288 provides separate memory and 110 ~ead signals 
which conform to the same A.C. characteristics. The 
commands are issued TCLML ns after the start of T2 
and terminate TCLMH ns after the start of T4.The 
minimum command length is 2TCLCL- TCLMLmax+ 
TCLMLmin = 375 ns. The access time to valid data at the 
CPU Is 2TCLCL-TCLMLmax-TDVCLmax=335 ns. 
Since the 8288 was designed for systems with buffered 
data busses, the commands are enabled before the CPU 
has three-statedthe multiplexed bus and should not be 
used with devices which reside directly on the multi­
plexed bus (to do so ·could result in bus contention dur-
ing 8086 bus float and devicerurn-on)·: . 

The direction control fordata bus transceivers is estab­
lished in T1 while the transceivers are not enabled by 
DEN until the positive clock transition of T2. This pro­
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float 
delay and TCHCLmin+TCLCL-TCVNVmax­
TDVCLmax = 187 ns of transceiver active to data valid at 
the CPU. Since both DEN and command are valid a mini­
mum of 10 ns into T4, the CPU data hold time TCLDX is 
guaranteed. A maximum DEN disable of 45ns (TCVNX 
max) guarantees the transceivers are disabled by the 
start of the next 8086 bus cycle (215 ns minimum from 
the same clock edge). On the positive clock transition of 
T4, DT/R is returned to transmit in preparation for a 
possible write operation on the next bus cycle. Since 
the system memory and 110 devices reside on a buffered 
system bus, they must three-state their outputs before 
the device for the next bus cycle is selected (approxi­
mately 2TCLCL) or the transceivers drive write data onto 
the tilus (approximately 2TCLCL). 

3. Write Cycle Timing 

In the maximum mpde, the 8.288 provides normal and ad­
vanced write commands for memory and 110. The ad­
vanced write commands are active a full clock cycle 
aheadpf the np(mal write commands and have timing 
identicalio the read commands. The· advanced write 
pulse width is 2TCLCL- TCLMLmax+ TCLMHmln=375 
ns while the nprmal write pulse width is TCLCL­
TCLMLmax + TCLMHmln = 175 ns. Write data setup 
time to the selected device Is a function of either the 
data valid delay from the 8086 (TCLDV) or the transceiver 
enable delay TCVNV. The worst case delay to valid write 
data is TCLDV", 110 ns minus transceiver propagation 
delays. This Implies the data may not be valid until 100 
ns after the advanced write command but will be valid 
approximately TCLCL"': TClDVmax + TCLMLmin = 100 
ns prior to the leading edge of the normal write com­
mand. Data will be valid 2TCLCL-TCLDVmax+ 
TCLMHmin = 300 ns before the trailing edge of either 
write command. The data and command overlap for the 
advanced command is 300 ns while the overlap with the 
normal write command Is 175 ns. The transceivers are 
disabled a minimum of TCLCHmin - TCLMHmax + 
TCVNXmin =85 ns after the write command while the 
CPU provides valid data a minimum of TCLCHmin­
TCLMHmax + TCHDZmin = 85 ns. This guarantees write 
data hold of 85 ns after the write command. The trans­
ceivers are disabled TCLCL - TCVNXmax + 
TCHDTLmln=155 ns (assuming TCHDTL=O) prior to 
transceiver direction change for a subsequent read 
cycle. 

4. Interrupt Acknowledge Timing 

The maximum mode INTA sequence is logically iden­
tical to the minimum mode sequence. The transceiver 
control (DEN and DT/R) and INTA command timing of 
each interrupt acknowledge cycle is identical to the 
read cycle. As in the minimum mode system, the multi­
plexed address/data bus will float from the leading edge 
of T1 for each IIIITA bus cycle and not be driven by the 
CPU until after T4 of .each INTA cycle. The setup and 
hold times on the vector 'number for the second cycle 
are the same as data setup and hold for the read. If the 
devlcll providing the interrupt vector number is con­
nected to the local bus, TCLCL - TCLAZmax + 
TCLMLmin = 130 ns are available from 8086. bus float to 
INTA command active. The selected deVice on the local 
bus must disable the system data bus transceivers 
since DEN is still generated'by the 8288. 

If the 8288 Is not in the lOB (110 Bus) mode, the 8288 
MCE/PDEN output becomes the MCE output. This out­
put is active during each iiii'fA cycle and overiaps the 
ALE signal during T1. The MCE is available for gatlrig 
cascade addresses from a master 8259A onto three of 
the upper AD15-AD8Iines and allowing ALE to latch the 
cascade address into the address latches. The address 
lines may then be used to provide CAS address selec­
tion to slave 8259A's located on the system bus (refer­
ence Figure 3E5). MCE is active within 15 ns of status or 
the start of T1 for each INTA cycle. MCE should not 
enable the CAS lines onto the multiplexed bus during 
the first cycle since the CPU does not guarantee to float 
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the bus until 80 ns into the first INTA cycle. The first 
MCE can be inhibited by gating MCE with LOCK. The 
8086 LOCK output is activated during T2 of the first 
cycle and disabled during T2 of the second cycle. The 
overlap of LOCK with MCE allows the first MCE to be 
masked and the second MCE to gate the cascade ad­
dress onto the local bus. Since the 8259A will not pro· 
vide a cascade address until the second cycle, no infor· 
mation is lost. As with ALE, MCE is guaranteed valid 
within 58 ns of the start of T1 to allow 75 ns CAS ad­
dress setup to the trailing edge of ALE. MCE remains 
active TCHCLmin - TCHLLmax + TCLMCLmln = 52 ns 
after ALE to provide data hold time to the latches. 

If the 8288 is strapped in the lOB mode, the MCE output 
becomes PDEN and all I/O references are assumed to be 
devices on the local bus rather than the demultiplexed 
system bus. Since INTA cycles are considered I/O 
cycles, all interrupts are assumed to come from the 
local system and cascade addresses are not gated onto 
the system address bus. Additionally, the DEN signal is 
not enabled since no I/O transfers occur on the system 
bus. If the local I/O bus is also buffered by transceivers, 
the PDEN signal is used to enable those transceivers. 
PDEN A.C. characteristics are identical to DEN with 
PDEN enabled for I/O references and DEN enabled for 
instruction or memory data references. 

5. Ready Timing 

Ready timing based on address valid timing is the same 
for maximum and minimum mode systems. The delay 
from 8288 command valid to RDY valid at the 8284 is 
TCLCL- TCLMLmax- TRIVCLmin= 130 ns. This time is 
available for external circuits to determine the need to 
insert wait states and disable RDY or enable RDY to 
avoid wait states. INTA, all read commands and ad­
vanced write commands provide this timing. The normal 
write command is not valid until after the RDY signal 
must be valid. Since both normal and advanced write 
commands are generated by the 8288 for all write 
cycles, the advanced write may be used to generate a 
RDY indication even though the selected device uses 
the normal write command. 

Since sepa.!!te commands are provided for memory and 
110, no MilO signal is specifically available as in the 
minimum mode to allow an early 'wait state required' in­
dication for I/O devices. The S2 status line, however is 
logically equivalent to the MilO signal and can be used 
for this purpose. 

6. Other Considerations 

The RO/GT timing is covered in the next section and will 
not be duplicated here. The only additional signals to be 
considered in the maximum mode are the queue status 
lines OSO, OS1. These signals are changed on the 
leading edge of each clock cycle (high to low transition) 
including idle and wait cycles (the queue status is in­
dependent of the bus activity). External logic may sam­
ple the lines on the low to high transition of each clock 
cycle. When sampled, the signals indicate the queue ac­
tivity in the previous clock cycle and therefore lag the 
CPU's activity by one cycle. The TEST input require· 

ments are identical to those stated for the minimum 
mode. 

To inform the 8288 of HALT status when a HALT Instruc­
tion is executed, the 8086 will Initiate a status transition 
from passive to HALT status. The status change will 
cause the 8288 to emit an ALE pulse with an Indeter­
minate address. Since no bus cycle is Initiated (no com­
mand is issued), the results of this address will not af­
fect CPU operation (I.e., no response such as READY Is 
expected from the system). This allows external hard· 
ware to latch and decode all transitions In system 
status. 

3G. Bus Control Transfer (HOLD/HLDA and RQ/GT) 

The 8086 supports protocols for transferring control of 
the local bus between itself and other devices capable 
of acting as bus masters. The minimum mode conflg· 
uration offers a signal level handshake similar to the 
8080 and 8085 systems. The maximum mode provides 
an enhanced pulse sequence protocol designed to op· 
timize utilization of CPU pins while extending the 
system configurations to two prioritized levels of alter­
nate bus masters. These protocols are simply tech· 
niques for arbitration of control of the CPU's local bus 
and should not be confused with the need for arbitration 
of a system bus. 

1. MINIMUM MODE 

The minimum mode 8086 system uses a hold request in­
put (HOLD) to the CPU and a hold acknowledge (HLDA) 
output from the CPU. To gain control of the bus, a 
device must assert HOLD to the CPU and wait for the 
HLDA before driving the bus. When the 8086 can relin­
quish the bus, it floats the RD, WR, INTA and M/iO com­
mand lines, the DEN and DT/Rbus control lines and the 
multiplexed address/data/status lines. The ALE signal is 
not three-stated. The CPU acknowledges the request 
with HLDA to allow the requestor to take control of the 
bus. The requestor must maintain the HOLD request ac­
tive until it no longer requires the bus. The HOLD re­
quest to the 8086 directly affects the bus interface unit 
and only indirectly affects the execution unit. The CPU 
will continue to execute from its internal queue until 
either more instructions are needed or an operand 
transfer is required. This allows a high degree of overlap 
between CPU and auxiliary bus master operation. When 
the requestor drops the HOLD Signal, the 8086 will re­
spond by dropping HLDA. The CPU will not re-drive the 
bus, command and control signals from three-state until 
it needs to perform a bus transfer. Since the 8086 may 
still be executing from its internal queue when HOLD 
drops, there may exist a period of time during which no 
device is driving the bus. To prevent the command lines 
from drifting below the minimum VIH level during the 
transition of bus control, 22K ohm pull up resistors 
should be connected to the bus command lines. The 
timing diagram in Figure 3G1 shows the handshake se­
quence and 8086 timing to sample HOLD, float the bus, 
and enable/disable HLDA relative to the CPU clock. 

To guarantee valid system operation, the designer must 
assure that the requesting device does not assert con-
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trol of the bus prior to the 8086 relinquishing control and 
that the device relinquishes control of the bus prior to 
the 8086 driving the bus. The HOLD request into the 
8086 must be stable THVCH ns prior to the CPU's low to 
high clock transition. Since this input is not syn­
chronized by the CPU, signals driving the HOLD input 
should be synchronized with the CPU clock to 
guarantee the setup time is not violated. Either clock 
edge may be used. The maximum delay between HLDA 
and the 8086 floating the bus is TCLAZmax­
TCLHAVmin = 70 ns. If the system cannot tolerate the 
70 ns overlap, HLDA active from the 8086 should be 
delayed to the device. The minimum delay for the CPU to 
drive the control bus from HOLD inactive is THVCHmin 
+3TCLCL=635 ns and THVCHmin+3TCLCL+ 
TCHCL= 701 ns to drive the multiplexed bus. If the 
device does not satisfy these requirements, HOLD inac­
tive to the 8086 should be delayed. The delay from HLDA 
inactive to driving the busses Is TCLCL+ TCLCHmin­
TCLHAVmax = 158 ns for the control bus and 2TCLCL­
TCLHAVmax = 240 ns for the data bus. 

1.1 Latency of HLDA to HOLD 

The decision to respond to a HOLD request is made in 
the bus interface unit. The major factors that influence 
the decision are the current bus activity, the state of the 
LOCK signal internal to the CPU (activated by the soft­
ware LOCK prefix) and interrupts. 

If the LOCK is not .active, an interrupt acknowledge cy­
cle is not in progress and the BIU (Bus Interface Unit) Is 
executing a T4 or TI when the HOLD request is received, 
the minimum latency to HLDA is: 

35 ns 
65 ns 
200 ns 
10 ns 

310 ns 

elK 

HOLD 

THVCH min (Hold setup) 
TCHCL min 
TCLCL (bus float delay) 
TCLHAV min (HLDA delay) 

@ 5 MHz 

The maximum delay under these conditions is: 

34 ns 
200 ns 
82 ns 
200 ns 
180 ns 

677 ns 

Uust missed setup time) ,',. 
delay to next sample 
TCHCL max 
TCLCL (bus float delay) 
TCLHAV max (HLDA delay) 

@5MHz 

If the BIU just initiated a bus cycle when the HOLD Re­
quest was received, the worst case response time is: 

34 ns 
82 ns 
7*200 
N*200 
160 ns 

1.676"s 

THVCH Uust missed) 
tCHCL max 
bus cycle execution 
N walt states/bus cycle 
TCLHAV max (HLDA delay) 

@ 5 MHz, no wait states 

Note, the 200 ns delay for just misSing is included in the 
delay for bus cycle execution. If the operand transfer is 
a word transfer to an odd byte boundary, two bus cycles 
are executed to perform the transfer. The BIU will not 
acknowledge a HOLD request between the two bus 
cycles. This type of transfer would extend the above 
maximum latency by four additional clocks plus N addi­
tional wait states. With no wait states in the bus cycle, 
the maximum would be 2.476 microseconds. 

Although the minimum mode 8086 does not have. a hard­
ware LOCK output, the software LOCK prefix may stili 
be included in the instruction stream. The CPU Internal­
ly reacts to the LOCK prefix as would the maximum 
mode 8086. Therefore, the LOCK does not allow a HOLD 
request to be honored until completion of the instruc­
tion following the prefix. This allows an instruction 
which performs more than one memory reference (ex. 
ADD [BX), CX; which adds CX to [BXD to execute without 
another bus master gaining control of the bus between 
memory references. Since the LOCK signal is active for 
one clock longer than the instruction execution, the 
maximum latency to HLDA is: 

.~m~==~==~7-;t--~~----------------------------~~--------------~f-~ 
CONTROL 

HlDA ___ .-oJ 

Figura 3G1. HOLD/HLDA Sequence 
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34 ns 
200 ns 
82 ns 
(M+ 1)*200 ns 
200 ns 
160 ns 

THVCH ijust miss) 
delay to next sample 
TCHCL max 
LOCK Instruction execution 
set up HLDA (Internal) 
TCLHAV max (HLDA delay) 

(M*200ns)+876ns @ 5 MHz 

If the HOLD request Is made at the beginning of an Inter· 
rupt acknowledge sequence, the maximum latency to 
HLDA Is: 

34 ns 
82 ns 
2600 ns 
160 ns 

2.876 JAB 

THVCH Oust missed) 
TCHCL max 
13 clock cycles for INTA 
TCLHAV max 

@ 5 MHz 

1.2 Minimum Mode DMA Configuration 

Vee 

AP-67 

A typical use of the HOLD/HLDA signals in the minimum 
mode 8086 system Is bus control exchange with DMA 
devices like the Intel 8257·5 or 8237 DMA controllers. 
Figure 3G2 gives a general interconnect for this type of 
configuration using the 8237·2. The DMAcontrolier 
resides on the upper half of the 8086's local bus and 
shares the A8·A15 demultiplexing address latch of the 
8086. All registers in the 8237·2 must be assigned odd 
addresses to allow Initialization and Interrogation by the 
CPU over the upper half of the data bus. The 8086 
RDIWR commands must be demultiplexed to provide 
separate 1/0 and memory commands which are compati· 
ble with the 8231'2 commands. The AEN control from 
the 8237·2 must disable the 8086 commands from the 
command bus, disable the address latches from the 
lower (AO·A7) and upper (A19·A16) address bus and 
select the 8237·2 address strobe (ADSTB) to the A8·A15 
address latch. If the data bus is buffered, a pull·up 
resistor on the DEN line will keep the buffers dJsabled. 
The DMA controller will only transfer bytes between 

DEMULTIPLEX T 
rD~ I 

RDIWRlIOIM 

1 8284 1 
WE A11- 11 

L 8088 

READY 
ALE 

CLK 

RESET AD150Q 

HOLD HLDA 

74L874 

Q 

CLR 

-~D 

--{> 

MIN MODE COMMANDS 

T EJill!LE -
8282 

01 DO 

T 
STB 

'-- -r-
~ 

UPPER = 001--

DMA 01 
AD DR -

- 8282 1/0 PORT 
LOADED DURING 

8237 INITIALIZATION 

r--e2i2 
01 DO 

~ STB 

AP7-O 
8282 

'--- 01 DO 

STB 

EN 

~ 
(AO) 

087-0 

~: ) - AEN 

ADSTB 8237·2 iOW 1-
MEMR HLDA 

HRQ CLK 
MEMW 

t RESET 

Figure 3G2. DMA Using the 8237·2 
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memory and 1/0 and requires the 1/0 devices to reside on 
an 8-bit bus derived from the 16-bit t08-bit bus multiplex 
circuit given in Section 4. Address lines A7·AO are driven 
directly by the 8237 and BHE is generated by inverting 
AO.lf A19-A16 are used, they must be provided by an ad­
ditional port with either a fixed value or initialized by 
software and enabled onto the address bus by AEN. 

Figure 3G3 gives an interconnection for placing the 
8257 on the system bus. By using a separate latch to 
hold the upper address from the 8257·5 and connecting 
the outputs to the address bus as shown, 16·bit DMA 
transfers are provided. In this configuration, AEN 
simultaneously enables AO and BHE to allow word 
transfers. AEN still disables the CPU interface to the 
command and addres.s busses. 

2. MAXIMUM MODE (RO/GT) 

The maximum mode 8086 configuration supports a sig­
nificantly different protocol for transferring bus control. 
When viewed with respect to the HOLD/HLDA sequence 
of the minimum mode, the protocol appears difficult to 
implement externally. However, it is necessary to under­
stand the intent of the protocol and its purpose within 
the system architecture. 

CPU 

A19·16 

ALE 

BHE 

BUS AD15.8 
INTERFACE 

~ 
01 00 
STB 

T 
r--a282 
01 

00 

t---- STB 

T 
~ 

01 

00 
~ STB 

~ 

2.1 Shared System Bus (RO/GT Alternative) 

The maximum mode RO/GT sequence is intended to 
transfer control of the CPU local bus between the CPU 
and alternate bus masters which reside totally on the 
local bus and share the complete CPU interface to the 
system bus. The complete interface includes the ad· 
dress latches, data transceivers, 8288 bus controller and 
8289 multi master bus arbiter. If the alternate bus 
masters in the system do not reside directly on the 8086 
local bus, system bus arbitration is required rather than 
local CPU bus arbitration. To satisfy the need for multi· 
master system bus arbitration at each CPU's system in· 
terface, the 8289 bus arbiter should be used rather than 
the CPU RO/GT logic. 

To allow a device with a simple HOLD/HLDA protocol to 
gain control of a Single CPU system bus, the circuit in 
Figure 3G4 could be used. The design is effectively a 
simple bus arbiter which isolates the CPU from the 
system bus when an alternate bus master issues a 
HOLD request. The output of the Circuit, A£R (Address 
ENable), disables the 8288 and 8284 when the 8086 in· 
dicates idle status (50,51,$2 = 1), LOCK is not active and 
a HOLD request is active. With AEN inactive, the 8288 
three·states the command outputs and disables DEN 

3 
A19.l7 

1 
A16 

I 
BHE 

1 3 

"'L A15·9 

1 As 

7 1 

A7.' 

7 1 

OTIR 

DEN 

r---a2a6 
'----A 

_c~ll 
y-DE 8282 

01 

~ 
I 

00 I AEN 
DE 8282 110 PORT 

01 

0 HOL 

HLOA 

J 
t 

AEN 087.0 ADSTB A, 

.1 8257-5 
As·o 

,I I I I, 
Ao TO GROUND AND 

(FIXED OR REG) 
I UPPER BITS OF OMA ADDRESS 

CONTROLS ARE SAME AS 8·BIT 
TRANSFER CONFIGURATION WITH 
MANIPULATION OF THE DATA BUS 

Figure 3G3. 8086 Min Syslem, 8257 on System Bus 16·Bil Transfers 
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which three-states the data bus transceivers. AEN must 
also three-state the address latch (8282 or 8283) outputs. 
These actions remove the 8086 from the system bus and 
allow the requesting device to drive the system bus. The 
AEN signal to the 8284 disables the ready Input and 
forces a bus cycle initiated by the 8086 to wait until the 
8086 regains control of the system bus. The CPU may 
actively drive its local bus during this interval. 

The requesting device will not gain control of the bus 
during an 8086 initiated bus cycle, a locked instruction 
or an Interrupt acknowledge cycle. The LOCK signal 
from the 8086 Is active between INTA cycles to 
guarantee the CPU maintains control of the bus. Unlike 
the minimum mode 8086 HOLD response, this arbitra­
tion circuit allows the requestor to gain control of the 
bus between consecutive bus cycles which transfer a 
word operand on an odd address boundary and are not 
locked. Depending on the characteristics of the re­
questing device, any of the 74LS74 outputs can be used 
to generate a HLOA to the device. 

Upon completion of its bus operations, the alternate bus 
master must relinquish control of the system bus and 
drop the HOLD request. After AEN goes inactive, the ad­
dress latches and data transceivers are enabled but, if a 
CPU Initiated bus cycle is pending, the 8288 will not 
drive the command bus until a minimum of 105 ns or 
maximum of 275 ns later. If the system is normally not 
ready, the 8284 AEN input may immediately be enabled 
with ready returning to the CPU when the selected 
device completes the transfer. If the system is normally 
ready, the 8284 AEN input must be delayed iong enough 
to provide access time equivalent to a normal bus cycle. 
The 741..S74 latches in the design provide a minimum of 
TCLCHmin for the alternate device to float the system 
bus after releasing HOLD. They also provide 2TCLCL ns 
address access and 2TCLCL- TAEVCHmax ns (8288 
command enable delay) command access prior to ena­
bling 8284 ready detection. If HLOA is generated as 
shown in Figure 3G4, TCLCL ns are available for the 
8086 to release the bus prior to issuing HLOA while 
HLOA is dropped almost immediately upon loss of 
HOLD. 

so 
s, 
s,~==C) 

LOCK 
HOLD 

ClK 

+5 

D Q 

C Q 

+5 

A circuit configuration for an 8257-5 using this tech­
nique to interface with a maximum mode 8086 can be 
derived from Figure 3G3. The 8257-5 has its own address 
latch for buffering the address lines A15-A8 and uses its 
AEN output to enable the latch onto the address bus. 
The maximum latency from HOLD to HLOA for this cir­
cuit is dependent on the state of the system when the 
HOLD is issued. For an idle system the maximum delay 
is the propagation deiay through the nand gate and RIS 
flip-flop (T01) plus 2TCLCL plus TCLCHmax plus prop­
agation delay of the 74LS74 and 74LS02 (T02)_ For a 
locked instruction it becomes: T01 + T02 + (M + 2) 
*TCLCL+ TCLCHmax where M is the number of clocks 
required for execution of the locked instruction. For the 
interrupt acknowledge cycle the latency is 
T01 + T02 + 9 *TCLCL + TCLCHmax. 

2.2 Shared Local Bus (RQ/GT Usage) 

The RQ/GT protocol was developed to allow up to two in­
struction set extension processors (co-processors) or 
other special function processors (like the 8089 1/0 
processor in local mode) to reside directly on the 8086 
local bus. Each RQ/GT pin of the 8086 supports the full 
protocol for exchange of bus control (Fig. 3G5). The se­
quence consists of a request from the alternate bus 
master to gain control of the system bus, a grant from 
the CPU to indicate the bus has been relinquished and a 
release pulse from the alternate master when done_ The 
two RQ/GT pins (RQ/GTO and RQ/Gn) are prioritized 
with RQ/GTO having the highest priority. The prioritiza­
tion only occurs if requests have been received on both 
pins before a response has been given to either. For ex­
ample, if a request is received on RQ/GT1 followed by a 
request on RQ/GTO prior to a grant on RQ/Gn, RQ/GTO 
will gain priority over RQ/GT1. However, if RQ/Gn had 
already received a grant, a request on RQ/GTO must wait 
until a release pulse is received on RQ/Gn. 

The request/grant sequence interaction with the bus in­
terface unit is similar to HOLO/HLOA. The CPU con­
tinues to execute until a bus transfer for additional in­
structions or data is required. If the release pulse is 

,.-------------AEN (TO 8288&828213'0) 

AEN' (TO 8284) 

HlDA 

Figure 304. Circuit to Translate HOLD Into AEN Di.abl"fo~ Max Mode 8088 
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received before the CPU needs the bus, it will not drive 
the bus until a transfer is required. 

Upon receipt of a request pulse, the 8086 floats the 
multiplexed address, data and status bus, the SO, 51, 
and 52 status lines, the LOCK pin and RD. This action 
does not disable the 8288 command outputs from driv­
ing the command bus and does not disable the address 
latches from driving the address bus. The 8288 contains 
Internal pull-up resistors on the So, 51, and 52 status 
lines to maintain the passive state while the 8086 out­
puts are three-state. The passive state prevents the 8288 
from initiating any commands or activating DEN to 
enable the transceivers buffering the data bus. If the 
device issuing the RO does not use the 8288, it must 
disable the 8288 command outputs by disabling the 
8288 AEN input. Also, address latches not used by the 
requesting device must be disabled. 

OND Vcc 
AD14 AD15 

AD13 A161S3 

AD12 A171S4 

AD11 A181S5 

AD10 A191S6 

AD9 BHE/S7 

AD8 MNIMX 

AD7 RD 

AD6 RDIGTO 

AD5 RaIGTl 

AD4 lOCK 

AD3 52 
AD2 Si 
AD1 so 
ADO aso 

NMI aS1 

INTR TEST 

ClK READY 

GND RESET 

Figure 3G5. 8086 RQ/GT Connections 

__ I I-roye,", 
TClCL---------I r-TCHGX---

iiOiGi~'PULSE!....r r----lT .~ 

NOTES: 
1. THE 10M FLOATSAxDx 8USIfti AND COCii ON THIS Eoo! 
2. THE OTHER MASnR fLOATS Ii. Ii, 10 FADM 1.1.1 STATE ON THIS EDGE 
3. THE OTHER MASTER FLOATS A~Ox IUS, ~ AND ~ ON THIS EOIlE 
4. THE 10M REORIYES THE CONTROL LINES 
5. THE 10M IIEDAIYES THE AOJoc LINES 

2.3 RO/GT Operation 

Detailed timing of the RO/GT sequence is given in 
Figure 3G6. To request a transfer of bus control via the 
RO/GT lines, the device must drive the line low for no 
more than one CPU clock interval to generate a request 
pulse. The pulse must be synchronized with the CPU 
clock to guarantee the appropriate setup and hold times 
to the clock edge which samples the RO/GT lines in the 
CPU. After issuing a request pulse, the device must 
begin sampling for a grant pulse with the next low to 
high clock edge. Since the 8086 can respond with a 
grant pulse in the clock cycle immediately following the 
request, the RO/GT line may not return to the positive 
level between the request and grant pulses. Therefore 
edge triggered logic is not valid for capturing a grant 
pulse. It also implies the circuitry which generates the 
request pulse must guarantee the request is removed in 
time to detect a grant from the CPU. After receiving the 
grant pulse, the requesting device may drive the local 
bus. Since the 8086 does not float the address and data 
bus, LOCK or RD until the high to low clock transition 
following the low to high clock transition the requestor 
uses to sample for the grant, the requestor should wait 
the float delay of the 8086 (TCLAZ) before driving the 
local bus. This precaution prevents bus contention dur­
ing the access of bus control by the requestor. 

To return control of the bus to the 8086, the alternate 
bus master relinquishes bus control and issues a 
release pulse on the same RO/GT line. The 8086 may 
drive the SO-52 status lines, RD and LOCK, three clock 
cycles after detecting the release pulse and the ad­
dress/data bus TCHCLmin ns (clock high time) after the 
status lines. The alternate bus master should be three­
stated off the local bus and have other 8086 interface 
circuits (8288 and address latches) re-enabled within the 
8086 delay to regain control of the bus. 

2.4 RO/GT Latency 

The RO to GT latency for a single RO/GT line is similar 
to the HOLD to HLDA latency. The cases given for the 
minimum mode 8086 also apply to the maximum mode. 
For each case the delay from RO detection by the CPU 
to GT detection by the requestor is: 

(HOLD to HLDA delay)- (THVCH + TCHCL+ TCLHAV) 

Figure 3G6. Request/Grant Sequence 
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This gives a clock cycle maximum delay for an idle bus 
interface. All other cases are the minimum mode result 
minus 476 ns. If the 8086 has previously issued a grant 
on one of the RQ/GT lines, a request on the other RQ/GT 
line will not receive a grant until the first device releases 
the interface with a release pulse on its RQ/GT line. The 
delay from release on one Ra/GT line to a grant on the 
other is typically one clock period as shown in Figure 
3G7. Occasionally the delay from a release on RQ/GT1 

CHANNEL 0 TO 1 

CLOCK 

to a grant on RQ/G'fO will take two clock cycles and is a 
function of a pending request for transfer of control 
from the execution unit. The latency from request to 
grant when the interface is under control of a bus 
master on the other RQ/GT line is a function of the other 
bus master. The protocol embodies no mechanism for 
the CPU to force an alternate bus master off the bus. A 
watchdog timer should be used to prevent an errant 
alternate bus master from 'hanging' the system. 

RoIGTO ~ RELEASE 

~GRANT 

CHANNEL 1 TO 0 

CLOCK 

RoIGn ~RELEASE 

\'-__ ---J/ GRANT 

OR 

\ / GRANT 

Figure 3G7. Channel T,ans'e, Delay 
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2.5 RQ/GT to HOLD/HLDA Conversion 

A circuit for translating a HOLD/HLDA hand-shake se­
quence into a RQ/GTpulse sequence Is given in Figure 
3GB. After receiving the grant pulse, the HLDA Is ena­
bled TCHCLmin ns before the CPU has three-stated the 
bus. If the requesting circuit drives the bus wlthin20 ns 

of HLDA, It may be desirable to delay the acknowledge 
one clock period. The HLDA is dropped no later than one 
clock period after HOLD is disabled. The HLDA also 
drops at the beginning of the release pulse to provide 
2TCLCL + TCLCH for the requestor to relinquish control 
of the status lines and 3TCLCL to float the remaining 
signals. 

ClOCK--,-----------------, 

A 

74lS78 74502 
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A 

Figure 3G8a. HOLD/HLD_iiO/GT Conv.rsion Circuil 
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Figure 3G8b. HOLD/HLD~Q/G'i' Conversion Timing 
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4. INTERFACING WITH 1/0 

The 8086 is capable of interfacing with 8· and 16-bit 1/0 
devices using either 110 instructions or memory mapped 
1/0. The 110 instructions allow the 110 devices to reside 
in a separate 1/0 address space while memory mapped 
1/0 allows the full power of the instruction set to be 
used for 1/0 operations. Up to 64K bytes of 1/0 mapped 
1/0 may be defined in an 8086 system. To the program­
mer, the separate 1/0 address space is only accessible 
with INPUT and OUTPUT commands which transfer data 
between 1/0 devices and the AX (for 16-bit data trans­
fers) or AL (for 8-bit data transfers) register. The first 256 
bytes of the 1/0 space (0 to 255) are directly addressable 
by the 1/0 instructions while the entire 64K is accessible 
via register indirect addressing through the DX register. 
The later technique is particularly desirable for service 
procedures that handle more than one device by allow­
ing the desired device address to be passed to the pro­
cedure as a parameter. 1/0 devices may be connected to 
the local CPU bus or the buffered system bus. 

4A. Elght·Slt i/O 

Eight-bit 110 devices may be connected to either the up­
per or lower half of the data bus. Assigning an equal 
number of devices to the upper and lower halves of the 
bus will distribute the bus loading. If a device is con­
nected to the upper half of the data bus, all 110 ad­
dresses assigned to the device must be odd (AO= 1). If 
the device is on the lower half of the bus, its addresses 
must be even (AO = 0). The address assignment directs 
the eight-bit transfer to the upper (odd byte address) or 
lower (even byte address) half of the sixteen-bit data 
bus. Since AO will always be a one or zero for a specific 
device, AO cannot be used as an address input to select 
registers within a specific device. If a device on the 
upper half of the bus and one on the lower half are 
assigned addresses that differ only in AO (adjacent odd 
and even addresses), AO and BHE must be conditions of 
chip select decode to prevent a write to one device from 
erroneously performing a write to the other. Several 
techniques for generating 1/0 device chip selects are 
given in Figure 4A1. 

The first technique (a) uses separate 8205's to generate 
chip selects for odd and even addressed byte periph­
erals. If a word transfer is performed to an even ad­
dressed device, the adjacent odd addressed 110 device 
is also selected. This allows accessing the devices in­
dividually with byte transfers or simultaneously as a 
16-bit device with word transfers. Figure 4A1(b) restricts 
the chip selects to byte transfers, however a word 
transfer to an odd address will cause the 8086 to run two 

• byte transfers that the decode technique will not detect. 
The third technique simply uses a single 8205 to 
generate odd and even device selects for byte transfers 
and will only select the even addressed eight-bit device 
on a word transfer to an even address. 

If greater than 256 bytes of the 110 space or memory 
mapped 110 is used, additional decoding beyond what is 
shown in the examples may be necessary. This can be 
done with additional TTL, 8205's or bipolar PROMs (In­
tel's 3605A). The bipolar PROMs are slightly slower than 
multiple levels of TTL (50 ns vs 30 to 40 ns for TTL) but 

provide full decoding in a single package and allow in­
serting a new PROM to reconfigure the system 110 map 
without circuit board or wiring modifications (Fig. 4A2). 

ADDRESS 

BHE--+--<JI 

(a) 

(b) 

ADDRESS~ AO"S205 °tO 

Au A, 
Ei 
~ 0, 

(e) 

EVEN ADDRESSED 
WORD OR BYTE 
PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

EVEN ADDRESSED 
BYTE PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

EVEN ADDRESSED 
PERIPHERALS 
(WORD/BYTE) 

ODD ADDRESSED 
PERIPHERALS 
(BYTE) 

Figure 4A 1. Techniques for 110 Device Chip Selects 

CS1 D. 11 
10 

CS2 12 0, 
Au 02 13 
A, 

3805 01 14 A, A·1 
A, A, 15 

"" Au 18 
As 

Au A, 17 

Figure 4A2. Bipolar PROM Decoder 

One last technique for Interfacing with eight-bit periph­
erals Is considered In Figure 4A3. The sixteen-bit data 
bus is multiplexed onto an elght·bit bus to accom­
modate byte oriented DMA or block transfers to memory 
mapped eight·bit i/O. Devices connected to this inter­
face may be assigned a sequence of odd and even ad­
dresses rather than all odd or .even. 
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RD--,:~--------------, 

I'-' ____ J \ a-Bit 

BHE 
PERIPHERAL 

CS .. 

PERIPHERAL 
DATA BUS 

Figure 4A3. 16· 10 8·BIt Bus Con.Brslon 

4B. Sixteen· Bit 1/0 

For obvious reasons of efficient bus utilization and sim· 
plicity of device selection, sixteen·bit 1/0 devices should 
be assigned even addresses. To guarantee the device is 
selected only for word operations, AO and BHE should 
be conditions of chip select code (Fig. 4B1). 

ADDRESS ___ ...,....,hl 

"'0---+-01 
lIRE ---+--<>1 

AO·2 00 

8205 I 
E3 07 

EVEN ADDRESSED 
WORD PERIPHERALS 

Figure 4Bl. Sixleen·Bil 1/0 Decode 

4C. General Design Considerations 

MINIMAX, MEMORY 1/0 MAPPED AND LINEAR SELECT 

Since the minimum mode 8086 has common read and 
write commands for memory and 1/0, if the memory and 
1/0 address spaces overlap, the chip selects must be 
qualified by MilO to determine which address space the 
devices are assigned to. This restriction on chip select 
decoding can be removed if the 1/0 and memory ad· 
dresses in the system do not overlap and are properly 
decoded; all 1/0 is memory mapped; or RD, WR and M/iO 
are decoded to provide separate memory and 1/0 
readlwrite commands (Fig. 4C1). The 8288 bus controller 
in the maximum mode 8086 system generates separate 
1/0 and memory commands in place of a M/iO signal. An 
1/0 device is assigned to the 1/0 space or memory space 
(memory mapped 1/0) by connection of either 1/0 or 
memory command lines to the command Inputs of the 
device. To allow overlap of the memory and 1/0 address 
space, the device must not respond to chip select alone 
but must require a combination of chip select and a read 
or write command. 

74LS02 74LS368 

WR --t--+,-; ......... '-L ........ _ lOW 

DEFINED EN~~~~ -----------------+-........ 

NOTE: IF IT IS NOT NECESSARY TO THREE·STATE THE COMMAND LINES. A 
DECODER (8205 OR 748138) COULD BE USED. THE 74LS257 IS NOT 
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE 
SPIKES WHEN ENTERING OR LEAVING THREE-STATE • 

Figure 4Cl. Decoding Memory and 1/0 RD and WR Commands lor 
Minimum Mode 8086 Syslems 

Linear select techniques (Fig. 4C2) for 1/0 devices can 
only be used with devices that either reside in the 1/0 ad· 
dress space or require more than one active chip SP''lct 
(at least one low active and one high active). Devices 
with a single chip select input cannot use linear select if 
they are memory mapped. This is due to the aSSignment 
of memory address space FFFFFOH-FFFFFFH to reset 
startup and memory space 00000H-003FFH to interrupt 
vectors. 

ADDRESS .{]cs ... LINE 

~ 1m 

Il5We Wfi 

110 DEVICE 

(0) SEPARATE 110 COMMANDS 

ADDRESSi{]S 
LINES( CS 

1m 1m 110 DEVICE 

WA WA 

(b) MULTIPLE CHIP SELECTS 

Figure 4C2. Linear Selecllor 1/0 

4D. Determining 1/0 Device Compatibility 

This section presents a set of A.C. characteristics whioh 
represent the timing of the asynchronous bus interface 
of the 8086. The equations are expressed in terms of the 
CPU clock (when applicable) and are derived for 
minimum and maximum modes of the 8086. They repre­
sent the bus characteristics at the CPU. 

The results can be used to determine 1/0 device re­
quirements for operation on a single CPU looal bus or 
buffered system bus. These values are not applicable to 
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a Multibus system bus Interface. The requirements for a 
Multibus system bus are available In the Multibus inter· 
face specification. 

A list of bus parameters, their definition and how they 
relate to the A.C. characteristics of Intel peripherals are 
given in Table 401. Cycle dependent values of the 
parameters are given in Table 402. For each equation, If 
more than one signal path is involved, the equation 
reflects the worst case path. 

ex. TAVRL(address valid before read active) = 
(1) Address from CPU to RO active 

( or) 
(2) ALE (to enable the address through the 

address latches) to ROactive 

The worst case delay path Is (1). 

For the maximum mode 8086 configurations, TAVWLA, 
TWLWHA and TWLCLA are relative to the advanced 
write signal while TAVWL, TWLWH and TWLCL are 
relative to the normal write signal. 

TABLE 401. PARAMETERS FOR PERIPHERAL COMPATIBILITY 

TAVRl - Address stable before RD leading edge 
TRHAX - Address hold after RD trailing edge 
TRlRH - Read pulse width 
TRLDV - Read to data valid delay 
TRHDZ - Read trailing edge to data floating 
TAVDV - Address to valid data delay 
TRLRL - Read cycle time 
TAVWL - Address valid before write leading edge 
TAVWLA - Address valid before advanced write 
TWHAX - Address hold after write trailing edge 
TWLWH - Write pulse width 
TWLWHA - Advanced write pulse width 
TDVWH - Data set up to write trailing edge 
TWHDX - Data hold from write trailing edge 
TW.LCL - Write. recovery time 
TWLCLA - Advanced write recovery time 
TSVRL - Chip select stable before RD leading edge 
TRHSX - Chip select hold after R[) trailing edge 
TSLDV - Chip select to data valid delay 
TSVWL - Chip select stable before WR leading edge 
TWHSX - Chip select hold afterWR trailing edge 
TSVWLA - Chip select stable before advanced write 

(TAR) 
(TRA) 
(TRR) 
(TRD) 
(TDF) 
(TAD) 

. (TRCYC) 
(TAW) 
(TAW) 
(TWA) 

(TWW) 
(TWW) 
(TOW) 
(TWO) 
(TRV) 
(TRV) 
(TAR) 
(TRA) 
(TRD) 
(TAW) 
(TWA) 
(TAW) 

Symbols in parentheses are equivalent parameters specified for 
Intel peripherals. 

In the given list of equations, TWHOXB is the data hold 
time from the trailing edge of write for the minimum 
mode with a buffered data bus. For this equation, 
TCVCTX cannot be a minimum for data hold and a max· 
Imum for write Inactive. The maximum difference Is 50 
,ns giving the result TCLCH·50. If the reader wishes to 
verify the equations or derive others, refer to Section 3F 
for assistance with Interpreting the 8086 bus timing 
diagrams. 

Figure 401 shows four representative configurations 
and the compatible Intel peripherals (Including walt 
states If required) for each configuration are given In 
Table 403. Configuration 1 and 2 are minimum mode 
demultlplexed bus 8086 systems without (1) and with (2) 
data bus transceivers. Configurations 3 and 4 are max· 
Imum mode systems with one (3) and two (4) levels of ad­
dress and data buffering. The last configuration is 
characteristic of a multi-board system with bus buffers 
on each board. The 5 MHz parameter values for these 
configurations are given In Table 404 and demonstrate 

the relaxed device requirements for even a large com­
plex configuration. The analysis assumes ali com· 
ponents are exhibiting the specified worst case param­
eter values and are under the corresponding tem­
perature, voltage and capacitive load conditions. If the 
capacitive loading on the 8282183 or 8286/87 Is less than 
the maximum, graphs of delay vs. capacitive loading In 
the respective data sheets should be used to determine 
the appropriate delay values. 
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TABLE 402. CYCLE DEPENDENT PARAMETER REQUIREMENTS 
FOR PERIPHERALS 

(a) Minimum Mode 

TAVRL= TCLCL+ TCLRLmin- TCLAVmax=TCLCL-100 
TRHAX = TCLCL - TCLRHmax + TCLLHmln = TCLCL - 150 
TRLRH = 2TCLCL- 60;' 2TCLCL- 60 
TRLDV = 2TCLCL- TCLRLmax- TDVCLmin = 2TCLCL-195 
TRHDZ= TRHAVmin = 155 ns 
TAVDV=3TCLCL- TDVClmin- TCLAVmax=3TCLCL-14O 
TRLRL _ 4TCLCL= 4TCLCL 
TAVWL=TCLCL+ TCVCTVmln- TCLAVmax=TCLCL-l00 
TWHAX=TCLCL+ TCLLHmin- TCVCTXmax=TCLCL-ll0 
TWLWH = 2TCLCL - 40= 2TCLCL - 40 
TDVWH = 2TCLCL+ TCVCTXmin - TCLDVmax = 2TCLCL - 100 
TWHDX= TWHDZmln =·89 
TWLCL = 4TCLCL = 4TCLCL 
TWHDXB=TCLCHmln+(- TCVCTXmax+ TCVCTXmin)= 

TCLCHmin - 50 

Note: Delays relative to chip select are a function of the chip select 
decode technique used and are equal to: equivalent delay 
from address - chip select decode delay . 

(b) Maximum Mode 

TAVRL= TCLCL+ TCLMLmin- TCLAVmax=TCLCL-l00 
TRHAX = TCLCL - TCLMHmax + TCLLHmln = TCLCL - 40 
TRLRH = 2TCLCL- TCLMLmax + TCLMHmln = 2TCLCL- 25 
TRLDV= 2TCLCL- TCLMLmax- TDVCLmin=2TCLCL-65 
TRHDZ= TRHAVmin = 155 
TAVDV= 3TCLCL- TDVCLmin- TCLAVmax= 3TCLCL-140 
TRLRL= 4TCLCL= 4TCLCL 
TAVWLA = TAVRL= TCLCL- 100 
'TAVWL=TAVRL+ TCLCL=2TCLCL-l00 
TWHAX=TRHAX= TCLCL- 40 
TWLWHA = TRLRH = 2TCLCL- 25 
TWLWH = TRLRH - TCLCL= TCLCL - 25 
TDVWH = 2TCLCL+ TCLMHmin - TCLDVmax = 2TCLCL-l00 
TWHDX= TCLCHmin- TCLMHmax+ TCHDZmin= TCLCHmln- 30 
TWLCL = 3TCLCL = 3TCLCL 
TWLCLA = 4TCLCL = 4TCLCL 

TABLE 403. COMPATIBLE PERIPHERALS (5 MHz 8088) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

8251A " lW " " 8253·5 " lW " " 8255A·5 " lW " " 8257·5 " lW " " 8259A " " " " 8271 " lW " " 8273 '" lW " " 8275 " lW " " 8279·5 " lW " " 8041A" " lW " " 8741A " lW " " 8291 " " " '" 
"Includes other Intel peripherals besed on the8041A (I.e., 8292, 8294, 
8295). 

" implies full operation with no walt states. 

W Implies the number of wait states requirad. 



TABLE 404. PERIPHERAL REQUIREMENTS FOR FULL SPEED 
OPERAnoN WITH 5 MHz 8086 

CiinHguratiOn 

Minimum Mode Maximum Mode 

Unbuffered Suffered Suffered Fully Bullered 

TAVRL 70 72 70 58 
TRHAX 57 27 169 141 
TRLRH 340 320 375 347 
TRLDV 205 150 305 261 
TRHOZ 155 158 382 380 
TAVOV 430 400 400 372 
TRLRL 800 mi' 800 772 
TAVWL 70 72 270 298 
TAVWLA - - 70 58 
TWHAX 97 67 169 ' .. 141 
TWLWH 380 340 175 147 
TWLWHA - - 375 347 
TOVWH 300 339 270 25B 
TWHOX 66 15 95 13 
TWLCL 800 772 600 572 
TWLCLA - - ~o 772 
TSVRL ' 52 54 52 40 
TRHSX 50 50 171 143 
TSLOV 412 382 382 354 
TSVWL 52 54 252 240 
TWHSX 90 90 -'171 143 
TSVWLA - - 52 40 

- Not applicable, 

•• MINIMUM MODE 

.... 

AP·67 

Peripheral compatibility Is determined from the equa· 
tions given for the CPU by modifying them to account 
for additional delays from address latches. and data 
transceivers In the configuration. Once the. system con· 
figuration Is selected, the system requirements can be 
determined at the peripheral Interface and used to 
evaluate' compatibility of the peripheral to the system. 
During this process, two ,areas must be considered. 
First, can the device operate at maximum bus band· 
width and If not, how many wait states are required. Sec· 
ond, are there any problems that cannot be resolved by 
wait states. 

Examples of the first are TRLRH (rue:! po," width) and 
TRLDV (read 'access or RD active to output data valid). 
Consider address access time (valle:! address to valid 
data) for the maximum mode fully buffered configura· 
tlon. 

TAVDV=3TCYC-140 ns - address latch delay -
address buffer delay - chip select decode delay - 2 
transceiver delays 

Assuming Inverting latches, buffers and trans· 
celvers with 22 ns max delays (8283, 8281) and a 
bipolar PROM decode with 50 ns delay, the result 
is: 

TAVDV=322 ns @ 5 MHz 

b. MINIMUM MODE BUFFERED DATA AND COMMAND BUSSES 

Figura 401. 8066 Sy~lem Conllgurations 
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c. MAXIMUM MODE BUFFERED DATA BUS 

eLK 

.21. 

NOTE: FOR OPTIMUM PERFORMANCE WITH INTEl. PERIPHERAl.S, AIOW (ADVANCED 
WRITE) SHOUl.D BE USED. 

d. MAXIMUM MODE DOUBl.E BUFFERED SYSTEM 

eLK 

.214 

.... 
eMD 

PERIPHERAl. 

I-===-...,/IADDR DEVICE 

Figure 401. 8086 System Configurations (Con't) 

The result gives the address to data valid delay required 
at the peripheral (in this configuration) to satisfy zero 
walt state CPU access time. If the maximum delay 
specified for the peripheral Is less than the result, this 
parameter is compatible with zero wait state CPU opera­
tion. If not, wait states must be inserted until TAVDV + n 
* TCYC (n is the number of wait states) is greater than 
the peripherals maximum delay. If several parameters 
require wait states, either the largest number required 
should always be used or different transfer cycles can 
insert the maximum number required for that cycle. 

The second area of concern includes TAVRL (address 
set up to read) and TWHDX (data hold after write). 
Incompatibilities in this area cannot be resolved by the 
Insertion of wait states and may require either .addi-

tional hardware, slowing down the CPU (If the parameter 
is related to the clock) or not using the device. 

As an example consider address valid prior to advanced 
write low (TAVWLA) for the maximum mode fully buf­
fered system. 

TAVWLA= TCYC-100 ns - address latch delay -
address buffer delay - chip select decode delay+ 
write buffer delay (minimum) 
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Assuming inverting latches and buffers with 22 .ns 
delay (8283, 8287) and an 8205 address decoder with 
18 ns delay 

TAVWLA=38 ns which Is the .tlme a 5 MHz 8086 
system provides 
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4E. 110 Examples 

1. Consider an interrupt driven procedure for handling 
multiple communication lines. On receiving an Interrupt 
from one of the lines, the invoked procedure polls the 
lines (reading the status of each) to determine which 
line to service. The procedure does not enable lines but 
simply services Input and output requests until the 
associated output buffer is empty (for output requests) 
or until an input line is terminated (for the example only 
EOT is considered). On detection of the terminate condl· 
tion, the routine will disable the line. It Is assumed that 
other routines will fill a lines output buffer and enable 
the device to request output or empty the Input buffer 
and enable the device to Input additional characters. 

The routine begins operation by loading CX with a count 
of the number of lines in the system and OX with the 110 
address of the first line. The I/O addresses are assigned 
as shown in Figure 4E1 with 8251A's as the I/O devices. 
The status of each line is read to determine if it needs 
service. If yes, the appropriate routine is called to input 
or output a character. After servicing the line or if no 
service is needed, CX is decremented and OX is in· 
cremented to test the next line. After all lines have been 
tested and serviced, the routine terminates. If all inter· 
rupts from the lines are OR'd together, only one inter· 
rupt is used for all lines. If the interrupt is input to the 
CPU through an 8259A interrupt controller, the 8259A 
should be programmed in the level triggered mode to 
guarantee all line interrupts are serviced. 

To service either an input or output request, the called 
routine transfers OX to BX, and shifts BX to form the off· 
set for this device into the table of input or output buf· 
fers. The first entry in the buffer is an index to the next 
character position in the buffer and is loaded into the 51 
register. By specifying the base address of the table of 

DEVICES ARE CONNECTED TO THE UPPER AND 
LOWER HALVES OF THE DATA BUS. 

ADDRESS 

o 
1 
2 
3 
4 
5 
6 
7 

ETC. 

DEVICE 0 
DEVICE 1 
DEVICE 0 
DEVICE 1 
DEVICE 2 
DEVICE 3 
DEVICE 2 
DEVICE 3 

DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 
DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 

Figure 4E1. Device Asslgnmenl 

buffers as a displacement into the data segment, the 
base + index + displacement addressing mode allows 
direct access to the appropriate memory location. 8086 
code for part of this example is shown In Figure 4E2. 

2. Asa second example, consider using memory 
mapped I/O and the 8086 string prlmative instructions to 
perform block transfers between memory and I/O. By 
assigning a block of the memory address space 
(equivalent in size to the maximum block to be trans· 
ferred to the I/O device) and decoding this address 
space to generate the I/O device's chip select, the block 
transfer capability Is easily implemented. Figure 4E3 
gives an Interconnect for 16·bit1/0 devices while Figure 
4E4 incorporates the 16·bit bus to 8·bit bus multiplexing 
scheme to support 8·bit 110 devices. A code example to 
perform such a transfer is shown in Figure 4E5. 

; THIS CODe DEMONSTRATES TESTING DEVICE 
; STATUS FOR SERVICE, CONSTRUCTING THE 
; APPROPRIATE LINE BUFFER ADDRESS FOR INPUT 
; AND OUTPUT AND SERVICING AN INPUT 
; REQUEST 

MASK EQU OFFFDH 
CHECK_STATUS: INPUT AL, OX ; GET 8251A STATUS. 

MOV AH,AL 
TEST AH, READ_OFLWRITLSTATUS 
JZ NEXT_IO 
CALL ADDRESS 
TEST AH, READ STATUS 
JZ WRITE_SERVICE 
CALL READ 
TEST AH, WRITE STATUS 
JZ NEXT_IO 

WRITE_SERVICE: CALL WRITE 
NEXT_IO: DEC ex ; TEST IF DONE. 

ADDRESS: 

READ: 

JNC EXIT ; YES, RESTORE. RETURN. 
AND OX, MASK ; REMOVE Ai AND 
ADD OX, 3 ; INCREMENT ADDREss. 
OR OX, 2 ; SELECT STATUS FOR 
JMP CHECtLSTATUS ; NEXT INPUT. 

AND ox, MASK 
MOV BH, Dl 
INC BH 
SHR BH 
XOR Bl, Bl 
RET 
INPUT Al, ox 

; SELECT DATA. 
; CONSTRUCT BUFFER 
; DISPLACEMENT FOR 
; THIS DEVICE. 
; ax IS THE DISPLACEMENT. 

; READ CHARACTER. 
MOV SI, READ_BUFFERS IBX] 
MOV READ_BUFFERS IBX + 511, AL 
INC READ_BUFFERS [BX] 

; GET CHARACTER POINTER. 
; STORE CHARACTER. 
; INCR CHAAACTER POINTER. 
; END OF TRANSMISSION? CMP Al, EOT 

JNZ CONT_READ 
CAll DISABLE READ 
CONT _READ: RET 

Figure 4E2. 

q 3605 
A19.8 A·1 

DECODE 

BIPOLAR 
PROM 

; YES, DISABLE RECEIVER. 
; SEND MESSAGE THAT INPUT 
; IS READY. 

1/0 CHIP SELECT 

16· 
BIT 
1/0 

TRANSFER 256 BYTE BLOCKS TO THE 1/0 DEVICE 

THE ADDRESS SPACE ASSIGNED TO THE 1/0 DEVICE IS 

A,. 
FROM k-- BASE 
THRU j.-BASE =*=' A7 ~o 

ADDRESS O's 
ADDRESS 1's 

MEMORY DATA NEED NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES 
1/0 TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES 

Figure 4E3. Block Transfer 10 16·BII 110 USing 8086 String Prlmatlves 
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015·8 \,.,---...,J 

BHE --r--<t.._ 

3605 
A·1 

CHIP SELECT 

CS 

8·BIT 
110 

DEVICE 

ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 16-BIT BUS IS 
MULTIPLEXED ONTO AN 8·BIT PERIPHERAL BUS. 

Figure 4E4. Block Transfer 10 8·BIt 110 Using 8086 Siring Prlmatives 

; DEFINE THE 110 ADDRESS SPACE 
110 SEGMENT 
ORG BLOCILADDRESS 

IIO_BLOCK: OW 128 DUP (?) 
110 ENDS 

; ASSUME THE DATA IS FROM THE CURRENT 
; DATA SEGMENT 

CLD ;DF=FORWARD 
LES 01, IIO_BLOCK....ADDRESS ; 110 BLOCK ADDRESS 

MOV CX, BLOCK_LENGTH 
MOV SI, SOURCE....ADDRESS 

; CONTAINS THE ADDRESS 
; OF 110 BLOCK 

MOVS 110 BLOCK ; PERFORM WORD TRANSFERS 

; END CODE EXAMPLE 

NOTE THE CODE IS CAPABLE OF PERFORMING BYTE TRANSFERS BY 
CHANGING THE 110 BLOCK DEFINITION FROM 128 WORD TO 256 BYTES 

Figure 4E5. Code for Block Transfers 

5. INTERFACING WITH MEMORIES 

Figure 5.1 is a general block diagram of an 8086 
memory. The basic characteristics of the diagram are 
the partitioning of the 16·bit word memory into high and 
low 8·bit banks on the upper and lower halves of the 
data bus and inclusion of BHE and AO in the selection of 
the banks. Specific implementations depend on the type 
of memory and the system configuration. 

5A. ROM and EPROM 

The easiest devices to interface to the system are ROM 
and EPROM. Their byte format provides a simple bus in· 
terface and since they are read only devices, AO and 
BHE need not be included in their chip enable/select 
decoding (chip enable is similar to chip select but addi· 
tionally determines if the device is in active or standby 
power mode). The address lines connected to the 
devices start with A 1 and continue up to the maximum 

number the device can accept, leaving the remaining ad; 
dress lines for chip enable/select decoding. To connect 
the devices directly to the multiplexed bus, they must 
have output enables. The output enable is also 
necessary to avoid bus contention in other configura· 
tions. Figure 5A1 shows the bus connections for ROM 
and EPROM memories. No special decode techniques 
are required for generating chip enables/selects. Each 
valid decode selects one device on the upper and lower 
halves of bus to allow byte and word access. Byte ac· 
cess is achieved by reading the full word onto the bus 
with the 8086 only accepting the desired byte. For the 
minimum mode 8086, if RD, WR and M/iO are not decod· 
ed to form separate commands for memory and I/O, and 
the I/O space overlaps the memory space assigned to 
the EPROM/ROM then M/iO (high active) must be a con· 
dition of chip enable/select decode. The output enable 
is controlled by the system memory read signal. 

HIGH BAN~E(~----------, 

ADDRESS _____ ..., 

CONTROL 

DATA 

SE~;~~~~ __________ ~ 

Figure 5.1. 8086 Memory Array 

CHIP SELECT -----~--_<4 CE 

A1-12 -----'r1 

Ril------H 

Do·, \1"'-----,,----1 

NOTE Ao AND iiHE ARE NOT USED. 

Figure 5A1. EPROM/ROM Bus Interface 
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Static ROM's and EPROM's have only four parameters 
to evaluate when determining .their compatibility to the 
system. The parameters, equations and evaluation tech· 
niques given in the I/O section are also applicable to 
these devices. The relationship of parameters is given in 
Table 5A1. TACC and TCE are related to the same equa· 
tion and differ only by the delay associated with the chip 
enable/select decoder. As an example, consider a 2716 
EPROM memory residing orithe multiplexed bus of a 
minimum mode configuration: 

TACC = 3TCLCL- 140- address bufferdelay= 430 ns 
(8282= 30 ns max delay) 

TCE=TACC-decoder delay=412 ns 
(8205 decoder delay= 18 ns) 

TOE= 2TCLCL-195= 205 ns 

TDF= = 155 ns 

TABLE 5Al. EPROM/ROM PARAMETERS 

TOE - Output Enable to Valid Data" TRLDV 
TACC - Address to Valid Data" TAVDV 
TCE - Chip Enable to Valid Data" TSLDV 
TDF - Output Enable High to Output Float" TRHDZ 

The results are the times .the system configuration re­
quires of the component for full speed compatibility 
with the system. Comparing these times with 2716 
parameter limits indicates the 2716·2 will work with no 
wait states while the 2716 will require one wait state. 
Table 5A2 demonstrates EPROM/ROM compatibility for 
the configurations presented in the I/O section. Before 
designing a ROM or EPROM memory system, refer to 
AP-30 for additional information on design techniques 
that give the system an upgrade path from 16K to 32K 
and 64K devices. 

TABLE 5A2. COMPATIBLE EPROM/ROM (5 MHz 8086) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

2716·1 '" '" '" '" 2716·2 '" lW lW lW 
2732 lW lW lW lW 
2332 '" '" '" '" 2364 '" '" '" '" 

58. Static RAM 

Interfacing static RAM to the system introduces several 
new requirements to the memory design. AO and BHE 
must be included in the chip seleCt/chip enable 
decoding of the devices and write timing must be con· 
sidered in the compatibility analysis. 

For each device, the data bus connections must be 
restricted to either the upper or lower half of the data 
bus. Devices like the 2114 or 2142 must not straddle the 
upper and lower halves of the data bus (Fig. 5B1). To 
allow selecting either the upper byte, lower byte or full 
16-bit word for a write operation, BHE must be a condi· 
tion of decode for selecting the upper byte and AO must 
be a condition of decode for selecting the lower byte. 
Figure 5B2 gives several selection· techniques for 

devices with single chip selects and no output enables 
(2114, 2141, 2147). Figure 5B3gives selection tech­
niques for devices with chip selects and output enables. 

1101 ...---... 09 

CS--~I 

0, 

ADDRESS 
0, 

RD--.ajOD 
0, 

Figure 581. Incorrect Connection of 2142 Across Byte Boundaries 

The first group requires inclusion of AO and BHE to 
decode or enable the chip selects. Since these 
memories do not have output enables, read and write 
are used as enables for chip select generation to pre­
vent bus contention. If read and write are not used to 
enable the chip selects, devices with common input/out· 
put pins (like the 2114) will be subjected to severe bus 
contention between chip select and write active. For 
devices with separate input/output lines (like 2141, 
2147), the outputs can be externally buffered with the 
buffer enable controlled by read. This solution will only 
allow bus contention between memory devices in the ar­
ray during chip select transition periods. These tech· 
niques are considered in more detail in Section 2C. 

For devices with output enables (2142), write may be 
gated with BHE and AOto provide upper and lower bank 
write strobes. This simplifies chip select decoding by 
eliminating BHE and AO as a condition of decode. 
Although both devices are selected during a byte write 
operation, only one will receive a write strobe. No bus 
contention will exist during the write since a read com· 
mand must be issued to enable the. memory output 
drivers. 

If multiple chip selects are available at the device, BHE 
and AO may directly control device selection. This 
allows normal chip select decoding of the address 
space and direct connection of the read and write com­
mands to the devices. Alternately, the multiple chip 
select inputs of the device could directly decode the ad­
dress space (linear select) and be combined with the 
separate write strobe technique to minimize the control 
circuitry needed to generate chip selects. 

As with the EPROM's and ROM's, if separate commands 
are not provided for memory and I/O in the minimum 
mode 8086 and the address spaces overlap, M/iO (high 
active) must be a condition of chip select decode. Also, 
the address lines connected to the memory devices 
must start with A 1 rather than AO. 
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Figure 5B2. Generating Chip Selects for Devices without Output 
Enable. Figure 5B3. Chip Selection for Device. with Output Enables 
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For analysis of RAM compatibility, the write timing 
parameters listed in Table SB1 may also need to be con· 
sidered (depending on the RAM device being consid· 
ered). The CPU ciock relative timing is given in Table 
SB2. The equations specify the device requirements at 
the CPU and provide a base for determining device reo 
quirements in other configurations. As an example con· 
sider the write timing requirements of a 2142 in a max· 
imum mode buffered 8086 system (Figure SB4). The 
2142 write parameters that must be analyzed are TWA 
advanced wri~e pulse width, TWR write release time, 
TDWA data to write time overlap and TDH data hold 
from write time. 

lWA=2TCLCL- TCLMLmax+ TCLMHmin=375 ns. 
lWR=2TCLCL- TCLMHmax+ TCLLHmln+ TSHOVmin= 170 ns. 
TDWA= 2TCLCL- TCLDVmax + TCLMHmin - TIVOVmax = 265 ns. 
TDH = TCLCH - TCLMHmax+ TCHDXmln + TIVOVmln = 95 ns. 

TABLE SB1. TYPICAL WRITE TIMING PARAMETERS 

lW - Write Pulse Width 
lWR - Write Release (Address Hold From End of Write) 
TDW - Data and Write Pulse Overlap 
TDH - Data Hold From End of Write 
TAW - Address Valid to End of Write 
TCW - Chip Select to End of Write 
TASW - Address Valid to Beginning of Write 

TABLE 5B2. CYCLE DEPENDENT WRITE PARAMETERS 
FOR RAM MEMORIES 

(a) Minimum Mode 

TW=lWLWH =2TCLCL-60= 340 ns 
lWR= TCLCL- TCVCTXmax+ TCLLHmin= 90 ns 
TDW = 2TCLCL - TCLDVmax + TCVCTXmin = 300 ns 
TDH=lWHDX=88 ns 
TAW= 3TCLCL- TCLAVmax+ TCVCTXmin = 500 ns 
TCW=TAW-Chip Select Decode 
TASW=TCLCL- TCLAVmax+ TCVCTXmin= 100 ns 

(b) Maximum Mode 

TW= TCLCL- TCLMLmax+ TCLMHmin = 175 ns 
lWR= TCLCL- TCLMHmax+ TCLLHmin= 165 ns 
TDW= lW= 175 ns 
TDH = TCLCHmin- TCLMHmax+ TCHDXmin = 93 ns 
TAW= 3TCLCL- TCLAVmax+ TCLMHmin= 500 ns 
TCW=TAW-Chip Select Decode 
TASW= 2TCLCL- TCLAVmax + TCLMLmin = 300 ns 
lWA'=lW+TCLCL=375 ns 
TDWA' = 2TCLCL - TCLDVmax + TCLMHmin = 300 ns 
TASWA' = TASW- TCLCL= 100 ns 

• Relative to Advanced Write. 

Comparing these results with the 2142 family indicates 
the standard 2142 write timing is fully compatible with 
this 8086 configuration. Read timing analysis is also 
necessary to completely determine compatibility of the 
devices. 

5C. Dynamic RAM 

Dynamic RAM is perhaps the most complex device to 
design into a system. To relieve the engineer of most of 
this burden, Intel provides the 8202 dynamic RAM con· 
troller as part of the 8086 family of peripheral devices. 
This section will discuss using the 8202 with the 8086 to 
build a dynamic memory system for an 8086 system. For 

additional information on the 8202, refer to the 8202 
data sheet (9800873) and application note Ap·4S USing 
the 8202 Dynamic RAM Controller (9800809A). 

Figure 5B4. Sample Configuration for Compatibility Analysis Example 

5.C.1 Standard 8086·8202 Interconnect 

Figure S.C.1.1 shows a standard interconnection for an 
8202 into an 8086 system. The configuration accom· 
modates 64K words (128K bytes) of dynamic RAM ad· 
dressable as words or bytes. To access the RAM, the 
8086 initiates a bus cycle with an address that selects 
the 8202 (via PCS) and the appropriate transfer com· 
mand (MRDC or MWTC). If the 8202 is not performing a 
refresh cycle, the access starts immediately, otherwise, 
the 8086 must wait for completion of the refresh. XACK 
from the 8202 is connected to the 8284 ROY input to 
force the CPU to wait until the RAM cycle is completed 
before the CPU can terminate the bus cycle. This effec· 
tively synchronizes the asynchronous events of refresh 
and CPU bus cycles. The normal write command 
(MWTC) is used rather than the advanced command 
(AMWC) to guarantee the data is valid at the dynamic 
RAMS before the write command is issued. The gating 
of WE with AO and BHE provides selective write strobes 
to the upper and lower banks of memory to allow byte 
and word write operations. The logic which generates 
the strobe for the data latches allows read data to prop· 
agate to the system as soon as the data is available and 
latches the data on the trailing edge of CAS. 

DETAILED TIMING 

Read Cycle 

For no wait state operation, the 8086 requires data to be 
valid from MRDC in: 

2TCLCL - TCLM L - TDVCL - buffer delays = 291 ns. 

Since the 8202 is CAS access limited, we need only ex· 
amine CAS access time. The 8202/2118 guarantees data 
valid from 8202 .AD low to be: 

(tph + 3tp + 100 ns) 8202 TCC delay + TCAC for the 2118 
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MRDC 
MWTC 

HIGH BYTE 
WRITE 

.HE 

8217 UFBHE XCEIYER 
I A. 

I 

OTHER 
AEADY 
INPUTS 

OAT, 
I 

DATA 

2118 

Figure 5C1.1. 5 MHz 8088I8202I128K Byte System - Double Data, Control and Address Buffering (Note: Bus driver on 8202 Is not needed Ille.8 
than 14K byla. are uaed) 

For a 25 MHz 8202 and 2118·3, we get 297 ns which Is in· 
sufficient for no wait state operation. If only 64K~tes 
are accessed, the 8202 requires only (tph + 3tp + 80 ns) 
giving 282 ns access and no wait states required. Refer 
to Figure 5.C.1.2 and 5C.1.3 for timing information on 
the 8202 and 2118. 

Write Cycle 

An important consideration for dynamic RAM write 
cycles Is to guarantee data to the RAM is valid when 
both CAS and WE are active. For the 2118, if WE is valid 
prior to CAS, the data setup is to CAS and If CAS is valid 
before WE (as would occur during a read modify write 
cycle) the data setup time Is to WE. For the 8202, the WR 
to CAS delay Is analyzed to determine the data setup 
time to CAS inherently provided by the 8202 command 
to RASICAS timing. The minimum delay from WR to· 
CASis: 

TCCmln=tph+2tp+ 25= 127 i1s @ 25 MHz 

Subtracting buffer delays and data setup at the 2118, 
we have 83 ns to generate valid data after the write 
command is issued by the CPU (in this case the 8288). 
Since the 8086 will not guarantee valid data until 
TCLAVmax-TCLMLmln=.100 ns from the advanced 

write signal, the normal write signal Is used. The normal 
write MWTC guarantees data is valid 100 ns before It Is 
active. The worst case write pulse width Is approximate· 
Iy 175 ns which is sufficient for all 2118's. 

Synchronization 

To force the 8086 to wait during refresh the XACK or 
SACK lines must be returned to the 8284 ready input. 
The maximum delay from RO to SACK (if the 8202 is not 
performing refresh) Is TAC = tp + 40 = 80 ns. To prevent 
a wait state at the 8086, ROY must be valid at the 8284 
TCLCHmin - TCLMLmax - TR1VCLmax = 48 ns after 
the command is active. This implies that under worst 
case conditions, one wait state will be inserted for every 
read cycle. Since MWTC does not occur until one clock 
later, two wait states may be inserted for writes. 

The XACK from command delay will assert ROY TCC + 
TCX = (tph + 3tp + 100) + (5tp + 20) = 460 ns after the 
command. This will typically insert one or two wait 
states. 

Unless 2118·3's are used in 64K byte or less memories, 
SACK must not be used since It does not guarantee a 
wait state. From the previous access time analysis we 
saw that other configurati9ns required a walt state. 
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A.C. CHARACTERISTICS 
TA=O·Cto 70·C, Vcc=5V±10% 

Measurements made with respect to RAS1 - RAS4, CAS, 
WE, OUTo- OUTe are at 2.4V and 0.8V. All other pins are 
measured at 1.5V. 

Loading: 

64 Devices 

Symbol 

tp 

tAC 

tAAH 

tASA 

tCAH 

tASC 

tAco 

twcs 

tASH 

tCAS 

tAP 

tWCH 

tREF 

tCA 

tcc 

tAFA 

tAS 

tCA 

tCK 

tKCH 

tsc 

tcx 

tACK 

txw 

tLL 

tCHS 

tww 

tAL 

tLA 

tpL 

tpH 

tpH 

Notel: 

CL= 30 pF 
CL=320 pF 
CL=230 pF 
CL=450 pF 
CL=640 pF 

Parameter 

Clock (Internal/External) Period (See Note 1) 

Memory Cycle Time 

Row Address Hold Time 

Row Address Setup Time 

Column Address Hold Time 

Column Address Setup Time 

RAS to CAS Delay Time 

WE Setup to CAS 

RAS Hold Time 

CAS Pulse Width 

RAS Precharge Time (See Note 2) 

WE Hold Time to CAS 

Internally Generated Refresh to Refresh Time 
64 Cycle 
128 Cycle 

RD, WR to RAS Delay 

RD, WR to CAS Delay 

REFRQ to RAS Delay 

Ao-A15 to RD, WR Setup Time (See Note 4) 

RD, WR to SACK Leading Edge 

RD, WR to XACK, SACK Trailing Edge Delay 

RD, WR Inactive Hold to SACK Trailing Edge 

RD, WR, PCS to X/CLK Setup Time (See Note 3) 

CAS to XACK Time 

XACK Leading Edge to CAS Trailing Edge Time 

XACK Pulse Width 

REFRQ Pulse Width 

RD, WR, PCS Active Hold to RAS 

WR to WE Propagation Delay 

S1 to ALE Setup Time 

S1 to ALE Hold Time 

External Clock Low Time 

External Clock High Time 

External Clock High Time for Vcc = 5V ± 5% 

1. tp minimum determines maximum oscillator frequency. 

Min Max Units 

40 54 ns 

10tp-30 12 tp ns 

tp-10 ns 

tpH ns 

5 tp ns 

tp- 35 ns 

2 tp- 10 2 tp+ 45 ns 

tp- 40 ns 

5 tp- 30 ns 

5 tp- 30 ns 

4 tp- 30 ns 

5 tp- 35 ns 

548 tp 576 tp ns 
264 tp 288 tp ns 

tpH+ 30 tpH + tp+ 75 ns 

tpH+ 2 tp+ 25 tpH + 3 tp+ 100 ns 

1.5tp+30 2.5 tp+ 100 ns 

0 ns 

tp+ 40 ns 

30 ns 

10 ns 

15 ns 

5 tp- 40 5 tp+ 20 ns 

10 ns 

2 tp- 25 ns 

20 ns 

0 ns 

8 50 ns 

40 ns 

2 tp+ 40 ns 

15 ns 

22 ns 

18 ns 

tp maximum determines minimum frequen~ maintain 2 ms refresh rate and tAP minimum. 
2. To achieve the minimum time between the RAl) of a memory cycle and the ItliS of a refresh cycle, such as a transparent refresh, AEFAQ should be 

pulsed In the previous memory cycle. 
3. tsc Is not required for proper operation which Is In agreement withthe other specs, but can be used to synchronize external signals with XlCLK If It Is 

desired. 
4. If tAS Is less than 0 then the only Impact is that tASR decreases by a corresponding amount. 

Figure 5Cl.2. 8202 Timing Information (Con'l) 
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3,4., YOH MIN AND VOL ..... x ARE REFERENCE LEVELS FOR MEASURING TIMING 
OF DOUT. 

6. tOl''' IS MEASURED TO lOUT < IIOLI. _ _ . 
I. 108 AND IOH ARE REFeRENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 
t· lReH IS REFERENCED TO THE TRAILING eDGE OF CAl OR W, WHICHEVER 
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Figure 5C1.3. 2118 Family Timing 
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A.C. CHARACTERISTICSll,2,3J 
TA = O'C to 70'C, VOO=5V:t 10%, Vss=OV, unless otherwise noted. 

READ, WRITE, READ·MODIFY·WRITE AND REFRESH CYCLES 

2118·3 2118-4 211&7 

Syml!ol Parameter Min. ...... Min. Max. Min. MIlK. Unit Not •• 

tRAC Access Time From RAS 100 120 150 ns 4,5 

tCAC Access Time from CAS 55 65 80 ns 4,5,6 

tREF Time Between Refresh 2 2 2 ms 

tRP RAS Precharge Time 110 120 135 ns 

tCPN CAS Precharge Time (non·page cycles 50 55 70 ns 

tCRP CAS to RAS Precharge Time 0 0 0 ns 

tRCO RAS to CAS Delay Time 25 45 25 55 25 70 ns 7 

tRSH RAS Hold Time 70 65 105 ns 

tCSH CAS Hold Time 100 120 165 ns 

tASR Row Address Set·Up Time 0 0 0 ns 

tRAH Row Address Hold Time 15 15 15 ns 

tASC Column Address Set·Up Time 0 0 0 ns 

tCAH Column Address Hold Time 15 15 20 ns 

tAR Column Address Hold Time to RAS 80 70 90 ns 

tT Transition Time (Rise and Fall) 3 50 3 50 3 50 ns 8 

tOFF Output Buffer Turn Off Delay 0 45 0 50 0 80 ns 

READ AND REFRESH CYCLES 

TRC Random Read Cycle Time _ 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

teAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

tRCS Reed Command Set·Up Time 0 0 0 ns 

tRCH Read Command Hold Time 0 0 0 ns 

WRITE CYCLE 

tRC Random Write Cycle Time 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

teAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

twcs Write Command Set·Up Time 0 0 0 ns 9 

tWCH Write Command Hold Time 25 30 45 ns 

tWCR Write Command Hold Time, to RAS 70 65 115 ns 

twp Write Command Pulse Width 25 30 50 ns 

tRWL Write Command to RAS Lead Time 80 65 110 ns 

tCWL Write Command to CAS Lead Time 45 50 100 ns 

tos Data·ln Set·Up Time 0 0 0 ns 

tOH Data·ln Hold Time 25 30 '45 ns 

tOHR Data·ln Hold Time, to RAS 70 65 115 ns 

READ·MODIFY·WRITE CYCLE 

tRWC Read·Modlfy·Wrlte Cycle Time 265 320 410 ns 

tRRW RMW Cycle RAS Pulse Width 165 10000 190 10000 265 10000 ns 

tCRW RMW Cycle CAS Pulse Width 105 10000 120 10000 165 10000 ns 

tRWO RAS to WE Delay 100 120 150 n8 9 

tcwo CAS to WE Delay 55 65 80 ns 9 

NOTES: 
1. All voltages referenced to vss. _ 
2. Eight cycles are required after power'up or prOlonged periods (greater than 2 ms) of AAS Inactivity before proper davice operation Is achieved. Any 8 cycles which perform 

refresh are adequate for this purpose. 
3. A.C. Characteristics assume tr = 5 ns. 
4. Assume that tRCo -< tRCD (max.), If tRCO Is greater than tRCo (max.) then tRAe ~lIIlncrea88 by the amount that tRCO exceeds tRCO (max.). 
5. Load = 2 TTL loads and 100 pF. 
6. Assumes tRCo > tRCo (max.). 
7. tACO (max.) fs specified as a reference point only; If tRCO Is less than tRCo (m,ax.) access time Is tRACt If tRCD Is greater than tRCo (max.) acce$s time Is tRCo+tCAC· 
8. tor Is measured between VIH (min.) and VIL (max.). . 
9. tr,CS. tcwo and tr,WO are specified as reference pOints only. If twcs ;. twes (min.) the cycle Is an early write cycle and the data out pin will remain high Impedance 

~e:~~~o~~~~:S:~~f~e~r~!~·~: :RY~~~~~n~~~~~~ ~n:a~~~d~t~:~gn~~~~~' ~~~:'~~~~~~t~s~~~:~·~~::. cycle and the data out will contain the data read from the 

Figure SC1.3. 211. Family Timing (Con't) 

A-61 



AP·67 

S.C.2 Enhanced Operation 

Two problems are evident from the previous investlga· 
tlon: 

1) SACK timing from command will not allow reliable 
operation while XACKis not active early enough to pre· 
vent wait states. 

2) The norm,,' write command required to guarantee 
data setup is not enabled until the CPU has sampled 
READY thereby forcing multiple wait states during write 
operations. 

The first problem could be resolved if an early command 
could be generated that would guarantee SACK was 

+5 

PRE 

52"-----+=-t D 

10 

81---+--+"1 

13 

4, 

. Sii---+--rt D 

74LS32 

Q 

Q 

Q 

F+----'-11"1C~4LS74 Q 8 

CLR 

'--__ --113 

EARLYRo 

valid when READY was sampled and SACK to data valid 
satisfied the CPU requirements. Figure 5.C.2.1 is a clr· 
cuit which provides an early read command derived from 
the maximum mode status. The early command Is en· 
abled. from the trailing edge of ALE and disabled on the 
trailing edge of the normal command. The command 
provides an additional TCHCLmin - TCHLLmax + 
TCLMLmax - circuit delays = 53 ns of access time and 
time to generate RDY from the early command. If we go 
back to our previous equations, early command to valid 
data at the CPU is now: 

TCHCLmin - TCHLLmax + 2TCLCL - TDVCLmax - buf· 
fer and circuit delays = 333 ns 

13 

Figura 5C2.1. Early Read and Write Command Generation 

1\.-62 



AP-67 

We can now use the slowest 2118 which gives 8202 and 
2118 access of 320 ns. Early command to ROY timing is 
TCLCL- TCHLLmax - circuit delays - TR1VCLmax = 
115 ns and provides 35 ns of margin beyond the 8202 
command to SACK delay. 

The write timing of the 8202 and write data valid timing 
of the 8086 do not allow use of an early write command. 
However, if the 8202 clock is reduced from 25 MHz to 20 
MHz and WE to the RAM's is gated with CAS, the ad· 
vanced write command (AMWC) may be used. At 20 MHz 
the minimum command to CAS delay is 148 ns while the 
maximum data valid delay is 144 ns. 

The reduced 8202 clock frequency still satisfies no wait 
state read operation from early read and will insert no 
more than one wait state for write (assuming no conflict 
with refresh). 20 MHz 8202 operation will however reo 
quire using the 2118·4 to satisfy read access time. 

Note that slowing the 8202 to 22.2 MHz guarantees valid 
data within 10 ns after CAS and allows using the 2118·7. 
Since this analysis is totally based on worst case 
minimum and maximum delays, the designer should 
evaluate the timing requirements of his specific im· 
plementation. 

It should be noted that the 8202 SACK is equivalent to 
XACK timing if the cycle being executed was delayed by 

refresh. Delaying SACK until XACK time causes the 
CPU to enter wait states until the cycle is completed. If 
the cycle is a read cycle, the XACK timing guarantees 
data is valid at the CPU before ROY is issued to the CPU. 

The use of the early command Signals also solves a 
problem not mentioned previously. The cycle rate of the 
8202 @ 20 MHz requires that commands (from leading 
edge to leading edge) be separated by a minimum of 695 
ns. The maximum mode 8086 however may issue a read 
command 600 ns after the normal write command. For 
the early read command and advanced write command, 
725 ns are guaranteed between commands. 

EARLY RD 

We TO RAMS 

'-----CAS 

Figure 5C2.2. Delayed Write 10 Dynamic RAMs 
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APPENDIX I 
BUS CONTENTION AND ITS EFFECT ON SYSTEM INTEGRITY 

SYSTEM ARCHITECTURE 

As higher performance microprocessors have become 
available, the architecture of microprocessor systems 
has been evolving, again placing demands on memory. 
For many years, system designers have been plagued 
with the problem of bus contention when connecting 
multiple memories to a common data bus. There have 
been various schemes for avoiding the problem, but 
device manufacturers have been unable to design inter· 
nal circuits that would guarantee that one memory 
device would be "off" the bus before another device 
was selected. With small memories (512x8 and 1 Kx8), it 
has been traditional to connect all the system address 
lines together and utilize the difference between tACC 
and tco to perform a decode to select the correct device 
(as shown in Figure 1). 

Figure 1. Single Control Line Architecture 

With the 1702A, the chip select to output delay was only 
100 ns shorter than the address access time; or to state 
it another way, the tACC time was 1000 ns while the tco 
time was 900 ns. The 1702A tACC performance of 1000 ns 
was suitable for the 4004 series microprocessors, but 
the 8080 processor required that the corresponding 
numbers be reduced to tACC= 450 ns and tco= 120 ns. 
This allowed a substantial Improvement in performance 
over the 4004 series of microprocessors, but placed a 
substantial burden on the memory. The 2708 was 
developed to be compatible with the 8080 both in ac· 
cess time and power supply requirements. A portion of 
each 8080 machine cycle time had to be devoted to the 
architecture of the system decoding scheme used. This 
devoted portion of the machine cycle included the time 
required for the system controller (8224) to perform its 
function before the actual decode process could begin. 

Let's pause here and examine the actual decode 
scheme that was used so we can understand how the 
control functions that a memory device requires are 
related to system architecture. 

The 2708 can be used to illustrate the problem of having 
a single control line. The 2708 has only one read control 

function, chip select (CS), which is very fast (tco = 120 
ns) with respect to the overall access time (tACC = 450 
ns) of the 2708. It is this time difference (330 ns) that is 
used to perform the decode function, as illustrated in 
Figure 2. The scheme works well and does not limit 
system performance, but it does lead to the possibility 
of bus contention. 

ADDRESS~ I 

I { I CS 

DATA OUT ,_o,~~_L~ 
Figure 2. Single Line Control Architecture 

BUS CONTENTION 

There are actually two problems with the scheme 
described in the previous section. First, if one device in 
a multiple memory system has a relatively long deselect 
time, and a relatively fast decoder is used, it would be 
possible to have another device selected at the same 
time. If the two devices thus selected were reading op­
posite data; that is, device number one reading a HIGH 
and device number two reading a LOW, the output tran­
sistors of the two memory devices would effectively pro· 
duce a short circuit, as Figure 3 illustrates. In this case, 
the current path is from Vcc on device number one to 
GND on device number two. This current is limited only 
by the "on" impedance of the MOS output transistors 
and can reach levels in excess of 200 mA per device. If 
the MOS transistors have a lot of "extra" margin, the 
current is usually not destructive; however, an instan­
taneous load of 400 mA can produce "glitches" on the 
VCC supply-glitches large enough to cause standard 
TIL devices to drop bits or otherwise malfunction, thus 
causing incorrect address decode or generation. 

The second problem with a single control line scheme is 
more subtle. As previously mentioned, there is only one 
control function available on the 2708 and any decoding 
scheme must use it out of necessity. In addition, any in­
advertent changes in the state of the high order address 
lines that are inputs to the decoder will cause a change 
in the device that is selected. The result is the same as 
before-bus contention, only from a different source. 
The deselected device cannot get "off" the bus before 
the selected one is "on" the bus as the addresses rapid­
ly change state. One approach to solving this problem 
would be to design (and specify as a maximum) devices 
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with tOF time less than teo time, thereby assuring that if 
one device is selected while another is simultaneously 
being deselected, there would be some small (20 ns) 
margin. Even with this solution, the user would not be 
protected from devices which have very fast teo times 
(teo is specified as a maximum). 

RESULTS OF IMPROPER TIMING WHEN OR TYING MULTIPLE 
MEMORIES. 

Figure 3. Results 01 Improper Timing when OR Tying Multiple 
Memories 

The only sure solution appears to be the use of an exter· 
nal bus driver/transceiver that has an independent 
enable function. Then that function, not the "device 
selecting function," or addresses, could control the 
flow of data "on" and "off" the bus, and any contention 
problems would be confined to a particular card or area 
of a large card. In fact, many systems are implemented 
that way-the use of bus drivers is not at all uncommon 
in large systems where the drive requirements of long, 
highly capacitive interconnecting lines must be taken 
into consideration-it also may be the reason why more 
system designers were not aware of the bus contention 
problem until they took a previously large (multicard) 
system and, using an advanced micorprocessor and 
higher density memory devices, combined them all on 
one card, thereby eliminating the requirement for the 
bus drivers, but experiencing the problem of bus con­
tention as described above. 

THE MICROPROCESSOR/MEMORY INTERFACE 

From the foregoing discussion, it becomes clear that 
some new concepts, both with regard to architecture 
and performance are required. A new generation of two 
control line devices is called for with general require­
ments as listed below: 

1. Capability to control the data "on" and "off" the 
system bus, independent of the device selecting func­
tion identified above. 

2. Access time compatible with the high performance 
microprocessors that are currently available .. 

Now let's examine the system architecture that is re­
quired to implement the two line control and prevent 
bus contention. This is shown in the form of a timing 
diagram (Figure 4). As before, addresses are used to 

generate the unique device selecting function, but a 
separate and independent Output Enable (OE) control is 
now used to gate data "on" and "off" the system data 
bus. With this scheme, bus contention is completely 
eliminated as the processor determines the time during 
which data must be present on the bus and then 
releases the bus by way of the Output Enable line, thus 
freeing the bus for use by other devices, either 
memories or peripheral devices. This type of architec· 
ture can be easily accomplished if the memory devices 
have two control functions, and the system is im· 
plemented according to the block diagram shown in 
Figure 5. It differs from the previous block diagram 
(shown in Figure 1) in that the control bus, which is con­
nected to all memory Output Enable pins, provides 
separate and independent control over the data bus. In 
this way, the microprocessor is always in control of the 
system; while in the previous system, the microproc· 
essor passed control to the particular memory device 
and then waited for data to become available. Another 
way to look at it is, with a single control line the sytem is 
always asynchronous with respect to microprocessorl 
memory communications. By using two control lines, 
the memory is synchronized to the processor. 

ADDRESS J 'C 
SELECTION 

OUTPUT \ I ENABLE 

DATA ( ) OUT 

Figure 4. Two Control Line Architecture 

Figure 5. Two Control LinEt Architecture 
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INTRODUCTION 

Real-time software systems differ markedly from batch 
processing systems_ An external signal indicating that 
it is time for an hourly log or an interrupt caused by an 
emergency condition is an event usually not encoun­
tered in batch processing. Because real-time control 
systems of all types share a number of characteristics, 
it is possible to develop flexible operating systems 
which will meet the needs of a great majority of real­
time applications. Intel Corporation has developed such 
a system, the RMX/80TM system, for the iSBCTM line of 
8080/85 based single board computers. Thus, the user is 
released from the chore of designing an operating 
system and is free to concentrate his efforts on the 
applications software for the individual tasks and 
merely integrate them into a pre-existing system. 

But what if a user does not need all the capabilities of an 
RMX/80™ system or wants a different hardware con­
figuration than an iSBC™ computer? This application 
note contains a set of PLlM-86 procedures designed to 
be used in medium-complexity 8086 real-time systems. 

A normal control system can be broken down into a 
number of concurrently executable tasks. The CPU can 
be running only one task at any instant of time but the 
speed of the processor often makes concurrent tasks 
appear to be running simultaneously. Breaking the soft­
ware functions into separate concurrent tasks is the job 
of the designer/programmer. Once this is done there re­
mains the problem of integrating these tasks with a 
supervisory program which acts as a traffic cop in the 
scheduling and execution of the separate tasks. This 
note discusses a set of PLlM-86 procedures to imple­
ment the supervisory program function. 

A minimum operating system might (like its batch proc­
essing cousin) have only a queue for ready tasks (tasks 
waiting to be executed). Any task that becomes ready is 
put on the bottom of the queue and when a running task 
is finished, the task on the top of the queue is started. 
Any interrupt causes the state of the system to be 
saved, an interrupt routine to be executed, the state of 
the system to be restored, and execution of the inter­
rupted program to continue. The interrupt routine might 
(or might not) put a new task on the ready queue. This 
approach has worked well for many simple control 
systems, especially in the single-chip computer area. 
But what features are lacking in this approach that are 
necessary (or at least nice)? 

1. A system of priorities is often needed. All waiting 
ready tasks must be executed sooner or later but some 
tasks need immediate attention while others can be run 
when there is nothing else to do. If a midnight monthly 
report, due for completion by 8 a.m. the next day, is in 
the process of printing at 1 a.m. and a fire alarm occurs, 
it is reasonable to assume that the fire alarm has higher 
priority since the fire could conceivably render the 
monthly report irrelevant. 

There are a number of ways in which to assign priorities. 
Tasks are usually numbered and may be assigned 
priorities according to their ascending (or descending) 
numbers. They could instead be grouped into a number 
of priority levels, with tasks on the same level having 
equal priorities. The latter approach is taken in this 
application note. 

Assume that a monthly report is being printed and an 
alarm occurs in the external world that, because of its 
importance, must be attended to immediately. The inter­
rupt routine, executed as a result of the alarm input, 
should not automatically return to the interrupted log­
ging routine but instead should call a preempt routine 
which checks to see if a higher priority task is ready for 
execution. The reason for this is that the monthly report 
routine, if returned to, has no way of "knowing" that a 
higher priority task is waiting to be executed. The alarm 
output task has been readied by the interrupt routine 
and since it is known to be higher priority than the log­
ging task, it is executed first, thereby immediately 
signaling the system operator that there has been an 
alarm. It then returns to the logging task provided that 
there are no further high priority tasks waiting to be exe­
cuted. The logging printer may not have even paused 
during the alarm output task. The computer appears to 
human beings to be executing concurrent tasks 
simultaneously. 

Of course, the alarm output function could be performed 
inside the interrupt procedure. But sooner or later, the 
designer will encounter a worst case situation in which 
there is not enough time to execute all required tasks 
between interrupts, and the system will fall behind in 
real-time. It is much cleaner to make the interrupt pro­
cedures as short as possible and stack up tasks to be 
executed than to stack up interrupt procedures. 

2. Another feature that might be necessary is a capabil­
ity to put a task to sleep for a known period of real time. 
Assume a relay output must remain closed for one sec­
ond. Most real-time systems cannot tolerate the dedica­
tion of the CPU to such a trivial task for that length of 
time so a system of programmable dynamic delays 
could be implemented. This application note imple­
ments such a system. 

Although the PLlM-86 procedures here have been de­
bugged and tested, it is assumed that the user will want 
to change, add, or delete features as needed. This appli­
cation note is intended to present ideas for a logical 
structure of procedures that, because they are written in 
PLlM-86, can be easily modified to user requirements. 
Each procedure will be discussed in detail and integra­
tion and optional features will be presented. 

PLlM-86 

PLM-86 is a block structured high level language that 
allows direct design of software modules. Using 
PLlM-86, designers can forget their assembly level 
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coding problems and design directly.in a subset of the 
English language, The 8086 architecture was designed 
to accommodate highly structured languages and the 
PLM·86 compiler is quite efficient in the generation of 
machine code. 

PLM·86 STRUCTURE 

PLlM·86 automatically keeps track of the level of the dif· 
ferent software blocks, (See Chapter 10, "PLlM·86 Pro· 
gramming Manual"), There are methods of writing 
PLlM·86 which contribute to the understandability of 
the source code without adding to the amount of object 
code generated, For instance, the following three 
IF/THEN/ELSE blocks generate identical object code 
but are compiled from different source statements, 

Line Level 

3 1 

7 
8 

9 
10 

11 
13 
14 
15 
16 
17 
18 

1 
2 
2 
1 
2 
2 

Statement 

IF A= BTHEN C= D; ELSE E= F; G= H; 

IF A= B THEN 
C=D; 
ELSE 
E=F; 
G=H; 

IF A= B THEN DO; 
C = D; 
END; 
ELSE DO; 
E= F; 
END; 
G= H; 

It is not instantly apparent from the code on line 3 or the 
code starting at line 7 which statements will be exe· 
cuted, However, adding the DO; and END; statements 
(starting at line 11) remove any doubt, Either the 
statements starting at line 11 or the statements starting 
at line 15 will be executed and the statement on line 18 
will be executed in either case, Why? Because all these 
lines are at level 1 in the block structure, The other lines 
are at level 2 because of the DO;/END; combinations, 
When one refers to the relatively complex structures of 
the task multiplexer procedures, the usefulness,of such 
an approach is obvious, as the procedures have been in· 
dented according to the level numbers generated by 
PLlM·86, In particular, if the designer is not careful, 
nested IF/THEN/ELSE statements can generate im· 
proper results, Using a proper number of DO;/END; com· 
binations avoids the possible ambiguity in nested 
IF/THEN/ELSE statements as can be seen in the ACTI· 
VATE$TASK procedure listed in the PLlM·86 source 
code later in this note, The DO;/END;construct naturally 
must be used when multiple statements are required 
within the IF/THEN/ELSE blocks, Following are exam· 
pies of the possible primary structures of PLlM·86: 

DO; 
A=B; 
C=D; 
END; 

DO WHILE A= B; 
C=D; 
E= F; 
END; 

DO 1=1 TO 5; 
A= I; 
C= D+I; 
END; 

DO CASE A; 
A= B; 
A=C; 
A=D; 
END; 

IF A= B THEN DO; 
C= D; 
END; 

ELSE DO; 
E= F; 
END; 

IF A=BTHENDO; 
C=D; 
END; 

ELSE IF A= C THEN DO; 
D=E; 
END; 

ELSE IF A= D THEN DO; 
E= F; 
END; 

ELSE DO; 
F=G; 
END; 

A complete tutorial on structured programming is 
beyond the scope and intent of this application note and 
the reader is referred to the appropriate references ap· 
pearing in the bibliography. 

ANATOMY OF THE TASK MULTIPLEXER 

Once a decision is made on the details of the kind of 
data structure that is needed to implement the task 
multiplexer, the procedures that manipulate the struc· 
ture are relatively simple to write. The following char· 
acteristics are assumed for the task multiplexer appear· 
ing in this application note. 

There are two levels of priority, high and low, All high 
priority tasks that are ready to run will be dispatched, 
executed, and completed, on a FIFO basis, before any 
low priority task is dispatched. 

Any task can be interrupted. No task multiplexer pro· 
cedure can be interrupted. 

If a high priority task is interrupted, it will be completed 
before any other task is dispatched. If a low priority task 
is interrupted, all ready high priority tasks will be dis· 
patched, executed, and completed before program can· 
trol is returned to the low priority task. 
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There are two ready queues, one for high priority tasks 
and one for low priority tasks. Each queue has a head 
(top) pointer and a tail (bottom) pointer and tasks on any 
queue are link-listed from head to tail. Tasks are "dis­
patched" (taken off the queue) at the head and "acti­
vated" (put on the queue) at the tail on a FIFO basis. 

Link-listed queues are chosen for simplicity. All dis­
patch and activate information is contained in the head 
and tail pointers. Tasks located in the middle of these 
link-lists are of no concern for activating and dispatch­
ing. This means, of course, that tasks are executed in 
the order that they appear on the queue, i.e., first-in, 
first-out. 

There is a pointer byte associated with each task. If a 
task is on either the low priority or high priority ready 
queue, its associated pointer byte will pOint to the next 
task number on the list. These pointer bytes enable the 
task ready lists to be linked. Note that the pointer byte is 
o for the last task on a list. 

There is a status (flag) byte associated with each task. If 
a task is on a ready list or a delay list, bit 7 will be a "1" 
indicating that that particular task is busy. If a task is on 
either high priority or low priority ready queues, bit 6 will 
be a "1" indicating that the task is on one of the ready 
queues. If the task is listed on the delay list, (see next 
item), bit 5 will be a "1" indicating that this particular 
task has a delay in progress. If a task is unlisted, bits 
5-7 will be "0." Bits 0-4 are not used by the task 
multiplexer procedures and are available to the user, giv­
ing 5 user defined flags per task. 

There is a delay byte associated with each task. This 
feature allows tasks to be "put to sleep" for a variable 
length of time, from 1 to 255 "ticks" of the interrupt 
clock. If a task does not need an associated delay then 
this byte is available to the user as a utility byte to be 
used for any purpose. These delays will be discussed in 
detail later in the application note. 

The following diagram is a representation of the task 
multiplexer data structure: 

TASK NUMBER porNTER BYTE STATUS BYTE DELAY BYTE 

n n+1 n+2 
n+3 n+4 n+5 
n+6 n+7 n+8 
n+9 n+ 10 n+ 11 

n+ 12 n+ 13 n+ 14 
n+ 15 n+ 16 n+ 17 

m-1 n + 3m - 6 n+3m- 5 n+ 3m-4 
m n + 3m - 2 n+3m-1 n+3m 

3m + 3 TOTAL RAM BYTES 
n = FIRST RAM ADDRESS OF ARRAY 

Following is a chart of what a task multiplexer data 
structure might look like at a given moment in time: 

HIGH$PRIORITY$HEAD = 5 
HIGH$PRIORITY$TAIL = 3 
LOW$PRIORITY$HEAD = 8 
LOW$PRIORITY$TAIL = 10 
DELAY$HEAD =4 

TASK NUMBER TASKln).PNTR TASKln).STATUS TASKln).DELAY 

1100 0000 
1010 0000 
1100 0000 
1010 0000 
1100 0000 
0000 0000 
1010 0000 

10 1100 0000 
0 0000 0000 

10 0 1100 0000 

·See text. 

What information can one ascertain from observation of 
the above chart? The ready-to-run high priority tasks, in 
order, are 5,1,3. This can be seen by following the high 
priority ready linked list from head to tail. The ready-to­
run low priority tasks, in order are 8, 10. The 
TASK(n).PNTR byte=O for the last listed task. Tasks 4, 
7, 2 are listed, in order, on the delay list and have 
associated delays of 4, 10, 13 ticks respectively. Tasks 6 
and 9 are not listed and therefore idle. The' for the 
TASK (0) bytes indicate a special condition. There is no 
TASKOO allowed and a zero condition is treated as an er­
ror condition. TASK(O).PNTR byte is used for the 
DELAY$HEAD byte to minimize code in the ACTI­
VATE$DELAY procedure. TASK(O).STATUS and 
TASK(O).DELAY are unused bytes. 

DEFINITIONS 

NEW$TASK is the number of the task that will be in­
stalled on a ready list or the delay list when ACTI­
VATE$TASK or ACTIVATE$DELAY is called. 

NEW$DELAY is the value of the delay that will be in­
stalled on the delay list when ACTIVATE$DELAY is 
called. 

A task is defined as RUNNING if it is in the act of execu­
tion or if an interrupt routine is executing which inter­
rupted a RUNNING task. 

A task is defined as PREEMPTED if it has been inter­
rupted and a higher priority task is being executed. 

A task is defined as READY if it is contained within one 
of the ready queues. 

A task is defined as IDLE if its BUSY$BIT (bit 7) is not 
set, I.e., it is not listed anywhere else. Note that it is 
possible to completely disable an IDLE task simply by 
setting its BUSY$BIT. In that case, it is not and cannot 
be listed anywhere else. This feature is useful during 
system integration. 
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STATE DIAGRAM 

The state diagram indicates the relationships among 
the possible task states and the procedures involved in 
changing states. 

The state diagram looks somewhat complic'ated arid a 
discussion of the possible change of states is in order. 
Assuming a certain existing state, future possible 
states will be discussed including the procedures which 
can cause the change of state. 

From the unlisted (idle) state, the ACTIVATE$TASK pro· 
cedure will put the NEW$TASK on either the high priori· 
ty ready queue or the low priority ready queue at the tail 
end of the queue. The number of the task automatically 
assigns the priority and therefore the proper queue. All 
task numbers below FIRST$LOW$PRIORITY$TASK are 
assumed to be high priority tasks. Also, from the 
unlisted state the ACTIVATE$DELAY procedure will put 
the NEW$TASK and NEW$DELAY at the proper position 
on the delay list. 

After a task has been put ,On eWler h'igh priority ready 
queue or low priority ready queue it eventually will go to 
the RUNNING$TASK state,Jhe DJSPATCH procedure 
accomplishell this action. ' ' 

From the delay list a task can only go to one of the ready 
queues. When a task's associated delay goes to zero the 
DECREMENT$DELAY procedure calls the ACTI· 
VATE$TASK procedure and installs the NEW$TASK on 
the proper ready queue. 

From the RUNNING$TASK state a task may use the 
CASE$TASJ( procedure to put itself on the ready list tail 
by setting' NE'W$TASK= RUNNING$TASK. It may 
instead put itself on the delay list by setting 
NEW$TASK= RUNNING$TASK and also setting 
NEW$DELAY equal to something other than zero. Other· 
wise, it will progress to the unlis,ted state upon comple· 
tion. 

The CASE$TASK procedure unlists tasks when they 
have completed execution. A low priority RUN· 
NING$TASK will go to the preempted state if a high 
priority task is on the ready listfollowing an interrupt 
during execution of the low priority task if the PREEMPT 
procedure is called. 

And finally, a PREEMPTED$TASK will return to a RUN· 
NING$TASK state wheh all high priority ready task:s 
have completed execution. This is accomplished by the 
DISPATCH procedure which then returns to the PRE· 
EMPT procedure. ' 

STATE DIAGRAM 
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Some lockouts are necessary to avoid chaos in the task 
multiplexer. These are as follows: 

The BUSY$BIT= 1 in the TASK(n).STATUS byte will 
abort the ACTIVATE$TASK and the ACTIVATE$DELAY 
procedures and return an indication of the aborting by 
setting the STATUS byte equal zero. A task must be 
unlisted to be able to be installed on a list. 

A RUNNING$TASK may put itself on a list after it has 
executed but it is not allowed to re·list any listed tasks 
(i.e., no task may ever be listed twice at the same time!). 
A task that tries to activate another task that is already 
busy can wait (via the delay feature) for the required task 
to complete execution, become idle, and therefore be 
available to be activated. A PREEMPTED$TASK may not 
be listed. If the ACTIVATE$TASK or ACTIVATE$DELAY 
procedure is called and NEW$TASK= PRE· 
EMPTED$TASK, the procedure will be aborted and 
return with STATUS=O. Otherwise, the STATUS byte is 
returned with the new task status. 

Only one task may be preempted as there are only two 
levels of priority. The user may desire to implement 
many levels of priority in which case a linked·list of 
preempted tasks could be declared in a structure which 
includes the number of the first task in each priority 
level group of tasks. This obviously complicates the 
PREEMPT and DISPATCH procedures. 

The tasks themselves are made into reentrant proce· 
dures because of the necessary forward references of 
the CASE$TASK procedure. 

PLlM·86 allows structures and arrays of structures. The 
structure needed for the task multiplexer is a link·list 
pointer byte, a task status byte, and a task delay byte. 
Each task has an associated pOinter byte, status byte, 
and delay byte. These are combined into an array of up 
to 255 tasks. For purposes of this discussion, the 
number of tasks is chosen as an arbitrary 10, leading to 
the following array declaration. 

DECLARE TASK(10)STRUCTURE 
(PNTR BYTE,STATUS BYTE,DELAY BYTE); 

Thus the delay byte associated with task number 7 can 
be accessed by using the variable TASK(7).DELAY and 
the status of task number 5 can be examined through 
the use of TASK(5).STATUS. The TASK(n).PNTR byte 
contains the task number of the next listed task on the 
same list as TASK(n), i.e., if TASK(n) is on the delay list, 
then TASK(n).PNTR will contain the number of the next 
task on the delay list or 0 indicating the end of the list. 

TASK(n).STATUS is a byte with the following reserved 
flags: 

BIT 7 BUSY$BIT, "1" IF TASK IS BUSY 
BIT 6 READY$BIT, "1" IF ON READY LIST 
BIT 5 DELAY$BIT, "1" IF ON DELAY LIST 
BIT 4 - BIT 0 UNUSED 

The unused bits in the STATUS byte are available to the 
user. 

The TASK(n).DELAY byte is a number which can put 
TASK(n) to sleep for up to 255 system clock ticks. The 
system clock tick is interrupt driven from the user's 
timer and its period is chosen for the particular applica· 
tion. A one millisecond timer is popular and assuming 
such a time, delays of up to 255 ms are available in the 
task multiplexer as it is written. If this delay range is not 
wide enough, the user may want to define his 
TASK(n).DELAY as a word instead of a byte in the 
PLlM·86 declare statement, giving delays of up to 65 
seconds from the basic one millisecond clock tick. 

LINKED LISTS 

Linked lists are useful for a number of reasons. 
However, a treatise on linked lists would defeat the pur· 
pose of this application note and the reader is referred 
to the references listed in the bibliography. 

The linked lists used in this application. note have a 
head byte associated with each list, i.e., the head byte 
contains the number of the first task on the list. The first 
task pOinter byte points to the second task on the list, 
etc. The pointer of the last task on the list is set at zero 
to indicate that it is the last task. Two of the linked lists 
are ready queues and require a tail byte as well as a head 
byte. The tail byte points to the last entry on the list. 
Tasks are put on the bottom, or tail, of the ready lists 
and are taken off the top, or head, of the ready lists. The 
delay list has no tail but does have a head, called a 
DELAY$HEAD. The delay list is not a queue, as delays 
are installed on the list in order of delay magnitude for 
reasons to be explained later. 

There are two ready lists, one for'high priority tasks and 
one for low priority tasks. The head and tail pointers 
associated with these two lists are: HIGH$PRIORITY$ 
HEAD, HIGH$PRIORITY$TAIL, LOW$PRIORITY$HEAD, 
and LOW$PRIORITY$TAIL. Obviously, the structure can 
be expanded to any number of priority levels by expand· 
ing the head and tail pOinters and the historical record 
of the preempted tasks. 

DELAY STRUCTURE 

A task multiplexer can have a number of simultaneous 
delays active and it would be efficient if there were a 
way to keep from decrementing all delays on every clock 
tick, which is most time consuming. One way to accom· 
plish this feat is to move the problem from the 
DECREMENT$DELAY routine to the ACTIVATE$DELAY 
routine. The delays are arranged in a linked·list of 
ascending sizes such that the value of each delay in· 
cludes the sum of all previous delays. This allows the 
decrementing of only one delay during each clock tick 
interrupt routine. An example will further illuminate this 
approach. Suppose the following conditions exist: 
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Task 7 has a 5 millisecond delay 

Task 3 has an 8 millisecond delay 

Task 9 has a 14 millisecond delay 

The delay structure is arranged so that: 

DELAY$HEAD = 07 
TASK(7).PNTR = 03 
TASK(3).PNTR = 09 
TASK(9).PNTR = 00 
TASK(7).DELAY=05 (FIRST DELAY = 5) 
TASK(3).DELAY= 03 (5+ 3= 8) 
TASK(9).DELAY=06 (5+3+6= 14) 

The linked-list is arranged so that the delays are in 
ascending order and each delay is equal to the sum of 
all previous delays up through that point. Since this is 
true, all delays are effectively decremented merely by 
decrementing the first delay. Of course, something for 
nothing is impossible and the speed gained by arrang­
ing the delays in the above manner is paid for by the 
complexity of the ACTIVATE$DELAY routine. But since 
the ACTIVATE$DELAY routine is executed less fre­
quently than the DECREMENT$DELAY routine, the sav­
ings in real time is worth the added complexity. 

Suppose a new delay is to be activated in the above 
scheme. Task 5 with a delay of 10 milliseconds is to be 
added. A before and after chart will indicate what the 
ACTIVATE$DELA Y procedure must accomplish. 

BEFORE 

TASK NUMBER 07 ,03 09 

POINTER 07 03 09 00 

DELAY 05 03 06 

AFTER 

TASK NUMBER 07 03 05 

POINT~R 07 03 05" 09@ 

, DELAY 05 03 02@ 

FIRST POINTER IS THE DELAY$HEAD 
CHANGES ARE MARKED WITH AN " 
ADDITIONS ARE MARKED WITH AN @ 

09 

00 

04" 

Note that the pOinter before the added task haS changed 
and the delay after the added task has changed. The 
function of the ACTIVATE$DELAY procedure is to ac­
complish these changes and additions. 

PROCEOVRES 

The following procedure explanations, reference the 
PLlM-86 source code listing which follows the applica­
tion note text. 

ACTIVATE$TASK Procedure 

This procedure is initiated by a call instruction with the 
byte NEW$TASK containing the number of the task to 
be put on the proper ready queue. ' 

Interrupts must be disabled whenever the link-lists are 
being changed. If interrupts are enabled when this 
procedure is called, they should be re-enabled upon 
returning. 

The assignment of priority is a simple matter. A declare 
statement, DECLARE FIRST$LOW$PRIORITY$TASK 
LITERALLY 'N,' (where N is the actual number of the 
first low priority task) indicates to the procedures that 
tasks 1 to N are high priority tasks and tasks N or higher 
are low priority tasks. 

This procedure checks the busy bit in the status byte to 
see if this particular task is already busy and if so, 
returns a STATUS of zero. Otherwise, it returns the new 
STATUS of the task. It then checks the priority to see if 
this particular task is a high or low priority. If it is high 
priority, then the task pOinter pOinted to by the HIGH$ 
PRIORITY$TAIL pOinter is changed from zero to the 
number of the NEW$TASK. The HIGH$PRIORITY$TAIL 
pOinter is then changed to the number of the 
NEW$TASK and the pOinter associated with NEW$ 
TASK is made equal to zero. This completes the ACTI­
VATE$TASK functions. If the new task is a low priority 
task, then the same functions are performed using the 
LOW$PRIORITY$TAIL pointer. 

ACTIVATE$OELAY Procedure, 

This procedure is initiated by a call with the byte NEW$ 
TASK containing the number of the task to be put on the 
delay list and the byte NEW$DELAY containing the 
value of the associated delay. 

Interrupts are disabled and the busy bit of this particular 
task is checked. If the busy bit is set the STATUS byte is 
set to zero and the procedure returns without activating 
the delay. If the busy bit is not set the integer value DIF­
FERENCE is set equal to the NEW$DELAY value. 
POINTER$O ,is set equal to the DELAY$HEAD. POINT­
ER$1 is set to zero. The DO WHILE loop executes, until 
POINTER$O equals zero or DIFFERENCE Is less tha'n 
zero. Remember that the proper place to insert the new 
delay is being searched for, and that will be either at the 
end of the list (POINTER$O = 0) or when the sum of the 
previous delays do not exceed the new delay value. The 
DO WHILE loop has POINTER$O, POINTER$1, OLD$DIF­
FERENCE, and DIFFERENCE keeping track of where 
the procedure is in the loop, while searching for the 
proper place to insert the new delay. The existing delays 
are sequentially subtracted from the remains of NEW$ 
DELAY according to the link-listed order until the end of 
the list or a negative result is encountered indicating 
that the proper delay insertion point has been reached. 
At this point POINTER$O contains the task number to be 
assigned to TASK(NEW$TASK).PNTR. POINTER$1 con­
tains the task number immediately preceding the 
NEW$TASK such that TASK(POINTER$1). PNTR= NEW$ 
TASK and our link list is fully updated, with the actual 
delays yet to go. If POINTER$O = 0 it means that the new 
delay is larger than any of the other delays and therefore 
should go on the end of the list so TASK(NEW$ 
TASK).DELAY is set equal to the DIFFERENCE. If 
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POINTER$O is not equal to zero then if POINTER$O 
equals POINTER$1 (indicating that there were not any 
delays previously listed), then TASK(POINTER$1).PNTR 
is set equal to zero. TASK(NEW$TASK).DELAY is 
set equal to the OLD$DIFFERENCE and TASK 
(POINTER$O).DELAY is set equal to the negative of DIF· 
FERENCE which at this point is negative, thereby 
resulting in a positive unsigned number. The reader is 
encouraged to implement an example (see Delay Struc· 
ture section) to prove that the above approach is valid. 
Particular attention should be paid to the contents of 
the two pOinters, as they are the key to the procedure. 
The final function of this procedure is to set the 
BUSY$BIT and DELAY$BIT in the TASK(NEW$ 
TASK).STATUS byte. The byte named STATUS which is 
returned by this procedure is set equal to the status of 
the new task. If it is desired to have interrupts enabled, 
they must be enabled after the procedure return instruc· 
tion. The reason for such a complex method of ac· 
tivating a delay will become apparent in the following 
section. 

DECREMENT$DELAY Procedure 

The first delay on the linked·list is decremented and, if it 
is zero, the associated task is put on the appropriate 
ready queue. The next delay (if any) is checked to see if 
it is zero and if so, that task is put on the appropriate 
ready queue, etc. A loop is performed until either no 
delay or a non·zero delay is found. The procedure then 
returns. 

It is assumed that this procedure is part of an interrupt 
routine and that the interrupts are disabled during its 
execution. Interrupts cannot be enabled during changes 
to any of the linked·lists or else recovery may not be 
possible. 

This procedure begins by checking to see if there are 
any active delays. If DELAY$HEAD = 0 then this pro· 
cedure returns immediately. Otherwise it decrements 
the first delay. If this delay goes to zero then the 
associated task number is passed to the ACTIVATE$ 
TASK procedure as the OFF$DELAY byte. A new 
DELAY$HEAD is chosen from. the next link·listed delay 
and that delay checked for a value of zero which will 
happen if the first two or more delays are equal. This 
loop is accomplished by the DO WHILE DELAY$ 
HEAD <> 0 AND TASK(DELAY$HEAD).DELAY = 0; This 
procedure is designed to require very little CPU time 
unless a delay times out. The DO WHILE loop is by· 
passed if the resulting delay value is not zero. A certain 
amount of care should be exercised to insure that many 
delays do not all time out at the same time. One method 
would be to modify the ACTIVATE$DELAY procedure to 
insure that there are no zero entries in the delay bytes. 
The basic procedure, however, assumes that the clock 
"tick" timing will be chosen to minimize the above 
potential problem. 

CASE$TASK Procedure 

This procedure performs the function of calling the task 
indicated by the contents of the RUNNING$TASK byte. 
All listed tasks are called in this manner. The 
CASE$TASK procedure is called by the DISPATCH pro· 
cedure. When a particular task has completed execution 
it returns to the CASE$TASK procedure which then 
resets the BUSY$BIT and the READY$BIT and returns to 
the DISPATCH procedure after setting RUNNING$TASK 
equal to zero. This procedure allows a task to relist itself 
immediately upon returning from execution. 

PREEMPT PROCEDURE 

The PREEMPT procedure is called whenever it is pos· 
sible that a high priority task has been put on the ready 
queue while a low priority task was in the process of 
execution. An example will illustrate: 

Assume that the control system is being interrupted by 
the 60 Hz line frequency and a register is being in· 
cremented each time this 16.67 ms edge occurs. When 
the register gets to 60 (indicating that one second has 
passed), the register is zeroed and the high priority time· 
keeping task is put on the ready queue. Assume also 
that a low priority data logging task was running when 
this interrupt occurred. The interrupt routine calls PRE­
EMPT. If a high priority task is running, PREEMPT 
simply returns. But in our example, a low priority task is 
running so PREEMPT transfers RUNNING$TASK to 
PREEMPTED$TASK and calls DISPATCH, which calls 
CASE$TASK, which calls the time-keeping task. When 
the time-keeping task has completed, it returns to 
CASE$TASK which returns to DISPATCH which returns 
to the PREEMPT procedure which returns to the inter­
rupt routine which returns to the interrupted low priority 
data logging task if no other high priority tasks are on 
the ready queue. If the high priority ready queue is not 
empty, any and all high priority tasks will be completed 
before the interrupted routine is returned to. PREEMPT 
refuses to return to the interrupt routine until HIGH$ 
PRIORITY$HEAD is equal to zero. It is important to note 
that a low priority task will not be preempted unless the 
PREEMPT procedure is called .. As noted above, it is nor­
mally called from the interrupt routine which interrupted 
the low priority task, but there is nothing to prohibit 
PREEMPT from being called from inside a low priority 
task procedure. 

DISPATCH PROCEDURE 

This procedure calls a high priority task if HIGH$ 
PRIORITY$HEAD is not equal to zero, restores a pre­
empted task if PREEMPTED$TASK is not equal to zero, 
calls a low priority task if LOW$PRIORITY$HEAD is not 
equal to zero, and simply returns if there is nothing to 
do, all in order of priority. The DISPATCH procedure is 
called from the main program loop which must enable 
interrupts as DISPATCH disables interrupts as soon as 
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it is called. It is alsp called by the PREEMPT procedure. 
RUNNING$TASK must be 0 when this procedure is 
called. 

PL/M·86 PROCEDURES 

Because the block structure and levels are so important 
to the understanding of the following procedures, they 
have been indented according to level. This was a sim· 
pie task accomplished by no indenting for level one, 
indenting once for level two, etc. The resulting attrac· 
tive, easy to follow format was worth the effort to 
increase the initial level of understanding for readers of 
this application note who are not intimately familiar 
with PLiM. 

Everything except the very simple main program loop 
has been made into procedures. Interrupt routines and 
tasks are also procedures. Keeping track of interrupts, 
calls, and returns is easy for PLiM and a violation of the 
block structure through such devices as GOTO targets 
outside the procedure body is the best way the author 
knows to crash and burn. Honor the power of the struc· 
ture, accept the limitations involved, and checkout and 
debugging will be a pleasure. 

Since CASE$iASK references the individual tasks, the 
task procedure structure was included in the PLlM·86 
compilation. All the user has to do is insert the par· 
ticular task code in place of the I*TASKnn CODE*I com· 
ment, define the interrupt procedures and the system 
shoUld be ready to run. Obviously, the user will desire to 
change the total number of tasks and the number of the 
FIRST$LOW$PRIORITY$TASK. 

INITIALIZATION AND THE MAIN LOOP 

The last entry in the PLlM·86 program is the initialization 
process which essentially zeros the task multiplexer 
data and the main loop which loops until TRUE= FALSE, 
i.e. forever, with interrupts enabled. The STATUS = 
STATUS instruction simply insures that the loop can be 
interrupted as the instruction following an ENABLE in· 
struction is not interruptible. 

These few instructions are included for information only 
and will need to be expanded considerably for use in a 
real·world system. The task multiplexer procedures 
were checked out on an iSBC 86112™ computer running 
under random interrupt control and these instructions 
were the minimum necessary to cause the system to 
run. As was stated earlier, the following source code 
does not include any interrupt procedures and these will 
have to be generated following the format explained in 
the PLlM·86 programming manual. 

ADOITIONAL IDEAS 

Resource allocation is a feature that could be added to 
the task multiplexer. To keep it simple and yet avoid the 
deadlock problem (two tasks each grab a resource that 
the other needs), an extra array can be added to the 
TASK(n).XXX structure in which each bit in the byte (or 
word), represents a resource necessary for the execu· 
tion of a task. A RESOURCES$STATUS byte can then 
keep the dynamic busy status of the system resources 
(printers, terminals, floating point math packages, etc.). 
When the CASE$TASK procedure is called, the 
resources required by the next RUNNING$ 
TASK can be compared to the RESOURCES$STATUS 
byte to see if the required resources are available. If they 
are, the following PLlM·86 statement will update the 
new status of the resources: 

RESOURCES$STATUS = RESOURCES$STATUS OR 
TASK(RUNNING$TASK).RESOURCES: 

However, if the resources are not available, the CASE$ 
. TASK procedure can return the task to the ready or delay 
list and try again later. When the task has completed, 
the following PLlM·86 statement will update the 
resources status byte: 

RESOURCES$STATUS= RESOURCES$STATUS AND NOT 
TASK(RUNNING$TASK).RESOURCES; 

Message passing from task to task may also be 
necessary. Assuming that a task will have only one 
message at a time to deliver or receive, another byte 
could be added to the task structure such that 
TASK(RUNNING$TASK).MESSAGE could represent a 
byte containing the number of the task wishing to 
deliver a message to the RUNNING$TASK. Since a task 
can call CASE$TASK which in turn will call another task, 
message block parameters can be passed directly from 
one task to another. The task that calls CASE$TASK 
must handle the necessary housekeeping involved in 
recovering after the message has been passed. Of 
course, the data structure would have to be expanded to 
accommodate the message parameters and blocks. For 
further ideas involving message handling refer to the 
RMXI80™ user's guide. 

Two additional relatively simple procedures could be 
added to obtain the SUSPEND and RESUME features of 
the RMXI80™ system. Remember that if the BUSY$BIT 
is set in a TASK(n).STATUS byte and the task is unlisted, 
then it cannot be listed. If it is desired to dynamically 
enable and disable a task, this bit could be set by a 
SUSPEND procedure and reset by the RESUME pro· 
cedure. 
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SOURCE CODE 

'rM86:DO; 

DECLARE TOTAL$TASKS LITERALLY '10'; 
DECLARE TRUE LITERALLY '0FFH'; 
DECLARE FALSE LITERALLY '0'; 
DECLARE BUSY$BIT LITERALLY '10000000B'; 
DECLARE READ~$BIT LITERALLY '010000008'; 
DECLARE DELAY$BIT LITERALLY '00100000B'; 
DECLARE FIRST$LOW$PRIORIT~$TASK LITERALLY '6'; 

DECLARE TASK(TOTAL$TASKS) STRUCTURE(PNTR BYTE, STATUS BYTE, DELAY BYTE); 
DECLARE HIGH$PRIORITY$HEAD BYTE, HIGH$PRIORITY$TAIL BYTE; 
DECLARE LOW$PRIORITY$HEAD BY'rE, LOW$PRIORI'rY$'rAIL BYTE; 
DECLARE RUNNING$'rApK BYTE, PREEI"'lPTED$TASK BYTE; 
DEC~ARE STATUS BYTE, NEW$TASK BYTE, NEW$DELAY BYTE; 
DECLARE DELA~$HEAD 8 YT E A'r (@TASK (0) • PN'fR) ; 

ACTIVATE$TASK: PROCEDURE; /* ASSUMES NEW$TASK<>0 */ 
DISABLE; 
IF (TASK(NEW$TASK) .STATUS AND BUSY$BIT)<>0 THEN STATUS=0; 
ELSE /* SINCE TASK IS NOT BUSY */ DO; 

IF NEW$TASK < FIRST$LOW$PRIORITY$TASK THEN DO; 
IF HIGH$PRIORITY$TAIL<>0 THEN DO; 

TASK (HIGH$PRIORITY$TAIL) .PNTR=NEW$TASK; 
END; 

ELSE /* SINCE HIGH$PRIORITY$TAIL=0 THEN */ DO; 
HIGH$PRIORITY$HEAD=NEW$TASK; 
END; 

HIGH$PRIORITY$TAIL=NEW$TASK; 
END; 

ELSE /* SINCE TASK IS LOW PRIORITY THEN */ DO; 
If LOW$PRIORITY$TAIL<>0 THEN DO; 

TASK (LOW$PRIORITY$'rAIL) • PN'fR=NEW$TASK; 
END; 

ELSE /* SINCE LOW$PRIORITY$TAIL=0 THEN */ DO; 
LOW$PRIORITY$HEAD=NEW$TASK; 
END; 

LOW$PRIORITY$TAIL=NEW$TASK; 
END; 

TASK (NEW$TASK) .PNTR=0; 
TASK(NEW$TASK) .STATUS=TASK(NEW$TASK) .STATUS OR 

BUSY$BIT OR READY$BIT; 
STATUS=TASK(NEW$TASK) .STATUS; 
END; 

NEW$TASK=0; 
RE'rURN ; 
END ACTIVATE$TASK; 
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ACTIVATE$DELAY: PROCEDURE;/*ASSUMES NEW$TASK, NEW$DELAY<>0*/ 
DECLARE POHI'rER$0 BYTE, POINrER$l BY'rE; 
DECLARE OLD$DIFFERENCE INTEGER, DIFFERENCE INTEGER; 
DISABLE; 
IF (TASK(NEW$TASK) .STATUS AND aUSY$BIT)<>0 THEN STATUS=0; 
ELSE /* SINCE TASK IS NOT BUSY */ DO; 

DIFFERENCE=INT(NEW$DELAY) ; 
POINTER$0=DELAY$HEAD; 
POINTER$1=0; 
DO wHILE POINTER$0<>0 AND DIFfERENCE>0; 

OLD$DIffERENCE=DIFFERENCE; 
DIFfERENCE=DIFFERENCE-INT(TASK(POINTER$0) .DELAY) ; 
If DIfFERENCE>0 THEN DO; 

POINTER$1=POINTER$0; 
POINTER$0=TASK(POINTER$1) .PNTR; 
END; 

END; 
TASK(NEW$TASK) .PNTR=POINTER$0; 
TASK(POINTER$l) .PNTR=NEW$TASK; 
IF POINTER$0=0 THEN TASK (NEW$TASK) .DELAY=LOW(UNSIGN(DIFFERENCE)); 
ELSE /* SINCE DIFfERENCE<0 THEN */ DO; 

IF POINTER$0=POINTER$1 THEN TASK(POINTER$l) .PNTR=0; 
TASK(NEW$TASK) .DELAY=LOw(UNSIGN(OLD$DIFFERENCE)); 
TASK(POINTER$0) .DELAY=LOW(UNSIGN(-DIFFERENCE)); 
END; 

TASK(NEW$TASK) .STATUS=TASK(NEW$TASK) .STATUS OR 
BUSY$BIT OR DELAY$BIT; 

STATUS=TASK(NEW$TASK) .STATUS; 
END; 

NEW$'rASK=0 ; 
NEW$DELAY=0; 
RETURN; 
END ACTIVATE$DELAY; 

DECREMENT$DELAY: PROCEDURE; /* ASSUMES INTERRUPTS DISABLED */ 
DECLARE OFF$DELAY BYTE; 
IF DELAY$HEAD<>0 THEN DO; 

TASK (DELAY$HEAD) • DELAy='rASK (DELAY$HEAD) • DELAY-l; 
DO WHILE DELAY$HEAO<>0 AND TASK(OELAY$HEAO) .DELAY=0; 

OFF$DELAY=DELAY$HEAD; 
DELAY$HEAD=TASK(DELAY$HEAD) .PNTR; 
TASK (OFF$DELAY) .STATUS=TASK(OFF$DELAY) .STATUS 

AND NOT(BUSY$BIT OR DELAY$BIT); 
NEW$TASK=OFf$DELAY; 
CALL ACTIVATE$TASK; 
END; 

END; 
RETURN; 
END DECREMENT$DELAY; 
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CASE$TASK: PROCEDURE REENTRANT; 
DO CASE RUNNING$TASK; 

CALL 'rASK00; 
CALL 'rASK01; 
CALL 'rASK02; 
CALL TASK0j; 
CALL TASK04; 
CALL 'rASK05; 
CALL 'rASK06; 
CALL TASK07; 
CALL'rASK08; 
CALL TASK09; 
END; 
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TASK (RUNNING$TASK) .STATUS=TASK(RUNNING$TASK) .STATUS AND 
NOT (BUSY$8IT OR READY$BIT); 

TASK (RUNNING$TASK) .PNTR=0; 
IF RUNNING$TASK=NEW$TASK THEN 00; 

IF NEW$DELAY<>0 THEN DO; 
CALL ACTIVATE$DELAY; 
END; 

ELSE /* SINCE NEW$DELAY=0 */ DO; 
CALL ACTIVATE$TASK; 
END; 

END; 
RUNNING$'rASK=0 ; 
RETURN ; 
END CASE$TASK; 

PREE~PT:PROCEDURE REENTRANT; /* ASSUMES INTERRUPTS DISABLED */ 
IF PREEMPTED$TASK=0 THEN DO; 

IF (HIGH$PRIORITY$HEAD<>0) AND (RUNNING$TASK>= 
FIRST$LOW$PRIORITY$TASK) THEN DO; 

PREEMPTED$TASK=RUNNING$TASK; 
RUNNING$TASK=0; 
DO WHILE PREEMPTED$TASK<>0; 

CALL DISPATCH; 
END; 

END; 
END; 

RETURN ; 
END PREEMPT; 
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DISPATCH:PROCEDURE REENTRANT, /* ASSUMES RUNNING$TASK=0 */ 
DISABLE, 
IF HIGH$PRIORITY$HEAD<>0 THEN DO, 

RUNNING$TASK=HIGH$PRIORITY$HEAD, 
dIGH$PRIORITY$HEAD=TASK(RUNNING$TASK) .PNTR, 
IF HIGH$PRIORITY$HEAD = 0 THEN HIGH$PRIORITY$TAIL 0, 
CALL CASE$TASK, 
END, 

ELSE IF PREEMPTED$TASK<>0 THEN DO, 
RUNNING$TASK=PREEMPTED$TASK, 
PREEMPTED$TASK=0, 
END, 

ELSE IF LOW$PRIORITY$HEAD<>0 THEN DO, 
RUNNING$TASK=LOW$PRIORITY$HEAD, 
LOW$PRIORITY$HEAD=TASK(RUNNING$TASK) .PNTR, 
IF LOW$PRIORITY$HEAD = 0 THEN LOW$PRIORITY$TAIL 0, 
CALL CASE$TASK, 
END, 

ELSE RETURN, 
RETURN, 
END DISPATCH, 
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TASK00: PROCEDURE REENTRANT;/*ERROR CODE*/RETURN;END TASK00; 

TASK01: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN; 

/*'rASK01 CODE*/ 

END TASK01; 

TASK02: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*'rASK02 CODE*/ 

END 'rASK0 2; 

TASK01: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*TASK01 CODE*/ 

END 'rASK01; 

'rASK04: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RETURN ; 

/*'rASK04 CODE*/ 

END 'rASK04; 

TASK05: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN; 

/*'rASK05 CODE*/ 

END 'rASK05; 

TASK06: PROCEDURE REENTRANT; 
eNABLE; 

DISABLE; 
RE'rURN ; 

/*'rASK06 CODE*/ 

END TASK06; 

TASK07: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RETURN ; 

/*'rASK07 CODE* / 

END TASK07; 
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TASK08: PROCEDURE REENTRANT; 
ENABLE; 

DISABLE; 
RE'rURN ; 

/*rASK08 CODE*/ 

END TASK08; 

'rASK09: PROCEDURE REENTRAN'r; 
ENABLE; 

DISABLE; 
RETURN; 

/*'rASK09 CODE*/ 

END 'rASK09; 

/ * I N I 'r I AL I Z E * / 

DISABLE; 
DO STATUS=0 TO 9; 

TASK(STATUS).PNTR=0; 
TASK(STATUS) .STATUS=0; 
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TASK(STATUS) .DELAY=0; 
NEW$TASK,NEW$DELAY=0; 
HIGH$PRIORITY$HEAD,HIGH$PRIORITY$TAIL=0; 
LOW$PRIORITY$HEAD,LOW$PRIORITY$TAIL=0; 
RUNNING$TASK,PREEMPTED$TASK=0; 
END; 

/* MAIN LOOP */ 

DO WHILE TRUE<>FALSE; 
CALL DISPA'rCH; 
ENABLE; 
STA'rUS=STA'rUS; 
END; 

END TM86; 
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INTRODUCTION 

The Intel 8089 is the first integrated 110 processor 
available. This 1/0 processor (lOP) makes available the 
power of 1/0 channels, as used in mainframes and mini­
computers, in a microcomputer form. Designed as part 
of the MCS-86™ family, the lOP can be interfaced with 
the MCS-80™ and MCS-85™ families as well. 

An 110 channel Is basically a processor remote from the 
main CPU, which independently runs 1/0 operations 
upon command of the CPU. To relate the 8089 to ex­
isting LSI components, it is similar to a microprocessor 
that is time-multiplexed with a DMA controller, but with 
two channels available. However, since the 8089 proc­
essor is optimized for 110 and multiprocessor opera­
tions, and the DMA has been made much more flexible 
than existing DMA controllers, a truly general purpose 
and powerful 110 control system is available on one chip. 

Due to the uniqueness of the 8089, this application note 
was written to review debugging strategies and point 
out possible pitfalls when developing an lOP system. 
Debugging an lOP system is very similar to debugging 
mlcroprocessor/DMA controller systems, and many of 
the techniques described here are standard microproc­
essor techniques. However, several factors are present 
which can complicate the debugging process: 

1. Multiprocessor Operation 

Although usable by itself, the lOP Is designed to be 
used with other processors. All factors normally en­
countered with multiprocessor operation, including bus 
arbitration, processor communication, critical code sec­
tions, etc., must be addressed in the design and debug 
of an lOP system. 

2. DMA Tle·in to lOP Program Execution 

The relationship between lOP program execution and 
DMA transfers and termination is different from earlier 
DMA controllers and should be fully understood to prop­
erly run the system. 

3. Dependency of Programs on Real-Time 1/0 
Operations 

Requirements by 1/0 devices for maximum data rates 
and minimum latency times force the software program­
mer to be aware of hardware timing constraints and can 
complicate program debugging. 

4. Dual Channel Operation 

Related to multiprocessor operation and real-time 
dependencies, the two independent channels available 
on the 8089 may have to be coordinated with each other 
to make the whole system function. Dependence of one 
channel on the other can also complicate debugging. 

Due to the complexities of running in a real-time envi­
ronment, as many steps as possible should be taken to 
facilitate debugging. A major help here Is to make sure 
as much of the hardware and software as possible is 
working before running real-time tasks. This Is a good 
practice anyway, but It should be reemphasized that a 
complex multichannel system can quickly get out of 
hand If more than a few things are not right. 

An aid to debugging any system is a clean, well organ­
ized system deSign. The 8089 lends itself to structured, 
modular software interfaces to the host CPU, via the 
linked-list initialization structure, and parameter com­
munication through the parameter block (PB) area. 
Some of the aspects of structured programming that aid 
debugging are: 

• Top Down Programming - The functions done by 
lOW-level routines are well understood, and the 
number of program .fixes, which can cause more 
errors, is minimized. 

• Program Modularity - Small, easy to manage sub­
programs can be debugged independently, increas­
ing the chance that the entire system will work the 
first time. 

• Modular Remoteness - By having all program 
modules communicate only through a well-defined 
interface, one module's knowledge of the "inner 
workings" of another is minimized. System soft­
ware complexity is reduced. Updates to program 
modules are more reliable, too. 

Two major areas of debugging will be outlined here -
static (or functional) debugging in which the hardware 
and software are not tested in a real-time environment, 
and real-time debugging. Applying a logic analyzer to 
lOP debugging will also be explained, and a review of 
lOP operation and potential problems will be done. 

STATIC (OR FUNCTIONAL) DEBUGGING 

The predominant errors in a system, when first tried out, 
are, either errors In implementation (I.e., wrong hookups 
or coding errors), or an Incorrect implementation (a 
wrong assumption somewhere). Most of these bugs can 
be found through static debugging techniques that are 
usually easier to work with than real-time testing. 

Hardware Testing 

Static hardware testing Is done mainly to see if all indi­
vidual parts of the system work, so the whole system 
will "play" when run. The level of testing can run from 
checking for continuity and shorts (which finds only 
hookup errors) to trying to move data around and run­
ning 1/0 devices from a monitor or special test programs 
(which can also find Incorrect circuit design). In all but 
the simplest systems, the latter approach is recom­
mended since It is a step towards software debugging. 

Several approaches to hardware testing will be covered. 
Running diagnostic programs (such as a monitor) out of 
the lOP's host system, in both the LOCAL and REMOTE 
modes, will be covered. The case where the host system 
cannot support diagnostic software and must have an 
external processor to exercise the lOP and its periph­
erals will also be explained. 

The case where the host system can run diagnostics or 
test programs that have interactive user 1/0, such as a 
CRT terminal or teletype, provides the most straightfor­
ward way to test the lOP. Naturally, before these pro­
grams can be run, the baSic hardware must be correct 
enough to run programs. When this point is reached, a 
monitor program can be used to exercise memory and 
1/0 controllers on the system bus. 
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It should be mentioned that aids, other than just testing 
with software, are helpful for hardware debugging. 
While a necessity for real.time debugging, a logic 
analyzer is also a definite help for static hardware 
debugging. Its main use in hardware debugging is show· 
Ing timing relationships between address or data paths 
and other signals. It is especially useful for functional 
software debugging, to be described shortly. The last 
debugging section outlines the use of an analyzer with 
the lOP. Of course, an oscilloscope, logic probes and 
pulsers, etc., can be used to trac!, out specific logic or 
timing problems. . 

LOCAL Mode 

When the lOP is run'ning in the LOCAL Mode, all 1/0 con· 
trollers and memory are accessible by the host or con· 
trolling CPU. Thus a standard monitor, such as the one 
supplied with the SDK-86 or available for the ISSC· 
86112™ development kit, can exercise all hardware on 
the bus.' The breakpoint routines, however, will not 
work due to the different instruction set. The 8086 or 
8088 Is best suited for running the lOP in the LOCAL 
mode due to Identical status lines and bus timing, as 
well as the Request/Grant line, which eliminates bus ar· 
bitration hardware. Figure 1 shows the general LOCAL 
mode configuration. 

'The SDK·86 serial monitor Is a good basis for a general 8086 monl.tor. 
The lOP cannot be used directly with the SDK·86, since the 8086 Is run· 
nlng In the minimum mode. The SDK-86 can be converted t.o run In the 
maximum mode, If desired. 

~ 8284 11 

REMOTE Mode 

From a system 'design standpOint, running the lOP in 
the REMOTE Mode is advantageous In that It removes 
the I/O bus cycles from the system bus. Normally, the 
remote I/O Is not accessible to the host, CPU. Until the 
lOP is able to run its own test programs to transfer data 
from the REMOTE bus to the system bus, I/O controllers 
and memory on the REMOTE bus will be invisible to the 
hO-!lt. To get around this problem during prototyplng, 
either an external processor interface can be used (see 
next section), or a temporary bypass can be made to ac· 
cess the REMOTE bus from the system bus. 

Bypassing the normal REMOTE/SYSTEM interface is a 
handy technique for doing preliminary debugging on the 
REMOTE bus. This can be done by memory·mapping the 
lOP's I/O space into an unused portion of the host 
CPU's system memory space. When accessing this 
space, the lOP access to its own I/O space is disabled, 
and a separate set of address buffers, transceivers and 
bus control signal buffers are enabled. Reads and writes 
can then be done to the formerly Inaccessible REMOTE 
bus by the host CPU. 

A simple system (Figure 2) implements this bypassing 
scheme. It was designed for just forCing or examining 
devices on the REMOTE bus and may not read or write 
correctly if the lOP is simultaneously trying to do bus 
cycles. A more sophisticated arbitration system would 
permit reliable run·time checking also. 

SYSTEM BUS 
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Figure 1. Generalized LOCAL Conflgurallon-8086 In Max Mode 
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Figure 2. Remote Mode Bypass for Debugging 

Running the lOP in the REMOTE mode, particularly if 
the MUL TIBUS™ protocol is adhered to, has the advan· 
tage that the lOP can be exercised with any MULTlBUS· 
compatible processor. If the main processor is not 
amenable to being used as a debugging tool, another 
processor could be used to debug the hardware inter· 
face. If the microprocessor is of the same type as the 
intended host processor, software debugging can be 
done as well. A generalized REMOTE mode configura· 
tion using the MULTI BUS is shown in Figure 3. 

External Processor Interface 

A technique that can be used if the host processor can· 
not run any debugging or monitor.routines is to have an 
external processor tie into the host processor's bus. 
This is useful if the main system CPU cannot run an in· 
teractive monitor or other debugging programs. If a 
MULTIBUS interface is being used, an 8289 bus arbiter 
and a set of address/data/control buffers can be used. A 
somewhat simpler system, similar to the remote bus ac· 
cess system mentioned above, could be used for static 
debugging of non·MUL TlBUS systems. Again, if true bus 
arbitration is added (which brings us nearly to a MULTI· 
BUS interface), it could also be used for run·time 
testing. Intel processors that have the MUL TlBUS 
interface include the iSBC·80/20™, iSBC·86/12™, iSBC· 

80/10™, iSBC·80/05™, the Intellec'" development 
systems, among others. 

In the previously described systems, the external proc· 
essor would disable the host CPU's access to the bus, 
either by some form of bus request or by a "brute force" 
disabling of the CPU's buffers. In the latter case, the ex· 
ternal processor could only control the bus during a 
time that the CPU is halted, without destroying the pro· 
gram flow. Mapping the processor's memory space into 
the external processor memory space is the simplest 
method, but can impact programs being run on the 
external processor. If the processor under test utilizes 
the MULTIBUS interface (with bus arbitration), then a 
processor like the iSBC·80/30™ or iSBC·86/12™ could 
be used as the debug vehicle with no special hardware. 
A more flexible interface that would have less impact on 
the system memory space would have the addresses for 
the system under test generated from latches loaded by 
the I/O instructions from the external processor. This 
case must have software routines to interface to the I/O 
ports and handle the desired debugging routines (see 
Figure 4). 

Software Testing 

It is desirable to check as much of the lOP program as 
possible statically, since various tools and techniques 
are available which may not be usable during real·time 
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testing. This "static" software testing is not applicable 
to heavily I/O-dependent or DMA-dependent routines, 
but Is best suited to longer computational or data han­
dling routines. The Idea Is to test the correctness of 
algorithms, rather than seeing if the whole system runs. 

There are two main approaches to functional software 
testing. One is to essentially run the program In real 
time and monitor program flow on a logic analyzer. The 
difference between this and real-time testing Is that pro· 
gram subsections can be tested separately by using dif­
ferent TP (Task POinter) starting addresses. If It is 
necessary to set up certain registers or parameters in 
memory, a small "setup" program can be run afterini­
tialization, which can load up registers or memory, then 
jump to the program section desired. 

Another technique is to run the programs with break­
point routines so that one can step through code 
segments and follow program execution. Software 
breakpOints are usually implemented by inserting a 
jump or restart to a monitor routine at the breakpoint 
l'Ocatlon. This jump or restart is machine language 
dependent so, unfortunately, the existing breakpoint 
routines within monitors for the 8080 or 8086 are not 
applicable. 

New routines tailored to the 8089 can be used, and, if 
done properly, can even be used to examine programs 
running on a REMOTE bus. Using breakpOints is some­
what complicated on the 8089 because the minimum In­
struction length is two bytes. There is no absolute CALL 
instruction, only a relative one (which would have to 
have its displacement recalculated each time it was 
used). But, with a several-byte absolute jump inserted at 
each place a breakpoint is desired, full breakpoint 
capabilities can be obtained. 

There are many ways the breakpOints can be imple­
mented. When a breakpoint is reached, the 8089 itself 
could output the machine state to a console through Its 
own routines. Better suited to debugging, though, is a 
system that has the 8089 place its machine state in 
memory, alert the host processor, and then halt. The 
host then picks up the 8089's state and can treat it in the 
same way it runs its own breakpoint routines. Since the 
host processor is more likely to be running a monitor or 
some other kind of debugging routine (and most likely 
has at least temporary console 1/0), it is the logical sys­
tem to initiate and examine 8089 breakpOints. If the lOP 
is running in the REMOTE mode, and the host processor 
has access to the 1/0 bus via the scheme mentioned In 
the hardware debugging section, then lOP programs 
running on the REMOTE bus can be examined. 

The breakpoint itself can consist of an escape sequence 
that is used to save the TP value and jump to the save 
routine, or just a jump to the save routine. This routine 
saves all register contents for the channel the break­
point is in, signals the host processor, and stops the 
lOP. All user programmable registers (GA, GB, GC, IX, 
MC, BC, TP), as well as the pointer tags, are accessible. 
The PP (Parameter Pointer) and PSW are not normally 
accessible, but if the generation of the CA Is such that 
the lOP can send Itself a CA, then by sending a CA 
HALT, the PSW will appear at PP + 3. Remember that 

since the lOP doesn't have arithmetic or logical condi­
tion codes, the PSW is not as Important as in other 
machines. 

The most straightforward way to pass data from the lOP 
to the host processor is through the PB (Parameter 
Block) area since the PP will normally remain relatively 
fixed throughout the lOP program. In order not to in· 
fringe on the PB areas used by the programs, an area 18 
bytes long should be allocated at the end of the PB 
block to hold the register contents. Using other areas to 
store the register data requires saving and reloading a 
pOinter register as part of the breakpOint escape 
sequence. 

The data returned from the breakpoint save routine will 
appear to the host processor as a sequential block of 
data in the PB area. Sixteen-bit data can easily be ex· 
tracted, but 20-bit pointer data will have to be 
reconstructed from the move pOinter (MOVP) format: 

7 07 07 

:~~~:~ !D19 ... D1S!rOO! D15 ••• DB D7 ••• DO 

TAG BIT 
O=SYSTEM 

1mUO 

I LOWEST 
ADDRESS 

Several means are available to signal the host processor 
that a breakpoint has been reached. A bit could be set In 
memory or an interrupt sent to the CPU. The best way, 
though, is to use the BUSY flag (at CP + 1 or CP + 9). 
After starting the lOP, the BUSY flag is set to FF. When 
a breakpoint is reached, the lOP performs its save 
routine and does either a software or CA HALT. These 
result in clearing the BUSY flag, which then signals the 
CPU to obtain valid breakpoint data. The CPU can then 
restart the lOP by either a CA START or CA CONTINUE. 

The breakpoint routine outlined above will work for a 
"one-shot" test. However, to be more useful as a 
general purpose debugging tool, some refinements 
must be added. To keep from destroying the program 
whenever a breakpoint is placed, the supervisory pro­
gram running from the host processor must save the 
lOP code that is occupied by the escape sequence. 
When the breakpoint is completed and lOP execution is 
to resume, the host program restores the lOP code, sets 
the TP in the CB area back to where the breakpoint was 
placed, and sends a CA START. Since the length of each 
instruction can be easily found from bits 1-4 of the op­
code, a single stepping function can also be done.· By 
the time this is implemented, the host program is 
becoming a full·fledged debugging routine. Appendix 3 
describes a debugging program that makes use of the 
ideas presented here. 

BreakpOint routines can be quite useful, but some 
restrictions and limitations should be mentioned. The 
processor examining the breakpOints must have access 
to the lOP program memory, either directly, or through 
lOP programs that simulate direct access. The program 
memory must be in RAM. The breakpoint must be 

"The formula for length of instructions Is: length (In bytes) = 2+ 1 (If bits 
1.0=01)+ 1 (If bits 3,2=01) + 2 (if bit 3= 1)+2 (If LPDI). 
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placed on an instruction boundary, and multiple break­
pOints must not be placed so that they overlap. There 
may be some impact on the PB area. CA generation may 
have to be different than usual. But, despite these 
limitations, the breakpoints offer a useful and more con­
ventional software debugging tool than analyzers. 

REAL-TIME TESTING 

Running an lOP program in its final environment with 
real 1/0 devices is the true test of dynamic operation. 
The program is no longer in a static, isolated environ­
ment. The demands of DMA and multiprocessing may 
reveal unplanned timing dependencies or critical sec­
tion problems. There may also be sections of hardware 
or software, which couldn't be tested statically, that 
may have bugs. The whole purpose of static or func­
tional testing is to dig these problems out while con­
venient debugging tools can be used. Since there are no 
simple techniques for real-time debugging, the use of a 
logic state analyzer and techniques to fully understand 
the lOP's real-time operation will be emphasized. 

Multiprocessing operations and real-time asynchronous 
110 requests can cause the timing complexity of the 
system as a whole to rise beyond the point of complete 
comprehension by an individual. It is then essential that 
techniques to ensure correctness are used. These in­
clude good design methods, especially a clean, well­
structured design, as well as good testing. A thorough 
test requires the attitude that the system should be 
tested for failures, rather than tested for correctness. In 
other words, one should try to make the system fail, 
tests should be chosen that will put the worst stress on 
critical timing areas. 

The best way to do this is to write a diagnostic program 
that puts the CPU, lOP, and 110 devices through the 
worst conceivable timing and program combinations. 
Ideally, the program should be self-checking so that it 
can be run without supervision, printing any data or pro­
gram errors that occur, much like a memory test. 

The two main real-time problem areas are insufficient 
data rates or latency, and critical section problems. To 

:-~50MS-­, 
L _______ ~~4 CK-I-~1CK---'-
I IF FIRST / 

RESET IRESET AFTER I 

_ __ I ~O_W_E~ __ Uf_/ 

test for data rate problems, run the system clock at its 
lowest expected frequency and use memory and 110 
with maximum expected wait states. Identify the 
tightest program timings and try to have these sections 
cOincide with worst case DMA or other heavy bus utiliza­
tion (see dual channel operation later). Critical section 
problems can occur when two independent processors 
communicate with each other with improper "handshak­
ing." This can result in one processor missing another's 
message, or even having both processors hang up, 
waiting for each other to go ahead. The 8089 provides 
aids to these problems, including the TSL instruction (to 
implement semaphores) and the BUSY flag. However, 
any interprocessor communication (including one chan­
nel of the lOP to the other) should be checked. Beware 
of cases when one processor is running considerably 
slower than the other (due to DMA overhead or chained 
instruction sequences). 

The techniques for real-time debugging evolve from 
functional testing using a logic analyzer. For all but the 
simplest systems, an analyzer is essential, since it can 
graphically show program execution and timing rela­
tionships during real-time execution. Another aid is a 
delayed oscilloscope. Triggering the scope from the 
logic analyzer, the delay can be adjusted so that any 
signal in the system can be monitored. 

To facilitate the use of the logic analyzer, especially if 
its memory is not very deep or when using it to trigger 
an OSCilloscope, a repetitive system can be used to con­
tinually update the display. Using a repetitive reset 
helps to debug the software-hardware interface, since 
oscilloscope or logic analyzer probes can be readily 
moved around the circuit to observe new Signals 
without manually retriggering the display. At its 
simplest, the reset to the host processor can be strob­
ed, say every 10 ms. The processor will then provide the 
two channel attentions (CAs) that are needed to in­
itialize the lOP. Where this isn't feasible, the CAs can be 
externally forced by either a string of one-shots or a sim­
ple processor with timing loops (such as a SDK-85 or 
SDK-86). See Figure 5 for initialization timing. 
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Figure 5. Initialization Input Sequence 
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Memory protection of the lOP and system programs is 
helpful when debugging OMA operation. It is quite easy 
for runaway OMA to wipe out memory. Another precau· 
tion to avoid this problem is to set an upper limit on the 
number of bytes transferred by always specifying a byte 
count termination. 

Logie Analyzer Techniques 

In the absence of other powerful debugging systems, 
the logic analyzer has shown to be an extremely useful 
tool. Because of its importance in debugging an lOP 
system, some basic techniques and observations that 
relate to monitoring lOP operation will be reviewed here. 
The particular brand or type of analyzer used is not too 
important, but would be desirable to have the following 
features: 

• At least a 24·bit data width 
• Flexible triggering and qualification control 
• Display after triggering on a sequence of states 
• Capability for hexadecimal data display 

It is best to hook up to the address/data lines at the lOP, 
as opposed to looking at the separate address and data 
lines, since 39 lines would be required just to look at ad· 
dress, data and status lines. The three lower status lines 
should be monitored to show the type of bus cycle be· 
ing run. Other lines can be connected where needed, at 
places like the ORQ lines, the EXT lines or other lines 
related to the system. 

For general purpose debugging, triggering the analyzer 
on the rising edge of the lOP clock shows the most 
useful data concerning bus cycles. Of course, using the 
falling edge may be necessary to check certain signals, 
particularly ones that are active only while the clock is 
low. The following discussion is based on sampling 
data on the clock's rising edge. 

One should be careful when setting up the triggering 
for the analyzer that the desired event is what is dis· 
played and not a later event with the same trigger word. 
This can happen when the logic analyzer is in the repet· 
itive trigger mode. It may retrigger before the system ac· 
tually resets. A sequence restart feature is helpful. 

The basis of following program execution and DMA on a 
logic analyzer is to follow an 8089 bus cycle, which is 
identical to a 8086 and 8088 bus cycle. The following 
diagram shows a typical 8089 bus cycle. 

For general purpose debugging, displaying every clock 
is useful, but for quickly finding one's way around a pro· 
gram, the analyzer can be qualified so that only instruc· 
tion fetches (status = 100 or 000), with ALE active, are 
trapped. A much more compact display of execution 
flow resu Its. 

BUS 
CYCLE 

T1 

T2 

T3 

T4 

A16·19 ADO·15 ~ PREVIOUS ADDRESS. UPPER STATUS 

X xxxx 111 IDLE STATUS 

F 0 1 0 1 0 1 2O·BIT ADDRESS = FF010. 

E ~FFF 101 LOWER STATUS = MEMORY DATA READ 

E A A 5 0 111 16-BIT DATA RETURNED=AA50 

E F 0 1 0 1 1 1 ADDRESS REMAINS IN CHIP OUTPUT t LATCH AFTER END OF BUS CYCLE 

DATA NOT READY YET 
UPPER STATUS INDICATES: NON·DMA. CH1 

As mentioned earlier, on a 16·bit bus, most instructions 
starting on odd addresses won't show the first fetch, 
since the internal queue is in use. It is a good idea in 
that case to use only even instruction boundaries as 
trigger words. When following dual channel operation, 
one should keep an eye on the upper status bits (S3-S6), 
since S3 indicates which channel is running (0 = CH1, 
1 = CH2), and S4 indicates DMA/non·DMA transfer 
(0 = OM A, 1 = non·OMA). 

A REVIEW OF lOP OPERATION 
(With things to look out for) 

When trying to get an unfamiliar system going for the 
first time, it is too easy to stumble on apparent prob· 
lems that are really just unexpected operation modes or 
peculiarities of the machine. For this reason the basic 
principles of lOP operation will be reviewed here with 
special emphasis on possible problem areas or pitfalls 
that a user might encounter when debugging a 8089 sys· 
tem. The topics are covered generally in the order en· 
countered when bringing up a system. For complete 
details of operation and some design examples, see the 
8086 Family User's. Manual. 

RESET 
RESET must be active (HIGH) for at least four clocks in 
order to fully initialize all internal circuitry. On power up, 
RESET should be held high for at least 50 microsec· 
onds. The chip is only ready to accept a Channe.1 Atten· 
tion (CA) one clock after RESET goes inactive. 

Note that the SEL pin is sampled on the falling edge of 
the first CA after RESET to tell the 8089 whether it is a 
master (0) or a slave (1) for its request/grant circuitry. If a 
master, it will assume it has the bus from the beginning. 
If a slave, it will strobe the RQ/GT Line to request the 
bus back and will not start any bus transfers until it has 
been granted the bus. If the RQ/GT line is not being 
used, make sure the lOP comes up in the master mode. 

Initialization 

Upon the first CA after reset, a sequence of instructions 
is executed from an internal ROM. These instructions 
pick up parameters and load data from the linked list 
sequence (Figure 6). The instruction sequence is essen· 
tially: 

MOVB SYSBUS from FFFF6 
LPD System Configuration Block (SCB) from FFFF8 
MOVB SOC from (SCB) 
LPO Control Poi nter (CP) from (SCB) + 2 
MOVBI "00" to CP + 1 (clears BUSY flag) 
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Remember that four bytes must be fetched during an 
LPD. If on a 16·blt bus, with even addressed boundaries, 
only two fetches are needed. Otherwise (8·bit bus or odd 
boundaries), four fetches are needed. 

Even though no bus cycles are run to fetch these in· 
structions, the CH1 Task Pointer (TP) appears on the ad· 
dress latches during the short internal fetch periods. 
On power up, this value is meaningless, but if a repeti· 
tive RESET is used, the TP remains unchanged from the 
end of the last program run. See Figure 6 for the start of 
a typical initialization sequence as viewed on a logic 
analyzer. 

Bit 0 in the SYSBUS field sets the actual (or physical) 
system bus width that the lOP expects. In the 8·bit 
mode, only byte accesses are made, and all 8·bit data 
should appear on the lower eight data lines. In the 16·bit 
mode, word accesses can be made (if the address is 
even), all data on even addresses appears on the lower 
eight data lines, and all data at odd addresses appears 
on the upper eight. 

Bit 0 in the SOC field sets the physical width for the 110 
bus. The same rules for the system bus apply here. Note 
that these bits should reflect the actual hardware imple' 
mentation and are not to be confused with the DMA logi· 
cal widths set by the WID instruction. 

The R bit (bit 1) in the SOC field is used to change the 
mode of the RQ/GT circuitry. When the lOP is on the 
same bus as an 8086, it is required to have the R bit be 0, 
with the 8086 as the master and the 8089 as the slave. 

CA 

10 
CK 

14 { 
CK 

6 
CK 

A19-AO S3-S0 

FF F F F 111 
FF F F F 111 
FF F F F 111 
FF F F F 111 
EOO 0 0 111 
EOO 0 0 111 
FF C6 0 111 

FFC60 111 
FF F F 6 101 
EF F F F 101 
EFF 01 111 
EF F F F 111 
EF F F 6 111 
EF F F 6 111 
FF C6 0 111 

FFC60 111 
FF F F 8 101 
EF F F F 101 
EF F F 0 111 
EF F F F 111 
EF F F 8 111 
EF F F 8 111 
EF F F 8 111 
EF F F 8 111 
FF F FA 101 
EF F F F 101 
EF F FA 111 

EF F F A 111 
FF C6 0 111 

T COMMENTS 

Trigger ClK t 

Bus un-tristated 

TP to latch 

T1 Address loaded to latch 
T2 Data not ready yet (nothing on bus) 
T3 SYSBUS loaded into chip (01) 
T4 Nothing on bus 

After bus cycle, address remains in 
latch 

TP is loaded to latch, even though 
fetches are from internal ROM 

T1 Address to latch 
T2 
T3 1st 2 bytes of lPO data fetched (FFFO) 
T4 

2nd 2 bytes of lPO data fetched (FFFA) 

Figure 6. Start of Initialization Sequence On a 16·Bit Bus 

The master (8086 or 8088) can never tab the -bus away 
from the slave (8089); only the slave can give back the 
bus. In other words, during DMA transfers, the 8089 
would not have the bus taken away. This is the only 
mode compatible with the 8086 or 8088. 

Wh~ two lOPs are being used on the same bus, the 
RQ/GT circuity can be put into an equal priority mode 
by setting the R bit to one. A slave can only be granted 
the bus if the master is doing unchained instructions or 
running idle cycles. The master can request the bus 
back from the slave at any time. The slave grants it if do· 
ing unchained instructions or If it is idling. The master 
and slave are put on essentially the same priority. 

At the end of initialization, the "BUSY" flag of CH1 is 
Cleared. For systems where the 8086 is waiting for the 
initialization sequence to end before giving another CA, 
it can set the BUSY flag high prior to initialization. The 
BUSY flag going low is a sign that the lOP Is ready for 
another CA. It is important to remember that the lOP will 
not respond to, nor latch, a CA during an initialization 
sequence. 

Channel Attentions 

The main system processor initiates communications 
with the lOP through the Channel Attention (CA) line. As 
mentioned earlier, the first CA after system RESET in· 
itializes the lOP. All subsequent CAs cause the lOP to 
do a two· step process. It first fetches the Channel Con· 
trol Word (CCW) from the appropriate channel at (PP) for 
channel 1 or (PP + 8) for channel 2. (SEL at the time of 
CA falling determines the channel for all following ac· 
tions.) The lower three bits of the CCW Command Field 
(CF) are examined and then cause the lOP to execute 
the desired function. 

Command Field (CF) 

Control of task block programs is accomplished 
through the command field. The various CF functions 
are: 
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CF 

000 - Examine other field only and set BUSY flag 
001 - Start task program in 110 space 
011 - Start task program in system memory 

The start command causes the following instructions 
to be executed out of the internal ROM: 

LOP CP from (CP) + 2 (CH1) or + 10 (CH2) 
LOP TP from (PP) (for TP in system) or 
MOVB TBP from (PP) (for TBP in 110) 

MOVBI "FF" to (CP) + 1 or+ 9 (set BUSY flag) 
111 - HALT channel. BUSY flag cleared to "00" 
110 - HALT channel. Save state of machine and 

clear BUSY flag by executing: 
MOVP TP to (PP) 
MOVB PSW to (PP) + 3 

MOVBI "00" to (PP) + 1 or + 9 
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The channel will HALT and the machine will con­
tinue execution on the other channel or go to idle if 
the other channel is idle. 

101 - Continue channel. The channel is revived 
after a HALT by executing: 

MOVP TP from (PP) 
MOVB PSW from (PP) + 3 
MOVBI "FF" to (CP)+ 1 or +9 

(set BUSY flag) 

Do not do a CONTINUE after initialization without doing 
a CA START first since the (PP) register in CH1 is used 
as a temporary register (to hold SCB) and is only correct­
ly loaded by a CA START. 

The upper 5 bits in the CCW will have affect if CF = 000 
or upon a CA START. Some things to note about these 
upper fields are: 

• Priority Bit - If both channels are doing tasks of 
the same overall priority, the tasks with the higher 
priority bit will run. If the priority bits are the same, 
execution will alternate between the two channels. 

• BLL Bit (Bus Load Limit) - Keeps nonchained in­
structions from occurring more often than once 
every 128 clocks. However, channel attention or ter­
mination cycles, even on the other channel, may 
disrupt the exact time interval to the next 
instruction. 

It should be noted that the setting or clearing of the 
BUSY flag occurs after the loading or storing of 
registers, so that in a system where the main CPU uses 
the BUSY flag as a form of semaphore to tell when the 
lOP is truly finished, there is no danger that the SCB, 
CP, PP or TP could be changed before the lOP loads 
them. 

Also since DMA termination cycles and chained instruc­
tion execution have a higher priority than CA, it is pOSSi­
ble for CA to be "shut-out" by these higher priorities 
runn'ing on the other channel. However, since CA is 
always latched (except during initialization), it won't be 
forgotten. 

How Can a Channel be Halted? 

Sometimes a channel may stop its operation unex­
pectedly. To see what could cause this, and to show the 
impact of halting a channel, the various ways of stop­
ping a channel are explained: 

HALTED CHANNEL - If the channel has never started 
after initialization, if it has received a CA HALT com­
mand or a software HALT, channel operation is sus­
pended. If the other channel can run, it will, otherwise 
idle cycles will run. Only a CA START or CONTINUE can 
resume operation. 

WAITING FOR A DMA REQUEST - If the channel is in a 
source or destination synchronized DMA transfer mode, 
it will wait until DRQ is active before running its syn­
chronized transfer. To minimize the impact on the 
overall throughput of the chip, the other channel can run 
during these DRQ wait periods. 

WAITING TO GET THE BUS BY RQ/GT - If the lOP has 
given the bus away via Ra/m, it won't initiate any bus 
transfers until it has the bus back. The machine will run 
up to just before T1 of a bus clock cycle and will three­
state its address/data and status pins until it has been 
granted the bus. 

WAITING FOR READY - When running bus transfers, 
READY is sampled at T3 of a busy cycle. If inactive, the 
whole chip will wait until READY goes active. 

The last two cases of waiting (or "wait" states) stop the 
whole chip and do not permit the other channel to run. 
However, with READY inactive or with the bus not ac­
quired, there is not much that can be done on the other 
channel anyway. These two cases only stop the chip 
when running bus cycles. Any internal operations can 
proceed without having the bus or with the system not 
READY. 

Note the difference between when the chip is HALTed 
when using RQ/GT and an external arbiter (8289) for 
bus arbitration. Not having the bus due to RQ/GT will 
inhibit the bus cycle from even starting. Since the 8289 
stops the chip by forcing AEN inactive, which goes 
through the 8284 clock generator to force READY inac­
tive to the lOP (or 8086/8088), a bus cycle has already 
been started, with ALE asserted, and the address on the 
address/data lines. When the bus is obtained, operation 
proceeds at T3 of the bus cycle. 

As will be mentioned later, many invalid opcodes will 
cause the machine to hang up. In these cases the 
address/data lines will point to where the bad opcode 
was fetched. 

Task Execution 

Although optimized for fast and flexible DMA operation, 
the lOP is also a full-fledged microprocessor. The 8086 
Family User's Manual deals with programming 
strategies and other details. Some of the things to be 
noted during debugging will be mentioned here. 

Instruction Fetching 

Unlike the 8085 (but like the 8086), the 8089 labels all 
fetches from the instruction stream, whether OPCODE, 
offset, displacement, or literal data, as an instruction 
fetch on the status lines. In some cases, such as MOV 
R,I and ADD R,I, the instruction fetch time greatly ex­
ceeds execution time because literals are treated as in­
struction fetches. When following programs on a logic 
analyzer, triggering on status = 100 or 000 (instruction 
fetch) and a known program address is the handiest way 
to trace the flow of the program. 

When running programs on a 16-bit bus, a 1-byte queue 
register comes into play, saving the upper byte fetched 
from the last instruction fetch, if not used by the 
previous instruction. This reduces fetch time and bus 
utilization since the odd byte doesn't need to be fetched 
again. An internal four-clock cycle fetches data from the 
queue. Like the internal ROM fetches, the task pOinter is 
put out on the addressldata lines, but no bus cycle is run. 
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The queue can have some possible unexpected affects 
thaI have to be taken into account during debugging. 
These apply only to 16-bit systems and are: 

1. Instructions that start on odd boundaries will not 
likely have bus cycles run to fetch the odd byte 
unless jumped to, unless preceded by LPDI (which 
clears the queue), or an instruction that modifies the 
task pointer is executed. The latter causes the queue 
to be cleared so that part of an old instruction won't 
become part of the new one. 

2. There is a queue register for each channel so loading 
or clearing the queue on one channel has no affect on 
the other channel's queue. 

3. The second word of immediate data fetched by a 
LPDI is done during a pseudo-instruction fetch cycle 
that cannot make use of the queue or already fetched 
data. Thus, if on an odd boundary, fetching an LPDI 
will be byte, word, byte, byte, byte, and the queue will 
not be loaded. 

When Can the Other Channel Interrupt Instruction 
Execution? 

This will be explained more in the "dual channel" opera­
tion section, but a few points will be mentioned here. All 
instructions are made up of internal cycles, with each 
cycle composed of two to eight clocks. Each bus cycle 
is one internal 'cycle, but there 'can be internal cycles 
with no comunications to outside the chip. Internal 
cycles will be extended by the number of wait states in 
each bus cycle, Between any of these cycles, DMA from 
the other channel can intervene if the priorities permit it. 
Instruction fetching and execution can only interrupt in­
structions on the other channel when the instruction 
has been completed, not between internal cycles. 

Registers 

All the registers have some special purpose use in the 
Instruction Execution or DMA, but all except the CC 
register can be used as general purpose registers during 
instruction sequences. A few are loaded specially: 

• CP - Is only loaded during an initialization se­
quence. There is one CP register that handles both 
channels. (All others are duplicated, one set for 
each channel.) 

• PP - Is only properly loaded during a CA START 
command. It holds the SCB value after the initializa­
tion sequence. 

• TP - This is included as part of the registers in the 
RRR field, but cannot be operated on unless you 
plan on having your program execution jump 
around. Every time this is operated on, the queue is 
cleared. The TP is loaded from two words (address 
and displacement) on a CA START, LPD, or LPDI, 
and loaded from 3-byte MOVP format (see illustra­
tion on page 5) on a CA CONTINUE, and can be op­
erated on using any register oriented instructions. 

The following registers are loaded during program exe­
cution, but can have special effects: 

• CC - The only thing that affects instructions in the 
CC register is the chaining bit. If chaining doesn't 
matter (if only one channel is being used without 
channel attentions, for example), then the CC reg­
ister can be general purpose. However, for portabil­
ity of programs, it is strongly suggested not to use 
the CC register except for altering DMA parameters 
and chaining. 

• MC - Is a general purpose 16-bit register, but is 
also used to do a masked comparison either for 
DMA search/match termination or for the JMCE and 
JMCNE instructions. 

• BC, /X - Both general purpose 16-bit registers. In 
instructions that reference memory using the AA 
field, if AA = 11, the IX register is incremented by 
the number of bytes fetched or stored. 

• Pointer Registers (GA, GB, GC and TP) - Are 20-bit 
registers, but can also be used as 16-bit registers. 
Adds will carry into the upper 4 bits, but other 
operations (COMP, OR, AND) are done only on the 
lower 16 bits. Note that when used as pOinters to 
system memory, it is possible to add a large 16-blt 
number to the pointer and to put the pointer Into 
another 64K block of memory. 

Sign Extension 

All program data brought into the chip, either literals or 
displacements in opcodes, or program data fetched 
from memory, is sign-extended. Offsets used for 
calculating addresses are not sign extended. Any 8-blt 
data brought in has bit 7 sign-extended up to bit 19_ 
Sixteen-bit data is sign-extended from bit 15 to bit 19. It 
is important to note this, because it can affect logical 
operations. For example, if one wanted to OR 0084H 
with 1234H in register GC, you couldn't do ORBI GC, 
84H, because bit 7 would sign-extend into the upper 
byte. Instead, you should code ORI, 0084H to do this 
properly (note that this has a word for the immediate 
data). The non-ADD operations will cause the upper four 
bits of the pOinter registers to be invalid since the upper 
four bits of the ALU come only from the adder. 

Tags 

It should be noted that the way the lOP knows which 
bus to access (system or I/O) is via the Tag bit associ­
ated with the pointer register used. The TAG can only be 
set in these ways: loading as a 16-bit register (MOV R,M, 
MOV R,I) sets TAG to I/O space, loading as a pointer 
(LPD, LPDI) sets TAG to a system space), or bringing the 
TAG in from memory by a MOVP instruction. 

Effects of Inralld Opcodes 

The upper 6 bits of the 2-btye opcode actually determine. 
which opcode will be executed. If these bits are a valid 
opcode, but lower bits are invalid, the chances are good 
that the bad bits will be ignored. But if the upper six bits 
are invalid, there is a very good chance that the chip will 
hang up and stop execution in that channel. The only 
way to get out of this mode is to reset the chip. If this 
hang-up occurs, it can usually be traced because the 
last address of the instruction fetch will still be on the 
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address/data lines, showing where the program went 
astray. 

Going from Instruction Execution into DMA 

The XFER instruction places the current channel into 
the OMA mode after the next instruction. This permits 
one last instruction to start up an I/O device (start CRT 
display on an 8275, for example). However, in order for 
the lOP to get setup for OMA, the GA, GB, and CC 
registers should not be altered during this last instruc­
tion. Failure to observe this will probably result in an 
improper first OMA fetch. The WID instruction can be 
placed after XFER. 

DMA Transfers 

tncrementing/Non·lncrementing pointers 

A memory or I/O pOinter can be made to increment for 
each byte transferred during OMA or it can remain fixed. 
Incrementing is used primarily for memory block 
transfers, and non-incrementing is used to access I/O 
ports. 

B/W Mode 

Each OMA transfer is composed of separate fetch and 
store cycles so that 8/16-bit data can be assembled and 
disassembled, and translation and termination may also 
be easily handled. There are four possible transfers or 
B/W modes. They are: 

B - B-1 byte fetched, 1 byte stored 
B/B - W - 2 bytes fetched, 1 word stored 
W - B/B - 1 word fetched, 2 bytes stored 
W - W - 1 word fetched, 1 word stored 

The B/W mode used depends on the logical bus width 
(selected by the WID instruction), address boundary, 
and incrementing mode. 

All systems with 8-bit physical buses wil.1 run in the B/B 
mode. On 16-bit physical buses the other modes are 
possible, depending on the logical widths selected. 
Note that the logical bus width can be different than the 
physical bus width since there are cases where an 8-bit 
peripheral may be used on a 16-bit bus. The selection of 
the logical width, and not the physical width, is what 
determines the B/W mode. Thus it is the responsibility 
of the programmer not to program an invalid combina­
tion (i.e., don't specify a 16-bit logical width on an 8-bit 
physical bus). 

Any transfer on an odd boundary will be B/B but if the 
pointer is incrementing and on a 16-bit logical bus, after 
the first transfer, the pointer will be on an even .bound­
ary. The lOP will then try to maintain word transfers in 
order to transfer data as effeciently as possible. See the 
user's manual for details. The change in B/W mode oc­
curs only after the first transfer or, as explained in the 
termination section, upon certain byte count ter­
minations. 

Synchronization 

In the unsynchronzied mode, transfers occur as fast as 
priorities will allow. This is the lOP's "block-move" 
mode. Most I/O peripherals only want a OMA transfer on 
demand; the ORO lines, along with synchronization 
specified, will handle this need. Source synchronization 
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is used for I/O reads and destination synchronization is 
used for I/O writes. 

If the lOP is waiting for a OMA request, it will run pro­
grams or OMA on the other channel, or execute idle 
cycles if nothing is pending. If running idle cycles when 
the ORO comes, the transfer starts five clocks after 
ORO is recognized. If running OMA or instructions on 
the other channel, the ORO cannot be serviced until the 
current internal cycle is done, and may require a max­
imum of 12 clocks (without bus arbitration or wait 
states). 

Consecutive ORO-synchronized OMA transfers on the 
same channel are separated by four idle clocks (assum­
ing no other delays) by an internal sampling mechanism. 
This happens between the 2-byte fetches on source­
synchronized B/B-W cycles, and between the two stores 
on destination-synchronized W-B/B cycles. This delay 
between consecutive OMA cycles allows adequate time 
for proper acknowledgement of the current DMA re­
quest before the next request is processed. On 
destination-synchronized OMA, this isn't a problem, but 
on source-synchronized OMA, there will be four extra 
clocks per transfer. Unless one is running right at the 
speed limit, this won't be a problem. Near the maximum 
data rate, unsynchronized transfers can be used, with 
synchronization done by manipulating the READY line. 

Trans/ate Mode 

When the translate bit is set, the data fetched during 
OMA will be added to the GC register. This new pointer 
will in turn be used to fetch, via a seven clock extra fetch 
cycle, new data, which will then be stored. Translate is 
only defined for byte transfers. The bytes are added to 
GC as a positive offset, so a lookup table for translating 
data can be a maximum of 256 bytes long. Even if the 
data to be translated falls within a smaller range (such 
as ASCII code), a full 256-byte lookup table is recom­
mended so that erroneous data can be flagged and con­
trolled. 

Translate can be run on any of the B/B transfer modes, 
so it is useful for doing block translation within program 
execution as well as translation directly to or from an I/O 
port. 

DMA Termination 

One of the powerful features of the lOP is its varied 
DMA termination conditions and their close tie-in with 
resuming Instruction Block programs. However, be­
cause of the multitude of DMA modes, care must be 
taken in predicting the exact termination parameters. 
Various things to be careful about will be outlined here. 

Byte Count (BC) Termination 

The Be register is decremented for every byte trans­
ferred whether or. not Be termination is set. If Be ter­
mination is set, the last transfer done is the one that 
results in Be being zero. To avoid the problem of miss­
ing Be= 0 on word transfers, if Be is odd between every 
transfer, the lOP detects when Be is 1, and forces the 
last transfer to be in the BIB mode. Since both the fetch 
and store cycles are complete, the source and destina­
ti.on pOinters point exactly to the next byte or word that 
would have been fetched. 
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Mesked Compere (MC) Terminetion 

An MC termination occurs when a pattern matches (or 
doesn't match, depending on mode selected) the lower 
half of the MC register (the match pattern) with only the 
bits that are enabled by the upper half of MC (the mask 
pattern) contributing to a match. Thus the masked bits 
can be "don't cares" in both the data byte and the match 
byte. 

The masked comparison is only done on store (deposit) 
cycles. Any bytes transferred (in BIB or W-B/B mode) will 
be compared. But, since the MC comparison is done on 
only one byte, any words stored (W-W or B-BIW) have 
only their lower byte compared. This may be fine, but if 
not, make the destination logical width 8 bits. 

Just like BC termination, the pointers will point to the 
next data to be transferred. The BC will also be decre­
mented correctly, except if the termination occurs on 
the first byte of a W-B/B transfer. In this case the BC will 
be decremented as if the entire transfer (both bytes) had 
taken place. 

The store cycle that causes an MC termination will be 
lengthened by two extra clocks (or by one extra clock if 
there are walt states), to allow time to set up the ter­
mination cycle. 

MASK PATTERN ____ oJ MATCH 

Figure 7. Masked Compare Logic lor 1-811 

Externel (EXT) Terminetion 

External termination allows the I/O devi.ce or controller 
to use its own conditions to generale a termination. 
Basically, the lOP will halt OMA as soon as Itrecognizes 
an EXT terminate, even if a transfer is only partially com­
plete. There might be concern that multi byte cycles 
(W-B/B or B/B-W) might have data lost If an EXT ter­
minate stopped the store cycle. In unsynchronlzed OMA 
this would happen, but this mode Is typically not used 
with I/O controllers that could generate external ter­
minations. In synchronized OMA modes, it Is assumed 
that the I/O controller will only do a ORQ for valid data 
transferred, and ttiat it won't give an EXT terminate with 
Its ORQ active. In destination synchronization, the 
possible problem occurs In the W-B/B mode, where EXT 
terminate comes after the first store but before the sec­
ond. This Is fine, since even though data was over­
fetched, the proper amount was actually transferred. In 
source synchronization, the B/B·W mode raises prob­
lems since if an EXT terminate came after the first byte 
fetched and before the second byte fetched, normally 
no store cycles would be done at all; thus losing the first 
byte fetched. In this case (Le., source synced, ORQ Inac· 
tive, and 1 byte already fetched), a ,single byte store 
cycle is run before the termination cycle, ensuring data 
integrity. . 

In orderto prevent an invalid signal level from becoming 
trapped from the asynchronous EXT term lines, two 
clocks of delay and signal conditioning are done on 
these lines. In addition, a termination cycle can only be 
started at certain times during OMA (or TB on the other 
channel - see dual channel operation section). The EXT 
terminate lines should be valid eight clocks before the 
start of the OMA cycle to be stopped. 

EXT is sampled even when the lOP is running something 
on the other channel. Remember though, that despite 
the high priority {)f termination, the current Instruction 
on the other channel has to finish before the termination 
cycle is run. Simultaneous EXTs on both channels result 
in CH1 termination being done first. 

In order to have enough time to process a byte count ter­
mination, the BC register is always decremented during 
OMA fetch cycles. Because of this, external or MC ter­
minations that occur during W·B/B cycles will result in 
the byte count always being decremented by two, even 
if only one byte is stored. This also occurs In the block­
to-block or block-to-port B/B-W modes. To find the exact 
number of bytes transferred, the source pointer addre&6 
can be checked in the block-to-port and block-to-block 
modes during B/B-W cycles and In the block-to-port 
W-B/B mode. The destination pointer address can be 
used to find the number of bytes transferred in the port­

. to-block and block-to-block modes during W-B/B cycles. 

Termlnetlon Cycles end Multiple Termlnetlons 

Upon termination, the user can run different task block 
programs, depending on which type of termination has 
occurred, by specifying an appropriate termination off­
set. That is, instruction fetching will begin after a 
termination cycle starting at either the TP value before 
the OMA started, TP + 4 or TP + 8. These offsets permit 
long or short jumps to termination routines. 

The termination cycle is an add immediate instruction 
that runs from the internal ROM and adds the proper off­
set to the TP. It is 15 clocks long for'TP + 4 and TP + 8 
termination and 12 clocks long for TP+ o termination. 

As mentioned earlier, EXT terminate must. come a cer­
tain time before the end of a transfer to ensure that the 
next transfer doesn't start. If it comes In time and MC 
termination also occurs on the current transfer, then the 
termination cycle with the largest offset is run. A 
simultaneous BC terminate cycle will have priority over 
MC and will result in the running the BC termination 
program. 

Priorities/Dual Channel Operation 

Tile lOP can share its internal and external hardware 
between two separate channels. The user sees two 
identical lOP channels with all registers, machine flags, 
etl)., independent of the other channel. The only register 
In common Is the CP register, loaded by the initializa­
tion sequence. The mechanism for achieving dual chan­
nel ,operation is time multiplexing .between the two 
channels. 

Since interleaving two channels affects their respGIlse 
time to external events and since Interfacing to these 
events.is the prime purpose of the lOP, several means of 
adjusting the priorities of the channels are provided. 
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Before going into the priority algorithms in detail the 
four types of cycles that are affected by the priorities 
will be outlined: 

1. DMA Cycles - Any type of DMA transfer cycle, 
including single transfers and translate cydes. DMA 
can be interrupted after any bus transfer by the other 
channel. 

2. Instruction Cycles - Any instructions that have 
been fetched out of 1/0 or system memory. Instruc· 
tion cycles are made up of internal cycles, each two 
to eight clocks long (assuming no wait states). Some 
cycles may not run bus transfers. Instructions can be 
interrupted by DMA after anyone of the internal 
cycles, but can only be interrupted by instructions on 
the other channel (normal ones or ones from internal 
ROM) after the current instruction is completed. 

3. Termination Cycle - Performed when DMA transfers 
end and instructions resume (except on Single 
transfers). 

4. Channel Attention Cycles - Performed when chan· 
nel attention is given, performs actions specified in 
the CCW field. Both termination and CA cycles can 
be interrupted by DMA after any internal cycle, but 
can only be interrupted by instruction cycles after 
the complete sequence of internal cycles is done. 

Termination and channel attention cycles as well as the 
initialization cycle (which never runs concurrently with 
other operations) are sequences of instructions fetched 
from an internal ROM. 

Recognizing the higher importance in doing DMA, ter­
mination and (to a lesser extent) CA cycles, the follow­
ing priority scheme is built into the lOP. Any channel 
that has a higher-priority operation will run continuously 
until done. If both channels are running the same priori­
ty, execution will alternate between them. 

Highest Priority 

1. DMA transfers, termination, chained instructions 
2. Channel attention cycles 
3. I nstruction cycles 
4. Idle cycles 

Lowest Priority 

Two ways exist to alter the priority scheme. One way is 
to utilize the priority bits for each channel. If one is 
greater than the other, that channel will run at the ex­
pense of the other if both channels are otherwise run­
ning at the same priority. Thus the P bit only has effect 
on channels running at the same priority level. 

If one wants to run instructions along with or in place of 
DMA on the other Channel, the other technique is to set 
the chaining bit (in the CC register) which brings the 
instruction priority up to the level of DMA. Care should 
be taken with this since now CAs are at a lower priority 
than instructions and will not be serviced unless that 

channel goes idle. Chaining will also lock out normal in­
structions on the other channel. Chaining should thus 
be used with care. 

In order to reduce the possibility of shutting out channel 
attentions, an exception is made to the above priority 
scheme. After every DMA transfer, whether synchro­
nized or unsynchronized, the lOP will service any pend­
ing CA. However, chained task block execution will still 
shut out CAs on the other channel. 

What is the importance of priorities? Well, as an 
example, let's say that we are running long periods of 
non·time-critical block moves (via DMA) on one channel 
and running short bursts of DMA that must be serviced 
promptly on the other channel. With the defaul.! 
priorities, the short DMA channel bursts would be in· 
terleaved with the longer DMA, reducing the maximum 
transfer rate for both channels. If, however, the priority 
bit was one on the burst mode DMA and zero on the 
other, the bursts would be serviced continuously at the 
fastest possible data rate. 

An even more critical case would be the same low prior· 
ity, long DMA transfers on one channel with DMA on the 
other channel that must terminate, run a short instruc· 
tion sequence, and resume DMA again within a short, 
fixed time. (This might be the case in running a CRT dis· 
play with linked list processing between lines.) Normal­
ly, the low priority, long DMA could indefinitely block 
the short TB sequence. By setting the high·priority chan· 
nel's priority bit to one and putting it into the chained 
instruction mode, the low priority channel would stop 
its DMA entirely so that the terminationlinstruction se· 
quence could run. 

When establishing the priorities to be run, care should 
be taken that both channels will run successfully under 
a worst case combination. This can be tricky when the 
channels are running asynchronously with fast data 
rates and/or short latencies, but must be taken into ac· 
count. Of course, running only one channel on the lOP is 
an easy solution, but if more than one lOP is being used 
in the system, the priorities and delays of the bus ar· 
bitration used (either RQ/GT or an 8289 bus arbiter) must 
be taken into account. It may be found that the on·chip 
arbitration between the two channels is faster and more 
powerful than external arbitration. 

SUMMARY 

It is hoped that the material presented here will aid 
those who are putting together and debugging an 8089 
lOP system, and help them in understanding the opera· 
tion of the lOP. Many of the debugging techniques 
should be familiar to those who have worked with micro· 
and minicomputer systems before. Other debugging 
techniques not mentioned here, which work well with 
microprocessor systems, could be just as applicable to 
the 8089. The unique nature of the lOP among LSI 
devices warrants special consideration for its I/O func· 
tions and multiprocessor capabilities. 
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Appendix I 

CHECKLIST OF POSSIBLE PROBLEMS 

HARDWARE PROBLEMS 

• Is RESET at least four clocks long? 

• Are both Vss lines connected to ground? 

• Does the first CA falling edge come at least two clocks 
after RESET goes away? 

• Does the second CA come at least 150 clocks (16-bit 
system, no wait states) after the first CA? 

• Is READY correctly synchronized and gated by 
local/system bus lines? 

• Is SEL correct for first CA so that lOP comes up cor­
rectly as master or slave? 

• If two lOPs are local to each other, is a 2.7K pull-up re­
sistor used on RQ/GT? 

SOFTWARE PROBLEMS 

• Are the initialization parameters in the initialization 
I inked-list correct? 

• Is BUSY flag being properly tested by host CPU soft­
ware before modifying PB or providing a new com­
mand? 

• Has the chaining, translate, or lock bit in the CC 
register been erroneously set? 

• Have DMA termination conditions been met? The lOP 
could be trying to do endless DMA. 

Appendix II 

BREAKPOINT ROUTINE 
AND 

CONTROL PROGRAM 

The debugging program described here is an example of 
the kind of software development tool that can be 
developed for the 8089 lOP. It was written to tryout 
various breakpoint schemes, and has been used to 
debug an engineering application test system. The pro­
gram is not meant to be the ultimate debugging tool, but 
is an example of what can be put together to utilize the 
breakpoint routine described earlier in the application 
note. 

The debugging program was tested on a 8086-based 
system that emulates the SDK-86 110 structure, and uses 
the SDK-86 serial monitor. This enables it to use the 
SDK-86 Serial Downloader to interface to an 
Intellec@ development system on which the software 
was created. The 8086 system is interfaced via a 
MULTIBUS™ interface to an lOP running in the REMOTE 
mode. The remote bus access technique, mentioned 
earlier in this note, is implemented on this system, but 
was not used in the software debugging program. 

The breakpoint routine uses a simple jump to a save 
routine. The PUM-86 supervisory or control program 
handles the placement of the jump within the users pro­
gram. Since it can not normally access the remote bus, 
all lOP programs to be tested must run out of system 
memory. 

When the control program starts, it assumes the lOP has 
just been reset. It then prompts the user for the CP 
and PP values. After this, it sends the first (initialization) 
channel attention. It then asks the user for the channel 
to be run, and the starting and stopping addresses. After 
the stopping address has been entered, a Channel At­
tention Start is given. If the breakpoint is reached, a 
HALT is executed, and the control program prints the 
register contents. If the breakpoint hasn't been reached, 
the user can type any character, and a Channel Atten­
tion Halt will be sent to the lOP. If the lOP responds 
within 50 ms, the TP where it was halted is printed. 
Otherwise, the control program issues an error 
message. If, at any time, the user wants to get out of the 
program, typing an ESC will pass control back to the 
SDK-86 monitor. Figure 9 shows the flow of the control 
program. 

Note that, unlike a single CPU debugging routine, hav­
ing the 8086 supervise the 8089 enables a clean exit 
from crashed lOP programs. The program code where 
jumps had been placed are always restored. The control 
program is a good example of how the power of dual 
processors can be put to good advantage. 

Comments within the control program indicate 
parameters that need to be changed to run on different 
systems. It should be noted that channel attentions are 
invoked by the recommended method of using an 110 
write to a port to generate CA and using AO for SEL. 

Source and object files of this program are available 
through Intel's INSITE™ User's Program Library as pro­
gram 8089 Break. 89 (number AD6). 

MASTER DATA STORAGE LOCATIONS: 

TP 

TP 

GA 

GA 

GB 

GC GB 

GC 

BC 

IX 

cc 
MC 

=l INCREASING 
ADDRESS 

pp -

-

-

--l-
I--

pp+ 239 

pp+ 242 

pp+ 245 

PP + 248 
pp+ 250 

PP+ 252 
pp+ 254 

Figure 8. Breakpoint Routine to Run 8089 Program out of System 
Memory 
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Figure 9. Breakpoint Routine to Run 8089 Program out of System Memory 
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PL/M-86 COMPILER 8089 BREAKPOINT ROUTINE 

ISIS-I I PLlM--86 Xl03 COMPILATION OF MODULE BREAKPOINT 
OBJECT MODULE PLACED IN BREAK.OBJ 
COMPILER INVOKED BY: . Fl: PLM86 BREAK. SRC PAGEWIDTH (100) 

2 
3 
4 
5 
6 

7 
8 
9 

10 

11 

$TITLE ('8089 BREAKPOINT ROUTINE') 
; .. 

8089 BR~AK POINT PROCEDURE 
WRITTEN BY DAVE FERGUSON 2/2/79 
INTEL CORPORATION 

BREAK$POINT: 
DO; 
DECLARE I BYTE; 

REV 2 8/14179 

DECLARE SAVECODE (4) WORD; I*BUFFER FOR STORAGE*I 
DECLARE ON~PP POINTER; 1* CHAN ONE PP *1 
DECLARE TWOPP POINTER; 1* CHAN TWO PP *1 
DECLARE STARTBYTES (4) BYTE; 1* BUFFER FOR START ADDRESS *1 

DECLARE STARTPOINTER POINTER; 1* POINTER FOR START ADDR. *1 
DECLARE ENDPOINTER POINTER; 1* POINTER FOR END ADDR. *1 
DECLARE PRESENT POINTER AT (@INPNTR); 1* POINTER BUFFER *1 
DECLARE TRUE LITERALLY 'OFFH', FALSE LITERALLY 'oaoH'; 

1* YOU MUST CONFIGURE YOUR 1/0 STRUCTURE AND 
SYSTEM TO MATCH THE PROGRAM OR VISA VERSA *1 

DECLARE CRTSTATUS LITERALLY '0F,FF2H', 1* 8251 STATUS PORT *1 
CRTDATA LITERALLY 'OFFFOH', 1* 8251 DATA PORTS *1 

... *1 

CHANATTEN LITERALLY 'OFAH', 1* CHANNEL ONE CHANNEL ATTENTION PORT *1 
1* CHANNEL TWO CHANNEL ATTENTION PORT = CHANATTEN + I *1 

CHANNEL ONE LITERALLY 'OOH', 
CHANNELTWO LITERALLY 'OIH', 

1* ASCII IS A STRING OF HEX CHARACHTERS IN ASCII FORM *1 
ASCII (*) BYTE DATA .('0123456789ABCDEF'), 
TITLE$STRING (*) BYTE DATA (OAH,ODH, '8089 BREAKPOINT VER 1.0', 

OAH,ODH, 'TYPE ESCAPE TO RETURN TO MONITOR. " 
OAH, ODH, 0), 

CHANGIVEN (*) BYTE DATA ('CHANNEL ATTENTION GIVEN TYPE ANY KEY TO ABORT. ' 
,OAH, ODH, 0), 

BKREACHED (*) BYTE DATA (OAH,ODH, 'BREAKPOINT REACHED',OAH,ODH,O), 
GETCP (*) BYTE DATA ('INPUT CP IN HEX',OAH,ODH,OO), 
GET$PP (*) .BYTE DATA ('INPUT PP. IN HEX FOR ',OOH),. 

PAGE 

GETSTART (*) BYTE DATA (OAH,ODH, 'INPUT STARTING ADDRESS IN HEX',OAH,ODH,OOH), 
STOPADDR (*) BYTE DATA ('INPUT END ADDRESS IN HEX',OAH,ODH,OOH), 
CHANNUMBER (*) BYTE DATA (OAH,ODH, 'CHANNEL ONE OR TWO? ',OOH), 
ABORT (*) BYTE DATA (' FATAL ERROR - lOP DOES NOT RESPOND TO CHANNEL', 
, ATTENTION. RE-INITIALIZE SYSTEM ',0), 
ABORTAT <*) BYTE DATA (' TP WAS ',0), 
ONE (*) BYTE DATA (' CHANNEL ONE',OAH,ODH,OOH), 
TWO (*) BYTE DATA (' CHANNEL TWO',OAH,ODH,OOH), 
GASTRING (*) BYTE DATA ('GA = ',OOH), 
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il 

12 
13 

14 

15 

16 
17 

18 

19 
20 
22 
23 

24 

2S 
26 
28 
29 
30 
32 
33 

34 

35 
36 
37 
39 
40 
41 

2 

2 
2 

2 
2 
2 
2 

1 
2 
2 
2 
2 
2 
2 

2 
2 
3 
3 
2 
2 
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('GB = ',OOH), 
('GC = ',OH), 

GBSTRING (*) BYTE DATA 
GCSTRING (*) BYTE DATA 
BCSTRING (*) BYTE DATA 
IXSTRING (*) BYTE DATA 
CCSTRING (*) BYTE DATA 
MCSTRING (*) BYTE DATA 

(OAH,ODH, 'BC = ',OOH), 
(OAH,ODH. 'IX ',OOH), 
(OAH.ODH. 'CC ',OOH), 
(OAH,ODH, 'MC, = ',OOH) 

DECLARE CHAR BYTE. 
DECLARE ONETWO BYTE. 

1* SDKMON IS A PLM TECHNIGUE USED TO FORCE THE CPU INTO AN 
INTERUPT LEVEL 3, IN ORDER TO USE THIS THE PROGRAM MUST 
BE COMPIL.ED (LARGE>' *1 

SDKMON: 
PROCEDURE. 

DECLARE HERE (*) BYTE DATA (OCCH), 
1* THIS IS AN INT, 3 *1 

WHERE WORD DATA(,HERE). 
CALL WHERE. 

END. 

1* CO SENDS A CHAR TO THE CONSOLE WHEN READY *1 
1* THIS ROUTINE IS WRITTEN TO RUN VIA THE SERIAL 

PORT OF AN SDK86 *1 
CO: 
PROCEDURE (C). 

DECLARE C BYTE. 
DO WHILE (INPUT(CRTSTATUS) AND 01H) 
OUTPUT (CRTDATA) = C. 

END. 

0, END, 

1* CI GETS A CHARACHTER FROM THE USER VIA THE SERIAL PORT *1 
1* CI AUTOMATICALLY ECHOS THE CHARACHTER TO THE USER CONSOLE *1 
DECLARE tSCAPE LITERALLY 'iSH', 

CI: PROCEDURE BYTE, 
DO WHILE (INPUT(CRT$STATUS) AND 02H) = 0, END, 
CHAR = INPUT (CRTDATA) AND 07FH, 
CALL CO(CHAR), 
IF CHAR = ESCAPE THEN CALL SDKMON, 1* GO TO SDK MONITOR *1 
RETURN CHAR, 

END, 

1* VALIDHEX CHECKS THE VALIDITY OF A BYTE AS A HEX CHARACHTER*I 
1* THE PROCEDURE RETURNS TRUE IF VALID FALSE IF NOT *1 

VALIDHEX: 
PROCEDURE (H) BYTE, 

DECLARE H BYTE, 
DO 1=0 TO LAST(ASCIl), 

IF H-ASCII(I) THEN RETURN TRUE. 
END, 
RETURN FALSE, 

END, 

A-103 

'Ii' 

PAGE 2 



PL/M-86 COMPILER 

42 

43 2 
411 2 
46 2 
47 3 
49 3 
50 2 

51 

52 2 
::;3 2 
54 2 
55 2 

56 

57 2 
58 2 
59 2 
60 2 

61 

62 

63 2 

64 2 
65 2 
66 2 
67 2 

68 2 
69 2 
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1* HEXCONV CONVERTS A HEX CHARACTER TO BINARY FOR MACHINE USE. : 
IF THE CHARACTER IS NOT A VALID HEX CHAR. THE PROCEDURE RETURNS 
THE VALUE OFFH *1 

HEXCONV: 
PROCEDURE (OAT) BYTE, 

DECLARE OAT BYTE, 
IF VALIDHEX(DAT) () OFFH THEN RETURN TRUE, 
DO 1=0 TO LAST(ASCII), 

IF OAT = ASCII(I) THEN RETURN I, 
END, 
END, 

1* HEXOUT'WILL CONVERT A VALUE OF TYPE BYTE TO AN ASCII STRINQ 
AND SEND IT TO THE CONSOLE *1 

HEXOUT: 
PROCEDURE (C) , 

DECLARE C BYTE, 
CALL CO(ASCII(SHR(C.4) AND OFH», 
CALL CO(ASCll (C AND OFH», 

END; 

1*. WORDOUT CONVERTS A VALUE OF TYPE WORD TO AN ASC I I STR ING 
AND SENDS IT TO THE CONSOLE *1 

WORDOUT: 
PROCEDURE (W), 

DECLARE W WORD; 
CALL HEXOUT(HIGH(W»; 
CALI_ HEXOUT(LOW(W»; 

END; 

I" G'ETADDRESS IS A PROCEDURE'TO GET AN ADDRESS FROM THE CONSOLE, 
THIS PROCEDURE WILL ONLY CONSIDER THE LAST::; CHARACHTERS ENTERED 
*1 

DECLARE INPNTR (4) BYTE; 

GET$ADDRESS: 
PROCEDURE POINTER; 

DECLARE BUFF BYTE; 
I*CLEAR ALL VALUES TO ZERO *1 

I NPNTR (Q) 0; 
INPNTR(I) 0; 
INPNTR(2) 0; 
INPNTR(3) 0; 

BUFF = 0; 
DO WHILE BUFF () TRUE; 

1* THIS SEGUENCE OF SHIFTS ALLOW THE USER TO TYPE IN FIVE 
OR MORE CHARACHTERS TO BECOME THE ACTUAL POINTER FOR aoac;> 
OR 8086, THIS PROCEDURE RETURNS THE LAST FIVE IN PROPER 
SEGUENCE STORED IN INPNTR(0-3). THE STORAGE 
IS AS FOLLOWS: 

I, THE LAST CHARACTER INPUT GOES INTO 
THE LOW FOUR BITS OF INPNTR(O). 

2, THE NEXT TO LAST CHARACTER GOES INTO 
THE LOW FOUR BITS OF INPNTR(2). 
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70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

80 

81 
82 
83 
84 
85 
86 
87 

8B 

89 

90 
91 
92 

93 
94 
95 

96 
97 
98 

3 
3 
3 
3 
3 
3 
2 
2 
2 
2 

2 
2 
2 
3 
3 
3 
2 

2 
2 
2 

2 
3 
3 

2 
3 
3 
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3. THE THIRD CHARACTER INPUT GOES INTO 
THE HIGH FOUR BITS OF INPNTR(2) 

4. THE SECOND CHARACHTER INPUT GOES INTO 
THE LOW FOUR BITS OF INPNTR(3) 

5. THE FIRST CHARACTER INPUT GOES INTO 
THE UPPER FOUR BITS OF INPNTR(3). 

THE 86 SHIFTS INPNTR (2.AND3) LEFT FOUR BITS AND ADDS THIS TO 
INPNTR(O) RESULTING IN THE ADDRESS THE USER TYPED IN. *1 

INPNTR(3) = (SHL(INPNTR(3).4) OR (SHR( INPNTR(2).4) AND OFH), 
INPNTR(2) = (SHL(INPNTR(2).4) OR (INPNTR(O) AND OFH», 
INPNTR(O) = BUFF, 
BUFF = CI, 
BUFF = HEXCONV(BUFF) , 

END, 
CALL CO(OAH), I*LINE FEED TO CRT*I 
CALL CO(ODH), I*CARRIAGE RET TO CRT*I 
RETURN PRESENT, 1* PRESENT IS A POINTER TO THE ARRAY INPNTR. *1 

END, 

1* STRINGOUT IS A PROCEDURE TO SEND THE CONSOLE AN ASCII STRING 
ENDING IN THE VALUE 00. STRINGOUT NEEDS A VALUE OF TYPE POINTER 

*1 

STRING$OUT: 
PROCEDURE( PTR), 

DECLARE PTR POINTER.STR BASED PTR (1) BYTE, 
I = 0, 
DO WHILE STR(I) (> 0, 

CALL CO(STR( I»), 
I = I + 1, 

END, 
END, 

DECLARE TAGIS (*) BYTE DATA (. OPERATING IN '.0). 
TAGISONE <*) BYTE DATA ('10 SPACE'.OAH.ODH.O). 
TAGISZERO (*) BYTE DATA ('SYSTEM SPACE'.OAH.ODH.O), 

1* TAGTEST TESTS THE TAG BIT AND SENDS A MESSAGE TO THE CONSOLE 
THE TAG IS LOCATED IN BIT THREE. A TAG BIT OF ONE MEANS THE 
POINtER IS TO liD SPACE. AND A TAG BIT OF ZERO MEANS THE 
POINTER IS TO SYSTEM SPACE *1 

1* THE CALLER MUST DECIDE WHICH BYTE HAS THE TAG AND PASS IT TO TAGTEST *1 

TAGTEST: 
PROCEDURE (TEST) , 

DECLARE TEST BYTE, 
CALL STRINGOUT(@TAGIS), 
IF (TEST AND 01000B) (> 0 
THEN 
DO, 

CALL STRINGOUT(@TAGISONE), 
END, 
ELSE 
DO, 

CALL STRINGOUT(@TAGISZERO), 
END, 
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qq 

100 

101 

102 

103 
104 

1,)5 

IC.6 

107 
108 
IG9 
110 
111 

1 1 '-' 

113 
114 

115 

lIb 
117 

118 
Ilq 

120 

2 

2 

2 
;;> 
2 
2 
;;> 

;;2 
2 

END, 
DECLARE SAVE$ADDR LITERALLY '2000H', 

SAVE$SEG LITERALLY 'OOCOH', 

DECLARE BREAK89 (4) WORD DATA (9B8IH,089IH,SAVE$ADDR,SAVESSEG); 
1* BREAK89 IS AN 4 WORD ESCAPE SEQUENCE TO ADDRESS 2000H 

CONSISTING OF AN LPDI TP,SAVE$ADDR WITH SEGMENT, 
LOCATED AT OCOOH, *1 

1* BRKRTN IS 33 BYTES OF CODE THAT STORES ALL REGISTERS 
AS FDl LOWS 

GA STORED AT PP + 239 
GB STORED AT PP + 242 
GC STORED AT PP + 245 
BC STORED AT PP + 248 
IX STORED AT PP + 250 
CC STORED AT PP + 252 
Me STORED AT PP + 254 

*1 

DECLARE BRKRTN (33) BYTE AT (02COOH) 
i* 02COOH IS ACTUALL,Y (SAVE$ADDR + (SHUSAVE$SEG), 4», AND SHOULD 

MATCH ADDRESS AND SEGMENT WHERE BREAK ROUTINE IS WANTED *1 
INITIAL, 

,03H, 09BH,OEFH,023H,09BH,OF2H,043H,09BH,OF5H,063H,087H,OF8H,OA3H,087H, 
OF~h,OC3H,OB7H,OFCH,OE3H,087H,OFEH,020H,048H) 

DECLARE PP POINTER, 
DECLARE PPP BASED PP (1) BYTE, 

START$PRGM 
PROCEDURE(oNE$TWo,PPP), 
DECLARE ONE$TWo BYTE,PPP POINTER, 
WHERE BASED PPP (1) BYTE, 

WHEREIO) = START$BYTES(O), 
WHERE I I) 0, 
WHERE(2) - ~TART$BYTES(2)' 
WHERE(3) ~ START$BYTES(3), 
CPDAT(loNE$TWo) * 8) = 3, 
1* IF ONE TWO = 1 THEN OUTPUT TO PORT OFBH, IF oNETWo 

IS 0 THEN OUTPUT TO PORT OFAH *1 
OUTPUTICHANATTEN + (oNETWo ) = 0, 
CALL STRINGoUT(@CHANOIVEN), 

END, 

1* THIS PART OF THE PROGRAM ALLOWS THE USER TO DEFINE THE 
CP,PP OF EACH CHANNEL *1 

DECLARE BREAKOUT BASED ENDPoINTER (I) WORD, 

DECLARE CP POINTER, 
DECLARE CPDAT BASED CP (1) BYTE, 

DECLARE oNEPPDAT BASED oNEPP (1) BYTE; 
DECLARE TWoPPDAT BASED TWoPP (1) BYTE, 

CALL STR INGoUT (@TITLESTRING); 
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1:21 
1:22 
123 
124 
125 
126 
127 
128 
129 
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CALL STRINGOUT(@GETCP), 
CP = GETADDRESS, 
CALL STRINGOUT(@GETPP), 
CALL STRINGOUT(@ONE), 
ONEPP = GETADDRESS, 
CALL STRINGOUT(@GETPP), 
CALL STRINGOUT(@TWO), 
TWOPP = GETADDRESS, 

AP-50 

OUTPUT (CHANATTEN) = 0, 1* INITIALIZATION CA *1 

130 MAIN: 

131 
132 

134 2 
135 2 
136 2 

137 1 
138 2 
139 2 
140 2 

141 

142 I 
143 I 
144 2 
145 2 
146 1 

147 I 
148 I 
149 2 
150 2 
151 1 
152 2 
153 2 
154 1 
155 I 
156 I 
157 2 
158 2 
159 2 
160 1 

161 

CALL STRINGOUT(@CHANNUMBER), 
CHAR = CI, 1* GET CHANNEL NUMBER *1 
IF (CHAR AND 01H) (> 0 1* CHECK BIT ZERO TO DEFINE 

CHANNEL NUMBER *1 
THEN DO, 

CALL STRINGOUT(@ONE), 
ONE TWO = CHANNELSONE, 

END, 
ELSE 

DO, 
CALL STRINGOUT(@TWO), 
ONE TWO = CHANNELSTWO, 

END, 

CALL STRINGOUT(@GETSSTART), 1* GET STARTING ADDRESS 
FROM USE:R *1 

STARTPOINTER = GET ADDRESS, 
DO I = 0 TO 3, 1* MOVE STARTING ADDRESS INTO CP AREA *1 

STARTBYTES(I) = INPNTR(I), 
END, 
CALL STRINGOUTC@STOPADDR), 1* GET STOP ADDRESS 

FROM USER *1 

ENDPOINTER = GETADDRESS, 
DO I = 0 TO 3, 1* MOVE CODE TO SAFE AREA *1 

SAVECODE(I) = BREAKOUTCI), 
END, 
DO I = 0 TO 3, 

BREAKOUT(I) = BREAK89(I), 1* MOVE ESCAPE SEQUENCE INTO PLACE *1 
END, 
CPDAT(I) = OFFH, 1* SET CHANNEL ONE BUSY FLAG *1 
CPDAT(9) = OFFH, 1* SET CHANNEL TWO BUSY FLAG *1 
DO CASE ONETWO, 
PP = ONEPP, 
PP = TWOPP, 
END, 
CALL STARTSPRGM(ONESTWO,PP), 
1* WAIT FOR ONE OF THE FOLLOWING 

1. CPDAT(I) = 0 CHI NOT BUSY 
2.CPDAT(9) = 0 CH2 NOT BUSY 
3. THE 8251 REC. BUFFER IS FULL BECAUSE USER HAS DEPRESSED A KEY 

*1 
DO WHILE ( (CPDAT(I) AND CPDAT(9» AND (NOT (INPUT(CRTSSTATUS) AND 02H») 
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162 2 
163 1 

164 1 
165 2 
166 2 
167 3 
168 3 

169 2 

170 2 
171 2 
172 3 
173 3 

174 2 

175 2 
176 3 
177 3 

178 2 
17.9 3 
180 3 

181 3 

182 3 

183 3 
184 2 
185 2 
186 2 
187 1 

188 2 

189 2 
190 2 
191 2 
192 2 
193 2 

194 2 
195 2 
196 2 
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END; 
IF (INPUT(CRT$STATUS) AND 02H) <> 0 

THEN 
DO; 

CHAR = CI; 
DO I = 0 TO 3; 

BREAKOUT(I) = SAVECODE(I); 
END; 

1* IF ONE TWO = 0 THEN PUT CHA HLT IN CPDAT(O) 
IF ONE TWO = 1 THEN PUT CHA HLT IN CPDAT(8) 

*1 
CPDAT(ONE$TWO *8) = 06H; 

1* IF ONE TWO = 0 THEN OUTPUT TO PORT OFAH. IF ONETWO 
IS 1 THEN OUTPUT TO PORT OFBH. 

*1 
OUTPUT(CHANATTEN + ONETWO) = 0; 
DO I ~. 0 TO 5; 

CALL TIME (100); 
END; 

1* IF BUSY FLAG HAS BEEN CLEARED. THEN A CA HALT~SAVE 
WAS EXECUTED. IF SO. PRINT SAVED TP; IF NOT. ABORT *1 

IF CPDAT(SHL(ONETWO.3) + 1) (> 0 
THEN 
DO; 

CALL STRINGOUT(@ABORT)/ 
END; 
ELSE 
DO; 

CALL STRINGOUT(@ABORTAT); 

1* CHECK BUSY FLAG *1 

CALL CO(ASCII(SHR(PPP(2).4»); 1* UPPER NIBBLE OF ADDR 
STORED BY HALT *1 

END; 
DO; 

CALL HEXOUT(PPP<l»; 1* MIDDLE BYTE OF ADDR 
STORED BY HALT *1 

CALL HEXOUT(PPP(O»; 1* LEAST SIG BYTE OF ADDR 
STORED BY HALT *1 

END; 
CPDAT(ONETWO * 8) = 3H; 1* CA START IN CPDAT(O) OR CPDAT(8) *1 
GO TO MAIN; 

CALL STRINGOUT(@BKREACHED); 

CALL STRINGOUT(@GASTRING); 
CALL CO(ASCII(SHR(PPP(241).4»); 
CALL HEXOUT(PPP(240»; 
CALL HEXOUT(PPP(239»; 
CALL TAGTEST(PPP(241»; 

CALL STRINGOUT(@GBSTRING); 
CALL CO(ASCII(SHR(PPP(244).4»); 
CALL HEXOUT(PPP(243»; 
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PL/M-86 COMPILER 8089 BREAKPOINT ROUTINE 

197 
198 

199 
200 
201 
202 
203 

.204 
205 
206 

207 
208 
209 

210 
211 
212 

213 
214 
215 

216 

217 
218 
219 

220 

221 

2 
2 

2 
2 
<2 
<2 
<2 

2 
2 
;]. 

2 
2 
2 

2 
2 
2 

2 
2 
<2 

<2 

END, 

CALL HEXOUTIPPP(242»; 
CALL TAGTESTIPPP(244», 

CALL STRINGOUTI@GCSTRING); 
CALL COIASCIIISHRIPPP(247),4»), 
CALL HEXOUTIPPP(246»; 
CALL HEXOUTIPPP(245»; 
CALL TAGTESTIPPP(247», 

CALL STRINGOUTI@BCSTRING); 
CALL HEXOUT I PPP I 249) ); 
CALL HEXOUTIPPP(248», 

CALL STRINGOUTI@IXSTRING), 
CALL HEXOUTIPPPI251l); 
CALL HEXDUTIPPP(250»; 

CALL STRINGOUTI@CCSTRING); 
CALL HEXOUT I PPP I 253) ), 
CALL HEXOUT (PPP I 252) ); 

CALL STRINGOUT(@MCSTRING1, 
CALL HEXOUTIPPP(255», 
CALL HEXDUTIPPP(254», 

END, 
1* RESTORE CODE TO ORIGINAL LOCATION *1 
DO I ... 0 TO 3, 

BREAKOUT I I) SAVECODEII), 
END, 

GO TO MAIN; 

MODULE INFORMATION 

CODE AREA SIZE, 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACk SIZE 
427 LINES READ 
o PROGRAt1 ERROR IS) 

END OF PL~M-86 COMPILATION 

0619H 
OIEFH 
0020H 
OOl4H 

15610 
4950 

320 
200 
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8089 ASSEMBLER 

ISIS-II 8089 ASSEMBLER X004 ASSEMBLY OF MODULE APSO_BREAKPOINT_ROUTINE 
OBJECT MODULE PLACED IN :FO:BRKASM.OBJ 
ASSEMBLER INVOKED BY ASM89.4 BRKASM.SRC 

0000 

2000 

0000 

0000 
OOEF 
00F2 
00F5 
00F8 
OOFA 
OOFC 
OOFE 
0100 

2000 
2003 
2006 
2009 
200C 
200F 
2012 

2015 

2017 

9108 00200000 

039B EF 
239B F2 
439B F5 
6387 F8 
A387 FA 
C387 FC 
E387 FE 

2048 

I 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2S 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

NAME APSO_BREAKPOINT_ROUTINE 
BRKPNT SEGMENT 
i************************************** 

BASIC 8089 BREAKPOINT ROUTINE 
BY JOHN ATWOOD REV 3 8/13/79 
INTEL CORPORATION 

i************************************** 

THE FOLLOWING CODE IS CONTAINED IN THE PL/M-86 
CONTROL PROGRAM(BREAK.89) AND IS ASSEMBLED HERE 
TO ILLUSTRATE HOW THE ESCAPE SEGUENCE AND SAVE 
ROUTINE CODE WAS GENERATED. TO USE THE 8089 BREAK­
POINT PROGRAM. THIS ASM89 PROGRAM WOULD NOT BE 
NEEDED. SAVE_ADDR IS THE SAME AS SAVE$ADDR IN THE 
BREAK. 89 PROGRAM. 

SAVEjlDDR EGU 2000H 

LPDI TP.SAVE_ADDR 

,SAVE ROUTINE ADDRESS 

,JUMP TO SAVE ROUTINE 

i*************************************** 

REGISTER SAVE LOCATIONS WITHIN PB: 

REGS STRUC 
PBLOCK: 05 239 , PARAMETER BLOCK 
GASAV: 05 3 ,GA AREA 
GBSAV: OS 3 ,GB AREA 
GCSAV: OS 3 , GC AREA 
BCSAV: OS 2 ,BC AREA 
IXSAV: DS 2 , IX AREA 
CCSAV: OS 2 , CC AREA 
MCSAV: 05 2 ,MC AREA 
REGS ENDS 

REGISTER SAVE ROUTINE: 

ORG SAVE_ADDR 

MOVP [PPJ.GASAV.GA 
MOVP [PPJ.GBSAV.GD 
MOVP [PPJ.GCSAV.GC 
MOV [PPJ.BCSAV.BC 
MOV [PPJ. IXSAV. IX 
MOV [PPJ.CCSAV.CC 
MOV [PP1.MCSAV.MC 

HLT 

,SAVE GA 
) SAVE GB 
) SAVE GC 
) SAVE BC 
,SAVE IX 
) SAVE CC 
) SAVE Me 

) STOP THIS CHANNEL. 
,CLEAR BUSY FLAG. 

i**************************************** 
BRKPNT ENDS 

END 
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INTRODUCTION 

Over the past several years, microprocessors have been 
increasing in popularity. The performance improve· 
ments and cost reductions afforded by LSI technology 
have spurred on the design motivation of using multiple 
processors to meet system real·time performance 
requirements. The desire for improved system real·time 
response, system reliability and modularity has made 
multiprocessing techniques an increasingly attractive 
alternative to the system design engineer; techniques 
that are characterized as having more than one micro· 
processor share common resources, such as memory 
and 1/0, over a common multiple processor bus. 

This type of design concept allows the system designer 
to partition overall system functions into tasks that 
each of several processors can handle individually to 
increase system performance and throughput. But, how 
should a designer proceed to implement a multiproc· 
essing system? Should he design his own? If so, how 
are the microprocessors synchronized to avoid conten· 
tion problems? The designer could put them all in phase 
using one clock for all the microprocessors. This may 
work, until the physical dimensions of the system 
become large. When this occurs, the designer is faced 
with many problems, like clock skew (resulting in bus 
spec Violations) and duty cycle variations. 

A better approach to implementing a multiprocessor 
system is not to have a common processor clock, but 
allow each processor to work asynchronously with 
respect to each other. The microprocessor requests to 
use the multiple processor bus could then be synchro· 
nized to a high frequency external clock which will per· 
mit duty cycle and phase shift variations. This type of 
approach has the benefit of allowing modularity of hard· 
ware. When new system functions are desired, more 
processing power can be added without impacting 
existing processor task partitioning. 

One approach to implement this asynchronous process­
ing structure would be to have all the bus requests enter 
a priority encoder which samples its inputs as a func­
tion of the higher frequency "bus clock". The inputs 
would arrive asynchronously to the priority encoder and 
would be resolved by the priority encoder structure as to 
which microprocessor would be granted the bus. An­
other approach, that used by Intel, is rather than allow­
ing the requests to arrive asynchronously with respect 
to one another at the priority encoder, the bus requests 
are synchronized first to an external high frequency bus 
clock and then sent to the priority encoder to be re­
solved. In this way, the resolving circuitry common to all 
microprocessors is kept at a minimum. Overall system 
reliability is improved in the sense that should a circuit 
which serves to synchronize the processor's request 
(which is now located on the same card as the micro­
processor itself) fail, it is only necessary to remove that 
card from the system and the rest of the system will 
continue to function. Whereas in the other approach, 
should the synchronizing mechanism fail, the whole 

system goes down, as the synchronizing mechanism is 
located at the shared resource. In addition to the im­
proved system reliability, moving the synchronization 
mechanism to the processor permits processor control 
over that mechanism, thereby permitting system flexi­
bility (as will be shown) which could not be reasonably 
obtained by any other approach. 

This synchronizing or arbitrating function was inte­
grated into the 8289, a custom arbitration unit for the 
8086, 8088, and 8089 processors. This note basically 
describes the 8289 arbitration unit, illustrates its dif­
ferent modes of operation and hardware connect in a 
multiprocessor system. Related and useful documents 
are: 8086 user's manual, 8289 data sheet, Article Reprint 
-55: Design Motivations for Multiple Processor 
Microcomputer Systems (which discusses implement­
ing a semaphore with the MULTIBUS™) and Application 
Note 28A, Intel MULTIBUS™ interfacing. 

BUS ARBITER OPERATING CHARACTERISTICS 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface an 8086, 8088, or 8089 
processor to a multi-master system bus (the 8289 is 
used as a general bus arbitration unit). The processor is 
unaware of the arbiter's existence and issues com­
mands as though it has exclusive use of the system bus. 
If the processor does not have the use of the multi­
master system bus, the bus arbiter prevents the bus 
controller, the data transceivers and the address latches 
from accessing the system bus (i.e., all bus driver out­
puts are forced into the high impedance state). Since 
the command was not issued, a transfer acknowledge 
(XACK) will not be returned and the processor will enter 
into wait states. Transfer acknowledges are signals 
returned from the addressed resource to indicate to the 
processor that the transfer is complete. This signal is 
typically used to control the ready inputs of the clock 
generator. The processor will remain in wait until the 
bus arbiter acquires the use of the multi-master system 
bus, whereupon the bus arbiter will allow the bus con­
troller, the data transceivers and the address latches to 
access the system bus. Once the command has been 
issued and a data transfer has taken place, a transfer 
acknowledge (XACK) is returned to the processor. The 
processor then completes its transfer cycle. Thus, the 
arbiter serves to multiplex a processor (or bus master) 
onto a multi-master system bus and avoid contention 
problems between bus masters. 

Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides for several 
resolving techniques. All the techniques are based on a 
priority concept that at a given time one bus master will 
have priority above all the rest. These techniques in­
clude the parallel priority resolving techniques, serial 
priority resolving and rotating priority techniques. 
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A parallel priority resolving technique has a separate 
bus request (BREQ) line for each arbiter on the multi­
master bus (see Figure 1). Each BREQ line enters into a 
priority encoder which generates the binary address of 
the highest priority BREQ line which is active at the 
inputs. The output binary address is decoded by a 
decoder to select the corresponding BPRN (bus priority 
in) line to be returned to the highest priority requesting 
arbiter. The arbiter receiving priority (BPRN active low) 
then allows its associated bus master onto the multi­
master system bus as soon as it becomes available (i.e., 
it is no longer busy). When one bus arbiter gains priority 
over another arbiter, it cannot immediately seize the 
bus, it must wait until the present bus occupant com-

pletes its transfer cycle. Upon completing its transfer 
cycle, the present bus occupant recognizes that it no 
longer has priority and surrenders the bus, releasing 
BUSY. BUSY is an active low OR-tied signal line which 
goes to every bus arbiter on the system bus. When 
BUSY goes high, the arbiter which presently has bus 
priority (BPRN active low) then seizes the bus and pulls 
BUSY low to keep other arbiters off the bus. (See 
waveform timing diagram, Figure 2.) Note that all multi­
master system bus transactions are synchronized to the 
bus clock (BCLK). This allows for the parallel priority 
resolving circuitry or, any other priority resolving 
scheme employed, time to settle and make a correct 
decision. 

74138 
3TO 8 

DECODER 4 

Figure 1. Parallel Priority Resolving Technique 

BCLK~ 

\ I( if 0\ . 
~~~I-------------r--------~\-----------------------------------

d \\ 1,\, "\ 0\ ._ 
\ \v 
®y~---~\~------------BUSY 

o HIGHER PRIORITY BUS ARBITER REOUESTS THE MULTI-MASTER SYSTEM BUS. 

o ATTAINS PRIORITY. 

@ LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

@ HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 2. Higher Priority Arbiter Obtaining The Bus From A Lower Priority Arbiter 
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A serial priority resolving technique eliminates the need 
for the priority encoder-decoder arrangement by daisy­
chaining the bus arbiters together. This is accomplished 
by connecting the higher priority bus arbiter's BPRO 
(bus priority out) output to the BPRN of the next lower 
priority (see Figure 3). The highest priority bus arbiter 
would have its BPRN line grounded, signifying to the ar­
biter that it always has highest priority when requesting 
the bus. 

HIGHEST PRIORITY 

. 
CBRO: : BUSY 

THE NUMBER OF ARBITERS THAT MAY BE DAISY·CHAINED 
TOGETHER IN THE SERIAL PRIORITV RESOLVING TECH· 
NIQUE IS A FUNCTION OF ICCK AND THE PROPAGATION 
DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz 
ONLY 3 ARBITERS MAY BE DAISY·CHAINED. SEE TEXT. 

Figure 3. Serial Priority Resolving 

A rotating priority resolving technique arrangement is 
similar to that of the parallel priority resolving technique 
except that priority is dynamically reassigned. The pri­
ority encoder is replaced by a more complex circuit 
which rotates priority between requesting arbiters, thus 
guaranteeing each arbiter equal time on the multi­
master system bus. 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority re­
solving technique requires an extensive amount of logic 
to Implement, while the serial technique can accommo­
date only a limited number of bus arbiters before the 
daisy-chain propagation delay exceeds the multi-master 
system bus clock (BeD<). The parallel priority resolving 
technique is, in general, the best·compromlse.1t allows 
for many arbiters to be present on the bus whi Ie not 
requiring much logic to implement. 

Whatever resolving technique is chosen, it is the 
highest priority bus arbiter requesting use of the multi­
master system bus which obtains the bus. Exceptions 
do exist with the 8289 Bus Arbiter where a lower priority 
arbiter may take away the bus from a higher priority ar­
biter without the need for any additional external logic. 
This Is accomplished through the use of the CBRQ pin, 
discussed In a later section. 

MULTI-MASTER SYSTEM BUS SURRENDER AND 
REQUEST 

The 8289 Bus Arbiter provides an intelligent interface to 
allow a processor or bus master of the 8086 family to ac­
cess a multi-master system bus. The arbiter directs the 
processor onto the bus and allows both higher and 
lower priority bus masters to acquire the bus. Higher 
priority masters obtain the bus when the present bus 
master utilizing the bus completes its transfer cycle (in­
cluding hold time). Lower priority bus masters obtain 
the bus when a higher priority bus master is not 
accessing the system bus and a lower priority arbiter 
has pulled CBRQ low. This signifies to the arbiter 
presently holding the multi-processor bus that a lower 
priority arbiter would like to acquire the bus when it is 
not being used. A strapping option (ANYRQSn allows 
the multi-master system bus to be surrendered to any 
bus master requesting the bus, regardless of its priority. 
If there are no other bus masters requesting the bus, the 
arbiter maintains the bus as long as its associated bus 
master has not entered the HALT state. The 8289 Bus 
Arbiter will not voluntarily surrender the system bus and 
has to be forced off by another bus master. An excep­
tion to this can be obtained by strapping CBRQ low and 
ANYRQST high. In this configuration the 8289 will 
release the bus after each transfer cycle. 

How the 8289 Bus Arbiter is configured determines the 
manner in which the arbiter requests and surrenders the 
system bus. If the arbiter is configured to operate with a 
processor which has access to both a multi-master 
system bus and a resident bus, the arbiter requests the 
use of the multi-master system bus only for system bus 
accesses (i.e., it is a function of the SYSB/RESB input 
pin). While the processor is accessing the resident bus, 
the arbiter permits a lower priority bus master to seize 
the system bus via ~, since it is not being used. A 
processor configuration with both an 1/0 peripheral bus 
and a system bus behaves similarly. If the processor Is 
accessing the peripheral bus, the arbiter permits the 
surrendering of the mUlti-master system bus to a lower 
priority bus master. To request the use of the multi­
master system bus, the processor must perform a 
system memory access (as opposed to an 1/0 access). 

The arbiter decodes the processor status lines to deter­
mine what type of access is being performed and be­
haves correspondingly. For simpler system config­
urations, such as a processor which accesses only a 
multi-master system bus, the arbiter requests the use of 
the system bus when it detects the status lines in­
itiating a transfer cycle. The decoding of these status 
lines can be referenced in the 8086, 8088 (non-I/O proc­
essor) data sheets or the 8089 (1/0 processor) data 
sheet. 

There is one condition common to all system configura­
tions where the multi-master system bus is surrendered 
to a lower priority bus master requesting the bus by pull­
Ing CBRQ low. This Is the idle or inactive state (TI) which 
Is unique to the 8086 and 8088 processor family. This TI 
state comes about due to the processor's ability to 
fetch Instructions In advance and store them internally 
for quick access. The size of the Internal queue was op­
timized so that the processor would make the most ef-
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fective use of its resources and be slightly execution 
bound. Since the processor can fetch code faster than it 
can execute it, it will fill to capacity its internal storage 
queue. When this occurs, the processor will enter into 
idle or inactive states (TI) until the processor has ex· 
ecuted some of the code in the storage queue. Once this 
occurs, the processor will exit the TI state and again 
start code fetching. Between entering into and exiting 
from the TI state an indeterminate number of TI states 
can occur during which the bus arbiter permits the sur· 
rendering of the multi-master system bus to a lower 
priority bus master. As noted earlier and worth 
repeating here, once the 8289 Bus Arbiter acquires the 
use of the multi-master system it will not voluntarily sur­
render the bus and has to be forced off by another bus 
master. This will be discussed in more detail later. 

Two other signals, LOCK and CRQLCK (Figure 4), lend 
to the flexibility of the 8289 Bus Arbiter within system 
configurations. LOCK is a signal generated by the proc­
essor to prevent the bus arbiter from surrendering the 
multi-master system bus to any other bus master, either 
higher or lower priority. CRQLCK (common request lock) 
serves to prevent the bus arbiter from surrendering the 
bus to a lower priority bus master when conditions war­
rant it. LOCK is used for implementing software 
semaphores for critical code sections and real time 

LOCK TIMING 

critical events (such as refreshing or hard disk 
transfers). 

8289 BUS ARBITER INTERFACING TO THE 8288 
BUS CONTROLLER 

Once the 8289 Bus Arbiter determines to either allow its 
aSSOCiated processor onto the multi-master system bus 
or to surrender the bus, it must guarantee that com­
mand setup and hold times are not violated. This is a 
two part problem. One, guaranteeing hold time and two, 
guaranteeing setup time. The 8288 Bus Controller per­
forms the actual task of establishing setup time, while 
the 8289 Bus Arbiter establishes hold time (see Figure 
5). 

The 8289 Bus Arbiter communicates with the 8288 Bus 
Controller via the AEN line. When the arbiter allows its 
associated processor access to the multi-master sys­
tem bus, it activates AEN. AEN immediately enables the 
address latches and data transceivers. The bus con­
troller responds to AEN by bringing its command output 
buffers out of high impedance state but keeping all 
commands disqualified until command setup time is 
established. Once established, the appropriate com­
mand is then issued. AEN is brought to the false state 
after the command hold time has been established by 
the arbiter when surrendering the bus. 

THE ONLY CRITICAL LOCK TIMING IS THAT SHOWN ABOVE. LOCK MUST BE 
ACTIVATED NO SOONER THAN 20 ns INTO 01 AND NO LATER THAN 40 ns 
PRIOR TO THE END OF <tJ2. LOCK INACTIVE HAS NO CRITICAL TIMING AND 
CAN BE ASYNCHRONOUS. 

CRelCK HAS NO CRITICAL TIMING AND IS CONSIDERED AS AN 
ASYNCHRONOUS INPUT SIGNAL. 

AEN 
(8289) 

Figure 4. Lock Timing 

~SETUP---.l 
COMMAND FLOAT 

ACTIVE _"":";='--+-..1 
(3288) 

'ADDRESS 

CONT~~~~E~2~~ ---oof" 
AEN FROM 8289 

'ADDRESSES ARE ACTIVATED IMMEDIATELY WHILE COMMAND IS DELAY 
TO ESTABLISH SETUP TIME REQUIREMENTS. 

**THE 8289 ARBITER INTERNALLY TRACKS THE PROCESSOR CYCLE TO 
ESTABLISH THE PROPER AMOUNT OF HOLD TIME AFTER THE COMMAND 
HAS GONE INACTIVE. 

Figure 5. Single Bus Interface Timing 
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8289 BUS ARBITER INTERNAL ARCHITECTURE 

A block diagram of the internal architecture of the 8289 
Bus Arbiter is shown in Figure 6. It is useful to under· 
stand this block diagram when discussing the different 
modes of the 8289 and their impact on processor bus 
operations; however, you may want to skip this section 
to "8086 family processor types and system configura­
tions" and return to it afterwards, as this section ad­
dresses the very involved reader. The front end state 
generator (FETG) and the back end state generator 
(BETG) allow the arbiter to track the processor cycle. An 
examination of an 8086 family processor state timings 
show that all command and control signals are issued in 
states T1 and T2 while being terminated in states T3 and 
T4, with an indeterminate number of wait states (Tw) oc­
curring in between. Note further, that an indeterminate 
number of idle or inactive states can occur immediately 
proceeding and following a given transfer cycle. Since 
an indeterminate number of wait states can occur, two 
state generators are required; one to generate control 
signals (the FETG) and one to terminate control signals 
(the BETG). The FETG is triggered into operation when 
the processor activates the status lines. The FETG is 
reset and the BETG is triggered into operation by the 
status lines going to the passive condition. The BETG is 
reset when the status lines again go active. 

It is necessary for the 8289 Bus Arbiter to track the proc­
essor in order that it is properly able to determine where 
and when to request or surrender the use of the multi­
master system bus. In system configurations which ac­
cess a resident bus, the use of the multi-master system 

PRO~~~~~~ ...----''\1 

• CLOCK 

STATUS' MOVE 
DECODE 

-MMS= MULTI-MASTER SYSTEM 

BREQ 
RESET 

WINDOW 

bus is requested later in order to allow time for the 
SYSB/RESB input to become valid. For systems which 
access a peripheral bus, the arbiter issues a request for 
the system bus only for memory transfer cycles which it 
decodes from the status lines (and time must be al­
lowed for the status lines to become valid and then de­
coded). In a system which accesses only a multi-master 
system bus, a request is made as soon as the arbiter 
detects an active-going transition on the processor's 
status lines. Thus, when the processor initiates a 
transfer cycle, the FETG is triggered into operation and 
depending upon what mode the arbiter is configured in: 
the STATUS & MODE DECODE circuitry initiates a re­
quest for the system bus at the appropriate time. The re­
quest enters the BREQ SET circuitry where it is then 
synchronized to the mUlti-master system bus clock 
(BCLK) by the PROCESSOR SYNCHRONIZATION cir­
cuitry. * Once synchronized, the multi-master system 
bus interface circuitry issues a BREQ. When the priority 
resolving circuitry returns a BPRN (bus priority in), the 
PROCESSOR SYNCHRONIZATION circuitry seizes the 
b~s the next time it becomes available (i.e., BUSY goes 
high) by pullin~USY low one BCLK after it goes high 
and enables AEN. (See waveform timing diagram in 
Figure 2). Once the arbiter acquires the use of the 
system bus and a data exchange has taken place (a 
transfer acknowledge, XACK, was returned to the proc­
essor), the processor status lines go passive and the 

*Due to the asynchronous nature of process.or trasnsfer request to the 
multi-master system bus clock, it is necessary to synchronize the proc­
essor's transfer request to BelK. 

PROCESSOR 
SYNCHRONIZATION 

CIRCUITRY 

MMS· BUS 
SYNCHRONIZATION 

CIRCUITRY 

~--------------~~ 

Figure 6. 8289 Bus Arbiter Block Diagram 
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BETG is triggered into operation. The BETG provides 
the timing for the bus surrender circuitries in the event 
that conditions warrant the surrender of the multi· 
master bus, i.e., the bus arbiter lost priority to a higher 
bus master or the processor has entered into TI states 
and CBRQ is pulled low, etc. If such is the case, the 
BREQ RESET DECODER initiates a bus surrender reo 
quest. The bus surrender request is synchronized by the 
MMS BUS SYNCHRONIZATION CIRCUITRY to the proc· 
essor clock. The MMS BUS SYNCHRONIZATION CIR· 
CUITRY instructs the bus controller interface circuitry 
to make AEN go false and resets the BREQ SET cir· 
cultry. Resetting the BREQ SET circuitry will cause its 
output to go false and be synchronized by the processor 
synchronization, eventually instructing the MULTI· 
MASTER SYSTEM BUS INTERFACE circuitry to reset 
BREQ. In the event that a lower priority arbiter has 
caused the arbiter to surrender the bus, it is necessary 
that BREQ be reset. Resetting BREQ allows the priority 
resolving circuitry to generate BPRN to the next highest 
priority bus master requesting the bus. The BREQ 
RESET WINDOW circuitry provides a 'window' wherein 
the arbiter allows the multi·master system bus to be sur· 
rendered and serves as part of the MMS bus·processor 
synchronization circuitry. 

8086 FAMILY PROCESSOR TYPES AND 
SYSTEM CONFIGURATIONS 

There are two types of processors in the 8086 family -
an I/O processor (the 8089 lOP) and a non·I/O processor 
(the 8086 and 8088 CPUs). Consequently, there are two 
basic operating modes in the 8289 Bus Arbiter. One, the 
lOB (I/O peripheral bus) mode, permits the processor ac· 
cess to both an I/O peripheral bus and a multi·master 
system bus. The second, the RESB (resident bus) mode, 
permits the processor to communicate over both a resi· 
dent bus and a multi·master system bus. Even though it 
is intended for the arbiter to be configured in the lOB 
mode when interfacing to an I/O processor and for it to 
be in the RESB mode when interfacing to a non·I/O proc­
essor, it is quite possible for the reverse to be true. That 
is, it is possible for a non-I/O processor to have access 
to an I/O peripheral bus or for an I/O processor to have 
access to a resident bus as well as access to a multi­
master system bus. The lOB strapping option con· 
figures the 8289 Bus Arbiter into the lOB mode and 
RESB strapping option configures it into the resident 
bus mode. If both strapping options are strapped false, 
a third mode of operation is created, the single bus 
mode, in which the arbiter interfaces the processor to a 
multi-master system bus only. With both options strap­
ped true, the arbiter interfaces the processor to a multi­
master system bus, a resident bus and an I/O bus. 

To better understand the 8289 Bus Arbiter, each of the 
operating modes, along with their respective timings; 
are examined by means of examples. The simplest con­
figuration, the Single Bus Configuration, (both lOB and 
RESB strapped inactive) will be co.nsidered first, fol-

lowed by the I/O bus Configuration and the Resident 
Bus Configuration. Finally, brief mention is made of a 
configuration that allows the processor to interface to 
two multi-master system buses. ,This particular con­
figuration is briefly mentioned because, as will be seen, 
it is simply an extension of the resident bus configura­
tion. When discussing the Single Bus Configuration, . 
processor/arbiter, arbiter/system bus and internal ar­
biter, considerations are made resulting In a table that il­
lustrates overhead in requesting the system bus. AS this 
applies to the other 8289 configurations, only additional 
considerations will be given. A summary of when to use 
the different configurations is given at the end. 

8289 SINGLE BUS INTERFACE 

Figure 7 shows a block diagram of a bus master which 
has to interface only to a system bus - preferably the 
MULTIBUS - where there exists more than one bus 
master. In later configurations, it will be shown how the 
processor can be made to interface with more than one 
bus. Since the processor has only to interface with one 
bus, this configuration is called "single". 

Connecting the 8289 Bus Arbiter to the processor is as 
simple as it was to connect the 8288 Bus Controller. 
Namely, the three status lines, SO, S1, and S2 are 
directly conne.cted from the processor to the arbiter. 
The clock line from the 8284 Clock Generator is brought 
down and connected. (Note that both the 8288 Bus Con­
troller and the 8289' Bus Arbiter are connected to the 
same clock, CLK and not the peripheral clock, PCLK as 
the 8086 processor.) From the arbiter, AEN is con­
nected to the bus controller ancl to the clock generator. 
The lOB pin on the arbiter is strapped high and on the 
controller the .IOB pin is strapped low. In addition, the 
RESB pin on the arbiter is strapped low, finishing the 
processor interface. 

Some flexibility exists with the MULTI BUS or multi­
master system bus interface. The system designer must 
first decide upon the type of priority resolving scheme 
to be employed, whether it is to be the serial, parallel, or 
rotating priority scheme. A rotating priority scheme 
would be employed where the system designer would 
want to guarantee that every bus master on the bus 
would be given time on the bus. In the serial and parallel 
schemes, the possibi lity exists that the lowest assigned 
priority bus master may not acquire the bus for long 
periods of time. This occurs because priority is perma­
nently assigned and if bus demand is high by the higher 
assigned priorities, then the lower priorities must wait. 
In most cases, this situation is acceptable because the 
highest priority is assigned to the bus master that can· 
not wait. Highest priority is usually assigned to DMA 
type devices where service requirements occur in real 
time. CPUs are assigned the lower priorities. For the 
purpose of this discussion, the parallel priority scheme 
will be used with brief reference to the serial priority 
scheme. 
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Figure 7. Single Muilimaster Bus Interface 

Figure 8 shows how a typical multi-processing system 
might be configured with the 8289 in the Single Bus 
mode. In the system there are three bus masters, each 
having the assigned priority as indicated-priority 1 
being the highest and priority 3 being the lowest. Prior· 
ity is established using the parallel priority scheme 
(ignore the dotted signal interconnect for the moment). 
Each bus arbiter monitors its associated processor and 
issues a bus request (BREQ) whenever its processor 
wants the bus. A common clocking signal (BCLK) runs 
to each of the arbiters in the system. It is from the fail­
ing edge of this clock that all bus requests are issued. 
Since all bus requests are made on the same clock 
edge, a valid priority can be established by the priority 
resolving circuitry by the next falling EiCIi< edge. Note 
that all multi-master system bus (MULTIBUS) input sig­
nals are considered to be valid at the falling edge of 
BCLK. And that all multi-master system bus output 
signals are issued from the falling edge of BCLK. With 
the parallel resolving module, arbiters 2 and 3 would 
issue their respective BREQs (Figure 9) on the falling 
!dge of BCLK 1, as shown. The outputs (BPRN 1, BPRN 
2, and BPRN 3) of the priority encoder-decoder arrange­
ment change to reflect their new input conditions and 
need to be valid early enough in front of BCLK 2 to 
guarantee the arbiter's setup time requirements. Since 
arbiter 2 at the time is the highest priority arbiter re­
.9.uesting the bus, bus priority is. given to arbiter 2 (BPRN 
2 goes low), and since the bus was not busy (BUSY is 
high) at the time priority was granted to arbiter 2 arbiter 
2 pulls BUSY inactive on BCLK 2, thereby sei~ing the 
bus and excluding all other arbiters access to the bus. 
Once the bus is seized, arbiter 2 activates its AEN. AEN 
gOing low directly enables the 8283 address latches and 

wakes up the 8288 Bus Controller. The bus controller 
enables the 8287 transceivers, waits until the address to 
command setup time has been established, and then 
enables its command drivers onto the bus. 

If the serial priority resolving mode was used instead, 
much of the events that happened for the parallel prior· 
ity resolving mode would be the same except, of course, 
there would be no parallel priority resolving module. In­
stead, the system would be connected as indicated in 
Figure 8 by the dotted signal lines connecting the BPRO 
of one arbiter to BPRN of the next lower priority arbiter. 

The BREQ lines would be disconnected and the priority 
encoder-decoder arrangement removed. This arrange­
ment is simpler than the parallel priority arrangement 
except that the daisy-chain propagation delay of the 
highest priority bus arbiter's BPRO to the lowest priority 
bus arbiter's BPRN, including setup time requirement 
(BPRN to BLCK), cannot exceed the BCLK period. In 
short, this means there are only so many arbiters that 
can be daisy-chained for a given BCLK frequency. Of 
course, the lower the BCLK frequency, the more arbiters 
can be daisy-chained. The maximum BCLK frequency is 
specified at 10 MHz, which would allow for three 8289 
arbiters to be daisy-chained. In general, the number of 
arbiters that can be connected in the serial daisy-chain 
configuration can be determined from the following 
equation: 

BCLK period ~ TBLPOH + TPNPO (N -1) + TPNBL 

where N = # of arbiters in system 
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Figure 9. Example Timing For Figure 8 

Returning to Figure 9, it can be seen that K BClKs later, 
arbiter 1 has decided to request the bus and its BREQ, 
BREQ 1, has gone low. Since arbiter 1 is of higher priori· 
ty than arbiter 2, which presently has the bus, bus priori­
ty is reassigned by the priority module (or the daisy­
chain approach in the serial priority) to arbiter 1. BPRN 1 
goes low and BPRN 2 now goes high (BPRN 3 remains 
high, even though decoding can cause it to glitch 
momentarily). The loss of priority instructs arbiter 2 that 
a higher priority arbiter wants the bus and that it is to 
release the bus as soon as its present transfer cycle is 
done. Since arbiter 2 cannot immediately release the 
bus, arbiter 1 must wait. In the particular case illustrated 
in Figure 9, arbiter 2 releases the bus (allows BUSY to go 
high) on clock edge M, and on clock edge M + 1, arbiter 1 
now seizes the bus, pulling BUSY low. Arbiter 1 is the 
highest priority arbiter in the system and it now has the 
bus. Arbiters 2 and 3 still want the bus (their BREQs are 
both low). 

How quickly arbiter 1 can acquire the bus is dependent 
upon the configuration and strapping options of the ar­
biter it is trying to acquire it from. For example, if the 
lOCK input to arbiter 2 was active (low) at the time, then 
arbiter 1, even though it was of higher priority, would not 
have acquired the bus until after lOCK was released 
(goes high). Effectively, lOCK locks the arbiter onto the 
bus once the bus has been acquired. lOCK will not 
force another arbiter to release the bus any sooner, it 
just prevents the bus from being given away no matter 
what the priority of the other arbfter. Another factor to 
be considered is where in the transfer cycle is the proc­
essor when the arbiter is instructed to give up the bus. 
Obviously, if the cycle had just started, it will take 
longer for the bus to be released than if the cycle was 
just ending. Another factor to be included in this con­
sideration is the phase relationship of the processor's 
clock (ClK) to the bus clock (BClK). This relationship is 
examined in more detail later on. Table 1 lists the time 
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requirements for various arbiter actions such as bus ac­
quisition and bus release (under LOCK and other 
circumstances) taking into account the phase relation­
ships between CLK and BCLK. 

Bus Request (BREO I) Mode Delay Delay 
(Max) (Min) 

Status- BREQI Single 2 BClKs I BClK 

Status-BREQI lOB 2BClKs+ I BClK+ 
-I ClK- -V2 elK-

Status - BREQ I RESB 2 BClKs+ I BClK+ 
-2 ClKst -11/2 ClKst 

Status - BREQ I 10B-RESB 2 BClKs+ I BClK+ 
-2 ClKst IV, ClKst 

-Request onglnates off of <1>2 of TI and BREQI occurs I BClK (min) 
to 2 BClKs (max) thereafter. Depending upon where status occurs 
with respect to clock determines how long a time exists between 
status and <1>2 of n, and is anywhere from V2 CLK (min) to I ClK 
(max). 

tRequest originates off of T2·q,1 and BREQI occurs I BClK (min) to 
2 BCLKs (max) thereafter. The same reasoning as used in the lOB 
mode is valid here: 

Bus Release (BREO!) Mode Delay Delay 
(Max) (Min) 

Higher Priority (BPRN I) All 2 CLKs+ I CLK+ 
2 BCLKs I BClK 

lower Priority (CBRQI) All 2 CLKs+ I CLK+ 
2 BCLKs I BCLK 

Surrender occurs once the proper surrender conditions exist. 

Table 1. Surrender and Request Time Delays 

One signal which has been basically ignored to this 
point is CBRQ. CBRQ, like BUSY, is an open-collector 
signal from the arbiter which is tied to the CBRQ Signals 
of the other arbiters and to a pull-up resistor (see Figure 
8). CBRQ is both an input and an output. As an output, 
CBRQ serves to instruct the arbiter presently on the bus 
that another arbiter wishes to acquire the bus. As an in­
put, CBRQ serves to instruct the arbiter presently on the 
bus that another arbiter wants the bus. CBRQ is an input 
or output, dependent on whether the arbiter is on the 
bus or not (respectively), and is issued as a function of 
BREQ. Thus, a lower priority arbiter requesting the bus 
already controlled by a higher priority arbiter will pull 
CBRQ low, as well as BREQ. Even a higher priority ar­
biter will pull CBRQ low until it acquires the bus. Note, 
however, that the higher priority arbiter will acquire the 
bus through the reassignment of priorities - it being 
given priority and the other arbiter presently on the bus 
losing it. In effect, CBRQ serves to notify the arbiter that 
an arbiter of lower priority wants the bus. 

If the arbiter presently on the bus is configured to react 
to CBRQ and the proper surrender conditions exist, the 
bus is released. When releasing the bus, the arbiter also 
turns off its BREQ (BREQ goes high) in order to allow 
priority to be established to the next lower arbiter re­
questing the bus. Such is the case shown in Figure 9. 
Whereas it was assumed that the proper surrender con­
ditions did not exist for arbiter 2 when it had the bus, it 
is assumed that the proper conditions do exist during 
the time that arbiter 1 has the bus. Arbiter 2 had to give 
up the bus because an arbiter of higher priority was re-

questing it. Arbiter 1 surrenders the bus because the 
proper surrender conditions exist and a lower priority ar­
biter requested the bus by pulling CBRQ low. This is an 
assumed condition which is not otherwise shown in 
Figure 9. This is not an unrealistic condition. Normally, 
a higher priority arbiter will acquire the bus through the 
reassignment of priorities, while lower priority arbiters 
acquire the bus through CBRQ. 

Digressing for a moment, the 8289 Bus Arbiter will not 
voluntarily surrender the bus (except when the proc­
essor halts execution). As a result, it has to be forced off 
the bus. The 8289 Bus Arbiter does not generate a BREQ 
for each cycle. It generates a BREQ once and then 
hangs onto the bus. To do otherwise would require that 
BREQ be dropped (go high) after each transfer cycle so 
that if it did need to do another transfer cycle, another 
arbiter would automatically be assigned priority. This 
approach, however, entails certain overhead. Command 
to address setup and hold time must be prefixed and ap­
pended to each transfer cycle. Each transfer cycle 
would be characterized by first acquiring the bus, then 
establishing the setup time requirements, finally per­
forming the transfer cycle, establishing the hold time re­
quirements, and then releasing the bus (see Figure 10). 
If another transfer cycle was to immediately follow and 
if the arbiter still had priority, then the whole above pro­
cedure would be repeated. The end result would be 
wasted time as hold times following setup times (see 
Figure 10A). The approach taken by the 8289 Bus Arbiter 
of having to be forced off the bus, even when it is not 
using the bus (Le., forced off by a lower priority arbiter), 
provides for greater bus efficiency. A lower priority ar­
biter having to force off another arbiter that is not using 
the bus but just hanging on to it, may not seem very effi­
cient. In actuality it is a good trade-off. In many multi­
master systems some bus masters occasionally de­
mand the bus, while others demand the bus constantly. 
The bus master which constantly demands the bus may 
momentarily need not to access the bus. Why should 
that arbiter surrender the bus when chances are that the 
other bus masters which occasionally access the bus 
don't want it at the time? If it doesn't give up the bus, 
then it can momentarily cease access to the bus and 
then continue, without any performance penalty of hav­
ing to reestablish control of the bus. The greater bus ef­
ficiency that it affords is well worth the added complexi­
ty (Figure 10B). 

Returning to Figure 9, the combination of the proper sur­
render conditions existing and CBRQ being low, forced 
the higher priority arbiter, arbiter 1, off the bus. Arbiter 
2, being of next higher priority and wanting the bus, ac­
quired the bus on clock edge N + 1. If arbiter 1 decides 
to re-access the bus, it would reacquire the bus through 
the reassignment of priorities. This is not the case 
shown in Figure 9. Arbiter 1 has decided that it does not 
need the bus and does not renew its BREQ. Arbiter 2, 
having acquired the bus through CBRQ, is now the 
highest priority arbiter requesting the bus. As can be 
seen it is not the only arbiter requesting the bus. Arbiter 
3 is still patiently waiting for the bus and CBRQ remains 
low. The same conditions that forced arbiter 1 off the 
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bus for arbiter 2 now forces arbiter 2 off the bus for ar­
biter 3_ When the proper surrender conditions exist, ar­
biter 2 releases its BREQ and surrenders the bus to ar­
biter 3. Arbiter 3 acquires the bus on clock edge P + 1 
and releases its CBRQ. Since no other arbiter wants the 
bus (I.e., there is no other arbiter holding CBRQ low), 
CBRQ goes high (inactive). This would have also been 
true when arbiter 2 acquired the bus and released its 
CBRQ if arbiter 3 didn't want the bus. 

In the Single interface, the arbiter monitors the proc­
essor's status lines, which are activated whenever the 
processor performs a transfer cycle. The arbiter, on 
detecting the status lines going active, will issue a 
BREQ if the status is not the HALT status. If the proc­
essor issues the HALT status, the arbiter will not re­
quest the bus, and if it has the bus, will release it. 

This effectively concludes how arbiters interact to one 
another on the bus. Having examined the processor-to­
arbiter interface, and arbiter-to-MUlTIBUS (arbiter-to­
arbiter) interaction, one interface is left, the internal 
interface of processor-related signals to that of 
MULTI BUS-related signals. 

An important pOint to remember is that the processor 
has its own clock (ClK) and the multi-master system 
bus has its own (BClK). These two clocks are usually 
out of phase and of different frequencies. Thus, the ar­
biter must synchronize events occurring on one inter­
face to events occurring on another interface. As a 
result of this back and forth synchronization, ambiguity 
can arise as to when events actually do take place. 

Very simply, the 8289 arbiter operation can be repre­
sented as two events, requesting and surrendering. 
Figure 11 is a representation of the timing relationships 
involved. The request input is a function of the proc­
essor's clock and the surrender input is a function of 
either the bus clock or the processor's clock. To request 

1'1 

Ib) 

the bus, the processor activates its status lines which in 
turn enables the request input. Depending upon the 
phase relationship between the occurrence of status (re­
quest active) and BClK, BREQ appears one to two 
BCIKs later. As shown in Figure 12, the phase relation­
ship between request and BClK is such that the BRQ1 
flip-flop mayor may not catch request on the first 
BClK." 

If BRQ1 flip-flop does catch the request, then one eeIK 
later, BREQ goes low and one BClK after that, ~ 
goes low (it is assumed that priority is immediately 
granted and that the bus is available). If BRQ1 flip-flop 
does not catch the request, then request is caught on 
the next BClK and BREQ goes low one BClK later, fol­
lowed by BUSY which also goes low one BClK later. 
Note that BREQ and BUSY track, as BREQ is an input 
term for BUSY. During bus acquisition, the surrender 
flip-flop is false (SURNDR Q= low) and AEN follows 
BUSY. 

Once the bus is acquired, the surrender circuitry is 
enabled so that when a valid surrender condition exists, 
the bus can be surrendered. The surrender circuitry syn­
chronizes the surrender request to the processor's 
clock and drives SURNDR low. Like the acquisition cir­
cuitry, it takes from one to two processor clocks to gen­
erate SURNDR and depends upon the phase relation­
ship between the surrender request and the processor's 
clock. 

'The two bus request flip·flops, BRat and BRa2, are edge·triggered, 
high resolution flip-flops and serve to reduce the probabW!X...2.! walkout 
down to an acceptable level. Walkout occurs because BCLK is asyn­
chronous with respect to request. If walkout does occur on BRQ1 flip­
flop, the probability is high that the BRat flip·flop will resolve itself 
prior to BRa2 flip-flop being triggered. Even if BRat flip·flop did not 
quite resolve itself, the probability of BRa2 flip·flop walking out to an 
unacceptable point in time is itself low. 

a) BUS UTILIZATION AS A RESULT OF HAVING TO REQUEST AND RELEASE THE BUS 
FOR EACH TRANSFER CYCLE. THIS PERMITS LOWER PRIORITY ARBITERS EASY 
ACCESS TO THE 8US SHOULD THE HIGHER PRIORITY ARBITER NO LONGER NEED 
THE BUS. HOWEVER, BUS EFFICIENCY IS POOR DUE TO THE ARBITER THRASING ON 
AND OFF OF THE BUS FOR EACH TRANSFER CYCLE. 

b) 8289 BUS UTILIZATION IS MORE EFFICIENT IN THAT THE ARBITER HAS ONLY TO 
ACQUIRE THE BUS ONCE. THE 8289 HANGS ONTO THE BUS UNTIL FORCED OFF. 
THIS APPROACH ADDS A LITTLE MORE COMPLEXITY TO THE SYSTEM INASMUCH AS 
SOME MEANS MUST BE PROVIDED FOR LOWER PRIORITY ARBITERS TO FORCE THE 
HIGHER PRIORITY ARBITER OFF OF THE BUS WHEN IT IS NOT USING IT. THE ADDED 
COMPLEXITY IS WELL WORTH THE BUS EFFICIENCY AND SYSTEM FLEXIBILITY IT 
AFFORDS. THE 8289 ARBITER CAN BE CONFIGURED TO HAVE THE TRANSFER TIMING 
AS SHOWN IN (8) (IMITATING THE METHOD 8218 AND 8219 USES, BUS ARBITERS FOR 
8080 AND 8085 RESPECTIVELY) BY STRAPPING ANYRQST HIGH AND CBREQ LOW. 

Figura 10. Two Techniques For Doing Multlbus Trans.er Cycles 
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Having synchronized the surrender request to the proc­
essor's clock to generate SURNDR, SURNDR is then 
synchronized to BClK to reset the BUSY and BRQ flip­
flops. When BUSY-Q goes low, the surrender circuitry is 
reset which in turn re-enables the request input. The tim­
ing in Figure 13 shows the surrender request input 
gOing high on the falling edge of the clock. If the Sample 
flip-flop was able to catch the surrender request on the 
edge of clock 1, then SURNDR would be generated (go 
low) on clock edge 2. If not, SURNDR would be gener­
ated on clock edge 3. SURNDR going low on clock edge 
2will be, for ease of discussion, referred to as SURNDR 
a and SURNDR going low on clock edge 3 will be refer­
red to as SURNDR b. As can be seen from Figure 13, 
SURNDR a just happens to go low on BClK edge 2. 
Since SURNDR is used to reset the BRQ flip-flops, 
which are clocked by the falling edge of BClK, the 
BRQ1 flip-flop may or may not catch SURNDR a on 
BClK edge 2. If it does, then BRQ and BUSY go high on 
BClK edge 3 which, for convenience, will be called 
BREQ a or BUSY a. If not, theh BREQ and BUSY will go 
high on BClK edge 4, which will be referred to as BREQ 
b or BUSY b, respectively. SURNDR b occurs early 
enough to assure that BUSY and BREQ are reset on 
BClK edge 5, which will be referred to as BUSY b1 and 

ClK 

SURRENDER 
REQUEST 

BREQ b1. Depending upon when BUSY goes high, deter­
mines when the surrender circuitry is reset and how 
soon the next BREQ can be generated. BUSY a1 causes 
SURNDR c to occur where shown and SURNDR c in turn 
would allow the earliest bus request to occur at BREQ 
c1. At the other extreme, BUSY b1 allows the earliest 
bus request to occur at BREQ e1. 

Table 1 summarizes the maximum and minimum delays 
for bus request, once the proper request and surrender 
conditions exist. Table 2 lists the proper surrender con­
ditions. 

~~--~-.--.-----~ 

Mode 

Single 

lOB 

RESB 

10B·RESB 

Surrender Conditions 

HALT state, loss of BPRN. TI.CBREO 

HALT state, loss of BPRN, TI·CBREO, 
110 Command.CBRO 

HALT state, loss of BPRN, TI·CBREO, 
(SYSBIRESB ~ O)·CBRO 

HALT state, loss of BPRN, TI·CBREO, 
(SYSBIRESB ~ O)·CBREO, 
110 Command.CBRO 

Table 2. Surrender Conditions 

·i ·i bl 
BREQI 

, \ 
\C1 \d1 \e1 

...... _ ........ _______ .1...-_ 

(EARLIEST THAT BREQ COULD GO ACTIVE AFTER BUS RELEASE) 

Figure 13. Asynchronous Bus Release 
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lOB INTERFACE 

Now that the processor·arbiter, arbiter·system bus and 
internal arbiter timings have been discussed, it is ap· 
propriate to consider the other interfaces that the 8289 
Bus Arbiter provides. 

In the lOB mode, the processor communicates and con· 
trois a host of peripherals over the peripheral bus. When 
the I/O processor needs to communicate with system 
memory, it is done so over the system memory bus. Fig· 
ure 14 shows a possible 1/0 processor system con· 
figuration, utilizing the 8089 I/O processor in its 
REMOTE mode. Resident memory exists on the periph· 
eral bus in order that canned I/O routines and buffer 
storage can be provided. Resident memory is treated as 
an I/O peripheral. When a peripheral device needs ser· 
vicing, the I/O processor accesses resident memory for 
the proper I/O driver routine and services the device, 
transmitting or storing peripheral data in buffer storage 
area of resident memory. The resident memory's buffer 
storage area could then be emptied or replenished from 
system memory via the system bus. Using the lOB inter· 
face allows an I/O processor the capability of executing 
from local memory (on the peripheral bus) concurrently 
with the host processor. 

Timing in this mode is no different from timing in the 
SINGLE BUS mode. The only difference lies in the reo 
quest and surrender conditions. The arbiter extends the 
single bus mode conditions to qualify when the system 
bus is requested and adds on additional surrender con· 
ditions. The system bus is only requested during sys· 
tem bus commands (the arbiter decodes the processor's 
status lines) and, in addition to the other surrender 

terms, the arbiter permits surrender to occur during I/O 
bus (or local bus) commands, when the I/O processor is 
using its own local bus. 

Like the arbiter, the bus controller must also be in· 
formed of the mode it is operating in. In the lOB mode, 
the 8288 bus controller issues I/O bus commands in· 
dependently of the state of AEN from the arbiter. It is 
assumed that all I/O bus commands are intended for the 
I/O bus and hence there is a separate I/O command bus 
from the controller. All I/O bus commands are sent 
directly to the I/O bus and are not influenced by AEN. 
System bus commands are assumed as going to the 
system bus. Since system bus commands are directed 
to the system bus, they must still be influenced by AEiiI 
and the arbitration mechanism provided by the 8289. 

As an example, suppose the processor issues an I/O bus 
command. The 8288 Bus Controller generates the 
necessary control signal to latch the I/O address and 
configure the transceivers in the correct direction. In the 
lOB mode, the multiplexed MCE/PDEN pin of the 8288 
becomes PDEN (peripheral data enable) and serves to 
enable the I/O bus's data transceivers during I/O bus 
commands. DEN similarily serves to enable the system 
bus's data transceivers during memory commands. 
PDEN and DEN are mutually exclusive, so it is not possi· 
ble for both sets of transceivers to be on, thereby 
avoiding contention between the two sets. Since the I/O 
bus commands are generated independently of AEN In 
the lOB mode, the I/O bus has no delay effects due to 
the arbiter. During this time in which the processor is 
accessing memory the arbiter, if it already has the bus, 
will permit it to be surrendered to either a higher or 
lower priority independently of where the processor is in 

XACK(IIO 8U5)------I I---------------{ )tACK MULTI·MASTER SYSTEM 8US 

'0 ADDRESS 
BUS 

10 
DATA 
BUS 

8289 
BUS 

ARBITER 

K=====) MULTI·MASTEA CONTROL 
BUS 

~=====:}MULTI'MASTER SYSTEM 
COMMAND 
BUS 

~==~~~======JMULnMAsn:R SYSTEM 
ADDRESS 

ri-----\ ~:;.VARBlE aus 

K===========;MULfl.MASTEA SYSTEM 
DATA 
BUS 

Figure 14. 8289 Configured In 110 Bus Mode With 8089 1/0 Processor 
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its transfer cycle (i.e., independent of the machine 
state).' If the arbiter does not already have the bus, it 
will make no effort to acquire the bus. 

If the processor issues a memory command instead, the 
same set of events take place, except that 1) the system 
bus's data transceivers are enabled instead of the 
peripherals bus's data transceivers, and 2) when the 
command is issued depends upon the state of the ar· 
biter. In both cases of I/O bus commands and system 
bus commands, the address generated for that com· 
mand is latched into both sets of address latches, the 
system bus's address latches, and the peripherals bus's 
address latches. For each command (regardless of com· 
mand type), an address is put out on the I/O bus and on 
the system bus if the arbiter has the bus at that particu· 
lar time. However, the bus controller only issues a com­
mand to one of the buses and hence, no ill effects are 
suffered by addressing both buses. 

If the arbiter already has the system bus when a system 
bus command is issued, no delays due to the arbiter wi II 
be noticed by the processor. If the arbiter doesn't have 
the bus and must acquire it, then the processor will be 
delayed (via the system bus command being delayed by 
the bus controller through AEN from the arbiter) until 
the arbiter has acquired the bus. The arbiter will then 
permit the bus controller to issue the command and the 
transfer cycle continues. 

RESBINTERFACE 
The non-IIO processors in the 8086 family can communi­
cate with both a resident bus and a multi-master system 
bus. Two bus controllers would be needed in such a con­
figuration as shown in Figure 15. In such a system con­
figuration the processor would have to access to 
memory and peripherals of both buses. Address map­
ping techniques can be applied to select which bus is to 
be accessed. The SYSB/RESB (system bus/resident bus) 
input on the arbiter serves to instruct the arbiter as to 
whether or not the system bus is to be accessed. It also 
enables or disables commands from one of the bus con­
trollers. 

In such a system configuration, it is possible to issue 
both memory and 110 commands to either bus and as a 
result, two bus controllers are needed, one for each bus. 
Since the controllers have to issue both memory and 110 
commands to their respective buses, the lOB options on 
the controllers are strapped off (lOB is low). The ar­
biter, too, has to be informed of the system configura­
tion in order to respond appropriately to system inputs 
and has its RESB option strapped on (RESB is high). The 
arbiter's lOB option is strapped inactive (lOB is high). 
Strapping the arbiter into the resident bus mode 
enables the arbiter to respond to the state of the 
SYSB/RESB input. Depending upon the state of this in­
put, the arbiter either requests and acquires the system 
bus or permits the surrendering of that bus. 

·Under other circumstances, bus surrendering wou!,d only be permitted 
during the period from where address to command hold time has been 
established just prior to where the next command would be issued. 

In the system shown in Figure 15, memory mapping 
techniques are applied on the resident bus side of the 
system rather than on the multiprocessor or system 
bus side. As mentioned earlier in the lOB interface, both 
sets of address latches (the resident bus's address 
latches and the system bus's address latches) are 
latched with the same address; in this case, by their 
respective bus controllers.' The system bus's address 
latches, however, mayor may not be enabled depending 
upon the state of the arbiter. The resident bus's address 
latches are always enabled, hence the address mapping 
technique is applied to the resident bus. 

Address mapping techniques can range in complexity 
from a single bit of the address bus (usually the most 
significant bit of the address), to a decoder, to a PROM. 
The more elaborate mapping technique, such as PROM, 
provides segment mapping, system flexibility, and easy 
mapping modifications (simply make a new PROM). 

In actual operation, both bus controllers respond to the 
processor's status lines and both will simultaneously 
issue an address latch strobe (ALE) to their respective 
address latches. Both bus controllers will issue com­
mand and control signals unless inhibited. The purpose 
of the address mapping circuitry is to inhibit one of the 
bus controllers before contention or erroneous com­
mands can occur. The transceivers are enabled off the 
same clock edge the commands are issued, namely <1>1 
of T2 (Figure 16). The address is strobed into the ad­
dress latches by ALE. ALE is activated as soon as the 
processor issues status, and is terminated on <1>2 of of 
T1. From when ALE is issued, plus the propagation 
delay of the address latches, determines where the ad­
dress is valid. The time from which the address is valid 
to where control and commands are issued determines 
how much settling time is available for the address map­
ping circuitry. The mapping circuitry must inhibit (via 
CEN) one of the bus controllers prior to where controls 
and commands are issued. Part of the settling time 
(see Figure 16) is consumed as a setup time requirement 
to the bus controllers. As it turns out, CEN (command 
enable) can be disqualified as late as on the falling edge 
of clock (the leading edge of <1>1 of T2) without fear of the 
bus controller issuing any commands or transceiver 
control signals. In systems (8 MHz) where less time is 
available for the address mapping circuitry, the address 
latches can be bypassed, hooking the mapping circuitry 
straight onto the processor's multiplexed address/data 
bus (the local bus) and using ALE to strobe the mapping 
circuitry. This would avoid the propagation delay time of 
the transceivers. Besides needing to inhibit one of the 
bus controllers, the arbiter needs to be informed of the 
address mapping circuitry's decision. Depending upon 
that decision, the arbiter acquires or permits the release 
of the system bus. 

• A simpler system with an 8086 or 8088 can exist, if it is desirable to 
only have PROM, ROM, or a read only peripheral interface on the resi· 
dent bus. The 8086 and 8088 additionally generate a read signal in con· 
junction with the 8288 control signals. By using this read signal and 
memory mapping, the 8086 or 8088 could operate from local program 
store without having the contention of using the system bus. 
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The arbiter is informed of this decision via its 
SYSB/RESB input. If the memory mapping circuitry 
selects the resident bus, then SYSB/RESB input to the 
arbiter and CEN input of the system bus controller are 
brought low; and the CEN Input of the resident bus con· 
troller is brought high. The commands and control 
signals of the resident bus are now enabled and those of 
the system bus are disabled. In addition, with the arbiter 
being informed that the transfer cycle is occurring on 
the resident bus, the system bus is permitted to be sur· 
rendered. Glitching is permitted on the SYSB/RESB in­
put of the arbiter up until ¢1 of T2. Thereafter, only clean 
transitions can occur on the input.· So, if mapping cir­
cuitry can settle prior to ¢1 of T2, there is no need to be 
concerned over glitching. If the mapping circuitry is 
unable to settle prior to this time, then the designer 
must guarantee a clean transition on the SYSB/RESB in­
put. 

INTERFACE TO TWO MULTI-MASTER BUSES 

The interface of an 8086 family processor to two multi­
system buses is simply an extension of the resident bus 
interface. The only difference is that now two arbiters 
are needed, one for each multi-master bus, and the ad­
dress mapping circuitry must acquire its input straight 
off the processor's multiplexed address/data bus (the 
local bus), using ALE as an address strobe input. Figure 
17 depicts how such a system might be configured. 

Figure 17 illustrates the use of the 8289 in a system en­
vironment in three of its four modes. The host 8086 CPU 
(priority 3) is using the 8289 in its single bus multi­
master mode, while an 8089 I/O processor is using the 
8289 in its lOB mode. A work station based on an 8088 
processor uses the 8289 in it system/resident bus mode. 
This diagram represents a hypothetical system wherein 
there can exist more than one work station (only one 
shown). Each work station shares system resources and 
I/O. The lowest priority processor (8086) would provide 
supervisory functions and system control, i.e., allow 
operator intervention into the system resources. A work 
station would call in assemblers and compilers or ap­
plication programs as needed. When compiled or 
assembled, the results are transferred to the I/O station 
for output, thus freeing up a work station for another 
user. 

*In certain memory mapping techniques, the CENs of the bus control· 
lers are controlled differently from the SYSB/RESB input of the arbiter. 
In short, CEN Is brought low automatically to both bus controllers, 
thereby disabling their command and control outputs. This permits a 
longer settling time for the memory mapping Circuitry, since both con· 
trollers are disabled. When the mapping circuitry settles, sometime 
after <tol of T2, one of the bus controllers and its associated bus arbiter 
(if one exists) is enabled. After <tol of T2, the arbiter can only permit 
cl~an transitions on the SYSB/RESB Input line. 

If one work station is used, the serial priority resolving 
technique could be used between the 8289 Bus Arbiters 
(shown in dotted lines). If more than one work station is 
desired, it would be necessary to either slow down the 
system bus clock to accommodate the additional ar­
biters, or resort to the parallel resolving technique (as 
shown). 

WHEN TO USE THE DIFFERENT MODES 

Single Bus Multi-Master Interface 

This mode is the simplest and is sufficient for systems 
where a multiprocessing environment exists and the 
system bus bandwidth is sufficient to handle the peak 
concurrent requirements of a multi-master environment. 
This solution can provide an inexpensive solution for 
multi-masters to access an expensive I/O device. If, 
however, the system bus bandwidth is exceeded, the 
lOB or system/resident modes should be considered. 

lOB Mode 

The lOB mode is ideal when the bus can be separated in­
to an I/O bus and memory or system bus. This mode is 
commonly used with the 8089 I/O processor in its 
REMOTE configuration to separate the I/O space from 
memory space. With the 8089, all instructions operate 
on either system or I/O address space. 64K bytes of I/O 
space can be accessed by the processors in the 8086 
family. 

The remaining processors in the 8086 family are con­
strained to using only I/O instructions when referencing 
I/O space. If this is a limitation, and it is desirable to 
remove some of the processor functions to its private 
resources, the resident bus mode should be considered. 

Resident Bus Mode 

The resident bus mode allows for maximum flexibility 
for a CPU device, giving it both access to its own local 
resources with full instruction set capability, and the 
system resources. The CPU can work from its own local 
resources without contention on' the system bus. By 
using a PROM for memory mapping, memory space can 
be easily altered in this mode. This mode requires the 
use of a second 8288 bus controller chip. 

CONCLUSION 

The 8289 brings a new dimension to microcomputer ar­
chitecture by allowing the advanced 8/16-bit microproc­
essors to play easily in a multi-master, multiprocessing 
environment. With the flexible modes of the 8289, a user 
can define one of several bus architectures to meet his 
cost/performance needs. Modularity, improved system 
reliability and increased performance are just a few of 
the benefits that designing a multiprocessing system 
provides. 
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INTRODUCTION 

The Intel 8259A is a Programmable Interrupt Controller 
(PIC) designed for use in real·time interrupt driven 
microcomputer systems. The 8259A manages eight 
levels of interrupts and has built·in features for expan· 
sion up to 64 levels with additional 8259A's. Its versatile 
design allows it to be used within MCS·80, MCS·85, 
MCS·86, and MCS·88 microcomputer systems. Being 
fully programmable, the 8259A provides a wide variety of 
modes and commands to tailor 8259A interrupt process· 
ing for the specific needs of the user. These modes and 
commands control a number of interrupt oriented func· 
tions such as interrupt priority selection and masking of 
interrupts. The 8259A programming may be dynamically 
changed by the software at any time, thus allowing com· 
plete interrupt control throughout program execution. 

The 8259A is an enhanced, fully compatible revision of 
its predecessor, the 8259. This means the 8259A can use 
all hardware and software originally designed for the 
8259 w.ithout any changes. Furthermore, it provides ad· 
ditional modes that increase its flexibility in MCS·80 
and MCS·85 systems and allow it.to work in MCS·86 and 
MCS·88 systems. These modes are: 

• MCS·86/88 Mode 
• Automatic End of Interrupt Mode 
• level Triggered Mode 
• Special Fully Nested Mode 
• Buffered Mode 

Each of these are covered in depth further in this appli· 
cation note. 

This application note was written to explain completely 
how to use the 8259A within MCS·80, MCS·85, MCS·86, 
and MCS·88 microcomputer systems. It is divided into 
five sections. The first section, "Concepts", explains 
the concepts of interrupts and presents an overview of 
how the 8259A works with each microcomputer system 
mentioned above. The second section, "Functional 
Block Diagram", describes the internal functions of t.he 
8259A in block diagram form and provides a detailed 
functional description of each device pin. "Operation of 
the 8259A", the third section, explains in depth the 
operation and use of each of the 8259A modes and com· 
mands. For clarity of explanation, this section doesn't 
make reference to the actual programming of the 8259A. 
Instead, all programming is covered in the fourth sec· 
tion, "Programming the 8259A". This section explains 
how to program the 8259A with the modes and com· 
mands mentioned in the previous section. These two 
sections are referenced in Appendix A. The fifth and 
final section "Application Examples", shows the 8259A 
in three typical applications. These applications are 
fully explained with reference to both hardware and soft· 
ware. 

The reader should note that some of the terminology 
used throughout this application note may differ 
slightly from existing data sheets. This is done to better 
clarify and explain the operation and programming of 
the 8259A. 

1. CONCEPTS 

In microcomputer systems there is usually a need for 
the processor to communicate with various Input/Out· 

put (I/O) devices such as keyboards, displays, sensors, 
and other peripherals. From the system viewpoint, the 
processor should spend as little time as possible servic· 
ing the peripherals since the time required for these I/O 
chores directly affects the amount of time available for 
other tasks. In other words, the system should be 
designed so that I/O servicing has little or no effect on 
the total system throughput. There are two basic 
methods of handling the I/O chores in a system: status 
polling and interrupt servicing. 

The status poll method of I/O servicing essentially in· 
volves having the processor "ask" each peripheral if it 
needs servicing by testing the peripheral's status line. If 
the peripheral requires service, the processor branches 
to the appropriate service routine; if not, the processor 
continues with the main program. Clearly, there are 
several problems in implementing such an approach. 
First, how often a peripheral is polled is an important 
constraint. Some idea of the "frequency·of·service" 
required by each peripheral must be known and any soft· 
ware written for the system must accommodate this 
time dependence by "scheduling" when a device is 
polled. Second, there will obviously be times when a 
device is polled that is not ready for service, wasting the 
processor time that it took to do the poll. And other 
times, a ready device would have to wait until the proc· 
essor "makes its rounds" before it could be serviced, 
slowing down the peripheral. 

Other problems arise when certain peripherals are more 
important than others. The only way to implement the 
"priority" of devices is to poll the high priority devices 
more frequently than lower priority ones. It may even be 
necessary to poll the high priority devices while in a low 
priority device service routine. It is easy to see that the 
polled approach can be inefficient both time·wise and 
software·wise. Overall, the polled method of I/O servic· 
ing can have a detrimental effect on system throughput, 
thus limiting the tasks that can be performed by the 
processor. 

A more desirable approach in most systems would allow 
the processor to be executing its main program and only 
stop to service the I/O when told to do so by the I/O 
itself. This is called the interrupt service method. In 
effect, the device would asynchronously signal the proc· 
essor when it required service. The processor would 
finish its current instruction and then vector to the 
service routine for the device requesting service. Once 
the service routine is complete, the processor would 
resume exactly where it left off. Using the interrupt ser· 
vice method, no processor time is spent testing devices, 
scheduling is not needed, and priority schemes are 
readily implemented. It is easy to see that, using the in· 
terrupt service approach, system throughput would in· 
crease, allowing more tasks to be handled by the 
processor. 

However, to implement the interrupt service method 
between processor and peripherals, additional hardware 
is usually required. This is because, after interrupting 
the processor, the device must supply information for 
vectoring program execution. Depending on the proc· 
essor used, this can be accomplished by the device tak· 
ing control of the data bus and "jamming" an instruc· 
tion(s) onto it. The instruction(s) then vectors the pro· 
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gram to the proper service routine. This of course re­
quires additional control logic for each interrupt re­
questing device. Yet the implementation so far is only in 
the most basic form. What if certain peripherals are to 
be of higher priority than others? What if certairi inter­
rupts must be disabled while others are to be enabled? 
The possible variations go on, but they all add up to one 
theme; to provide greater flexibility using the interrupt 
service method, hardware requirements increase. 

So, we're caught in the middle. The status poll method 
is a less desirable way of servicing 1/0 ,in terms of 
throughput, but its hardware requirements are minimal. 
On the other hand, the interrupt service method is most 
desirable in terms of flexibility and throughput, but 
additional hardware is required. 

The perfect situation would be to have the flexibility and 
throughput of the interrupt method in an implementa­
tion with minimal hardware requirements. The 8259A 
Programmable Interrupt Controll,er (PIC) makes this all 
possible. 

The 8259A Programmable Interrupt Controller (PIC) was 
designed to function as an overall manager of an inter­
rupt driven system. No additional hardware is required. 
The 8259A alone can handle eight prioritized in,terrupt 
levels, controlling the complete interface between pe­
ripherals and processor. Additional 8259A's can be 
"cascaded" to increase the number of interrupt levels 
processed. A wide variety of modes and commands for 
programming the 8259A give it enough flexibility for 
almost any interrupt controlled structure. Thus, the 
8259A is the feasible answer to handling 1/0 servicing in 
microcomputer systems. 

Now, before explaining exactly how to use the 8259A, 
let's go over interrupt structures of the MCS-80, MCS-85, 
MCS-86, and MCS-88 systems, and how they interact 
with the 8259A. Figure 1 shows a block diagram of the 
8259A interfacing with a standard system bus. This may 
prove useful as reference throughout the rest of the 
"Concepts" section. 

I 
INTERRUPT 
RI!:QUESTS 

Figure 1. 8259A Interface to Standard System Bus 

1_1 MCS-80™-8259A OVERVIEW 

In an MCS-80'-8259A interrupt configuration, as in 
Figure 2, a device,may'cause an interrupt by pulling one 
of the 8259A's interrupt request pins (IRO-IR7) high. If 
the 8259A accepts the irlterruptrequest (this depends 
on its programmed condition), the 8259A's INT (inter­
rupt) pin will go high, driving the 8080A's INTpin high. 

The 8080A can receive an interrupt request any, time, 
since its INT input is asynchronous. The 8080A, how­
ever, doesn't always have to acknowledge an interrupt 
request immediately. It can accept or disregard re­
quests under software control using the EI (Enable Inter­
rupt) or 01 (Disable Interrupt) instructions. These in­
structions either set or reset an internal interrupt enable 
flip-flop. The output of this flip-flop controls the state of 
the INTE (Interrupt Enabled) pin. Upon reset, the 8080A 
interrupts are disabled, making INTE low. 

At the end of each instruction cycle, the 8080A exam­
ines the state of its INT pin. If an interrupt request is 
present and interrupts are enabled, the 8080A enters an 
interrupt machine cycle. During the interrupt machine 
cycle the 8080A resets the internal interrupt enable flip­
flop, disabling further interrupts until an EI instruction 
is executed. Unlike normal machine cycles, the interrupt 
machine cycle doesn't increment the program counter. 
This ensures that the 8080A can return to the pre­
interrupt program location ,after the interrupt is com­
pleted. The 8080A then issues an INTA (Interrupt 
Acknowledge) pulse via the 8228 System Controller Bus 
Driver. ThislNTA pulse signals the 8259A that the 8080A 
is honoring the request and is ready to process the inter­
rupt. 

The 8259A can now vector program execution to the cor­
responding service routine. This is' done during a se­
quence of the three INTA pulses from the 8080A via the 
8228. Upon receiving the first INTA pulse the 8259A 
places the opcode for a CALL Instruction on the data 
bus. This causes the contents of the program counter to 
be pushed onto the stack. In addition; the CALL instruc­
tion causes two more INTA pulses to be issued, allow­
ing the 8259A to place onto the data bus the starting 
address of the corresponding service routine. This 
address is called the interrupt-vector address. The lower 
8 bits (LSB) of the interrupt-vector address are released 
during the second INTA pulse and the upper 8 bits 
(MSB) during the third INTA pulse. Once this sequence 
is completed, program execution then vectors to the 
service routine at the interrupt-vector address. 

If the same registers are used by both the main program 
and the interrupt service routine, their contents should 
be saved when entering the service routine. This in­
cludes the Program Status Word (PSW) which consists 
of the accumulator and flags. The best way to do this is 
to "P,USH" each register used onto the stack. The ser­
vice routine can then "POP" each register off the stack 
in the reverse order when it is completed. This prevents 
any ambiguous operation when returning to the main 
program. 

Once the service routine is completed, the ma:in 
program may be re-entered by using a normal RET 
(Return) instruction. This will "POP" the original con-
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tents of the program counter back off the stack to 
resume program execution where it left off. Note, that 
because interrupts are disabled during the interrupt 
acknowledge sequence, the EI instruction must be 
executed either during the service routine or the main 
program before further interrupts can be processed. 

For additional information on the SOSOA interrupt struc· 
ture and operation, refer to the MCS·SO User's Manual. 

1.2 MCS·8S™_82S9A OVERVIEW 

An MCS·S5-S259A configuration processes interrupts 
in much the same format as an MCS-SO-S259A config-

uration. When an interrupt occurs, a sequence of three 
INTA pulses causes the S259A to release onto the data 
bus a CALL instruction and an interrupt·vector address 
for the corresponding service routine. Other events that 
occur during the SOSOA interrupt machine cycle, such as 
disabling interrupts and not incrementing the program 
counter, also occur in the SOS5A interrupt acknowledge 
machine cycle. Additionally, the instructions for saving 
registers, enabling or disabling of interrupts, and return· 
ing from service routines are literally the same. 

The SOS5A, however, has a different interrupt hardware 
scheme as shown in Figure 3. For one, the SOS5A sup· 
plies its own INTA output pin rather than using an addi· 

AO-1SI---------ADDRESS B-US--------~ 
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8259A 
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Figure 2. MCS·80 8259A Basic Configuration Example 
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tional. Chip, as the 8080A uses the 8228 System Con­
troller Bus Driver. Another hardware difference is the 
8085A has five hardware interrupt pins: INTR, RST 7.5, 
RST 6.5, RST 5.5, and TRAP. The INTR (Interrupt Request) 
pin is the equivalent to the 8080A's INT pin. The RST 
(Restart) pins and TRAP pin are all restart interrupts 
which vector program execution to an individual dedi­
cated address when asserted. The important factor 
associating these interrupts is their relative priority, as 
shown below: 

TRAP Highest Priority 
RST 7.5 
RST 6.5 
RST 5.5 
INTR Lowest Priority 

The INTR pin has lowest priority among the other 8085A 
hardware interrupts. Thus, precautions to prevent inter­
rupting 8259A service routines may be necessary. This, 
of course, depends on how the 8085A interrupts are 
being used in a particular application. Such precautions 
can be implemented, however, by masking the RST pins 
using the SIM instruction. The TRAP pin on the other 
hand is non-maskable; all interrupt pins but TRAP can 
be controlled by the EI (Enable I nterrupt) and DI (Disable 
Interrupt) instructions. 

For a complete description of the 8085A inter.rupt struc­
ture, refer to the MCS-85 User's Manual. 

1.3 MCS·86/88™_8259A OVERVIEW 

Operation of an MCS·86/88-8259A configuration has 
basic similarities of the MCS·80/S5-8259A configura· 

READY 
RESET ANi 

CSYNe Fie 

RESET I!Rl! 
READY 

A,S·19 

ADo_iS' 
MULTIPLEXED ADORESSfDATA BUS 

LOCK 

NMI 

INTR 

TO J 
MEMORY 1 

TO 110 

tions. That is, a device can cause an interrupt by pulling 
one of the S259A's interrupt request pins (lRO-IR7) high. 
If the S259A honors the request, its INTpin will go high, 
driving the 80S6/S0SS's INTR pin high. Like the S080A 
and 8085A, the iNTR pin of the S086/S08S is asynchro· 
nous, thus it can receive an interrupt any time. The 
SOS6/8088 can also accept or disregard requests on 
INTR under software control using the STi (Set Interrupt) 
or CLi (Clear Interrupt) instructions. These instructions 
set or clear the interrupt·enabled flag IF. Upon 
8086/S0S8 reset the IF flag is cleared, disabling exte.rnal 
interrupts on INTR. Beside the INTR pin, the S086/S0S8 
provides an NMI (Non-Maskable Interrupt) pin. The NMI 
functions similar to the SOS5A's TRAP; it can't be dis· 
abled or masked. NMI has higher priority than INTR. 

Figure 4 shows an MCS·86 MAX Mode system interfac· 
ing with an 8259A on the local bus. This MCS·86-8259A 
configuration is also representative of an MCS·88-
S259A configuration except for the data bus which is 16 
bits for SOS6 and S bits for 8088. In the MCS·S6 system 
the 8259A must be on the lower 8 bits of the data bus. 
Note that the 8259A could also be interfaced on the 
system bus. 

Although there are some basic similarities, the actual 
processing of interrupts with an 80S6/S088 is different 
than an SOSOA or SOS5A. When an interrupt request is 
present and interrupts are enabled, the SOS6/S0SS enters 
its interrupt acknowledge machine cycle .. The interrupt 
acknowledge machine cycle pushes the flag registers 
onto the stack (as in a PUSHF instruction). It then clears 
the IF flag which disables interrupts. The contents of 

r..;;;Y;;;ST;';EM~AD"'D:;;;RE;;;SS;;-;;;BU;;;S--;;."'I!Rl!"'" l~:I~~ORY 
A1 

/l--'-"SyV.S'"'TE"'M"'D""AT"'A"B"'US'-----"\ TO MEMORY IV---.-=-=====-,/ AND 1/0 

8259A SELECT 

TO SLAVE 8259A 
---V 

Figure 4. MSC-8e ™ 8258A B •• 1c ConllllUflltlon Example (8088 In Max. Mode) 
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both the code segment and the instruction pOinter are 
then also pushed onto the stack. Thus, the stack retains 
the pre-interrupt flag status and pre-interrupt program 
location which are used to return from the service 
routine_ The 8086/8088 then issues the first of two INTA 
pulses which signal the 8259A that the 8086/8088 has 
honored its interrupt request. If the 8086/8088 is used in 
its "MIN Mode" the INTA signal is available from the 
8086/8088 on its INTA pin. If the 8086/8088 is used in the 
"MAX Mode" the INTA signal is available via the 8288 
Bus Controller INTA pin. Additionally, in the "MAX 
Mode" the 8086/8088 LOCK pin goes low during the in­
terrupt acknowledge sequence. The LOCK signal can be 
used to indicate to other system bus masters not to gain 
control of the system bus during the interrupt acknowl­
edge sequence. A "HOLD" request won't be honored 
while LOCK is low. 

The 8259A is now ready to vector program execution to 
the'corresponding service routine. This is done during 
the sequence of the two INTA pulses issued by the 80861 
8088_ Unlike operation with the 8080A or 8085A, the 
8259A doesn't place a CALL instruction and the starting 
address of the service routine on the data bus. Instead, 
the first INTA pulse is used only to signal the 8259A of 
the honored request. The second INTA pulse causes the 
8259A to place a single interrupt-vector byte onto the 
data bus. Not used as a direct address, this interrupt­
vector byte pertains to one of 256 interrupt "types" sup­
ported by the 8086/8088 memory. Program execution is 
vectored to the corresponding service routine by the 
contents of a specified interrupt type. 

All 256 interrupt types are located in absolute memory 
locations. 0 through 3FFH which make up the 80861 
8088's interrupt-vector table. Each type in the interrupt­
vector table requires 4 bytes of memory and stores a 
code segment address and an instruction pOinter ad­
dress. Figure 5 shows a block diagram of the interrupt­
vector table. Locations 0 through 3FFH should be 
reserved for the interrupt-vector table alone. Further­
more, memory locations 00 through 7FH (types 0-31) are 
reserved for use by Intel Corporation for Intel hardware 
and software products. To maintain compatibility with 
present and future Intel products, these locations 
should not be used_ 

- -
INTERRUPT TYPE 255 

INTERRUPT TYPE 254 

• 
• 
• 

INTERRUPT TYPE 2 

INTERRUPT TYPE 1 

INTERRUPT TYPE 0 

Figure 5_ 808618088 Interrupt Vector Table 

3FFH 
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7H 

4H 
3H 

OH 

When the 8086/8088 receives an interrupt-vector byte 
from the 8259A, it multiplies its value by four to acquire 
the address of the interrupt type. For example, if the 
interrupt-vector byte specifies type 128 (80H), the vec­
tored address in 8086/8088 memory is 4 x 80H, which 
equals 200H. Program execution is then vectored to the 
service routine whose address is specified by the code 
segment and instruction pOinter values within type 128 
located at 200H. To show how this is done, let's assume 
interrupt type 128 is to vector data to 8086/8088 memory 
location 2FF5FH. Figure 6 shows two possible ways to 
set values of the code segment and instruction pointer 
for vectoring to location 2FF5FH. Address generation 
by the code segment and instruction pOinter is ac­
complished by an offset (they overlap). Of the total 
20-bit address capability, the code segment can desig­
nate the upper 16 bits, the instruction pOinter can 
designate the lower 16 bits. 
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Figure 6. Two Examples 01 8086/8088 Interrupt Type 128 Vectoring 
to Location 2FF5FH 

When entering an interrupt service routine, those regis­
ters that are mutually used between the main program 
and service routine should be saved_ The best way to do 
this is to "PUSH" each register used onto the stack im­
mediately. The service routine can then "POP" each 
register off the stack in the same order when it is com­
pleted. 

Once the service routine is completed the main program 
may bere-entered by using a IRET (Interrupt Return) in­
struction. The IRET instruction will pop the pre-interrupt 
instruction pointer, code segment and flags off the 
stack_ Thus the main program will resume where it was 
interrupted with the same flag status regardless of 
changes in the service routine_ Note especially that this 
includes the state of the IF flag, thus interrupts are re­
enabled automatically when returning from the service 
routine_ 

Beside external interrupt generation from the INTR pin, 
the 8086/8088 is also able to invoke interrupts by soft­
ware. Three interrupt instructions are provided: iNT, INT 
(Type 3), and INTO. INT is a two byte instruction, the sec­
ond byte selects the interrupt type. INT (Type 3) is a one 
byte instruction which selects interrupt Type 3. INTO is 
a conditional one byte 'interrupt instruction which 
selects interrupt Type 4 if tl:le OF flag (trap on overflow) 
is set. All the .software interrupts vector program execu­
tion as the hardware interrupts do_ 

A-141 



AP-59 

For further information on 8086/8088 interrupt operation 
and internal interrupt structure refer to the MCS-86 
User's Manual and the 8086 System Design application 
note_ 

2_ 8259A FUNCTIONAL BLOCK DIAGRAM 

A block diagram of the 8259A is shown in Figure 7_ As 
can be seen from this figure, the 8259A consists of eight 
major blocks: the Interrupt Request Register (IRR), the 
In-Service Register (ISR), the Interrupt Mask Register 
(I MR), the Priority Resolver (PR), the cascade buffer/ 
comparator, the data bus buffer, and logic blocks for 
control and read/write. We'll first go over the blocks 
directly related to interrupt handling, the IRR, ISR, IMR, 
PR, and the control logic. The remaining functional 
blocks are then discussed. 

2_1 INTERRUPT REGISTERS AND CONTROL LOGIC 

Basically, interrupt requests are handled by three "cas­
caded" registers: the Interrupt Request Register (IRR) is 
use to store all the interrupt levels requesting service; 
the In-Service Register (ISR) stores all the levels which 
are being serviced; and the Interrupt Mask Register 
(IMR) stores the bits of the interrupt lines to be masked. 
The Priority Resolver (PR) looks at the IRR, ISR and IMR, 
and determines whether an INT should be issued by the 
the control logic to the processor. 

Figure 8 shows conceptually how the Interrupt Request 
(IR) input handles an interrupt request and how the 
various interrupt registers interact. The figure repre-
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sents one of eight "daisy-chained" priority cells, one for 
each IR input. 

The best way to explain the operation of the priority cell 
is to go through the sequence of internal events that 
happen when an interrupt request occurs. However, 
first, notice that the input circuitry of the priority cell 
allows for both level sensitive and edge sensitive IR in­
puts. Deciding which method to use is dependent on the 
particular application and will be discussed in more 
detai I later. 

When the IR input is in an inactive state (LOW), the edge 
sense latch is set. If edge sensitive triggering is 
selected, the "Q" output of the edge sense latch will 
arm the input gate to the request latch. This input gate 
will be disarmed after the IR input goes active (HIGH) 
and the interrupt request has been acknowledged. This 
disables the input from generating any further inter­
rupts until it has returned low to re-arm the edge sense 
latch. If level sensitive triggering is selected, the "Q" 

output of the edge sense latch is rendered useless. This 
means the level of the IR input is in complete control of 
interrupt generation; the input won't be disarmed once 
acknowledged. 

When an interrupt occurs on the IR input, it propagates 
through the request latch and to the PR (assuming the 
input isn't masked). The PR looks at the incoming re­
quests and the currently in-service interrupts to ascer­
tain whether an interrupt should be .issued to the proc­
essor. Let's assume that the request is the only one in­
coming and no requests are presently in service. The PR 
then causes the control logic to pull the INT line to the 
processor high. 
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Figure 7. 8259A Block Diagram and Pin Configuration 
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Figure 8. Priority Cell 

When the processor honors the INT pulse, it sends a se· 
quence of INTA pulses to the 8259A (three for 8080A/ 
8085A, two for 8086/8088). During this sequence the 
state of the request latch is frozen (note the INTA·freeze 
request timing diagram). Priority is again resolved by the 
PR to determine the appropriate interrupt vectoring 
which is conveyed to the processor via the data bus. 

Immediately after the interrupt acknowledge sequence, 
the PR sets the corresponding bit in the ISR which 
simultaneously clears the edge sense latch. if edge sen· 
sitive triggering is used, clearing the edge sense latch 
also disarms the request latch. This inhibits the 
possibility of a still active IR input from propagating 
through the priority cell. The IR input must return to an 
inactive state, setting the edge sense latch, before 
another interrupt request can be recognized. If level sen· 
sitive triggering is used, however, clearing the edge 
sense latch has no affect on the request latch. The state 
of the request latch is entirely dependent upon the IR in· 
put level. Another interrupt will be generatedimmedi· 
ately if the IR level is left active after its ISR bit has been 
reset. An ISR bit gets reset with an End·of·lnterrupt (EOI) 
command issued in the service routine. End·of· 
interrupts will be covered in more detail later. 

2.2 OTHER FUNCTIONAL BLOCKS 

Data Bus Buffer 

This three·state, bidirectional 8·bit buffer is used to in· 
terface the 8259A to the processor system data bus (via 

DBO-DB?). Control words, status information, and 
interrupt·vector data are transferred through the data 
bus buffer. 

Read/Write Control Logic 

The function of this block is to control the programming 
of the 8259A by accepting OUTput commands from the 
processor. It also controls the releasing of status onto 
the data bus by accepting INput commands from the 
processor. The initialization and operation command 
word registers which store the various control formats 
are located in this block. The RD, WR, AO, and CS 
pins are used to control access to this block by the 
processor. 

Cascade Buffer/Comparator 

As mentioned earlier, multiple 8259A's can be combined 
to expand the number of interrupt levels. A master·slave 
relationship of cascaded 8259A's is used for the expan· 
sion. The SP/EN and the CASO-2 pins are used for oper· 
ation of this block. The cascading of 8259A's is covered 
in depth in the "Operation of the 8259A" section of this 
application note. 

2.3 PIN FUNCTIONS 

Name Pin 1# I/O Function 

Vee 

GND 

28 

14 

+ 5V supply 

Ground 
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Name Pin # 1/0 Function 

2 

3 

Chip Select: A low on this pin en­
ables RD and WR communication be­
tween the CPU and the 8259A. INTA 
functions are independent of CS. 

Write: A low on this pin when CS is 
low enables the 8259A to accept 
command words from the CPU. 

Read: A low on this pin when CS is 
low enables the 8259A to release 
status onto the data bus for the CPU. 

D7-DO 4-11 1/0 Bidirectional Data Bus: Control, 
status and interrupt-vector informa­
tion is transferred via this bus. 

CASO- 12,13, 1/0 Cascade Lines: The CAS lines form a 
CAS2 15 private 8259A bus to control a multi­

ple 8259A structure. These pins are 
outputs for a master 8259A and in­
puts for a slave 8259A. 

SP/EN 16 110 Slave Program/Enable Buffer: This is 
a dual function pin. When in the buf­
fered mode it can be used as an out­
put to control buffer transceivers 
(EN). When not in the buffered mode 
it is used as an input to designate a 
master (SP= 1) or slave (SP= 0). 

INT 17 0 Interrupt: This pin goes high when-
ever a valid interrupt request is as­
serted. It is used to interrupt the 
CPU, thus it is connected to the 
CPU's interrupt pin. 

IRO- 18-25 I Interrupt Requests: Asynchronous in-
IR7 puts. An interrupt request can be 

generated by raising an IR input (low 
to high) and holding it high until it is 
acknowledged (edge triggered mode), 
or just by a high level on an IR input 
(level triggered mode). 

INTA 26 Interrupt Acknowledge: This pin is 
used to enable 8259A interrupt-vector 
data onto the data bus. This is done 
by a sequence of interrupt acknowl­
edge pulses issued by the CPU. 

AO 27 AO Address Line: This pin acts in con­
junction with the CS, WR, and RD 
pins. It is used by the 8259A to de­
cipher between various command 
words the CPU writes and status the 
CPU wishes to read. It is typically 
connected to the CPU AO address 
line (A 1 for 8086/8088). 

3. OPERATION OF THE 8259A 

Interrupt operation of the 8259A falls under five main 
categories: vectoring, priorities, triggering, status, and 
cascading. Each of these categories use various modes 
and commands. This section will explain the operation 
of these modes and commands. For clarity of explana­
tion, however, the actual programming of the 8259A isn't 

covered in this section but in "Programming the 8259A". 
Appendix A is provided as a cross reference between 
these two sections. 

3.1 INTERRUPT VECTORING 

Each IR input of the 8259A has an individual interrupt­
vector address in memory associated with it. Designa­
tion of each address depends upon the initial program­
ming of the 8259A. As stated earlier, the interrupt 
sequence and addressing of an MCS-80 and MCS-85 
system differs from that of an MCS-86 and MCS-88 
system. Thus, the 8259A must be initially programmed 
in either a MCS-80/85 or MCS-86/88 mode of operation to 
insure the correct interrupt vectoring. 

MCS·80185™ Mode 

When programmed in the MCS-80/85 mode, the 8259A 
should only be used within an 8080A or an 8085A 
system. In this mode the 8080A/8085A will handle inter­
rupts in the format described in the "MCS-80-8259A or 
MCS-85-8259A Overviews." 

Upon interrupt request in the MCS-80/85 mode, the 
8259A wi II output to the data bus the opcode for a CALL 
instruction and the address of the desired routine. This 
is in response to a sequence of three INTA pulses 
issued by the 8080A/8085A after the 8259A has raised 
INT high. 

The first INTA pulse to the 8259A enables the CALL 
opcode "CDH" onto the data bus. It also resolves IR pri­
orities and effects operation in the cascade mode, 
which will be covered later. Contents of the first 
interrupt-vector byte are shown in Figure 9A. 

During the second and third INTA pulses, the 8259A 
conveys a 16-bit interrupt-vector address to the 8080AI 
8085A. The interrupt-vector addresses for all eight levels 
are selected when initially programming the 8259A. 
However, only one address is needed for programming. 
Interrupt-vector addresses of IRO-IR7 are automatically 
set at equally spaced intervals based on the one pro­
grammed address. Address intervals are user definable 
to 4 or 8 bytes apart. If the service routine for a device is 
short it may be possible to fit the entire routine within 
an 8-byte interval. Usually, though, the service routines 
require more than 8 bytes. So, a 4-byte interval is used to 
store a Jump (JMP) instruction which directs the aOaOAI 
8085A to the appropriate routine. The a-byte interval 
maintains compatibility with current 8080A/8085A 
Restart (RST) instruction software, while the 4-byte in­
terval is best for a compact jump table. If the 4-byte in­
terval is selected, then the 8259A will automatically 
insert bits AO-A4. This leaves A5-A15 to be pro­
grammed by the user. If the 8-byte interval is selected, 
the 8259A will automatically insert bits AO-A5. This 
leaves only A6-A 15 to be programmed by the user. 

The LSB of the interrupt-vector address is placed on the 
data bus during the second INTA pulse. Figure 9B 
shows the contents of the second interrupt-vector byte 
for both 4 and 8-byte intervals. 

The MSB of the interrupt-vector address is placed on the 
data bus during the third INTA pulse. Contents of the 
third interrupt·vector byte is shown in Figure 9C. 
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CALLCODEi L _' _________ ---.J' I 
A. FIRST INTERRUPT VECTOR BYTE, MCsaO/B5 MODE 

IR Inl ..... ,=4 

D2 0' DO 

, ° 
O----,'........~ 

"7 A6 A5 _,O'---'---"c:'_..."...j 
f--'-+=c---"'A6:........:::A5, __ ~_~_O __ O __ ~ 

A6 A5 0 1 1 __ ~ 

_~~ ____ ._ ~_ 0 ~ 

"'7 A6 A5 1 0 _~ 

"'7 A6 A5 0 __ .~~ 

7 ~--;-':-:" .. _o,,'. _0,-,' _'"-,-,' _' _0,,-' _"--:c.' _._OO"--j 

"'7 A6 

+ +-~i - 1 _::...: ._-::...; ,_. _'-::...~-_'_-::...:'_---"-::...:...j 

f-O-' -f-':::": --.C:"---':,'_ ........:: -.-.. -~~~~=-== 
~-f-'A::..7~,,---,O~ __ ~O 1 0 0 0 

A1 A6 0 0 0 ----
B. SECOND INTERRUPT VECTOR BYTE, MCsaO/B5 MODE 

07 01 05 04 D3 02 01 00 

I "15 I 1.14 \ "'3 I "12 I All I AID 1 "9 I AS I 
C. THIRD INTERRUPT VECTOR BYTE, MCSBO/B5 MODE 

Figure 9. SA-C. Interrupt·Vector Bytes for 825SA, MCS 80185 Mode 

MCS.86188 ™ Mode 

When programmed in the MCS-86/88 mode, the 8259A 
should only be used within an MCS-86 or MCS-88 
system. In this mode, the 8086/8088 will handle inter­
rupts in the format described earlier in the "8259A-
8086/8088 Overview". 

Upon interrupt in the MCS-86/88 mode, the 8259A will 
output a single interrupt-vector byte to the data bus. 
This is in response to only two INTA pulses issued by 
the 8086/8088 after the 8259A has raised INT high. 

The first INTA pulse is used only for set-up purposes in­
ternal to-the 8259A. As in the MCS-80/85 mode, this set­
up includes priority resolution and cascade mode oper­
ations which will be covered later. Unlike the MCS-80/85 
mode, no CALL opcode is placed on the data bus. 

The second INTA pulse is used to enable the single 
interrupt-vector byte onto the data bus. The 8086/8088 
uses this interrupt-vector byte to select one of 256 inter­
rupt "types" in 8086/8088 memory. Interrupt type selec­
tion for all eight IR levels is made when initially pro­
gramming the 8259A. However, reference to only one in­
terrupt type is needed for programming. The upper 5 bits 
of the interrupt vector byte are user definable. The lower 
3 bits are automatically inserted by the 8259A depend­
ing upon the IR level. 

Contents of the interrupt·vector byte for 8086/8088 type 
selection is put on the data bus during the second INTA 
pulse and is shown in Figure 10. 

IR 07 06 05 4 02 01 DO 
7 T7 T6 T5 T4 T3 1 1 1 
6 T7 T6 T5 T4 T3 1 1 0 
5 T7 T6 T5 T4 T3 1 0 1 
4 T7 T6 T5 T4 T3 1 0 0 
3 T7 T6 T5 T4 T3 0 1 1 
2 T7 T6 T5 T4 T3 0 1 0 
1 T7 T6 T5 T4 T3 0 0 1 
OT7T6T5T4T3 0 0 0 

Figuno 10. Interrupt Vector Byte, MCS ..,..TM Made 

3.2 INTERRUPT PRIORITIES 

A variety of modes and commands are available for con­
trolling interrupt priorities of the 8259A. All of them are 
programmable, that is, they may be changed dynamic­
ally under software control. With these modes and com­
mands, many possibilities are conceivable, giving the 
user enough versatility for almost any interrupt con­
trolled application. 

Fully Nested Mode 

The fully nested mode of operation is a general purpose 
priority mode. This mode supports a multilevel-interrupt 
structure in which priority order of all eight IR inputs are 
arranged from highest to lowest. 

Unless otherwise programmed, the fully nested mode is 
entered by default upon initialization. At this time, IRO is 
assigned the highest priority through IR7 the lowest. 
The fully nested mode, however, is not confined to this 
IR structure alone. Once past initialization, other IR in­
puts can be assigned highest priority also, keeping the 
multilevel-interrupt structure of the fully nested mode. 
Figure lIA-C shows some variations of the priority 
structures in the fully nested mode. 

IR LEVELS IR7 IRs IRS IR4 IR3 IR2 IR1 IRO 
PRIORITY 7 6 5 4 3 2 1 0 

A 

IR LEVELS IR7 IRS IRS IR4 IR3 IR2 IR1 IRO 
PRIORITY 4 3 2 1 0 7 6 5 

B 

I~~I~VR~~~ 11~7 1~6 1~5 1~4 i~3 1~2 1~1 I~O I 
C 

Figure 11. A-C. Some Variations of Priority Structure in the 
Fully Nested Mode 

Further explanation of the fully nested mode, in this 
section, is linked with information of general 8259A in­
terrupt operations. This is done to ease explanation to 
the user in both areas. 

In general, when an interrupt is acknowledged, the 
highest priority request is determined from the IRR (In­
terrupt Request Register). The interrupt vector is then 
placed on the data bus. In addition, the corresponding 
bit in the ISR (In-Service Register) is set to designate the 
routine in service. This ISR bit remains set until an EOI 
(End·Of-lnterrupt) command is issued to the 8259A. 
EOI's will be explained in greater detail shortly. 

In the fully nested mode, while an ISR bit is set, all fur­
ther requests of the same or lower priority are inhibited 
from generating an interrupt to the microprocessor. A 
higher priority request, though, can generate an inter­
rupt, thus vectoring program execution to its service 
routine. Interrupts are only acknowledged, however, if 
the microprocessor has previously executed an "Enable 
Interrupts" instruction. This is because the interrupt 
request pin on the microprocessor gets disabled auto­
matically after acknowledgement of any interrupt. The 
assembly language instructions used to enable inter­
rupts are "EI" for 8080Al8085A and "STI" for 8086/8088. 
Interrupts can be disabled by using the instruction "Oi" 
for 8080A/ 8085A and "CLI" for 8086/8088. When a 
routine is completed a "return" instruction is executed 
"RET" for 8080Al8085Aand "IRET" for 8086/8088. ' 
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Figure 12 illustrates the correct usage of interrupt 
related instructions and the interaction of interrupt 
levels in the fully nested mode. 

Assuming the IR priority assignment for the example in 
Figure 12 is IRQ the highest through IR7 the lowest. the 
sequence is as follows. During the main program, IR3 
makes a request. Since interrupts are enabled, the 
microprocessor is vectored to the IR~ service routine. 
During the IR3 routine, IRI asserts a request. Since IRI 
has higher priority than IR3, an interrupt is generated. 
However, it is not acknowledged because the micro· 
processor disabled interrupts in response to the IR3 in· 
terrupt. The IRI interrupt is not acknowledged until the 
"Enable Interrupts" instruction is executed. Thus the 
IR3 routine has a "protected" section of code over 
which no interrupts (except non·maskable) are allowed. 
The IHI routine has no such "protected" section since 
an "Enable Interrupts" instruction is the first one in its 
service routine. Note that in this example the IRI reo 
quest must stay high until it is acknowledged. This is 
covered in more depth in the "Interrupt Triggering" 
section. 

IR3 
INTERRUPT 

IR1 
INTER· 

RUPT 

IR3 SERVICE 
ROUTINE 

IR1 SERVICE 
ROUTINE 

Figura 12. Fully Nested Mode Example (MCS 8O/8S™ or MCS 86188™) 

What is happening to the ISR register? While in the main 
program, no ISR bits are set since there aren't any inter· 
rupts in service. When the IR3 interrupt is acknowl­
edged, the ISR3 bit is set. When the IRI interrupt is 
acknowledged, both the ISRI and the ISR3 bits are set, 
indicating that neither routine is complete. At this time, 
only IRQ could generate an interrupt since it is the only 
input with a higher priority than those prev.iously in ser· 
vice. To terminate the IRI routine, the routine must 
inform the 8259A that it is complete by resetting its ISR 
bit. It does this by executing an EOI command. A 
"return" instruction then transfers execution back to 

the IR3 routine. This allows IRQ-IR2 to interrupt the IR3 
routine again, since ISR3 is the highest ISR bit set. No 
further interrupts occur in the example so the EOI com· 
mand resets ISR3 and the "return" instruction causes 
the main program to resume at its pre·interrupt location, 
ending the example. 

A single 8259A is essentially always in the fully nested 
mode unless certain programming conditions disturb it. 
The following programming conditions can cause the 
8259A to go out of the high to low priority structure of 
the fully nested mode. 

o The automatic EOI mode 

o The special mask mode 

o A slave with a master not in. the special fully nested 
mode 

These modes will be covered in more detai I later, 
however, they are mentioned now so the user can be 
aware of them. As long as these program conditions 
aren't inacted, th.e fully nested mode remains undis· 
turbed. 

End of Interrupt 

Upon completion of an interrupt service routine the 
8259A needs to be notified so its ISR can be updated. 
This is done to keep track of which interrupt levels are in 
the process of being serviced and their relative priori· 
ties. Three different End·Of·lnterrupt (EOI) formats are 
available for the user. These are: the non·specific EOI 
command, the specific EOI command, and the auto· 
matic EOI Mode. Selection of which EOI to use is depen­
dent upon the interrupt operations the user wishes to 
perform. 

Non-Specific EOI Command 

A non·specific EOI command sent from the microproc· 
essor lets the 8259A know when a service routine has 
been completed, without specification of its exact inter· 
rupt level. The 8259A automatically determines the inter· 
rupt level and resets the correct bit in the ISR. 

To take advantage of the non·specific EOI the 8259A 
must be in a mode of operation in which it can predeter­
mine in·service routine levels. For this reason the non· 
specific EOI command should only be used when the 
most recent level acknowledged and serviced is always 
the highest priority level. When the 8259A receives a 
non-specific EOI command, it simply resets the highest 
priority ISH bit, thus confirming to the 8259A that the 
highest priority routine of the routines in service is 
finished. 

The main advantage of using the non-specific EOI com· 
mand is that IR level specification isn't necessary as in 
the "Specific EOI Command", covered shortly. 
However, special consideration should be taken when 
deciding to use the non·specific EOL Here are two pro· 
gram conditions in which it is best not used: 

o Using the set priority command within an interrupt 
service routi ne. 

o Using a special mask mode. 

These conditions are covered in more detail in their own 
sections, but are listed here for the users reference. 
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Specific EO' Command 

A specific EOI command sent from the microprocessor 
lets the 8259A know when a service routine of a particu­
lar interrupt level is completed_ Unlike a non-specific 
EOI command, which automatically resets the highest 
priority ISR bit, a specific EOI command specifies an 
exact ISR bit to be reset. One of the eight IR levels of the 
8259A can be specified in the command_ 

The reason the specific EOI command is needed, is to 
reset the ISR bit of a completed service routine when­
ever the 8259A isn't able to automatically determine it. 
An example of this type of situation might be if the 
priorities of the interrupt levels were changed during an 
interrupt routine ("Specific Rotation")_ In this case, if 
any other routines were in service at the same time, a 
non-specific EOI might reset the wrong ISR bit. Thus the 
specific EOI command is the best bet in this case, or for 
that matter, any time in which confusion of interrupt 
priorities may exist. The specific EOI command can be 
used in all conditions of 8259A operation, including 
those that prohibit non-specific EOI command usage_ 

Automatic EO' Mode 

When programmed in the automatic EOI mode, the 
microprocessor no longer needs to issue a command to 
notify the 8259A it has completed an interrupt routine_ 
The 8259A accomplishes this by performing a non­
specific EOI automatically at the trailing edge of the last 
INTA pulse (third pulse in MCS-80/85, second in 
MCS-86). 

The obvious advantage of the automatic EOI mode over 
the other EOI command is no command has to be 
issued. In general, this simplifies programming and 
lowers code requirements within interrupt routines. 

However, special consideration should be taken when 
deciding to use the automatic EOI mode because it 
disturbs the fully nested mode. In the automatic EOI 
mode the ISR bit of a routine in service is reset right 
after it's acknowledged, thus leaving no designation in 
the ISR that a sevice routine is being executed. If any in­
terrupt request occurs during this time (and interrupts 
are enabled) it will get serviced regardless of its priority, 
low or high. The problem of "over nesting" may also 
happen in this situation. "Over nesting" is when an IR 
input keeps interrupting its own routine, resulting in un­
necessary stack pushes which could fill the stack in a 
worst case condition. This is not usually a desired form 
of operation! 

So what good is the automatic EOI mode with problems 
like those just covered? Well, again, like the other EOls, 
selection is dependent upon the application. If inter­
rupts are controlled at a predetermined rate, so as not to 
cause the problems mentioned above, the automatic 
EOI mode works perfect just the way it is. However, if in­
terrupts happen sporadically at an indeterminate rate, 
the automatic EOI mode should only be used under the 
following guideline: 

• When using the automatic EOI mode with an inde­
terminate interrupt rate, the microprocessor should 
keep its interrupt request input disabled during 
execution of service routines. 

By doing this, higher priority interrupt levels will be ser­
viced only after the completion of a routine in service. 
This guideline restores the fully nested structure in 
regards to the IRR; however, a routine in-service can't be 
interrupted. 

Automatic Rotation - Equal Priority 

Automatic rotation of priorities serves in applications 
where the interrupting devices are of equal priority, 
such as communications channels. The concept is that 
once a peripheral is serviced, all other equal priority 
peripherals should be given a chance to be serviced 
before the original peripheral is serviced again. This is 
accomplished by automatically assigning a peripheral 
the lowest priority after being serviced Thus, in worst 
case, the device would have to wait until all other 
devices are serviced before being serviced again. 

There are two methods of accomplishing automatic 
rotation. One is used in conjunction with the non­
specific EOI, "rotate on non-specific EOI command". 
The other is used with the automatic EOI mode, "rotate 
in automatic EOI mode". 

Rotate on Non-Specific EO' Command 

When the rotate on non-specific EOI command is 
issued, the highest ISR bit is reset as in a normal non­
specific EOI command. After it's reset though, the cor­
responding IR level is assigned lowest priority. Other IR 
priorities rotate to conform to the fully nested mode 
based on the newly assigned low priority 

Figures 13A and B show how the rotate on non-specific 
EOI command effects the interrupt priorities. Let's 
assume the IR priorities were assigned with IRO the 
highest and IR7 the lowest, as in 13A. IR6 and IR4 are 
already in service but neither is completed. Being the 
higher priority routine, IR4 is necessarily the routine 
being executed. During the IR4 routine a rotate on non­
specific EOI command is executed. When this happens, 
bit 4 in the ISR is reset. IR4 then becomes the lowest 
priority and IR5 becomes the highest as in 13B. 

157 156 ISS 154 153 152 151 ISO 
ISR STATUS I 0 1 0 1 0 0 0 01 BEFORE 

A PRIORITY, 7 6 5 4 3 2 1 0 J COMMAND 

1 
LOWEST PRIORITY HIGHEST PRIORITY 

157 156 ISS 154 153 152 151 ISO 
ISR STATUS I 0 1 0 0 0 0 0 0 I AFTER 

PRIORITY 2 1 0 7 6 5 4 3 COMMAND 

I IL-_--, 
~ I 

HIGHEST PRIORITY LOWEST PRIORITY 

Figure 13. A-B. Rolale on Non·specific EOI Command Example 

Rotate in Automatic EO' Mode 

The rotate in automatic EOI mode works much like the 
rotate on non-specific EOI command. The main differ­
ence is that priority rotation is done automatically after 
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the last INTA pulse of an interrupt request. To enter or 
exit this mode a rotate-in-automatic-EOI set command 
and rotate-in-automatic-EOI clear command is provided. 
After that, no commands are needed as with the normal 
automatic EOI mode. However, it must be remembered, 
when using any form of the automatic EOI mode, spe­
cial consideration should be taken. Thus, the guideline 
for the automatic EOI mode also stands for the rotate in 
automatic EOI mode. 

Specific Rotation - Specific Priority 

Specific rotation gives the user versatile capabilities in 
interrupt controlled operations. It serves in those ap­
plications in which a specific device's interrupt priority 
must be altered. As opposed to automatic rotation 
which automatically sets priorities, specific rotation is 
completely user controlled. That is, the user selects 
which interrupt level is to receive lowest or highest 
priority. This can be done during the main program or 
within interrupt routines. Two specific rotation com­
mands are available to the user, the "set priority com­
mand" and the "rotate on specific EOI command." 

Set Priority Command 

The set priority command allows the programmer to 
assign an IR level the lowest priority. All other interrupt 
levels will conform to the fully nested mode based on 
the newly assigned low priority. 

An example of how the set priority command works is 
shown in Figures 14A and 14B. These figures show the 
status of the ISR and the relative priorities of the inter­
rupt levels before and after the set priority command. 
Two interrupt routines are shown to be in service in 
Figure 14A. Since IR2 is the highest priority, it is 
necessarily the routine being executed. During the IR2 
routine, priorities are altered so that IR5 is the highest. 
This is done simply by issuing the set priority command 
to the B259A. In this case, the command specifies IR4 as 
being the lowest priority. The result of this set priority 
command is shown in Figure 14B. Even though IR7 now 
has higher priority than IR2, it won't be acknowledged 
until the IR2 routine is finished (via EOI). This is because 
priorities are only resolved upon an interrupt request or 
an interrupt acknowledge sequence. If a higher priority 
request occurs during the IR2 routine, then priorities are 
resolved and the highest will be acknowledged. 

157 156 ISS 154 153 152 151 ISO 
ISR STATUS I 1 0 0 0 0 1 0 0 I BEFORE 

A PRIORITY 7 6 5 4 3 2 1 a COMMAND 

1 1 
LOWEST PRIORITY HIGHEST PRIORITY 

157 156 ISS 154 153 152 151 ISO 
ISR STATUS I 1 0 0 0 0 1 0 0 I AFTER 

B PRIORITY 2 1 0 7 6 5 4 JJ COMMAND 

II L... __ r--- I 
HIGHEST PRIORITY LOWEST PRIORITY 

Figure 14. A-B. Set Priority Command Example 

When completing a service routine in which the set 
priority command is used, the correct EOI must be 
issued. The non-specific EOI command shouldn't be 
used in the same routine as a set priority command. 
This is because the non-specific EOI command resets 
the highest ISR bit, which, when using the set priority 
command, is not always the most recent routine in ser­
vice. The automatic EOI mode, on the other hand, can be 
used with the set priority command. This is because it 
c1utomaticallyperforms a non-specific EOI before the 
set priority command can be issued. The specific EOI 
command is the best bet in most cases when using the 
set priority command within a routine. By resetting the 
specific ISR bit of a routine being completed, confusion 
is eliminated. 

Rotate on Specific EOI Command 

The rotate on specific EOI command is literally a com­
bination of the set priority command and the specific 
EOI command. Like the set priority command, a speci­
fied IR level is assigned lowest priority. Like the specific 
EOI command, a specified level will be reset in the ISR. 
Thus the rotate on specific EOI command accomplishes 
both tasks in only one command. 

If it is not necessary to change IR priorities prior to the 
end of an interrupt routine, then this command is advan­
tageous. For an EOI command must be executed any­
way (unless in the automatic EOI mode), so why not do 
both at the same time? 

Interrupt Masking 

Disabling or enabling interrupts can be done by other 
means than just controlling the microprocessor's inter­
rupt request pin. The B259A has an IMR (Interrupt Mask 
Register) which enhances interrupt control capabilities. 
Rather than all interrupts being disabled or enabled at 
the same time, the IMR allows individual IR masking. 
The IMR is an B-bit register, bits 0-7 directly correspond 
to IRO-IRi. Any IR input can be masked by writing to the 
IMR and setting the appropriate bit. Likewise, any IR in­
put can be enabled by clearing the correct IMR bit. 

There are various uses for masking off individual IR in­
puts. One example is when a portion of a main routine 
wishes only to be interrupted by specific interrupts. 
Another might be disabling higher priority interrupts for 
a portion of a lower priority service routine. The possi' 
bilities are many. 

When an interrupt occurs while its IMR bit is set, it isn't 
necessarily forgotten. For, as stated earlier, the IMR 
acts only on the output of the IRR. Even with an IR input 
masked it is still possible to set the IRR. Thus, when 
resetting an IMR, if its IRR bit is set it will then generate 
an interrupt. This is providing, of course, that other 
priority factors are taken into consideration and the IR 
request remains active. If the IR request is removed 
before the IMR is reset, no interrupt will be acknowl­
edged. 

Special Mask Mode 

In various cases, it may be desirable to enable interrupts 
of a lower priority than the routine in service. Or, in other 
words, allow lower priority devices to generate inter­
rupts. However, in the fully nested mode, alliR levels of 
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priority below the routine in service are inhibited. So 
what can be done to enable them? 

Well, one method could be using an EOI command 
before the actual completion of a routine in service. But 
beware, doing this may cause an "over nesting" prob­
lem, similar to in the automatic EOI mode. In addition, 
resetting an ISR bit is irreversible by software control, 
so lower priority IR levels could only be later disabled by 
setting the IMR. 

A much better solution is the special mask mode. Work­
ing in conjunction with the IMR, the special mask mode 
enables interrupts from all levels except the level in ser­
vice. This is done by masking the level that is in service 
and then issuing the special mask mode command. 
Once the special mask mode is set, it remains in effect 
until reset. 

Figure 15 shows how to enable lower priority interrupts 
by using the Special Mask Mode (SMM). Assume that 
IRO has highest priority when the main program is inter­
rupted by IR4. In the IR4 service routine an enable inter­
rupt instruction is executed. This only allows higher 
priority interrupt requests to interrupt IR4 in the normal 
fully nested mode. Further in the IR4 routine, bit 4 of the 
IMR is masked and the special mask mode is entered. 
Priority operation is no longer in the fully nested mode. 
All interrupt levels are enabled except for IR4. To leave 
the special mask mode, the sequence is executed in 
reverse. 

MAIN PROGRAM 

EI OR STI 

IR4 ___ 

IR4 SERVICE 
ROUTINE 

EI OR STI 

MASK IR4 

SET SMM 

RESET SMM 

EOI 

IRO-3 ENABLED 
IR4-7 DISABLED 

IRO-3, 5-7 ENABLED 
IR4 DISABLED 

IRO-3 ENABLED 
IR4-7 DISABLED 

Figure 15. Special Mask Made Example (MCS 8O/8S™or MCS 8e/88™) 

Precautions must be taken when exiting an interrupt 
service routine which has used the special mask· mode. 
A non-specific EOI command can't be used when in the 
special mask mode. This is because a non-specific 
won't clear an ISR bit of an interrupt which is masked 
when in the special mask mode. In fact, the bit will ap­
pear invisible. If the special mask mode is cleared 
before an EOI command is issued a non-specific EOI 
command can be used. This could be the case in the ex­
ample shown in Figure 15, but, to avoid any confusion 
it's best to use the specific EOI whenever using the 
special mask mode. 

It must be remembered that the special mask mode ap­
plies to all masked levels when set. Take, for instance, 
IR1 interrupting IR4 in the previous example. If this hap­
pened while in the special mask mode, and the IR1 
routine masked itself, all interrupts would be enabled 
except IR1 and IR4 which are masked. 

3.3 INTERRUPT TRIGGERING 

There are two classical ways of sensing an active inter­
rupt request: a level sensitive input or an edge sensitive 
input. The 8259A gives the user the capability for either 
method with the edge triggered mode and the level trig­
gered mode. Selection of one of these interrupt trigger­
ing methods is done during the programmed initializa­
tion of the 8259A. 

Level Triggered Mode 

When in the level triggered mode the 8259A will recog­
nize any active (high) level on an IR input as an interrupt 
request. If the IR input remains active after an EOI com­
mand has been issued (resetting its ISR bit), another in­
terrupt will be generated. This is providing of course, the 
processor INT pin is enabled. Unless repetitious inter­
rupt generation is desired, the IR input must be brought 
to an inactive state before an EOI command is issued in 
its service routine. However, it must not go inactive so 
soon that it disobeys the necessary timing require­
ments shown in Figure 16. Note that the request on the 
IR input must remain until after the falling edge of the 
first INTA pulse. If on any IR input, the request goes 
inactive before the first INTA pulse, the 8259A will 
respond as if IR7 was active. In any design in which 
there's a possibility of this happening, the IR7 default 
feature can be used as a safeguard. This can be accom­
plished by using the IR7 routine as a "clean-up routine" 
which might recheck the 8259A status or merely return 
program execution to its pre-interrupt location. 

Depending upon the particular design and application, 
the level triggered mode has a number of uses. For one, 
it provides for repetitious interrupt generation. This is 
useful in cases when a service routine needs to be con­
tinually executed until the interrupt request goes inac­
tive. Another pos$ible advantage of the level triggered 
mode is it allows for "wire-OR'ed" interrupt requests. 
That is, a number of interrupt requests using the same 
IR input. This can't be done in the edge triggered mode, 
for if a device makes an interrupt request while the IR in­
put is high (from another request), its transition will be 
"shadowed". Thus the 8259A won't recognize further in­
terrupt requests because its IR input is already high. 
Note that when a "wire-OR'ed" scheme is used, the ac-
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Figure 16. IR Triggering Timing Requirements 

tual requesting device has to be determined by the soft­
ware in the service routine. 

Caution should be taken when using the automatic EOI 
mode and the level triggered mode together. Since in 
the automatic EOI mode an EOI is automatically per­
formed at the end of the interrupt acknowledge se­
quence, if the processor enables interrupts while an IR 
input is still high, an interrupt will occur immediately. To 
avoid this situation interrupts should be kept disabled 
until the end of the service routine or until the IR input 
returns low. 

Edge Triggered Mode 

When in the edge triggered mode, the 8259A will only 
recognize interrupts if generated by an inactive (low) to 
active (high) transition on an IR input. The edge trig· 
gered mode incorporates an edge lockout method of 
operation. This means that after the riSing edge of an 
interrupt request and the acknowledgement of the re­
quest, the positive level of the IR input won'lgenerate 
further interrupts on this level. The user needn't worry 
about quickly removing the request after acknowledge­
ment in fear of generating further interrupts as might be 
the case in the level triggered mode. Before another in­
terrupt can be generated the IR input must return to the 
inactive state. 

Referring back to Figure 16, the timing requirements for 
interrupt triggering. is shown. Like the level triggered 
mode, in the edge triggered mode the request on the IR 
input must remain active until after the falling edge of 
the first INTA pulse for that particular interrupt. Unlike 
the level triggered mode, though, after the interrupt 
request is acknowledged its IRR latch is disarmed. Only 
after the IR input goes inactive will the IRR latch again 
become armed, making it ready to receive another inter­
rupt request (in the level triggered mode, the IRR latch is 
always armed). Because of the way the edge triggered 
mode functions, it is best to use a positive level with a 
negative pulse to trigger the IR requests. With this type 
of input, the trailing edge of the pulse causes the inter­
rupt and the maintained positive level meets the neces­
sary timing requirements (remaining high until after the 
interrupt acknowledge occurs). Note that the IR7 default 

feature mentioned in the "level triggered mode" section 
also works for the edge triggered mode. 

Depending upon the particular design and application, 
the edge triggered mode has various uses. Because of 
its edge lockout operation, it is best used in those 
applications where repetitious interrupt generation isn't 
desired. It is also very useful in systems where the inter­
rupt request is a pulse (this should be in the form of a 
negative pulse to the 8259A). Another possible advan­
tage is that it can be used with the automatic EOI mode 
without the cautions in the level triggered mode. Over­
all, in most cases, the edge triggered mode simplifies 
operation for the user, since the duration of the interrupt 
request at a positive level is not usually a factor. 

3.4 INTERRUPT STATUS 

By means of software control, the user can interrogate 
the status of the 8259A. This allows the reading of the 
internal interrupt registers, which may prove useful for 
interrupt control during service routines. It also pro­
vides for a modified status poll method of device moni­
toring, by using the poll command. This makes the 
status of the internal IR inputs available to the user via 
software control. The poll command offers an alterna­
tive to the interrupt vector method, especially for those 
cases when more than 64 interrupts are needed. 

Reading Interrupt Registers 

The contents of each S-bit interrupt register, IRR, ISR, 
and IMR, can be read to update the user's program on 
the present status of the 8259A. This can be a versatile 
tool in the decision making process of a service routine, 
giving the user more control over interrupt operations. 
Before delving into the actual process of reading the 
registers, let's briefly review their general descriptions: 

IRR (Interrupt Specifies all interrupt levels re-
Request Register) questing service. 

ISR (In-Service Specifies all interrupt levels 
Register) which are being serviced. 

IMR (Interrupt Specifies all interrupt levels,that 
Mask Register) are masked. 
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To read the contents of the IRR or ISR, the user must 
first issue the appropriate read register command (read 
IRR or read ISR) to the 8259A. Then by applying a RD 
pulse to the 8259A (an INput instruction), the contents 
of the desired register can be acquired. There is no need 
to issue a read register command every time the IRR or 
ISR is to be read. Once a read register command is 
received by the 8259A, it "remembers" which register 
has been selected. Thus, all that is necessary to read 
the contents of the same register more than once is the 
RD pulse and the correct addressing (AO = 0, explained 
in "Programming thll 8259A"). Upon initialization, the 
selection of registers defaults to the IRR. Some caution 
should be taken when using the read register command 
in a system that supports several levels of interrupts. If 
the higher priority routine causes an interrupt between 
the read register command and the actual input of the 
register contents, there's no guarantee that the same 
register will be selected when it returns. Thus it is best 
in such cases to disable interrupts during the operation. 

Reading the contents of the IMR is different than read· 
ing the IRR or ISR. A read register command is not 
necessary when reading the IMR. This is because the 
IMR can be addressed directly for both reading and 
writing. Thus all that the 8259A requires for reading the 
IMR is a RD pulse and the correct addressing (AO= 1, 
explained in "Programming the 8259A"). 

Poll Command 

As mentioned towards the beginning of this application 
note, there are two methods of servicing peripherals: 
status polling and interrupt servicing. For most applica· 
tions the interrupt service method is best. This is 
because it requires the least amount of CPU time, thus 
increasing system throughput. However, for certain ap­
plications, the status poll method may be desirable. 

For this reason, the 8259A supports polling operations 
with the poll command. As opposed to the conventional 
method of polling, the poll command offers improved 
device servicing and increased throughput. Rather than 
having the processor poll each peripheral in ,order to 
find the actual device requiring service, the processor 
polls the 8259A. This allows the use of all the previously 
mentioned priority modes and commands. Additionally, 
both polled and interrupt methods can be used within 
the same program. 

To use the poll command the processor must first have 
its interrupt request pin disabled. Once the poll com­
mand is issued, the 8259A will treat the next (CS quali­
fied) RD pulse issued to it (an INput instruction) as an in­
terrupt acknowledge. It will then set the appropriate bit 
in the ISR, if there was an interrupt request, and enable a 
special word onto the data bus. This word shows 
whether an interrupt request has occurred and the 
highest priority level requesting service. Figure 17 
shows the contents of the "poll word" which is read by 
the processor. Bits WO-W2 convey the binary code of 
the highest priority level requesting service. Bit I desig­
nates whether or not an interrupt request is present. If 
an interrupt request is present, bit I will equal 1. If there 
isn't an interrupt request at all, bit I will equal 0 and bits 
WO-W2 will beset to ones. Service to the requesting 
device is achieved by software decoding the poll word 
and branching to the appropriate service routine. Each 

time the 8259A is to be polled, the poll command must 
be written before reading the poll word. 

The poll command is useful in various situations. For in­
stance, it's a good alternative when memory is very 
limited, because an interrupt-vector table isn't needed. 
Another use for the poll command is when more than 64 
interrupt levels are needed (64 is the limit when cascad­
ing 8259's). The only limit of interrupts using the poll 
command is the number of 8259's that can be addressed 
in a particular system. Still another application of the 
poll command might be when the INT or INTA signals 
are not available. This might be the case in a large 
system where a processor on one card needs to use an 
8259A on a different card. In this instance, the poll com­
mand is the only way to monitor the interrupt devices 
and still take advantage of the 8259A's prioritizing 
features. For those cases when the 8259A is using the 
poll command only and not the interrupt method, each 
8259A must receive an initialization sequence (interrupt 
vector). This must be done even though the interrupt 
vector features of the 8259A are not used. In this case, 
the interrupt vector specified in the initialization 
sequence could be a "fake". 

~
- - - - W2W1WO 

WO·W2 = BINARY CODE OF HIGHEST 
PRIORITY LEVEL REQUESTING SERVICE 

1=1 IF AN INTERRUpT OCCURRED 

Figure 17. Poll Word 

3.5 INTERRUPT CASCADING 

As mentioned earlier, more than one 8259A can be used 
to expand the priority interrupt scheme to up to 64 levels 
without additional hardware. This method for expanded 
interrupt capability is called "cascading". The 8259A 
supports cascading operations with the cascade mode. 
Additionally, the special fully nested mode and the buf­
fered mode are available for increased flexibility when 
cascading 8259A's in certain applications. 

Cascade Mode 

When programmed in the cascade mode, basic opera­
tion consists of one 8259A acting as a master to the 
others which are serving as slaves. Figure 18 shows a 
system containing a master and two slaves, providing a 
total of 22 interrupt levels. 

A specific hardware set-up is required to establish 
operation in the cascade mode. With Figure 18 as a ref­
erence, note that the master is designated by a high on 
the SP/EN pin, while the SP/EN pins of the slaves are 
grounded (this can also be done by software, see buf­
fered mode). Additionally, the INT output pin of each 
slave is connected to an IR input pin of the master. The 
CASO-2 pins for all 8259A's are paralleled. These pins 
act as outputs when the 8259A is a master and as inputs 
for the slaves. Serving as a private 8259A bus, they con­
trol which slave has control of the system bus for inter­
rupt vectoring operation with the processor. All other 
pins are connected as in normal operation (each 8259A 
receives an INTA pulse). 
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Figure 18. Cascaded 8259A'S 22 Interrupl Levels 

Besides hardware set-up requirements, all 8259A's must 
be software programmed to work in the cascade mode. 
Programming the cascade mode is done during the in­
itialization of each 8259A. The 8259A that is selected as 
master must receive specification during its initializa­
tion as to which of its IR inputs are connected to a 
slave's INT pin. Each slave 8259A, on the other hand, 
must be designated during its initialization with an ID (0 
through 7) corresponding to which of the master's IR in­
puts its INT pin is connected to. This is all necessary so 
the CASO-2 pins of the masters will be able to address 
each individual slave. Note that as in normal operation, 
each 8259A must also be initialized to give its IR inputs 
a unique interrupt vector. More detail on the necessary 
programming of the cascade mode is explained in "Pro· 
gramming the 8259A". 

Now, with background information on both hardware 
and software for the cascade mode, let's go over the 
sequence of events that occur during a valid interrupt 
request from a slave. Suppose a slave IR input has 
received an interrupt request. Assuming this request is 
higher priority than other requests and in-service levels 
on the slave, the slave's INT pin is driven high. This 
signals the master of the request by causing an inter­
rupt request on a designated IR pin of the master. Again, 
assuming that this request to the master is higher priori­
ty than other master requests and in-service levels 
(pOSSibly from other slaves), the master's INT pin is 
pulled high, interrupting the processor. 

The interrupt acknowledge sequence appears to the 
processor the same as the non-cascading interrupt 
acknowledge sequence; however, it's different among 
the 8259A's. The first INTA pulse is used by all the 
8259A's for internal set-up purposes and, if in the 
8080/8085 mode, the master will place the CALL opcode 
on the data bus. The first INTA pulse also Signals the 
master to place the requesting slave's ID code on the 
CAS lines. This turns control over to the slave for the 
rest of the interrupt acknowledge sequence, placing the 
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appropriate pre-programmed interrupt vector on the 
data bus, completing the interrupt request. 

During the interrupt acknowledge sequence, the cor­
responding ISR bit of both the master and the slave get 
set. This means two EOI commands must be issued (if 
not in the automatic EOI mode), one for the master and 
one for the slave. 

Special consideration should be taken when mixed 
interrupt requests are assigned to a master 8259A; that 
is, when some of the master's IR inputs are used for 
slave interrupt requests and some are used for individ­
ual interrupt requests. In this type of structure, the 
master's IRO must not be used for a slave. This is 
because when an IR input that isn't initialized as a slave 
receives an interrupt request, the CASO-21ines won't be 
activated, thus staying in the default condition address­
ing for IRO (slave IRO). If a slave is connected to the 
master's IRO when a non-slave interrupt occurs on 
another master IR input, erroneous conditions may 
result. Thus IRO should be the last choice when assign­
ing slaves to IR inputs. 

Special Fully Nested Mode 

Depending on the application, changes in the nested 
structure of the cascade mode may be desired. This is 
because the nested structure of a slave 8259A differs 
from that of the normal fully nested mode. In the cas­
cade mode, if a slave receives a higher priority interrupt 
request than one which is in service (through the same 
slave), it won't be recognized by the master. This is 
because the master's ISR bit is set, ignoring all requests 
of equal or lower priority. Thus, in this case, the higher 
priority slave interrupt won't be serviced until after the 
master's ISR bit is reset by an EOI command. This is 
most likely after the completion of the lower priority 
routine. 

If the user wishes to have a truly fully nested structure 
within a slave 8259A, the special fully nested mode 
should be used. The special fully nested mode is pro-
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grammed in the master only. This is done during the 
master's initialization. In this mode the master will 
ignore only those interrupt requests of lower priority 
than the set ISR bit and will respond to all requests of 
equal or higher priority. Thus if a slave receives a higher 
priority request than one in service, it will be recognized. 
To insure proper interrupt operation when using the 
special fully nested mode, the software must determine 
if any other slave interrupts are still in service before 
issuing an EOI command to the master. This is done by 
resetting the appropriate slave ISR bit with an EOI and 
then reading its ISA. If the ISR contains all zeros, there 
aren't any other interrupts from the slave in service and 
an EOI command can be sent to the master. If the ISR 
isn't all zeros, an EOI command shouldn't be sent to the 
master. Clearing the master's ISR bit with an EOI com· 
mand while there are still slave interrupts in service 
would allow lower priority interrupts to be recognized at 
the master. An example of this process is shown in the 
second application in the "Applications Examples" sec· 
tion. 

Buffered Mode 

The buffered mode is useful in large systems where buf· 
fering is required on the data bus. Although not limited 
to only 8259A cascading, it's most pertinent in this use. 
In the buffered mode, whenever the 8259A's data bus 
output is enabled, its SP/EN pin will go low. This signal 
can be used to enable data transfer through a buffer 
transceiver in the required direction. 

Figure 19 shows a conceptual diagram of three 8259A's 
in cascade, each slave is controlling an individual 8286 
8·bit bidirectional bus driver by means of the buffered 
mode. Note the pull·up on the SP/EN. It is used to 
enable data transfer to the 8259A for its initial program· 
mingo When data transfer is to go from the 8259A to the 
processor, SP/EN will go low; otherwise, it will be high. 

A question should arise, however, from the fact that the 
SP/EN pin is used to designate a master from a slave; 
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how can it be used for both master·slave selection and 
buffer control? The answer to this is the provision for 
software programmable master·slave selection when in 
the buffer mode. The buffered mode is selected during 
each 8259A's initialization. At the same time, the user 
can assign each individual 8259A as a master or slave 
(see "Programming the 8259A"). 

4. PROGRAMMING THE 8259A 

Programming the 8259A is accomplished by using two 
types of command words: Initialization Command 
Words (ICWs) and Operational Command Words 
(OCWs). All the modes and commands explained in the 
previous section, "Operation of the 8259A", are pro· 
grammable using the ICWs and OCWs (see Appendix A 
for cross reference). The ICWs are issued from the proc· 
essor in a sequential format and are used to set·up the 
8259A in an initial state of operation. The OCWs are 
issued as needed to vary and control 8259A operation. 

Both ICWs and OCWs are sent by the processor to the 
8259A via the data bus (8259A CS = 0, WR = 0). The 
8259A distinguishes between the different ICWs and 
OCWs by the state of its AO pin (controlled by processor 
addressing), the sequence they're issued in (lCWs only), 
and some dedicated bits among the ICWs and OCWs. 
Those bits which are dedicated are indicated so by fixed 
values (0 or 1) in the corresponding ICW or OCW pro· 
gramming formats which are covered shortly. Note, 
when issuing either ICWs or OCWs, the interrupt 
request pin of the processor should be disabled. 

4.1 INITIALIZATION COMMAND WORDS (ICWs) 

Before normal operation can begin, each 8259A in a 
system must be initialized by a sequence of two to four 
programming bytes called ICWs (Initialization Com· 
mand Words). The ICWs are used to set·up the neces· 
sary conditions and modes for proper 8259A operation. 

DTIR 

DEN 

INT INTR 

Figure 19. Cascade-Bullered Mode Example 

A-IS3 



Ap·59 

Figure 20 shows the initialization flow of "the 8259A. 
Both ICW1 and ICW2 must be issued for any form of 
8259A operation. However, ICW3 and ICW4 are used 
only if designated so in ICW1. Determining the neces· 
sity and use of each ICW is covered shortly in individual 
groupings. Note that, Ohce intialized, if any program­
ming changes within the ICWs are to be made, the entire 
ICW sequence must be reprogrammed, not just an indi­
viduallCW. 

Certain internal set-up conditions occur automatically 
within the 8259A after the first ICW has been issued. 
These are: 

A. Sequencer logic is set to accept the remain'ng ICWs 
as designated in ICW1. 

B. The ISR (In-Service Register) and IMR (Interrupt Mask 
Register) are both cleared. 

C. The special mask mode is reset. 

D. The rotate in automatic EOI mode flip-flop is cleared. 

E. The IRR (Interrupt Request Register) is selected for 
the read register command. 

F. If the IC4 bit equals 0 in ICW1, all functions in ICW4 
are cleared; 8080/8085 mode is selected by default. 

G. The fully nested mode is entered with an initial prior· 
ity assignment of IRO highest through IR7 lowest. 

H. The edge" sense latch of each IR priority cell is 
cleared, thus requiring a low to high transition to 
generate an interrupt (edge triggered mode effected 
only). 

NO (SNGL=1) 

NO (IC4=O) 

Figura 20. Initialization Flow 

The ICW programming format, Figure 21, shows bit 
designation and a short definition of each ICW. With the 
ICW format as reference, the functions of each ICW will 
now be explained individually. 

ICWI 

1 . leW4 NEEDED 
0" NO leW4 NEEDED 

1 =SINGLE 
o ~ CASCADE MODE 

CALL INTERVAL 
1 = INTERVAL OF 4 
0= INTERVAL OF 8 

1 = LEVEL TRIGQERED INPUT 
0" EDGE TRIGGERED INPUT 

A15 AS Of INTERRUPT VECTOR 

'---'-_-'---''-...J.._-'--'_--'-_-! ~~D~~S~:~~~:~·~~~~~~~E 

ICWJ IMASTER DEVICE) 

8I§. x 
I 0 ,- ., 

II'IICSSG88MOOEI 

.. 3"!j 6 7 

010 

001100 

00001 

NOIE 1 SLAVE 10 IS lUUAL TO Hl[ COfllll SPONlJINti MASHIlIH INPUI 
NOTE ;I X INUICA If S ··DDN'r CARl" 

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A 
DATA SHEETS. THIS IS DONE TO BmER CLARIFY AND EXPLAIN THE PROGRAM· 
MING OF THE 82SSA, THE OPERATIONAL RESULTS REMAIN THE SAME. 

Figura 21. Initialization Command Words (ICWS) Programming Format 
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ICW1 and ICW2 

Issuing ICW1 and ICW2 is the minimum amount of pro· 
gramming needed for any type of 8259A operation. The 
majority of bits within these two ICWs are used to desig· 
nate the interrupt vector starting address. The remain· 
ing bits serve various purposes. Description of the ICW1 
and ICW2 bits is as follows: 

IC4: The IC4 bit is used to designate to the 8259A 
whether or not ICW4 will be issued. If any of 
the ICW4 operations are to be used, ICW4 
must equal 1. If they aren't used, then ICW4 
needn't be issued and IC4 can equal O. Note 
that if IC4 = 0, the 8259A will assume operation 
in the MCS·80/85 mode. 

SNGL: The SNGL bit is used to designate whether or 
not the 8259A is to be used alone or in the cas· 
cade mode. If the cascade mode is desired, 
SNGL must equal O. In doing this, the 8259A 
will accept ICW3 for further cascade mode pro· 
gramming. If the 8259A is to be used as the 
single 8259A within a system, the SNGL bit 
must equal 1; ICW3 won't be accepted. 

ADI: The ADI bit is used to specify the address in· 
terval for the MCS·80/85 mode. If a 4·byte ad· 
dress interval is to be used, ADI must equal 1. 
For an 8·byte address interval, ADI must equal 
O. The state of ADI is ignored when the 8259A 
is in the MCS·86/88 mode. 

LTIM: The L TIM bit is used to select between the two 
I R input triggering modes. If L TIM = 1, the level 
triggered mode is selected. If L TIM = 0, the 
edge triggered mode is selected. 

A5-A15: The A5-A15 bits are used to select the inter· 
rupt vector address when in the MCS·80/85 
mode. There are two programming formats 
that can be used to do this. Which one is im· 
plemented depends upon the selected address 
interval (ADI). If ADI is set for the 4·byte inter· 
val, then the 8259A will automatically insert 
AO-A4 (AO, A1=0 and A2, A3, A4=IRO-7). 
Thus A5-A 15 must be user selected by pro· 
gramming the A5-A15 bits with the desired ad· 
dress. If ADI is set for the 8·byte interval, then 
AO-A5 are automatically inserted (AO, A1, 
A2=0 and A3, A4, A5=IRO-7). This leaves 
A6-A15 to be selected by programming the 
A6-A15 bits with the desired address. The 
state of bit 5 is ignored in the latter format. 

T3-T7: The T3-T7 bits are used to select the interrupt 
type when the MCS·86/88 mode is used. The 
programming of T3-T7 selects the upper 5 
bits. The lower 3 bits are automatically in· 
serted, corresponding to the IR level causing 
the interrupt. The state of bits A5-A10 will be 
ignored when in the MCS-86/88 mode. Estab· 
lishing the actual memory address of the inter· 
rupt is shown in Figure 22. 

1,,1,,1,,1,.1,,1 
I I 

_UPPER 5 BITS OF 8086/8088 
INTERRUPT TYPE (USER PROGRAMMED) 

I I 
I I 

I ~ - ~~~~~~~~gAI~L~~~~'eRTED BY 8259A) 
I I 
I I 
I I 
IT71 161151 T41 T31 T21 T, I Tol - COMPLETE 8088J8088 INTERRUPT TYPE 

I I 
r----l ,_-1 

10 ! 0 I 0 I 0 I T71 161 151 T4' T31 T21 TIl Tol 0 I 0 I _~~~~~Jp~DTDy~~S(~~:E8~!~J8088 

Figure 22. Establishing Memory Address of 8086/8088 Interrupt Type 

ICW3 

The 8259A will only accept ICW3 if programmed in the 
cascade mode (ICW1, SNGL = 0). ICW3 is used for 
specific programming within the cascade mode. Bit 
definition of ICW3 differs depending on whether the 
8259A is a master or a slave. Definition of the ICW3 bits 
is as follows: 

SO-7 
(Master): 

100-102 
(Slave): 

ICW4 

If the 8259A is a master (either when the 
SP/EN pin is tied high or in the buffered 
mode when MIS = 1 in ICW4), ICW3 bit defi· 
nition is SO-7, corresponding to "slave 0-7". 
These bits are used to establish which IR in· 
puts have slaves connected to them. A 1 
deSignates a slave, a a no slave. For exam· 
pie, if a slave was connected to IR3, the S3 
bit should be set to a 1. (SO) should be last 
choice for slave designation. 

If the 8259A is a slave (either when the SP/EN 
pin is low or in the buffered mode when 
MIS = a in ICW4), ICW3 bit definition is used 
to establish its individual identity. The 10 
code of a particular slave must correspond 
to the number of the masters IR input it is 
connected to. For example, if a slave was 
connected to IR6 of the master, the slaves 
100-2 bits should be set to 100 = 0, 101 = 1, 
and 102 = 1. 

The 8259A will only accept ICW4 if it was selected in 
ICW1 (bit IC4= 1). Various modes are offered by using 
ICW4. Bit definition of ICW4 is as follows: 

,..PM: The ,..PM bit allows for selection of either the 
MCS-80/85 or MCS·86/88 mode. If set as a 1 the 
MCS·86/88 mode is selected, if a 0, the 
MCS-80/85 mode is selected. 

AEOI: The AEOI bit is used to select the automatic 
end of interrupt mode. If AEOI = 1, the 
automatic end of interrupt mode is selected. If 
AEOI = 0, it isn't selected; thus an EOI com· 
mand must be used during a service routine. 

MIS: The MIS bit is used in conjunction with the buf· 
fered mode. If in the buffered mode, MIS 
defines whether the 8259A is a master or a 
slave. When MIS is set to a 1, the 8259A 
operates as the master; when MIS is 0, it 
operates as a slave. If not programmed in the 
buffered mode, the state of the MIS bit is 
ignored. 
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BUF: The BUF bit is used to designate operation in 
the buffered mode, thus controlling the use of 
the SP/EN pin. If BUF is set to a 1, the buffered 
mode is programmed and SP/EN is used as a 
transceiver enable output. If BUF is 0, the buf· 
fered mode isn't programmed and SP/EN is 
used for master/slave selection. Note if ICW4 
isn't programmed, SP/EN is used for master/ 
slave selection. 

SFNM: The SFNM bit designates selection of the 
special fully nested mode which is used in 
conjunction with the cascade mode. Only the 
master should be programmed in the special 
fully nested mode to assure a truly fully nested 
structure among the slave IR inputs. If SFNM 
is set to a 1, the special fully nested mode is 
selected; if SFNM is 0, it is not selected. 

4.2 OPERATIONAL COMMAND WORD (OCWs) 

Once initialized by the ICWs, the 8259A will most likely 
be operating in the fully nested mode. At this point, 
operation can be further controlled or modified by the 
use of OCWs (Operation Command Words). Three 
OCWs are available for programming various modes and 
commands. Unlike the ICWs, the OCWs needn't be in 
any type of sequential order. Rather, they are issued by 
the processor as needed within a program. 

Figure 23, the OCW programming format, shows the bit 
designation and short definition of each OCW. With the 
OCW format as reference, the functions of each OCW 
will be explained individually. 

OCW1 

OCW1 is used solely for 8259A masking operations. It 
provides a direct link to the IMR (Interrupt Mask Regis­
ter). The processor can write to or read from the IMR via 
OCW1. The OCW1 bit definition is as fqllows: 

MO-M7: The MO-M7 bits are used to control the mask­
ing of IR inputs. If an M bit is set to a 1, it will 
mask the corresponding IR input. A 0 clears 
the mask, thus enabling the IR input. These 
bits convey the same meaning when being 
read by the processor for status update. 

OCW2 

OCW2 is used for end of interrupt, automatic rotation, 
and specific rotation operations. Associated commands 
and modes of these operations (with the exception of 
AEOI initialization), are selected using the bits of OCW2 
in a combined fashion. Selection of a command or 
mode should be made with the corresponding table for 
OCW2 in the OCW programming tormat(Figure 20), 
rather than on a bit by bit basis. However, for com­
pleteness of explanation, bit definition of OCW2 is as 
follows: 

LO-L2: The LO-L2 bits are used to designate an inter­
rupt level (0-7) to be acted upon for the opera­
tion selected by the EOI, SL, and R bits of 
OCW2. The level designated will either be 
used to reset a specific ISR bit or to set a 
specific priority. The LO-L2 bits are enabled or 
disabled by the SL bit. 

} END OF INTERRUPT 

ROTATE IN MJTOMATIC EOI MODE rCLEAR: } AUTOMATIC ROTATION 

} SPECIFIC ROTATION 

1 POLL COMMAND 

I 
o ' NO POLL COMMAND 

RESET 
SPECIAL SPECIAL 

NOTE 1 X l'JllICAHS 'DON T CARE MASt( MASM 

I 

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTlY FROM EXISTING 8259A 
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM· 
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME. 

Figure 23. Operational Command Words (OCWs) Programming Formal 

EOI: 

SL: 

R: 

A-156 

The EOI bit is used for all end of interrupt com­
mands (not automatic end of interrupt mode). 
If set to a 1, a form of an end of interrupt com­
mand will be executed depending on the state 
of the SL and R bits. If EOI is 0, an end of inter· 
rupt command won't be executed. 

The SL bit is used to select a specific level for 
a given operation. If SL is set to a 1, the LO-L2 
bits are enabled. The operation selected by the 
EOI and R bits will be executed on the 
specified interrupt level. If SL is 0, the LO-L2 
bits are disabled. 

The R bit is used to control all 8259A rotation 
operations. If the R bit is set to a 1, a form of 
priority rotation will be executed depending on 
the state of SL and EOI bits. If R is 0, rotation 
won't be executed. 



AP-59 

OCW3 

OCW3 is used to issue various modes and commands to 
the 8259A. There are two main categories of operation 
associated with OCW3: interrupt status and interrupt 
masking. Bit definition of OCW3 is as follows: 

RIS: The RIS bit is used to select the ISR or IRR for 
the read register command. If RIS is set to 1, 
ISR is selected. If RIS is 0, IRR is selected. The 
state of the RIS is only honored if the RR bit is 
a 1. 

RR: The RR bit is used to execute the read register 
command. If RR is set to a 1, the read register 
command is issued and the state of RIS deter­
mines the register to be read. If RR is 0, the 
read register command isn't issued. 

P: The P bit is used to issue the poll command. If 
P is set to a 1, the poll command is issued. If it 
is 0, the poll command isn't issued. The poll 
command will override a read register com­
mand if set simultaneously. 

SMM: The SMM bit is used to set the special mask 
mode. If SMM is set to a 1, the special mask 
mode is selected. If it is 0, it is not selected. 
The state of the SMM bit is only honored if it is 
enabled by the ESMM bit. 

ESMM: The ESMM bit is used to enable or disable the 
effect of the SMM bit. If ESMM is set to a 1, 
SMM is enabled. If ESMM is 0, SMM is dis­
abled. This bit is useful to prevent interference 
of mode and command selections in OCW3. 

5_ APPLICATION EXAMPLES 

In this section, the 8259A is shown in three different ap­
plication examples. The first is an actual design imple­
mentation supporting an 8080A microprocessor system, 
"Power Fail/Auto Start with Battery Back-Up RAM". The 
second is a conceptual example of incorporating more 
than 64 interrupt levels in an 8080A or 8085A system, 
"78 Level Interrupt System". The third application is a 
conceptual design using an 8086 system, "Timer Con­
trolled Interrupts". Although specific microprocessor 
systems are used in each example, these applications 
can be applied to either MCS-80, MCS-85, MCS-86, or 
MCS-88 systems, providing the necessary hardware and 
software changes are made. Overall, these applications 
should serve as a useful guide, illustrating the various 
procedures in using the 8259A. 

5_1 POWER FAIL/AUTO-START WITH BATTERY 
BACK-UP RAM 

The first application illustrates the 8259A used in an 
8080A system, supporting a battery back-up scheme for 
the RAM (Random Access Memory) in a microcomputer 
system. Such a scheme is important in numerical and 
process control applications. The entire microcomputer 
system could be supported by a battery back-up 
scheme, however, due to the large amount of current 
usually required and the fact that most machinery is not 
supported by an auxiliary power source, only the state 
of calculations and variables usually need to be saved. 
In the event of a loss of power, if these items are not 
already stored in RAM, they can be transferred there and 
saved using a simple battery back-up system. 

The vehicle used in this application is the Intel® 
SBC-80/20 Single Board Computer. An 8259A is used in 
the SBC-80/20 along with control lines helpful in imple­
menting the power-down and automatic restart se­
quence used in a battery back-up system. The SBC-80/20 
also contains user-selectable jumpers which allow the 
on-board RAM to be powered by a supply separate from 
the supply used for the non-RAM components. Also, the 
output of an undedicated latch is available to be con­
nected to the IR inputs of the 8259A (the latch is cleared 
via an output port). In addition, an undedicated, buffered 
input line is provided, along with an input to the RAM 
decoder that will protect memory when asserted. 

The additional circuitry to be described was con­
structed on an SBC-905 prototyping board. An SBC-635 
power supply was used to power the non-RAM section 
of the SBC-80/20 while an external DC supply was used 
to simulate the back-up battery supplying power to the 
RAM. The SBC-635 was used since it provides an open 
collector ACLO output which indicates that the AC 
input line voltage is below 103/206 VAC (RMS). 

The following is an example of a power-down and restart 
sequence that introduces the various power fail signals. 

1. An AC power failure occurs and the ACLO goes high 
(ACLO is pulled up by the battery supply). This indi­
cates that DC power will be reliable for at most 7.5 
ms. The power fail circutry generates a Power Fail In­
terrupt (PFI) signal. This signal sets the PFI latch, 
which is connected to the IRa input of the 8259A, and 
sets the Power Fail Sense (PFS) latch. The state of 
this latch will indicate to the processor, upon reset, 
whether it is coming up from a power failure (warm 
start) or if it is coming up initially (cold start). 

2. The processor is interrupted by the 8259A when the 
PFI latch is set. This pushes the pre-power-down pro­
gram counter onto the stack and calls the service 
routine for the IRa input. The IRa service routine 
saves the processor status and any other needed 
variables. The routine should end with a HALT 
instruction to minimize bus transitions. 

3. After a predetermined length of time (5 ms in this ex­
ample) the power fail circuitry generates a Memory 
Protect (MPRO) signal. All processing for the power 
failure (including the interrupt response delays) must 
be completed within this 5 ms window. The MPRO 
signal ensures that spurious transitions on the sys­
tem control bus caused by power going down do not 
alter the contents of the RAM. 

4. DC power goes down. 

5. AC power returns. The power-on reset circuitry on the 
SBC-80/20 generates a system RESET. 

6. The processor reads the state of the PFS line to 
determine the appropriate start-up sequence. The 
PFS latch is cleared, the MPRO signal is removed, 
and the PFI latch driving IRa is cleared by the Power 
Fail Sense Reset (PFSR).signal. The system then con­
tinues from the pre-power-down location for a warm 
start by restoring the processor status and popping 
the pre-power-down program counter off the stack. 

Figure 24 illustrates this timing. 

A-IS7 
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POWER DOWN RESTART 

ACLO 
\1..-___ _ 

~ ___ ~\-_--l/ 

IRO 

PFSR ---+-----------'1-------_. 

MPRO ---+---"" 
."" 

DC----~----------, ,------,J 7.5 ms min 

POWER UP 
ROUTINE 

Figure 24. Power Down Aestart Timing 

Figure 25 shows the block diagram for the system. 
Notice that the RAM, the RAM decoder, and the power· 
down circuitry are powered by the battery supply. 

The schematic of the power-down circuitry and the 
SBC-80/20 interface is shown in Figure 26. The design is 
very straightforward and uses CMOS logic to minimize 
the battery current requirements. The cold start switch 
is necessary to ensure that during a cold start, the PFS 
line is indicating "cold start" sense (PFS high). Thus, for 

a cold start, the cold start switch is depressed during 
power on. After that, no further action is n.eeded. Notice 
that the PFI signal sets the on-board PFI latch. The out­
put of this latch drives the 8259A IRO input. This latch is 
cleared during the restart routine by executing an OUT­
put D4H instruction. The state of the PFS line may be 
read oli the least significant data bus line (DBO) by exe­
cuting an INput D4H instruction. An 8255 port (8255 #1, 
port C, bit 0) is used to control the PFSR line. 

BATTERY SUPPLY 

COLD 
~START 

CONTROL BUS -t-t---+:---!H-4-'---+--I-..... --++---~H--...J 
DATABUS-t~~--'--+-~~~--+--~--++---~~--~ 

.ADDRESSBUS~~---~-~~---~-----~----~~--~ 

Figure 25. Block Diagram 01 SBC 80120 with Power Down Circuit 
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~ CLR 

'" LATCH 

+5BA!;.TC;-T ------+------"-1 

COLD I 
I 1_ O.1pF START .J. 

5 • 

i P2 

I" 

"" DECODER 

RAM CS 

'---______________________ --1 f--_____ --'-''''lCO P~~T 

Figure 26. Power Down Circuil - SBC 80120 Inlerlace 

The fully nested mode for the 8259A is used in its initial 
state to ensure the IRO always has the highest priority. 
The remaining IR inputs can be used for any other pur· 
pose in the system. The only constraint is that the ser· 
vice routines must enable interrupts as early as possi· 
ble. Obviously, this is to ensure that the power·down in­
terrupt does not have to wait for service. If a rotating 
priority scheme is desired, another 8259A could be 
added as a slave and be programmed to operate in a 
rotating mode. The master would remain in the initial 
state of the fully nested mode so that the IRO still re­
mains the highest priority input. 

The software to support the power-down circuitry is 
shown in Figure 27. The flow for each label will be 
discussed. 

After any system reset, the processor starts execution 
at location OOOOH (STARn. The PFS status is read and 
execution is transferred to CSTART if PFS indicates a 
cold start (Le., someone is depressing the cold start 
switch) or WSTART if a warm start is indicated (PFS 
LOW). CSTART is the start of the user's program. The 
Stack Pointers (SP) and device initialization were in­
cluded just to remind the reader that these must occur. 
The first EI instruction must appear after the 8259A has 
received its initialization sequence. The 8259A (and 
other devices) are initialized in the INIT subroutine. 

When a power failure occurs, execution is vectored by 
the 8259A to REGSAV by way of the jump table at 
JSTART. The pre-power-down program counter is placed 
on the stack. REGSAV saves the processor registers 
and flags in the usual manner by pushing them onto the 
stack. Other items, such as output port status, program-

mabie peripheral states, etc., are pushed onto the stack 
at this time. The Stack Pointer (SP) could be pushed on­
to the stack by way of the register pair H L but the top of 
the stack can exist anywhere in memory and there is no 
way then of knowing where that is when in the power-up 
routine. Thus, the SP is saved at a dedicated location in 
RAM. It isn't really necessary to send an EOI command 
to the 8259A in REGSAV since power will be removed 
from the 8259A, but one is included for completeness. 
The final instruction before actually losing power is a 
HALT. This minimizes somewhat spurious transitions 
on the various busses and lets the processor die 
gracefully. 

On reset, when a warm start is detected, execution is 
transferred to WSTART. WSTART activates PFSR by 
way of the 8255 (all outputs go low then the 8255 is ini­
tialized). In the power-down circuitry, PFSR clears the 
PFS latch and removes the MPRO signal which then 
allows access to the RAM. WSTART also clears the PFI 
latch which arms the 8259A IRO input. Then the 8259A is 
re-initialized along with any other devices. The SP is 
retrieved from RAM and the processor registers and 
flags are restored by popping them off the stack. Inter­
rupts are then enabled. Now the power-down program 
counter is on top of the stack, so executing a RETurn in­
struction transfers the processor to exactly where it left 
off before the power failure. 

Aside from illustrating the usefulness of the 8259A (and 
the SBC-80/20) in implementing a power failure pro­
tected microcomputer system, this application should 
also point out a way of preserving the process0r status 
when using interrupts. 
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Figure 27. Power Down and Restart Software 

5.2 78 LEVEL INTERRUPT SYSTEM 

The second application illustrates an interrupt structure 
with greater than 64 levels for an 8080A or 808SA sys· 
tem. In the cascade mode, the 8259A supports up to 64 
levels with direct vectoring to the service routine. Ex· 
tending the structure to greater than 64 levels requires 
polling, using the poll command. A 78 level interrupt 
structure is used as an illustration; however. the prin· 
ciples apply to systems with up to 512 levels. 

To implement the 78 level structure, 3 tiers of 8259A's 
are used. Nine 8259A's are cascaded in the master·slave 
scheme, giving 64 levels at tier 2. Two additional 
8259A's are connected, by way of the INT outputs, .to 
two of the 64 inputs. The 16 inputs at tier 3, combined 
with the 62 remaining tier 2 inputs, give 78 total levels. 
The fully nested structure is preserved over all levels, 
although direct vectoring is supplied for only the tier 2 
inputs. Software is required to vector any tier 3 re­
quests. Figure 28 shows the tiered structure used in this 
example. Notice that the tier3 8259A's are connected to 
the bottom level slave (SA7). The master-slaves are inter­
connected as shown in "Interrupt Cascading", while the 
tier 3 8259A's are connected as "masters"; that is, the 
SP/EN pins are pulled high and the CAS pins are lett un­
connected. Since these 8259A's are only going to be 
used with the poll command, no INTA is required, there­
fore the INTA pins are pulled high. 
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The concept used to implement the 78 levels is to 
directly vector to all tier 2 input service routines. If a tier 
2 input contains a tier 3 8259A, the service routine for 
that input will poll the tier 3 8259A and branch to the tier 
3 input service routine based on the poll word read after 
the poll command. Figure 29 shows how the jump table 
is organized assuming a starting location of 1000H and 
contiguous tables for all the tier 2 8259A's. Note that 
"SA35" denotes the IR5 input of the slave connected to 
the master IR3 input. Also note that for the normal tier 2 
inputs, the jump table vectors the processor directly to 
the service routine for that input, while for the tier 2 in­
puts with 8259A's connected to their IR inputs, the proc­
essor is vectored to a service routine (i.e., SBO) which 
will poll to determine the actual tier 3 input requesting 
service. The polling routine utilizes the jump table start­
ing at 1200H to vector the processor to the correct tier 3 
service routi ne. 

Each 8259A must receive an initialization sequence 
regardless of the mode. Since the tier 1 and 2 8259A's 
are in cascade and the special fully nested mode is used 
(covered shortly), all ICWs are required. The tier 3 
8259A's don't require ICW3 or ICW4 since only polling 
will be used on them and they are connected as masters 
not in the cascade mode. The initialization sequence for 
each tier is shown in Figure 30. Notice that the master is 
initialized with a "dummy" jump table starting at OOH 
since all vectoring is done by the slaves. The tier 3 
devices also receive "dummy" tables since only polling 
is used on tier 3. 

As explained in "Interrupt Cascading", to preserve a 
truly fully nested mode within a slave, the master 8259A 
should be programmed in the special fully nested mode. 
This allows the master to acknowledge all interrupts at 
and above the level in service disregarding only those of 
lower priority. The special fully nested mode is pro­
grammed in the master only, so it only affects the im­
mediate slaves (tier 2 not tier 3). To implement a fully 
nested structure among tier 3 slaves some special 
housekeeping software is required in all the tier-2-with­
tier-3-slave routines. The software should simply save 
the state of the tier 2 IMR, mask all the lower tier 2 inter­
rupts, then issue a specific EOI, resetting the ISR of the 
tier 2 interrupt level. On completion of the routine the 
IMR is restored. 

Figure 31 shows an example flow and program for any 
tier 2 service routine without a tier 3 8259A. Figure 32 
shows an example flow and program for any tier 2 ser­
vice routine with a tier 3 8259A. Notice the reading of the 
ISR in both examples; this is done to determine whether 
or not to issue an EOI command to the master (refer to 
the section on "Special Fully Nested Mode" for further 
details). 

LOCATION 8259 CODE COMMENTS 

1000 H SAO JMP SAnD , SAGO SERVICE ROUTINE 

101C H JMP SA07 SA07 SERVICE ROUTINE 

1020 H SA1 JMP SA10 SA10 SERVICE ROUTINE 

103C H JMP SAl7 SA17 SERVICE ROUTINE 

· SA2D-SA67 SERVICE ROUTINES 

10EO H SA' JMP SA70 SA70 SERVICE ROUTINE 

10F8 H JMP SBO , sso POLL ROUTINE 
10FC H JMP SB1 · S8l POLL ROUTINE 

1200 H SBO JMP SHOO · S800 SERVICE ROUTINE 

121C H JMP S807 S807 SERVICE ROUTINE 

1220 H SB1 JMP 5810 ; 5810 SERVICE ROUTINE 

123C H JMP SB17 5817 SERVICE ROUTINE 

Figure 29. Jump Table Organization 

INITIALIZATION SEQUENCE FOR 78 LEVEL INTERRUPT STRUCTURE 

INITIALIZE MASTER 

MINT: MVI 
OUT 
MV' 
OUT 
MV' 
OUT 
MV' 
OUT 

A,15H 
MPTA 
A,OOH 
MPTB 
A,OFFH 
MPTB 
A,IOH 
MPTB 

; leWI, lTM=O, ADt=1, $=0, IC4=1 
; MASTER PORT AO=O 
; ICW2, DUMMY ADDRESS 
; MASTER PORT AO = 1 
; ICW3, S7-S0 = 1 
; MASTER PORT AO = 1 
; ICW4, SFNM = 1 
; MASTER PORT AO = 1 

; INITIALIZE SA SLAVES - X DENOTES SLAVE 10 (SEE KEY) 

SAXINT: MVI 
OUT 
MV' 
OUT 
MV' 
OUT 
MV' 
OUT 

A,,, 
SAXPTA 
A,10H 
SAXPTB 
AOXH 
SAXPTB 
A10H 
SAXPTB 

; SEE KEY FOR ICW1, LTM=O, ADI=1, S=O, IC4=1 
; SA"X" PORT AO = 0 
; ICW2, ADDRESS MSB 
; SA"X" PORT AO = 1 
; ICW3, SA 10 
; SA"X" PORT AO = 1 
; ICW4, SFNM = 1 
; SA"X" PORT AO = 1 

REPEAT ABOVE FOR EACH SA SLAVE 

INITIALIZE SB SLAVES - X DENOTES 0 or 1 (DO SBO, REPEAT FOR SB1) 

SBXINT MVI 
OUT 
MV' 
OUT 

A,16H 
SBXPTA 
A,OOH 
SBXPTB 

; ICW1, LTM=O, ADI=1, S=1, IC4=0 
; SB"X" PORT AO = 0 
; ICW2, DUMMY ADDRESS 
; SB"X" PORT AO = 1 

SA INITIALIZATION KEY 

SA"X" a (ICW1) JUMP TABLE START (H) 

0 15 1000 
1 35 1020 
2 55 1040 
3 75 1060 
4 95 1080 
5 65 10AO 
S 05 10CO 
7 FS 10EO 

Figure 30. Initialization Sequence for 78 Level Interrupt Structure 
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: SA"X" ROUTINE ~ GENERAL INTERRUPT SEAVICE ROUTINE 
; FOR TIER 2 INTERRUPTS WITHOUT TIER 38259A 

SAX: PUSH'O 
PUSH B 
PUSH H 
PUSH PSW 

" 
: SERVICE ROUTINE GOES HERE 

01 
MVI 
OUT 
MUI 
OUT 
IN 
ANI 
JZN 
MVI 
OUT 

SAXRSR: POP 
POP 
POP 
POP 

" RET 

20, 
SAXPTA 
A,OBH 
SAXPTA 
SAXPTA 
OFFf.j 
SAXRSR 
A,OB H 
MASPTA 
PSW 
H 
B 
o 

; SAVE DE 
; SAVE Be 
; SAVE Hl 
; SAVE A, FLAGS 
; ENABLE INTERRUPTS 

: DISABLE INTERRUPTS 
; aCW2, NON·SPECIFIC Eor 
; SA"X" PORT AO=O 

; DeW3, READ REGISTER, tSR 
; SA"X" PORT AO=O 
, SA"X" PORT AO=O, SA"X" tSR 
; TEST FOR ZERO 
; IF NOT ZERO, RESTORE STATUS 
; OCW2, NON·SPECIFIC EOI 
; MASTER PORT AO",O 
: RESTORE A, FLAGS 
; RESTORE HL 
; RESTORE Be 
: RESTORE DE 
; ENABLE INTERRUPTS 
; RETURN 

Figure 31, Example Service Routine for Tier 2 Interrupt (SA "X") without Tier 3 8259A (SB"X") 

( SB"X"REr ) 
'---r--~ 

: SB"X" ROUTINE ~ SERVICE ROUTINE FOR TIER 2 
; INTERRUPTS WITH TIER 38259AS 

SBX: PUSH 0 ; SAVE DE 
PUSH B ; SAVE BC 
PUSH H ; SAVE HL 
PUSH PSW ; SAVE A, FLAGS 
IN SAXPTB; READ SA"X" IMR 
MOV D,A ; SAVE 
MVI A,XXIi ; MASK SA"X" LOWER IR 
OUT SAXPTB ; SA"X" PORT AD '" 1 
MVI A,6XH ; OCW2 SPECIFIC EOI SA"X" 
OUT SAXPTA ; SA"X" PORT AD '" 1 
LXI H,12001i ; JUMP TABLE START 
MVI B,QOH ; CLEAR B 
MVI A,OCH , OCW3, POLL COMMAND 
OUT SBXPTA ; SB"X" PORT AO",O 
IN SBXPTA; GET POLL WORD 
ANI 07H ; LfMIT TO 3 BITS 
ADD A ; GET TABLE OFFSET 
ADD A 
MOV C,A 
DAD B 
EI 

; OFFSET TO C 
; HL HAS TABLE ADDRESS 
; ENABLE INTERRUPTS 

SB"X"RET ROUTINE - FOR EOI AND MASK RESTORE 
AFTER SB"X" ROUTINE 

SBXRET Of 
MVI 
OUT 
MVI 
OUT 
IN 
ANI 
JNZ 
MVI 
OUT 

SBXRSR: MOV 
OUT 
POP 
POP 
POP 
POP 
EI 
RET 

A,20H 
SBXPTA 
A,OBH 
SAXPTA 
SBXPTA 
DFFH 
SBXRSR 
A,20H 
MASPTA 
A,O 
SAXPTB 
PSW 
H 

• o 

; DISABLE INTERRUPTS 
; OCW2, NON SPECIFIC EOI 
; SA"X" PORT AD '" ° 
: ~;,~~,' :~~~ :DE2~STER rSR 

; SA"X" PORT AD == 0, ISR 
; TEST FOR ZERO 
; IF .. D RESTORE IMR 
; OCW2, NON·SPEC1FtC Eat 
; MASTER PORT AO = 0 
. RESTORE SA"X" tMR 
; SA"X" PORT AO=l 
; RESTORE A, FLAGS 
; RESTORE HL 
: RESTORE BC 
; RESTORE BC 
; RESTORE DE 
; RETURN 

Figure 32, Example Service Routine for Tier 2 Interrupt (SA "X") with Tier 3 8259A (SB"X") 
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5.3 TIMER CONTROllED INTERRUPTS 

In a large number of controller type microprocessor 
designs, certain timing requirements must be imple· 
mented throughout program execution. Such time 
dependent applications include control of keyboards, 
displays, CRTs, printers, and various facets of industrial 
control. These examples, however, are just a few of 
many designs which require device servicing at specific 
rates or generation of time delays. Trying to maintain 
these timing requirements by processor control alone 
can be costly in throughput and software complexity. 
So, what can be done to alleviate this problem? The 
answer, use the 8259A Programmable Interrupt Con· 
troller and external timing to interrupt the processor for 
time dependent device servicing. 

This application example uses the 8259A for timer con· 
trolled interrupts in an 8086 system. External timing is 
done by two 8253 Programmable Interval Timers. Figure 
33 shows a block diagram of the timer controlled inter· 
rupt circuitry which was bui It on the breadboard area of 
an SDK·86 (system design kit). Besides the 8259A and 
the 8253's, the necessary 1/0 decoding is also shown. 
The timer controlled interrupt circuitry interfaces with 
the SDK·86 which serves as the vehicle of operation for 
this design. 

A short overview of how this application operates is as 
follows. The 8253's are programmed to generate inter· 
rupt requests at specific rates to a number of the 8259A 
IR inputs. The 8259A processes these requests by inter· 
rupting the 8086 and vectoring program execution to the 
appropriate service routine. In this example, the 
routines use the SDK·86 display panel to display the 
number of the interrupt level being serviced. These 
routines are merely for demonstration purposes to show 
the necessary procedures to establish the user's own 
routines in a timer controlled interrupt scheme. 

let's go over the operation starting with the actual inter· 
rupt timing generation which is done by two 8253 Pro· 
grammable Interval Timers (8253 #1 and 8253 #2). Each 
8253 provides three individual 16·bit counters (counters 

0-2) which are software programmable by the proc· 
essor. Each counter has a clock input (ClK), gate input 
(GATE), and an output (OUT). The output signal is based 
on divisions of the clock input signal. Just how or when 
the output occurs is determined by one of the 8253's six 
programmable modes, a programmable 16·bit count, 
and the state of the gate input. 

Figure 34 shows the 8253 timing configuration used for 
generating interrupts to the 8259A. The SDK·86's PClK 
(peripheral clock) signal provides a 400 ns period clock 
to ClKO of 8253 #1. Counter 0 is used in mode 3 (square 
wave rate generator), and acts as a prescalerto provide 
the clock inputs of the other counters with a 10 ms 
period square wave. This 10 ms clock period made it 
easy to calculate exact timings for the other counters. 
Counter 2 of the 8253 #1 is used in mode 2 (rate gener· 
ator), it is programmed to output a 10 ms pulse for every 
200 pulses it receives (every 2 sec). The output of 
counter 2 causes an interrupt on IR1 of the 8259A. All 
the 8253 #2 counters are used in mode 5 (hardware trig· 
gered strobe) in which the gate input initiates counter 
operations. In this case the output of 8253 #1 counter 2 
controls the gate of each 8253 #2 counter. When one of 
the 8253 #2 counters receive the 8253 #1 counter 2 out· 
put pulse on its gate, it will output a pulse (10 ms in 
duration) after a certain preprogrammed number of 
clock pulses have occurred. The programmed number of 
clock pulses for the 8253 #2 counters is as follows: 50 
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for 
counter 1, and 150 pulses (1.5 sec) for counter 2. The 
outputs of these counters cause interrupt requests on 
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is 
used in mode 0 (interrupt on terminal count). Unlike the 
other modes used which initialize operation auto· 
matically or by gate triggering, mode 0 allows software 
controlled counter initialization. When counter 1 of 8253 
#1 is set during program execution, it will count 25 
clocks (250 ms) and then pull its output high, causing an 
interrupt request on IRO of the 8259A. Figure 35 shows 
the timing generated by the 8253's which cause inter· 
rupt request on the 8259A IR inputs. 

EACH DEVICE Vee = + 5V, GND '" ~ 

Fig.ure 33. Timer Controlled Interrupt Circuit on SDK 86 Breadboard Area 
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82~9A 

"O"'U'".:.' ___________ IRO 

"O"-u'''''O_-t _____ +-___ IR2 

eLK1 f=0"'u'c..'_-t ____ '13 

CLK2 

Figure 34. 8253 Timing Configuration for Timer Controlled Interrupts 

8253" \ 
COUNTER 1 

I 
IRO 

u u IR, 

8253lf2 \~ 
COUNTERO ' 

ur------'ur------i'd IR2 

c~~~~:~, I \-' ----U,..---------,U,..---------,U,..---..... "I IR3 

c~a~~~~ 2 \ I-------...,U u r\IR4 

I ! I ! ! ! I I I! I I I !!! I ! ! I ! ! 

250 ms PER DIVISION 
(EACH SMALL PULSE IS 10 ms IN DURATION) 

Figure 35. 8259A IR Input Signal From 82535 

There are basically two methods of timing generation 
that can be used in a timer controlled interrupt struc· 
ture: dependent timing and independent timing. Depen· 
dent timing uses a single timing occurrence as a refer· 
ence to base other timing occurrences on. On the other 
hand, independent timing has no mutual reference be· 
tween occurrences. Industrial controller type applica· 
tions are more apt to use dependent timing, whereas in· 
dependent timing is prone to individual device control. 

Although this application uses primarily dependent tim· 
ing, independent timing is also incorporated as an 
example. The use of dependent timing can be seen back 
in Figure 34, where timing for IR2 through IR4 uses the 
IR1 pulse as reference. Each one of the 8253 #2 counters 
will generate an interrupt request a specific amount of 
times after the IR1 interrupt request occurs. When using 
the dependent method, as in this case, the IR2 through 
IR4 requests must occur before the next IR1 request. 
Independent timing is used to control the IRO interrupt 
request. Note that its timing isn't controlled by any of 
the other IR requests. In this timer controlled interrupt 
configuration the dependent timing is initially set to be 
self running and the independent timing is software 
initialized. However, both methods can work either way 
by using the various 8253 modes to generate the same 
interrupt timing. 

The 8259A processes the interrupts generated by the 
8253's according to how it is programmed. In this appli· 
cation it is programmed to operate in the edge triggered 
mode, MCS·86/88 mode, and automatic EOI mode. In the 
edge triggered mode an interrupt request on an 8259A 

IR input becomes active on the rising edge. With this in 
mind, Figure 35 shows that IRO will generate an inter· 
rupt every half second and IR1 through IR4 will each 
generate.an interrupt every 2 seconds spaced apart at 
half second intervals. Interrupt vectoring in the 
MCS·86/88 mode is programmed so IRO, when activated, 
will select interrupt type 72. This means IR1 will select 
interrupt type 73, IR2 interrupt type 74, and so on 
through IR4. Since IR5 through IR7 aren't used, they are 
masked off. This prevents the possibility of any acci· 
dental interrupts and rids the necessity to tie the 
unused IR inputs to a steady level. Figure 36 shows the 
8259A IR levels (IRO-IR4) with their corresponding inter· 
rupt type in the 8086 interrupt·vector table. Type 77 in 
the table is selected by a software "INT" instruction 
during program execution. Each type is programmed 
with the necessary code segment and instruction 
pointer values for vectoring to the appropriate service 
routine. Since the 8259A is programmed in the auto· 
matic EOI Mode, it doesn't require an EOI command to 
designate the completion of the service routine. 

TYPE 77 
TYPE 76 

TYPE 75 
TYPE 74 

TYPE 73 
TYPE 72 

-

SOFTWARE INT 

IR4 t 
IR3 

IR2 J 8259A 
IRI 

IRO 

Figure 36. Interrupt "Type" Designation 
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As mentioned earlier, the interrupt service routines in 
this application are used merely to demonstrate the 
timer controlled interrupt scheme, not to implement a 
particular design, Thus a service routine simply displays 
the number of its interrupting level on the SDK-86 dis· 
play panel, The display panel is controlled by the 8279 
Keyboard and Display Controller. It is initialized to 
display "Ir" in its two left·most digits during the entire 
display sequence. When an interrupt from IR1 through 
IR4 occurs the corresponding routine will display its IR 
number via the 8279. During each IR1 through IR4 servo 
ice routine a software "INT77" instruction is executed. 
This instruction vectors program execution to the servo 
ice routine designated by type 77, which sets the 8253 
counter controlling IRO so it will cause an interrupt in 
250 ms. When the IRO interrupt occurs its routine will 
turn off the digit displayed by the IR1 through IR4 
routines. Thus each IR level (IR1-IR4) will be displayed 
for 250 ms followed by a 250 ms off time caused by IRO. 
Figure 37 shows the entire display sequence of the 
timer controlled interrupt application. 

I r I IR1 

III r I I J IRO 

I'I r I I I 121 I IR2 

I'I r I I I I I I IRO 

I'I r I I I g I I I IR3 

III r I I LLI J IRO 

I'I r I I '11 I I I IR4 

III r I I I I I I IRO 

Figure 37. SDK Display Sequence for Timer Controlled Interrupts 
Program (Each Display Block Shown is 250 msec 
in Duration) 

Now that we've covered the operation, let's move on to 
the program flow and structure of the timer controlled 
interrupt program. The program flow is made up of an 
initialization section and six interrupt service routines. 
The initialization program flow is shown in Figure 38. It 
starts by initializing some of the 8086's registers for pro· 
gram operation; this includes the extra segment, data 
segment, stack segment, and stack pointer. Next, by 
using the extra segement as reference, interrupt types 
72 through 77 are set to vector interrupts to the appro· 
priate routines. This is done by moving the code seg· 
ment and instruction pointer values of each service 
routine into the corresponding type location. The 8253 
counters are then programmed with the proper mode 
and count to provide the interrupt timing mentioned 
earlier. All counters with the exception of the 8253 #1, 
counter 1 are fully initialized at this point and will start 
counting. Counter 1 of 8253 #1 starts counting when its 
counter is loaded during the "INTR77" service routine, 
which will be covered shortly. Next, the 8259A is issued 
ICW1, ICW2, ICW4, and OCW1. The ICWs program the 

8259A for the edge triggered mode, automatic EOI 
mode, and the proper interrupt vectoring (I RO, type 72). 
OCW1 is used to mask off the unused IR inputs 
(IR5-IR7). The 8279 is then set to display "IR" on its two 
left·most digits. After that the 8086 enables interrupts 
and a "dummy" main program is executed to wait for in· 
terrupt requests. 

Figure 38. Initialization Program Flow for Timer Controlled Interrupts 

There are six different interrupt service routines used in 
the program. Five of these routines, "INTR72" through 
"INTR76", are vectored to via the 8259A. Figure 39A·C 
shows the program flow for all six service routines. Note 
that "INTR73" through "INTR76" (IR1-IR4) basicallyuse 
the same flow. These four similar routines display the 
number of its interrupting IR level on the SDK-86 display 
panel, The "INTR77" routine is vectored to by software 
during each of the previously mentioned routines and 
sets up interrupt timing to cause the "INTR72" (IRO) 
routine to be executed. The "INTR72" routine turns off 
the number on the SDK-86 display panel. 

A. INTERRUPT ON 
8259AIRO 

( INTR73-76 ) 

RETURN 

B. INTERRUPT ON 
8259A IR1-IR4 

C. SOFTWARE INVOKED 
INTERRUPT 

Figure 39. A-C. Interrupts Service Routine Flow lor 
Timer Controlled Interrupts. 
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To best explain how these service routines work, let's 
assume an interrupt occurred on IR1 of the 8259A. The 
associated service routine for IR1 is "INTR73". Entering 
"INTR73", the first thing done is saving the pre-interrupt 
program status. This isn't really necessary in this pro­
gram since a "dummy" main program is being executed; 
however, it is done as an example to show the operation. 
Rather than having code for saving the registers in each 
separate routine, a mutual call routine, "SAVE", is used. 
This routine will save the register status by pushing it 
on the stack. The next portion of "INTR73" will display 
the number of its IR level, "1", in the first digit of the 
SDK-86 display panel. After that, a software INT instruc­
tion is executed to vector program execution to the 
"INTR??" service routine. The "INTR??" service routine 
simply sets the 8253 #1 counter 1 to cause an interrupt 
on IRO in 250 ms and then returns to "INTR73". Once 
back in "INTR73", the pre-interrupt status is restored by 
a call routine, "RESTORE". It does the opposite of 
"SAVE", returning the register status by popping it off 
the stack. The "INTR73" routine then returns to the 
"dummy" main program. The flow for the "INTR74" 
through "INTR76" routines are the same except for the 
digit location and the IR level displayed. 

After 250 ms have elapsed, counter 1 of 8253 #1 makes 
an interrupt request on IRO of the 8259A. This causes 
the "INTR72" service routine to be executed. Since this 
routine interrupts the main program, it also uses the 
"SAVE" routine to save pre-interrupt program status. It 
then turns off the digit displaying the IR level. In the 
case of the "INTR73" routine, the "1" is blanked out. 
The pre-interrupt status is then restored using the 
"RESTORE" routine and program execution returns to 
the "dummy" main program. 

The complete program for the timer controlled inter­
rupts application is shown in Appendix B. The program 
was executed in SDK-86 RAM starting at location 0500H 
(code segment = 0050, instruction pointer= 0). 

CONCLUSION 

This application note has explained the 8259A in detail 
and gives three applications illustrating the use of some 
of the numerous programmable features available. It 
should be evident from these discussions that the 
8259A is an extremely flexible and easily programmable 
member of the Intel'" MCS-80, MCS-85, MCS-86, and 
MCS-88 families. 
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This table is provided merely for reference information between the "Operation of the 8259A" and "Programming the 
8259A" sections of this application note. It shouldn't be used as a programming reference guide (see "Programming 
the 8259A"). 

Operational Command 
Description Words Bits 

MCS·80185™ Mode ICW1,ICW4· IC4,!,PM· 

Address Interval for MCS·80/85 Mode ICW1 ADI 

Interrupt Vector Address for MCS·80/85 Mode ICW1,ICW2 A5-A15 

MCS·86/88 Mode ICW1,ICW4 IC4,!,PM 

Interrupt Vector Byte for MCS·86/88 Mode ICW2 T3-T7 

Fully Nested Mode OCW-Default 

Non·Specific EOI Command OCW2 EOI 

Specific EOI Command OCW2 SEOI, EOI, 
LO-L2 

Automatic EOI Mode ICW1,ICW4 IC4, AEOI 

Rotate On Non·Specific EOI Command OCW2 EOI 

Rotate In Automatic EOI Mode OCW2 R, SEOI, EOI 

Set Priority Command OCW2 LO-L2 

Rotate on Specific EOI Command OCW2 R, SEOI, EOI 

Interrupt Mask Register OCW1 MO-M7 

Special Mask Mode OCW3 ESMM-SMM 

Level Triggered Mode ICW1 LTIM 

Edge Triggered Mode ICW1 LTIM 

Read Register Command, IRR OCW3 ERIS, RIS 

Read Register Command, ISR OCW3 ERIS, RIS 

Read IMR OCW1 MO-M7 

Poll Command OCW3 P 

Cascade Mode ICW1,ICW3 SNGL, SO-7, 
100-2 

Special Fully Nested Mode ICW1,ICW4 IC4, SFNM 

Buffered Mode ICW1,ICW4 IC4, BUF, 
MIS 

·Only needed if ICW4 is used for purposes other than "p mode set. 

A-167 



AP-59 

MCS-B6 f6SEMBLER TCI59f! 

ISIS-II MC'S-8G tl551:MBLER III i.l ffSSEMBL Y OF MODULE TCI59ft 
OBJECT MODULE PLACEr> IN F1.lCI59A. OS.J 
ASSE!'IBLER INI/OKED BY· FUiSM86FITCI59A. 5RC 

LOC 08.1 

0120 
0120 0491 
0122 .YC'?? 
0124 1801 
0126 m·J 

0128 3001 
012f1 n~n 
012C 4801 
012E m? 
91306001 
tlD2,???? 
01:>47801 
0B6Tm 

0008 ???? 
9002 ???? 
0004 ?? 

9000 B80000 
!l803 SECll 
0111!5 887000 
!l808 SED8 
000A 1l11781l8 
II89D SEOO 
90IlF BCS8OO. 

LINE SOURCE 

; ******************** TIMER CONTROLLEr> INTeRRUPTS ******************* 
2 
3 
4 
5 ; 
6 
7 EXTRA 5t:OMEtfl 
g ; 

9 ORO 
10 TP72IP OW 
11 TP72CS DW 
12 TP73IP OW 
13 TP73CS DIoI 
14 TP74IF' OW 
15 1"f'74CS DW 
16 TF'751F' I)f.I 

1l TP75CS OW 
18 TP76IP I)f.I 

19 TP76CS OW 
20 TP77IP DW 
21 IP77CS OW 
22 ; 

23 EXTRA ENDS 
24 • ; 
25 
26 ; 
27 DATA 
2S 
29 STACK1 
3{l AXTEl1P 
31 DIGIl 
32 
33 DATIl 
34 ; 

35 ; 

36 
37 CODE 
38 

SEGMENT 

DW 
DIoI 
DB 

ENDS 

s[GMENT 

EXTRA SEGMENT DECLARATIONS 

129H 
INW72 .i TYPE 72 INSTRUCTION POINTER 
'} ; T\'PE 72 CODE SEGMENT 
INTla3 .i T\'PE 73 INSl RUCTIUN POINTER 
J i TYPE 73 CODE SI:.GI1ENI 
INTR74 i H'f'E 74 INSTRUCllON POINTER 
? ; TYPE i' 4 CODE SEGMENT 
INTR75 ; TYrE 75 INSTRUCTION POINTER 
? ; noPE 75 CODE 5I:.Gl'lENl 
INH~76 ; lYPE i'6 INSTRUCTION POINTER 
? .i TYPE 76 (;ODE SEGMENT 
INTR77 ; TYPE 77 INSTRUCTION PUINTI:.R 
? i TYPE 77 CODE SEGI'IENl 

llATA SEGl'lENT DECLARATI ONS 

? ; VARlfIb'lE TO SAllE CALL flIIDRtSS 
? ; VARIABLE TO SAVE AX REGISTEk 
? ; I/ARIABLE "10 SAVE SELECll:D DIGIT 

GOOE SEGMENT DECLARATION 

39 ASSIJIE ES : EXTRA, DS: D:lTA, CS : CODE 
40 
41 INITIflLlZE REGISTERS 
42 
41 STRRT: HOY AX,9H ; OORA SEGPENT AT 9H 
44 I'lOI/ ES,AX 
45 I'm AX,79H ; DATA SEGIOT Al 709H 
46 HOY {is,AX 
47 l'lOy AX, "ISH ; SlACK SEGMENl AT 789H 
48 !'lOy 5S,AX 
49 HOY SP,88H ; STACK POINTER AT 89H (STflCK=899H) 
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t1C5-86 ASSEMBLER TCl59A 

LOC 08,] LINE SOURCE 

50 
51 LOA[) IN'ft~:RUf-'l VECTOR IllBLE 
1;;", .)c. 

0012 B80401 0:-' ... ':" WPI:S. MOV A>;. OFf SET I.HHR72) . LOAD riP!:. /2 
0015 2GiC2801 54 MOV IP72IP. AX 
0019 268C0E2201 55 MOV IP72CS, CS 
a01E B81801 ~6 1'101/ Ai<.. OFFSET (I NTR7}) ,LOAD TYPE 73 
8821 26A32401 57 flO ... TP73IP, Aii 
13025 268C8E2601 58 1'10'./ lP73CS, tS 
e02A B83:001 59 MOI/ AX, OFFSET WITR(4) ; LO® T','PE 74 
002D 26A:l281:11 60 1'1011 TP74IP .. ftX 
0031 268C0E2A01 61 MOV TF?4CS .. CS 
8036 B84801 62 MOV A:(, OFFSET <INTRi'5) ; LOHD TYPE 75 
e0J9 26A32C01 63 t10V TP75IP .. fiX 
eS3D 268C0E2E01 6.4 MOil W/5CS .. CS 
0042 B86001 65 MOV AX, OFFSl:l (I NTR76) ,LOAD WPE ;'6 

. 9045 26A33W1 66 MOil TP76IP, AX 
0049 268C0E3201 67 MOil TP76CS, C5 
0e4E. 887801 68 MOV AX.. OFFSET (INTR77) ; LOHD riPE n 
0051 261133401 69 1'10',' TP77IF', AX 
0055 26SC0E36'e1 70 MOV IP77CS, CS 

71 
~" i~ 8253 INITIALIZATION 
73 

005A BA0EFF 74 SET531. MOV DK.3FF0EH ; 8253 lI1 CONTROL WORD 
0050 B0:$6 75 1'1011 AL 36H ; COUNTER e.. MODE 3.. BlNARY 
095F EE 76 OUT I)K.AL 
0060 B071 77 MOV AL.71H ,courmR 1.. MODE €I, BCD 
9062 EE 78 olJr DX,AL 
0063 80B5 79 I'IOV AL9B5H ; COUNTER 2, MODE 2, BCD 
0065 EE 80 OUT [)X,AL 
0066 BAeBFF 81 MOV [)X, eFFeBH ; LOAD COUNTER 0 (101'15) 
8069 BeAS 82 MOIl AL.0ABH ;L~f) 

006B EE 83 OUT DX,AL 
006CB061 84 Mall AL.61H .:1158 
006E EE 85 OIJT DX,AL 
006F BAOCFF 86 MOil DX, eFFOCH ; LOA!) COUNTER 2 (2SE.C) 
09;'2 B009 87 MOl/ AL,00H ;LSEl 
0074 EE 88 OIJT DX,AL 
0075 8002 89 MOil AL02H ;MSB 
0977 EE 90 OUT [)X,AL 
0978 Bfll6Fr 91 SEPl32. MOil DX,eFF16H ; 13253 *2 CONl ROL WORD 
0078 B93B 92 1'101/ AL,3BH ; COUNTER 0, MODE S,8CD 
W7D EE 93 our DX,AL 
007E 1l07B 94 MOIl AL,7BH ; COUNTER 1, MODIO ~, BCD 
0080 EE 95 OUT DX,AL 
0!l81 B0BB 96 1'10\1 AL, !l88H -' COUNTER 2, I'IODE 5, BCD 
0983 EE 97 OUT DX,AL 
0984 BA10FF 98 MOV DX,0FF10H ; LOAD COUNTER 0 C 551:0 
088i' B050 99 /'10\1 AL,50H ;L:lB 
0989 EE 100 OUT DX,AL 
IlI!SA Belli! 101 /'10\1 AL,OOH .;1158 
008C EE 102 OUT DX,AL 
II98D BA12FF 103 1'10\1 DX, eFF12H ; LOAD COUNTER 1 (lSEt) 
9090 0000 104 /'I0Il ALOOH iL58 
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M(;S-86 ASSEMBLER TCI59A 

LOC OS'] LINE SOURCE 

0092 EE 105 OUT OX .. AL 
0093 8001 196 1'1011 AL01H ,lise 
0IJ95 EE 107 OUT OX .. AL 
0096 BA14rr 108 MOY Ox'.0FF14H i LOAI) COUNTffi 2 (1. 5SEC) 
0099 B050 109 i'IOV AL .. 50H , L!!B 
0098 1£ WI OUT DX, AI.. 
009(; 8081 111 MOil AI.. .. 81H iMSB 

099E EE 112 OU1 DX .. A1.. 
113 
114 8259fl INITIALIZATION 
115 ; 

009r BAOOFF 116 SET59A: MOY D;':,8FF00H .'!1259A AIl=0 
OOA2 B013 117 1'1011 ALl3H , lCloIl-L TIll=!! .. S=1, IC4=1 
00A4 EE 113 OUT DX,AL 
OOA5 BA02fT 119 1'1011 OX, !lFF02H i 8259A flO=i 
00A8 B048 121.1 1'10',1 AL, 4SH ; ICW2-INTERRUPT TYf'l:: "12 (120H) 
00AA EE 121 OUT OX,AL 
OOAB B003 122 liOY AL, 0~H ; ICIoI4-SFNI'I=0, BUr=!! .. AEOI=L MPI'I=1 
OOAD EE 123 OUT DX .. AL 
OOAE B0E0 124 MOY AL,9E0H i 0CI0I1-MASK IRS, 6, 7 (NOT USED) 
00B0 EE 125 OUT OX, AI.. 

126 
127 8279 INITIALIZATION 
128 .. 

0081 BAEAFF 129 ~T79: MOV OX,0FFEAH i 8279 COI'IMAND 1oIOR0S f1N/.l STATUS 
O8848000 130 I'IOY AL,0D0H ; CLEAR DISPLAY 
0086 EE 131 OUT OX .. AL 
0987 EC 132 WAIT79: IN AI. .. OX i REP,o S 1 ATUS 
80B8 09C0 11$ ~ AL,1 ; '00" BIT JO CARRY 
098A?2FB 134 .JB WAIT79 i.JUMP IF OI5f'LAY IS UIfIYAILABLE 
OOBC 808? 135 i'IOY AI.., 87H ;OIGlT 8 
09BE EE 136 OUT OX,AL 
OOBF BAE8FF 137 HOY OX,8FFESH ,8279 DATA IoMJRO 
98C2 8086 138 MOil AI.,86H ; CHARACTER "I • 
90C4 EE 139 OUT DX,AL 
00C5 BAEAFF 140 110Y OX,9FFEAH ; 8279 COI'IIIAND WORD 
119C8 BOS6 141 HOY AL,86H ; DIGIT 7 
98CA EE 142 OUT OX, AI. 
OOCB BAE8FF 143 I'IOY DX,8FFESH ; 8"'lf9 DATA IoIORD 
OOCE 805O 144 I'IOY AI..,50H ; CHARf{;TER "R" 
00D0 EE 145 OOT OX, AI. 
0001 FB 146 511 .' BflBLE ItlTERRUf'TS 

147 ; 

143 
149 OOMl'lY PROGRAlt 
150 

00D2EBFE 151 oomrr': JMP DUMI'IY ; WAIT FOR INTERRUPT 
152 
15J 

00D4 A30200 154 SAVE: MOY AXTEMP,AX ; SAVE AX 
000758 155 POP AX ; POP CflLL RETURN AOORESS 
0008 A39998 156 1'101/ STACK1,AX ; SAVE CALL RETlRN ADDRESS 
OODB A10280 157 I'lO\l AX. AXIDIP ;RESTORE AX 
000E 50 1~ PUSH AX ; SAVE PROCESSll1 STATUS 
000F 53 159 PUSH ax 
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M(;S-86 A~SEMBLER TCI'S9A 

LOC OB..! LINE SOIJRCE 

OOEIl )1 161l PUSH C:~ 

OOE1 52 161 PUSH DX 
BBE2 55 162 F1JSH BP 
00B 56 163 PUSH 51 
01.lE4 57 164 PUSH DI 
01.lE5 lE 165 PUSH DS 
0I.lE6 06 166 PUSH ES 
0I.lE7 Al0000 167 MOV AX, STACK! ,RESTORE CALL RETURN AOORES5 
OOEA 50 161] PUSH It, ; PUSH CALL RIO 1 LlRN AOORES5 
13I.lEB n 169 RET 

170 
0I.lEC 58 171 RtSTOR. POP fiX ; POP CALL RETURN AD()R[SS 
0I.lED A3e13ee 172 MOil STACKL A;'; ; SAVE CALL RETURN ADDRESS 
00Fe 07 173 POP ES ,RESTORE PROCESSOR STATIJ5 
00F11F 174 POP DS 
OOF2 SF 175 POP DI 

··00F3 SE 176 POP 51 
OOF4 5D l"(l POP BP 
0eF; 5A 178 POP DX 
00F6 59 179 POP ex 
ooF7 58 180 POP ex 
00F8 58 181 POP AX 
OOF9 A30200 182 1'101/ AXTEMP .• AX .' SAVE AX 
OOFC A10000 183 MOl/ AX, STACK1 ; RESTORE CALL RETURN ADORESS 
OOFF 50 184 PUSH ~"< ; PUSH CiU RETURN ADDRESS 
0100 AH12131.l 185 MOV AK. AXTEMP ; RESTORE AX 
0103 G 186 RET 

187 
18S ; 

189 INTERRUPT 72, CLEAR DISPLfI\" IR0 325911 
190 

0104 ESCDFF 191 INTR72: CALL SAVE ; ROllT! NE TO SAVf. PROCESSOR Sl ATlJS 
a107 BAEAFF 192 MOil D)(,OFFEAH ; 8279 COMMAND WORO 
010A A00409 193 MOil AL DIGIT .: SELECTED LED 0 I G Il 
0100 EE 194 OUT ox.AL 
01eE BAEBfF 195 MOil OK.0FFESB ; 8279 DATA 
al11 8000 196 1'101/ ALOOH ; BLANK OUT DIGIT 
01B EE 197 OUT DX,AL 
0114 E8D5FF 1:38 CALL RESTOR .: ROUTINE TO RES) ORE PROCE5SOk STfn US 
0117 CF 199 IRET ; RETURN FkOI'l INTERRUf'l 

200 
2131 
202 INTEkRUPT n, IR1 825911 
2133 

0118 EB89FF 204 INTR73: CALL SAllE .: ROUTINE 10 SAlit PROCESSOR STAlUS 
0118 BflEAFF 205 I'1OV DX,0FFEAH ,8279 COft1ANl) WORD 
0UE B13B8 206 1'1011 AL,8!IH i LEO llISPLAY DIGIT 1 
0120 A20400 207 MOil DIGIT, AL 
13123 EE 2!lB OLiT DX,AL 
0124 BAESFF 2139 MOil DX,8FFE8H .' 82(9 DATA 
0127 8006 210 1'1011 AL,06fj ; CHARfl(;·'ER "1" 
01~ EE 211 OUT DX,AL 
91<''11 CD4D 212 INT 77 i 1 IMER DELAY FOR LED ON TIME 
012(; EBBDFF 213 CALL RESTOR ; ROUTINE 10 RESTORE PROCI::SSOR STATIJ5 
912~ CF 214 IRET ; RETURN FROM INTERRUPT 
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t1C5-86 ASSEH8ltR TCI59A 

LOC 08J LINE SOURCE 

215 ; 

216 
~17 INTERRUPT 74, Ik2 8259F: 
218 ; 

0130 E8A1FF 219 INTR74: CALL SAVE ; ROUTINE TO SAVE PROCESsOR Sl ATUS 
0133 SAEAFF 220 MOY DX,0FFEAH ; 8279 COI'II'IAND WORD 
0136 B081 221 I'IOV AL.81H ; LED DISPLAY DIGI"I 2 
0138 A20400 222 MOil DIGIT, Al 
0138 EE 223 OUT DX,Al 
813C IlftESFF 224 MOV DX,0FFE8H ; 8279 DA1A 
013FB05B 225 MOil AL,5811 ; CHARACTER "2" 
8141 EE 226 OUT DX,Al 
8142 CD4I) 227 INT n ; TIMER DELAY FOR LED ON TIME 
0144 E9ASFF 229 t'AlL RESTOR ; ROlITIt£ TO RESTORE PROCESSOR SlATU5 
0147 cr 229 IRI01 .: RETURN FROM INTERRUPl 

238 
231 ; 

232 ; INTERRUPT 75 .• IR3 8259A 
233 

8148 E889FF 234 INTR75: CAlL SAVE ; ROUTINE TO SAllE. PROCESSOR STATUS 
0148 BAEAFI' 235 I'lO\l D)(,0FFEAH .; 8279 COI'fI1ANI) WORD 
914E B082 236 MOil AI., 82H ; LED DISPLAY Dim T 3 
9150 A20400 237 110\1 DIGIT, Al 
(j153EE 238 OUT DX,Al 
9154 SAESFF 239 11011 D)(,0FFESH ; 8279 DATA 
015789# 240 MOil AL,4FH ; CHARACTER "3" 
9159 EE 241 OUT DX,AL 
91~A CD4D 242 INT 77 ; TIMER DELAY FOR LED ON TIME 
9151: E88DFF 24~ CAlL RESTOR ; ROUTINE TO RESTORE PROCESSOR STATUS 
915F CF 244 IRET ; RE1URN FROM IN1Ek'RUPT 

245 ; 

246 
247 ; INTERRUPT 76, IR4 8259A 
248 

9169 E871FF 249 INTR76: CALL SAVE ; ROUTINE TO SAVE PROCESSOR 51 ATUS 
9163 SAEAFF 259 110\1 D)(,0FFEAH ; 8279 COI'IIfINI) WORD 
9166 B983 251 /'IOV fl.,83H ; LED DISPLAY blGIT 4 
9168 A20400 252 MOil DIGIT, AL 
016B EE 253 OUT D)(,AL 
016C SAESFF 254 I'IOY D)(,0FFESH ;82i'9 DATA 
016F 8066 255 1'1011 Al,66H ; CHARAtTlR "4" 
0171 EE 256 OUT DX,AL 
0172 CD4D 257 INT 77 ; lIMER DaAY FOR LEII ON 111'[ 
0174 E875FF 258 CALL RESTOR ; ROUTINE TO RESTORE PROCESSOR Sl ftTUS 
0177 CF 259 IRET ; RETURN FRO/1 I N1 ERRUPT 

260 
261 
262 INTERRUPT 77, mlER bElAY, SOFTWARE CONTROllED 
263 

81i'8 BA9AFF 264 INTR77: I10Y D)(,0FF9AH ; LOft) COUNTER 1 8253 11 (259 I'ISEC) 
9178 8825 265 I10Y Al,25H ; l!!I 
0170 EE 266 OUT DX,Al 
01lE B909 267 IIJV ALII9H ; I1SB 
0180 EE 268 OUT DX,AL 
9181 CF 269 IRET ; RETURN FROI'I INlERRUPT 
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11C5-86 ASSEt1BLER TCl59A 

LOC OB..! LIN:: SOURCE 

270 
271 
272 CODE ENDS .• 
",,,,, 
~ .. -' 

274 
0000 275 END START 

S't'MBOL TABLE LE.TING 
------ ----- -------

NffME TYPE VALUE ATTRIBUTES 

??SEG SI:GMENT 5 j ZE =000lJH PARA PIJSLI C 
AXTEMP V WORD a002H DATA 
CODE. SEGMENT SIZE =0182H PARA 
[)ATA SEGMENT SIZE=OOBSH PARA 
DIGIT II BYTE 1j0!34H DATA 
DUMMY L NEAR B@D2H CODE 
EXTRA SEGMENT 51 ZE=9138H PARA 
INTR72 L NEAR 91!34H COllE 
INn'?:? L NEAR 81181-: CODE 
INTR74 L NE.AR 0130H CODE 
INTR75 L NEA~' 0l48H CODE 
INTR76 L NEAR B160H CODE 
INTR?? L NEAR 9l7SH CODE 
RESTOR. L NEAR 00ECH CODE 
SAVE. L NE'lR OOD4H CODE 
SET531 L NEAR 005flH CODE 
5ET532 L NEAR 097S}! CODE 
SET59A L NEAR 009rH CODE 
5ET79 L NEAR 00S1H CODE 
STACKl II WORD 009flH DATA 
START L NEAR O9OOH CODE 
TP72CS V WORD 8l22H EXTRA 
TP72IP V WOfi'D 9l2aH EXTRA 
TP73CS II WORD 8126H EXTRA 
TF'73IP V "'ORD 8124H EXTRA 
TP?4CS II WORD 012AH EXTRA 
TP741P V WORD 8128H EXTRA 
TP75C5 .., WORD 9l2EH EXTRA 
TP751P II WORD 012CH EXTRA 
TP76(:5 II WORD 0B2H EXTRA 
TP761P II WORD 9B0H EXTRA 
Trncs II WORD 9B6H EXTRA 
TP77IP II WORD flB4H EXTRA 
TYPES L NEAR 0fl12H CODE 
WAIT79 L NEAR OOB7H CODE 

f:SSEMBL \' COMPLETE.. NO ERRORS FOUND 
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I. INTRODUCTION 

A significant measure of the power and flexibility 
of the Intel OEM Computer Product Line can be 
attributed to the design of the Intel MULTIBUS 
system bus. The bus structure provides a common 
element for communication between a wide 
variety of system modules which include: Single 
Board Computers, memory, digital, and analog 
I/O expansion boards, and peripheral controllers. 

The purpose of this application note is to help you 
develop a working knowledge ofthe Intel MULTI­
BUS specification. This knowledge is essential for 
configuring a system containing multiple mod­
ules. Another purpose is to provide you with the 
information necessary to design a bus interface for 
a slave module. One ofthe tools that will be used to 
achieve this goal is the complete description of a 
MULTIBUS slave design example. Other portions 
of this application note provide an in depth 
examination of the bus signals, operating charac­
teristics, and bus interface circuits. 

This application note was originally written in 
1977. Since 1977, the MULTIBUS specification 
has been significantly expanded to cover opera­
tion with both 8 and 16-bit system modules and 
with an auxiliary power bus. This application 
note now contains information on these new 
MUL TIBUS specification features. 

In addition, a detailed MULTI BUS specification 
has also been published which provides the user 
with further information concerning MULTIBUS 
interfacing. The MULTIBUS specification and 
other useful documents are listed in the overleaf of 
this note under Related Intel Publications. 

II. MULTIBUSTM SYSTEM BUS 
DESCRIPTION 

Overview 

The Intel MULTIBUS signal lines can be grouped 
in the following categories: 20 address lines, 16 
bidirectional data lines, 8 multilevel interrupt 
lines, and several bus control, timing and power 
supply lines. The address and data lines are 
driven by three-state devices, while the interrupt 
and some other control lines are open-collector 
driven. 

Modules that use the MULTIBUS system bus have 
a master-slave relationship. A bus master module 
can drive the command and address lines: it can 
control the bus. A Single Board Computer is an 
example of a bus master.. A bus slave cannot 
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control the bus. Memory and I/O expansion 
boards are examples of bus slaves. The MULTI­
BUS architecture provides for both 8 and 16-bit 
bus masters and slaves. 

Notice that a system may have a number of bus 
masters. Bus arbitration results when more than 
one master requests control of the bus at the same 
time. A bus clock is usually provided by one of the 
bus masters and may be derived independently 
from the processor clock. The bus clock provides a 
timing reference for resolving bus contention 
among multiple requests from bus masters. For 
example, a processor and a DMA (direct memory 
access) module may both request control of the 
bus. This feature allows different speed masters to 
share resources on the same bus. Actual transfers 
via the bus, however, proceed asynchronously 
with respect to the bus clock. Thus, the transfer 
speed is dependent on the transmitting and 
receiving devices only. The bus design prevents 
slow master modules from being handicapped in 
their attempts to gain control of the bus, but does 
not restrict the speed at which faster modules can 
transfer data via the same bus. Once a bus request 
is granted, single or mUltiple read/write transfers 
can proceed. The most 0 bvious a pplica tions for the 
master-slave capabilities of the bus are multi­
processor configurations and high-speed direct­
memory-access (DMA) operations. However, the 
master-slave capabilities of the bus are by no 
means limited to these two applications. 

MULTIBUS™ Signal Descriptions 

This section defines the signal lines that comprise 
the Intel MULTIBUS system bus. These signals 
are contained on either the PI or P2 connector of 
boards compatible with the MULTIBUS specifi­
cation. The PI signal lines contain the address, 
data, bus control, bus exchange, interrupt and 
power supply lines. The P2 signal lines con tain the 
optional auxiliary signal lines. Most signals on 
the bus are active-low. For example, a low level on 
a control signal on the bus indicates active, while a 
low level on an address or data signal on the bus 
represents logic "1" value. 

NOTE 

In this application note, a signal will be 
designated active-low by placing a slash (I) 
after the mnemonic for the signal. 

Appendix A contains a pin assignment list of the 
following signals: 
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MULTIBUS PI Signal Lines-

Initialization Signal Line 

INITI 

Initialization signal; resets the entire system to 
a known internal state. INIT I may be driven by 
one of the bus masters or by an external source 
such as a front panel reset switch. 

Address and Inhibit Lines 

ADROI - ADR131 

20 address lines; used to transmit the address of 
the memory location or I/O port to be accessed. 
The lines are labeled ADROI through ADR9/, 
ADRAI through ADRF I and ADRlOl through 
ADR13/. ADR131 is the most significant bit. 
S-bit masters use 16 address lines (ADROI -
ADRF I) for memory addressing and S address 
lines (ADROI - ADR7 I) for I/O port selection. 
16-bit masters use all twenty address lines for 
memory addressing and 12 address lines 
(ADROI - ADRB/) for I/O port selection. Thus, 
S-bit masters may address 64K bytes of memory 
and 256 I/O devices while 16-bit masters may 
address 1 megabyte of memory and 4096 1/0 
devices. (The SOS6 CPU actually permits 16 
address bits to be used to specify I/O devices, 
the MULTIBUS specification, however, states 
that only the low order 12 address bits can be 
used to specify I/O ports.) In a 16-bit system, 
the ADROI line is used to indicate whether a low 
(even) byte or a high (odd) byte of memory or 
I/O space is being accessed in a word oriented 
memory or I/O device. 

BHENI 

Byte High Enable; the address control line 
which is used to specify that data will be trans­
ferred on the high byte (DATSI - DATF I) of the 
MUL TIBUS data lines. With current iSBC 
boards, this signal effectively specifies that a 
word (two byte) transfer is to be performed. This 
signal is used only in systems which incorporate 
sixteen bit memory or I/O modules. 

INHlI 

Inhibit RAM signal; prevents RAM memory 
devices from responding to the memory address 
on the system address bus. INHlI effectively 
allows ROM memory devices to override RAM 
devices when ROM and RAM memory are 

assigned the same memory addresses. INHlI 
may also be used to allow memory mapped I/O 
devices to override RAM memory. 

INH21 

. Inhibit ROM signal; prevents ROM memory 
devices from responding to the memory address 
on the system address bus. INH21 effectively 
allows auxiliary ROM (e.g., a bootstrap pro­
gram) to override ROM devices when ROM and 
auxiliary ROM memory are assigned the same 
memory addresses. INH21 may also be used to 
allow memory mapped I/O devices to override 
ROM memory. 

Data Lines 

DATOI - DATFI 

16 bidirectional data lines; used to transmit or 
receive information to or from a memory loca­
tion or I/O port. DATF I being the most signifi­
cant bit. In S-bit systems, only lines DATOI -
DAT7I are used (DAT7I being the most signi­
ficant bit). In 16-bit systems, either S or 16 lines 
may be used for data transmission. 

Bus Priority Resolution Lines 

BCLKI 

Bus clock; the negative edge (high to low) of 
BCLKI is used to synchronize bus priority re­
solution circuits. BCLKI is asynchronous to the 
CPU clock. It has a 100 ns minimum period and 
a 35'1l1 to 65% duty cycle. BCLK/ may be slowed, 
stopped, or single stepped for debugging. 

CCLKI 

Constant clock; a bus signal which provides a 
clock signal of constant frequency for unspeci­
fied general use by modules on the system bus. 
CCLKI has a minimum period of 100 ns and a 
35% to 65% duty cycle. 

BPRNI 
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Bus priority in signal; indicates to a particular 
master module th,flt no higher priority module 
is requesting use of the system bus. BPRN I is 
synchronized with BCLK/. This signal is not 
bused on the backplane. 
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BPROI 

Bus priority ollt signal; used. with serial (daisy 
chain) bus priority resolution schemes. BPROI 
is passed to the BPRNI input of the master 
module with the next lower bus priority. BPROI 
is synchronized with BCLK/. This signal is not 
bused on the backplane. 

BUSYI 

Bus busy signal; an open collector line driven 
by the bus master currently in control to indicate 
that the bus is currently in use. BUSY/prevents 
all other master modules from gaining control 
of the bus. BUSY I is synchronized with BCLKI. 

BREQI 

Bus request signal; used with a parallel bus 
priority network to indicate that a particular 
master module r(;)quires use of the bus for one 
or more data tran~fers. BREQI is synchronized 
with BCLKI. This signal is not bused on the 
backplane. 

CBRQI 

Common bus request; an open-collector line 
which is driven by all potential bus masters 
and is used to inform the current bus master 
that another master wishes to use the bus. If 
CBRQi is high, it indicates to the bus master 
that no other master is requesting the bus, and 
therefore, the present bus master can retain the 
bus .. This saves the bus exchange overhead for 
the current master. 

Information Transfer Protocol Lines 

A bus master provides separate read/write 
command signals for memory and I/O devices: 
MRDC/, MWTC/, lORCI and IOWC/, as ex­
plained below. When a read/writecommand is 
active, the address signals must be stabilized at all 
slaves on the bus. For this reason, the protocol 
requires that a bus master must issue address 
signals (and data signals for a write operation) at 
least 50 ns ahead of issuing a read/write command 
to the bus, initiating the data transfer. The bus 
master must keep address signals unchanged until 
at least 50 ns after the read/write command is 
turned off, terminating the data transfer. 

A bus slave must provide an acknowledge signal to 

the bus master in response to a read or write 
command signal. 

MRDCI 

Memory read command; indicates that the 
address of a memory location has been placed 
on the system address lines and specifies that 
the contents (8 or 16 bits) of the addressed 
location are to be read and placed on the system 
data bus. MRDC/ is asynchronous with respect 
to BCLKI. 

MWTCI 

Memory write command; indicates that the 
address of a memory location has been placed 
on the system address lines and that data (8 or 
16 bits) has been placed on the system data bus. 
MWTCI specifies that the data is tq be written 
into the addressed memory location. MWTCI is 
asynchronous with respect to BCLKI. 

lORCI 

110 read command; indicates that the address 
of an input port has been placed on the system 
address bus and that the data (8 or 16 bits) at 
that input port is to be read and placed on the 
system data bus. IORCI is asynchronous with 
respect toBCLKI. . 
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lOWCI 

I/O write command; indicates that the address 
of an output port has been placed on the system 
address bus and that the contents ofthe system 
data bus (8 or 16 bits) are to be output to the 
address port. IOWCI is asynchronous with 
respect to BCLKI. 

XACKI 

Transfer acknowledge signal; the required 
response of .a slave board which indicates that 
the specified read/write operation has been 
completed. That is, data has been placed on, or 
accepted from, the system data bus Hnes. 
XACKI is asynchronous with respect to BCLKI. 

Asynchronous Interrupt Lines 

INTOI - INT7 I 

8 Multi·level, parallel interrupt request lines; 
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used with a paralleL interrupt resolution net­
work. INTO. has the highest priority, while 
INT7/ has lowest priority. . Interrupt lines 
should be driven with open collector drivers. 

INTAI 

Interrupt acknuwledge; an interrupt acknowl­
edge line (INTA/), driven by the bus master, 
requests the transfer of interrupt information 
onto the bus from slave priority interrupt con­
trollers (8259s or 8259As). The specific informa­
tion timed onto the bus depends upon the 
implementation of the interrupt scheme. In 
general, the leading edge of INTAI indicates 
that the address bus is active while the trailing 
edge indicates that data is present on ~he data 
lines. 

MULTIBUS P2 Signal Lines - The signals 
contained on the MULTIBUS P2 auxiliary con­
nector are used primarily by optional power 
back-up circuitry for memory protection. P2 
signals are not bused on the backplane, and 
therefore, require a separate connector for each 
board using the P2 signals. Present iSBC boards 
have a slot in the card edge and should be used 
with a keyed P2 edge connector. Use of the P2 
signal lines is .optional. 

ACLO 

AC Low; this signal generated by the power 
supply goes high when the AC line voltage 
drops below a certain voltage (e.g., 103v AC in 
115v AC line voltage systems) indicating D.C. 
power will fail in 3 msec. ACLO goes low when 
all D.C. voltages return to approximately 95%, 
of the regulated value. This line must be pulled 
up by the optional standby power source, if one 
is used. 

PFINI 

Power fail interrupt; this signal interrupts the 
processor when a power failure occurs, it is 
driven by external power fail circuitry. 

PFSNJ 

Power fail sense; this line is the output".of a 
latch which indicates that a power failure has 
occurred. It is reset by PFSR/. The power fail 
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sense latch is part of external power fail cir­
cuitry and must be powered by the standby 
power source. 

PFSRi 

Puu'er fail sellse reset; this line is used to reset 
the power fail sense latch (PFSNi). 

MPRO/ 

Memory protect; prevents memory operation 
during period of uncertain DC power, by in­
hibiting memory requests. MPRO/ is driven 
by external power fail circuitry. 

ALE 

Address latch enable; generated by the CPU 
(8085 or 8086) to provide an auxiliary address 
latch. 

HALT! 

Halt; indicates that the master CPU is halted. 

AUX RESET! 

Auxiliary Reset; this externally generated sig­
nal initiates a power-up sequence. 

WAIT! 
Bus master wait state; this signal indicates 
that the processor is in a wait state. 

Reserved - Several· Pi and P2 connector bus 
pins are.unused. However, they should be regard­
ed as reserved for dedicated use in future Intel 
products, 

Power Supplies - The power supply bus pins 
are:detailed in Appendix A which contains the 
pin assignment of signals on the MULTIBUS 
backplane. 

It is the designer's res,pousibility to provide 
adequate bulk decoupling on the board to avoid 
current surges on the power supply lines. It is also 
recommended that you provide high frequency 



AP .. 28A 

deco.upling fur the lo.gic un yo.ur bo.ard .. Values. 0..£ 

22uF fDr +5v and +I2v pins and lOuFfDr -5v a~d 
-I2v pins are typical Dn iSBC bo.ards. 

(' 

. Operating Charac,teristics 

BeYDnd the definitio.n Df the MULTIBUS signals 
themselves, it is impurtant to. examine the 
o.perating characteristics uf the bus. The AC 
requirements uutline the timing ufthe bus signals 
and in particular, define the relatiunships between 
the vario.us bus signals. On the uther hand, the DC 
requirements specify the bus driver character­
istics, maximum bus luading per buard, and the 
pull-up/do.wn resisto.rs. 

The AC requirements are best presented by a 
discussio.n o.f the relevant timing diagrams. 
Appendix B co.ntains a list uf the MULTIBUS 
timing specifications. The full owing sectiDns will 
discuss data transfers, inhibit uperatio.ns, inter­
rupt operatio.ns, MULTIBUS multi-master o.pera­
tio.n and pDwer fail co.nsideratio.ns. 

Data Transfers - Data transfers on the MULTI­
BUS system bus o.ccur with a maximum band­
width Df 5 MHz fur single 0.1' multiple read/write 
transfers. Due to. bus arbitrati,Qn and memo.ry 
access time, a typical maximum transfer rate is 
Dften Dn the Drder o.f 2 MHz. 

Read Data 

Figure I sho.ws the read DperatiDn AC timing 
diagram. The address must be stable (tAS) fDr a 
minimum Df 50 ns befDre cDmmand· (IORC/ Dr 
MRDC/). This time is typically used by the bus 
interface to' decDde the address and thus prDvide 
the required device selects. . The device selects 
establish the data' paths un the user system in 
anticipatiDn o.f the strDbe signal (cDmmand) 
which will fo.llDW. The minimum cDmmand pulse 
width is 100 ns. The address must remain stable 
fDr at least 50 ns fo.llDwing the co.mmand (tAH): ' 
Valid data sho.uld nut bedriven unto. the qus prio.r 
to. cDmmand, and must nut be remDved until the 
co.mmand is cleared. The XACK/ signal, which is 
a respDnse indicating the specified read/w:rite 
Dperatio.n has been cDmpleted,must cDincide'or 
fDllo.w bDth the read access and valid d~ta (fDXL)­
XACK/ must be held until the cDmma:ndis cleared 
(tXAH)-
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10RCI 

MRDel 

-tcMO-----.. 

Flgur!l1_ .Read AC Timing 

Write Data; 

The write o.peratiDn AC timing diagram is shDwn 
in Figure 2: During a write data transfer, valid 
data must be presented simultaneDusly with a 
stable address. Thus, the write data setup time 
'(tDS) has the same requirement as the address 
setup time (tAS)' The requirement fDr stable data 
bo.th befo.re and after cQmmand(IOWC/ or 
MWTC/) enables the 'bus interface circuitry to. 
latch data o.n.either the leading 0.1' trailing edge Df 
cDmmand;·· • 

Figure 2. Write AC Timing 

Data Byte Swapping in 16-bit Systems 

MASTER 
TO 

SLAV!; 

A IS-bit master may transfer data un the MULTI­
BUS data lines using 8~bit or IS-bit paths 
depending un whether a byte 0.1' wo.rd (2 byte) 
o.peratiDn has been specified. (A wo.rd transfer 
specified with an Ddd 110 0.1' memo.ry address will 
actually be executed as two. single byte transfers.) 
An.8:bit master may o.nly perfo.rm byte transfers 
un the MULT!BUS data lines DATOI - DAT7I. 

In o.rder to. maintain co.mpatibility with Dlder 
8·lJitmasters and slaves, a byte sw'apping QUfrer 
is included in all new 16-bit masters and IS-bit 
slaves. Inthe iSBOpto.duct line, all byte transfers ' 
will take place un the IDW 8 data·lines DATOI . 
DAT7I. Figure 3 co.ntains a example o.f 8/IS·bit 
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data driver logic for I6-bit master and slave 
systems. In the S/16-bit system, there are three 
sets of buffers; the lower byte buffer which 
accesses DATOI - DAT7I, the upper byte buffer 
which accesses DATSI - DATF/, and the swap 
byte buffer which accesses the MULTI BUS data 
lines DATOI - DAT7I and transfers the data 
to/from the on-board data bus lines DS - DF. 

Figure 4 summarizes the Sand 16-bit data paths 
used for three types of MULTI BUS transfers. Two 
signals control the data transfers. 

Byte High Enable (BHEN/) active indicates that 
the bus is operating in sixteen bit mode, and 
Address Bit 0 (ADRO/) defines an even or odd byte 
transfer address. 

On the first type of transfer, BHENI is inactive, 
and ADROI is inactive indicating the transfer of 
an even eight bit byte. The transfer takes place 
across data lines DATOI - DAT7I. 

On the second type oftransfer, BHEN I is inactive, 
and ADROI is active indicating the transfer of a 
high (odd) byte. On this type of transfer, the odd 
(high) byte is transferred through the Swap Byte 
Buffer to DATOI - DAT7I. This makes eight bit 
and sixteen bit systems compatible. 

16-BIT DEVICE MULTIBUS BHENI 

DATOI - DAT7! 

H 

DATFI 

H 

L 

BUFFERED 
BHENI 

ADRO 

ADROI 

H 

L 

H 

USER BUS 
LOWER 
BYTE 
BUFFER 

00·07 • • 

DIRECTION 

SWAP 
BYTE 
BUFI'"ER 

08·0> +-------+1 

8287 

A 

OE T 

MUL TlBUS 

DATO/-DAT7/ 

DATOI 

QATF! 

UPPER 
BYTE 
BUFFER 

Figure 3. a/16-Bit Data Drivers 
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ODD 

EVEN 
AND 
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Figure 4. a/16-Bit Device Transfer Operation 
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The third type of transfer is a 16' bit (word) 
transfer. This is indicated by BHEN/ being 
active, and ADROj being inactive. On this type of 
transfer, the low (even) byte is transferred on 
DATO/ - DAT7I and the high (odd) byte is 
transferred on DATS/ - DATF/. 
Note that the condition when both BHEN/ and 
ADROI are active is not used with present iSBC 
boards. This condition could be used to transfer a 
high odd byte of data on DAT8/ - DATF/, thus 
eliminating the need for the swap byte buffer. 
However, this is not a recommended transfer type, 
because it eliminates the capability of communi­
cating with 8-bit modules. 

Inhibit Operations - Bus inhibit operations are 
required by certain bootstrap and memory mapped 
I/O configurations. The purpose of the inhibit 
operation is to allow a combination of RAM , ROM, 
or memory mapped 110 to. occupy the same 
memory address space. In the case of a bootstrap, 
it may be desirable to have both ROM and RAM 
memory occupy the same address space, selecting 
ROM instead of RAM for low order memory only 
when the system is reset. A system designed to use 

memory mapped I/O, which has actual memory 
occupying the memory mapped I/O address 
space, may need to inhibit RAM or ROM memory 
to perform its functions. 

There are two essential requirements for a success­
ful inhibit operation. The first is that the inhibit 
signal must be asserted as soon as possible, within 
a maximum of 100 ns (tCl), after stable address. 
The second requirement for a successful inhibit 
operation is that the acknowledge must be delayed 
(tXACKB) to allow the inhibited slave to ter­
minate any irreversible timing operations in­
itiated by detection of a valid cornmand prior to its 
inhibit. 

This situation may arise because a command can 
be asserted within 50 ns after stable address (tAS) 
and yet inhibit is not required until 100 ns (tID) 
after stable address. The acknowledge delay time 
(tXACKB) is a function of the cycle time of the 
inhibited slave memory. Inhibiting the iSBC 016 
RAM board, for example, requires a minimum of 
1.5 usec. Less time is typically needed to inhibit 
other memory modules. For example, the iSBC 104 
board requires 475 ns. 

Figure 5 depicts a situation in which both RAM 

ADDRESSI ~.. 1---'----------11 
. / 1 ,.---- READ DATA 

SLAVE A 
(RAM) 

SLAVE B 
(PRO",,) 

DATAl llL...-
i 
________ --11 

COMMAND! 

I 1 ~I -------' 
DRIVER I I I ----I ENABLE I /" _ 

! 
XACKI 

LOCAL 
SELECT I 

DRIVER 
ENABLE! 

XACKI 

I RAM XACK IF NOT INHIBITED I 
f---C------~ 

---I ~\ I 1---J 'XACKA 

\I~I ----~\~(I~--------------

\ 1----- 'xm; \--1 

\ 1----'IO-~} I r 
INH11 \ ~ ! ---.. ~~~.~------------------I 

LOCAL 
SELECT I 

Figure 5. InhibilTiming 
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and PROM memory have the same memory 
addresses. In this case, PROM inhibits RAM, 
producing the effect of PROM overriding RAM. 
After address is stable, local selects are generated 
for both the PROM and the RAM. The PROM local 
select produces the INHlI signal which then 
removes the RAM local select and its driver enable. 
Because the slave RAM has been inhibited after it 
had already begun its cycle, the PROM XACKI 
must be delayed (tXACKB) until after the latest 
possible acknowledgement from the RAM 
(tXACKA)· 

Interrupt Operations - The MULTIBUS inter­
rupt lines INTOI - INT71 are used by a MULTI­
BUS master to receive interrupts from bus slaves, 
other bus masters or external logic such as power 
fail logic. A bus master may also contain internal 
interrupt sources which do not require the bus 
interrupt lines to interrupt the master. There are 
two interrupt implementation schemes used by 
bus interrupts, Non Bus Vectored Interrupts and 
Bus Vectored Interrupts. Non Bus Vectored 
Interrupts do not convey interrupt vector address 
information on the bus. Bus Vectored Interrupts 
are interrupts from slave Priority Interrupt Con­
trollers (PICs) which do convey interrupt vector 

sUS MASTER 

I I 
INTX/ 

MASTER CPU 

DATA 
BUS SLAVE 

INTAI iNTRI 
BUS 

1 

INTERRUPT INTERRUPT 

~ REQUEST 
FLlP-

I, PROGRAMMABLE INTERRUPT J FLOP 

CONTROLLER R 

6 5 4 3 2 1 IORCI 1 FROM OR 
MASTER lowe! 

*4 l __ yoe 
-- . . . 

- - - -

INTO/ 

INT1! 

INT2I 

INTJI 

INT7! 

address information on the bus. 

Non Bus Vectored Interrupts 

N on Bus Vectored Interrupts are those interrupts 
whose interrupt vector address is generated by the 
bus master and do not require the MULTIBUS 
address lines for transfer of the interrupt vector 
address. The interrupt vector address is generated 
by the interrupt controller on the master and 
transferred to the processor over the local bus. The 
source of the interrupt can be on the master module 
or on other bus modules, in which case the bus 
modules use the MULTIBUS interrupt request 
lines (INTOI - INT7/) to generate their interrupt 
requests to the bus master. When an interrupt 
request line is activated, the bus master performs it 
own interrupt operation and processes the inter· 
rupt. Figure 6 shows an example of Non Bus 
Vectored Interrupt implementation. 

Bus Vectored Interrupts 

Bus Vectored Interrupts (Figure 7) are those inter­
rupts which transfer the interrupt vector address 
along the MULTIBUS address lines from the 
slave to the bus master using the INTAI command 
signal for synchronization. 
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Figure 6. Non Bus Vectored Interrupt Implementation 
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Figure 7. Bus Vectored Interrupt Logic (With 2 INTAI Timing Diagram) 

When an interrupt request from the MULTIBUS 
interrupt lines INTOI - INT7 I occurs, the interrupt 
control logic on the bus master interrupts its 
processor. The processor on the bus master 
generates an INTAI command which freezes the 
state of the interrupt logic on the MULTIBUS 
slaves for priority resolution. The bus master also 
locks (retains the bus between bus cycles) the 
MULTIBUS control lines to guarantee itself 
consecutive bus cycles. After the first INT AI 
command, the bus master's interrupt control logic 
puts an interrupt code on to the MULTIBUS 
address lines ADR81 - ADRA/. The interrupt code 
is the address of the highest priority active inter­
rupt request line. At this point in the Bus Vectored 
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Interrupt procedure, two different sequences could 
take place. The difference occurs, because the 
MULTI BUS specification can support masters 
which generate one additional INTAI (8086 
masters) or two additional INTA/s (8080A and 
8085 masters). 

If the bus master generates one additional INTA/, 
this second INTAI causes the bus slave interrupt 
control logic to transmit an interrupt vector 8-bit 
pointer on the MULTIBUS data lines. The vector 
pointer is used by the bus master to determine the 
memory address of the interrupt service routine. 

If the bus master generates two additional 
INTA/s, these two INTAI commands allow the 
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bus slave to put a two byte interrupt vector address 
. on to the MULTIBUS data lines (one byte for each 
INTA/). The interrupt vector address is used by 
the bus master to service the interrupt. 

The MULTIBUS specification provides for only 
one type of Bus Vectored Interrupt operation in a 
given system. Slave boards which have an 8259 
interrupt controller are only capable of 3 INTAI 
operation (2 additional INTA/s after the first 
INTAI). Slave boards with the 8259A interrupt 
controller are capable of either 2 INTAI or 3 
INTAI operation. All slave boards in a given 
system must operate in the same way (2 INTA/s or 
3 INTA/s) if Bus Vectored Interrupts are to be 
used. However, the MULTIBUS specification 
does provide for Bus Vectored Interrupts and Non 
Bus Vectored Interrupts in the same system. 

MULTIBUS Multi-Master Operation - The 
MUL TIBUS system bus can accommodate several 
bus masters on the same system, each one taking 
control of the bus as it needs to affect data trans­
fers. The bus masters request bus control through 
a bus exchange sequence. 

Two bus exchange priority resolution techniques 
are discussed, a serial technique and a parallel 
technique. Figures 8 and 9 illustrate these two 
techniques. The bus exchange operation dis­
cussed later is the same for both techniques. 

Serial Priority Technique 

Serial priority resolution is accomplished with a 
daisy chain technique (see Figure 8). The priority 
input (BPRN/) of the highest priority master is 
tied to ground. The priority output (BPRO/) of the 

HIGHEST 
PRIORITY 
MASTER 

BPRN! 

highest priority master is then connected to the 
priority input (BPRNI) of the next lower priority 
master, and so on. Any master generating a bus 
request will set its BPROI signal high to the next 
lower priority master. Any master seeing a high 
signal on its BPRNI line will sets its BPROI line 
high, thus passing down priority information to 
lower priority masters. In this implementation, 
the bus request line (BREQ/) is not used outside of 
the individual masters. A limited number of 
masters can be accommodated by this technique, 
due to gate delays through the daisy chain. Using 
the current Intel MULTIBUS controller chip on 
the master boards up to 3 masters may be accom­
modated if a BCLKI period of 100 ns is used. If 
more bus masters are required, either BCLKI must 
be slowed or a parallel priority technique used. 

Parallel Priority Technique 

In the parallel priority technique, the priority is 
resolved in a priority resolution circuit in which 
the highest priority BREQI input is encoded with 
a priority encoder chip (74148). This coded value is 
then decoded with a priority decoder chip (74S138) 
to activate the appropriate BPRNI line. The 
BPROI lines are not used in the parallel priority 
scheme. However, since the MULTIBUS back­
plane contains a trace from the BPRNI signal of 
one card slot to the BPROI signal of the adjacent 
lower card slot, the BPROI must be disconnected 
from the bus on the board or the backplane trace 
must be cut. A practical limit of sixteen masters 
can be accommodated using the parallel priority 
technique due to physical bus length limitations. 
Figure 9 contains the schematic for a typical 
parallel resolution network. Note that the parallel 
priority resolution network must be externally 
supplied. 

LOWEST 
PRIORITY 
MASTER 

Figure 8. Serial Priority Technique 
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Figure 9. Parallel Priority Technique 

MULTIBUS Exchange Operation - A timing 
diagram for the MULTIBUS exchange operation 
is shown in Figure 10. This implementation 
example uses a parallel resolution scheme, how­
ever, the timing would be basically the same for 
the serial resolution scheme. 

In this example, master A has been assigned a 
lower priority than master B. The bus exchange 
occurs because master Bgenerates a bus request 
during a time when master A has control of the 
bus. 

The exchange process begins when master B 
req uires the bus to access some resource such as an 
110 or memory module while master A controls the 
bus. This internal request is synchronized with 
the trailing edge (high to low) of BCLKI to 
generate a bus request (BREQ/). The bus priority 
resolution circuit changes the BPRNI signal from 
active (low) to inactive (high) for master A and 
from inactive to active for master B. Master A 
must first complete the current bus command if 
one is in operation. After master A completes the 
command, it sets BUSY I inactive on the next 
trailing edge ofBCLK/. This allows the actual bus 
exchange to occur, because master A has relin­
quished control of the bus, and master B has been 
granted its BPRN/. During this time, the drivers 
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for master A are disabled. Master B must take 
control of the bus with the next trailing edge of 
BCLKI to complete the bus exchange. Master B 
takes control by activating BUSYI and enabling 
its drivers. 

It is possible for master A to retain control of the 
bus and prevent master B from getting contro!' 
Master A activates the Bus Override (or Bus Lock) 
signal which keeps BUSY I active allowing con­
trol of the bus to stay with master A. This 
guarantees a master consecutive bus cycles for 
software or hardware functions which require 
exclusive, continuous access to the bus. 

Note that in systems with only a single master it is 
necessary to ground the BPRN I pin of the master, 
if slave boards are to be accessed. In single board 
systems which use a CPU board capable of Bus 
Vectored Interrupt operation, the BPRN I pin must 
also be grounded. 

In a single master system bus transfer efficiency 
may be gained if the BUS OVERRIDE signal is 
kept active continuously. This permits the master 
to maintain control of the bus at all times, there­
fore sa ving the overhead of the master reacquiring 
the bus each time it is needed. 

The CBRQI line may be used by a master in 
control of the bus to determine if another master 
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Figure 10. Bus Control Exchange Operation 

requires the bus. If a master cUlTently in control of 
the bus sees the CBRQI line inactive, it will 
maintain control of the bus between adjacent bus 
accesses'. Therefore, when a bus access is required, 
the master saves the overhead of reacquiring the 
bus. If a current bus master sees the CBRQI line 
active, it will then relinquish control of the bus 
after the current bus access and will contend for 
the bus with the othermaster(s) requiring the bus. 
The relative priorities of the masters will deter· 
mine which master receives the bus. 
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Note that except for the BUS OVERRIDE state, no 
single master may keep exclusive control of the 
bus. This is true because it is impossible for the 
CPU on a master to require continuous access to 
the bus. Other lower priority masters will always 
be able to gain access to the bus between accesses 
of a higher priority master. 

Power Fail Considerations - The MULTIBUS 
P2 connector signals provide a means of handling 
power failures. The circuits required for power 
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Figure 11. Power Fail Timing Sequence 

failure detection and handling are optional and 
must be supplied by the user. Figure 11 shows 
the timing of a power fail sequence. 

The power' supply monitors the AC power level. 
When power drops below an acceptable value, the 
power supply raises ACLO which tells the power 
fail logic that a minim um of three milliseconds will 
elapse before DC power will (all below regulated 
voltage levels. The power fail logic sets a sense 
latch (PFSN/) and generates an interrupt (PFIN /) 
to the processor so the processor can store its 
environment. After a 2.5 millisecond timeout, the 
memory protect signal (MPRO/) is asserted by the 
power fail logic preventing any memory activity. 
As power falls, the memory goes on standby 
power. Note that the power fail logic must be 
powered from the standby source. 

As the AC line revives, the logic voltage level is 
monitored by the power supply. After power has 
been at its operating level for one millisecond 
minimum, the power supply sets the signal ACLO 
low, beginning the restart sequence. First, the 
memory protect line (MPRO/) then the initialize 
line (INIT /) become inactive. The bus master now 
starts runnin.g; The bus master checks the power 
fail latch (PFSN/) and, ifitfinds it set, branches to 
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a power up routine which resets the latch (PFSR/), 
restores the environment, and resumes execution. 

Note that INIT/ is activated only after DC power 
has risen to the regulated voltage levels and must 
stay low for five milliseconds minimum before the 
system is allowed to restart. Alternatively, IN IT / 
may be held low through an open collector device 
by MPRO/. 

How the power failure equipmentis configured is 
left to the system designer. The backup power 
source may be batteries located on the memory 
boards or more elaborate facilities located off­
board. The location of the power- fail logic 
determines which MULTI BUS power fail lines are 
used. Pins on the P2 connector have been specified 
for the power failure functions for use as needed. 

To further clarify the location and use ofthe power 
fail circuitry, an example of a typical power fail 
system block diagram is shown in Figure 12. A 
single board computer and a slave memory board 
are contained in the system. It is desired to power 
the memory circuit elements of the memory board 
from auxiliary power. The single board computer 
will remain on the main power supply. Toac­
complish this, user supplied. power fail logic and 
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* USER SUPPLIED 

Figure 12. Typical Power Fail System Block Diagram 

an auxiliary power supply have been included in 
the system. 

The single board computer is powered from the PI 
power lines and accesses the P2 signal lines 
PFIN/, PFSNI and PFSRI (only the P2 signal 
lines used by a particular functional block are 
shown on the block diagram). The PFSRI line is 
driven from two sources: a front panel switch and 
the single board computer. The front panel switch 
is used during normal power-up to reset the power 
fail sense latch. The single board computer uses 
the PFSRI line to reset the latch during a power-up 
sequence after a power failure. Current single 
board computers must access the PFSNI and 
PFSRI signals either directly with dedicated 
circuitry and a P2 pin connection or through the 
parallelliO lines with a cable connection from the 
parallel 110 connector to the P2 connector. 

The slave memory board uses both the PI and P2 
power lines, the P2 power lines are used (at all 
times) to power the memory circuit elements and 
other support circuits, the PI power lines power all 
other circuitry. In addition, the MPROI line is 
input and used to sense when memory contents 
should be protected. 

The power fail logic contains the power fail sense 
latch, and uses the PFSR! and ACLOlines for 
inputs and the PFINI PFSN/, and MPROI lines 
for outputs. The power fail logic must be powered 
by the P2 power lines. 
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DC Requirements - The drive and load charac­
teristics of the bus signals are listed in Appendix 
C. The physical locations of the drivers and loads, 
as well as the terminating resistor value for each 
bus line, are also specified. Appendix D contains 
the MULTIBUS power specifications. 

MULTIBUS™ Slave Interface 
Circuit Elements 

There are three basic elements of a slave bus 
interface: address decoders, bus drivers, and 
control signal logic. This section discusses each of 
these elements in general terms. A description of a 
detailed implementation of a slave interface is 
presented in a later section of this application note. 

Address Decoding - This logic decodes the 
appropriate MULTIBUS address bits into.RAM 
requests, ROM requests, or 110 selects. Care must 
be taken in the design of the address decode logic 
to ensure flexibility in the selection of base address 
assignments. Without this flexibility, restrictions 
may be placed upon various system configura­
tions. Ideally, switches and jumper connections 
should be associated with the decode logic to 
permit field modification of base address assign­
ments. 

The initial step in designing the address decode 
portion of a MULTIBUS interface is to determine 
the required number of unique address locations. 
This decision is influenced by the fact that 
address decoding is usually done in two stages. 
The first stage decodes the base address, pro­
ducing an enable for the second stage which 
generates the actual device selects for the user 
logic. A convenient implementation of this two 
stage decoding scheme utilizes a pair of decoders 
driven by the high order bits of the address for the 
first stage and a second decoder for the low order 
bits of the address bus. This technique forces the 
number of unique address locations to be a power 
of two, based at the address decoded by the first 
stage. Consider the scheme illustrated in Figure 
13. 

As shown in Figure 13, the address bits A4 -ABare 
used to produce switch selected outputs of the first 
stage of decoding. The 1 out of 8 binary decoders 
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have been used. The top decoder decodes address 
lines A4 . A 7, and the bottom decoder decodes 
address lines A8' A B. If only address lines AO' A 7 
are being used for device selection, as in the case of 
I/O port selection in 8-bit systems, the bottom 
decoder may be disabled by setting switch S2 to the 
ground position. Address lines A7 and A B drive 
enable inputs E2 or E3 of the decoders. The 
address lines AO - A3 enter the second stage 
address decoder to produce 8 user device selects. 
The second stage decoder must firstbe enabled by 
an address that corresponds to the switch-selected 
base address. 

Address decoding must be completed before the 
arrival of a command. Since the command may 
become active within 50 ns after stable address, 
the decode logic should be kept simple with a 
minimal number of layers of logic. Furthermore, 
the timing is extremely critical in systems which 
make use of the inhibit lines. 

A linear or unary select scheme in which no binary 
encoding of device address (e.g., address bit AO 
selects device 0, address bit Al selects device 1, 
etc.) is performed is not recommended because the 
scheme offers no protection in case multiple 
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Figure 13. TwoSlage Decoding Scheme 

devices are simultaneously selected, and because 
the addressing within such a system is restricted 
by the extent of the address space occupied by such 
a scheme. 

Data Bus Drivers - For user designed logic 
which simply receives data from the MULTIBUS 
data lines, this portion of the bus interface logic 
may only consist of buffers. Buffers are required 
to ensure that maximum allowable bus loading is 
not exceeded by the user logic. 

In systems where the user designed logic must 
placedata onto the MULTIBUS data lines, three­
state drivers are required. These drivers should be 
enabled only when a memory read command 
(MRDC/) or an I/O read command (IORC/) is 
present and the module has been addressed. 

When both the read and write functions are re­
quired, parallel bidirectional bus drivers (e.g., Intel 
8226,8287, etc.) are used. A note of caution must be 
included for the designer who uses this type of 
device. A problem may arise if data hold time 
requirements must be satisfied for user logic 
following write operations. When bus commands 
are used to directly produce both the chip select for 
the bidirectional bus driver and a strobe to a latch 
in the user logic, removal of that signal may not 
provide the. user's latch with adequate data hold 
time. Depending on the specifics of the user logic, 
this problem may be solved by permanently 
enabling the data buffer's receiver circuits and 
controlling only the direction of the buffers. 

Control Signal Logic - The control signal logic 
consists of the circuits that forward the I/O and 
memory read/write commands to their respective 
destinations, provide the bus with a transfer 
acknowledge response, and drive the system 
interrupt lines. 

Bus Command Lines 

The MUL TIBUS information transfer protocol 
lines (MRDC/, MWTC/, IORD/. and IOWC/) 
should be buffered by devices with very high speed 
switching. Because the bus DC requirements 
specify that each board may load these lines with 
2;0 rnA, Schottky devices are recommended. LS 
devices are not recommended due to their poor 
noise immunity. The commands should be gated 
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with a signal indicating the base address has been 
decoded to generate read and write strobes for the 
user logic. 

Transfer Acknowledge Generation 

The user interface transfer acknowledge genera· 
tion logic provides a transfer acknowledge re­
sponse, XACK/, to notify the bus master that write 
data provided by the bus master has been accepted 
or that read data it has requested is available on 
the MULTIBUS data lines. XACK/ allows the bus 
master to conclude its current instruction. 

Since XACK/ timing requirements depend on both 
the CPU of the bus master and characteristics of 
the user logic, a circuit is needed which will provide 
a range of easily modified acknowledge responses. 

The transfer acknowledge signals must be driven 
by three-state drivers which are enabled when the 
bus interface is addressed and a command is 
present. 

Interrupt Signal Lines 

The asynchronous interrupt lines must be driven 
by open collector devices with a minimum drive of 
16 mA. 

In a typical Non Bus Vectored Inte:r;.rupt system, 
logic must be provided to assert and latch-up an 
interrupt signal. In addition to driving the 
MULTIBUS interrupt lines, the latched interrupt 
signal would be read by an I/O operation such as 
reading the module's status. The interrupt signal 
would be cleared by writing to the status register. 

III. MULTIBUSTM SLAVE DESIGN 
EXAMPLE 

A MULTIBUS slave design example has been 
included in this application note to reinforce the 
theory previously discussed. The design example 
is of general purpose 110 slave interface. This 
design example could easily be modified to be used 
as a slave memory interface by buffering the 
address signals and using the appropriate 
MULTIBUS memory commands. In addition, to 
help the reader better understand an application 
for an 110 slave interface, two Intel 8255A Parallel 
Peripheral Interface (PPI) devices are shown con­
nected to the slave interface. 

The design example is shown in both 8/16-bit 
version and an 8-bit version. The 8/16~bit version 
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is an 110 interface which will permit a 16-bit 
master to perform 8 or 16 bit data transfers. 8-bit 
masters may also use the 8/16-bit version of the 
design example to perform 8-bit data transfers. 

The 8-bit version of the design example may be 
used by both 8 or 16-bit masters, but will only 
perform 8-bit data transfers. It does not contain 
the circuitry required to perform 16-bit data 
transfers. 

Both the 8/16-bit version and the 8-bit version of 
the design example were implemented on an iSBC 
905 prototype board. The schematics for each of 
the examples are given in Appendices F and G. 

Functional/Programming Characteristics 

This section describes the organization of the 
slave interface from two points of view, the 
functional point of view and the programming 
characteristics. First, the principal functions 
performed by the hardware are identified and the 
general data flow is illustrated. This point of view 
is intended as an introduction to the detailed 
description provided in the next section; Theory of 
Operation. In the second point of view, the 
information needed by a programmer to access the 
slave is summarized. 

Functional Description - The function of this 
110 slave is to provide the bus interface logic for 
general purpose 110 functions and for two Intel 
8255A Parallel Peripheral Interface (PPI) devices. 
Eight device selects (port addresses) are available 
for general purpose 110 functions. One of these 
device select lines is used to read and reset the state 
of an interrupt status flip-flop, the other seven 
device selects are unused in this design. An 
additional eight 110 device port addresses are 
used by the two 8255A devices; four 110 port 
addresses per 8255A (three 110 port address for 
the three parallel ports A, B, and C and the fourth 
110 port address for the device control register). 

Figure 14 contains a functional block diagram of 
the slave design example. This block diagram 
shows the fundamental circuit elements of a bus 
slave: bidirectional data bus drivers/receivers, 
address decoding logic and bus control logic. Also 
shown is the address decoding logic for the low 
order four bits, the interrupt logic which is selected 
by this decoding logic, and the two 8255A devices. 
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Figure 14. MUL TIBUS" Slave Design Example 
Functional Block Diagram 

Programming Characteristics - The slave 
design example provides 16 110 port addresses 
which may be accessed by user software. The 
base address of the 16 contiguous port adq.resses 
is selected by wire wrap connections on the proto­
type board. The wire wrap connections specify 
address bits ADR4/. - ADRB/. They allow the 
selection of a base address on any 16 byte 
boundary. Twelve address bits (ADROI -ADRB/) 
are used since 16-bit (8086 based) masters use 12 
bits to specity 110 port addresses. If an 8 bit (8080 
or 8085 based) master is used with this slave board, 
the high order address bits (ADRBI -ADRB/) must 
not be used by the decoding circuits; a wire wrap 
jumper position (ground position) is provided for 
this. 

The 16 110 port addresses are divided into two 
groups of 8 port addresses by decoding address line 
ADR3/.Port addresses XXO - XX7 are used for 
general 110 functions (XX indicates any hexi~ 
decimal digit combination). Port address XXO is 
used for accessing the interrupt status flip-flop and 

port addresses XXI - XX7 are not used in this 
example. Port addresses xX8 - XXF are used for 
accessing the PPls. If port addresses XX8 - XXF 
are selected, then ADROI is used to specify which 
of two PPIs are selected. If the address is even 
(XX8, XXA, XXC, or XXE) then one PPI is selected .. 
If the address is odd (XX9, XXB, XXD, or XXF), 
then the other PPI is selected. ADRII andADR2/ 
are. connected directly to the PPls. Table 1 
summarizes the 110 port addresses of the slave 
design example. Note that if a 16-bit master is 
used, it is possible to access the slave ina byte or 
word mode. If word access is used with port 
address XX8, XXA, XXC, or XXE, then 16 bit 
transfers will occur between the PPIs and the 
master. These 16 bit transfers occur because an 
even address has be~n specified and the MULTI­
BUS BHENI signal indicates that a 16-bit 
transfer is requested. 

Theory of Operation 

In the preceding section, each of the slave design 
example functional blocks was identified and 
briefly explained. This section explains how these 
functions are implemented. For detailed circuit 
information, refer to the schematics in Appendices 
F and G. The schematic in Appendix F is on a 
foldout page so that the following text may easily 
be related to the schematic. 

The discussion of the theory of operation is divided 
into five segments, each of which discusses a 
different function performed by the MULTIBUS 
slave design example. The five segments are: 

1. Bus address decoding 

2. Data buffers 
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3. Control signals 

4. Interrupt logic 

5. PPI operation 

Each of these topics are discussed with regard to 
the 8/16-bit ver~i~n pf the design example; 
followed by a discussion of the circuit elements 
which are required by the 8-bit version of the 
interface. 

Bus Address Decoding ""';-Bus addreSs decoding 
is performed by two 82051 out oi8 binary dp.coders. 
One decoder (A3) decodes addr~Ss bits ADR81 -
ADRBI and the second decoder (A2) decodes 
address bits ADR41 - ADR7 I. The base address 
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Table 1 

SLAVE DESIGN EXAMPLE PORT ADDRESSES 

1/0 PORT ADORESS READ WRITE 

BYTE ACCESS 

XXO Bit 0 = Iniimupt Status Reset Interrupt Status 

XX1 - XX? Unused Unused 

XX8 Parallel Port A, Even PPI Parallel Port A, Even PPI 

XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI 

XXA Parallel Port B; Even PPI Parallel Port B, Even PPI 

XXB Parallel Port B, Odd PPI Parallel Port B, Odd PPI 

XXC Parallel Port C, Even PPI Parallel Port C, Even PPI 

XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI 

XXE Illegal Condition Control, Even PPI 

XXF Illegal Condition Control, Odd PPI 

WORD ACCESS 

XXO Bit 0 = Interrupt Status Reset Interrupt Status 

XX2 - XX6 Unused Unused 

XX8 Parallel Port A, Even and Odd PPls Parallel Port A, Even and Odd PPls 

XXA Parallel Port B, Even and Odd PPls Parallel Port B, Even and Odd PPls 

XXC . Paraliel Port C, Even and Odd PPls Parallel Port C, Even and Odd PPls 

XXE Illegal Condition Control, Even and Odd PPls 

XX = Any hex digits, assigned by jumpers; XX defines the base address. 

selected is determined by the position of wire wrap 
jumpers. The outputs of the two decoders are 
ANDed together to form the BASE ADR SELECT/ 
signal. This signal specifies the base address 
for a group of 16110 ports .. Using the wire wrap 
jumper positions shown in the schematic, a base 
address of E3 has been selected. Therefore, this 
MULTIBUS slave board will respond to 110 port 
addresses in the E30 . E3F range. 

If this slave board is to be used with 8-bit MULTI­
BUS masters, the high order address bits must not 
be decoded. Therefore, the wire wrap jumper 
which selects the output of decoder A3 must be 
placed in the top (ground) po~ition ,(pin 10 of gate 
A9 t9 ground). 

The low order 4 address lines (ADRW -~DR3/)are 
buffered and, inverted, using 74LS04, inverters. 
These address lines are input to an 8205 for 
decoding a chip select for the interrupt logic; the 
address lines are also used directly by the PPls . 

. LS-Series logic is required forhuffering to meet the 
MULTIBUS specification for IlL (low level input 
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current). S-Series or standard series logic will not 
meet this specification. 

Address decoder A4 is used 'to decode addresses 
E30 - E37. The CSO/ output of this decoder is used 
to select the interrupt logic, thus 110 port address 
E30 is used to read and reset the interrupt latch. 
The remaining outputs from decoder A4 (CSlI -' 
CS7/) are not used in this example. They would 
normally be used to select other functions in a 
slave board with more capability. Note that in the 
schematic shown in Appendix G for the tl-bit 
version of this slave design example, the high 
order (ADRtl/ - ADRB/) address decoder is not 
included and the BHEN / signal is not used. 

Data Buffers - Intel 8287 8-bit parallel bi­
dir.ectional bus drivers are .used for the MULTI· 
BUS data lines DATO! . DATF/. In the tl/16-bit 
version of the slave board, three 8287 drivers 
are used. 

When an 8-bit data transfer is requested, either 
driverA5, which is connected to on-board data 
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lines DO - D7, or driver A6, which is connected to ~ 
on-board data lines D8 - DF, is used. If a byte 
transfer is requested from an even address, driver 
A5 will be selected. If a byte transfer from an odd 
address is requested, driver A6 wili be selected. All 
byte transfers take place on MULTIBUS data 
lines DATOI - DAT7I. When a word (1S-bit) 
transfer is requested from an even address, drivers 
A5 and A 7 will be used. Note that if a user program 
requests a word transfer from an odd address, 
16-bit masters in the iSBC product line will 
actually perform two byte transfer requests. 

The logic which determines the chip selection 
(8287 input signal OE, output enable) signals for 
the bus drivers uses the low order address bit 
(ADRO/) and the buffered Byte High Enable 
signal (BHENBL/). Note that the MULTIBUS 
signal BHEN I has been buffered with an 74LS04 
inverter. This is done to meet the bus address line 
loading specification. The SWAP BYTEI sig~al 
which is generated is qualified by the BD ENBLI 
signal and used to select the bus drivers. 

The steering pin for the 8287 di-ivers is labelled T 
(transmit) and is driven by the signal RD. When 
an input (read) request is active or when neither a 
read or write command is being serviced, the 
direction of data transfer of the 8287 will be set for 
B to A. 

The 8287 drivers are set to point IN (direction.B to 
A) when no MULTIBUS 110 transfer command is 
being serviced for two reasons. First, if the drivE\r 
were pointed OUT (direction A to B) and a write 
command occured, it would be necessary to tum 
the buffers IN and set the DE (output enable) 
signal active before the data could be transferred 
to the on-board bus. A possibility of a "buffer­
fight" could occur in some designs if the OE signal 
permitted an 8287 to drive the MULTIBUS data 
lines momentarily before the steering signal could 
switch the direction of the 8287. In this case, both 
the MUL TIBUS master and the slave wOllld be 
driving the data lines; this is not recommend,ed .. 
(In this particular design, the steering signal will 
always stabilize before the OE signal becomes 
active.) 

The second reason the. driver is pointing IN when 
no command is;present is due to the "data valid ... 
after WRITE" requirements of the 8255As.The . 
8255A requires that data remain on its data lines 
for 30 ns after the WRITE command (WR at the 
8255A) is removed. This requirement will be met if 
the direction of the 8287 drivers is not switched 

.when the MULTIBUS IOWCI signal is removed 
(WRT I could have been used to steer the 8287 
instead of RD); and if the capacitance ofthe on­
board data bus lines is sufficient to hold the data 
values on the bus after the 8287 OE signai imd the 
8255A PPI WRT I signal go inactive. The on-board 
data bus may easily be designed such that the 
capacitance of the lines is sufficient to meet the 30 . 
ns data hold time requirement. In addition, the 
current leakage of all devices connected to the on­
board bus must be kept small to meet the 30 ns data 
hold time requirement. 

The 8-bit version of this design example uses only 
one 8287 instead of the three required by the 8/16-
bit version. The logic required to control the swap 
byte buffer is also not necessary. The chip select 
signal used for the 8287 is the BD ENBLI signal. 

Control Signals - The MULTIBUS control 
signals used by this slave design example are 
IORC/, IOWC/, and XACK/. IORCI and IOWCI 
are qualified by the BASE ADR SELECTI signal 
to form the signals·RD and WRT. RD and WRT 
are used to drive the interrupt logic, the PPI logic 
and the XACKI (tr~nsfer acknowledge) logic. 

For the XACKI logic RD and WRT are ORed to 
form the BD ENBLI signal which is inverted and 
used to drive the CLEAR pin of a shift register. 
When the slave board is not being accessed, the 
CLEAR pin of the shift register will be low (BD 
ENBLI is high). This causes the shift register to 
remain cleared and all outputs of the shift register 
will be low. When the slave board is accessed, the 
CLEAR pin will be high, and the A and B inputs 
(which are high) will be clocked to the output pins 
by CCLK/. To select adelay for the XACKI signal, 
a jumper must be installed from one of the shift 
registe.r output pins to the. 8089 tri-state driver. 
Each of the shift register output pins select an 
integer multiple of CCLKI periods for the signal 
delay. Since the CCLKI signal is asynchronous, 
the· actual delay selected may. Ql1ly be Specified 
with a toleranc'e of one CCLKI period: In this 
example a delay of 3 - 4 CCLKI periods was 
selected; with a CCLKI period of 100 p.s, the 
XACKI delaywmHd occur somewhere within the 
range of 300 - 400 ns from the time when the 
CLEAR signal goes high. 

The control signal logic used in the 8-bit version of 
the slave design example is identical to the logic 
used in the 8/16-bit version.. 
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Interrupt Logic - The interrupt logic uses a 
74S74 flip-flop to latch an asynchronous interrupt 
request from some external logic. The Q output 
of the INTERRUPT REQUEST LATCH is output 
through an open collector gate to one of the 
MULTIBUS interrupt lines. The state of the 
INTERRUPT REQUEST LATCH is transferred 
to the INTERRUPT STATUS LATCH when a 
read command is performed on I/O port BASE 
ADDRESS+O (E30 for the jumper configuration 
shown). The Q output of INTERRUPT STATUS 
LATCH is used to drive data line DO of the on­
board data bus by using an 8089 tri-state driver. 
If a user program performs an INPUT from I/O 
port E30, data bit 0 will be set to 1 if the INTER­
RUPT REQUEST LATCH is set. 

The purpose of INTERRUPT STATUS LATCH is 
to minimize the possibility of the asynchronous 
interrupt occuring while the interrupt status is 
being read by a bus master. If the latch was not 
included in the design and an asynchronous inter­
rupt did occur while a bus master is reading 
MUL TIBUS data line DATOI, a data buffer on the 
master could go into a meta-stable state. By 
adding the extra latch, which is clocked by the 
IORDI command for I/O port E30, the possibility 
of data line DATOI changing during a bus master 
read operation is eliminated. 

The INTERRUPT REQUEST LATCH is cleared 
when a user program performs an OUTPUT to I/O 
port E30. 

This interrupt structure assumes that several 
interrupt sources may exist on the same MULTI­
BUS interrupt line (for example, INT3/). When the 
MULTIBUS master gets interrupted, it must poll 
the possible sources of the interrupt received and 
after determining the source of the interrupt, it 
must clear the INTERRUPT REQUEST LATCH 
for that particular interrupt source. 

The interrupt logic for the 8-bit version of the 
design example is identical to the interrupt logic of 
the 8/I6-bit version of the design example. 

PPI Operation - Two 8255A Parallel Peripheral 
Interface (PPI) devices are shown interfaced to 
the slave design example logic. One PPI is con­
nected to the on-board data bus lines DO - D7 and 
is addressed with the even I/O port addresses 
E38, E3A, E3C, and E3E. The second PPI is 
connected to data bus lines D8 - DF and is address­
ed with the odd I/O port addresses E39, E3B, 
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E3D, and E3F. The even or odd I/O port selection 
is controlled by using the ADRO address line in 
the chip select term of the PPIs. In addition, the 
odd PPI (All) is selected when the BHENBL 
term is high. This occurs when the MULTIBUS 
signal BHENI is low indicating that a word 
(16-bit) I/O instruction is being executed. When 
a word I/O instruction is executed, both PPIs will 
perform the I/O operation specified. 

The specifications of the 8255A device state that 
the address lines AO and Al and the chip select 
lines must be stable before the RD or WR lines are 
activated. The MULTIBUS specification address 
set-up time of 50 ns and the short gate propagation 
delays in this design assure that the address lines 
are stable before RD or WR are active. 

The data hold requirements of the 8255A were 
discussed in a previous section. The 8255A speci­
fication states that data will be stable on the data 
bus lines a maximum of 250 ns after a READ 
command. This specification was used to select 
the delay for the XACKI signal. 

The PPI operation for the 8-bit version of the 
design example is slightly different than that used 
for the 8/I6-bit version. The chip select signal for 
the bottom PPI does not use the BHENBL term 
since I6-bit data transfers are not possible with an 
8-bit I/O slave board. Also, the chip select and 
address signals have been swapped so the top PPI 
occupies I/O address range X8 - XB, and the 
bottom PPI occupies I/O address range XC -XF (X 
is the base address of the 8-bit version). This 
swapping of the address lines was not necessary; 
however, it was thought to be more convenient to 
access the PPIs in two groups of 4 contiguous I/O 
port addresses. 

IV. SUMMARY 

This application note has shown the structure of 
the Intel MUL TIBUS system bus. The structure 
supports a wide range of system modules from the 
Intel OEM Microcomputer Systems product line 
that can be extended with the addition of user 
designed modules. Because the user designed 
modules are no doubt unique to particular applica­
tions, a goal of this application note has been to 
describe in detail the singular common element -
the bus interface. Materiai has also been 
presented to assist the systems designer to under­
standing the bus functions so that successful 
sy.stems integration can be achieved. 
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APPENDIX A 

PIN ASSIGNMENT OF BUS SIGNALS ON MUL TIBUS BOARD P1 CONNECTOR 

(COMPONENT SIDE) (CIRCUIT SIDE) 

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION 

1 GND Signal GND 2 GND Signal GND 
3 +5V +5Vdc 4 +5V +5Vdc 

POWER 5 +5V +5Vdc 6 +5V +5Vdc 
SUPPLIES 7 +12V + 12Vdc 8 +12V + 12Vdc 

9 -5V -5Vdc 10 -5V -5Vdc 
11 GND Signal GND 12 GND Signal GND 

13 BCLK/ Bus Clock 14 INIT/ Initialize 
15 BPRN/ Bus Pri. In 16 BPRO/ Bus Pri. Out 

BUS 17 BUSY/ Bus Busy 18 BREO/ Bus Request 
CONTROLS 19 MRDC/ Mem Read Cmd 20 MWTC/ Mem WriteCmd 

21 10RC/ I/O Read Cmd 22 10WC/ I/OWriteCmd 
23 XACK/ XFER Acknowledge 24 INH1/ Inhibit 1 disable RAM 

BUS 
25 Reserved 26 INH2/ Inhibit 2 disable PROM or ROM 

CONTROLS 
27 BHEN/ Byte High Enable 28 AD10/ 

AND 
29 CBRO/ Common Bus Request 30 AD11/ Address 
31 CCLK/ Constant Clk 32 AD12/ Bus ADDRESS 33 INTA/ Intr Acknowledge 34 AD13/ 

35 INT6/ Parallel 36 INTl/ Parallel 

INTERRUPTS 
37 INT4/ Interrupt 38 INT5/ Interrupt 
39 INT2/ Requests 40 INT3/ Requests 
41 INTO/ 42 INT1/ 

43 ADRE/ 44 ADRF/ 
45 ADRC/ 46 ADRD/ 
47 ADRA! Address 48 ADRB/ Address 

ADDRESS 
49 ADR8/ Bus 50 ADR9/ Bus 
51 ADR6/ 52 ADR7/ 
53 ADR4/ 54 ADR5/ 
55 ADR2/ 56 ADR3/ 
57 ADRO/ 58 ADR1/ 

59 DATE/ 60 DATF/ 
61 DATC/ 62 DATD/ 
63 DATA/ Data 64 DATB/ Data 

DATA 
65 DfiT8/ Bus 66 DAT9/ Bus 
67 DAT6/ 68 DATl/ 
69 DAT4/ 70 DAT5/ 
71 DAT2/ 72 DAT3/ 
73 DATO/ 74 DAT1/ 

75 GND Signal GND 76 GND SignalGND 
77 Reserved 78 Reserved 

POWER 79 -12V -12Vdc 80 -12V -12Vdc 
SUPPLIES 81 +5V +5Vdc 82 +5V +5Vdc 

83 +5V +5Vdc 84 +5V +5Vdc 
85 GND SignalGND 86 GND SignalGND 

All Mnemonics © Intel Corporation 1978 
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APPENDIX A (Continued) 

P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS 

(COMPONENT SIDE) (CIRCUIT SIDE) 

PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION 

1 GND Signal GND 2 GND Signal GND 
3 5 VB +5V Battery 4 5 VB + 5V Battery 
5 Reserved 6 VCCPP + 5V Pulsed Power 
7 -5 VB -5V Battery 8 -5 VB -5V Battery 
9 Reserved 10 Reserved 

11 12 VB + 12V Battery 12 12 VB + 12V Battery 
13 PFSR! Power Fail Sense Reset 14 Reserved 
15 -12 VB -12V Battery 16 -12 VB -12V Battery 
17 PFSNI Power Fail Sense 18 ACLO AC Low 
19 PFIN! Power Fail Interrupt 20 MPRO! Memory Protect 
21 GND Signal GND 22 GND Signal GND 
23 +15V +15V 24 +15V +15V 
25 -15V -15V 26 -15V -15V 
27 PAR1! Parity 1 28 HALT! Bus Master HALT 
29 PAR2! Parity 2 30 WAIT! Bus Master WAIT ST A TE 
31 32 ALE Bus Master ALE 
33 34 Reserved 
35 36 Reserved 
37 38 AUX RESET! Reset switch 
39 40 
40 42 
43 > Reserved 44 
45 46 
47 48 
49 50 Reserved 
51 52 
53 54 
55 56 
57 58 
59 60 

Notes: 

1. PFIN, on slave modules, if possible, should have the option of connecting to INTO! on P1. 
2. All undefined pins are reserved for future use. 

All Mnemonics © Intel Corporation 1978 
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APPENDIX B 

BUS TIMING SPECIFICATIONS SUMMARY 

Parameter Description Minimum Maximum Units 

tBCY Bus Clock Period 100 D.C. ns 

tBW Bus Clock Width 0.35 tBCY 0.65 tBCY 

tSKEW BCLK/skew 3 ns 

tpD Standard Bus 3 
Propagation Delay 

tAS Address Set-Up Time 50 ns 
(at Slave Board) 

tDS Write Data Set· 50 ns 
Up Time 

tAH Address Hold Time 50 ns 

tDHW Write Data Hold Time 50 ns 

tDXL Read Data Set 0 ns 
Up Time To XACK 

tDHR Read Data Hold Time 0 65 ns 

tXAH Acknowledge Hold 0 65 ns 
Time 

tXACK Acknowledge Time 0 tTOUT ns 

tCMD Command Pulse 100 tTOUT ns 
Width 

tiD Inhibit Delay 0 100 ns 
(Recommend < 100 ns) 

tXACKA Acknowledge Time of t IAD + 50 ns tTOUT 
of an Inhibited Slave 

tXACKB Acknowledge Time of 1.5 tTOUT IlS 
an Inhibiting Slave 

tlAD Acknowledge Disable 0 100 ns 
from Inhibit (An (arbitrary) 
internal parameter on 
an inhibited slave; 
used to determine 
tXACKA Min.) 

tAIZ Address to Inhibits 100 ns 
High delay 

tlNTA INTAI Width 250 ns 

tCSEP Command Separation 100 ns 
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APPENDIX B (Continued) 

BUS TIMING SPECIFICATIONS SUMMARY 

Parameter Description Minimum Maximum Units 

tBREQL IBCLKI to BREQI 0 35 ns 
Low Delay 

tBREQH IBCLKI to BREQI 0 35 ns 
High Delay 

tBPRNS BPRNI to IBCLKI 22 ns 
Setup Time 

tBUSY BUSY I delay 0 70 ns 
from IBCLKI 

tBUSYS BUSY I to IBCLKI 25 ns 
Setup Time 

tBPRO IBCLKI to BPROI 0 40 ns 
(CLK to Priority Out) 

tBPRNO BPRNI to BPROI 0 30 ns 
(Priority In to Out) 

tCBRO IBCLKlto CBRQI 0 60 ns 
(CLKto Common 

Bus Request) 

tCBRQS CBRQI to IBCLKI 35 ns 
Setup Time 

tCPM Central Priority 0 tBCy-tBREQ 
Module Resolution -2tPD 
Delay (Parallel -tBPRNS 
Priority) -tSKEW 

tCCY C-clock Period 100' 110 ns 

tcw C-clock Width 0.35 tCCY 0.65tCCY ns 

tlNIT INIT/Width 5 ms 

tiN ITS INIT I to MPROI 100 ns 
Setup Time 

tpBD Power Backup 0 200 ns 
Logic Delay 

tpFINW PFINI Width 2.5 ms 

tMPRO MPROI Delay 2.0 2.5 ms 

tACLOW ACLOI Width 3.0 ms 

tPFSRW PFSRI Width 100 ns 

troUT .Timeout Delay 5 00 ms 

tDCH D.C. Power Supply 
Hold from ALCOI 

3.0 ms 

tDCS D.C. Power Supply 
Setup to ACLOI 

5 ms 
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APPENDIX C 

BUS DRIVERS, RECEIVERS, AND TERMINATIONS 

Driver 1,3 Receiver 2,3 Termination 

Bus Signals location Type IOl IOH Co location III IIH CI Location Type R Units 

Mlnma Mln"a Maxpf Maxma MaxJ,l8 Maxpf 

DATOI-DATFI Masters TRI 16 -2000 300 Masters -0.8 125 18 1 place Pullup 22 KQ 

(16Iines) and Slaves and Slaves 

ADRO/-ADRB/, Masters TRI 16 -2000 300 Slaves -0.8 125 1S 1 place Pullup 22 KQ 

BHENI 
(21 lines) 

MRDC/,MWTCI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ 

(Memory; 
memory-
mapped 1/0) 

10RC I ,IOWC I Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pull up 1 KQ 

(1/0) 

XACKI Slaves TRI 32 -2000 300 Masters -2 125 1S 1 place Pullup 510 Q 

INH1/,INH21 Inhibiting OC 16 - 300 Inhibited -2 50 1S 1 place Pullup 1 KQ 

Slaves Slaves 
(RAM, PROM, 
ROM, Memory-
Mapped 1/0) 

BClKI 1 place TTL 48 -3000 300 Master -2 125 18 Mother- To +5V 220 Q 

(Master us) board ToGND 330 Q 

BREQI Each TTL 5 -400 60 Central 2 50 18 Central Pullup 1 KQ 

Master Priority Priority 
Module Module 

(not req) 

BPROI Each TTL 5 -400 60 Next Master -1.6 50 18 (not reql 
Master in Serial 

Priority 
Chain at 
its BPRNI 

BPRNI Parallel: TTL 5 -400 300 Master -2 50 (not req) 
Central 
Priority 
Module 
Serial:Prev 
Masters 
BPROI 

BU$Y/, CBRO All Masters O.C 32 - 300 All Masters -2 50 1S 1 place Pullup 1 KQ 

INITI Master O.C 32 - 300 All -2 50 1S 1 place Puli"p 22 KQ 

CCLKI 1 place TTL 48 -3000 300 Any -2 125 18 Mother- To +5V 220 Q 
board ToGND 330 Q 

INTAI Masters TRI 32 -2000 300 Slaves -2 125 18 1 place Pullup 1 KQ 
(Interrupting 

110) 

INTO/-INTlI Slaves O.C. 16 - 300 Masters -1.6 40 18 1 place Pullup 1 KQ 
(Sllnes) 

PFSRI User's Fron TTL 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 KQ 
Panel? Masters 

PFSNI Power Back TTL 16 -400 300 Masters -1.6 40 16 t place Pullup 1 KQ 
Up Unit 

ACLO Power O.C. 16 -400 300 Slaves, -1.6 40 18 1 place Pullup 1 KQ 
Supply Masters 

PFINI Power Back- O.C 16 -400 300 Masters -1.6 40 18 1 place Pullup 1 KQ 
Up Unit 

MPROI Power Back- TTL 16 -400 300 Slaves -1.6 40 18 1 place Pullup 1 KQ 
Up Uni1 Masters 
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APPENDIX C (Continued) 

BUS DRIVERS, RECEIVERS, AND TERMINATIONS 

Driver 1,3 Receiver 2,3 Termination 

Bus Signals Location Type IOL IOH Co Location IlL IIH CI Location Type R Units 

Minma Mln~a Maxpl Maxma Max~8 Maxpl 

Aux Resetl User's Switch - - - Masters -2 50 18 None 
Front toGND 
Panel? 

Notes: 

1. Driver Requirements 

10H = High Output Current Drive 
IOL = Low Output Current Drive 
Co = Capacitance Drive Capability 
TRI = 3-State Drive 
O.C. = Open Collector Driver 
TTL = Totem-pole Driver 

2. Receiver Requirements 

IIH = High Input Current Load 
IlL = Low Input Current Load 
C, = Caoacitive Load 

3. TTL low state must be 2. -0.5v but ,;, 0.8v at the receivers 
TTL high state must be2. 2.Ov but ~ 5.5v at the receivers 

4. For the iSBC 80/10 and the iSBC 80/10A use only a lK pull-up resistor to +5v for BCLKI and CCLKI termination. 

A-203 



AP-28A 

APPENDIX D 

BUS POWER SPECIFICATIONS '. 
Standard (P1) Optional (P2) " '. , 

Analog Power Battery Power Backup 

Ground +5 +12 -12 +15 -15 +5 +12 -12 ~5 ' 

Mnemonic GND +5V + 12V -12V +15V -15V +58 + 128 -'128 -58 

8us Pins P1 + 1,2, Pl +3,4, P1 + 7,8 P1 + 79, P2+23, P2+25, P2+ 3,4, P2 + 11, P2 + 15, P2-7,8 
11,12, 5,6,81, 80 24 26 5,6 12 16 
75,76 82,83, 
85,86 84 

Nominal Output Ref. +5.0V + 12.0V -1'2.0V + 15.0V -15.0V +5.0V + 12.0V -12.0V -5.0V 

Tolerance from 
Nominal' Ref. ±5% ±5% ±5% ±3% ±3% ±5% ±5% ±5% ±5% 

Ripple 
(Pk-Pk)' Ref. 50 mV 50 mV 50 mV 10 mV 10 mV 50 mV 50 mV 50 mV 50 mV 

Transient 
Response 500 JJ.s 500JJ.s 500 JJ.s 100 JJ.s 100 JJ.s 500 JJ.s 500 JJ.s 500 JJ.s 500 JJ.s 
Time' 

Transient 
Deviation' ± 10% ±10% ± 10% ± 10% ±10% ±10% ± 10% ±10% ± 10% 

NOTES: 

1. Tolerance is worst case, including initial voltage setting line and load effects of power source, temperature drift, and any additional steady 
state influences. 

2. As measured over any bandwidth not to exceed a to 500 kHz. 

3. As measured from the start 01 a load change to the time an output recovers within ± 0.1 % of final voltage. 

4. Measured as the peak deviation from the initial voltage. 
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APPENDIX E 

MECHANICAL SPECIFICATIONS 

12.00 to.OOS 

11.500 

COMPONENT SIDE 

D> 

D> 

6.767 to.OOS 

BOARD THICKNESS: 0.062 

MUL TiBUS CONNECTOR: as-PIN, 0.156 SPACING 

CDC VFBOl E43DOOAl 
VIKING 2VH43/1ANES 

AUXILIARY CONNECTOR- eO·PIN, 0.100 SPACING 

CDC VPB01B30DOOAl 
Tl H311130 
AMP PE5·14559 

I 

5. 

G. 

7. 

s. 

I-- 0.25 

I 
i2·~ 

5,950 
!O.O05 

6,20 

D> I-f -nr 

5 REF 

L- ,----.J" 0.55 '-- o. 
3.080 ~ 0.390 

30 

4.570 '" 

EJECTOR TYPE: SCANBE #$203 

CHAMFER All 
CONNECTOR EDGES 
0.040 X 45° 

0.015 ± 0.005 x 45° 
2 PLACES 

BUS DRIVERS AND RECEIVERS SHOULD BE LOCATED AS CLOSE AS POSSIBLE TO 
THEIR RESPECTIVE MUL TIBUS PIN CONNECTIONS 

BOARD SPACING: 0.6 

COMPONENT HEIGHT: 0.4 

CLEARANCE ON CONDUCTOR NEAR EDGES: 0,050 
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I. INTRODUCTION 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package contains the hardware and soft­
ware required to interface an iSBC 86/12 Single 
Board Computer with an Intellec Microcomputer 
Development System. The iSBC 957 package gives 
the 8086 user the capability to develop software on 
an Intellec System and then debug this software on 
an iSBC 86/12 board using a program download 
capability and an interactive system monitor. The 
8086 user has all the capabilities of the Intellec sys­
tem at his disposal and has the powerful iSBC 
86/12 system monitor commands to use for 
debugging 8086 programs. 

The iSBC 86/12 board is an Intel 8086 based proc­
essor board which, in addition to the processor, 
contains 32K bytes of dual port RAM, sockets for 
up to 16K bytes of ROM/EPROM, a serial I/O 
port, 24 parallel I/O lines, 2 programmable 
counters, 9 levels of vectored priority interrupts, 
and an interface to the MULTIBUSTM system bus. 
The iSBC 957 package consists of monitor EPROMs 
for the iSBC 86/12 board, Loader software for the 
Intellec system, four (4) cable assemblies, assorted 
line drivers and terminators, and signal adapters. 
The iSBC 957 package provides the capability of 
downloading and uploading program and data 
blocks between an iSBC 86/12 board and an Intellec 
system. In addition, monitor commands and 
displays may be input and viewed from the Intellec 
system console. The iSBC 957 package, when used 
with the iSBC 86/12 board and an Intellec Micro­
computer Development System, provides the user 
with the capability to edit, compile or assemble, 
link, locate, download, and interactively debug 
programs for the 8086 processor. The iSBC 957 
package and the iSBC 86/12 board form an ex­
cellent "execution vehicle" for users developing 
software for the 8086 processor regardless of 
whether the users are 8086 component users or 
iSBC 86/12 board users. Using the iSBC 957 pack­
age 8086 programs may be debugged at the full 5 
MHz speed of the processor. The recommended 
hardware for the execution vehicle is an iSBC 660 
system chassis with an 8 card slot backplane and 
power supply, an iSBC 032 32K byte RAM memory 
board, the iSBC 957 package, and the iSBC 86/12 
board. 

This application note will describe how the iSBC 
957 package may be used to develop and debug 
8086 programs. First a description of the iSBC 
86/12 board will be presented. Readers familiar 

with the iSBC 86/12 board may want to skip this 
section. Next follows a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. A program example of a 
matrix multiplication routine will then be presented. 
This example will contain both assembly language 
and PL/M-86 procedures. The steps required to 
compile, assemble, link, locate and debug the 
program code will be explained in detail. A typical 
debugging session using the iSBC 86/12 system 
monitor will be presented. 

II. THE iSBC™ 86/12 SINGLE BOARD 
COMPUTER 

The iSBC 86/12 Single Board Computer, which is 
a member of Intel's complete line of iSBC 80/86 
computer products, is a complete computer system 
on a single printed-circuit assembly. The iSBC 86/ 
12 board includes a 16-bit central processing unit 
(CPU), 32K bytes of dynamic RAM, a serial com­
munications interface, three programmable parallel 
I/O ports, programmable timers, priority interrupt 
control, MUL TIBUS control logic, and bus expan­
sion drivers for interface with other MUL TIBUS­
compatible expansion boards. Also included is dual 
port control logic to allow the iSBC 86/12 board 
to act as a slave RAM device to other MUL TIBUS 
masters in the system. Provision is made for user 
installation of up to 16K bytes of read only mem­
ory. Figure 1 contains a block diagram of the iSBC 
86/12 board and in Appendix A is a simplified 
logic diagram of the iSBC 86/12 board. 

Central Processing Unit 

The central processor for the iSBC 86/12 board is 
Intel's 8086, a powerful 16-bit H-MOS device. The 
225 sq. mil chip contains 29,000 transistors and has 
a clock rate of 5MHz. The architecture includes 
four (4) 16-bit byte addressable data registers, two 
(2) 16-bit memory base pointer registers and two (2) 
16-bit index registers, all accessed by a total of 24 
operand addressing modes for complex data han­
dling and very flexible memory addressing. 

Instruction Set - The 8086 instruction repertoire 
includes variable length instruction format (in­
cluding double operand instructions), 8-bit and 16-
bit signed and unsigned arithmetic operators for 
binary, BCD and unpacked ASCII data, and iter­
ative word and byte string manipulation functions. 
The instruction set of the 8086 is a functional 
superset of the 8080A/8085A family and with 
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MUlTiBUS 

RS232C 
COMP"nSlE 

DEVICE 
24 PROGR"hIIM~BlE 
PARALLEL 110 LINES 

Figure 1. iSBCTM 86/12 Single Board Computer Block Diagram 

available software tools, programs written for the 
8080A/8085A can be easily converted and run on 
the 8086 processor. 

Architectural Features - A 6-byte instruction queue 
provides pre-fetching of sequential instructions and 
can reduce the 1.2/.1 sec minimum instruction cycle 
to 400 nsec by having the instruction already in the 
queue. 

The stack oriented architecture facilitates nested 
sub-routines and co-routines, reentrant code and 
powerful interrupt handling. The memory expan­
sion capabilities offer a 1 megabyte addressing 
range. The dynamic relocation scheme allows ease 
in segmentation of pure procedure and data for 
efficient memory utilization. Four segment registers 
(code, stack, data, extra) contain program loaded 
offset values which are used to map 16-bit addresses 
to 20-bit addresses. Each register maps 64K-bytes at 
a time and activation of a specific register is con­
trolled explicitly by program control and is also 
selected implicitly by specific functions and 
instructions. 

Bus Structure 

The iSBC 86/12 board has an internal bus for 
communicating with on-board memory and I/O 
options, a system bus (the MUL TIBUS) for refer­
encing additional memory and 1/ 0 options, and 
the dual-port bus which allows access to RAM 
from the on-board CPU and the MUL TIBUS Sys­
tem Bus. Local (on-board) accesses do not require 
MUL TIBUS communication, making the system 
bus available for use by other MUL TIBUS masters 
(Le. DMA devices and other single board com­
puters transferring to additional system memory). 
This feature allows true parallel processing in a 
multiprocessor environment. In addition, the MUL­
TIBUS interface can be used for system expansion 
through the use of other 8- and 16-bit iSBC com­
puters, memory and I/O expansion boards. 

RAM Capabilities 

The iSBC 86/12 board contains 32K-bytes of 
dynamic read/write memory. Power for the on­
board RAM and refresh circuitry may be option­
ally provided on an auxiliary power bus, and 
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memory protect logic is included for RAM battery 
backup requirements. The iSBC 86/12 board con­
tains a dual port controller which allows access to 
the on-board RAM from the iSBC 86/12's CPU 
and from any other MUL TIBUS master via the 
system bus. The dual port controller allows 8- and 
16-bit accesses from the MUL TIBUS System Bus 
and the on-board CPU transfers data to RAM over 
a 16-bit data path. Priorities have been established 
such that memor.y refresh is guaranteed by the on­
board refresh logic and that the on-board CPU has 
priority over MUL TIBUS requests for access to 
RAM. The dual-port controller includes independent 
addressing logic for RAM access from the on-board 
CPU and from the MUL TIBUS system bus. The 
on-board CPU will always access RAM starting 
at location OOOOOH. Address jumpers allow on­
board RAM to be located starting on any 8K-byte 
boundary within a I megabyte address range for 
accesses from the MULTI BUS system bus. In con­
junction with this feature, the iSBC 86/12 board 
has the ability to protect on-board memory from 
MUL TIBUS access to any contiguous 8K-byte 
segments. These features allow multi-processor 
systems to establish local memory for each proces­
sor and shared system (MUL TIBUS) memory con­
figurations where the total system memory size 
(including local on-board memory) can exceed 1 
megabyte without addressing conflicts. 

EPROMIROM Capabilities 

Four sockets are provided for up to 16K-bytes of 
non-volatile read only memory on the iSBC 86112 
board. Configuration jumpers allow read only 
memory to be installed in 2K, 4K, or 8K increments. 

On-board ROM is accessed via 16 bit data paths. 
System memory size is easily expanded by the 
addition of MUL TIBUS compatible memory boards 
available in the iSBC 80/86 family. 

Parallel 110 Interface 

The iSBC 86112 board contains 24 programmable 
parallel I I 0 lines implemented using the Intel 
8255A Programmable Peripheral Interface. The 
system software is used to configure the I/O lines 
in any combination of unidirectional input! output 
and bidirectional ports. 

Therefore, the I/O interface may be customized to 
meet specific peripheral requirements. In order to 
take full advantage of the large number of possible 
I/O configurations, sockets are provided for inter­
changeable I/O line drivers and terminators. 
Hence, the flexibility of the I/O interface is further 
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enhanced by the capability of selecting the appro­
priate combination of optional line drivers and 
terminators to provide the required sink current, 
polarity, and driveltermination characteristics for 
each application. The 24 programmable I/O lines 
and signal ground lines are brought out to a 50-pin 
edge connector that mates with flat, woven, or 
round cable. 

Serial 1/0 

A programmable communications interface using 
the Intel 8251A Universal Synchronous I Asyn­
chronous Receiver I Transmitter (USART) is con­
tained on the iSBC 86/12 board. A software 
selectable baud rate generator provides the USART 
with all common communication frequencies. The 
USART can be programmed by the system soft­
ware to select the desired asynchronous or syn­
chronous serial data transmission technique (in­
cluding IBM Bi-Sync). The mode of operation (Le., 
synchronous or asynchronous), data format, con­
trol character format, parity, and baud rate are all 
under program control. The 8251A provides full 
duplex, double buffered transmit and receive capa­
bility. Parity, overrun, and framing error detection 
are all incorporated in the USART. The RS232C 
compatible interface on each board, in conjunction 
with the USART, provides a direct interface to 
RS232C compatible terminals, cassettes, and asyn­
chronous and synchronous modems. The RS232C 
command lines, serial data lines, and signal ground 
line are brought out to a 26 pin edge connector that 
mates with RS232C compatible flat or round cable. 
The iSBC 530 teletypewriter adapter provides an 
optically isolated interface for those systems re­
quiring a 20 rnA current loop. The iSBC 530 
adapter may be used to interface the iSBC 86/12 
board to teletypewriters or other 20 rnA current 
loop equipment. 

Programmable Timers 

The iSBC 86/12 board provides three independent, 
fully programmable 16-bit interval timers I event 
counters utilizing the Intel 8253 Programmable In­
terval Timer. Each counter is capable of operating 
in either BCD or binary modes. Two of these 
timers/counters are available to the systems de­
signer to generate accurate time intervals under 
software control. Routing for the outputs and gatel 
trigger inputs of two of these counters is jumper 
selectable. The outputs may be independently 
routed to the 8259A Programmable Interrupt Con­
troller and to the I I 0 line drivers associated with 



the 8255A Programmable Peripheral Interface, or 
may be routed as inputs to the 8255A chip. The 
gate/trigger inputs may be routed to I/O termin­
ators associated with the 8255A or as output con­
nections from the 8255A. The third interval timer 
in the 8253 provides the programmable baud rate 
generator for the iSBC 86/12 RS232C USART 
serial port. In utilizing the iSBC 86/12, the systems 
designer simply configures, via software, each timer 
independently to meet system requirements. When­
ever a given time delay or count is needed, soft­
ware commands to the programmable timers / event 
counters select the desired function. 

The contents of each counter may be read at any 
time during system operation with simple read 
operations for event counting applications, and 
special commands are included so that the contents 
can be ready "on the fly". 

MULTIBUS™ and Multimaster Capabilities 

The MUL TIBUS system bus features asynchronous 
data transfers for the accommodation of devices 
with various transfer rates while maintaining maxi­
mum throughput. Twenty address lines and sixteen 
separate data lines eliminate the need for address / 
data multiplexing / demultiplexing logic used in 
other systems, and allow for data transfer rates up 
to 5 megawords / sec. A failsafe timer is included in 
the iSBC 86/12 board which can be used to gener­
ate an interrupt if an addressed device does not 
respond within 6 msec. 

Multimaster Capabilities - The iSBC 86/12 board 
is a full computer on a single board with resources 
capable of supporting a great variety of OEM sys­
tem requirements. For those applications requiring 
additional processing capacity and the benefits of 
multiprocessing (i.e., several CPUs and/or con­
trollers logically sharing system tasks through 
communication over the system bus), the iSBC 86/ 
12 board provides full MUL TIBUS arbitration 
control logic. This control logic allows up to three 
iSBC 86/12 boards or other bus masters, including 
iSBC 80 family MUL TIBUS compatible 8-bit single 
board computers, to share the system bus in serial 
(daisy chain) priority fashion, and up to 16 masters 
to share the MUL TIBUS with the addition of an 
external priority network. The MUL TIBUS arbitra­
tion logic operates synchronously with a MULTI­
BUS clock (provided by the iSBC 86/12 board or 
optionally provided directly from the MUL TIBUS 
System Bus) while data is transferred via a hand­
shake between the master and slave modules. This 
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allows different speed controllers to share resources 
on the same bus, and transfers via the bus proceed 
asynchronously. Thus, transfer speed is dependent 
on transmitting and receiving devices only. This 
design prevents slow master modules from being 
handicapped in their attempts to gain control of the 
bus, but does not restrict the speed at which faster 
modules can transfer data via the same bus. The 
most obvious applications for the master-slave 
capabilities of the bus are multiprocessor configur­
ations, high speed direct memory access (DMA) 
operations, and high speed peripheral control, but 
are by no means limited to these three. 

Interrupt Capability 

The iSBC 86/12 board provides 9 vectored interrupt 
levels. The highest level is the NMI (Non-Mask able 
Interrupt) line which is directly tied to the 8086 
CPU. This interrupt cannot be inhibited by soft­
ware and is typically used for signalling catastrophic 
events (e.g., power failure). 

The Intel 8259A Programmable Interrupt Con­
troller (PIC) provides vectoring for the next eight 
interrupt levels. 

The PIC accepts interrupt requests from the pro­
grammable parallel and serial I/O interfaces, the 
programmable timers, the system bus, or directly 
from peripheral equipment. The PIC then deter­
mines which of the incoming requests is of the 
highest priority, determines whether this request is 
of higher priority than the level currently being 
serviced, and, if appropriate, issues an interrupt to 
the CPU. Any combination of interrupt levels may 
be masked, via software, by storing a single byte 
in the interrupt mask register of the PIC. The PIC 
generates a unique memory address for each in­
terrupt level. These addresses contain unique 
instruction pointers and code segment offset values 
(for expanded memory operation) for each interrupt 
level. In systems requiring additional interrupt 
levels, slave 8259A PIC's may be interfaced via the 
MUL TIBUS system bus, to generate additional 
vector addresses, yielding a total of 65 unique 
interrupt levels. 

Interrupt Request Generation - Interrupt requests 
may originate from 16 sources. Two jumper select­
able interrupt requests can be automatically gener­
ated by the programmable peripheral interface. 

Two jumper selectable interrupt requests can be 
automatically generated by the USART when a 
character is ready to be transferred to the CPU or a 
character is ready to be transmitted. 
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A jumper selectable request can also be generated 
by each of the programmable timers. Eight addi­
tional interrupt request lines are available to the 
user for direct interface to user designated peripher­
al devices via the system bus, and two interrupt 
request lines may be jumper routed directly from 
peripherals via the parallel 1/ 0 driver / terminator 
section. 

Power-Fail Control 

Control logic is also included to accept a power-fail 
interrupt in conjunction with the AC-Iow signal 
from the iSBC 635 Power Supply or equivalent. 

Expansion Capabilities 

Memory and II 0 capacity may be expanded and 
additional functions added using Intel MUL TIBUS 
compatible expansion boards. High speed integer 
and floating point arithmetic capabilities may be 
added by using the iSBC 310 high speed mathe­
matics unit. Memory may be expanded to I mega­
byte by adding user specified combinations of 
RAM boards, EPROM boards, or combination 
boards. Input! output capacity may be increased by 
adding digital I/O and analog I/O expansion 
boards. Mass storage capability may be achieved 
by adding single or double density diskette con­
trollers. Modular expandable backplanes and card­
cages are available to support multiboard systems. 

III. THE iSBCTM 957 PACKAGE 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package extends the software develop­
ment capabilities of the Intellec Microcomputer 
Development systems to the Intel 8086 CPU. Pro­
grams for the 8086 may be written in PL/M-86 
and/ or assembly language and compiled or as­
sembled on the Intellec system. These programs 
may then be downloaded from an Intellec ISIS-II 
disk file to the iSBC 86/12 board for execution and 
debug. The programs will execute at the full 5 MHz 
clock rate of the 8086 CPU with no speed degrada­
tion caused by the iSBC 957 hardware or software. 
Special communication software allows transparent 
access to the powerful interactive debug commands 
in the iSBC 86/12 monitor from the Intellec con­
sole terminal. These debug commands include 
single-step instruction execution, execution with 
breakpoints, memory and register displays, memory 
searches, comparison of two memory blocks and 
several other commands. After a debugging session, 
the debugged program code may be uploaded from 
the iSBC 86/12 board to an Intellec ISIS-II disk 
file. 

The iSBC 957 Intellec-iSBC 86/12 Interface and 
Execution Package consists of the following: 

a. Four Intel 2716 EPROMs which contain the sys­
tem monitor program for the iSBC 86/12 board. 

b. An ISIS-II diskette containing loader software 
for execution in the Intellec which provides for 
communications between the user or an Intellec 
ISIS-II file and the iSBC 86/12 board. Also in­
cluded on the diskette are a library of routines 
for system console I/O. 

c. Four cable assemblies used for transmitting com­
mands, code and data between the iSBC 86/12 
board and the Intellec system. 

d. An iSBC 530 adapter assembly which converts 
serial communications signals from current loop 
to RS232C. 

e. Line drivers and terminators used for the iSBC 
86/12 parallel ports. 

f. A small printed circuit board which is plugged 
into an iSBC 86/12 receiver/terminator socket 
and is used when program code is downloaded 
or uploaded using the parallel cable. 

iSBC™-InteIJec ™ Configurations 

There are two distinct functional configurations for 
the iSBC 957 package; one configuration for the 
Intellec Series II, Models 220 or 230 development 
systems and another for the Intellec 800 series 
development systems. 

Intellec Series II System Configurations 

When used with Intellec Series II Model 220 or 
230 systems, a set of cables are used to connect the 
serial 1/ 0 port edge connector on the iSBC 86/ 12 
board and the SERIAL 1 output port on the Intellec 
system. This configuration is shown in Figure 2. 
How this system functions is explained in the fol­
lowing paragraphs. 
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The SERIAL 1 port on the Intellec Series II Model 
220 or 230 system is an RS232 port which is de­
signed for use with a data terminal. This port may 
be used on the Intellec system for interfacing to 
RS232 devices such as CRT terminals or printers. 
The serial ports on the iSBC 86/12 board and the 
Intellec systems are connected as shown in the 
Figure 2. The flat ribbon cable connected to the 
iSBC 86/12 board has an edge connector for con­
necting to the board on one end and a standard 
RS232 connector on the other end. The second 
cable, the RS232 Up/Down Load cable, has an 
RS232 connector on each end. This cable, however, 
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INTElLEC SERIES II 
MOOEL 220. 230 

~~~"-/' CABLE 

SERIALI/O 
PORT 

iSBC86'12 

Figure 2. Inteliec™ Series II Model 220, 230-iSBCTM 86/12 Configuration 

is not a standard cable with the RS232 signals bussed 
between identically numbered pins on each of the 
connectors. The schematic for the cable is shown in 
Figure 3. Note that the TXD (transmit data) and 
the RXD (receive data) and the RTS (ready to send) 
and the CTS (clear to send) signals have been 
crossed. This is done because both the Intellec system 
and the iSBC 86/12 board are configured to act as 
data sets which are communicating with data 
terminals. Swapping these signals permits the units 
to communicate directly with no modifications to 
the Intellec or iSBC 86/12 systems themselves. 

FGD 1 1---------1 1 FGD IFRAME GROUND) 

TXD 2 2 TXD (TRANSMIT OAT AI 

RXD 3 3 RXD (RECEIVE DATA) 

RTS 4 4 RTS (READY TO SEND) 

CTS 5 5 CTS ICLEAR TO SEND) 

SGD 7 7 SGD ISIGNAL GROUND) 

Figure 3. InteliecTM -iSBCTM 86/12 RS232 
UP 1 DOWN LOAD Cable 

The software in the Intellec system accepts characters 
output from the iSBC 86/12 board through the 
Intellec SERIAL 1 port. The software then outputs 
these characters on the CRT monitor built into the 
Intellec Series II Model 220 or 230. In a similar 
fashion, characters input from the Intellec key-
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board are passed down the serial link to the iSBC 
86/12 monitor program. The integrated CRT 
monitor and keyboard on the Intellec system then 
becomes the "virtual terminal" of the iSBC 86/12 
monitor program. If this were the only function of 
the iSBC 957 package, there would be no real 
benefit to the user. However, when the "virtual 
terminal" capability is combined with the capa­
bility to download and upload program code and 
data fIles between the Intellec ISIS-II fIle system 
and the iSBC 86/12 board, a very powerful soft­
ware development tool is realized. The software in 
the Intellec system must examine the commands 
which are input from the keyboard and in the case 
of the LOAD and TRANSFER commands (see 
later sections for details on monitor commands), 
the software must open and read or write ISIS-II 
disk fIles. 

Transfer rates using Intellec Series II Model 220 or 
230 system are 9600 baud when transferring hexa­
decimal object fIles to or from a disk fIle and 600 
baud when transferring commands between the 
iSBC 86/12 board and the CRT monitor and key­
board. With a 9600 baud transfer rate, it is pos­
sible to load 64K bytes of memory in about four 
minutes. 

InteUee 800 System Configurations 

The iSBC 957 package may be used with the In­
tellec 800 system in four different conflgurations. 
These four configurations are determined by two 
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variables. The first variable is whether the iSBC 
86/12 board is connected to the Intellec 800 TTY 
port or to the Intellec 800 CRT port. The second 
variable is whether or not a parallel cable is used 
for uploading and downloading hexadecimal object 
files. Figures 4A and 4B illustrate the four 
configurations. 

In Figure 4A, the configuration shows the TTY 
port of the Intellec 800 system connected to the 
iSBC 86/12 serial port using two cables and an 
iSBC 530 teletypewriter adapter. The TTY port of 
the Intellec 800 system is designed for using a 
teletypewriter as the Intellec console device. To use 
this port for communication with the iSBC 86/12 
board, the current loop TTY signal must be con­
verted to an RS232 compatible voltage signal. This 
function is performed by the iSBC 530 adapter. 

The cable which connects the Intellec 800 system to 
the iSBC 530 adapter performs a function similar 
to the RS232 Up/Down Load cable described 
above. A schematic for this cable and all other 
components of the iSBC 957 package are included 
with the delivered product. 

The transfer rate for both commands and data 
when the TTY port is connected to the iSBC 86/12 
board is 110 baud. This means to download even 
moderately sized programs would require large 
amounts of time, several minutes or even hours. 
However, much faster times may be achieved by 
using the parallel ports of the iSBC 86/12 board 
and the Intellec system for downloading program 
files. This parallel port used on the Intellec 800 
system is the output port labeled PROM which is 
normally used with the Universal Prom Pro-

4A 
PROM 
PORT 

PARAllEL 
LOAD CABLE 
(OPTIONAU 

48 

INTElLEC 
MDS BOO 
SYSTEM 

INTElLEC 
MOS BOO 
SYSTEM 

TTY 
PORT 

I 

iSBC 861 t2 
BOARD 

~~ fo "-.'SBC530 
" TIVADAPTEA 
TTY UP I DOWNLOAD 

CABLE 

PARALLEL 
LOAD CABLE 
(OPTIONAl) 

OEM RS232-C 
CABLE 

SERIAL 
1-'0 PORT 

TOTTY 

---TERMINAL ~ 7 
~ OEM RS232·C 

'-Rsm UP I DOWNLOAD 
CABLE 

CABLE 

Figure 4A, 4B. Inteliec™ 800- is BCTM 86 / 12 Configurations 
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grammer. A cable is connected between the In­
tellec PROM port and the parallel 110 port, 11 of 
the iSBC 86/12 board. Parallel port B of the iSBC 
86112 board is used for the 8-bit byte transfers 
from the Intellec system to the iSBC 86112 board, 
port A is used for the byte transfers from the iSBC 
86112 board to the Intellec system and port C is 
used for controlling the byte transfers. A special 
status adapter piggyback board must be inserted 
into a receiver /terminator socket of the iSBC 86/12 
board. This status adapter circuit is required to 
provide the necessary handshaking signals from the 
iSBC 86112 parallel ports to the Intellec PROM 
port. 
The transfer rate achieved when downloading and 
uploading hexadecimal object files with the parallel 
cable is approximately 1,000 bytes per second. The 
time required to load 64K bytes of memory is 
approximately 2Yz minutes. 

Figure 4B shows a configuration with the Intellec 
800 CRT port connected to the serial port of the 
iSBC 86/12 board. The TTY port of the Intellec 
800 system is connected to a teletypewriter or some 
other current loop device to act as a system con­
sole. The optional parallel load cable is also shown. 
The cables used for this configuration are the same 
as those used with the Intellec Series II Configur­
ations. Command transfer rates require 110 baud 
because the TTY port of the Intellec 800 system is 
used for communicating with the console device. 
However, hexadecimal object files can be loaded at 
9600 baud since this operation uses only the Intellec 
to iSBC 86/12 RS232 link. 

It is also possible to download files with the parallel 
cable, this mode being somewhat faster than the 
serial download mode (2 Yz minutes versus four 
minutes for 64K bytes of memory). Table I con­
tains a summary of the command and memory 
transfer rates for each of the Intellec-iSBC 86/12 
configurations. 

Comparing the Intellec 800 configurations shown in 
Table 1 and in Figures 4A and 4B it should be 
noted: 

1. Using the TTY port (Figure 4A) of the Intellec 
800 system for communications with the iSBC 
86/12 board (essentially) requires installation of 
the parallel cable and jumper modifications for 
downloading and uploading files, and thus, pre­
vents the use of the parallel ports for other 110 
functions. 

2. Using the CRT port (Figure 4B) of the lntellec 
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800 system for communication with the iSBC 
86/12 board provides for a fast serial download 
capability, thus freeing the parallel ports for 
other uses. However, this configuration requires 
a teletypewriter or a CRT capable of accepting 
a current loop input signal as the Intellec system 
console. 

Table 1 

COMMAND AND MEMORY TRANSFER RATES FOR 
INTELLEC-iSBCTM 88/12 CONFIGURATIONS 

Effective 
Command Rate 

Load / Transfer 
Rate 

Serial 
Parallel 

Approximate Time 
to load 64K bytes 
of memory 

Serial 
Parallel 

INTELLEC 
SERIES 11220/230 

SERIAL PORT 
TO ISBC 861 12 

6X) Baud 

9600 Baud 
N/A 

4 minutes 
N/A 

INTELLEC 800 
TTY PORT 

TO iSBC 861 12 

'10 Baud 

110 Baud 
1 K bytes I sec'" 

5 hours 
2.5 minutes 

INTELLEC 800 
CRT PORT 

TO ISIC 86/12 

110 Baud" 

9600 Baud 
, K bytes I sec .... 

4 minutes 
2.5 minutes 

"The actual baud rate of the InteHec-iSBC 86/12 link is 9600 baud, but the effective 
command rate is determined by the slower lntellec- console serial link. 

"·Transmission rate over the paraUellink is determined by the speed of the two processors 
and is apprQximately 1K bytes per second. 

IV. THE iSBC 957-iSBC 86/12 MONITOR 
PROGRAM 

The iSBC 86/12 monitor program is an EPROM 
resident program which facilitates debugging of 
user written programs. The monitor program used 
in the iSBC 86/12 board with the iSBC 957 pack­
age is the same monitor program written to inter­
face the iSBC 86/12 directly to an RS232C data 
terminal. When interfaced directly to a terminal, 
the iSBC 86/12 board functions in a stand-alone 
environment communicating directly with the user 
via the data terminal. A user may use the monitor 
for entering small programs in hexadecimal format, 
executing a program, examining registers and 
memory contents, etc. 

To use the monitor program with an Intellec system, 
the proper cables must be installed and the iSBC 
957 Loader program must be loaded into Intellec 
memory and executed. The Loader program is resi­
dent on a file named SBC861, and when executed, 
the Loader outputs a sign-on message. Next, the 
iSBC 86/12 monitor program must be started and 
the baud rate of the iSBC 86/12 to Intellec serial 
communications link must be determined. This is 
done by pressing the RESET switch on the chassis 
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Table 2 
MONITOR COMMAND LIST 

COMMAND FUNCTION AND SYNTAX 

L Load Hex loads hexadecimal object file from Intellec into iSBC 
Object File 86/12 memory using serial (5) or parallel (PI mode. 

l {SI p},< filename> [, <: bias addr>]< CP 

T Transfer Hex Transfers blocks of iSBC 86112 memory to InteUee as 
Object File a hex object file using serial (5) or parallel (P) mode. 

TIXI {SIP} ,<start addr >,< end addr>.<filename> 

[,<exec lIddpi<.cr> 

E Exit Exits the loader program and returns to ISIS. 

N Single Step 

G Go 

E<cr> 

Executes one user program instruction. 

N[ <addp],[[<addr> 1.1*..:;cr> 

Transfers control of the 8086 CPU to the user program 
with up to 2 optional breakpoints. 

G«start addr>] [,<break 1 addr> 

[,<break 2 add,>] J<er> 

S Substitute Displays/modifies memory locations in byte or word 
Memory format. 

SIW1<addr::., I [new contents),]* <cr::. 

X Examine/Modify Displays/modifies 8086 CPU registers. 
Register Xf<reg::.] [[<new contents::.],]*<cr> 

D Display Memory Displays coMents of a memory block in byte or word 
format. 

D[WI<start addr>I,<end addr>]<cr> 

M Move Moves contents of a memory block. 

M<start addr>, < end addr::',<destination addr><cr> 

C Compare Compares two memory blocks. 

C-<start addr>,<end addr>, <destination addr>< cr> 

F Find Searches a memory block for a byte or word constant. 

F[W]<start addr>,< end addr>,<data><cr> 

H Hex Arithmetic Performs hexadecimal addition and subtraction. 

H<data 1>,<data2><cr> 

I Port Input Inputs and displays byte or word data from input 
port. 

IIW]<port addr>,!. ]*<cr::. 

o Port Output Outputs byte or word data to output port. 

OrW]<port adcV>, <data>{,<data>]* <cr> 

Syntax conventions used in the command structure are as follows: 

rAJ indicates that" A" is optional 

[A]* indicates one or more optional iterations of "A" 

<8> indicates that "8" is a variable 

{AlB} indicates "A" or "B" 
<cr> indicates a carriage return is entered 

Numeric arguments can be expressed as a number, the contents of a register, 
or the sum or difference of numbers and register contents. Thus, addresses 
and data can be expressed as follows: 

addr :: = f <expr>: J<expr> 

expr :: = <number>l<reglster>l<expr> {+ I-} <number>1 

<expr> {+ I-} <register> 

register :: = AXIBXICXIDXISPIBPlsllDqCSIDSISSIESPPlfl 

number :: = <digit>l<digit><number> 

digit :: = 01112131415161718191AIBICIDIEIF 

Numeric fields within arguments are entered as hexadecimal numbers. The 
valid range of numerical values is from OOOO-FFFF. Larger numbers may be 
entered, but only the last four digits (or two in the case of byte values) are 
Significant. Leading zeros may be omitted. 

An address argument consists of a segment value and an offset value separ­
ated by a colon (:). If a segment value is not specified, the default 'segment 
value is the CS register value. 
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containing the iSBC 86/12 board and typing two 
"U"s on the Intellec console. The ASCII uppercase 
character U has a binary pattern of alternating ones 
and zeros, the iSBC 86/12 monitor uses this pattern 
to determine the baud rate of the serial link. After 
the baud rate has been determined, the monitor 
program outputs a sign-on message to the console. 
An example of loader program execution and 
monitor program initialization is shown below (user 
entered characters are underlined). 

:Fl:SBC861 
ISIS-II iSBC 86/12 LOADER, Vx.x 
(user resets iSBC 86/12 board and types two "U"s) 
iSBC 86/12 MONITOR, Vy.y 

The monitor prompts with a period "." when it is 
ready for a command. The user can then enter a 
command file, which consists of a one- or two­
character command followed by zero, one, or more 
arguments. The command may be separated from 
the first argument by an optional single space; a 
single comma is required as a delimiter between 
arguments. The command line is terminated by a 
carriage return or a comma depending on the com­
mand, and no action takes place until the command 
terminator is sensed. The user can cancel a com­
mand before entering the command terminator by 
pressing any illegal key (e.g., rubout or Control-X). 

Table 2 contains a summary of the loader and 
monitor commands. These commands will not be 
explained in detail; instead, the next section of the 
application note will show examples of using these 
loader and monitor commands. The iSBC 957 
User's Guide referenced at the front of this docu­
ment does, however, contain a complete description 
of each of the monitor and loader commands. 
Table 3 contains a list of the 8086 hardware registers 
and abbreviations used by the monitor program. 

Table 3 
8086 CPU REGISTERS 

REGISTER NAME ABBREVIATION 

Accumulator AX 
Base BX 
Count CX 
Data DX 
Stack Pointer SP 
Base Pointer BP 
Source Index SI 
Destination Index DI 
Code Segment CS 
Data Segment DS 
Stack Segment SS 
Extra Segment ES 
Instruction Pointer IP 
Flag Fl 
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39 

38 

37 

38 

35 

34 

33 

32 

31 

INTR 7 9CH 

INTR 6 98H 

INTA 5 94H 

INTA 4 90H 
8259A PIC 

INTR 3 8CH 
VECTORS 

INTR 2 88H 

INTA 1 84H 

INTR 0 80H 

: RESERVED 
FOR , FUTURE , USE BY 

, INTEL , 

Interrupt on Overflow 10H 

One-Byte Intr Instruction CH 

Non-Maskable Intr 8H 

Single Step 4H 

OHL------~ ____________________ _ Divide by Zero °H 

Figure 5. Memory Map of iSBCTM 86/12 Memory With Monitor Program 

Figure 5 contains a memory map of the iSBC 
86/12 memory with the monitor program. Note 
that the monitor uses the top 8K bytes of memory 
for its program code and the first 384 bytes of 
memory (locations 0 hex to 17F hex) for monitor 
and user stack, data and interrupt vectors. When 
the monitor program is reset, the segment registers, 
the IP and the flags are set to 0; and the SP is set 
to 01C0H allowing 64 bytes for the user's stack. If 
64 bytes is not sufficient for the user's application 
program, the SP should be set to some other value. 
The monitor program sets the single-step, one-byte 
instruction trap and non-maskable interrupt vectors 
to monitor entry points. The monitor also sets the 
8259A Priority Interrupt Controller to fully nested 
mode with level 0 at the highest priority and all 
interrupts unmasked. The eight interrupt vector 
addresses for the 8259A are also set to addresses in 
the monitor. User programs may change the 8259A 
interrupt vectors to interrupt service routine ad­
dresses within the user programs; it is not necessary 
for users to program the 8259A chip directly. When 
an interrupt occurs, control passes to either the 
monitor or directly to user code depending on the 
address stored in the vector location. When the 
monitor responds to an interrupt, it acknowledges 
the interrupt and displays the interrupt level, CS 
and IP register values and next instruction byte on 
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the system console (e.g., 1=3 @ lOO:230F F5). 

When a user requests a breakpoint with a "G" 
command, the monitor inserts the single byte 
instruction trap instructions (INT 3) in the location 
where the breakpoint is requested. It is also possible 
for the user to code an INT 3 instruction in his 
program. When a user coded INT 3 instruction is 
executed, the monitor will be re-entered and a line 
with the format @<CS Value>:<IP Value> <In­
struction byte > will be displayed (e.g., @1200:3F02 
F5). 

Included on the diskette with the Loader program 
are two libraries containing 110 routines for the 
console. The library files are named SBCIOS.LlB 
and SBCIOL.LlB; they contain similar routines. 
The routines in SBCIOS.LlB are written to be 
called with intrasegment subroutine calls, a PL/M-
86 module compiled with the "small" control 
generates this type of call. The routines in 
SBCIOL.LlB are written to be called with interseg­
ment subroutine calls, a PL/M-86 module com­
piled with either the "medium" or "large" control 
generates this type of call. 

The console input output routines, CI and CO, 
contained in the library should be used when per­
forming character input and output on the console. 
Example PL/M-86 calls to the two routines are: 



CI: PROCEDURE BYTE EXTERNAL; 
END CI; 

CO: PROCEDURE (X) EXTERNAL; 
DECLARE X BYTE; 
END CO; 

DECLARE INPUT$CHAR, 
OUTPUT$CHAR BYTE; 

INPUT$CHAR = CI; 

CALL CO(OUTPUT$CHAR); 

General Comments on Use of the iSBC 957 Package 

1. If the iSBC 86/12 board is reset any time after 
the initial baud rate search, it is not necessary to 
reload the iSBC 957 Loader program or to 
download the program code a second time to the 
iSBC 86/12 board. It is only necessary to re­
establish the communications link by typing two 
"U"s for the baud rate search. 

2. The iSBC 86/12 board should not be plugged 
into an available card slot in an Intellec chassis; 
a separate chassis should be used. There are at 
least three reasons for this: 

a. There is only one RESET signal available on 
the Intellec system bus. Thus, each processor 
may not be reset independently. This means 
that the iSBC 86/12 board cannot be reset 
without re-booting the ISIS-II operating sys­
tem and restarting the iSBC 957 Loader. 

b. The Intellec system uses five of the eight avail­
able interrupts on the system bus. This severely 
restricts the range of interrupts available to 
the iSBC 86/12 board. Also, the iSBC 86/12 
board cannot turn-off the interrupt lamps on 
the Intellec front panel. 

c. The iSBC 86/12 board may address up to 1 
Megabyte of memory using a 20 bit address. 
Many Intellec systems contain boards which 
generate and decode only the low order 16 
address bits. For example, the iSBC 016 mem­
ory expansion board and the Intellec 800 
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monitor PROMs only decode 16 address bits. 
Memory expansion above 64K bytes in these 
systems is difficult since the boards which de­
code only 16 bits will force "holes" in the 
address space above 64K. 

3. The iSBC 86/12 board is delivered with two 
inputs to the 8259A Priority Interrupt Controller 
connected. Interrupt request 2 (IR2) is connected 
to the counter ~ output of the 8253 Program­
mable Interval Timer. IR5 is connected to the 
INT5/signal of the MULTI BUS System Bus. If 
these interrupts are not desired, the wire wrap 
jumpers making the connections should be re­
moved from the iSBC 86/12 board. A particular 
problem may exist with the counter ~ connection 
to IR2. If the 8253 counter ~ is not specifically 
initialized with software, a low frequency square 
wave output will exist at counter ~'s output. This 
may cause unwanted interrupts when interrupts 
are enabled by user programs. 

4. If the iSBC 86/12 board is used in a system with 
expansion boards, it is important that the MUL­
TIBUS bus exchange pins be properly jumpered. 
For example, if the iSBC 86/12 board is used 
with an iSBC 032 expansion memory board in a 
system, the BPRN / MUL TIBUS pin for the 
iSBC 86/12 board should be grounded. 

In addition, if any interrupts are used with the 
iSBC 86/12 board the BPRN/ pin must be 
grounded. This is true in both single and mul­
tiple board systems. 

5. Certain user systems require more than one single 
board computer in the system for performing the 
functions required by the application. The MUL­
TIBUS System Bus has been specifically designed 
to permit multiple CPU boards to communicate 
and to share system resources. However, de­
bugging systems with multiple CPUs has always 
posed somewhat of a problem. The iSBC 957 
package provides a solution to this problem. The 
serial cable which connects the iSBC 86/12 
board to the Intellec system may be removed 
after the program has been downloaded to the 
iSBC 86/12 board. A console CRT may then be 
connected directly to the iSBC 86/ 12 board and 
the monitor program may be used to debug the 
program running on the board. Other iSBC 
86/12 boards may also be downloaded from the 
Intellec system and then switched to their own 
local terminals. An 8-bit processor board, such 
as the iSBC 80/30 board, may also be included 



in the system and ICE-85™ may be used for 
debugging the iSBC 80/30 program concurrently 
with the iSBC 86/12 programs. Using this 
scheme, it is possible to debug a system which 
has several CPU boards by setting breakpoints 
and using other debugging features on each of 
the individual CPUs. 

V. MATRIX MULTIPLICATION EXAMPLE 

To illustrate how the iSBC 957 package can be used 
to assist in the writing and debugging of 8086 pro­
grams on the iSBC 86/12 board, an example pro­
gram of a matrix mUltiplication will be presented. 
The example chosen has been intentionally kept 
simple and straightforward. The emphasis of this 
section will be to document the steps required to as­
semble, compile, link, locate and debug software 
using an Intellec system, the iSBC 957 package and 
the iSBC 86/12 board. Part of the example will be 
written in 8086 assembly language and part in PLI 
M-86. 

The main program is written in PLlM-86. The 
main program first performs some initialization 
and the matrix multiplication, then the program 
calls an assembly language procedure (subroutine), 
a PL/M-86 procedure and the console output pro­
cedure CO supplied in the 110 library on the iSBC 
957 diskette. A flow diagram for the example 
program is shown in Figure 6. 

Explanation of the Program Code 

The program code is contained in three software 
modules EXECUTlON$VEHICLE, FIND, and 
SBCCO. EXECUTlON$VEHICLE contains the 
main program coded in PL/M-86 and the binary 
to ASCII conversion procedure BlN$DEC$ASC 
also coded in PL/M-86. The module FIND con­
tains the assembly language procedure FIND$MX 
which searches a matrix for its maximum value. 
The module SBCCO resides in the library of con­
sole 110 routines supplied with the iSBC 957 pack­
age. The procedure CO will be used from this 
library. 

The program code for the EXECUTION$VEHICLE 
and FIND modules will be explained in the follow­
ing paragraphs. Appendix B contains compilation 
and assembly listings for the two modules; also 
contained in Appendix B is a memory and debug 
map for the linked modules. The listings contain 
circled reference letters (e.g.,@) which are referred 
to by the code description below. The listings in the 
appendix have been printed on fold-out pages so 
that they may easily be seen when reading the text. 
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Initialize 
X$RQW & Y$AQW 

Matrices 

Multiply 
Matrices, 

store result in 
Z$AOW 

Output MAX 
value on 

terminal using 
CO routine 

Figure 6. 
Flow Diagram of Matrix Multiplication Example 

Much of the description given below assumes that 
the reader is familiar with the PL/M-86 language 
and compiler, the 8086 assembler, and the link and 
locate program QRL86. It is recommended that the 
reader have at least a cursory knowledge of these 
subjects. The Intel literature for these subjects is 
listed near the front of this application note. 

The EXECUTION$VEHICLE Module 

® The first section of the module includes intro­
ductory comments and then statements to de­
clare the matrices, other variables, and pro­
cedures used in the program. Note that the 
matrix dimensions are declared using the literals 
M, N, and P which are initially set to 6, 5, and 
3. Later in this note, other values for M N 
and P will be used. ' , 

® The next section of code contains the state­
ments which initialize the two matrices that will 
be multiplied X$ROW and Y$ROW. 

As a result of this initialization, the two ma­
trices will contain values as shown in Figure 7. 
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0 0 0 

[~ 
-1 

'] -1 -2 

2 2 -1 -2 

-1 -2 

4 4 4 -1 -2 

X$ROW (6X5) Y$ROW (5X3) 

Figure 7. 
X$ROW and Y$ROW Matrices After Initialization 

© The next program section performs the matrix 
multiplication. The algorithm required to mul­
tiply two matrices X and Y, storing the result in 
a third matrix Z is: 

n 

Zmp = L Xmi *Yip 
i = I 

Assuming X to be 6X5 matrix and Y a 5X3 
matrix then 

ZII =XIl Y11 +X1'Y'l +XnY31 +X14X.l +X1'YS1 

Thus, the upper left term is equal to the sum of 
the products of the top row of the X matrix 
times the left column of the Y matrix. The re­
sult that is obtained by multiplying the two 
matrices X$ROW and Y$ROW after they are 
initialized as explained above, is shown in 
Figure 8. 

-5 -10 

-10 -20 

-15 -30 

-20 -40 

-25 -50 

Z$ROW (6X3) 

Figure 8. Result of Multiplying the Initialized Matrices 
X$ROW and Y$ROW 

® The external assembly language procedure 
FIND$MX is called to determine the maximum 
value in the matrix. The procedure is a typed 
procedure and returns the maximum value to 
the calling program which stores it in the inte­
ger variable MAX. 

® The maximum value is then converted to a six 
(6) digit ASCII character string by the pro­
cedure BIN$DEC$ASC. The character string is 
stored in the array MAX$ASC$ARRA Y, which 
contains the sign of the number and five (5) 
digits for the magnitude. 

® Finally, the characters "MAX VALUE =" are 
output on the system console followed by the 
6 ASCII characters containing the maximum 
value. The PL/M-86 built-in procedure SIZE 
returns the number of bytes of the array TEXT 
as a word value. The PL/M-86 built-in pro­
cedure SIGNED changes the type of the value 
from WORD to INTEGER. This is required so 
that the type of the arguments in the DO state­
ment agree. The console output procedure CO 
is used to output the characters on the system 
console. 

@ Also contained in the module MATRIX.PLM 
is the binary to ASCII conversion procedure 
BIN$DEC$ASC. The first portion of the code 
contains the comments explaining the parl:!­
meters and the calling sequence followed by the 
declarations. Note that the address of the array 
where the characters are to be stored is passed 
to the procedure and that the characters will be 
stored in the array using based variables. The 
next section of the code stores either a + or -
sign in the first character position of the ASCII 
array and stores the absolute value of VALUE 
in the variable TEMP. Finally, the binary value 
is converted to ASCII using the algorithm 
explained in the comments. The MOD operator 
returns the remainder of the division by 10. The 
UNSIGN built-in procedure is required to 
change the type of the expression from INTE­
GER to WORD. 

The FIND Module 

® The FIND module contains the assembly lan­
guage procedure FINDMX. The calling se­
quence and the parameters are explained in the 
comments at the beginning of the listing. Note 
that the label FINDMX has been declared 
PUBLIC so the link program can fill in its 
address in the CALL statement in the main 
program of module EXECUTION$VEHICLE. 

The FIND module will contain three segments: 
a data segment, a stack segment and a code 
segment. It will be both convenient and prag­
matic to append these three segments to the 
code, data and stack segments created by the 
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compiler for the EXECUTION$VEHICLE 
module. To accomplish this, the three segments 
must be given the same SEGMENT and CLASS 
names as those given these segments by the 
compiler. The SEGMENT and CLASS names 
used by the compiler are CODE, DATA, and 
STACK. The GROUP statements are used to 
place the segments DATA and STACK in the 
group DGROUP and the segment CODE in the 
group CGROUP. These group definitions con­
form with the group definitions generated by 
the PL/M-86 compiler when the SMALL size 
control option is used. A group is a collection 
of segments which requires less than 64K bytes 
of memory. 

The ASSUME directive informs the assembler 
that the DS and SS registers will contain the 
base address of DGROUP and the CS register 
will contain the base address of CGROUP. 
This information will be used by the assembler 
when constructing machine instructions. 

since it is desired that the code from this 
module be appended directly to the code from 
other modules without gaps between the code 
modules. 

The assembly language code follows next. The 
code for the procedure must be enclosed be­
tween a pair of PROC, ENDP statements. The 
PROC statement is given the label FINDMX 
and specified as a NEAR procedure indicating 
it will be called with a near (intra-segment) 
CALL instruction and not a far (inter-segment) 
CALL instruction. 

The comments at the beginning of the module 
and adjacent to the program statements ex­
plain the function being performed by the 
assembly language code. 

The SBCCO Module 

@ The console output procedure CO is contained 
in the object module SBCCO of the library file 
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC 
957 package 110 libraries. The calling sequence 
and parameters for CO may be seen in the 
external procedure declaration in the EXE­
CUTION$VEHICLE module. 

Compiling the EXECUTION$VEHICLE 
Module 

The EXECUTION$VEHICLE module is stored on 
a file named MATRIX.PLM on disk device :Fl:. 
To compile the module, the following command 
line is used: 

The first segment appearing in the module is 
the data segment. The order of the segments is 
arbitrary, although it is recommended that the 
data segment precede the code segment to mini­
mize forward references to variables which may 
cause the assembler to generate longer instruc­
tion codes. The data segment is declared 
PUBLIC, aligned on a WORD boundary and 
given both a segment and class name of DATA. 
Then follows the contents of the segment. In 
this particular example, only one word of stor­
age is required. The ENDS directive indicates 
the end of the segment. 

- PLM86 :FI :MATRIX.PLM DEBUG 

® Next comes the stack segment which is given 
the segment name of STACK, the combine­
type attribute of STACK and the class name of 
STACK. The combine-type attribute of STACK 
assures that the stack storage required in this 
module will be appended to the storage re­
quired in the PL/M-86 compiled modules. Two 
bytes of stack are required by the code in this 
module, however, the monitor uses 13 words of 
stack when breakpoints and interrupts are used. 
Therefore, 14 words are reserved for the stack. 

Finally comes the code segment. The code seg­
ment has been given a segment name and class 
name of CODE and a group name of 
CGROUP, and has been declared PUBLIC. 
The alignment attribute of BYTE is specified 
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This command line will cause the module stored in 
the file :Fl:MATRIX.PLM to be compiled. The 
object code generated will be stored in a file with 
the default name :Fl:MATRIX.OBJ and the listing 
generated will be stored in a file with the default 
name :Fl:MATRIX.LST. To override the default 
object and listing files, the NOOBJECT and NO­
LIST compiler control switches can be used. File 
names for the listing and object files may also be 
specified in the command line. The DEBUG com­
piler control switch causes the compiler to generate 
extra symbol and line number information which 
will be used during debugging of the program. A 
listing of the compiled EXECUTION$VEHICLE 
module is contained in Appendix B. 

To aid in the debugging of the program, the 
module was compiled a second time with the fol­
lowing command line: 
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- PLM86 :Fl:MATRIX.PLM NOOBJECT 
CODE DEBUG PRINT (:Fl :MATRIXXLS) 

This command line specified that no object file is to 
be created and a listing file should be stored in the 
file :FI :MATRIXXLS. The CODE compiler con­
trol switch causes the compiler to list the assembly 
language statements which the compiler has gener­
ated for each line of PL/M code. The listing stored 
in the file MATRIXXLS is contained in Appendix 
C. 
Assembly of the FIND Module 

The assembly language module FIND is stored on a 
file named FIND.ASM, to assemble this module 
the following command line is used: 

ASM86 :Fl:FIND.ASM DEBUG 

This command line will cause the FIND module to 
be assembled with the object code stored in the 
default file :FI :FIND.OBJ and the listing stored in 
the default file :FI:FIND.LST. The listing of the 
assembled FIND module is contained in Appendix 
B. 
Linking and Locating the Object Module 

To link and locate the object modules, the QRL86 
program will be used. The QRL86 program per­
forms both the linking and the locating of the 
object modules in a single step. QRL86 is primarily 
designed for the debugging stages of program devel­
opment. Some applications may require the extended 
capabilities of the separate LINK and LOCATE 
programs when the final link and locate is per­
formed. The command line used to invoke the 
QRL86 program is: 

QRL86 :FI:MATRIX.OBJ, :Fl:FIND.OBJ, 
SBCIOS.LIB ORIGIN (lOOOH) 

This command line will cause QRL86 to link the 
code from the three modules and to locate the 
resultant absolute object module starting at location 
1000 hexadecimal. The iSBC 86/12 monitor uses 
the first 180H bytes of memory for the monitor 
stack, data and interrupt vectors, l000H was chosen 
as a convenient starting address for the program. 
The absolute object code will be stored in a default 
file :Fl :MATRIX (note no file name extension is 
used). By default, the memory and debug maps 
which are generated are stored in the file :Fl:MA­
TRIX.MPQ and are contained in Appendix B. 

® The memory map contains the starting ad­
dresses and sizes of the CODE, CONST, 
DATA, STACK and MEMORY segments of 
the object module. Note that the start address 
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for the program is specified as (~I~H, ~2H) 
indicating a CS value of ~1~H and an IP 
value of ~2H or an absolute value of ~1~2H. 
The first two bytes of the code segment contain 
address values which the code generated by the 
compiler will use for setting up the DS and SS 
registers. The memory map shows the code 
segments from the three modules collected into 
the group CGROUP. The code segment from 
the EXECUTION$VEHICLE module is given 
the segment and class names of CODE and is 
put into CGROUP by the PL/M compiler. To 
assure that the code segment from the FIND 
module is concatenated with the code segment 
from the EXECUTION$VEHICLE module the 
identical class, segment and group names were 
specified in the SEGMENT and GROUP state­
ments in the FIND module. Next, the group 
DGROUP is shown in the memory map. 
DGROUP contains 4 segments labelled 
CONST, DATA, STACK and MEMORY. 
Putting all of these segments in the same group 
tells the linker that they will all be in the same 
64K block of memory. The SMALL size con­
trol option of the compiler, which was invoked 
by default, creates CGROUP, DGROUP, and 
the segments contained in them. 

® The debug map contains the memory address 
of variables, instruction labels and the ad­
dresses of each code line of the PL/M-86 
module. Notice that the variable storage labels 
have their addresses specified in the format (DS 
register value, displacement). For example, the 
variable TEMP has an address of DS=~12AH, 
displacement = ~CH or an absolute address 
of f)136H. Instruction labels and line numbers 
use the format (CS register value, IP register 
value). Thus, line number six (6) in the module 
EXECUTION$VEHICLE has the address 
CS=~I~H, IP=~B5H or ~IIB5H. 

Object to Hex Conversion 

Before downloading the program to the iSBC 86/12, 
the format of the object module must be converted 
from the absolute object module format which 
QRL86 creates to a hexadecimall ASCII representa­
tion of the object module. This is done using the pro­
gram OH86 with the following command line: 

OH86 :Fl:MATRIX TO :FI:MATRIX.HEX 

Downloading and Debugging the Program 

The hardware configuration used for debugging the 
matrix multiplication example program code was 
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an Intellec Series II Model 230 development sys­
tem, the iSBC 957 package, an iSBC 86/12 board, 
and an iSBC 660 system chassis. What follows is 
the system-user dialog for a typical debugging 
session. 

The first step required is to bootstrap load the 
ISIS-II operating system by hitting the RESET 
switch of the Intellec. The Intellec resident loader 
software is then loaded and executed. Throughout 
the dialog which follows operator entered charac­
ters will be underlined: 

ISIS-II, 113.4 
-~ 

ISIS-II ISBC 86/12 LOADER, 111.2 

To initialize the iSBC 86/12 monitor, the user must 
hit the RESET switch on the iSBC 660 chassis and 
type two "U"s on the system console. The monitor 
program will output a line on the console when it is 
properly initialized. 

ISBC 86/12 MONITOR, V1.2 

The monitor command "X" is typed to check that 
the monitor is properly operating and to examine 
the contents of the 8086 registers . 

• X 
AX"'00"" BX"'~000 CX=IHHJ0 DX=0000 SP='HCIIl SF=00"" 81=0000 
!)I::00~~ C5=001:10 DS=000~ 55::::0000 85=0000 IP=00"0 FL=0000 

To download the hex object file to the iSBC 
86/12, the "L" command is used. Because an 
Intellec Series II Model 230 is being used, a serial 
download is specified. The hex file name is 
MATRIX. HEX which is resident on disk device 
:Fl:. 

.f.S, : FI: MA·rRIX. HEX 

The "X" command is used again to examine the 
CPU registers. Note that the monitor has changed 
the contents of the CS and IP registers to the value 
of the starting address of the program. 

.X 
AX=0000 BX={:trd0B CX='HHHl DX='H"'" SP"'01C0 B~=0000 51=0000 
01=0000 CS=0HHt DS=0~"0 55=000" Es=rU00 IP:::111002 FL=0000 

The "0" command is next used to display the first 
101 bytes of the program code. Unless another seg­
ment register is specified, the display command 
assumes all addresses specified are relative to the CS 
register. Thus, the code displayed will be from abso­
lute addresses 1000 through 1100. The program code 
displayed may be compared with program code gen­
erated by the PLlM-86 compiler shown in Appendix 
C, code line 36. 
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.00.100 
0000 2A 01 FA 2E 8E 16 00 00 Be 00 00 88 Ee 16 IF FB 
0010 c7 06 8E 00 00 00 81 3E BE 00 05 ~Hl 7E 03 E9 3C 
0020 00 C7 06 90 00 00 00 81 3E 90 00 04 00 7E 03 E9 
0030 22 00 88 06 8E 00 89 0A 01:l F7 E9 BB 36 90 00 Dl 
IHIU E6 89 C3 8a 0E 8E 00 89 88 HI 00 81 06 90 00 01 
"0Sd 00 E9 03 FF ill 06 8E 00 01 00 E9 89 FF e7 1116 8E 
0060 00 00 00 81 3E 8E 00 04 00 7E 03 E9 40 00 C7 06 
0070 90 00 00 ~13 81 3E 90 0~ 02 00 7E 03 E9 26 013 Be 
1.:'080 06 90 00 F7 08 50 8s 06 BE 00 s9 06 00 F7 E9 8s 
0090 36 90 00 Dl E6 89 C3 59 89 88 4C 00 Bl 06 90 00 
00A.0 01 00 E9 CF FF Bl 06 BE 00 01 00 E9 B5 FF C7 06 
"080 92 00 00 00 81 3E 92 00 '112 00 7E 03 E9 Be 00 C7 
00C0 06 8E 00 00 00 Bl 3E 8E 00 05 00 7E 03 E9 72 00 
00D0 Be 06 BE 'HI 89 06 00 F7 E9 8e 36 92 00 01 E6 89 
00E0 e3 C7 80 6A. 00 0111 00 C7 06 90 00 !!I0 00 81 3E 90 
00F0 00 04 00 7E 1113 E9 41 00 BB 06 BE U 89 0A. 00 F7 
0100 E9 

The PL/M-86 compiler ends the main program in 
the EXECUTION$VEHICLE module with a halt 
instruction. After execution of the program it is 
more desirable to return to the monitor. To ac­
complish this, an INT 3 instruction (code=CC) 
will be substituted for the halt instruction (code= 
F4) at the address of 1 B4H relative to a CS value 
of l00H. First the "0" command is used to verify 
the address of the halt instruction, then the "S" 
command is used to change the instruction to an 
INT 3 instruction. 

. ruM 
01B4 F4 
.~ F4- ~ 

To execute the PL/M-86 main program, the "G" 
command is used. After the "G" is typed, the 
current contents of the IP are output, followed by 
the contents of the byte pointed to by the IP. A 
new value for the IP or breakpoint addresses may 
be specified before a carriage return <CR> is typed. 
In this example, only a <CR> is typed. 

.9. 0002- FA. 
MAX V<\LUE = -00050 
@"Hl0:0185 55 

The program executes and outputs the maximum 
value of the matrix calculated. The INT 3 instruc­
tion is executed which causes a return to the 
monitor. The monitor types out an at-sign (@) 
followed by the CS and IP register values and the 
first byte of the instruction following the INT 3 
instruction. 

The "X" command is typed to examine the CPU 
registers. Note that the program has set both the SS 
and OS registers to ~12A. (~12A~H is the address 
of the OGROUP as shown in the memory map.) 

.X 
A.X"'~030 BX=0005 eX=1!I00A. OX=0000 SP=0000 BP=U100 Sl=0001 
01=00'116 CS=0100 OS=012A. SS=IU2A ES=QU"00 IP=01B5 FL"'F202 

The three matrices are displayed. Note that a word 
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display has been specified by using the "OW" 
Command and that the addresses have been speci­
fied relative to the OS register. The addresses of 
X$ROW, Y$ROW, and Z$ROW may be found in 
the debug map given by QRL86. Note that the 
values stored in the matrices are the same as those 
shown in Figures 8 and 9. 

.DW OS.10.4A 
BBl0 011iB B00B BBB~ B~B0 0080 BBn 0001 0~Bl 
BB20 0BU 0Bn 0002 0002 0BB2 B002 00B2 BBBl 
8BlB 0B0l BBBl U0l 0~~l 00B4 ee04 0004 0004 
8040 BB04 0005 00B5 0005 08B5 0005 
.ow OS;4C.68 
004C 0000 FFFF 
0850 FFFE 0B~0 FFFF FFFE 0008 FFFF FFFE 000~ 
0060 FFFF FFFE ~000 FFFF FFFE 
.OW OS.6A.BC 
~06A 08B0 8~00 00~0 
8070 0000 FFFS FFF6 ~~0~ FFF6 FFEC 0008 FFFl 
~0B0 FFE2 0000 FFEC FFOB 0000 FFE7 FFCE 

The "G" Command is used to reset the IP register 
to the start address of the program (f/1Ij2) and to 
specify a breakpoint at address ~AEH, which is the 
address of statement 57 of the main program. 
Statement 57 is the point in the program after the 
X$ROW and Y$ROW matrices have been initial­
ized, but before the matrix multiplication is 
performed. After the <:CR> is typed, the program 
executes until the breakpoint is encountered. At 
this point, the monitor outputs a line specifying 
the number of the breakpoint, the CS and IP 
values and the first byte of the next instruction to 
be executed. 

.§ 01S5- 55 tH'2,AE 

BRI @0100:00AE C7 

Next, the single-step capability is used with the 
"N" command to execute single instructions. At 
any time, CPU registers may be examined or 
changed. In this example, the "X" command is 
used. Execution of succeeding instructions is caused 
by typing a comma (,). 

.~ ~"U\E- C7 ..I. 

0~s4- Bl , 
00BA- 7E -; 
00BF- C7 -

.! 
AX"'UI18 BX=0018 CX=FFFE DX='HHHl Sp:c:00D0 8P=00D0 SI=rtHd04 
01=0006 CS::0U0 DS=012A SS::012A ES=IiHHI" IP=00BF FL=F293 

'~0~~~F~1 c: .! 

00C8- 7E-

The contents of the X$ROW and Y$ROW matrices 
are examined and changed with the "SW" (sub­
stitute word) command. If a comma (,) is typed 
after the contents of memory are displayed, then 
the contents are left unchanged and the next word 
of memory is displayed. If a value followed by a 
comma or <CR.> is entered, then the contents are 
changed. If a <CR> is entered, the substitute 
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sequence is terminated. 

i'V'm~ em-, 
ealE 1101- it 
.~ FPFF-, 
BBSC "P!- , :m ::::: iJ 

After the matrices are modified, execution is 
resumed with the "G" command. The max value is 
output and the INT 3 instruction executed. Finally, 
the contents of the 3 matrices are displayed. 

.li 0ICB- 7E 
MAX VALUE' +00400 
U100.llB5 55 
• OW os. 10 .BC 
0010 0000 0000 0000 0000 0000 0001 0101 0010 
0~2B 0001 00U 0eB2 eB02 ~102 00'02 B0e2 00Sl 
0010 ae~l 000l ~eBl eB0l 0~04 0·884 0004 B0U 
004~ 0eB4 eB05 0005 Bee5 0005 0005 0000 FFFF 
0050 FFFE 800B FFFF FFFE B000 FFFF FFFE B000 
0060 U64 FFFE sue FFFF FFFE 0I!l00 0o"" 0U0 
0070 0800 0051 FFOB 0000 0BCB FFEC 0000 0120 
00BB FFE2 0000 01B8 FFOB 0B00 01E0 FFCE 

Expanding the Example Program's 
Memory Requirements 

To illustrate how the iSBC 86/12 board may be 
used for executing 8086 programs which require 
large amounts of RAM, the example program will 
be modified. The matrix dimensions of the example 
will be changed from values of 6, 5 and 3 for the 
literal symbols of M, N, and P to values of 100, 
50, 70. The three matrices will then be of size 
lOOX50, 50X70, and lOOX70. The memory re­
quired for these matrices is 15.5K words or 31K 
bytes. The data, constant, stack and memory 
segments which are contained in the group 
OGROUP will now comprise almost 32K bytes of 
memory. 

The extra memory requirements will be supplied 
by using an iSBC 032 board with the iSBC 86/12 
board in the iSBC 660 chassis. The iSBC 032 board 
is a 32K byte RAM board which is compatible 
with both 8- and 16-bit CPU boards. The base 
address of the board may be selected anywhere in 
a 0 to I megabyte range on any 16K byte boundary. 
8- or 16-bit data transfers may be selected. The 
iSBC 032 board will be jumpered to respond to 
addresses in the 512K or 544K address space (20 
bit hex address range to 8~H to 87FFFH). This 
will illustrate the capabilities of the 8086 to access 
a 20-bit, I megabyte address range. 

One other modification is required to the program. 
The magnitude of the numbers which would result 
from multiplying matrices of this size would great­
ly exceed the capacity of the 16-bit integer storage, 
even with the two matrices initialized to the small 
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values they presently contain. To keep the example 
simple, the initialization values will be changed so 
all elements of the X$ROW matrix are set equal to 
2 and all elements of the Y$ROW matrix are set 
equal to 3. The result of the multiplication should 
make all the elements of Z$ROW equal to 300. 

The modified lines of program code are shown 
below. 

27 
28 
29 

/* MATRIX DIMENSIONS, *; 
DECLA.RE M LITERALLY '100 I I 
DECLARE N LITERALLY '521', 
DECLARE P LITERALLY 170'; 

36 DO I • ~ TO (M-l), 
37 DOJ-BTO(N-l), 
38 X$ROW(I).COL(J) - 2, 
39 END, 
40 END; 

41 DO I • 0 TO (N-l), 
42 DO J. B TO (P-l), 
43 Y$ROW(I).COL(J) • 3, 
44 END; 
45 END, 

The EXECUTION$VEHICLE module must be re­
compiled and then the three program modules must 
be linked and located using the QRL86 program. 
Specifying the SEGMENTS option of QRL86, the 
origin of the CODE segment which is in the group 
CGROUP is set at l000H, as in the first example. 
However, the origin of the CONST, DATA 
STACK and MEMORY segments which make up 
the group DGROUP is set at 80000H. 

QRL86 :Fl :MATRIX.OBJ, :Fl :FIND.OBJ, 
SBCIOS.LIB SEGMENTS (CODE(I000H), 
CONST (80000H), DATA STACK, MEMORY) 

The memory map generated by QRL86 shows the 
CGROUP having a start address of 01000H and 
the DGROUP having a start address of 80000H. 

INVOKED BY: 
QRL86 :Fl:M,I'I,:rRIY.OBJ,:Fl:FINO.OBJ,SBCIOS.LI8 & 
SEGMENTS (CODE (100~H) ,CONST (8000f.:lH) , DATA, STACK, MEMORY) 

INPUT MODULES INCLUDED: 
: Fl: MAT~n" .OBJ (EXECUTIONVEHICLE) 
: F 1: FIND. OBJ (FIND) 
sec lOS .LIB (sacco) 

RESULT WRITTEN TO : Fl: MATRI'f (EXECUTIONVEHICT,E) 
START AOORESS IS (Wl100H,0002H) 

START LTH ALIGN NAME CLASS 

0HJ00H 298H /GS/ CGROUP 
0Hl00H 21DH W CODE (EXECUTIONVEH I C LE) CODE 
0121DH 41H B CODE (FIND) CODE 
0125EH 3AH W CODE (saCCo) CODE 

/GE/ CGROUP 
800110H 797i'lH /GS/ DGROUP 
80000H CH W CONST (EXECUTIONVEHICLE) CONST 
8eeeCH 0H w CONST (saCCo) CONST 
8eetlCH 792AH w DATA (EXECUTIONVEHICLE) DATA 
87936H 2H W DATA(FIND) DATA. 
87938H BH W DATA(SBCCO) DATA 
87940H 30H sw STACK STACK 
8797"H BH W MEMORY MEMORY 

/GE/ DGROUP 
87971!lH BH ??SEG (FIND) (NULL) 

A-227 

The object code is then converted to hex format 
and downloaded to the iSBC 86/12 board. When 
the program is executed, the maximum value is 
calculated and output on the console. 

-saC661 

ISIS-II ISBC 86/12 LOADER, Vl.2 

Isse 86/12 MONITOR" Vl. 2 
• LS,: FI :MA.TRI'i. HEX 

: ~~%i2:4;~ ~ 
MAX VA.LUE • +00300 
@eI01!l:01AD 55 

VI. CONCLUSION 

This application note has described the iSBC 957 
Intellec-iSBC 86/12 Interface and Execution 
Package, and how this package may be used to 
develop and debug programs for the 8086 processor. 
First, the iSBC 86/12 single board computer was 
described, followed by a detailed description of the 
iSBC 957 package and the iSBC 86/12 system 
monitor commands. The power and versatility of 
the iSBC 957 package and monitor commands for 
developing and debugging programs for the 8086 
were illustrated by a program example: In the 
example a program which consisted of PL/M-86 
and assembly language routines was presented. The 
program code was explained, and the steps required 
to compile, assemble, link, locate, and debug the 
program were illustrated. Finally, a typical de­
bugging session using the iSBC 86/12 system moni­
tor which illustrates the powerful capabilities of the 
monitor was presented. 
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APPENDIX B 

PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES 

@ 

®{ 

PL/M-86 COMPILER EXECUTIONVEHICLE 

ISIS-II PL/M-8fi Vl.£! COMPILATION OF MODULE EXECUTIONVEHICLE 
OBJECT MODULE PLACED IN :Fl:MATRIX.OBJ 
COMPILER INVOKED BY: PLM86 :Fl:MATRIX.PLM DEBUG 

I" 
II 
12 
13 
14 

15 
lfi 
17 
18 
19 

" 2l 

22 

23 

24 
25 
2fi 

27 
28 
29 

1* MATRIX MULTIPLICATION EXAMPLE PROGRAM 

PL!I'I-86 MAIN PROGRAM WHICH: 
A) INITIALIZES TWO INTEGER r-'lATRICES 
B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A 

THIRD MATRIX 
C) CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE. 

THIRD MATRIX FOR THE MAXIMUM VALUE 
OJ CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE 

FROM INTEGER TO ASCII 
E) CALLS'" PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON 

THE SYSTEM CONSOLE 

'j 

EXECUTIONSVEHICLE: 
DO; 

Itt FIND$"r-1X - EXTERNAL ASSEMBLY LANGUAGE PRdCEI)UR~ WHICH SEARCHES A 
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE. 

PARAMETERS: 
MATRIX$!lDR - ADDRESS OF THE !-lATRIX TO BE SEARCHED 
ROWS - NUMBER OF ROItI'S IN THE MATRIX 
COLS - NUMBER OF COLUMNS IN THE MATRIX 

'j 
FTND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL, 
DECLARE (ROWS, COLS) INTEGER; 
DECLARE MATRTX$PTR POINTER; 
END FINOSMX; 

/* BINSOECSASC - BINARY TO DFCIMAL ASCII CONVERSION PROCEDURE 
PARAMETERS: 

'j 

VALUE - INTEGER VALUE TO 8E CONVERTED TO ASCII 
CHARSARRlIY$ADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCI I 

STRING CONTAINING THE VALUE \ow'ILL BE STORED 

BINSDEC$ASC: PROCEDURE (VALUE, CHARSARRAY$ADR); 

DECLARE (VALUE, TEMP, I) INTEGER; 
DECLARE CHARSARRAySADR POINTER; 
DECLARE (CHARSARRAY BASED CHARSARRAY$ADR) (6) BYTE; 

IF VALUE < r. THEN 
DO, 

CHAR$ARRAY{!1I) '" '-'. /* SIGN CHARACTER */ 
TEMP -VALUE; 

END, 
ELSE 
DO; \1 

CHARSARRAY(IZI) '" '+', 
TEMP'" VALUE; 

END; 
DO J: '" 5 TO 1 BY -1; 

CHAR$ARRAY{I) ::: UNSIGN(TEMP MOD un + 30H; 
TEMP = TEMP/] 0; 
/* ASCII CHARACTERS ~f1 THRU .19 HEX, REPRESENT THE' DIGITS II.' THRU 9. THUS 

TO CONVERT AN INTEGER TO ASCI I REPEATED DIVISIONS BY 10 AND ADDING 
THE REMATNDER TO 30 HEX WILL ACCOMPLISH THE CONVERSION */ 

END; 

END BINSDEC$ASC; 

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE. 

'j 

THIS PROCEDURE IS PART OF -THE ISBC 957 LIBRARY FOR CONSOLE I/O 
PARAMETER: 

CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE 

CO: PROCEDURE (CHAR) EXTERNAL; 
DECLARE CHAR BYTE; 
END CO; 

/* MATRIX DIMENSIONS */ 
DECLARE M LITERALLY , 6'; 
DECLARE N LITERALLY • 5' i 
DECLARE P LITERALLY' 3'; 

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES. XSROW IS COMPOSED 
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEfo'IENTS. THUS 
XSROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS 
A ROW-ORDER MATRI X WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY 
LOC':ATIONS. YSROW rs DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */ 

31!l DECLARE X$ROW(M) STRUCTURE (COL(N) INTEGER); 
31 DECLARE Y$ROW(N) STRUCTURE (COL (P) INTEGER); 
32 DECLARE Z$ROW(M) STRUCTURE (COL(P) INTEGER); 
33 DE:CLARE (I',J,K,MAX) INTEGER; 
34 DECLARE MAXSASC$ARRAY(fi) BYTE; 
35 DECLARE TEXT (*) BYTe DATA (' MAX VALUE '" .); 
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36 
37 

'" 39 '. 
41 
4> 
43 
44 
, 5 

46 
47 
48 
49 
5. 
5] 
52 
53 

54 

55 

50 
57 
58 

59 
6. 
61 

62 
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/* INITIALIZE X$ROW SUCH THAT THE F'JRST ROW IS SET EQUAL TO 0, THE SECOND 
ROW EQUAL TO 1, THE THIRD RO\<' EQUAL TO 2, ETC. */ 

DO I =: ~ TO (M-l); 

DO J "''' TO (N-I), 
XSROW(I) .COL(J) ::: I; 

END; 
END; 

/* INITIALIZE Y$ROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO 0, THE 
SECOND COLUMN EQUAL TO -1, AND THE THIRD COLUMN EQUAL TO -7. */ 

DO I ::: e' TO (N-l); 

DO ,J = PI TO (P-l); 
YSRDW(I) .(,OL(J) = -J; 

END; 
END; 
/* PERFORM MATRIX MULTIPLICATION */ 
DO K = ~ TO (P-l)i 

DO I = Iil TO (M-I); 
Z$RDW{I).COL(I<") = lil; /* SET Z$RQW ELEMENT TO 0 *1 
DO J ::: r TO IN-I); /* SUM THE PROOUCT OF XSROW ROW TERMS AND Y$RCW COLUMN TERMS */ 

Z$RDW(T).COL(K) = ZSRDWrI).COL(K) + (X$RDW(I).COL(J) * Y$ROW(J).COL(K) ); 
END, 

END; 
END; 

MAX", FIND$MX r€!ZSRO\'i, M, P); /* FIND MAX VALUE OF Z$ROW */ 

CALL BINSDEC$ASC (MAX, i<lMAX$ASC$ARRAY); /* CONVERT 1'0 DECIMAL ASCII */ 

DO I ==" TO (SIGNSD(SIZi::(TEXT)) - 1); /* OUTPUT HEADER TEXT */ 
CALL CO (TEXT r I) ) ; 

END; 

DO I '" '" TO 5; /* OUTPUT ASCII MAX VALUE */ 
CALL CO(MAX$ASC$ARRAY (I) ) ; 

END; 

END EXECUTION$VEHICLEj 

MODULE INFORMATION: 

CODE AREA SIZE e225H 5490 
CONSTANT AREA SIZE 01"L1CH 120 
VARIABLE AREA SIZE 009f"lH l44D 
MAXIMUM STACK SIZE fH:Hl8H 80 
137 LINES READ 
o PROGRAM ERROR (S) 

END OF PL/M-86 COMPILATION 

ISIS-II MCS-86 ASSEMBLER ASSEMBLY OF MODULE FIND 
OBJECT MODULE PLACED IN :Fl:FIND.OBJ 
ASSEMBLER INVOKED BY: ASMa6 :F1:FIND.ASM DEBUG 

L OC OBJ LINE SOURCE 

1 NAME FIND 
2 PUBLIC FINDMX 
3 
4 
5 
6 FINDMX 
7 ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER 
8 MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF THE 
9 ELEMENT IS RETURNED IN THE AX REGISTER. 

10 
11 PL/M CALLING SEQUENCE: 
12 MAX$VALUE ::: FIND$MX(ADR$OF$MATRIX, ISOF$ROWS, t$OFSCOLS) j 

13 
14 PARAMETERS: 
15 ADR$OFSMATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED 
16 #$OF$ROWS - NUMBER OF ROWS IN THE MATRIX 
17 #$OF$COLS - NUMBER OF COLUMNS IN THE MATRIX 
18 
19 PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON 
20 THE STACK. ON ENTRY TO THE PROCEDURE SP+6 WILL POINT TO THE FIRST 
21 PARAMETER (ADRSOF$MATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND 
22 AND THIRD PARAMETERS. 
23 
24 THE PROCEDURE IS A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE 
25 IN THE MATRIX TO A VARIABLE (IN THIS CASE MAX$VALUE) IN A PL/M 
26 ASSIGNMENT STATEMENT. TO ACCOMPLISH THIS ASSIGNMENT THE VALUE IS 
27 RETURNED IN THE AX REGISTER. 
28 
29 
3fl THE ALGORITHM USED IS SIMILAR TO THE FOLLOWING PL/M CODE: 
31 FOR I '" 0 TO (t$OF$ROWS - 1); 
32 FOR J '" 0 TO (tSOFSCOLS - 1); 
33 IF IABS(MATRIX(I).Y(J» > IABS(MAX) THEN MAX'" MATRIX(I).Y(J); 
34 END; 
35 END; 
36 
37 WHERE lABS (XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XYZ 
38 
39 
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APPENDIX B 

PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES 

LDC aBJ LINE 

•• 41 
'2 
'3 
4. 
'5 
.6 
'7 
48 
'9 
5. 
51 
52 
53 
5' 
55 

0000 0000 56 
57 
58 
59 
6' 
51 

0''''0 (I' 62 
0P00 
) 

63 
---- 64 

55 
66 
67 
68 
69 
7. 

IHH'l6[] 71 
IH104f] 72 
'HH~8 [] 73 

74 
09100' 75 
!:leee 55 76 

""'u BBEe 77 
8IIIP3 3302 78 
0005 SBrA 79 
"'U'17 eBF2 8. 
i""!l9 891601HJ0 81 
,UlflD 884£04 82 
09U DIE! B3 

B4 
0012 flBSE08 85 

86 
0fHS 8BI1I0 87 
0el7 0'BC0 88 
1'1019 7902 89 
0018 F708 9' 
0010 3BC2 91 
1'101F 7ca7 92 
0021 8BD~ 93 
011123 8B00 94 
'H"2S A30fCH!l0 95 
0028 83C602 96 
0028 38Fl 97 
1HJ2D 72£6 9. 
002F 8018 99 
IHBI BEn00 1 •• 
l!'lD'" 47 1.1 
0035 3B7Eil6 1.2 
00)8 720B 1.3 
0IrJ3A AU/iJ1!l0 I •• 
0IIl3D 50 105 
'''DE C211690 1.6 

1.7 
1 •• 
1.9 
11. 
111 
112 

SYMBOL TABLE LISTING 

NAME TYPE VALUE 

??SEG SEGMENT 
ABC L NEAR "''''ISH 
ADR OF MATRIX V WORD "''''''8H 
CGRQUP-:- GROUP 
CODE. SEGMENT 
DATA. SEGMENT 
DEF L NEAR ~01DH 
DGROUP. GROUP 
FINOMX. L NEAR £'000H 
!"'AX V WORD "'I1I0I'IH 
NO OF COLS. V WORD 000§H 
NO-OF-RQ\oIS. V WORD "'''068 
STACK- SEGMENT 
XYZ L NEAR 01'1288 

SOURCE 

baROUP 
CGROUP 

DEFINE GROUPS TO CONFORM WITH PL/M-86 CONVENTIONS. DATA, STACK, AND 
CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE 
PL/M-86 MODULES. 
GROUP DATA, STACK 
GROUP CODE 

INSTRUCT THE ASSEMBLER THAT THE OS, SS, AND CS REGISTERS WILL CONTAIN 
THE BASE ADDRESS VALUES FOR THE DGROUP, DGROUP AND CGROUP GROUPS. 
ASSUME OS: DGROUP,SS :DGROUP,CS :CGROUP 

; ••••••••••••••• DI\TI\ SEGMENT 
; 
DATA SEGMENT WORD PUBLIC 'DATA' 

MAX OW " 
DATA ENDS 
; 
; ••••••••••••••• STACK SEG~ENT 

STACK SEGMENT STACK I STACK' 
OW 14 OUP (111) ;RESERVE 13 WORDS OF STACK FOR MONITOR 

;AND 1 WORD FOR FINDMX PROCEDURE 
STACK ENDS 

; •• * ................ CODE SEGMENT 

CODE SEGMENT BYTE PUBLIC 'CODE' 

; PARAMETERS ON STACK, 
NO OF ROWS EOU 

DISPLACEMENT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH 
WORD PTR [BP+6] 

NO-OF-COLS EQU WORD PTR [SP+4) 
ADR"_OY_MATRIX EOU WORD PTR [BP+8] 
; 
FINDMX PROC 

PUSH 
Mav 
xaR 
Mav 
Mav 
Mav 
Mav 
SHL 

NEAR 
BP 
SP,SP 
DX,OX 
DI,DX 

=!~~~X 
CX ,NO OF COLS 
CX,l - -

;PROCEDURE DECLARATION 
;SAVE BP REGISTER 
; BP POINTS TO PARAMETERS ON STACK 
;SET OX = ASS OF CURRENT MAX .. '" 
;01 = I (ROW INDEX) III 0 
lSI = J (COLUMN INDEX) .. 0 
; MAX '" CURRENT MAX = 0 

.CX = (f$OF$COLS) • 2 

;TERM.INATION FOR J (51) INDEX 
SX ,ADR OF MATRIX ;ADR$OF$MATAIX PARAMETER 

- - ;BX POINTS TO FIRST ELEMENT OF A GIVEN ROW 
Mav 

ABC: 

DEF: 

XYZ: 

~INDMX 
bODE: 

Mav 
OR 
JNS 
NEG 
CMP 
JL 
Mav 
Mav 
Mav 
ADD 
CMP 
JB 
LEA 
Mav 
INC 
CMP 

JB 
Mav 
POP 
RET 

ENDP 

ENDS 

END 

ATTRIBUTES 

AX, [SX] [SI] 
AX,AX 
DEF 

AX,OX 
XYZ 
DX,AX 
AX, [BX] [51] 
MAX,AX 
SI,2 
5I,CX 
ABC 
BX, rBX+SI) 
SI,0 
DI 
DI,NO OF ROWS 

ABC 
I\X,MI\X 
BP 
6 

SIZE="""'''H PARA PUBLIC 
CODE 
[BP) 
CODE 
SIZE .. ",,41H BYTt PUBLIC 'CODE' 

SIZE""'''02H WORD PUBLIC 'DATA' 
CODE 
DATA STACK 
CODE PUBLIC 
DATA 
(BP) 
rBP) 
SIZE-t=l" lCH PARA STACK 'STACK' 
CODE 

;GET ELEMENT OF MATRIX 
;SET FLAGS 
;JUMP IF SIGN '" " 
;NEGATE TO FORM POSITIVE NUMBER 
; COMPARE TO CURRENT MAX 
;JUMP IF LESS THAN CURRENT MAX 
; MOVE TO ABS OF CURRENT MAX 
;MOVE MATRIX VALUE TO CURRENT MAX 

INCREMENT J INDEX BY TWO 
END OF THIS ROW?? 
IF NO, LOOP SACK FOR NEXT ELEMENT OF THIS ROW 
ex := ex + (2 • '$OF$COLS), BX POINTS TO NEXT ROW 

J = '" I .. r + 1 
LAST ROW ?1 

IF NO, DO THE NEXT ROW 
RETURN MAX VALUE IN AX REGISTER 
RESTORE BP REGISTER 
INCREMENT SP BY 6 AND RETURN TO CALLER 

ASSEMBLY COMPLETE, NO ERRORS FOUND 
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rSIS-II ORL-PIi, Vl. 1 

INVOKED BY: 
QRLRIIi :FJ:MATRIX.OBJ, :Fl:FIND.OBJ,SBCIOS.LIB ORrGTN{HJP~H) 

TNPUT MODULES INCLUDED: 
: FI :MATRIX.OBJ (F.XFCUTTONVEHICLF.) 
:F 1 :FIND. aBJ (FIND) 
see lOS • LIB (SaCCO) 

RESULT WRITTEN TO : Fl :MATRIX (EXECUTTQNVEHICLE) 
START ADDRESS IS (D100H,re02H) 

START LTH ALIGN NA.ME CLASS 

fl100P1H :lAB" G /GS/ CGROUP 
~Ue0H 225H w CODE (EXEClITIONVEHICLEl COOE 

01225H 41H B COOE (FIND) CODE 
P1266H :lAH W CODE (secco) COOE 

IGE/ CGROUP 
012M"8 D0H /GS/ DGROUP 
1/ll2A0H CH W CONST (EXECUTIDNVEHICtE) CONST 
('II2ACH OH w CONST(secCO) CONST 
012ACH 90H W DATA (EXECUTIONVEHICLE) DATA 
0133CH 2H W DATAtFIND) DATA 
1/l13:lEH 0H W DATA (SBCCO) DATA 
01340H :aIllH sw STACK STACK 
A 1370H 0H W MEMORY MEMORY 

IGE/ DGROUP 
PI370H 0H ??SEG (FIND) (NULL) 

DEBUG MAP OF : Fl :MATRIX (EXECUTIONVEHICLE) 

MODULE: EXECUTrONVEHICLE 0HJ0H,01EIH 
£'ll2AH,e0m'lH SYMBOL: MEMORY eHl08,01FBH 
01131118,01B5H SYMBOL: BINDECASC IllHH'lH,R213H 
~ 121<.8, 0e0CH SYMBOL: TEMP PlHHIH,f"21EH 
012A8,0'9111EH SYMBOL: I 0U0H,e221H 
(1112A8, ,;aHeH SYMBOL; XRO~ 121100H,IH'!02H 
012AH, A94CH SYMBOL: YROW 0100H,0f1'-IH 
012AFI,0A6AH SYMBOL: ZROW PURR, I!IR32H 
012AH,e0SER SYMBOL: I 0'HJP.H,0004BH 
012AR, AI/l91!1H SYMBOL: J 0HJ0H,1ll0511H 
0] 2AR, 0(1192H SYMBOL: K ea"H,01lJ5DH 
e12AH, r.094H SYMBOL: MAX "le0H,r.0fiEH 
012AH,00911H SYMBOL MAXASCARRAY 111 HHJH, 00 7FH 
012AH, "eUH SYMBOL TEXT nee'H, {J11I9C8 
OH'''H,PIB5H LINE. 6 9lP'0'H,('lI~A5H 

n00H,elB8H LINE f 10 0'100'H,"0'AEH 
~leP,H,tHC2H LINE f 12 0HH.IH,eeBFH 
RueH, ~ICSH LINE f 13 0HJ0H,0'0Dfl8 
9lfl'H,elD1H LINE t 14 !lIle"H, "'flE7H 
IHoeH,0104H LINE t 16 fl100'H,09F8H 
0lA~H,01DAH LINE , 17 PlH~"H,0'13~H 
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LINE f' 
LINE t 
LINE I 
LINE I 
LINE I 
LINE • 
LINE I 
LINE I 
LINE , 
LINE I 
LINE I 
LINE , 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 
LINE 

19 l'!UeH,ID39H LINE I, 52 

20 IllHI0H,{H42H LINE , 53 
21 0100f1,IH4BH LINE , " 22 {l100H,,,"15EH LINE I 55 
23 ~1I!!eH,~]r,9H LINE , 50 
30 01IH~H,£l17AH LINE I 57 
37 I"10€H,01S5H LINE I 58 

38 0Hlft'lH, (HSEH LINE • 59 
19 ~10I11R.r]9FH LINE ! 60 
4. 1'1100H,F."lAAH LINE , 61 
41 ~10P.H,{IIIB3H LINE , 02 
42 MODULE FIN 
43 £l100H,023A8 SYMBOL ABC 
44 0100H,02428 SYMBOL DEF 
45 0100'8,0225H SYMBOL FINDMX 
40 012AH,0'09CH SYMBOL MAX 
47 01£10'8,024DH SYMBOL XYZ 
'8 OHalH,0225H PUBLIC FINDMX 
49 MODULE SBCCO 
50 IU0e8,02668 PUBLIC CO 
51 
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APPENDIX C 

PROGRAM LISTING FOR EXECUTION$VEHICLE MODULE WITH CODE EXPANSION 

PL/~-86 COfo!PI LEt EXECUTIONVEHICLE 

ISIS-II PL/M-86 Vl.0 COMPILATION OF MODULE EXECUTIONVEHICLE 
NO OBJECT MODULE REQUESTED 
COMPILER INVOKED BY: PLM8fi :FJ :MATRIX.PLM DEBUG CODE NOOBJECr PRINT(:Fl:MATRIX.XLS) 

10 

II 
12 

13 

l' 

J5 
]6 

17 

18 

19 

/* MATRIX MULTIPLTCATtDN EXAMPLE PROGRAM 

PL/M-86 MAIN PROGRAM WHICH: 
A) INITIALIZES TWO INTEGER MATRICES 
8) MULTIPLIES THE TWO MATRICES AND STQRE:S THE RESULT IN A 

THIRD MATRIX 
') CALLS AN ASSEMBLY L~NGUAGE PROCEDURE WHICH SEARCHES THE 

THIRD MATRIX FOR THE MAXIMUM VALUE 
D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE 

FROM INTEGER TO ASCI I 
E) ':ALLS A PROCEDURE WHICH OUTPUTS THE AscrI CHARACTERS ON 

THE SYSTEM CONSOLE 
,/ 

EXECUTION$VEHTCLE: 
DO; 

/* FTND$,.,X - EXTERNAL ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES A 
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE. 
PARAMETERS: 

MATRIX$ADR - ADDRESS OF THE MATRIX TO BE SEARCHED 
ROWS - NUMBER OF ROWS IN THE MATRIX 
COLS - NUMBER OF COLUMNS IN THE MATRIX 

,/ 
FIND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL; 
DECLARE (ROWS, COLS) INTEGER; 
DECLARE MATRIXSPTR POtNTER; 
END FrND$MX; 

/* ~·,INC EC$ASC - BINARY TO DECIMAL ASCII CONVERSION PROCEDURE 
l-ARAMETERS: 

VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII 
CHAR$ARRAY$ADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCI I 

STRING CONTAINING THE VALUE WILL BE STORED 

'/ 
BIN$DEC$ASC: PROCEDURE (VALUE, CHARSARRAY$ADR); 

STATEMENT # '5 
B INDECASC PROC NEAR 

0IB5 55 PUSH BP 
0186 BBEC MOV BP,SP 

DECLARE (VALUE, TEMP, I) INTEGER; 
DECLARE CHARSARRAYSADR POINTER; 
DECLARE (CHAR$ARRP.Y BASED CHAR$ARRAY$ADR) (is) BYTE; 

IF VALUE < 0" THEN 

01BR B17E0600~0 CMP 

PlIBD 7C03 JL 
31BF E91200 JMP 

DO; 
CHAR$ARRAY(0) '_I; 

IHC2 B85Ee4 Mev 
01CS C6072D MOV 

TEMP == -VALUE; 

01Cf! 8846136 
01CB F70B 
r'lCD 89~6"'0C0 

END; 

13101 E91m3!?! 

ELSE 
DO; 

CHAR$ARRAY(!i') 

0104 BB5EI"4 
~ 107 C6~7 2B 

TEMP"" VALUE; 

~] DP. 8B41)['6 
ell0D 890()l"r~~ 

END; 
@2; 

MOV 

NEG 
MOV 

JMP 

'+' ; 

MOV 
MOV 

MOV 
MOV 

DO I '" 5 TO 1 BY -1; 

C'llEl C7"'6~20e05"0 
131E7 E<;\Lil6r'0 

@3: 
13]EA 8 U,H;02I?'IH'FFF 

MOV 
JMP 

ADD 

; STATEMENT II HI 
rBP] .VALUE,,,H 

$+5H 
@1 

1* SIGN CHARP,CTER */ 
STATEMENT 12 

8X, rBP) .CHARARRAYADR 
CHARARRAY fex] ,20H 

; STATEMENT 13 
AX, fep]. VALUE 
AX 
TEMP ,AX 

STATEMENT t 14 
@2 

; STATEMENT It 1 t5 
BX, rBP1. CHARARRAYADR 
CHARARRAY rBX1, 7BH 

, STATEfo1ENT 17 
AX, [BP1. VALUE 
TEMP,AX 

I,SH 
@5 

J , 0FFF·FH 
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STATEMENT ., 19 



2. 

21 

22 

23 

2~ 

25 ,. 

27 
~~ 
29 

.l3 
34 
35 

36 

37 

38 

39 
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~5, 
P]F0 IH3Efli'e0P100 CMP I,lH 
elFIS 7013 JGE S+5H 
0lF8 £926'" JMP '4 

CHAASARRAY(I) = UNSIGN (TEMP MOD III + 3111H; 
j STATEMENT • 20 

elFB 8BP61UHUJ MaV AX, TEMP 
elFF 898AfI. Mav ex, eAH 
0212 3102 xaR ox,ox 
0'204 F7F9 IDIV cx 
1206 AIC;t)S"" ADD OX, 3011 
1'28" B85Ef!4 Mav sx, [SP) .CHARARRAYADR 
02/i!10 88361281 Mav 51,1 
~211 8811' Mav faX). CHARARRAY fSI J, OL 

TEMP· TEMPI] 8; 
; STATEMENT' 21 

/* ASCII CHARACTERS 30 THAU 39 HEX REPRESENT THE DIGITS 1/1 THRU 9. THUS 
TO CONVERT AN IN:r£GER TO ASCII REPEATED DIVISIONS BY Ie AND ADDING 
THE REMAINDER TO 3e HEX WILL ACCOMPLISH THE CONVERSION "'/ 

'213 88"6"""" MOV AX,TEMP 
1217 99 cwo 
0218 F7F9 IDIV ex-
021A 8986""'oUJ MOV TEMP,AX 

END; 
STATEMENT • 22 

02lE E9C9FF JMP @3 

END BINSDEC$ASC'; 
STATEMENT f 23 

D221 50 POP SP 
"'222 C2"Ur- RET 4H 

BINDECASC EHOP 

1* co - EXTERNAL PROCEDURE TO OUTPUT A CHARA.C'l'ER TO THE SYSTEM CONSOLE. 
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE I/O 
PARAMETER: 

CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE 
*j 
('0: PROCEDURE (CHAR) EXTERNAL; 
DECL,&,RE CHAR BYTE; 
END CO; 

/* MATRIX DIMENSIONS * / 
DECL.a.RE M LTTERA.LLY '6'; 
DECLARE N LITERALLY '51;~. 
DECLARE P LITERALLY '3'; 

/* THE THREE MATRICES ARE DECLARED AS ARRAYS Olo' STRUCTURES. X$ROW IS COMPOSED 
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS 
X$R~ MAY RE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS 
A ROW-ORDeR MATRIX WITH THE ELEMENTS OF EACH ROW STORED HI ADJACENT MEMORY 
LOCATIONS.' YSROW IS DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */ 

DECLARE X$ROW(M) STRU('TURE (OOL(N) INTEGER); 
DECLARE Y$ROW(N) STRUCTURE (COL (P) INTEGER); 
DECL.a.RE Z$ROW(M) STRUCTURE (COL (P) INTEGER); 

DECLARE (I,.l,K,M1r.X) INTEGER; 
DECLIlRE MAX$ASC$ARRAY (Il) BYTE; 
DECLARE TeXT (*) BYTE DATA ('1'1AX VALUE'" '); 

/* TNITIlILlZE X~ROW SUCH THAT THE FIRST ROW IS SET EQUAL TO PI, THE SECOND 
ROW EQUAL TO 1, THE THIRD R~ EQUAL TO 2, ETC. */ 

DO I'" 0 TO (M-J); 
STATEMENT f 36 

i'lA02 FA CLI 
9003 2E8E16~HI09! Mav 55 ,CS:@@STACKSFRAME 
81e8 BC9SA" Mav SP ,@@STACK$OFFSET 
"£1108 BaEe Mav BP,SP 
"9"0 16 PUSH SS 
""eE IF pap os 
fleeF F8 STI 
"ue C796B2Bfl0fl0111 Mav r,PH 

@6, 
"t1I16 B13E82fl'''~50e CMP I,5H 
I!IA1C 7EP-3 JLE $+5H 
~"lE E93erlil JMP '7 

DOJ-"TO (N-II; 
STATEMENT , 37 

9P.21 e706841!10lHH!le Mav J .eH 
P8, 

IPn B13EB400e4p~ CMP J,4H 
111020 '7Er3 .lLE ~+5H 
102F E9220[l JMP @9 

X$ROW(I).COL(J) '" Ii 
gTA.TEMENT f 3B 

P'032 .ctBenBUI!0I MaV AX,I 
~e3fi 89PA"" MaV CX,0AH 
1~39 F7E9 IMUL CX 
00'38 8836841P MaV SI,J 
I1IB3F DIE6 Sf.lL SI,l 
e"41 89C3 Mav 8X,AX 
"043 8B£IIE82fJe MaV eX,I 
rB47 8ge814A~ Mav fax J. XROW fSI 1 ,CX 

END; 
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4. 

'1 

42 

'3 

4' 

45 

.7 

'B 

49 

So 
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STATEMENT t 39 
flflt!B P.l(ll6E140'A100 ADO J, JH 
""51 E9D3FF J"P OR 

(119: 
END; 

STATEMENT f 4" 
ens. RUH;S2e""100 ADO I,1H 
00SA E9B9FF JMP ~6 ", 

/0 INITIALTZE Y$ROW SUCH THAT THE FIRST COLUMN IS S£'r EOUAL TO 0, THE 
SECONO COLUMN EQUAL TO -1, AND THE THIRD COLUMN EQUAL TO 

DOI=BTO(N-l); , 
, STATEMENT·' 4,1 

.850· C78682.888e. MOV I,0R 
819, 

8063 813E82088.0P CMP I,4K 
0069 7E83 JLE $+58 
IUH;B E948.0 JMP 

DO J = B TO (P-l), 
~Il 

STATEMENT • 42 
,,916E C786841e •• 0. MOV J,fIIH 

@12, 
187. 813E8488.2.8 CMP J,28 
e.7A 7Ee3 JLE $+5H 
ee7C E9268f JMP U3 

YSROW(I).COL(J) • -J; 
STATEMENT , 43 

le7F 88.68488 MOV AX,J 
1883 F708 NEG AX 
eBSS 5. PUSH AX 11 
8086 88068218 MOV AX,I 
liSA 890680 MOV Cx,6H 
1.80 F7£9 IMUL CX 
888F 8836848. MOV SI,J 
e893 01£6 SHL SI, ) 
1895 89C3 MOV BX,AX 
0897 59 POP CX I I 
OP98 89884880 MOV r8X). YROW rSI) ,CX 

END; 
; STATEMENT • 44 

•• 9C 818684880ue ADO J,1H 
80A2 E9CFFF JMP ~12 

~ll, 

END; 
STATEMENT t 45 

OMS 81068208018r ADO 1,·1H 
fl0AB E9B!)FF JMP .10 

UI' 
1* PERFORM MATRIX MULTIPLICATJQN *1 
DO K = , TO CP-J); 

(!IAAE C79li8f;IlIf10PfJ0 MOV 
~14, 

. POB4 e 13£B60~020e CMP 
09SA. 7E03 JLE 
A~BC EgeC~0 JMP 

00 I = 0 TO (M-1) , 

"C!'SF C7{HH12eep.ee€l MOV 
@16, 

P0CS 813EB?fil0P.5011 c~p 

08CB 7E03 .JL! 
Aeco E972f1f' JMP 

ZSROW(I) .COL (0) • r.; 

"9100 PBI:I'682~H'J MOV 
0004 B906~0 MOV 
0f107 F7E9 IMUL 
0009 SB3G861i!fI MOV 
"flOC 01E6 SAL 
aADF 89C3 MOV 
00£1 C7805E00A000 MOV 

K,PH 

"',2H 
$+5H 
~1 5 

I, PH 

I,5H 
$+5H 
@17 

STATEMENT " ., r, 

STA'I'EMENT # I! 7 

1* SET ZSROW ELEMENT TO P -/ 
; ST1>.TEMENT # 48. 

A.X, I 
CX,#iH 
CX 
BI, K 
SI,l 
BX,AX 
rex] .ZRoWrSI] ,rH 

-2. 0/ 

00 J = Po TO fN-I) ; /0 SUM THE PRODUCT OF XSROW ROW TERMS AND Y$ROW COLUMN TERMS */ 
; STATEMENt' 49 

"AE7 C70';8040P"B9f1 MOV 
UBI 

finD 
IU'F~ 
80FS 

S13ES""'''AUB eMP 
7E03 JLE 
£94J00 JMP 

ZSROW(I) .COL(O) • 

98F8 ~886B2e8 
I,lIflFC 890A(II0 
8eFF F7£9 
0ln 88368400 
01~S 01£6 
0187 58-
0108 8B868488 
lleC a90688 
9ur F7E9 
8111 BB3EB600 
ellS DlE7 
0117 89C3 
0119 BBBI4888 
ellD 58 
8pa F7A80488 
0122 58 
8123 08868288 
P.l27 F7£9 
0129 B9C3 

MOV 
MOV 
IMUL 
MOY 
SHL 
PUSH 
MOV 
MOV 
IMUL 
MOV 
SHL 
MOV 
MOV 
POP 
IMUL 
PUSH 
MOV 
!MUL 
MOV 

J,0H 

J ,48 
$+58 
fl9 

ZSROW(!) .COLfK) + ( X$ROW(I) .COL(J) 
; STATEMENT t 5A 

AX,I 
CX,eAH 
CX 
SI,J 
SI,l 
AX ; 1 
AX,J 
CX,6H 
CX 
DIrK 
01,1 
BX,AX 
AX, rsx] . YROW [01 1 
ax I 1 
r8X).XROWrSI) 

AX ; 1 
AX,1 
CX 
9X,AX 
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• YSROW(J) .COL (K) ); 



51 

52 

53 

55 

56 

57 

58 

59 

~ 12B ~8 
A12C e181SE'" 

END; 

111139 81f1HiSII'IP."0UA 
"'13~ E9B4FF 

@19, 
END; 

IH39 8H1IlP2"fl010f1 
ADF E983FF 

@17: 
END; 

~142 SH'I68fiAAAU0 
~ 148 £9119FF 

@15: 

POP 
ADD 

ADD 
JMP 

ADD 
JMP 

ADD 
JMP 
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AX ; 1 
rexJ • ZROW[CI J ,AX 

J, IN 
~18 

r,IH 
el~ 

K,IH 
~,. 

; STATEMENT f 51 

STATEMENT , 52 

STATEMENT' S3 

MAX = FINOSMX (@Zt,ROW, M, P); /* FINO MAX VALUE OF Z$ROW *1 
: !=iTATEMENT , 5 ~ 

11I14B B85E0f1 Mev AX,OFFSET(ZROW) 
9114£ SA PUSH AX 1 
1II1J1F Be~fi"f' MOV AX, FiR 
P152 59 PUSH ,r..x I 2 
0153 SSP-3il1" MOV AX,3H 
I'll 56 SP- PUSH AX , J 
A157 E8r00p. CALL FINOMX 
PJ15A 899J68fHHl MOV fllJAX, AX 

CALL B IN$DEC$ASC (MAX, @MAXSASCSARRAY)j 1* CONVERT TO DECIMAL ASCII */ 
j STATEMENT' 55 

IUSE FF3688A0 MAX ; 1 
0162 a8BA'0 

PUSH 
Mav 
PUSH 
CALL 

AX, OFFSET (MAXASCARRAY) 
P165 5. AX ; 2 
111166 E84C1H" BINDECASC 

DO I = " TO (SIGNED (SIZ E (TEXT» - 1) j /* OUTPUT HEADER TEXT */ 
; STATEMENT t 56 

.169 C7~682"'IIHH"IH' Mav I, ~H 
@20, 

016F e 13E8 2{l00B~" CMP I, "BH 
0175 7£03 JLE $+58 
111177 E91409J JMP @21 

CALL CO/TEXT{I): 
I STATEMENT t 57 

C!l17A EtBIE820" Mav ax, I 
017E FFB701119J9J PUSH TEXT fBX1 j I 
1i!Il82 E8"""" CALL CO 

ENO; 
STATEMENT t 58 

"185 8U6El2tHHU00 ADD I, ]H 
IUSB E9E1FF JMP @20 

@21, 

DO I .. til TO 5; /* OUTPUT ASC r I MAX VALUE */ 
j STATEMENT I 59 

P1SE C706A2""''''''''' MOV I, ~H 
@22: 

0194 813E82""'0=0" CMP I,5H 
019A 7E"'3 JLE $+5H 
11J19c £9] 4"'~ JMP El23 

fil1J CALL CO (fIIAX$ASCSARRAYtI )). 

61 

62 

11l19F 881EA2Q!~ Mav 
01A3 FFB78AIlI0 PUSH 
P11A7 £8~"'1iI11J CALL 

ENO: 

1!l'1AA 811i1fi82"~010P ADn 
IHB0 E9E1FF JMP 

@23, 

END EXECUTIONSVEHICLE; 

01B3 FB 
111184 F4 

STI 
HLT 

MODULE INFORMATION: 

CODE AREA SIZE = 0225H 5490 
CONSTANT AREA SIZE = "1""eH 120 
VARIA:9LE. AREA SIZE" el91H 1440 
MAXIMUM STACK SIZE" 011108H 80 
137 LINES READ 
" PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

; STATEMENT I 6. 
BX,l 
MAXASCARRAY rax]; I 
CO 

, !=iTATEMENT t 61 
I,lH 
@22 

STATEMENT t 62 
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Appendix B 
Device Specifications 
• 8086 Family 

• 

'For complete specifications refer to the 
Intel MCS-85 User's Manual. 

"For complete specifications refer to the 
Intel Peripheral Design Handbook. 

"'For complete specifications refer to the 1979 
Intel Component Data Catalog. 



8086/8086·218086·4 
16·BIT HMOS MICROPROCESSOR 

• Direct Addressing Capability to 1 • Bit, Byte, Word, and Block Operations 
MByte of Memory 

8-and 16-Bit Signed and Unsigned • 
• Assembly Language Compatible with Arithmetic in Binary or Decimal 

808018085 Including Multiply and Divide 

• 5 MHz Clock Rate (8 MHz for 8086-2) 
• 14 Word, By 16-Bit Register Set with (4 M Hz for 8086-4) 

Symmetrical Operations 

• MULTIBUS™ System Compatible 

• 24 Operand Addressing Modes Interface 

The Intel@ 8086 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to mem­
ory for high performance. 

EXECUTION UNIT 

REGISTER FILE 

DATA. 
POINTER. AND 

INDEX REGS 
(8 WORDS) 

BUS INTERFACE UNIT 

: RElOCATiON I 
REGISTER FilE 

SEGMENT 
REGISTERS 

AND 
INSTRUCTION 

POINTER 
(5 WORDS) 

r--""'--,-~ BH'EISl 

FLAGS 

6·BYTE 
INSTRUCTION 

aUEUE 

~ ___ r------~~------~ 
INT-_ 
NMI---

ROI~ 2 

HOLO---

CONTROL & TIMING 

eLK RESET READY GND 

V" 

A1g1S6 

3 OTlR,DEN.ALE 

Figure 1. 8086 CPU Functional Block Diagram 
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GND VCC 

A014 AD15 

A013 A16/53 

AD12 A17/54 

AD11 A18/55 

A010 A191S6 

AD9 BHE/57 

ADa MN/MX 

AD7 RD 
AD6 RD/GTO (HOLD) 

ADS RO/GT1 (HLDA) 

AD4 LOCK (WR) 

AD3 52 (M/iO) 

AD2 51 (DT/R) 

AD1 so (DEN) 

ADO aso (ALE) 

NMI aS1 (INTA) 

INTR TEST 

CLK READY 

GND RESET 

40 LEAD 

Figure 2_ 8086 Pin Diagram 
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FUNCTIONAL DESCRIPTION 

GENERAL OPERATION 

The internal functions of the 8086 processor are parti­
tioned logically into two processing units. The first is 
the Bus Interface Unit (BIU) and the second is the Exe­
cution Unit (EU) as shown in the block diagram of Figure 
1. 

These units can interact directly but for the most part 
perform as separate asynchronous operational proces­
sors. The bus interface unit provides the functions 
related to instruction fetching and queuing, operand 
fetch and store, and address relocation. This unit also 
provides the basic bus control. The overlap of instruc­
tion pre-fetching provided by this unit serves to increase 
processor performance through improved bus band­
width utilization. Up to 6 bytes of the instruction stream 
can be queued while waiting for decoding and execu­
tion. 

The instruction stream queuing mechanism allows the 
BIU to keep the memory utilized very efficiently. When­
ever there is space for at least 2 bytes in the queue, the 
BIU will attempt a word fetch memory cycle. This greatly 
reduces "dead time" on the memory bus. The queue 
acts as a First-In-First-Out (FIFO) buffer, from which the 
EU extracts instruction bytes as required. If the queue is 
empty (following a branch instruction, for example), the 
first byte into the queue immediately becomes available 
to the EU. 

The execution unit receives pre-fetched instructions 
from the BIU queue and provides un-relocated operand 
addresses to the BIU. Memory operands are passed 
through the BIU for processing by the EU, which passes 
results to the BIU for storage. See the Instruction Set 
description for further register set and architectural 
descriptions. 

MEMORY ORGANIZATION 
The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memory is 
logically organized as a linear array of 1 million bytes, 
addressed as OOOOO(H) to FFFFF(H). The memory can be 
further logically divided into code, data, alternate data, 
and stack segments of up to 64K bytes each, with each 
segment falling on 16-byte boundaries. (See Figure 3a.) 

Word (16-bit) operands can be located on even or odd 
address boundaries and are thus not constrained to 
even boundaries as is the case in many 16-bit com­
puters. For address and data operands, the least signifi­
cant byte of the word is stored in the lower valued 
address location and the most significant byte in the 
next higher address location. The BIU automatically per­
forms the proper number of memory accesses, one if 
the word operand is on an even byte boundary and two if 
it is on an odd byte boundary. Except for the perfor­
mance penalty, this double access is transparent to the 
software. This performance penalty does not occur for 
instruction fetches, only word operands. 

Physically, the memory is organized as a high bank 
(01S-0a) and a low bank (07-00) of 512K 8-bit bytes 
addressed in parallel by the processor's address lines 

B-2 

A19 - A1. Byte data with even 
on the OrOo bus lines while odd a 
(Ao HIGH) is transferred on the 0 15-08 
processor provides two enable signals, BH ., 
selectively allow reading from or writing into eit~ 
odd byte location, even byte location, or both. 
instruction stream is fetched from memory as words 
and is addressed internally by the processor to the byte 
level as necessary. 

.r---:J. FFFFFH 

:CD} CODE SEGMENT 

XXXXOH 
j 

r--

r i== 
+OjSET 

} STACK SEGMENT 

SEGMENT t1 REGISTER FILE 

CS .J'--
SS 
DS 
ES 

} DATA SEGMENT 

r---
}EXTRA DATA SEGMENT 

~OOOOOH 

Figure 3a_ Memory Organization 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the start­
ing byte of the word is on an even or odd address, 
respectively. Consequently, in referencing word oper­
ands performance can be optimized by locating data on 
even address boundaries. This is an especially useful 
technique for using the stack, since odd address refer­
ences to the stack may adversely affect the context 
switching time for interrupt processing or task multi­
plexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) Locations from address 
FFFFOH through FFFFFH are reserved for operations 
including a jump to the initial program loading routine. 
Following RESET, the CPU will always begin execution 
at location FFFFOH where the jump must be. Locations 
OOOOOH through 003FFH are reserved for interrupt 
operations. Each of the 256 possible interrupt types has 
its service routine pOinted to by a 4-byte pointer element 
conSisting of a 16-bit segment address and a 16-bit off­
set address. The pOinter elements are assumed to have 
been stored at the respective places in reserved memory 
prior to occurrence of interrupts. 



r---------. FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 
~--------I FFFFOH 

~--------I3FFH 
INTERRUPT POINTER 

FOR TYPE 255 1-______ ----1 3FCH 

~--------I7H 
INTERAUPT POINTER 

FOR TYPE 1 

~-IN-T-E-RR-U-PT-PO-IN-T-E-R--I;~ 
FOR TYPE 0 

~ ______ ~OH 
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""'" ",' l'. 
MINIMUM AND MAXIMDt.i~"t 
The requirements for supporting min~/h'i't 
Imum 8086 systems are sufficiently differ~", 
cannot be done efficiently with 40 uniquely 
pins. Consequently, the 8086 is equipped with Ii s 

Figure 3b. Reserved Memory Locations 

pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes 
dependent on the condition of the strap pin. When 
MN/MX pin is strapped to GND, the 8086 treats pins 24 
through 31 in maximum mode. An 8288 bus controller 
interprets status information coded into 80,8,,82 to gen­
erate bus timing and control signals compatible with 
the MULTIBUSTIiII architecture. When the MN/MX pin Is 
strapped to Vee, the 8086 generates bus control signals 
itself on pins 24 through 31, as shown In parentheses in 
Figure 2. Examples of minimum mode and maximum 
mode systems are shown in Figure 4. 

Vee o illl 
8284 CLOCK MN/MX -Vee 

GENERATOR r- CLK M/fO , 
~ Ii3 f-- READY fiiffii: , 

G 

f-- RESET ifij 
I 1 ROY VIR 

NO r-l--, 
I 

DTiR r------, I 
I I 

- r---,I I WAIT 
DEN 

I STATE I 8086 CPU I I r----I I 
I GENERATOR I I I I I 

ALE I &a~B 
I L ___ ...l I I 

GND~ OE 8282 I I 

'~'~:::~"~ ~~;; C ADDR 

I BHEI--- ~ 

I I I 

II J----, I 
IL T---II I 

I L----IOE II I 
TRAN8~~~IVER I DATA 

I 12) I I i!liE bl1 l! TT: 11 I I HE 

L ___ f 
OPTIONAL CSOH CSOL WE 00 CE OE CS RDWR 

FOR INCREASED 
DATA BUS DRIVE 2142 RAM 14) 2718·2 PROM (2) MCS·80 

PERIPHERAL 
12) 12) 

1Kx8 I 1Kx8 2Kx8 I 2Kx8 

Figure 4a. Minimum Mode 8086 Typical System Configuration 
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Vee 

1" ROY 

8086 
CPU 

GND CLK 

SO 
51 
S, 8288 

DEN 
BUS 

CTRLR 

DTIFf 

ALE 

MRDC 

MWTC 

AMWC N.C. 

IORC 

IOWC 

AIOWC N.C. 

INTA 
GND r- -..., 

I WAIT I 
I STATE I 
I GENERATOR I 

~ N.C. ---:-1 

L ___ ...J I 
I 

8282 I 
LATCH r--.nn.;------~L-----------~------~~--~ 
(2 OR 3) 

8286 
TRANSCEIVER 

(2) 

2142 RAM (4) 

(21 
1Kx8 

(2) 
1Kx8 

2716·2 PROM (2) 

2K x 8 2K x 8 

MCS·80 
PERIPHERAL 

Figure 4b. Maximum Mode 8086 Typical System Configuration 

BUS OPERATION 

The 8086 has a combined address and data bus com· 
monly referred to as a time multiplexed bus. This tech· 
nique provides the most efficient use of pins on the 
processor while permitting the use of a standard 40·lead 
package. This "local bus" can be buffered directly and 
used throughout the system with address latching pro· 
vided on memory and 1/0 modules. In addition, the bus 
can also be demultiplexed at the processor with a single 
set of address latches if a standard non·multiplexed bus 
is desired for the system. 

Each processor bus cycle consists of at least four ClK 
cycles. These are referred to as T" T 2, T 3 and T 4 (see 
Figure 5). The address is emitted from the processor 
during T, and data transfer occurs on the bus during T 3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 
"Wait" states (T w) are inserted between T 3 and T 4. Each 
inserted "Wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8086 bus cycles. 
These are referred to as "Idle" states (TI) or inactive ClK 
cycles. The processor uses these cycles for internal 
housekeeping. 

During T, of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/MX strap). At 
the trailing edge of this pulse, a valid address and cer· 
tain status information for the cycie may be latched. 

B-4 

Status bits 50, 8;', and S2 are used, in maximum mode, 
by the bus controller to identify the type of bus transac· 
tion according to the following table: 

S2 s:; Sa 
o (lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 1 0 Write 1/0 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 0 Write Data to Memory 

Passive (no bus cycle) 

Status bits S3 through S7 are multiplexed with high· 
order address bits and the SHE signal, and are therefore 
valid during T2 through T4. S3 and S4 indicate which 
segment register (see Instruction Set description) was 
used for this bus cycle in forming the address, accord· 
ing to the following table: 

S4 83 

o (lOW) 0 
o 1 
1 (HIGH) 0 
1 1 

Alternate Data (extra segment) 
Stack 
Code or None 
Data 

S5 is a reflection of the PSW interrupt enable bit. S6 = 0 
and 57 is a spare status bit. 
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T, 

elK 

GOES INACTIVE IN THE STATE 

:~~'------LJ..//~I/@ft-Z ~ \'----
ADDR STATUS 

AODR'DATA -----~~ ____ DA_TA_D_U_T'_D,_,-_DO_' __ ~~-~ 

READY 

-- MEMORY ACCESS TlME--

\'---_----11 

Figure 5. Basic System Timing 

1/0 ADDRESSING 

In the 8086, I/O operations can address up to a max· 
imum of 64K 1/0 byte registers or 32K 1/0 word registers. 
The 1/0 address appears in the same format as the 
memory address on bus lines A15-Ao. The address lines 
A19-A16 are zero in 1/0 operations. The variable 1/0 in· 
structions which use register OX as a pointer have full 
address capability while the direct 1/0 instructions 
directly address one or two of the 256 1/0 byte locations 
in page 0 of the 1/0 address space. 

1/0 ports are addressed in the same manner as memory 
locations. Even addressed bytes are transferred on the 
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0 7-00 bus lines and odd addressed bytes on 0 15-08, 

Care must be taken to assure that each register within 
an 8·bit peripheral located on the lower portion of the 
bus be addressed as even. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8086 RESET is 
required to be HIGH for greater than 4 ClK cycles. The 
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8086 will terminate operations on the high·going edge of 
RESET and will remain dormant as long as RESET is 
HIGH. The low·going transition of RESET triggers an in· 
ternal reset sequence for approximately 10 ClK cycles. 
After this interval the 8086 operates normally beginning 
with the instruction in absolute location FFFFOH (see 
Figure 3b). The details of this operation are specified In 
the Instruction Set description of the MCS·86 Users' 
Manual. The RESET Input is internally synchronized to 
the processor clock. At initialization the HIGH·to·lOW 
transition of RESET must occur no sooner than 50 ,..s 
after power·up, to allow complete initialization of the 
8086. 

If INTR is asserted sooner than 9 ClK cycles after the 
end of RESET, the processor may execute one instruc· 
tion before responding to the interrupt. NMI may not be 
asserted prior to the 2nd ClK cycle following the end of 
RESET. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the Instruction Set description. Hardware interrupts can 
be classified as non·maskable or maskable. 

Interrupts result in a transfer of control to a new pro· 
gram location. A 256·element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see 
Figure 3b), which are reserved for this purpose. Each 
element in the table is 4 bytes in size and corresponds 
to an interrupt "type". An interrupting device supplies 
an 8·bit type number, during the interrupt acknowledge 
sequence, which is used to "vector" through the ap· 
propriate element to the new interrupt service program 
location. 

NON·MASKABLE INTERRUP 

The processor provides a single non·ma 
pin (NMI) which has higher priority than the . 
terrupt request pin (INTR). A typical use would be 0tij 1;" 

tivate a power failure routine. The NMI is edge.trigger~6:>$. 
on a lOW.to·HIGH transition. The activation of this pin 
causes a type 2 interrupt. (See Instruction Set descrip­
tion.) 

NMI is required to have a duration in the HIGH state of 
greater than two ClK cycles, but is not required to be 
synchronized to the clock. Any high-going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide, and variable shift instruc· 
tions. There is no specification on the occurrence of the 
low'going edge; it may occur before, during, or after the 
servicing of NMI. Another high-going edge triggers 
another response if it occurs after the start of the N M I 
procedure. The signal must be free of logical spikes in 
general and be free of bounces on the low-going edge to 
avoid triggering extraneous responses. 

MASKABLEINTERRUPTONT~ 

The 8086 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable FLAG status bit. The 
interrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high·going 
edge of ClK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block-type instruction. During the interrupt response 
sequence further interrupts are disabled. The enable bit 
is reset as part of the response to any interrupt (INTR, 
NMI, software interrupt or single'step), although the 

I T1 T2 T3 T4ITI! T1 T2 T3 

AlE~~---(ln __ 

INTA 

\\--.---11 I/---I ____ I 
\ r' ~I ~ I( 

\ FLOAT 
ADo-AD'5 ~~~""'------------I/ ,I \r--TYP-EVECTO~R )-

Figure 6. Interrupt Aclmowledge Sequence 
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FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the 
interrupt. Until the old FLAGS register is restored the 
enable bit will be zero unless specifically set by an 
instruction. 

During the response sequence (figure 6) the processor 
executes two successive (back·to·back) interrupt 
acknowledge cycles. The 8086 emits the LOCK signal 
from T 2 of the first bus cycle until T 2 of the second. A 
local bus "hold" request will not be honored until the 
end of the second bus cycle. In the second bus cycle a 
byte is fetched from the external interrupt system (e.g., 
8259A PIC) which identifies the source (type) of the 
interrupt. This byte is multiplied by four and used as a 
pOinter into the interrupt vector lookup table. An INTR 
signal left HIGH will be continually responded to within 
the limitations of the enable bit and sample period. The 
INTERRUPT RETURN instruction includes a FLAGS pop 
which returns the status of the original interrupt enable 
bit when it restores the FLAGS. 

HALT 

When a software "HALT" instruction is executed the 
processor indicates that it is entering the "HALT" state 
in one of two ways depending upon which mode is 
strapped. In minimum mode, the processor issues one 
ALE with no qualifying bus control signals. In Maximum 
Mode, the processor issues appropriate HALT status on 
525180 and the 8288 bus controller issues one ALE. The 
8086 will not leave the "HALT" state when a local bus 
"hold" is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 8086 out of the "HALT" 
state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the proc· 
essor when directly consecutive bus cycles are required 
during the execution of an instruction. This provides the 
processor with the capability of performing read/modify/ 
write operations on memory (via the Exchange Register 
With Memory instruction, for example) without the 
possibility of another system bus master receiving 
intervening memory cycles. This is useful in multi· 
processor system configurations to accomplish "test 
and set lock" operations. The LOCK signal is activated 
(forced LOW) in the clock cycle following the one in 
which the software "LOCK" prefix instruction is 
decoded by the EU. It is deactivated at the end of the 
last bus cycle of the instruction following the "LOCK" 
prefix instruction. While LOCK is active all interrupts 
are masked and a request on a RQ/GT pin will be 
recorded and then honored at the end of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to the interrupts and general 110 
capabilities, the 8086 provides a single software· 
testable input known as the TEST signal. At any time the 
program may execute a WAIT instruction. If at that time 
the TEST signal is inactive (HIGH), program execution 
becomes suspended while the processor waits for TEST 
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to become active. It must remam. 
CLK cycles. The WAIT instructl~;'I&., 
repeatedly until that time. This activitY'dge~./ 
sume bus cycles. The processor remains in·1l-nc· ... 
while waiting. All 8086 drivers go to 3·state OFFif,bH·s,. 
"Hold"is entered. If interrupts are enabled, they rrilly 
occur while the processor is waiting. When this occurs 
the processor fetches the WAIT instruction one extra 
time, processes the interrupt, and then re·fetches and 
re·executes the WAIT instruction upon returning from 
the interrupt. 

8086 COMPARED WITH 8080/8085 
While the 8086 has new instruction coding patterns to 
allow for the greatly expanded capabilities, all functions 
of the 8080/8085 may be performed by the 8086 with 
identical program semantics to their 8080/8085 ver· 
sions. For every 8080/8085 instruction there is a corre· 
sponding 8086 instruction (or, in rare cases, a short 
sequence of instructions). Virtually all 8086 data manip· 
ulation instructions may be specified to operate on 
either the full set of 16·bit registers or on an 8·bit subset 
of them which corresponds to the 8080 register set. This 
relationship is shown in Figure 7 where the shaded 
registers (names in parentheses) represent the 8080 
register set. 

BASIC SYSTEM TIMING 
Typical system configurations for the processor 
operating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In minimum 
mode, the MN/MX pin is strapped to Vee and the proc· 
essor emits bus control signals in a manner similar to 
the 8085. In maximum mode, the MN/MX pin is strapped 
to Vss and the processor emits coded status informa· 
tion which the 8288 bus controller uses to generate 
MULTIBUS compatible bus control signals. Figure 5 iI· 
lustrates the signal timing relationships. 

AX AH ,AL ", (A) ACCUMULATOR 

ex >,BH 'BL (HL) BASE 

ex CH CL' (BC) COUNT 

ox DH DL (DE) DATA 

SP) STACK POINTER 

BASE POINTER 

SOURCE INDEX 

DESTINATION INDEX 

~~' BP 

SI 

01 

~~~I~( PC) INSTRUCTION POINTER 

: • FlAGSH _!H~~\: I 

cs 
OS 

'---- SS 

ES 

PSW) STATUS FLAGS 

CODE SEGMENT 

DATA SEGMENT 

STACK SEGMENT 

EXTRA SEGMENT 

Figure 7. 8086 Register Model; (8080 Registers Shaded) 
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SYSTEM TIMING - MINIMUM SYSTEM 
The read cycle begins In Tl with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low· 
going) edge of this signal Is used to latch the address 
information, which Is valid on the local bus at this time, 
Into the 828;,1/8283 latch. The BHE and Ao signals 
address the low, high, or both bytes. From Tl to T4 the 
M/iO signal indicates a memory or 110 operation. At T2 
the address is removed from the local bus and the bus 
goes to a high impedance state. The read control signal 
is also asserted at T 2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to the 
local bus. Some time later valid data will be available on 
the bus and the addressed device will drive the READY 
line HIGH. When the processor returns the read signal 
to a HIGH level, the addressed device will again 3·state 
Its bus drivers. If a transceiver (8286/8287) is required to 
buffer the 8086 local bus, Signals DTiA and DEN are pro· 
vided by the 8086. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The M/iO signal is again 
asserted to indicate a memory or 110 write operation. In 
the T2 immediately following the address emission the 
processor emits the data to be written into the 
addressed location. This data remains valid until the 
middle of T 4. During T 2, T 3, and T w the processor asserts 
the write control signal. The write (WR) signal becomes 
active at the beginning of T2 as opposed to the read 
which is delayed somewhat into T2 to provide time for 
the bus to float. 

The BHE and Ao signals are used to select the proper 
byte(s) of the memoryliO word to be read or written 
according to the following table: 

SHE AO 
0 0 Whole word 

0 Upper byte froml 
to odd address 

0 Lower byte froml 
to even address 

None 
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t>." c". 
110 ports are addressed In the sa 
location. Even addressed bytes are t 
0 7-00 bus lines and odd addressed bytes 

The basic difference between the interrupt a 
edge cycle and a read cycle is that the interru 
acknowledge signal (lNTA) is asserted in place of the 
read (1m) signal and the address bus Is floated. (See 
Figure 6.) In the second of two successive INTA cycles, 
a byte of information is read from bus lines 07-00 as 
supplied by the interrupt system logic (i.e., 8259A Prior· 
ity Interrupt Controller). This byte identifies the source 
(type) of the interrupt. It is multiplied by four and used 
as a pointer into an interrupt vector lookup table, as 
described ear.lier. 

BUS TIMING - MEDIUM COMPLEXITY SYSTEMS 

For medium complexity systems the MN/MX pin is con· 
nected to Vss and the 8288 Bus Controller is added to 
the system as well as an 8282/8283 latch for latching the 
system address, and a 8286/8287 transceiver to allow for 
bus loading greater than the 8086 is capable of handling. 
Signals ALE, DEN, and DTiA are generated by the 8288 
instead of the processor in this configuration although 
their timing remains relatively the same. The 8086 status 
outputs (S"2, 8 1, and So) provide type·of·cycle information 
and become 8288 inputs. This bus cycle information 
specifies read (code, data, or 110), write (data or 110), 
interrupt acknowledge, or software halt. The 8288 thus 
issues control signals specifying memory read or write, 
110 read or write, or interrupt acknowledge. The 8288 
provides two types of write strobes, normal and 
advanced, to be applied as required. The normal write 
strobes have data valid at the leading edge of write. The 
advanced write strobes have the same timing as read 
strobes, and hence data isn't valid at the leading edge of 
write. The 8286/8287 transceiver receives the usual T 
and DE Inputs from the 8288's DTiFi and DEN. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8259A Priority Interrupt Controller is 
positioned on the local bus, a TTL gate Is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge 
sequence and software "poll". 
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8086 FUNCTIONAL PIN DEFINITION 
The following pin function descriptions are for 8086 
systems In either minimum or maximum mode. The 
"local Bus" In these descriptions Is the direct multi· 
plexed bus Interface connection to the 8086 (without 
regard to additional bus buffers). 

ADwADo (INPUT/OUTPUT 3·STATE) 

These lines constitute the time multiplexed memoryllO 
address (T 1) and data (T 2, T 3, T w, T 4) bus. Ao is analogous 
to BHE for the lower byte of the data bus, pins DrDo. It 
is lOW during T 1 when a byte is to be transferred on the 
lower portion of the bus in memory or 1/0 operations. 
Eight-bit oriented devices tied to the lower half would 
normally use Ao to condition chip select functions. (See 
table on page 8.) These lines are active HIGH and float to 
3-state OFF during interrupt acknowledge and local bus 
"hold acknowledge". 

A1g1Sa, A1a1Ss, A17/S4, A1a1S3 (OUTPUT 3-STATE) 

During T1 these are the four most significant address 
lines for memory operations. During 1/0 operations 
these lines are lOW. During memory and 1/0 operations, 
status information is available on these lines during T2, 
T3, Tw, and T4. The status of the interrupt enable FLAG 
bit (S5) is updated at the beginning of each ClK cycle. 
AdS4 and A1rJS3 are encoded as follows: 

A 17/S4 

o (lOW) 
o 
1 (HIGH) 
1 
S6 is 0 (lOW 

1 
o 
1 

Alternate Data 
Stack 
Code or None 
Data 

This information indicates which relocation register is 
presently being used for data accessing. 

These lines float to 3-state OFF during local bus "hold 
acknowledge" . 

BHE/S7 (OUTPUT 3-STATE) 
During T1 the bus high enable signal (BHE) should be 
used to enable data onto the most significant half of the 
data bus, pins 0 15-08' Eight-bit oriented devices tied to 
the upper half of the bus would normally use BHE to 
condition chip select functions. BHE is lOW during T1 
for read, write, and interrupt acknowledge cycles when a 
byte is to .be transferred on the high portion of the bus. 
(See table on page 8.) The S7 status information is avail­
able during T2, T3, and T4. The signal is active lOW, and 
floats to 3-state OFF in "hold". It is lOW during T1 for 
the first interrupt acknowledge cycle. 

RD (OUTPUT 3-STATE) 

Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 
S2 pin. This signal is used to read devices which reside 
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on the 8086 local bus. RD Is actt\;<.efl'eW· 
and T w of any read cycle, and is gli~taii\l!Je9 
HIGH in T 2 until the 8086 local bus has !loa-te 

This signal floats to 3-state OFF in "hold aCk~a~l. 

READY (INPUT) 

READY is the acknowledgement from the addressed 
memory or 1/0 device that it will complete the data 
transfer. The ROY signal from memoryllO is synchro­
nized by the 8284 Clock Generator to form READY. This 
signal is active HIGH. 

INTR (INPUT) 

Interrupt request is a level triggered input which is sam­
pled during the last clock cycle of each instruction to 
determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via 
an interrupt vector lookup table located in system 
memory. It can be internally masked by software reset­
ting the interrupt enable bit. INTR is internally syn­
chronized. This signal is active HIGH. 

TEST (INPUT) 

The TEST input is examined by the "Wait" instruction. If 
the TEST input is lOW execution continues, otherwise 
the processor waits in an "Idle" state. This input is syn­
chronized internally during each clock cycle on the 
leading edge of ClK. 

NMI (INPUT) 

Non-maskable interrupt is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via 
an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A 
transition from a lOW to HIGH initiates the interrupt at 
the end of the current instruction. This input is intern­
ally synchronized. 

RESET (INPUT) 

RESET causes the processor to immediately terminate 
its present activity. The signal must be active HIGH for 
at least four clock cycles. It restarts execution, as 
described in the Instruction Set description, when 
RESET returns lOW. RESET is internally synchronized. 

elK (INPUT) 

The clock provides the basic timing for the processor 
and bus controller. It is asymmetric with a 33% duty 
cycle to provide optimized internal timing. 

Vee 

Vee is the + 5V ± 10% (± 5% on 8086-2, 8086-4) power 
supply pin. 

GND 
GND are the ground pins 
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The following pin function descriptions are fo!:....!he 
8086/8288 system in maximum mode (I.e., MN/MX = 
Vssl. Only the pin functions which are unique to max· 
Imum mode are described; all other pin functions are as 
described above. 

52,51, So (OUTPUT 3·5TATE) 

These status lines are encoded as follows: 

52 51 50 

o (lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 

0 Write Memory 
Passive 

Status is active during T4• T1• and T2 and is returned to 
the passive state (1,1,1) during T 3 or during T w when 
READY is HIGH. This status is used by the 8288 Bus 
Controller to generate all memory and I/O access con­
trol signals_ Any change by 8;,8" or So during T 4 is used 
to indicate the beginning of a bus cycle, and the return 
to the passive state in T3 or T w is used to indicate the 
end of a bus cycle. 

These signals float to 3-state OFF in "hold acknowl­
edge". 

ROtGTo, ROtGTl (INPUT/OUTPUT) 

The request/grant pins are used by other local bus 
masters to force the processor to release the local bus 
at the end of the processor's current bus cycle. Each pin 
is bidirectional with RQ/GTo having higher priority than 
RQ/GT1. RQ/GT has an internal pull-up resistor so may 
be left unconnected. The request/grant sequence is as 
follows (see Figure 14): 

1. A pulse of 1 ClK wide from another local bus 
master indicates a local bus request ("hold") to 
the 8086 (pulse 1). 

p#,<-&,!>-

2. During the CPU's next T4 ol"V .. 
from the 8086 to the requestinif'tl:li! 
indicates that the 8086 has allowed 
to float and that it will enter 
acknowledge" state at the next ClK . The C . 
bus interface unit is disconnected logically from' 
the local bus during "hold acknowledge". 

3. A pulse 1 ClK wide from the requesting master 
indicates to the 8086 (pulse 3) that the "hold" 
request is about to end and that the 8086 can 
reclaim the local bus at the next ClK. 

Each master-master exchange of the local bus is a 
sequence of 3 pulses. There must be one dead ClK 
cycle after each bus exchange. Pulses are active lOW. 

LOCK (OUTPUT 3-STATE) 
The lOCK output indicates that other system bus 
masters are not to gain control of the system bus while 
lOCK is active lOW. The lOCK signal is activated by 
the "lOCK" prefix instruction and remains active until 
the completion of the next instruction. This signal is 
active lOW, and floats to 3-state OFF in "hold acknowl­
edge". 

aSh OSo (OUTPUT) 

QS1 and QSo provide status to allow external tracking of 
the internal 8086 instruction queue. 

Q51 Q50 

o (lOW) 0 
o 1 
1 (HIGH) 0 
1 1 

No Operation 
First Byte of Op Code from Queue 
Empty the Queue 
Subsequent Byte from Queue 

The queue status is valid during the ClK cycle after 
which the queue operation is performed. 

B-1O 
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The followIng pIn function descrIptIons are for the 8088 
mInImum mode (I.e., MN/MX = Vcd. Only the pIn func· 
tlons whIch are unIque to mInImum mode are descrIbed; 
all other pIn functions are as descrIbed above. 

MilO (OUTPUT 3·STATE) 

This status line is logically equivalent to S2 in the max· 
imum mode. It is used to distinguish a memory access 
from an 110 access. M/iO becomes valid in the T 4 
preceding a bus cycle and remains valid until the final T 4 
of the cycle (M = HIGH, 10 = LOW). M/iO floats to 3·state 
OFF in local bus "hold acknowledge". 

ViR (OUTPUT 3·STATE) 

Write strobe indicates that the processor is performing 
a write memory or write 110 cycle, depending on the 
state of the M/K5" signal. INA is active forT 2, T 3 and T w of 
any write cycle. It is active LOW, and floats to 3-state 
OFF in local bus "hold acknowledge". 

INTA (OUTPUT) 

INTA is used as a read strobe for interrupt acknowledge 
cycles. It is active LOW during T 2, T 3 and T w of each 
interrupt acknowledge cycle. INTA floats to 3-state OFF 
in '''hold acknowledge". 

ALE (OUTPUT) 

Address latch enable is provided by the processor to 
latch the address into the 8282/8283 address latch. It is 
a HIGH pulse active during T1 of any bus cycle. Note 
that ALE is never floated. 

DT/R (OUTPUT 3·STATE) 

Data transmit/receive Is needed In mini 
desires to use an 8286/8287 data bus trans 
used to control the direction of data flow throu 
transceiver. Logically DT/R is equivalent to 51 In 
maximum mode, and its timing Is the same as for' 
M/IO.(T = HIGH, R = LOW.) This signal floats to 3-state 
OFF in local bus "hold acknowledge". 

DEN (OUTPUT 3·STATE) 

Data enable is provided as an output enable for the 
8286/8287 in a minimum system which uses the 
transceiver. DEN is active LOW during each memory and 
1/0 access and for INTA cycles. For a read or INTA cycle 
it is active from the middle of T2 until the middle of T4, 
while for a write cycle it is active from the beginning of 
T2 until the middle of T4. DEN floats to 3-state OFF in 
local bus "hold acknowledge". 

HOLD (INPUT), HLDA (OUTPUT) 

HOLD indicates that another master is requesting a 
local bus "hold". To be acknowledged, HOLD must be 
active HIGH. The processor receiving the "hold" 
request will issue HLDA (HIGH) as an acknowledgement 
in the middle of T4 or TI. Simultaneous with the 
issuance of HLDA the processor will float the local bus 
and control lines. After HOLD is detected as being LOW, 
the processor will LOWer HLDA, and when the proces­
sor needs to run another cycle, it will again drive the 
local bus and control lines. (See Figure 15.) 

HOLD is not an asynchronous input. External syn­
chronization should be provided If the system cannot 
otherwise guarantee the setup time. 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground ..........•....... - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D.C. CHARACTERISTICS 

8086: TA=O·Cto 70·C, Vcc=5V ±10% 
8086·218086·4: T A = O·C to 70 ·C, Vee = 5V ± 5 % 

Symbol Paramet.r Min. 

Vil IAput Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

lee Power Supply Current 
8086/8086·4 
8086·2 

III Input Leakage Current 

IlO Output Leakage Current 

Vel Cloek Input Low Voltage -0.5 

VqH Clock Input High Voltage 3.9 

Capacitance of Input Buffer 
CIN (All input except 

ADo-AD15, ROIGn 

CIO 
Capacitance of 1/0 Buffer 
(ADo-AD15, ROIGn 
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'COMMENT: Stresses above those listed under "Ab 
Ratings" may cause permanent damage to the device. Thl 
rating only and functional operation of the device at these or a 
conditions above those indicated In the operational sections of t 
specification is not implied. Exposure to absolute maximum rating con· 
ditions for extended periods may affect device reliability. 

Max. Units T.st Conditions 

+0.8 V 

Vee+ 0.5 V 

0.45 V IOl=2.0 rnA 

V IOH= -400,..A 

340 rnA TA=25·C 
350 rnA 

±10 ,..A OV < VIN < Vee 

±10 ,..A 0.45V Et VOUT Et Vee 

+0.6 V 

Vee + 1.0 V 

10 pF fe= 1 MHz 

20 pF fe= 1 MHz 
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A.C. CHARACTERISTICS 

8086: TA = O·C to 70·C, Vcc = 5V ± 10% 
8086-2/8086-4: TA= O·C to 70·C, Vcc= 5V ± 5% 

8088 MINIMUM COMPLEXITY SYSTEM (Figures 8, 9, 12, 15) 
TIMING REQUIREMENTS 

808818088-4 80811-2 

Symbol Parameter Min. Max. Min. Max. 

TCLCL CLK Cycle Period - 8086 200 500 125 500 
- 8086-4 250 500 

TCLCH CLK Low Time ('h TCLCL) - 15 ('h TCLCL) - 15 

TCHCL CLK High Time ('13 TCLCL) + 2 ('13 TCLCL) + 2 

TCH1CH2 CLK Rise Time 10 10 

TCL2CLI CLK Fall Time 10 10 

TDVCL Data In Setup Time 30 20 

TCLDX Data In Hold Time 10 10 

TRWCL ROY Setup Time into 8284 (See Notes I, 2) 35 35 

TCLRIX ROY Hold Time into 8284 (Sse Notes I, 2) 0 0 

TRYHCH READY Setup Time into 8086 ('h TCLCL)-15 ('h TCLCL)-15 

TCHRYX READY Hold Time Into 8088 30 20 

TRYLCL READY Inactive to CLK (See Note 3) -8 -8 

THVCH HOLD Setup Time 35 20 

TINVCH INTR, NMI, TEST Setup Time (Sse Note 2) 30 15 

TIMING RESPONSES 808818088-4 8088-2 

Symbol Paramaler Min. Mex. Min. Max. 

TCLAV Address Valid Delay 10 110 10 80 

TCLAX Address Hold Time 10 10 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 

TLHLL ALE Width TCLCH-20 TCLCH-l0 

TCLLH ALE Active Delay 80 50 

TCHLL ALE Inactive Delay 85 55 

TLLAX Address Hold Time to ALE Inactive TCHCL-l0 TCHCL-l0 

TCLDV Data Valid Delay 10 110 10 eO 
TCHDX Data Hold Time 10 10 

TWHDX Data Hold Time After WR TCLCH-30 TCLCH-30 

TCVCTV Control Active Delay 1 10 110 10 70 

TCHCTV Control Active Delay 2 10 110 10 80 

TCVCTX Control Inactive Delay 10 110 10 70 

TAZRL Address Float to READ Active 0 0 

TCLRL 1m Active Delay 10 185 10 100 

TCLRH 1m Inactive Delay 10 150 10 80 

TRHAV 1m Inacllve to Next Address Active TCLCL-45 TCLCL-40 

TCLHAV HLDA Valid Delay 10 180 10 100 

TRLRH 1m Width 2TCLCL-75 2TCLCL-50 

TWLWH WRWldth 2TCLCL-80 2TCLCL-40 

TAVAL Address Valid to ALE Low TCLCH-80 TCLCH-40 

NOTES: 1. Signal at 8284 shown for reference only. 
2. Setup requirement for asynchronous Signal only to guarantse recognition at next CLK. 
3. Applies only to T2 slale. (8 ns Into T3) 
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Unlla Te.1 Condilions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Unll. Ta.1 Condilion. 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns CL = 2()'loo pF for 

ns 
all 8086 Outputs 
(In add Ilion to 

ns 8086 self·load) 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) (Figural 10-14) Ji~ 

TIMING REQUIREMENTS 'Yc '$/$ 

808618088-4 80811-2 1;;""11 of 
~ 

Symbol Parameter Min. Max. Min. Max. Units Test C 

TCLCL CLK Cycle Period - 8086 200 500 125 500 ns "4 
- 8086·4 250 500 

TCLCH CLK Low Time (% TCLCL) -15 (% TCLCL)-15 ns 

TCHCL CLK High Time (v.. TCLCL) + 2 (v.. TCLCL) + 2 ns 

TCH1CH2 CLK Aise Time 10 10 ns From .1.0V to 3.5V 

TCL2CLl CLK Fall Time 10 10 ns From 3.5V to 1.0V 

TDVCL Data In Setup Time 30 20 ns 

TCLDX Data In Hold Time 10 10 ns 

TAWCL ADY Setup Time Into 8284 (See Notes 1. 2) 35 35 ns 

TCLA1X ADY Hold Time into 8284 (See Notes 1, 2) 0 0 ns 

TAYHCH AEADY Setup Time into 8086 (2/\ TCLCL) - 15 (% TCLCL) - 15 ns 

TCHAYX AEADY Hold Time into 8086 30 20 ns 

TAYLCL AEADY Inactive to CLK (See Note 4) -8 -8 ns 

TINVCH Setup Time for Aecognition 30 15 ns 
(INTA, NMI, TEST) (See Note 2) 

TGVCH AO/GT Setup Time 30 15 ns 

TCHGX AO Hold Time into 8086 40 30 ns 

TIMING RESPONSES 808618086·4 8086·2 

Symbol Parameter Min. Max. Min. Max. Unll. T •• t Conditions 

TCLML Command Active Delay (See Note 1) 10 35 10 35 ns 

TCLMH Command Inactive Delay (See Note 1) 10 35 10 35 ns 

TAYHSH AEADY Active to Status Passive (See Note 3) 110 65 ns 

TCHSV Status Active Delay 10 110 10 80 ns 

TCLSH Status I nactlve Delay 10 130 10 70 ns 

TCLAV Address Valid Delay 10 110 10 80 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns 

TSVLH Status Valid to ALE High (See Note 1) 15 15 ns 

TSVMCH Status Valid to MCE High (See Note 1) 15 15 ns 

TCLLH CLK Low to ALE Valid (See Note 1) 15 15 ns 

TCLMCH CLK Low to MCE High (See Note 1) 15 15 ns 

TCHLL ALE Inactive Delay (See Note 1) 15 15 ns CL=2()'100 pF for 

TCLMCL MCE Inactive Delay (See Note 1) 15 15 ns 
all 8086 Outputs 
(In addition to 

TCLDV Data Valid Delay 10 110 10 80 ns 8086 self·load) 

TCHDX Data Hold Time 10 10 ns 

TCVNV Control Active Delay (See Note 1) 5 45 5 45 ns 

TCVNX Control Inactive Delay (See Note 1) 10 45 10 45 ns 

T~AL Address Float to Aead Active 0 0 ns 

TCLAL AD Active Delay 10 165 10 100 ns 

TCLAH AD I nactlve Delay 10 150 10 80 ns 

TAHAV AD Inactive to Next Address Active TCLCL-45 TCLCL-40 ns 

TCHDTL Direction Control Active Delay (See Note 1) 50 50 ns 

TCHDTH Direction Control Inactive Delay (See Note 1) 30 30 ns 

TCLGL m Active Delay 0 65 0 50 ns 

TCLGH GT I nactlve Delay 0 65 0 50 ns 

TALAH AD Width 2TCLCL-75 2TCLCL-50 ns 

NOTES: 1. Signal at 8284 or 8286 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns "nto T3). 
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CLK (8284 Output) 

MliO 

ALE 

ROY (8284 Input) 

SEE NOTE 4 

READY (8088 Input) 

READ CYCLE 

(NOTE ') 

AD'5-ADo 

RD 

(WR,INTA=VOH) DTIR 

8086/8086-2/8086-4 

T, T, T, Tw T. 

V ----"~'-tJ rTCL2CL~~ CH~ v----\ 

r-\-vi,. '------.I - -
- TCHCTV f ~ TCHCL I-TCLCH-

TCLAY--- - - TCLDV 1--' TCHDX- t TCLAX- I--

~HE, A19-A,. 
\ 5,-5, 
/ I 

TCLLH-

f 
TLH~L----::::: I--TLLAX 

TALL 

r--

/_---- ::: tt TCHLL-I -TR1VCL 

V,H""'" \ ..... ~--
VIL ....... - I----'TCLR'X 

TRYlCl- -

1 

- ~ 
7 

-- -TCHRYX 

\ 

- TAVAL - TRYHCH- -
TCLAV-

TLLAX----, 1-1 
r- - !-TCLAZ TDVCL--TCLDX-

V A'5-Ao DATA IN 

f=r FLO:~"-
TAZRL_ TCLRH- ,--I i-TRHAV 

~ 
=~TCHCTV TCLRL I TRLRH 

1 
-TCHCTV 

TCVCTV- { TCVCTX- I 

Figure 8. 8088 Bus Timing - Minimum Mode System 

B-15 



elK (8284 Output) 

M/iO 

ALE 

AD,.-ADo 

WRITE CYCLE 

(NOTE j) 
DEN 

(RD. iID. 
DTII!=VOH) 

WR 

AD1S-ADO 

INTA CYCLE DTIR 

(NOTES 11l3) 

~Wii=VOH 
=VOU 

iNTA 

DEN 

8086/8086-2/8086-4 

TCLAZ 

FLOAT 

TCHCTV 

TCVCTV 

TCVCTX 

INVALID ADDRESS 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF To. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDR/DATA BUS IS 
FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS SHOWN FOR 
SECOND INTA CYCLE. 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 9. 8086 Bus Timing - Minimum Mode System (conl'd) 
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ClK 

aSo,as, 

s"s"s, (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

SEE NOTE 5 

RDY (8284 INPUT) 

READ CYCLE 

RD 

DT/R 

8288 OUTPUTS 

SEE NOTES 5,6 
MRDCOR iORC 

DEN 

VCl 

8086/8086-2/8086-4 

T, T, 

TCLAV-..j 

TClRH -+--~~-4 

TCHDTL-I 
TRlRH 

TCLMH---

TCVNX-

Figure 10. 8086 Bus Timing - Maximum Mode System (Using 8288) 
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WRITE CYCLE 

8288 OUTPUTS 

SEE NOTES 5,6 

INTA CYCLE 

elK 

52,51,SO (EXCEPT HALT) 

DEN 

AMWC: OR AIOWC 

MWTC OR lowe 

AD1S..'ADO 
(SEE NOTES 3 & 4) 

MCEI 
POEN 

DT/A 

8288 OUTPUTS 

SEE NOTES 5,6 INTA 

DEN 

SOFTWARE HALT -

8086/8086-2/8086-4 

T, T3 

vel 

TCHDX-

DATA 

TCVNX-

TCLMH---

I 
TeVNx-1 

(~= VoURD,MRDC,IOAC,MWfC,AMWC,IOWC,AIOWC,INTA,DTIR = VOH) 

INVALID ADDRESS 

reLAV 

~ ,..---------~\ - -----
\'----~/ \.- -----

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH ANO VOL UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF T2, T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETweEN FIRST AND SECOND INTA CYCLE. 
4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8086 LOCAL ADDR/DATA BUS IS 

flOATING DURING BOTH INTA CYCLES. CONTROL FOR POINTER ADDRESS 
IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNAL.S AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONL.Y. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL. SIGNAL.S (MlWC, 
~,AMWC, 10RC, 10WC, AIOWC, INTA AND DEN) L.AGS THE ACTIVE HIGH 
8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO Til. 

Figure 11. 8086 Bus Timing - Maximum Mode System (Using 8288) (cont.) 
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INTR 

TEST 

NOTE: 

1, SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT ClK 

Figure 12. Asynchronous Signal Recognition 

Any elK CYCle---j Any eLK Cycle -_I 
eLK 

Figure 13. Bus Lock Signal Timing (Maximum Mode Only) 

Previous grant 

NOTES: 1. THE COPROceSSOR MAY NOT DRIVE THE BUSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION. 

I-----C COPROCESSOR 

(SEE NOTE 1) 

Figure 14. Request/Grant Sequence Timing (Maximum Mode Only) 

Cl' '"\ ~' , CLK ~ .r-I--' OR 2 CYCLES 

'l1-TH~r-I I~~_THV~ 
HOlD~I\ 

11 r ;;TC\--'HAV_---II-__ -I--. 
HLDA ! 

1----1-' 

AD1S·ADo, 
AI9iSe-Als/S3, 

~SL....MIK), 
DTIJi, WR, OEN 

~_-I'"I--': -----;-I\lj~TClAZ______<I--------, 
,. " COPRO~I-ES-S-OR----_-' 

Figure 15. Hold/Hold Acknowledge Timing (Minimum Mode Only) 
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8086 
INSTRUCTION SET SUMMARY 

DATA TRANSFER 
MOV = Move: 7 654 3 2 1 0 7 6 5 4 3 2 1 0 7 6 S 4 3 2 1 0 7 6 5 4 3 2 1 0 

Register/memory to/lrom register i=ll~O~O~O~' o;,d~w+1 m;;;O;;;d'OO,;;;,g~',:,;lm~ __ -'-'-_-'-_=-;---:-l 

Immediate to register/memory i=11C";=0",0",0~, =' ;,w+1 ;;;mo;;;d;;;O;;;O"O=';;;lm~~=:=",d',;,"~~1 _d='~"~,'~w_'~1 
Immediate 10 register ~ 1 w reg I data data II w 1 I 
Memory to accumulator ~w I addr-Iow addr-hlgh ~ 
Accumulator to memory 11 [) 1 DO [) 1 w I addr·low addr-hlgh I 
Register/memory to segment register ~ 1 1 0 I mod [) reg rim 

Segment register 10 register/memory ~ 00 I mod [) reg rim 

PUSH = Push: 

Register/memory 

Register 

Segment register 

POP = Pop: 

Register/memory 

Register 

Segment register 

XCHG = Exchange: 

Register/memory with register 

Register with accumulator 

IN"'lnput from: 

Fixed porI 

Variable port 

OUT" O'utputto: 

FI~ed port 

1 1 1 1 1 1 1 1 mod 1 1 0 

01010 reg 

1000reg 110 I 

110001 1 II! mod 000 rim 1 

101011 reg I 

~;-;=;-;] 

l' 00001 1 w Imod reg rim I 
[TOTiy=;;Q 

~owl porI 

11 1 1 001 1 w I porI 

11 1 10 1 1 1 w I 
1"010111 I 
110001101 Imod reg rim I 
111000101!modreg~ 
11 10001 00 I mod reg rim I 

110011111 I 
1100111101 

1 00 1 1 1 0 0 

DEC Decrement: 

Reglsterlmemory 

Register 

NEG-'Change Sign 

CMP Compare: 

Reglsterlmemory and register 

Immediate With reglsterlmemory 

Immedlale With accumulator 

AAS ASCII adjust for subtract 

DAS-Declmal adlust for subtract 

MUl Multiply (unsigned) 

IMUl Integer multiply (Signed) 

AAM ASCII adjust lor multiply 

DIY DIvide (unslgnedl 

IDlY Integer divide ISlgnedl 

AAD ASCII adjust for divide 

CBW Convert byte to word 

CWO Convert word to double word 

LOGIC 
HOT Invert 

SilL/SAL ShiH loglcallarlthmetlc left 

SIIR Snlftloglcal right 

SAR Shift arithmetiC right 

AOL Rolate lett 

ADA Rotate right 

ACl Rolate through carry Ilag left 

RC R ~ Rot a te Ihro ugh car ry fig hI 

AND And: 

7 6 543 2 1 0 7 6 5 4 3 2 1 0 

11 I 1 1 1 1 1 W I mod 001 rim 

10100 I reg I 

~10"-IIW imodOll rim 

\001 1 10 d w I mod reg rim 

1100000 s w I mod 1 1 1 rim 

10 0 I 1 1 lOW I data 

100111111 I 

100101111 I 

111 11011 w Imod 100 rim I 
111 11011 w I mod 101 rim I 
11 1 0 1 0 1 00 I 00 0 0 1 a 1 0 I 
liiiii'l w Imodl1~ 
11 1 1 1 0.1 1 W I mod 1 1 1 rim I 

111010101100001010 I 

rT~ 
1'00110011 

11 1 1 1011 w I mod 0 1 0 um 1 
11 1,01 00 v w I mod 100 rl~ 
11 1 0 1 00 v w I mod 101 11m 1 
11 1 a 1 a 0 v w I mod 1 1 1 ,1m 1 
11 1 0 1 00 v w I mod 000 ,1m 1 
1110100 v w ImodO 0 1 1 
11 10100 v w Imod 010 1 
1110100 v w I modO 11 1 

data data Ifsw-Ol I 
data Ilw 1 

Variable port 

XlAT=Translate byte to Al 

lEA "load EA to rt!gister 

lDS=load pointer to OS 

lES=load poinler 10 ES 

LAHf~load AH with flags 

SA"f=Slore AH into ftags 

PUSHF"Push flags 

PDPF"Pop flags 10011,101 Reg Imemory and register to either IF.o;,,;O;;;',,;O,,;O~O;.d;..;;,W+1 m;;;O,,:d,:,,'~'9~',:,;lm~ __ =_--'_==--:-l 
Immediate to reglsterlmemory 1~I;,,;o;,,;o;,,;o;.o;.o;,,;o~w~1 m::;:o~d~' ~O ~0~';;,lm4~~;:;d,:::"~+-,d"-,,,,-,-,,;I-,,W,-,-'----"1 

ARITHMETIC 
ADD 0 Add, 

Reg.lmemory with register to either :.:O;.:O;.:O;.:O;.:O;.:O:.;d:..w~m:;::O~d ~'~'9~i;;;lm9-____ --' ____ --'--' 

Immediate to register/memory F.,~o;.;o;.;o;.;o~o;.,;..w~m:;::o;,d;,O ~O;,O ,:,;';;;lm9~=c""d;;';;;"=c""+--",d,,,,,,,,,;I-,-,-,,w-,,00"-J' 
Immediate to accumulator I 0 a 0 0 0 lOw I data data if w=1 

ADC " Add with carry: 

Reg.lmemory with register to either :.:1 O:.;O:.;O;.';.O;.O;.d;..w~1 m:;::o~d ~'~'9~';;;lm9-_____ -'-_____ --:-l 

Immediate to register/memory F.ll,.;0e;o;;o;;o;;o;",;.w~1 m;;;;O;;,d;.O ,;,' ;;,0 ,:,;';;;lm9~=c""d;;';;;""'7+--",d,,,,,,,,,;I-,-'c:w-,00"-Jl I 
Immediate to accumulator 10 0 0 1 0 lOw I data data II w·l 

INC'" Incrlm.nl: 
Register/memory 

Register 

AAA"ASCIl adjust for add 

DlA,.Decimal adjust for add 

SUB 0 SUb""t, 
Reg.fmemory and register to either 

Immediate from register/memory 

Immediate from accumulator 

.BB 0 SUbtrlCl wHh borrow 
Reg,/memory and register to either 

Immediatelrom register/memory 

Immediate Irom accumulator 

Mnemonics ©Intel, 1978 

1 1 1 1 1 1 1 w mod a 0 0 rim 

o 1 000 reg 

a a 1 1 0 1 1 1 

10010011 1 

100 1 0 1 0 d w I mod reg rim 

1 00000 5 W mod 1 0 1 rim 

0010110w data 

a 0 0 1 1 0 d w mod reg rim 

100000 sw modO II rIm 

I0001110wl data 

data 

data it w-l 

data 

data if w 1 

data if s:w=Ol 

data if s:w-Ol 

Immediate to accumulator 10 0 1 00 law I dala data II w-l 

TEST - And funcllon to lIags, no resule-t, -cc:--:--:--:--.----,-------, 
Reglsterlmemory and register 11 00 00,1 0 w I mod reg rim 
Immediate data and register Imemory F.ll;;;'~';;;';"O~'~' w~1 ;;mO~d':"O ~o"'o;;;';;;lm~---;:d,c:,,----'-1 -d"""''''';I---W---o,''1 

Immediate data and accumulator 11 0 1 0 1 0 0 w I data data~ 

OR ' Or: 
Reg.tmemory arld register to either 10 000 1 0 d W I mod _ reg, ~ 
Immediate to registerimemory Li::£o 0 000 W I modO 01 rim I data 

Immediate to accumulator 100 0 0 1 lOw I data I data If w-l 

XOR = Elclusl"e or: 

Reg,lmemory and register to either 10 0 1 1 00 d w I mod reg i!iiJ 
Immediate to register Imemory 1 0 0 0 0 0 0 w mod 1 1 0 rim data 

Immediate to accumulator 

STRING MANIPULATION 
REP"Repeat 

MOVS=Move byte/word 

CMPS"Compare byte/word 

SCAS"Scan byte/word 

lOOS"load byte/wd to Al/AX 

STOS"Stor byte/wd from ALIA 

0011 0 lOw 

11 1 1 1 00 1 z I 
11010010wl 

1101001 1 w I 
liii:.o:::iii:iJ 
1101 0 1 1 Ow I 
110101O'wi 

data data if w-l 

data II w~ 1 I 

data ifw-l 
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CONTROL TRANSFER 
CAll· C.II, 78543210 18543Z10 111543210 76543210 765432'10 

Direct within segment 11101000 dlsp·low dlsp-hlgh JNB/JAE Jump on not below/above jOl1100111 dlsp -, 
or equal 

Indirect within segment 11111111 moll 010 <1m JNBE/JA Jump on not below or [01110 111 1 dlsp I 
1100110101 I 

equal/above 

10""_0"1 dlS~ I Oirectlntersegment oltseHow olfset-hlgh JNP/JPO Jump on nolpar/par odd 

! seg-Iow seg-hlgh I JIfO-Jump on not overflow 101110001 1 dlsp I 
Indirect mtersegment 111'11111 :mOd 0 11 rim JIB Jump on not Sign 101111001 1 dlsp ] 
JMP = Uncandlllon.1 Jump: 

LOOP Loop CX limes 111100010] dlsp 1 
lDOPlJlOOP£ Loop whllelero/eQual 111100001 I dlsp 1 

Direct wl!hm segment 1'11010 01 1 dlsp-Iow dlsp-hlgh 1 LODP"ZlLOOPNE Loop .... hlle not 11100000 dlsp 
Direct within segment-short 1'11010111 dlsp lero/equal 

JCXZ Jump on ex zero 11100011 dlslJ 
Induect Wlthmsegment 11111111 mod 1 00 <1m 

Dlrectmtersegment 11101010 ollset-Iow ottsel-hl 9h INT Interrupt L -·-Seg-IOw I Seg-h.gh~ Typespecilled 111001101 I lype I 
Indirect mlersegmenl 111111111 !moll 1 a 1 rIm I Type 3 111001100 I 

INTO InlerrUll1 on overfloW 111001110 I 
RET '" Relurn from CALL: IRETlnlerrulllrelurn 111001111 I 
Withinsegmenl 1110000111 
Withm seg. addmg Immed 10 SP 1110000101 data-low data.hlgiiOOO] 

Intersegment 1"0010111 
Intersegmenl. addmg Immediate 10 SP 11001010 data·low data·hlgh PROCESSOR CONTROL 
JE/JZ=JumponeQuallzero 01110100 !lISP CLCClearcarry 111111000 I Jl/JI.E~Jump on less/nol greater 

01111100 dlsp CMC Complement carry 111110101 I or equal 
JLE/JIIS=Jump on less or eQuallnot 

1011111101 !lISP STCSetcarry 111111001 I greater 
JI/JI.E=Jump on below/not above 1011100 10 1 !lISP CLDCleardlrecllOn 111111100 1 or equal 
JIE/JNAn~~~Co~~ below or equal/ 101 110110 1 dlsp STD·SetOlrecllon 111111101 I 
JP/JPE""Jump on panly/paflty even 101111010 1 !lISP eLI Clear mterrupt 111111010 I 
JO=Jumpon overilow 1011100001 dlsp STISeltrlterrupt 11111101!] 

JS"Jump on sign 1011110001 dlsp HLT Hall 111110100 1 
JIE/JIZ=Jump on nol eQualinolzero 01110101 dlsp WAIT Wall 1100110111 
JIIL/JSE"Jump on not less/greater 

01111101 !lISP ESC Escape (to external device) ~~Odx~_:;::Y~~ or equal 
J'lE/J6~Jump on not less or equal/ 1011111111 dlsp LOCK Bus lOCk prefix ["""1i"I1Qo-olil greater 

---------------------------------------_._--------

F'DI1IoIa: 

AL : 8-bit accumulalor 
AX '" 16--bit accumulator 
CX • Count register 
OS : Oala segmenl 
ES : Extra segment 
Above/below reters to unsigned value. 
Greater:. more positive; 
less'" less positive (more negative) signed values 
if d '" 1 then "to" reg; ifd '" o then "from" reg 

if w '" 1 then word Instruction; if w = 0 then byte instruction 

if mod: 11 then r 1m is treated as a REG field 
if mod: 00 then OISP : 0', disp·low and disp-high are absent 
if mod: 01 Ihen OISP • disp-Iow sign-extended to 16-bits, dlsp-high is absenl 
if mod: 10 then OISP : disp·high: disp-Iow 

if rim: 000 then EA : (BXI • (SII • OISP 
if rim: 001 then EA : (BXI • (011 • OISP 
if rim: 010 then EA : (BPI. (SII • OISP 
If rim: 011 then EA : (BPI. (011 • OISP 
if rim: 100 then EA : (SII • OISP 
if rim: 101 then EA : (011 • OISP 
if rim: 110 then EA : (BPI. OISP' 
if rim: 111 then EA : (BXI .0ISP 
DISP follows 2nd byte of instruction (before data if required) 

'except if mod: 00 and rim: 110 then EA : disp·high: disp-Iow. 

Mnemonics© Intel, 1978 

if s:w = 01 then 16 bits of immediate data form the operand. 
if s:W = 11 then an immediate data byte is sign extended to 

form the 16-bit operand. 
if v = 0 then "count" = 1: if v = 1 then "count" in tel) 
x = don't care 
Z IS used for string primitives for comparison WIth l.F FLAG. 

SEGMENT OVERRIDE PREFIX 

10 0 I reg I 01 

REG is aSSigned according to the following table: 

!!Billw" II 8-Blllw·OI 
000 AX 000 AL 
OOt CX Oot CL 
OtO OX OtO ol 
Ot, BX Ott BL 
tOO SP tOO AH 
lOt BP 101 CH 
110 SI 110 OH 
111 01 tIl BH 

~.gmenl 

DO ES 
Ot CS 
to SS 
tt OS 

Inslructions which reference the flag register file as a 16-bit object use Ihe symbol FLAGS 10 
represent the file: 

FLAGS : X:X:X:X:(oFI:(OFI:(lFI:(TF):(SFI:(lF):X:(AF):X:(PF):X:(CF) 
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M8086 
16·BIT HMOS MICROPROCESSOR 

• Direct Addressing Capability to 1 • 8·and 16·Bit Signed and Unsigned 
MByte of Memory Arithmetic in Binary or Decimal 

Assembly Language Compatible with 
Including Multiply and Divide 

• 
8080/8085 • 5 MHz Clock Rate 

• 14 Word, By 16·Bit Register Set with 
MULTIBUS™ System Compatible Symmetrical Operations • 
Interface 

• 24 Operand Addressing Modes 
• Full Military Temperature Range 

• Bit, Byte, Word, and Block Operations - 55°C to + 125°C 

The Intel® M8086 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package_ The processor has attributes of both 8- and 
16-bit microprocessors. It addresses memory as a sequence of 8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance. 

~~f.CUTION ~1 

REGISTER FILE 

DATA 
POINTER, AND 

INDEX REGS 
18 WORDS) 

FLAGS 

BUS INTERFACE UNIT 

IRMCAT~O~----' 
REGISTER FILE 

I 

'---;-r--' YOTiR.OE"N,Alf: 

! INSTRUCTION .lbou,", 

TEsT--_r------~~-------, 
INT--_ 
NMI---

CONTROL & TIMING 

HOLO--_ 

HLDA_---<--,-__ -. __ ,-__ ..... -:::"" 

ell( RESET DND 
V" 

2 aso.as, 

Figure 1_ M8086 CPU Functional Block Diagram 
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GND VCC 

AD14 AD15 

AD13 A16/S3 

AD12 AU/54 

AD11 A181SS 

A010 A19fS6 

AD9 BHE/S7 

ADa MNIMX 

AD' RO 
AD6 ~IGTO (HOLD) 

ADS RO/GT1 (HlDA) 

AD' lOCK (WA) 

AD3 52 (Mlie) 

AD2 51 (DTIR) 

AD1 so (DEN) 

ADO eso (ALE) 

NMI OS1 (lNTA) 

INTR TEST 

ClK READY 

GND RESET 

40 LEAD 

Figure 2_ M8086 Pin Diagram 



18086 
16·BIT HMOS MICROPROCESSOR 

• Direct Addressing Capability to 1 • 8·and 16·Bit Signed and Unsigned 
M Byte of Memory Arithmetic in Binary or Decimal 

Assembly Language Compatible with 
Including Multiply and Divide 

• 
808018085 • 5 MHz Clock Rate 

• 14 Word, By 16·Bit Regtster Set with 
Symmetrical Operations • MULTIBUS™ System Compatible 

24 Operand Addressing Modes 
Interface 

• 
• Industrial Temperature Range 

• Bit, Byte, Word, and Block Operations - 40°C to + 85°C 

The Intel® I8086 is a new generation, high performance microprocessor implemented in N·channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40'pin CerDIP package. The processor has attributes of both 8· and 
16·bit microprocessors. It addresses memory as a sequence of 8·bit bytes, but has a 16·bit wide physical path to 
memory for high performance. 

EXECUTION UNIT 

REGISTER FILE 

DATA. 
POINTER, AND 
INDEX REGS 

(8 WORDS) 

16·BIT ALU 

FLAGS 

BUS INTERfACE UNIT 

i-RELOCATK>N-""-1 
REGISTER FILE 

~--_r------~~-------' 
INT--_ 
NMI---

CONTROL & TIMING 

HOLD---
HLOA--....-r __ ... __ .--__ -;---:::~ 

elK RESET READY 

DTiR'D"E'N ALE 

Figure 1. 18086 CPU Functional Block Diagram 
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GND Vee 
A014 A015 

AD13 A16/S3 

AD12 A17/54 

AD11 AlB/55 

AD10 A19/S6 

AD9 BHE/S7 

AD8 MN/MX 

AD7 AD 
AD6 Ra/GTO (HOLD) 

ADS Ra/GT1 (HLDA) 

AD' LOCK (WR) 

AD3 52 (M/iO) 

AD2 51 (DTIR) 

AD1 so (DEN) 

ADO aso (ALE) 

NM) aS1 (INTA) 

INTR TEST 

elK READY 

GND RESET 

40 LEAD 

Figure 2. 18086 Pin Diagram 



8088 
8-BIT HMPS MICROPROCESSOR 

• 8·Bit Data Bus Interface 

• 16·Bit Internal Architecture 

• Direct Addressing Capability to 1 Mbyte 
of Memory 

• Direct Software Compatibility with 8086 

• 14·Word by 16·Bit Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Byte, Word, and Block Operations 

• 8·Bit and 16·Bit Signed and Unsigned 
Arithmetic in Binary or Decimal, includ· 
ing Multiply and Divide 

• Compatible with 8155·2, 8755A·2 and 
8185·2 Multiplexed Peripherals 

The Intel"'8088 is a new generation, high performance microprocessor implemented in N·channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8 and 
16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals. 

8088 CPU FUNCTIONAL BLOCK DIAGRAM 8088 PIN DIAGRAM 

MEMORY INTERFACE 

MIN ! MAX 1 C·BUS MODE MODE 

GND Vee 

A14 A1S 

A13 A16JS3 
INSTRUCTION A12 A17/S4 
STREAM BYTE 

OUEUE A11 A181SS 

A10 A19/S6 

A9 SSO (HIGH) 

BUS 
CS A8 MN/MX 

INTERFACE SS AD7 Ali 
UNIT 

DS (RQ/GTO) AD6 HOLD 

IP ADS HlDA (Ali/ilfi) 

AD4 Wii (lOCK) 

A·BUS AD3 101M (52) 

AD2 DTIft (51) 

AD1 DEN (SO) 

AH Al ADO ALE (OSO) 
BH Bl NMI INTA (OS1) 
CH Cl 

TEST 
DH Dl 

INTR 
EXECUTION 

UNIT SP ClK READY 

BP GND RESET 

SI 

01 FLAGS 
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FUNCTIONAL DESCRIPTION 

Memory Organization 
The processor provides a 20·bit address to memory 
which locates the byte being referenced. The memory is 
logically organized as a linear array of 1 million bytes, 
addressed as OOOOO(H} to FFFFF(H}. The memory can be 
further logically divided into code, data, alternate data, 
and stack segments of up to 64K bytes each, with each 
segment falling on 16·byte boundaries. (See Figure 1.) 

Word (16·bit) operands can be located on even or odd ad· 
dress boundaries. For address and data operands, the 
least significant byte of the word is stored in the lower 
valued address location and the most significant byte in 
the next higher address location. The BIU will auto· 
matically execute two fetch or write cycles for 16·bit 
operands. 

~FFFFFH 

6.1K6 D} CODE SEGMENT 

i·-L XXXXOH 

I. tj lJ STACK SEGMENT 

+ OFFSET H 
SEGMENT l 

REGISTER FILE ( MSB 

~~3;1~~~~==~lW~O_RD~\t:BL;:::E~ J DATA SEGMENT 
OS 
ES 

} EXTRA DATA SEGMENT 

'---4----1 
'C.-..-..:1" OOOOOH 

Figure 1. Memory Organization 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 2.) Locations from ad· 
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system initial· 
ization routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be located. Locations OOOOOH through 003FFH are 
reserved for interrupt operations. Four·byte pointers 
consisting of a 16·bit segment address and a 16·bit off· 
set address direct program flow to one of the 256 possi· 
ble interrupt service routines. The pointer elements are 
assumed to have been stored at their respective places 
in reserved memory prior to the occurrence of inter· 
rupts. 

f~f"~ r: 
Minimum and Maximum M'OQiss 

P'!J:< ~'Ot 

The requirements for supporting mirif~~. 
mum 8088 systems are sufficiently differe'h1,\.: 
cannot be done efficiently with 40 uniquely' ~jt}e~:t 
pins. Consequently, the 8088 is equipped with a st'ra,p'c 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes, 
dependent on the condition of the strap pin. When the 
MN/MX pin is strapped to GND, the 8088 defines pins 24 
through 31 and 34 in maximum mode. When the MN/MX 
pin is strapped to Vee, the 8088 generates bus control 
signals itself on pins 24 through 31 and 34. 

~----------~ FFFFFH 
RESET BOOTSTRAP 

1-__ --'-P"'RO=-G=.:R"'Ac::M-=:J"-'UM"'P ___ --l FFFFOH 

1---------~----l3FFH 
INTERRUPT POINTER 

~---~F~O~R~TY~P~E~25~5---~3FOH 

1--------------l7H 
INTERRUPT POINTER 

FOR TYPE 1 H 
~-----IN-TE~R=-R~UP~T~P=-OI~N-TE-R--~~H 
L-___ ~F_=:O~R~TY~P_=:E~O ___ ~OH 

Figure 2. Reserved Memory Locations 

The minimum mode 8088 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed bus 
configuration is compatible with the MCS·85™ multi· 
plexed bus peripherals (8155, 8156, 8355, 8755A, and 
8185). This configuration (See Figure 3) provides the 
user with a minimum chip count system. This architec· 
ture provides the 8088 processing power in a highly in· 
tegrated form. 

The demultiplexed mode requires one latch (for 64K ad· 
dressability) or two latches (for a full megabyte of ad· 
dressing). A third latch can be used for buffering if the 
address bus loading requires it. An 8286 or 8287 trans· 
ceiver can also be used if data bus buffering is required. 
(See Figure 4.) The 8088 provides DEN and DT/R to con· 
trol the transceiver, and ALE to latch the addresses. 
This configuration of the minimum mode provides the 
standard demultiplexed bus structure with heavy bus 
buffering and relaxed bus timing requirements. 

The maximum mode employs the 8288 bus controller. 
(See Figure 5.) The 8288 decodes status lines SO, Sf, 
and S2, and provides the system with all bus control 
signals. Moving the bus control to the 8288 provides 
better source and sink current capability to the control 
lines, and frees the 8088 pins for extended large system 
features. Hardware lock, queue status, and two request! 
grant interfaces are provided by the 8088 in maximum 
mode. These features allow co·processors in local bus 
and remote bus configurations. 
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/' /' Vss Vee 

I I 
5-- CE POR:~ 

WR 

RD POR~~ 
a155 

ALE PORT~ 
"'- DATA C (61 

ADDR 

IN-
10 IVl TIMER 

RESET 
OUT r---

"-
As-A19 ADDR lOW 

RD 

~ ADo - AD7 ADDR/DATA ALE 

~ ,---- ClK 

s-~ 
PORT 

CE A 

t= A A S10 
8088 1/ 8355 '8755A ,-- READY 

MN/MX -Vee DATA 
ADDR 

VCC 

~ 
T 

rD1 ALi - -

~ 
IO,'M PORT 

r- RESET 
- - - - B RI) RESET 

X, X2 
ClK We -

~c 
READY - I 101M -"-- - lOR 

"- RES ! ! I t 8284 

RESET -- Vss Vee VDD PROG 

GND WR 

RD 

CE, 
8185 

ALE 

\-- CS, GEL 

\-- Ag,Ag 

/ ADo) 

I 1 
Vs~ Vee 

Figure 3. Multiplexed Bus Configuration 
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Vee D 

~ 82" CLOCK 
GENERATOR 

m 

I ROY 
ONO 

T OE~t~~~OR rR3 

I ROY 

ONO 

8088 

eLK "'N/M'X Vee 
READY 101M 
AESET ftlj 

IVA 
8088 

CPU INTA 

L _______ ----------lINT 

¢= IRO-7 

Figure 4. Demultiplexed Bus Configuration 

r---7.M~N'~MX~ __ GNO r--ce~LK~M~Ro~e1--------------~----~------_ 
eLK sof-------lsu MWTC 

READY s;- 5;" AMWC N C 

RESET S; 52 8288 IORC f----------.---------t-If--------II-----.----
~ [ .-e=::': e::=:;l~R A:~~~r---N e -------,--Ji :------t-+--I I -----t

L
----++

l
Li • 

A~~-=-~~;l!'-o.N'"Od±--: ~~B c=::=;::::;=~~==~AOi1iO'ffiRE~s§:s=~1 ~==;--;=== _ _~ 

rln!-l~ INT 

¢===IRO-7 

Figure 5. Fully Buffered System Using Bus Controller 
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Bus Operation 
The SOSS address/data bus is broken into three parts -
the lower eight address/data bits (ADO-AD?), the middle 
eight address bits (AS-A15), and the upper four address 
bits (A16-A19). The address/data bits and the highest 
four address bits are time multiplexed. This technique 
provides the most efficient use of pins on the proc­
essor, permitting the use of a standard 40 lead package. 
The middle eight address bits are not multiplexed, i.e. 
they remain valid throughout each bus cycle. In add i-

1--------t4+NwAITI=TCy 

T, T2 I T3 TWAIT 

ClK 

/). 

tion, the bus can be demultiple"~1rCt 
a single address latch if a standaf~fh~ 
bus is desired for the system. ~-1/'''/f' 

'J,~/Ot'f 
Each processor bus cycle consists of at least four 
cycles. These are referred to as T1. T2, T3, and T4. 
Figure 6). The address is emitted from the processor 
during T1 and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 

1
--------(4+NWAIT)::TCY 

T1 I T2 I T3 I TWAIT 

GOES INACTIVE IN THE STATE 1\ n JUST PRIOR TOT4 1\ 
ALE ---.l \'---____________ ~ ____ -.~'-----------+"""'\ __ I L 

\ \I...-..._--1-/...J..J..JUJ/;.u.u..JI mJ \'---
ADDRISTATUS ~~ _____ S_'-_S3 ______ ~,-______ S'_-S_3 _____ >C 

~ .. =* _______ A15._A, ______ X'---___ A_15.A' ___ ><= 
ADDR/DATA ~ __ DA_T_A_O_UT_'D_7_.D_OI __ ~~-~ 

READY 
~\\~\' \. _____ /RE~DV I 
\~\~~- e . 

WAIT 

\\........:.-. '.~\. :---"l~DV 
WAIT 

DTIR \1...-1---1--+----'/ 
I \ 'I 
I--MEMORV ACCESS TIME---_I 

\~------'/ 

\~_---J/ 
Figure 6_ Basic System Timing 
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"wait" states (Tw) are inserted between T3 and T4. Each 
inserted "wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8088 driven bus 
cycles. These are referred to as "idle" states (Ti), or inac· 
tive ClK cycles. The processor uses these cycles for in· 
ternal housekeeping. 

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/IVlX strap). At 
the trailing edge of this pulse, a valid address and cer· 
tain status information for the cycle may be latched. 

Status bits SO, 51, and S2 are used by the bus controller, 
in maximum mode, to identify the type of bus transac· 
tion according to the following table: 

52 51 SO 

o (low) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 0 Write 1/0 
0 1 1 Halt 
1 (High) 0 0 Instruction fetch 
1 0 Read data from memory 
1 0 Write data to memory 

Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed wiih high 
order address bits and are therefore valid during T2 
through T4. S3 and S4 indicate which segment register 
was used for this bus cycle in forming the address ac· 
cording to the following table: 

S4 S3 

o (low) 
o 
1 (High) 
1 

o 
1 
o 

Alternate data (Extra Segment) 
Stack 
Code or none 
Data 

S5 is a reflection of the PSW interrupt enable bit. S6 is 
always equal to O. 

I/O Addressing 
In the 8088, 1/0 operations can address up to a maxi· 
mum .of 64K 1/0 registers. The 1/0 address appears in the 
same format as the memory address on bus lines 
A15-AO. The address lines A19-A16 are zero in 1/0 
operations. The variable 1/0 instructions, which use 
register DX as a pointer, have full address capability, 
while the direct 1/0 instructions directly address one or 
two of the 256 1/0 byte locations in page 0 of the 1/0 ad· 
dress space. 1/0 ports are addressed in the same man· 
ner as memory locations. 

Designers familiar with the 8085 or upgrading an 8085 
design should note that the 8085 addresses 1/0 with an 
8·bit address on both halves of the 16·bit address bus. 
The 8088 uses a full 16·bit address on its lower 16 ad· 
dress lines. 

t:~~;! :, 

EXTERNAL INTERFACE'·\~.> 

Processor Reset and Initializatiorl' '~//,~, ,~<;t", 

Processor initialization or start up is accompli~'h'6~'iNlt!;J, 
activation (HIGH) of the RESET pin. The 8088 RES~'r'ji' 
required to be HIGH for greater than four clock cycles'. 
The 8088 will terminate operations on the high·going 
edge of RESET and will remain dormant as long as 
RESET is HIGH. The low·going transition of RESET trig· 
gers an internal reset sequence for approximately 7 
clock cycles. After this interval the 8088 operates nor· 
mally, beginning with the instruction in absolute loca· 
tion FFFFOH. (See Figure 2.) The RESET input is inter· 
nally synchronized to the processor clock. At initializa· 
tion, the HIGH to lOW transition of RESET must occur 
no sooner than 50 p's after power up, to allow complete 
initialization of the 8088. 

If INTR is asserted sooner than nine clock cycles after 
the end of RESET, the processor may execute one in· 
struction before responding to the interrupt. 

All 3·state outputs float to 3·state OFF during RESET. 
Status is active in the idle state for the first clock after 
RESET becomes active and then floats to 3·state OFF. 

Interrupt Operations 
Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the instruction set description found in Chapter 2 of the 
8086 Family User's Manuai. Hardware interrupts can be 
classified as non·maskable or maskable. 

Interrupts result in a transfer of control to a new pro· 
gram location. A 256 element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see Fig· 
ure 2), which are reserved for this purpose. Each ele· 
ment in the table is 4 bytes.in size and corresponds to 
an interrupt "type". An interrupting device supplies an 
8·bit type number, during the interrupt acknowledge se· 
quence, which is used to vector through the appropriate 
element to the new interrupt service program location. 

Non·Maskable Interrupt (NMI) 
The processor provides a single non·maskable interrupt 
(NMI) pin which has higher priority than the maskable in· 
terrupt request (INTR) pin. A typical use would be to actio 
vate a power failure routine. The NMI is edge·triggered 
on a lOW to HIGH transition. The activation of this pin 
causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state of 
greater than two clock cycles, but is not required to be 
synchronized to the clock. Any higher going transition 
of NMI is latched on·chip and will be serviced at the end 
of the current instruction or between whole moves (2 
bytes in the case of word moves) of a block type instruc· 
tion. Worst case response to NMI would be for multiply, 
divide, and variable shift instructions. There is no 
specification on the occurrence of the low·going edge; it 
may occur before, during, or after the servicing of NMI. 
Another high·going edge triggers another response if it 
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occurs after the start of the NMI procedure. The signal 
must be free of logical spikes in general and be free of 
bounces on the low·going edge to avoid triggering ex· 
traneous responses. 

Maskable Interrupt (INTR) 
The 8088 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable (IF) flag bit. The in· 
terrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high·going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block type instruction. During interrupt response se· 
quence, further interrupts are disabled. The enable bit is 
reset as 19art of the response to any interrupt (INTR, 
NMI, software interrupt, or single step), although the 
FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the in· 
terrupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an in· 
struction. 

During the response sequence (See Figure 7), the proc· 
essor executes two successive (back to back) interrupt 
acknowledge cycles. The 8088 emits the LOCK signal 
(maximum mode only) from T2 of the first bus cycle until 
T2 of the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle, a byte is fetched from the external in· 
terrupt system (e.g., 8259A PIC) which identifies the 
source (type) of the interrupt. This byte is multiplied by 
four and used as a pOinter into the interrupt vector 
lookup table. An INTR signal left HIGH will be continual· 
Iy responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction in· 
cludes a flags pop which returns the status of the 
original interrupt enable bit when it restores the flags. 

j)~ '0". 
~""J!; . ''''-HALT 'i'trl,,:'''I!;n 

"P!;;i '~()I 

When a software HALT instruction ils~~ 
processor indicates that it is entering the H,8; 
one of two ways, depending upon which m 
strapped. In minimum mode, the processor issues A 
delayed by one clock cycle, to allow the system to latch 
the halt status. Halt status is available on 10/M, DT/R, 
and SSO .. ln maximum mode, the processor issues ap· 
propriate HALT status on S2, S 1, and SO, and the 8288 
bus controller issues one ALE. The 8088 will not leave 
the HALT state when a local bus hold is entered while in 
HALT. In this case, the processor reissues the HALT in· 
dicator at the end of the local bus hold. An interrupt reo 
quest or RESET will force the 8088 out of the HALT 
state. 

Read/Modify/Write (Semaphore) Operations 
via LOCK 
The LOCK status information is provided by the proc· 
essor when consecutive bus cycles are required during 
the execution of an instruction. This allows the proc· 
essor to perform read/modify/write operations on 
memory (via the "exchange register with memory" 
instruction), without another system bus master receiv· 
ing intervening memory cycles. This is useful in multi· 
processor system configurations to accomplish "test 
and set lock" operations. The ~ signal is activated 
(LOW) in the clock cycle following decoding of the 
LOCK prefix instruction. It is deactivated at the end of 
the last bus cycle of the instruction following the LOCK 
prefix. While LOCK is active, all interrupts are masked 
and a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 

External Synchronization via TEST 

As an alternative to interrupts, the 8088 provides a 
single software·testable input pin (TEST). This input is 
utilized by executing a WAIT instruction. The single 

I T1 I T2 T3 T.. T1 I T2 T, 

ALE J'\\...--_-------'n\........-__ 

\\...--_---------/ 

FLOAT 
ADo-AD-, 

Figure 7. Interrupt Acknowledge Sequence 
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WAIT instruction is repeatedly executed until the TEST 
input goes active (LOW). The execution of WAIT does 
not consume bus cycles once the queue is full. 

If a local bus request occurs during WAIT execution, the 
8088 3·states all output drivers. If interrupts are enabled, 
the 8088 will recognize interrupts and process them. 
The WAIT instruction is then refetched, and reexecuted. 

Basic System Timing 
In minimum mode, the MN/MX pin is strapped to Vee 
and the processor emits bus control signals compatible 
with the 8085 bus structure. In maximum mode, the 
MN/MX pin is strapped to GND and the processor emits 
coded status information which the 8288 bus controller 
uses to generate MULTIBUS compatible bus control 
signals. 

System Timing - Minimum System 
(See Figure 6.) 

The read cycle begins in T1 with the assertion of the ad­
dress latch enable (ALE) signal. The trailing (lOW going) 
edge of this signal is used to latch the address informa­
tion, which is valid on the address/data bus (ADO-AD7) 
at this time, into the 8282/8283 latch. Address lines A8 
through A 15 do not need to be latched because they reo 
main valid throughout the bus cycle. From T1 to T4 the 
10/M signal indicates a memory or I/O operation. At T2 
the address is removed from the address/data bus and 
the bus goes to a high impedance state. The read con· 
trol signal is also asserted at T2. The read (RD) signal 
causes the addressed device to enable its data bus 
drivers to the local bus. Some time later, valid data will 
be available on the bus and the addressed device will 
drive the READY line HIGH. When the processor returns 
the read signal to a HIGH level, the addressed device 
will again 3·state its bus drivers. If a transceiver 
(8286/8287) is required to buffer the 8088 local bus, 
signals DT/R and DEN are provided by the 8088. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The 101M signal is again 
asserted to indicate a memory or I/O write operation. In 
T2, immediately following the address emission, the 
processor emits the data to be written into the ad­
dressed location. This data remains valid until at least 
the middle of T4. During T2, T3, and Tw, the processor 
asserts the write control signal. The write (WR) signal 
becomes active at the beginning of T2, as opposed to 
the read, which is delayed somewhat into T2 to provide 
time for the bus to float. 

The basic difference between the interrupt acknowl· 
edge cycle and a read cycle is that the interrupt 
acknowledge (INTA) signal is asserted in place of the 
read (RD) Signal and the address bus is floated. (See 
Figure 7.) In the second of two successive INTA cycles, 
a byte of information is read from the data bus, as sup· 
plied by the interrupt system logic (i.e. 8259A priority in­
terrupt controller). This byte identifies the source (type) 
of the interrupt. It is multiplied by four and used as a 
pOinter into the interrupt vector lookup table, as de· 
scribed earlier. 
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Bus Timing - Medium .~~~ 
(See Figure 8.) 

\,"~" '~\iP& 
For medium complexity systems, the MN/Mxprl:flS'\oli1J;J: 
nected to GND and the 8288 bus controller is adCi'itd;tf5',) 
the system, as well as an 8282/8283 latch for latching 
the system address, and an 8286/8287 transceiver to 
allow for bus loading greater than the 8088 is capable of 
handling. Signals ALE, DEN, and DT/A" are generated by 
the 8288 instead of the processor in this configuration, 
although their timing remains relatively the same. The 
8088 status outputs (52', S1, and SO) provide type of 
cycle information and become 8288 inputs. This bus 
cycle information specifies read (code, data, or 1/0), 
write (data or I/O), interrupt acknowledge, or software 
halt. The 8288 thus issues control signals specifying 
memory read or write, I/O read or write, or interrupt 
acknowledge. The 8288 provides two types of write 
strobes, normal and advanced, to be applied as required. 
The normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The 8286/8287 trans­
ceiver receives the usual T and OE inputs from the 
8288's DT/R and DEN outputs. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8289A priority interrupt controller is 
positioned on the local bus, a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge se· 
quence and software "poll". 

The 8088 Compared to the 8086 

The 8088 CPU is an 8-bit processor designed around the 
8086 internal structure. Most internal functions of the 
8088 are identical to the equivalent 8086 functions. The 
8088 handles the external bus the same way the 8086 
does with the distinction of handling only 8 bits at a 
time. Sixteen-bit operands are fetched or written in two 
consecutive bus cycles. Both processors will appear 
identical to the software engineer, with the exception of 
execution time. The internal register structure is iden­
tical and all instructions have the same end result. The 
differenceS between the 8088 and 8086 are outlined 
below. The engineer who is unfamiliar with the 8086 is 
referred to the 8086 Family User's Manual, Chapters 2 
and 4, for function description and instruction set 
information. 

I nternally, there are three differences between the 8088 
and the 8086. All changes are related to the 8-bit bus i n­
terface. 

• The queue length is 4 bytes in the 8088, whereas the 
8086 queue contains 6 bytes, or three words. The 
queue was shortened to prevent overuse of the bus by 
the BIU when prefetching instructions. This was re­
quired because of the additional time necessary to 
fetch instructions 8 bits at a time. 
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• To further optimize the queue, the prefetching algo­
rithm was changed. The 8088 BIU will fetch a new in­
struction to load into the queue each time there is a 1 
byte hole (space available) in the queue. The 8086 
waits until a 2-byte space is available. 

• The internal execution time of the instruction set is 
affected by the 8-bit interface. All 16-bit fetches and 
writes from/to memory take an additional four clock 
cycles. The CPU is also limited by the speed of in­
struction fetches. This latter problem only occurs 
when a series of simple operations occur. When the 
more sophisticated instructions of the 8088 are being 
used, the queue has time to fill and the execution pro­
ceeds as fast as the execution unit will allow. 

T, 

elK ~ .I 

aSl. aso 

8088 

52, 51. so 

A19/S6-A161S3 A19-A16 

! 

ALE '\ 

8288 ROY 8284 

READY 8088 

AD7 -ADO A7 AO 
./ 

8088 A15-AB 

! 
RO 

I 
I 

OTIR '\ 

8288 MRoe 

DEN 

T2 

ll#I';:;:Of},- l; 

The 8088 and 8086 are completery9s~ 
by virture of their identical executio 
that is system dependent may not be conir~ 
ferable, but software that is not system deperitre 
operate equally as well on an 8088 or an 8086 . 

The hardware interface of the 8088 contai ns the major 
differences between the two CPUs. The pin assign­
ments are nearly identical, however, with the following 
functional changes: 

• A8-A 15 - These pins are only address outputs on the 
8088. These address lines are latched internally and 
remain valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

T, T, 

J 
,I---

II I I I \~-=-==== 
S6- S3 

,-
j --

i 

DATA IN 

A15-A8 ~ 

Figure 8_ Medium Complexity System Timing 
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• BHE has no meaning on the 8088 and has been elimi­
nated. 

• SSO provides the SO status information in the mini­
mum mode. This output occurs on pin 34 in minimum 
mode only. DT/R, 101M, and SSO provide the complete 
bus status in minimum mode. 

• 101M has been inverted to be compatible with the 
MCS-85 bus structure. 

• ALE is delayed by one clock cycle in the minimum 
mode when entering HALT, to allow the status to be 
latched with ALE. 

8088 FUNCTIONAL PIN DEFINITIONS 

The following pin function descriptions are for 8088 
systems in either minimum or maximum mode. The 
"local bus" in these descriptions is the direct multi­
plexed bus interface connection to the 8088 (without 
regard to additional bus buffers). 

AD7-ADO (Input/Output, 3·State) 

These lines constitute the time multiplexed memoryllO 
address (T1) and data (T2, T3, Tw, and T4) bus. These 
lines are active HIGH and float to 3-state OFF during in­
terrupt acknowledge and local bus "hold acknowledge" 

A15-A8 (Output, 3-State) 

These lines provide address bits 8 through 15 for the 
entire bus cycle (T1-T4). These lines do not have to be 
latched by ALE to remain valid. A15-A8 are active HIGH 
and float to 3-state OFF during interrupt acknowledge 
and local bus "hold acknowledge". 

A19/S6, A18/S5, A17/S4, A16/S3 (Output, 
3·State) 
During T1, these are the four most significant address 
lines for memory operations_ During 1/0 operations, 
these lines are LOW. During memory and 1/0 operations, 
status information is available on these lines during 
T2, T3, Tw, and T4. S6 is always low. The status of the 
interrupt enable flag bit (S5) is updated at the beginning 
of each clock cycle. S4 and 53 are encoded as follows: 

54 S3 

o (LOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 Data 
56 is 0 (LOW) 

This information indicates which segment register is 
presently being used for data accessing. 

These lines float to 3-state OFF during local bus "hold 
acknowledge" 

RD (Output, 3·State) 
Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 
101M pin or 52. This signal is used to read devices which 

JJlj,. fCe:. t. 
reside on the 8088 local bus. ~J;}o 
T2. T3 and T w of any read cycle, ana 
main HIGH in T2 until the 8088 local bu 

READY (Input) 
READY is the acknowledgement from the addressed 
memory or 1/0 device that it will complete the data trans­
fer. The ROY signal from memory or 110 is synchronized 
by the 8284 clock generator to form READY. This signal 
is active HIGH. 

INTR (Input) 
Interrupt request is a level triggered input which is 
sampled during the last clock cycle of each instruction 
to determine if the processor should enter into an inter­
rupt acknowledge operation. A subroutine is vectored to 
via an interrupt vector lookup table located in system 
memory. It can be internally masked by software reset­
ting the interrupt enable bit. INTR is internally synchro­
nized. This signal is active HIGH. 

TEST (Input) 

The TEST input is examined by the "wait for test" in­
struction. If the TEST input is LOW, execution con­
tinues, otherwise the processor waits in an "idle" state. 
This input is synchronized internally during each clock 
cycle on the leading edge of CLK. 

NMI (Input) 

Non-maskable interrupt is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via 
an interrupt vector lookup table located in system mem­
ory. NMI is not maskable internally by software. A trans­
ition from a LOW to HIGH initiates the interrupt at the 
end of the current instruction. This input is internally 
synchronized. 

RESET (Input) 
RESET causes the processor to immediately terminate 
its present activity. The signal must be active HIGH for 
at least four clock cycles. It restarts execution, as 
described in the instruction set description, when 
RESET returns LOW. RESET is internally synchronized. 

elK (Input) 
The clock provides the basic timing for the processor 
and bus controller. It is asymmetric with a 33% duty 
cycle to provide optimized internal timing. 

Vee 
Vee is the + 5V ± 10% power supply pin. 

GND 
GND are the ground pins. 
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MINIMUM MODE PIN DESCRIPTIONS 

The following pin function descriptions are for the 8088 
minimum mode (i.e., MN/MX = Vee). Only the pin func­
tions which are unique to minimum mode are described; 
all other pin functions are as described above. 

IO/M (Output, 3-State) 
This status line is an inverted maximum mode 52. It is 
used to distinguish a memory access from an 1/0 ac­
cess. 10iM becomes valid in the T4 preceding a bus 
cycle and remains valid until the final T4 of the cycle 
(1/0 = HIGH, M = LOW). 10iM floats to 3-state OFF in 
local bus "hold acknowledge". 

WR (Output, 3-State) 
Write strobe indicates that the processor is performing 
a write memory or write 1/0 cycle, depending on the 
state of the 10iM signal. WR is active for T2, T3, and Tw 
of any write cycle. It is active LOW, and floats to 3-state 
OFF in local bus "hold acknowledge". 

INTA (Output, 3-State) 
INTA is used as a read strobe for interrupt acknowledge 
cycles. It is active LOW during T2, T3, and Tw of each in­
terrupt acknowledge cycle. I NTA floats to 3-state OFF in 
"hold acknowledge". 

ALE (Output) 
Address latch enable (ALE) is provided by the processor 
to latch the address into the 8282/8283 address latch. It 
is a HIGH pulse active during clock low of T1 of any bus 
cycle. Note that ALE is never floated. 

DTiR (Output, 3-State) 
Data transmitlreceive is needed in a minimum system 
that desires to use an 8286/8287 data bus transceiver. It 
is used to control the direction of data flow through the 
transceiver. Logically, DTiA is equivalent to 51 in the 
maximum mode, and its timing is the same as for 101M 
(T = HIGH, R = LOW). This signal floats to 3-state OFF in 
local "hold acknowledge". 

DEN (Output, 3-State) 
Data enable is provided as an output enable for the 
828618287 in a minimum system which uses the trans­
ceiver. DEN is active LOW during each memory and 110 
access, and for INTA cycles. For a read or INTA cycle, it 
is active from the middle of T2 until the middle of T4, 
while for a write cycle, it is active from the beginning of 
T2 until the middle of T4. DEN floats to 3-state OFF dur­
ing local bus "hold acknowledge". 

HOLD (Input), HLDA (Output) 
HOLD indicates that another master is requesting a 
local bus "hold". To be acknowledged, HOLD must be 
active HIGH. The processor receiving the "hold" re­
quest will issue HLDA (HIGH) as an acknowledgement, 
in the middle of T4 or TI. Simultaneous with the is-

P# 
suance of HLDA, the processor 
and control lines. After HOLD is dete 
the processor lowers HLDA, and when 
needs to run another cycle, it will again dri 
bus and control lines. 

SSO 
This status line is logically equivalent to SO in the max­
imum mode. The combination of 550, 101M and DTIR 
allows the system to completely decode the current bus 
cycle status. 

101M oTiA" 550 

1 (HIGH) 0 0 Interrupt Acknowledge 
1 0 1 Read 110 port 

0 Write 110 port 
1 1 1 Halt 
o (LOW) 0 0 Code access 
0 0 1 Read memory 
0 0 Write memory 
0 Passive 

MAXIMUM MODE PIN DESCRIPTICNS 

The following pin function descriptions are for the 8088, 
8228 system in maximum mode (i.e., MNIMX = GND. 
Only the pin functions which are unique to maximum 
mode are described; all other pin functions are as 
described above. 

S2, S1, SO (Output, 3-State) 

These status lines are encoded as follows: 

52 51 50 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 110 port 
0 1 0 Write 110 port 
0 1 1 Halt 
1 (HIGH) 0 0 Code access 
1 0 0 Read memory 

0 Write memory 
Passive 

Status is active during clock high of T4, T1, and T2, and 
is returned to the passive state (1,1,1) during T3 or dur­
ing Tw when READY is HIGH. This status is used by the 
8288 bus controller to generate all memory and 110 ac­
cess control signals. Any change by 52, ST, or SO during 
T4 is used to indicate the beginning of a bus cycle, and 
the return to the passive state in T3 or Tw is used to in­
dicate the end of a bus cycle. 

These signals float to 3-state OFF during "hold 
acknowledge". During the first clock cycle after RESET 
becomes active, these signals are active HIGH. After 
this first clock, they float to 3-state OFF. 

RQ/GTO, RQ/GT1 (Input/Output) 

The requestlgrant pins are used by other local bus 
masters to force the processor to release the local bus 
at the end of the processor's current bus cycle. Each pin 
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is bidirectional with RQ/GTO having higher priority than 
RQ/GT1. RQ/GT has an internal pull-up resistor, so may 
be left unconnected. The request/grant sequence is as 
follows (See Figure 6): 

1. A pulse of one ClK wide from another local bus 
master indicates a local bus request ("hold") to the 
8088 (pulse 1). 

2. During the CPU's next T4 or TI, a pulse one clock 
wide from the 8088 to the requesting master (pulse 2), 
indicates that the 8088 has allowed the local bus to 
float and that it will enter the "hold acknowledge" 
state at the next ClK. The CPU's bus interface unit is 
disconnected logically from the local bus during 
"hold acknowledge". 

3. A pulse one ClK wide from the requesting master in­
dicates to the 8088 (pulse 3) that the "hold" request 
is about to end and that the 8088 can reclaim the 
local bus at the next ClK. The CPU then enters T4. 

Each master-master exchange of the local bus is a se­
quence of three pulses. There must be one idle ClK 
cycle after each bus exchange. Pulses are active lOW. 

8088 

LOCK (Output, 3·5tate) 
The lOCK output indicates 
masters are not to gain control of the system 
lOCK is active (lOW). The lOCK Signal is act iva 
the "lOCK" prefix instruction and remains active un 
the completion of the next instruction. This signal is ac­
tive lOW, and floats to 3-state off in "hold acknowl­
edge". 

a51, a50 (Output) 
QS1 and QSO provide status to allow external tracking of 
the internal 8088 instruction queue. 

QS1 QSO 

o (lOW) 
o 
1 (HIGH) 
1 

o 
1 
o 

No operation 
First byte of opcode from queue 
Empty the queue 
Subsequent byte from queue 

The queue status is valid during the ClK cycle after 
which the queue operation is performed. 

PIN 34 (Output) 
Pin 34 is always high in the maximum mode. 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 0.3 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D.C. CHARACTERISTICS 
8088: TA=0·Ct070·C, V.cc=5V ±10% 

Symbol Parameter Min. 

VIL Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

ILO Output Leakage Current 
t---.-------- ------_._------ .-

vCL Clock Input Low Voltage - 0.5 

VCH Clock Input High Voltage 3.9 

Capacitance of Input Buffer 
CIN (All input except 

ADo-AD? RQ/GT) 

CIO 
Capacitance of I/O Buffer 
(ADo-AD? RQ/GT) 

Ratings" may cause permanent damage to the device. 
rating only and functional operation of the device at these or 
conditions above those indicated in the operational sections 
specification is not implied. Exposure to absolute maximum rating con· 
ditions for extended periods may affect device reliability. 

Max. Units Test Conditions 

+0.8 V 

Vcc + 0.5 V 

0.45 V 10L = 2.0 mA 

V IOH = 4OOl'A 

340 mA 

± 10 I'A VIN = Vcc 

± 10 I'A 0.45V " VOUT " V cc 
.~ --"-- ... ----------- ---

+0.6 V 

Vcc + 1.0 V 

10 pF fc = 1 MHz 

20 pF fc = 1 MHz 

-
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A.C. CHARACTERISTICS ~~~t~~~~ 8088: TA=O°C to 70°C, Vcc=5V± 10% 

8088 MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter Min. Max. Units Test Conditions 
-

TCLCL eLK Cycle Period 200 500 ns 

TCLCH elK Low Time (2hTCLCL)-15 ns 

TCHCL CLK High Time ('hTCLCL)+ 2 ns 

TCH1CH2 elK Rise Time 10 ns From 1.0V to 3.5V 

TCL2CLI CLK Fall Time 10 ns From 3.5V to 1.0V 

TDVCL Data In Setup Time 30 ns 

TCLDX Data In Hold Time 10 ns 

TR1VCL ROY Setup Time into 8284 (See Notes 1, 2) 35 ns I 
TCLR1X ROY Hold Time Into 8284 (See Notes 1, 2) 0 ns I 
TRYHCH READY Setup Time Into 8088 (2iJTCLCL)-15 ns 

TCHRYX READY Hold Time Into 8088 30 ns 

TRYLCL READY Inactive to eLK (See Note 3) -8 ns 

THVCH HOLD Setup Time 35 L ns 

TINVCH INTR, NMI. TEST Setup Time (See Note 2) 30 ns 

TIMING RESPONSES 
, .--.. -~--.. -- --~~--

Symbol Parameter Min. Max Units Test Conditions 
-- '-f---------

TCLAV Address Valid Delay 15 110 ns 
. ----- -_ . --------

TCLAX Address Hold Time 10 ns 
--

TCLAZ Address Float Delay TCLAX 80 ns 
----- .- .------~--.. -.-----f--. .-f-----

TLHLL ALE Width TCLCH-20 ns 
~ .. -. --r---'-~-

TCLLH ALE Acllve Delay 80 ns 
._._----- ---- c--------

TCHLL ALE Inactive Delay 85 ns 
-----~-.-.---. 

TLLAX Address Hold Time to ALE Inactive TCHCL-l0 ns 
-----~------.. ------- ._--1---

TCLDV Data Valid Delay 10 110 ns CL = 20·100 pF for 
.--~ .-~---~ .. - - all 8088 Outputs 

TCHDX Data Hold "time 10 ns 
._. ,,---- in addition to 

TWHDX Data Hold Time After WR TCLCH-30 ns internal loads 
------- _. --r------

TCVCTV Control Active Delay 1 10 110 ns 
-- -_.- -----

TCHCTV Control Active Delay 2 10 110 ns 
------ c----

TCVCTX Control Inactive Delay 10 110 ns 
----- "-r---~--------" 

TAZRL Address Float to READ Active 0 ns ---_._--_. f---. f---'-~--
TCLRL RD Active Delay 10 165 ns 

-- ----
TCLRH RD Inactive Delay 10 150 ns 

- TRHAV~ RD Inactive 10 Next Address Active TCLCL-45 ns 

TCLHAV HLDA Valid Delay 10 160 ns 

TRLRH RD Width 
.c-. 

2TCLCL-75 ns 

TWLWH WR Width 2TCLCL-60 ns 

TAVAL Address Valid to ALE Low TCLCH-60 ns 

NOTES: 1. Signal at 8284 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies onty to T2 state (8 ns into T3 state). 
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CLK (8284 Output) 

101M, SSO 

ALE 

R DY (8284 tnput) 
SEE NOTES 

READY (8088 tnput) 

READ CYCLE 

(NOTE 1) 

(WR, INTA=VOH) 

AD7-ADo 

DTfA 

8088 

T1 T, T, Tw T, 

.'"~~ ::HC~~ L-Ir'L-vic 
- TCHCTV TCHCL _TCLCH_ 

A1S- As (Float during INTA) / 
TCLAV- - TCLAX- ~TDV TCHDX-- -

A19-A16 
1\ 57-53 

TCLLH-f TLH~L--=::: I-- T~LAX r--

TCHLL-I 

l ___ 
- _TR1VCl 

-TAVAL- vr~~ ~ ~~~~*'~ :~~ ~~ '\ \ v",:.:.::, _ 
!-TCLR1X 

I 

TRYLCL- -
f 

- h 

1 - -TCHRYX 

TRYHCH- -
- I 

~TCLAZ TDVCl_ !-TCLDX-

A7- AO DATA tN 

;:{ FLOA:J' 

TAZRL- TCLRH- I~ -TRHAV 

~ 
=~TCHCTV TCLRL I TRLRH TCHCTV 

I 
TCVCTV- f TCVCTX- I 

Figure 9. 8088 Bus Timing - Minimum Mode System 
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elK (8284 Output) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 
NOTES 1,3 

(RD, WR=VOH) 

SOFTWARE HALT - (DEN: 
Vodm.WR,INTA DT/A = VOH: 

AD7-ADo 

AD7-ADO 

DTiA 

AD7 - ADo 

8088 

T, 

~ 
I I 

TCLAV-

DATA OUT 

__ +-____ ~-------T-C-V-C-TV---~~I------_T------

-TCLAZ 

FlOAT 

TCHCTV 

TCVCTV-

~)k' INVALID ADDRESS 

TCLAV=:i 'I~~-
NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH ANO VOl UNLESS OTHERWISE 

SPECIFIED. 
2. ROY IS SAMPLED NEAR THE END OF 12, T3, Tw TO DETERMINE IF Tw 

MACHINES STATES ARE TO BE INSERTED. 
3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 80B8 LOCAL ADDRIDATA 

BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS 
ARE SHOWN FOR THE SECOND INTA CYCLE. 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

TCVCTX 

Figure 10. 8088 Bus Timing - Minimum Mode System (cont.) 
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8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 

eLK Cycle Period +- ~~:. Max. 

500 

('hTClCl)-15 elK Low Time 
------.~------------------------------------r_--~----_r------r_--~ 

TClCl 

TClCH ns 

TCHCl ClK High Time ('hTClCl) + 2 ns 

TCH1CH2 ClK Rise Time ns From 1.0Vt03.5V 10 
-----------------------+--------+-----+----T-~~~~--

TCl2Cl1 ClK Fall Time ns From 3.5V to 1.0V 10 

30 

10 

TDVCl Data In Setup Time 
------_r---------------------------------+----------+------+-----+ 

reLDX Data In Hold Time 

ns 

ns 

TR1VCL ROY Setup Time into 8284 (See Noles 1, 2) 35 ns 

TClR1X ROY Hold Time into 8284 (See Notes t. 2) ns 

TRYHCH READY Selup Time Inlo 8088 ('hTClCl)-15 ns 

TCHRYX READY Hold Time Into 8088 30 ns 

TRYlCl READY Inaclive 10 ClK (See Nole 4) -8 ns 

30 

30 

1--1 N-V-C-H-- Setup Ti me for Recognition (I NTR, N M-,.""Cr--=E=S=nc-(-S-e-e-N-o-le-2-)---t--------------t---------t---n-s---1 

-T-G-V-C-H----+-~R=Q/GT Selup Time 
---------~i__=-----------------------------t---

RQ Hold Time inlo 8086 . __ . ________ L_~ ____ _ 
ns 

TCHGX 

TIMING RESPONSES 
---~-i---- -,- -- P~~am~-t;;""---'--'------ ---Mi-;-~-I-----M-a-x-. ---'---U-n-i-t-s---'---Te-s-t -C-on-d-j-tio-n-s-

TClMl Command Active Delay (See Note 1) 10 35 ns 
.-----_._- -------

TClMH Command Inactive Delay (See Note 1) 10 35 ns 
_.-----

ns 
-.. --... - -.--. -.----.-.----- --c------.. -

TRYHSH READY Active 10 Status Passive (See Note 3) t 10 
------.--- -I- ---. -. - --I- -.-----.. . -- --.--

TCHSV Sialus Active Delay 10 110 ns 
---------- 1---.-.-- --.-.-----.. - .. ----.-.. -- ---.-.------c--------

TCLSH Status Inactive Delay 10 130 ns ---- -.------------ -- ---.-----t-------
TClAV Address Valid Delay 15 110 ns 

------.---f-------.-----------------.---- - -t- -- -.-.---.-- . -------- -----
TClAX Address Hold Time 10 ns 

----------- ---- -----j-------------r----------------j--------
TClAZ Address Float Delay TClAX 80 ns 

----------------- --f---------- f-------
Stalus Valid to ALE High (See Note 1) 15 ns 

-----------+---------------------- ---j--------
TSVlH 

TSVMCH Slatus Valid to MCE High (See Note 1) 15 ns 
----- j-------------

TCllH ClK low to ALE Valid (See Note 1) 15 
--------- 1----- --------------------------- j----------- f---------

TClMCH ClK low to MCE High (See Note 1) 15 

ns 
--------

ns 

TCHll 
-------------------------------- ----------+----------+-----

ALE Inactive Delay (See Note 1) 
-----------+­

MCE Inactive Delay (See Note 1) 

15 ns 

TClMCl 15 ns 
--

TCLOV Data Valid Delay 15 110 ns 
--------------------- ---t-------------j----------t----

TCHDX Data Hold Time 10 ns 
------------------------1-----------

TCVNV Control Active Delay (See Note 1) 5 45 ns 

TCVNX Control Inactive Delay (See Note 1) 
-------,~------t_------

10 45 ns 

TAZRl Address Float to Read Active o ns 

TCLRl RD Active Delay 10 165 ns 
-----------+---------- ---------------------t------- ----------1-----

TClRH RD Inactive Delay 10 150 ns 
----------+--------- --------------------1----------+---------+--------.., 

TRHAV RD Inactive to Next Address Active TClCL-45 ns 
-----------1-----------------------------------1---------
___ TC __ H_D_Tl____ Direction Control Active Delay (See Note 1) 

-------- ------
50 ns 

___ TC __ H_D_T_H ___ + __ ~D=i~re-c-ti-o-n-C-ontrollnac1ive Delay (See Note 1) 30 ____ +-____ ns __ --1 
TClGL GT Active Delay 110 

----------+---=------------------------------t------ ---------------_r--------j 
____ T_C_lG __ H ____ +-__ GT Inactive Delay B5 

ns 

ns 

TRlRH RD Width 2TCLCL-75 ns 

Cl = 20·100 pF for 
all BOBB Outputs 
in addition to 
internal loads 

_________ ~ _____________________________ L_ _________ ~ ________ ~ _______ L-___________ _ 

NOTES: 1_ Signal at 8284 or 82B8 shown for reference only_ 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T3 and wait states. 
4_ Applies only to T2 state (8 ns into T3 state)_ 
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CLK 

s"s"SO (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

SEE NOTE 5 

ROV (8284 INPUT) 

READ CYCLE 

8288 OUTPUTS 

SeE NOTES 6,6 

AD7-ADO 

RO 

8088 

f------< TCHSV i-TCLSH 

\-----­
\.._----

\ 

- !-TCLAV aCLOV TCHOX~ I-------It-...,. TCLAX - ,--+---+-+---+--+---+--,. r----
!\. A19-A16' 57-53 

----~~ ~----
TSVLH~ - _ r- TCHLL 
TCLLH-, 

TCLAV-I 

Ao,-AO 

TAZRL 

TCHOTL 

I----+-+----TRLRH---+--~ 

TCLMH 

TCVNV-

TCVNX 

,-­
I 

Figure 11. 8088 Bus Timing - Maximum Mode System (Using 8288) 
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8088 

1 2 13 14 

ClK "'~''IL---..J_' r--'I '--' r-\J~f'----If\.-
82.81, So (eXCEPT HAL 1) 

WRITE CYCLE 

AD7-ADO 

DEN 

8288 OUJPUTS 

see NOTES 5,6 AMWC OR Alowe 

SOFTWARE 

INTA CYCLE 

A1s-Aa 
(SEE NOTES 3,4) 

8200 OUTPUTS 
see NOTES 5,6 

AD7-ADo 

MCE! 
i>OEN 

Dr/A" 

INTA 

DEN 

J////// 
TCLAV-- 1- - .I-TC'DV ~ I--rCLSH TCHDX-

A DATA 

TCVNV-- t- TCVNX-

- -TCLML TClMH- ~ 

______ ~_r----_+----_+------_r------~~TClMl - -TCLMH 

FlOAT 

I 
I 

I 
RESERVED FOR 
CASCADE ADDR FLOAT 

__ TCVNV 

\ 

}-
\ 

-- {1MH 

TCVNX--
HALT - (DEN = vOL;RD,JliIDC,TO"AC,MWfC,AMWC,TOWC,AiOWC,INTA,DT/R = VOH. 

S;,s"Sij 

INVALID ADDRESS 

. TeLAY 

~ jr---------"""'T\ ------­
\'-------' \.------

NOTES: 1. ALL SIGNALS SWITCH BeTweEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF 12. T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BeTweEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO·SACK. THE 8088 LOCAL ADDRIDATA 
BUS IS FlOATING DURING 80TH INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(I.IlIIle, NIWTC, .uawe, tllRe, rowe, 1mlWl:, TfITA AND DENI lAGS THE 
ACTIVE HIGH 8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO T 4. 

Figure 12. 8088 Bus Timing - Maximum Mode System (Using 8288) 
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8088 

CLK~ 

INTR 

I . -i 1-- TlNVC" '''' ,,10 11 

I ;,ge.I:=J{ : 
TEST 

NOTE: 
1 SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT eLK 

Figure 13. Asynchronous Signal Recognition 

Figure 14. Bus Lock Signal Timing (Maximum Mode Only) 

- Any eLK Cycle -:. --- 'OClKCycle-i 

~~ ~ ~ r-l 

Previous grant 

Alt1S6A1~1~1!: /-_______________ --/ 

AD7-ADo eo" 
~:~ F-----------------/ 

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION. 

PULSE ::> 
8088Gl 

..-TCLGH 

"---J ~ "----, 
I 

1 

~----------~~ ~: .--C-OP-RO-CE-SS-O-R---------~ 
(SEE NOTE I) 

Figure 15. Request/Grant Sequence Timing (Maximum Mode Only) 

F--------~,~--
8088 

Figure 16. Hold/Hold Acknowledge Timing (Minimum Mode Only) 
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8088 

8086/8088 
INSTRUCTION SET SUMMARY 

DATA TRANSFER 
MOV Moy,; 76543210 7654321 n 76543210 76543210 

Register/memory loilrom reg,ster [Tfoo", 0 d w~~ 
Immeolateto reglste'/memory ~,~~~-----data _l_~'~;~~~~ 

Irnmedlate 10 register ~~ala I datal!wtj 

Memory to accumulalOI ~O 0 w I dddr-iow I add. high J 
Accumulalo' to memory li:OL1 0 0 0 1 w I addr-Iow I ~ 
Aeglster/mrmol'/ 10 segment register Li::iE~_ t.,' ~ I mod 0 leg i 
Segment register 10 reglster.'memo'y [i~01--1'oo I moci [) leg i/m~ 

PUSH PUlh: 

Register/memory 

Register 

Segment register 

POP POp 

Register/memory 

Register 

Segme'ot register 

XCHG ~ Exch.nge 

Register/memory with reg,s!e! 

Reglsler with accumulator 

IN=lopu!irom 

F,~ed port 

Variable port 

OUT'O Output 10 

FI~ed port 

Variable port 

11 a a 0 1 1 II! mod a 0-0 ' ffi] 
101011 reg I 
liiGi:iiiJ 

11 1 1 00 1 Ow ] port 

11 1 100 1 1 w ] port 

tl110 11 1 w I 
11 1 a 1 a 11 1 I 
110 0 a 1 10 1 I mod '~g rim I 
lila 0 0101 ]mod reg:iii] 

111000100 ImOd reg rim I 

1,00 1 11 IIi 

110011110 I 
I I 0011 I 00 I 

DEC Decrement 

Reglster.'memory 

ReglSler 

NEG Change Sign 

I CMP Compare 

Reql~!rr merno1y and register 

1m media Ie With reqlsler 'memo,y 

Irnmrdlate wllIl Mellr'lillator 

AAS ASCII adlust tor subtract 

OAS Dec,mal ildJust IQr s\Jbl,aCi 

MUl Multiply iunslQred: 

IMUl integer multiply ISlgned', 

AAM ASC!I adlvSI lOr m·,J!llolv 

OIV OlvldelJnSlgned\ 

IOIV Integrrd'YlderSlgned' 

~~O ASCII ad,usttor drvlde 

CBW Cooyer! byte IG word 

CWO Convert word TO double wo.'d 

LOGIC 
.aT 
SHL:SAl Shltllog,cal arithmeTIC Irtl 

SHII Shltl logical 'Ighl 

S~R S~ltl arithmeTiC rrq,ht 

RDl ROlalelett 

RllR Rotaterrght 

RCL ROlate through carry Ilag left 

RCR Rotale Through ,allY rlgl;1 

AND And 

7654 3 2 1 0 76 fI 4 3 2 I 0 76 fI 4 3 2 ! 0 7 

G'l1-'-'-'l;I~~-d~~O' r'm J 
10 tOOl reg I 
Q~.~_'_O_l_1 w :mOdO 11 rim I 

~ 110 dw lmod reg rim I 

I, 00000 s w ! mod' 1 1 r'm I data 

liIiii::iiil __ d'_la __ ~ data II wI 

r00111'1~ 

liii~ 
~~Od' oliii:] 
~~Od~ 
Ll 'GIO 100 IOOO()I01()J 

II I : , 0 ' 1 w IIrT'Od \ 1 0 ' m l 

~~~ 
I ~ I () I 0 , 0 I I 0 0 0 0 ~_o_'_o_1 

~GI:OOO 
.~~ 

data If 5 w 01 I 

IlAT- Translate byte to AL 

LEA=Load EA!o register 

lDS=Load pOinter to OS 

LES=load pOll1ter to ES 

LANF"load AH with Hags 

SAIIF,SlOre AH 111\0 ftags 

PUINF=Push flags 

POPF.Pop lIags liQiiiiiiJ Reg, memory and register to either ~I O~O~' O~O~O ~d ;;,w+1 m;;,O;;d~',;"9~';;,'"~ ____ ,-___ -c---,---; 

Imrwdlateloreglsterln1emorv 11000000w[mod100 rim data ~ 

ARITHMETIC 
ADD = Add: 

Reg /memory With register 10 either 10 0 0 a 6 a d w I mod '_~g ~ 
Immediate to register/memory 1"1000 a as w jmodO 0 Q r'm r----d~~- L _~_~~ 
Immediate 1o accumulator LQ 0 0 0 0 law I data I dil~a I w' I 

ADC Add with carry 

Reg Imemory With register to either 10 a 0 1 a a d w I ~Od~~ 
Immediate to register/memory I.' a 0 a 0 Os w I mod a , a ~-~-,,-To;';~--'L~_!i!J 
Immediate to accumulator 10 0 0 1 0 law L.__ data I ~!' __ ~J 

UIC ,Incrlmlnl: 

Register/memory l' 1 1 1 1 1 1 w I mod 0 ? 0 rilT' J 

Regrster 101000 reg I 
W=ASCII adJusl tor add lE'iiiiiLiJ 
DAA·OeClmal adlust for add 10 a 1 0 a 1 1 1 I 

SUB = SUbtr.e!: 
Reg Imemory and reg ISler to either 

Immediate from reglsterlmemory 

Immediate/rom accumulator 

[10000oswlmodl01rim data ~ 
~~~O~'~O~'~'~O~w~I~~d~"~'~~~"~"~'~'w~iJ~'~ 

.11 = lubtnct wllh borrow 

Reg Imemory and register 10 either 

Immediate from register/memory 

Immediate/rom accumulator 

Mnemonics ©Intel, 1978 

"0 a a 1 1 0 d W mod reg rim 

1 00 000 s W modO 1 1 rim data data Jf s w 01 

100 a 1 1 1 0 w \ data data If w 1 

1m media Ie 10 accumulator ~~ _-,d,,",,' _--'----"d:::'''=-'=-, w=---'-" 

TEST And function 10 flags. no reSUI;:-'· ____ ,--___ --, 

Reglster1memo,y and register 11000 a lOw I moo reg rl~ 
Irnmedlate data and register/memory 11 1 1 1 a 1 1 w I mod a a 0 rim I data 

Immediate data and accumulator l' 0 1 0 1 0 0 w I data I data If w 1 

OR Or 

Reg Imemory and register to ell~er 10 0 a 0 lad w I ~~d reg ~ 
Immediate 10 register/memory lii::~ 0000 w I modO a 1 rim I data 

Immediate 10 accumulator ~O 1 10 w I data ~ta It w 1 

XDR Exclusive or 

ReQ imemory and register 10 either 10 a 1 1 ODd w I mod reg ~ 
Immediate to register/memory 110 a 0 0 0 a w imOd 1 1 0 rim I ~ 
Immediate to accumulator 10 0 1 1 0 lOw I data ~,;-y] 

STRING MANIPULATION 
REP~ Repeat 

MOVS~Mo~e byTe/word 

CMPS~Compar€ byTe/word 

SCAS=$can byte/word 

lODS~load byte/wd to Al!AX 

STOS=Stor byte/wd from Al!A 

111 ; 1 0011 I 
11 a 1 001 a w I 
11 a 1 001 t w I 
l' 0 1 0 1 1 1 w I 
110 t a 11 a w I 

Q 010 tOt wi 
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COITROL TRANSFER 
CALL C.II: 
Direct Wllhm segment 

Indirect wrlhm segment 

Dlrectlntersegment 

IndlreCllnlersegment 

JMP - Unclndilltnil Jump: 

76543210 16543210 

1 1 101000 dlsp-Iow 

11111111 mod 010 rim 

~ol Ol1sel-low 

I seg-Iow 

111111 I I 1 Imod 0' I 

1111010111 dlsp 

Liiiiiil 1 Imod 100 rim 

76&43210 
dlsp·hlgh 

oflset·hlgh 

seg-hlgh 

1 dlsp-hlgh 1 

1 

1 

Direct wllhm segmenl 

Direct wllhm segmenl-shorl 

Indirect Wllhln segment 

DlrecllnTersegmenl ~10101 o!lsel-Iow 1 O!fsetohlgh--.J 

[ seg-Iow T seg.~ 
Indirect Inlersegmen! ~llll11lmodl01 rim 1 

RET fIIIurn fram CAll: 
Wllhlnsegment 111000011 I 
Within seg addmgImmedto SP 1110000 I 0 I 
Intersegmenl 1110010111 

Inlersegmenl. adding Immediate 10 SP ic11""',,,,0,=0,=:;=' 0,=:;=' 0~1 ~~d;:;";:;";;I'W;;"""=r----,d="",.-,-h,,,-gh----,1 
JE/JZ·Jumpon equallzero [ 01 I I 0 I 00 I dlSp 
JL/J.6E~~ue~~a~n less/not greater ~[ 0:"':"':"';;;" ;., 0::0~1 ~~d;;;"~P ~=I 
JLElJ.ag~~~~ron less or equal/no! F.I o"":""""""",,~,;.o~1 ~~d~"",p ~=I 
J'/JIAE~~~~ea~n below/no! abovej ~ o:..,:",,:..';.O;.O~' 0~1 ~~d;;;"~P~~=I 
J'E/JIA~~~~~o~ne below or equal! ~I 0",,',,';,.';,.0,=',=:;=' 0~1 ~~d;;;"~p ~=l1 
JP/JPE=Jump on parity/panty even F,I O='='='='""o~, 0~1 ~~d;;;"~P ~=lJ 
JO=Jump on ovedlow ~I o:..,;,.,;,.,;.o;.o;.o:::o~1 ~~d;;;"~P ~=l1 
JS·Jumponslgn 1011 11000 I dlsp I 
JIElJIZ=Jump on not eQuallnotzero F.o"",;",;",,,,,o~, o~, l==~~d;;;"~P ~=I 
J.L/JaE~~ue~~a~n nolless/grealer ~o:..';,.';,.';,,;,.';.' 0:;.;.' l==~~d;;;"~P ~=I 
JILElJIi~~~~~ron not less Of eQuall lii 1 1 1 1 I 1 I dlSP-=oJ 

fillI .. ,.: 

Al = 8-bit accumulator 
AX '" 16-bit accumulator 
ex = Count register 
OS " Oala segment 
Es " Extra segment 
Above/below refers to unsigned value_ 
Greater = more positive, 
less = less positive (more negative) Signed values 
Itd= 1 then"to"reg;ifd=Othen"from"reg 
it w = 1 then word instruction; if w = 0 then bvte instruction 

il mod" 11 then rim is treated as a REG lield 
il mod" 00 then OlsP " 0', disp-Iow and dlSp-high are absenl 
il mod" 01 then OIsP " disp-Iow sign-extended to 16-bits, disp-high IS absent 
il mod" 10 then OIsP " disp-high: disp-Iow 

il rim" 000 then EA " (BX) • (51) • OIsP 
il rim" 001 then EA " (BX) • (01) • OlsP 
il rim" 010 then EA • (BP) • (51) • OIsP 
il rim" 011 then EA " (BP) • (01) • OIsP 
il rim" 100 then EA " (51) .01SP 
il rim" 101 then EA " (01) • OIsP 
il rim" 110 then EA " (BP) • OlsP' 
il rim· llllhen EA· (BX) .00SP 
OIsP lollows 2nd byle 01 inslruclion Ibelore oala il required) 

'excepl il mod" 00 and rim" 110 Ihen EA "disp-high: disp-Iow 

Mnemonics© Inlel, 1978 

8088 

78543210 76543210 
J.'/JAE Jump on n01 below/above I:E!TIn, , 1 dlsp 1 or equal 
JIIE/JA Jump on not below or [0 11 101111 dlsp 1 equal/above 
JNP/JPO Jump on nol par/par adel ~ll'Ol'! dlsp 1 
JIO Jump on ncloverllOw 101110001[ dlsp 1 
JIB Jumpon nol Sign [0·',11001 I dlsp -] 
LOOP loopCX times 1 11 100010] dlsp 

LODPlIlOOPE Loop while zero/eQual 11100001 dlsp 
lOOP.Z/LDOP.ELoop .... hllenat 11100000 dlsP 

zerolequ~~ 

Jell Jurnpcn CX zero 1110o0t 1 dlSp 

INT .Interrupt 
Typesoecilled liliiOI, 0' 1 IV~'~ 
Type 3 

linD Inlerruptan overtlow 

IRET Interrupt relllrn 

PROCESSOR CONTROL 
ClCClearcarry 

eMt Gomplementcarry 

STCSetcarry 

CLDCleardHectlon 

STDSetduecllOn 

CLlClellrmterrupt 

STISelmler rupl 

HLTHalt 

WAIT Wall 

ESC Escape 110 e~!ernal devlcel 

LOCK Bus lock prell x 

1110011001 

111001110 I 
111001111 1 

If s:w = 01 then 16 bits of Immediate data form the operand_ 
,f s:w = 11 then an Immediate data byte is Sign extended to 

form the 16-M operand 
II v = 0 then "count" = 1. It v = 1 then "count" in (el) 
x = don't care 
Z IS used lor siring primitives lor comparison With Z.F FLAG 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

REG is aSSIgned ~ccording 10 the following table 

16-8111. - I) 6-8111. 01 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 DL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
110 51 110 DH 
111 DI 111 BH 

Segmlnt 

00 Es 
01 Cs 
10 55 
11 OS 

Instructions which reference the flag register file as a 160bit object use the symbol FLAGS to 
represent the tile: 

FLAGS" X:X:X:X:IOFJ(DF):(IF).ITF):(sFIIZFI X:IAF)'X IPF) X:(CF) 

B-45 



8089 
8/16·811 HMOS 1/0 PROCESSOR 

• High Speed DMA capabilities including 
I/O to memory, memory to I/O, memory 
to memory and I/O to I/O 

• MCS·SO™, MCS·SS™, MCS·S6™ and 
SOS8 compatible, removes I/O 
overhead 

• Allows mixed interface of S/16·bit 
peripherals, to S/16·bit processor busses 

• 1 Mbyte addressability 

• Memory based communication with 
CPU 

• Supports LOCAL or REMOTE I/O 
processing 

• Flexible, intelligent DMA functions 
including Translation, Search, Word 
Assembly/Disassembly 

• MULTIBUS™ compatible system 
interface 

The Intel® 8089 is a revolutionary concept in microprocessor input/output processing. Packaged in a 40-pin DIP 
package, the 8089 is a high performance processor implemented in N·channel, depletion load silicon gate technology 
(HMOS). The 8089's instruction set and capabilities are optimized for high speed, flexible and efficient 110 handling. It 
allows easy interface of Intel's 16-bit 8086 and 8-bit 8088 microprocessors with 8/16·bit peripherals. In the REMOTE 
mode, the 8089 bus is user definable allowing it to be compatible with any 8/16-bit Intel microprocessor, interfacing 
easily to the Intel multiprocessor system bus standard MULTIBUSTM. 

The 8089 performs the function of an intelligent DMA controller for the Intel MCS-86 family and with its processing 
power, can remove 110 overhead from the 8086 or 8088. It may operate completely in parallel with a CPU, giving 
dramatically improved performance in 110 intensive applications. The 8089 provides two 110 channels, each supporting 
a transfer rate up to 1.25 mbyte/sec at the standard clock frequency of 5 MHz. Memory based communication between 
the lOP and CPU enhances system flexibility and encourages software modularity, yielding more reliable, easier to 
develop systems. 

OMA REO, 

DMA 
TERMINATE. 

DMA REO, 

DMA 
TERMINATE, 

1/0 CHANNEL 1 

CPU 

'---"I 
I I 
I I 
I 1 

11"":1 1 
I~I 
L_ =.J 

ASSEMBLY / 
DISASSEMBLY 

INSTRUCTION 
FETCH UNIT 

Figure 1. 8089110 Processor Block Diagram 
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V .. 

A141D14 

A17/54 

STATUS 

ABID9 

ADDRESS/ A~" EXT 1 

DATA A7/D7 

..,06 DRQ1 

DRQ2 

A3ID3 

51 
!!O 

SEl 

SINTR·2 eA 
elK 

Figure 2. 8089 Pin Diagram 



8089 

FUNCTIONAL DESCRIPTION 
The 8089 lOP has been designed to remove I/O proces­
sing, control and high speed transfers from the central 
processing unit. Its major capabilities include that of in­
itializing and maintaining peripheral components and 
supporting versatile DMA. This DMA function boasts 
flexible termination conditions (such as external termi­
nate, mask compare, single transfer and byte count ex­
pired). The DMA function of the 8089 lOP uses a two cy­
cle approach where the information actually flows 
through the 8089 lOP. This approach to DMA vastly sim­
plifies the bus timings and enhances compatibility with 
memory and peripherals, in addition to allowing opera­
tions to be performed on the data as it is transferred. 
Operations can include such constructs as translate, 
where the 8089 automatically vectors through a lookup 
table and mask compare, both on the "fly". 

The 8089 is functionally compatible with Intel's 8086, 
8088 family. It supports any combination of 8/16-bit 
busses. In the REMOTE mode it can be used to comple­
ment other Intel processor families. Hardware and com­
munication architecture are designed to provide simple 
mechanisms for system upgrade. 

The only direct communication between the lOP and 
CPU is handled by the Channel Attention and Interrupt 
lines. Status information, parameters and task pro­
grams are passed via blocks of shared memory, simpli­
fying hardware interface and encouraging structured 
programming. 

The 8089 can be used in applications such as file and 
buffer management in hard disk or floppy disk control. It 
can also provide for soft error recovery routines and 

h4!'$. e, 
scan control. CRT control, such ~ 
auto scrolling, is simplified with the 
control, communication control and generat'tl 
a few of the typical applications for the 8089. 

Remote and Local Modes 
Shown in Figure 3 is the 8089 configured in a LOCAL 
mode. The 8086 (or 8088) is used in its maximum mode 
configuration. The 8089 and 8086 reside on the same 
local bus, sharing the same set of system buffers. 
Peripherals located on the system bus can be ad­
dressed by either the 8086 or the 8089. The 8089 
requests the use of the LOCAL bus by means of the 
RQ/GT line. This performs a similar function to that of 
HOLD and HLDA on the Intel 8085A, 8080A and 8086 
minimum mode, but is implemented on one physical 
line. When the 8086 relinquishes the system bus, the 
8089 uses the same bus control, latches and transceiver 
components to generate the system address, control 
and data lines. This mode allows a more economical 
system configuration at the expense of reduced CPU 
thruput due to lOP bus utilization. 

A typical REMOTE configuration is shown in Figure 4. In 
this mode, the lOP's bus is physically separated from 
the system bus by means of system buffers/latches. The 
lOP maintains its own local bus and can operate out of 
local or system memory. The system bus interface con­
tains the following components: 

• Up to three 8282 buffer/latches to latch the address to 
the system bus 

• Up to two 8286 devices bidirectionally buffer the 
system data bus 
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Figure 3. Typical 8088, 8086/8089 Configuration with 8089 In LOCAL Mode, 8088, 8086 in MAX Mode 

B-47 



8089 

An 8288 bus controller supplies the control signals 
necessary for buffer operation as well as MRDC 
(Memory Read) and MWTC (Memory Write) signals. 

• An 8289 bus arbiter performs all the functions 
necessary to arbitrate the use of the system bus. This 
is used in place of the RQ/GT logic in the LOCAL 
mode. This arbiter decodes type of cycle information 
from the 8089 status lines to determine if the lOP 
desires to perform a transfer over the "common" or 
system bus. 

The peripheral devices P1 and P2 are supported on their 
own data and address bus. The 8089 communicates with 
the peripherals without affecting system bus operation. 
Optional buffers may be used on the local bus when 
capacitive loading conditions so dictate. 1/0 programs 
and RAM buffers may also reside on the local bus to fur­
ther reduce system bus utilization. 

COMMUNICATION MECHANISM 
Fundamentally, communication between the CPU and 
lOP is performed through messages prepared in shared 
memory. The CPU can cause the 8089 to execute a pro­
gram by placing it in the 8089's memory space andlor 
directing the 8089's attention to it by asserting a hard­
ware Channel Attention (CA) signal to the lOP, ac­
tivating the proper 1/0 channel. The SEL Pin indicates to 

the lOP which channel is being a 
tion from the lOP to the processor cart 
similar manner via a system interrupt (SI 
CPU has enabled interrupts for this purpose' . 
ally, the 8089 can store messages in memory reg~r 
its status and the status of any peripherals. This com' 
munication mechanism is supported by a hierarchial 
data structure to provide a maximum amount of flexi­
bility of memory use with the added capability of handl­
ing multiple lOP's. 

Illustrated in Figure 5 is an overview of the communica­
tion data structure hierarchy that exists for the 8089 1/0 
processor. Upon the first CA from RESET, 5 bytes of in­
formation are read into the 8089 starting at location 
FFFF6 (FFFF6, FFFF8-FFFFB) where the type of 
system bus (16-bit or 8-bit) and pointers to the system 
configuration are obtained. This is the only fixed loca­
tion the 8089 accesses. The remaining addresses are 
obtained via the data structure hierarchy. The 8089 
determines addresses in the same manner as does the 
8086; i.e., a 16-bit relocation pointer is offset left 4 bits 
and added to the 16-bit address offset, obtaining a 20-bit 
address. Once these 20-bit addresses are formed, they 
are stored as such, as all the 8089 address registers are 
20-bits long. After the system configuration pointer ad­
dress is formed, the 8089 lOP accesses the system con­
figuration block. 
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Figure 4_ Typical REMOTE Configuration 
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Figure 5. Communication Data Structure Hierarchy 

The System Configuration Block (SCB), used only duro 
ing startup, points to the Control Block (CB) and provides 
lOP system configuration data via the SOC byte. The 
SOC byte initializes lOP 1/0 bus width to 8/16, and 
defines one of two lOP RQ/GT operating modes. For 
RQ/GT mode 0, the lOP is typically initialized as SLAVE 
and has its RQ/GT line tied to a MASTER CPU (typical 
LOCAL configuration). In this mode, the CPU normally 
has control of the bus, grants control to the lOP as need· 
ed, and has the bus restored to it upon lOP task comple­
tion (lOP request-CPU grant-lOP done). For RQ/GT 
mode 1, useful only in remote mode between two lOPs, 
MASTERISLAVE designation is used only to initialize 
bus control: from then on, each lOP requests and grants 
as the bus is needed (IOP1 request-IOP2 grant-IOP2 
request-'IOP1 grant). Thus, each lOP retains bus con· 
trol until the other requests it. The completion of in· 
itialization is signalled by the lOP clearing the BUSY 
flag in the CB. This type of startup allows the user to 
have the startup pointers in ROM with the SCB in RAM. 
Allowing the SCB to be in RAM gives the user the flex· 
ibility of being able to initialize multiple lOPs. 

The Control Block furnishes bus control Initialization for 
the lOP operation (CCW or Channel Control Word) and 
provides pointers to the Parameter Block or "data" 
memory for both channels 1 and 2. The CCW is retrieved 
and analyzed upon all CA's other than the first after a 
reset. The CCW byte is decoded to determine channel 
operation. 

The Parameter Block contains the address of the Task 
Block and acts as a messge center between the lOP and 
CPU. Parameters or variable information is passed from 
the CPU to its lOP in this block to customize the soft· 
ware interface to the peripheral device. It is also used 
for transferring data and status information between the 
lOP and CPU. 

The Task Block contains the instructions for the respec· 
tive channel. This block can reside on the local bus of 

8089 

the lOP, allowing the lOP to ope 
the CPU, or reside in system memory.,* 
The advantage of this type of communicai 
the processor, lOP and peripheral, is that it allo 
very clean method for the operating system to ha 
1/0 routines. Canned programs or "Task Blocks" allow' 
for execution of general purpose 1/0 routines with the 
status and peripheral command information being 
passed via the Parameter Block ("data" memory). Task 
Blocks (or "program" memory) can be terminated or 
restarted by the CPU, if need be. Clearly, the flexibility 
of this communication lends itself to modularity and ap· 
plicability to a large number of peripheral devices and 
upward compatibility to future end user systems and 
microprocessor families. 

Register Set 

The 8089 maintains separate registers for its two 1/0 
channels as well as some common registers (see Figure 
6). There are sufficient registers for each channel to sus· 
tain its own DMA transfers, and process its own instruc· 
tion stream. The basic DMA pointer registers (GA, GB -
20 bits each), can point to either the system bus or local 
bus, DMA source or destination, and can be autoincre· 
mented. A third register set (GC) can be used to allow 
translation during the DMA process through a lookup 
table it pOints to. Additionally, registers are provided fora 
masked compare during the data transfer and can be set 
up to act as one of the termination conditions. Other 
registers are also provided. Manyof these registers can be 
used as general purpose registers during program execu· 
tion, when the lOP is not performing DMA cycles. 

USER PROGRAMMABLE 

TAG19 0 

G.P. ADDRESS A (GAl 

G.P. ADDRESS B (GB) 

G.P. ADDRESS C (Ge) 

TASK POINTER (TP) 

"--1·811 POINTER TO EITHER 110 OR SYSTEM MEMORY SPACE 
15 

INDEX (IX) 

BYTE COUNT (BC) 

MASK COMPARE (Me) 

CHANNEL CONTROL (ec) 

NON USER PROGRAMMABLE 
(ALWAYS POINTS TO SYSTEM MEMORY) 

191 o~ 
I PARAMETER POINTER (PP) r 

CHANNEL CONTROL POINTER (CP) 

(PHANTOM REGISTERS DENOTE 1 FOR EACH CHANNEL) 

Figure 6. Register Model 

Bus Operation 
The 8089 utilizes the same bus structure as the 
8086/8088 in their maximum mode configurations (see 
Figure 7). The address is time multiplexed with the data 
on the first 16/8 lines. A16 through A19 are time multi· 
plexed with four status lines S3·S6. For 8089 cycles, S4 
and S3 determine what type of cycle (DMA versus non· 
DMA) is being performed on channels 1 or 2. S5 and S6 
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are a unique code assigned to the 8089 lOP, enabling 
the user to detect which processor is performing a bus 
cycle in a multiprocessing environment. 

The first three status lines, 80·82, are used with an 8288 
bus controller to determine if an instruction fetch or 
data transfer is being performed in 1/0 or system 
memory space. 

DMA transfers require at least two bus cycles with each 
bus cycle requiring a minimum of four clock cycles. Ad· 
ditional clock cycles are added if wait states are reo 
qUired. This two cycle approach simplifies considerably 
the bus timings in burst DMA. The 8089 optimizes the 
transfer between two different bus widths by using 
three bus cycles versus four to transfer 1 word. More 
than one read (write) is performed when mapping an 
8·bit bus onto a 16·bit bus (vice versa). For example, a 
data transfer from an 8·bit peripheral to a 16·bit physical 
location in memory is performed by first dOing two 
reads, with word assembly within the lOP assembly 
register file and then one write. 

As can be expected, the data bandwidth of the lOP is a 
function of the physical bus width of the system and 1/0 
busses. Table 1 gives the bandwidth, latency and bus 
utilization of the 8089. The system bus is assumed to be 

16·bits wide with either an 8·bit 
column) or 16·bit peripheral (word colu 

The latency refers to the worst case respon 
the lOP to a DMA request, without the bus arbitr 
times. Notice that the word transfer allows 50% mor 
bandwidth. This occurs since three bus cycles are reo 
quired to map 8·bit data into a 16·bit location, versus two 
for a 16·bit to 16·bit transfer. Note that it is possible to 
fully saturate the system bus in the LOCAL mode 
whereas in the REMOTE mode this is reduced to a max· 
imum of 50%. 

Local Remote 

Byte Word Byte Word 

Bandwidth 830 KB/S 1250 KB/S 830 KB/S 1250 KB/S 

Latency 1.0/2.4 "sec' 1.0/2.4 "sec' 1.0/2.4 "sec' 1.0/2.4 "sec' 

System Bus 
2.4 jJsec 1.6 jJsec 0.8 jJsec 0.8 jJsec 

PER PER PER PER 
Utilization 

TRANSFER TRANSFER TRANSFER TRANSFER 

Table 1. 5 MHz 8089 Operation - With 1G·Bit BUS 

*2.4 ilsec if interleaving with other channel and no wait states. 1J1.sec if 
channel is waiting for request. 

!-____ (4+ NWAIT) = Tcv----_ ----(4+ NwAn)=Tov----­

" " TWAIT I T. 

GOES INACTIVE IN THE STATE 1\ n JUST PRIOR TOT. 1\ 
,'" -...l \L..-__ ~ '-----~--~~~-r--. _I L 

ADDR/OATA 
(16·8IT 

PHYSICAL BUSj 

DTIR 

DEN 

\ 
\ 

'-----p 

NOTE 1: !R! IS STABLE (I •• ., NON MULTIPLEXEDITHROUGHOUT EACH TRANSFER 
CYCLE. A8-A,~ ARE ALSO STABLE ON TRANSFERS TO A PHYSICAl8·BIT 
.os 

\L.-_-----'/ 

Figure 7. 8089 Bus Operation 
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PIN DESCRIPTION 
Pin Name(s) I/O Description 

AO-A15/ 
DO-D15 

A16-A19/ 
S3-S6 

BHE 

so,81,s;; 

READY 

I/O Multiplexed address and data bus. The 
function of these lines are defined by 
the state of SO, S1 and 52 lines. The 
pins are floated after reset and when 
the bus is not acquired. A8-A 15 are 
stable on transfers to a physical 8-bit 
data bus (same bus as 8088), and are 
multiplexed with data on transfers to a 
16-bit physical bus. 

a Multiplexed most significant address 
lines and status information. The ad­
dress lines are active only when ad­
dressing memory. Otherwise, the 
status lines are active and are encoded 
as shown below. The pins are floated 
after reset and when the bus is not 
acquired. 

56555453 

o 0 
o 

DMA cycle on CHI 
DMA cycle on CH2 

o Non-DMA cycle on CH1 
1 Non-DMA cycle on CH2 

a The Bus High Enable signal is used to 
enable data operations on the most 
significant half of the data bus (D8-
D15). The signal is active low when a 
byte is to be transferred on the upper 
half of the data bus. The pin is floated 
after reset and when the bus is not 
acquired. BHE does not have to be 
latched. 

a These are the status pins that define 
the lOP activity during any given cycle. 
They are encoded as shown below: 

525150 
o 0 0 Instruction fetch; I/O space 
o 0 1 Data fetch; I/O space 
o 1 0 Data store; I/O space 
o 1 1 Not used 
1 0 0 Instruction fetch; System 

Memory 
o 1 Data fetch; System Memory 
1 0 Data store; System Memory 
1 Passive 

The status lines are utilized by the bus 
controller and bus arbiter to generate 
all memory and I/O control signals. The 
signals change during T4 if a new 
cycle is to be entered while the return 
to passive state in T3 or T w indicates 
the end of a cycle. The pins are floated 
after system reset and when the bus is 
not acquired. 

The ready signal received from the ad­
dressed device indicates that the 
device is ready for data transfer. The 
signal is active high and is synchro­
nized by the 8284 clock generator. 

8089 

Pin Name(s) I/O Description 
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RESET 

a The lock output signal indi'cates"t 
bus controller that the bus iSneed'e 
for more than one contiguous cycle., It>., 
is set via the channel control register,' 
and during the TSl instruction. The pin 
floats after reset and when the bus is 
not acquired. This output is active low. 

The receipt of a reset signal causes 
the lOP to suspend all its activities and 
enter an idle state until a channel at­
tention is received. 

ClK System clock which provides all timing 
needed for internal lOP operation. 

CA Channel Attention. Used to get the at­
tention of the lOP. Upon the falling 
edge of this signal, the SEl input pin is 
examined to determine Master/Slave or 
CH1/CH2 information. This input is ac­
tive high. 

SEl The first CA received after system 
reset informs the lOP via the SEl line, 
whether it is a Master or Slave (0/1 for 
Master/Slave respectively) and starts 
the initialization sequence. During any 
other CA the SEl line signifies the 
selection of CH1/CH2. (0/1 re­
spectively) 

DRQ1-2 DMA request inputs which signal the 
lOP that a peripheral is ready to trans­
fer/receive data using channels 1 or 2 
respectively. The signals are active 
high. 

RQ/GT I/O The ReQuest GranT pin implements 
the communication dialogue required 
to arbitrate the use of the system bus 
(between lOP and CPU, lOCAL mode) 
or I/O bus when two lOPs share the 
same bus (REMOTE mode). The RQ/GT 
signal is active low. An internal pull-up 
permits RQ/GT to be left floating if not 
used. 

SINTR1-2 a Interrupt outputs from channels 1 and 
2 respectively. The interrupts may be 
sent directly to the CPU or through the 
8259A interrupt controller. They are 
used to indicate to the system the oc­
currence of user defined events. 

EXT1-2 External terminate inputs for channels 
1 and 2 respectively. The EXT Signals 
will cause the termination of the cur­
rent DMA transfer operation if the 
channel is so programmed by the 
channel control register. The signals 
are active high. 

Vee + 5 volt power input. 

Vss Ground pins. 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O°C to 70'C 
Storage Temperature ............. - 65'C to + 150'C 
Voltage on Any Pin with 

Respect to Ground. . . . .... - 0.3 to + 7V 
Power Dissipation. . . . . . . . . . . . . . . . ... 2.5 Watt 

D.C. CHARACTERISTICS 

Symbol Parameter 

Vil Input Low Voltage 

VIH Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

Icc Power Supply Current 

III Input Leakage Current(1) 

Ilo Output Leakage Current 

VCl Clock Input Low Voltage 

VCH Clock Input High Voltage 

Capacitance of Input Buffer 
CIN (All input except 

ADo- AD 15, RQ/GT) 

CIO 
Capacitance of I/O Buffer 
(ADo- AD 15, RQ/GT) 

NOTES: 1. Except RO/GT. 
2. Test Circuits: 

ALL OUTPUTS EXCEPT: RQ/GT 

20/150 pf 

Min. 

-0.5 

2.0 
-

2.4 

-0.5 

3.9 

1 
DEPENDING ON WHICH IS 
WORST CASE 

-::-

·COMMENT: Stresses above those listed under 
Ratings" may cause permanent damage to the device. This 
rating only and functional operation of the device at these or any ~ 
conditions above those indicated in the operational sections of 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Max. Units Test Conditions 

+0.8 V 

Vcc+ 1.O V 

0.45 V IOl = 2.0 mA(2) 

V IOH = - 400 I-'A 

350 mA TA= 25'C 

± 10 I-'A VIN = Vcc 

±10 I-'A 0.45V '" VOUT '" Vcc 

+0.6 V 

Vcc + 1.0 V 

10 pF Ie = 1 MHz 

20 pF fc = 1 MHz 

I 
~ 

30 pf 

I 
-::-
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'" 

A.C. CHARACTERISTICS /Jf#r:;~;~'i 
8089: TA =O'Cto70'C, Vcc=5V ± 10% 

i} 

8089/8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS 

Symbol Parameter Min. Max. Units Test Condillons" 

TCLCL CLK Cycle Period 200 500 ns 

TCLCH elK Low Time ('IJTCLCL)-15 ns 
-

TCI1CL CLK High Time ('IJTCLCL)+ 2 ns 

TCH1CH2 CLK Rise Time 10 ns From 1.0V to 3.5V 

TCL2CLl CLK Fall Time 10 ns From 3.5V to 1.0V 

TDVCL Data In Setup Time 30 ns 
----

TCLDX Data In Hold Time 10 ns 

TR1VCL ROY Setup Time into 8284 (See Notes 1, 2) 35 ns 

TCLR1X ROY Hold Time into 8284 (See Notes 1, 2) 0 ns 

TRYHCH READY Setup Time into 8089 ('IJTCLCL) - 15 ns 

TCHRYX READY Hold Time into 8089 30 ns 

TRYLCL READY Inactive to CLK (See Note 4) -8 ns 

TINVCH Setup Time Recognition (ORa 1.2 RESET. Ext 1,2) (See Note 2) 30 ns 
-

TGVCH RalGT Setup Time 30 ns 

TCAHCAL CA Width 95 ns 

TSLVCAL SEL Setup Time 75 ns 

TCALSLX SEL Hold Time 0 ns 

TCHGX 1'ill' Hold Time into 8089 40 ns 

TIMING RESPONSES 
Min. Max. Units Test Conditions Symbol Parameter 

---'-_ .. _-'----_._----_._._----- ------+------+---+----+--------
TCLML Command ActIVe Delay (See Note 1) 10 CL = 80 pF 

.-.-----.-r-------.-------.c..'-------'--------+------+----j---+----=---'-------
35 ns 

TCLMH Command Inaclive Delay (See Note 11 10 35 ns 

TRYHSH READY Active to Status Passive (See Note 3) 110 ns 

110 ns 

130 ns 
_ TCHS_V ____ ~~s ActiV':.~':'.".~ ___________________ I_---ll00,----+---:-c-+----I 

TCLSH Status Inactive Delay 
-------- - - --.------------.---------- ------- ----+-----

110 ns TCLAV Address Valid Delay 10 ------_._-_._------+-------+---+---j 
TCLAX Address Hold Time 10 ns 

- .. --------------.-.- .. _._--------+------+----+-----1 
80 ns 

15 ns 

15 ns 

Address Float Delay TCLAX 
--.--.------------.---------+-------t---+-----

Status Valid to ALE High (See Note 1) 
-----ct:Ki:-ow-to-A-L-E-v~lid(S-;;;;N~-te--·l-I-----------I-------+-----+----

TCLAZ 

TSVLH 

TCLLH 
----.---.. - ------.-------------.-------.--.------+------t-----j--

TCHLL 

TCLDV 

TCHDX 

TCVNV 

ALE Inactive Delay (See Note 1) 15 ns 

110 
-_.,------_ .. --._---. -, 

Data Valid Delay 10 
-----------.------------j------+------t------1 

ns 

Data Hold Time' 10 ns 
-----------------------------+-----+----t-----

45 ns 
-~ 

__ C_o_nt_r~_~~ive Delay (See N.o_t_e_l_I _________ + _______ f-___ +-._ 
TCVNX Control Inactive Delay (See Note 11 10 45 ns 

- --.-- --- -- -----------+------+---+-_.---1 
TCHDTL Direction Control Active Delay (See Note 1) 50 ns 

--

CL = 150 pI 

30 ns TCHDTH Direction Control Inacti_ve.:....cD.ce.cla.'..y..:(.~Se~e'_'_N.c0'_te'-l..:I ______ +------+_-...:....._+----+--------

~ ,eeoc ~~-iIT 'c'" '"'' C, ~"oC 85 ns 

85 ns TCLGH 1IT Inactive Delay CL = 30 pF 

150 ns ___ !~_L~~___ SINTR Valid Delay __ . _____________ .L-_____ --'-____ '--___ .L-_CL = 100 pF 

NOTES: 1 Signal at 8284 or 8288 shown for reference only. 
2 Setup requirement for asynchronous signal only to guarantee recognition at next elK 
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ClK 

1 Aa-A15 ON TRANSFERS 
see NOTE 7 TO AN 8·BIT PHYSICAL BUS 

AND BHE 

52,51,So (EXCEPT HAL 1) 

SEE NOTE 4 

I ALE (8288 OUTPUTI 

1 RDY (8284 INPUTI 

READY (8089 INPUT) 

READ - (MWTC,AMWC,IOWC,AIOWC = VOH) 

see NOTE 7 I AD1S-ADo 
ANDA~.&~ 1 

8288 OUTPUTS 

SEE NOTES 4, 5 

DT/A 

11 MRDC OR 10RC 

DEN 

WRITE - (RD,MRDC,IORC,DT/R = VOH) 

SEE NOTE 7 I 
AND A~BOHVE~ \ AD1S-ADo 

8288 OUTPUTS 

see NOTES 4,5 

DEN 

MWTCOR lowe 

VCl 

, .o.LLSIG'IALSSWITCH8erWEENVOH ANDVOL UNlESSOTHERWISESPECIFIED 

TClLH 

I TCHDTL-I 

I 

TCLAV-- 1-
X 

, 
; 

2. fillY IS SAMPLED NEAR H'E END OFT2.TJ TW TO DETERMINE 1FT'll MACHINE ST/l.TESAFlE TO BE INSERTED 

8089 

TCLMl--

-
A15"AO 

TCVNV-

-

3 FOLLOWING A WAITE CYCLE DATA REMAINS VALID ON THE 60119 LOCAL BUS UNTIL A LOCAL BUS MASTER Of.CIDES TO RUN ANOTHER BUS 
CYCLE THE LOCAL BUS IS FLOATED BY THE B069 WHEN THEBOII9 ENTERS A REQUEST BUSA CKNOWLEOGESTATE 

4SIONALSATa2840R82Il8ARESHOWNFOAREFERENCEONLY ______ _ 

5 :~~I~SES~~NHC:2~ ~~;. B28B COMMAND AND CONTROL SIONAl.S (MROC. MWTC. AMWC. 10RC. 10WC AIOWC. INTA AND DEl'll LAGS nil'. 

6 "LL TlMlNG MEASUREMENTS ARE MADE "T 1 5V UNLESS OTHERWISE NOTED 
I A.-",\ ARE STABLE ON TRANSFERS TO AN e BIT PHYSICAL DATIl. BUS, a t.~."" 

DON·T FlOAT ON A READ fROM "N e BIT PHYSICAL BUS OR MULTIPLEX WITH 
DATA ON A WRITE TO AN 881T PHYSICAL BUS "i"iit IS STABLE 'NON 
MULTIPLEXEDI FOR All TRANSFERS 

TCHRYX 

-I 
i 

: I 
I 

i ! 
I 

~ I I 
TClMH-i r 

I ! 
I 

TCVNV ---- I--
I 1 ! i 

I 

TCVNX-I -
TClDVI- TCHDX-

DATA OUT 

- TCVNX--

-TCLML TCLMH- ~ 

- _TClML - -TClMH 

, I 

Figure 8. 8089 Bus Timing - (Using 8288) 
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elK 

ORO 1,2 

RESET 

NOTES, 
1. SETUP AEQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO'GUARANTEE 

RECOGNITION AT NEXT elK. 
NEGATIVE EDGE TRIGGERED. 

3. ORO BECOMING ACTIVE GREATER THAN 30 ns AFTER THE RISING EDGE OF elK 
WilL GUARANTEE NON·RECOGNITION UNTIL THE NEXT RISING CLOCK EDGE. 2. ALL INPUTS EXCEPT CA ARE LATCHED ON A elK EDGE. THE CA INPUT IS 

Figure 9. Asynchronous Signal Recognition 

CLK 

LOCK 

, __ TClSRVJ~ 
SlNT"'~ ~ 

Figure 10. Bus Lock Signal Timing and SINTR Timing 

''''''vw ~r- .. j I;:H/-TClCl-

I~ 

ClK 

PREVIOUS RELEASE - ___ I TCLAZ 

~--------------------------------------~ v-----------~~ 
CPU 

NOTES, 

8089 
(SEE NOTE 1) 

1. THE CPU MAY NOT DRIVE THE BUSES INSIDE THE REGION SHOWN WITHOUT 
RISKING CONTENTION. 

2. IN THE REMOTE CONFIGURATION, THE 6089 lOP CAN EITHEA ISSUE OR 
RESPOND TO F[QiGT, THUS ALLOWING THE USER TO TIE 2 8089's TOGETHER. THe 
PROTOCOL OF RQIGT IN THIS CONFIGURATION CONSISTS OF ONLY ONE PULSE 
TO TRANSFER THE BUS 

Figure 11. Request/Grant Sequence Timing 

elK 

EXT 1,2 

Figure 12. External Terminate Setup Timing 

CA 

Figure 13. SEL Setup and Hold Timing 
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8089 INSTRUCTION SET SUMMARY 

Data Transfers 

LPD P,M 
LPD! P,I 
MOVP M,P 
MOVP P,M 

MOV M,M 

MOV R,M 
MOV M,R 
MOVI R 
MOVI M 

POINTER INSTRUCTIONS 

Load POinter PPP from Addressed Location 
Load POinter PPP Immediate 4 Bytes 
Store Contents of Pointer PPP in Addressed Location 
Restore Pointer 

MOVE DATA 

Source­Move from Source to Destination 
Destination­

Load Register RRR from Addressed Location 
Store Contents of Register RRR in Addressed Location 
Load Register RRR Immediate (Byte) Sign Extend 
Move Immediate to Addressed Location 

Control Transfer 
CALLS 

'CALL 

JMP 
JZ M 
JZ R 
JNZ M 
JNZ R 
JBT 
JNBT 
JMCE 
JMCNE 

Call Unconditional 

JUMP 

Unconditional 
Jump on Zero Memory 
Jump on Zero Register 
Jump on Non-Zero Memory 
Jump on Non-Zero Register 
Test Bit and Jump if True 
Test Bit and Jump if Not True 
Mask/Compare and Jump on Equal 
Mask/Compare and Jump on Non-Equal 

Arithmetic and Logic Instructions 
INCREMENT, DECREMENT 

INC M Increment Addressed Location 
INC R Increment Register 
DEC M Decrement Addressed Location 
DEC R Decrement Register 

ADD 

ADD I M,I ADD Immediate to Memory 
ADDI R,I ADD Immediate to Register 
ADD M,R ADD Register to Memory 
ADD R,M ADD Memory to Register 

AND 

AND! M,I AND Memory with Immediate 
AND! R,I AND Register with Immediate 
AND M,R AND Memory with Register 
AND R,M AND Register with Memory 

OR 

ORI M,I OR Memory with Immediate 
ORI R,I OR Register with Immediate 
OR M,R OR Memory with Register 
OR R,M OR Register with Memory 
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OPCODE 
7 0 7 

P P P 0 o A A 1 1 000 
P P P 1 000 1 000 0 
P P P 0 o A A 1 1 001 
P P P 0 o A A 1 1 0 0 0 1MM 

o 0 0 0 OAAW 1 001 OOMM 
000 0 OAAW 1 100 11M M 
R R R 0 OAAW 1 000 OOMM 
R R R 0 OAAW 1 000 o 1 M M 
R R R wb OOW 001 1 o 0 0 0 
000 wb A AW o 1 0 0 11M M 

11 0 0 wb A A W 11 0 0 1 11M M 1 

1 0 0 wb DOW 001 0 o 0 0 0 
000 wb AAW1 1 1 0 o 1 M M 
R R R wb o 0 0 0 1 o 0 o 1 0 0 
000 wb AAW1 1 1 0 OOMM 
RR R wb 000 0 1 o 0 o 0 0 0 
B B B wb A A 0 1 0 1 1 1 1MM 
B B B wb A A 0 1 0 1 1 1 OMM 
000 wb A A 0 1 0 1 1 0 OMM 
000 wb A A a 1 a 1 1 a 1MM 

a a a a OAAW 1 1 1 0 1 OMM 
R R R a 000 a a a 1 1 1 a a a 
a a a a a A AW 1 1 1 0 1 1 MM 
R R R a a a a a o 0 1 1 1 100 

a a a wb A AW 1 1 a a OOMM 
R R R wb OOW a a 1 a a a a a 
R R R a OAAW 1 1 a 1 OOMM 
R R R a a A AW 101 a OOMM 

a a a wb A AW 1 1 a a 1 OMM 
R R R wb OOW a a 1 a 1 000 
R R R a OAAW 1 1 a 1 1 OMM 
R R R a OAAW 1 a 1 a 1 OMM 

a a a wb A A 0 1 100 a 1MM 
R R R wb A A a a a 1 a a 100 
R R R a OAAW 1 1 0 1 a 1MM 
R R R a OAAW 101 a a 1MM 



8089 

Arithmetic and Logic Instructions (cont.) 

NOT R 
NOT M 
NOT R,M 

NOT 

Complement Register 
Complement Memory 
Complement Memory, Place in Register 

Bit Manipulation and Test Instructions 

SET 
CLR 

TSL 

Control 

BIT MANIPULATION 

Set the Selected Bit 
Clear the Selected Bit 

TEST 

Test and Set Lock 

Halt Channel Execution 
Set Interrupt Service Flip Flop 
No Operation 
Enter DMA Transfer 

7 
OPCODE 

o 7 

R R ROO 0 0 0 001 0 
----~.--,~- -,-.-------.. ----~ 

OOOOOAAW 10 
RRRO OAAW1010 11MM 

~-_O A A 0 01MM1 

~IOAAO 1~ 
.~----

1 A A 0 J100101M}Al 

001 0 o 0 0 0 o 1 0 0 1 0 0-0-

~_O 0 o 0 0 0 o 0 0 0 00--0-0-
000 0 o 0 0 0 o 0 0 0 o 0 0 0 

0 o 0 0 0 o 0 0 0 0-000 

HLT 
SINTR 
Nap 
XFER 
WID Set Source, Destination Bus Width; S,D 0 = 8, 1 = 16 

c9. 1 1 
1 S D 0 o 0 0 0 o 0 0 0 o 0 0 0 

NOTES: 

'1\ field in call instruction can be 00,01,10 only. 
"OPCODE is second byte fetched. 
All instructions consist of at least 2 bytes, while some 
instructions may 'use up to 3 additional bytes to specify 
literals and displacement data. The definition of the 
various fields within each instruction is given below: 

o 7 

I R R R I W b I A A I w I OPCODE 

PPPBBB 

M M Base Pointer Select 

00 GA 
01 GB 
10 GC 
11 PP 

RRR Register Field 

The RRR field specifies a 16-bit register to be used in 
the instruction. If GA, GB, GC or TP, are referenced by 
the RRR field, the upper 4 bits of the registers are load­
ed with the sign bit (Bit 15). PPP registers are used as 
20-bit address pointers. 

RRR 

000 rO GA 
001 r1 GB 
010 r2 GC 
011 r3 BC ; byte count 
100 r4 TP ; task block 
101 r5 IX ; index register 
110 r6 CC ; channel control (mode) 
111 r7 MC ; mask/compare 

MNEMONICS i9 1979 INTEL CORP. 

ppp 

000 pO GA 
001 p1 GB 
010 p2 GC 
100 p4 TP ; task block pointer 

BBB Bit Select Field 

The bit select field replaces the RRR field in bit manipu­
lation instructions and is used to select a bit to be oper· 
ated on by those instructions. Bit 0 is the least signifi· 
cant bit. 

wb 

01 1 byte literal or 1 byte displacement 
10 2 byte (word) literal or 2 byte (word) displacement 

AA Field 

00 The selected pointer contains the operand address. 

01 The operand address is formed by adding an 8-bit, 
unsigned, offset contained in the instruction to the 
selected pointer. The contents of the pointer are un­
changed. 

10 The operand address is formed by adding the con­
tents of the Index register to the selected pointer. 
Both registers remain unchanged. 

11 Same as 10 except the Index register is post auto· 
incremented (by 1 for 8-bit transfer, by 2 for 16-bit 
transfer). 

W Width Field 

o The selected operand is 1 byte long. 

The selected operand is 2 bytes long. 
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Additional Bytes 

OFFSET: 8-bit unsigned offset. 

SDISP : 8/16-bit signed displacement. 

LITERAL: 8/16-bit literal. 

The order in which the above optional bytes appear in 
lOP instructions is given below: 

Offsets are treated as unsigned numbers. Literals and 
displacements are sign extended (2's complement). 

8089 
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8282/8283 
OCTAL LATCH 

• Fully Parallel 8-Bit Data Register and 
Buffer 

• Transparent during Active Strobe 

• Supports 8080, 8085, 8048, and 8086 
Systems 

• High Output Drive Capability for 
Driving System Data Bus 

• 3-State Outputs 

• 20-Pin Package with 0_3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers, 
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal periph· 
eral and input/output functions of a microcomputer system can be implemented with these devices. 

PIN CONFIGURATIONS 

Vee 
000 

DO, 

002 

003 

DO, 

005 

006 

007 

STB 

PIN NAMES 

010-017 OATA IN 
000-007 OATA OUT 

OE OUTPUT ENABLE 
STB STROBE 

LOGIC DIAGRAMS 

L ______ _ L ______ _ 
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828218283 

PIN DEFINITIONS 
Pin Description 

STB STROBE (Input). STB is an input control 
pulse used to strobe data at the data input 
pins (Ao-A7) into the data latches. This 
signal is active HIGH to admit input data. 
The data Is latched at the HIGH to LOW 
transition of STB. 

OUTPUT ENABLE (Input). i5E is an input 
control signal which when active LOW 
enables the contents of the data latches 
onto the data output pin (Bo-B7). OE being 
Inactive HIGH forces the output buffers to 
their high impedance state. 

DATA INPUT PINS (Input). Data presented 
at these pins satisfying setup time reo 
quirements when STB is strobed and 
latched into the data input latches. 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias ................. 0 DC to 70 DC 
Storage Temperature ............. - 65 DC to + 150 DC 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. -1.0V to + 5.5V 
Power Dissipation .......................... 1 Watt 

D.C. CHARACTERISTICS FOR 828218283 
Conditions: Vcc= 5V:t: 5%, TA= ODC to 70 DC 

Symbol Parameter Min 

Vc Input Clamp Voltage 

Icc Power Supply Current 

IF Forward Input Current 

IR Reverse Input Current 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

IOFF Output Off Current 

VIL Input Low Voltage 

VIH Input High Voltage 2.0 

CIN Input Capacitance 

Nol •• : 1. Output Loading IOL = 32 mA, 10H" - 5 mAo CL = 300 pF 

000-007 
(8282) 

000-007 
(8283) 

true, the data in the 
sented as inverted (8283) 
(8282) data onto the data output' 

OPERATIONAL DESCRIPTION 

The 8282 and 8283 octal latches are 8·bit latches with 
3·state output buffers. Data having satisfied the setup 
time requirements is latched into the data latches by 
strobing the STB line HIGH to LOW. Holding the STB 
line in its active HIGH state makes the latches appear 
transparent. Data is presented to the data output pins by 
activating the OE input line. When OE is inactive HIGH 
the output buffers are in their high impedance state. 
Enabling or disabling the output buffers will not cause 
negative·going transients to appear on the data output 
bus. 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those Indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Max Units Test Conditions 

-1 V Ic = -5 mA 

160 mA 

-0.2 mA VF = 0.45V 
.. 

50 ,..A VR = 5.25V 

0.50 V IOL = 32 mA 

V 10H = ~5 mA 

± 50 ,..A VOFF = 0.45 to 5.25V 

O.B V Vcc =5.0V See Note 1 

V VCc= 5.0V See Note 1 

F-1 MHz 
12 pF VBIAS=2.5V, Vcc=5V 

TA=25 DC 
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828218283 

A.C. CHARACTERISTICS FOR. 8282/8283 

Conditions: Vee = 5V ± 5%, T A = 0 'C to 70 'C 

Loading: Outputs - 10L = 32 mA, 10H = - 5 mA, CL = 300 pF 

Symbol Parameter Min 
------

TIVOV Input to Output Delay 
-Inverting 
- Non-Inverting 

TSHOV STS to Output Delay 
-Inverting 
-Non-Inverting 

TEHOZ Output Disable Time 

TElOV Output Enable Time 10 

TIVSl Input to STS Setup Time o 
TSLIX Input to STS Hold Time 25 

----
TSHSl STS High Time 15 

NOTE: 1. See waveforms and test load circuit on following page. 

8282/8283 TIMING 

Max Units 

(See Note 1) 
25 ns 
35 ns 

45 ns 
55 ns 

25 ns 

50 ns 

ns 

ns 

ns 

INPUTS f 1: 
------ ~TlVSL-----+TSLI:~ ,'------------------------

STB J~-lTsHSL--l~----

OUTPUTS 
r------1.l_~ec';~~_t= t-"",, __ 'f-s~E:-E-N--:-O--TE-,-----------

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION. 

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED 
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8282/8283 

OUTPUT DELAY VS. CAPACITANCE 

50 50 

8283 8282 

40 

30 30 

20 20 

10 

200 400 200 400 600 800 1000 

pF LOAD pF LOAD 

OUTPUT TEST LOAD CIRCUITS 

1.5V 1.5V 2.14V 

33Q 180Q ~"" OUT OUT OUT 

1300 pF 

3·STATE TO VOL 3·STATE TO VOH SWITCHING 
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8284 
CLOCK GENERATOR AND DRIVER 

FOR 8086, 8088, 8089 PROCESSORS 

• Generates the System Clock for the 
8086, 8088 and 8089 

• Generates System Reset Output from 
Schmitt Trigger Input 

• Uses a Crystal or a TTL Signal for Fre· 
quency Source 

• Provides Local Ready and MULTIBUS™ 
Ready Synchronization 

• Single + 5V Power Supply • Capable of Clock Synchronization with 
other 8284's • 18·Pin Package 

The 8284 is a bipolar clock generator / driver designed to provide clock signals for the 8086, 8088 & 8089 and 
peripherals. It also contains READY logic for operation with two MUL TIBUS™ systems and provides the processors 
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided. 

8284 PIN CONFIGURATION 8284 BLOCK DIAGRAM 

CYSNe 

PCLK 

AEN1 

ROY' 

READY 

RDY2 

AEN2 

ClK 

GNO 

RESET 

x, 
VCC 

X, 
X2 Mr------ii>'r--i----OSC 

X2 TANK 
j---_ClK 

TNK 

EFI 

Fie 
Fie --.---[;><>-----L~ 

OSC EFI-':======l::J 
RES 

RESET 
PCLK 

CSyNC--------------<--+----' 

X'I 
X21 

RDY1----~ 

AEN1------j 

AEN2 ====~~=:C) ROY2 

8284 PIN NAMES 

CONNECTIONS FOR CRYSTAL 

TANK USED WITH OVERTONE CRYSTAL 
FIe CLOCK SOURCE SELECT 
EFI EXTERNAL CLOCK INPUT 
CSYNC CLOCK SYNCHRONIZATION INPUT 
ROY1 I 
RDY2 I 

A'E"N1 I 
AEN21 

RES 
RESET 
OSC 
elK 
PClK 

READY StGNAL FROM TWO MULTIBUS™ SYSTEMS 

ADDRESS ENABLED QUALIFIERS FOR RDY1,2 

RESET INPUT 
SYNCHRONIZED RESET OUTPUT 
OSCillATOR OUTPUT 
MOS CLOCK FOR THE PROCESSOR 
TTL CLOCK FOR PERIPHERALS 

READY SYNCHRONIZED READY OUTPUT 
Vee +5 VOLTS 
GND 0 VOLTS 
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8284 

PIN DEFINITIONS 
Pin 

AEN1, 
AEN2 

RDY1, 
RDY2 

I/O Definition 

ADDRESS ENABLE. AEN is an active 
lOW signal. AEN serves to qualify its 
respective Bus Ready Signal (RDY1 or 
RDY2). AEN1 validates RDY1 while AEN2 
validates RDY2. Two AEN signal inputs 
are useful in system configurations 
which permit the processor to access 
two Multi-Master System Busses. In non 
Multi-Master configurations the AEN 
signal inputs are tied true (lOW). 

BUS READY (Transfer Complete). ROY is 
an active HIGH signal which is an indica­
tion from a device located on the system 
data bus that data has been received, or 
is available. RDY1 is qualified by AEN1 
while RDY2 is qualified by AEN2. 

READY 0 READY. READY is an active HIGH signal 

X1, X2, 
TNK 

F/C 

EFI 

ClK 

PClK 

which is the synchronized ROY signal in­
put. Since ROY occurs asynchronously 
with respect to the clock (ClK) it 
may be necessary for them to be syn­
chronized before being presented to the 
8284. READY is cleared after the 
guaranteed hold time to the processor 
has been met. 

CRYSTAL IN. X1 and X2 are the pins to 
which a crystal is attached with TNK 
(TANK) serving as the overtone input. 
The crystal frequency is 3 times the 
desired processor clock frequency. 

FREQUENCY/CRYSTAl SELECT. Fie is 
a strapping option. When strapped lOW, 
FIC permits the processor's clock to be 
generated by the crystal. When FIC is 
strapped HIGH, ClK is generated from 
the EFI input. 

EXTERNAL FREQUENCY IN. When FIC 
is strapped HIGH, ClK is generated from 
the input frequency appearing on this 
pin. The input Signal is a square wave 3 
times the frequency of the desired ClK 
output. 

o PROCESSOR CLOCK. ClK is the clock 
output used by the processor and all 
devices which directly connect to the 
processor's local bus (I.e., the bipolar 
support chips and other MOS devices). 
ClK has an output frequency which is 
1/3 of the crystal or EFI inpiJt frequency 
and a 1/3 duty cycle. An output HIGH of 
4.5 volts (Vce =5V) is provided on this 
pin to drive MOS devices. 

o PERIPHERAL CLOCK. PClK is a TTL 
level peripheral clock signal whose out­
put frequency is 1/2 that of ClK and has 
a 50% duty cycle. 

Pin 1/0 

OSC 0 
level output of the interna"ii:>$< 
cuitry. Its frequency is equal tlf" 
the crystal. 

RESET IN. RES is an active lOW signal 
which is used to generate RESET. The 
8284 provides a Schmitt trigger input so 
that an RC connection can be used to 
establish the power-up reset of proper 
duration. 

RESET 0 RESET. Reset is an active HIGH signal 
which is used to reset the 8086 family 
processors. Its timing characteristics 
are determined by RES. 

CSYNC CLOCK SYNCHRONIZATION. CSYNC is 
an active HIGH signal which allows mul­
tiple 8284's to be synchronized to pro­
vide clocks that are in phase. When 
CSYNC is HIGH the internal counters are 
reset. When CSYNC goes lOW the in­
ternal counters are allowed to resume 
counting. CSYNC needs to be externally 
synchronized to EFI. When using the in­
ternal oscillator CSYNC should be hard­
wired to ground. 

GND Ground 

Vee + 5V supply 

FUNCTIONAL DESCRIPTION 

GENERAL 

The 8284 is a single chip clock generator I driver for the 
8086, 8088 & 8089 processors. The chip contains a 
crystal controlled oscillator, a "divide by three" 
counter, complete MULTIBUS™ "Ready" synchroniza­
tion and reset logic. 

OSCillATOR 

The oscillator circuit of the 8284 is designed primarily 
for use with an external series resonant, fundamental 
mode, crystal from which the basic operating frequency 
is derived. However, overtone mode crystals can be 
used with a tank circuit as shown in Figure 1. 

The crystal frequency should be selected at three times 
the required CPU clock. X1 and X2 are the two crystal 
input crystal connections. 

The output of the oscillator is buffered and brought out 
on OSC so that other system timing signals can be 
derived from this stable, crystal-controlled source. 
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8284 

x, ose 

0 eLK 

~l x, PCLK 
3 TO 10 pF 8284 

Vee 

I 
RES RESET 

TANK 

L I 

~~~~~d~~~ ~, 

1= 2n)rcr I: USED WITH OVERTONE 
CRYSTALS ONLY 

eBP r eTr : 
L_~~_~~~~~~7~_~~ 

The tank inp-ut to the oscillator allows the use of overtone mode crys­
tals. The tank circuit shunts the crystal's fundamental and high overtone 
frequencies and allows the third harmonic to oscillate. The external LC 
network is connected to the TANK input and is AC coupled to ground. 

Figure 1 

CLOCK GENERATOR 

The clock generator consists of a synchronous divide­
by-three counter with a special clear input that inhibits 
the counting. This clear input (CSYNC) allows the out­
put clock to be synchronized with an external event 
(such as another 8284 clock)_ It is necessary to syrichro­
nize the CSYNC input to the EFI clock external to the 
8284_ This is accomplished with two Schottky flip-flops. 
(See Figure 2.) The counter output is a 33% duty cycle 
clock at one-third the input frequency. 

The FIG input is a strapping pin that selects either the 
crystal osci lIator or the EFI input as the clock for the -;- 3 
counter. If the EF'I input is selected as the ClOCK source, 
the oscillator section can be used independently for 
another clock source. Output is taken from OSC. 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias_ . _'" _. _ ..... _ .. 0·Ct070·C 
Storage Temperature. _'" _ .. __ . _. ~65·C to + 150·C 
All Output and Supply Voltages .. ___ . _ . ~ 0.5V to + 7V 
All Input Voltages .... _ . _ ... _ . _ . __ .. ~ 1_0V to + 5.5V 
Power Dissipation __ . ______ ... _ . _ . __ . __ ... _ .1 Watt 

CLOCK 
0 SYNCHRONIZE 

EFI>--4 >1 

(TO OTHER 82845) 

Figure 2_ CSYNC Synchronization 

CLOCK OUTPUTS 

The ClK output is a 33% duty cycle MaS clock driver 
designed to drive the 8086 processor directly. PClK is a 
TTL level peripheral clock signal whose output fre­
quency is 1/2 that of ClK. PClK has a 50% duty cycle. 

RESET lOGIC 

The reset logic provides a Schmitt trigger input (RES) 
and a synchronizing flip-flop to generate the reset tim­
ing. The reset signal is synchronized to the falling edge 
of ClK_ A simple RC network can be used to provide 
power on reset by utilizing this function of the 8284. 

READY SYNCHRONIZATION 

Two READY inputs (RDY1, RDY2) are provided to 
accomomodate two Multi-Master system busses. Each 
input has a qualifier (AEN1 and AEN2, respectively). The 
AEN signals validate their respective RDY signals_ If a 
Multi-Master system is not being used the AEN pin 
should be tied law. 

Synchronization is required for all asynchronous active 
going edges of either RDY input to guarantee that the 
RDY setup and hold times are met. Inactive going edges 
of RDY in normally ready systems do not require syn­
chronization but must satisfy RDY setup and hold as a 
matter of proper system design. Synchronization may 
be accomplished by inserting a D flip flop between an 
asynchronous RDY source and the 8284 and clocking 
the flip flop on the rising edge of ClK. The 8284 READY 
logic guarantees the required 8086 READY hold time 
before clearing the READY signal. 

·COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specificatioQ is not implied, Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 
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8284 

D.C. CHARACTERISTICS FOR 8284 
Conditions: TA = O·C to 70·C; Vcc= 5V ± 10% 

Symbol Parameter Min Max Units 

IF Forward Input Current -0.5 mA V F =0.45V 

IR Reverse Input Current 50 ,.,A V R= 5.25V 

Vc Input Forward Clamp Voltage -1.0 V Ic= -5 mA 

Icc Power Supply Current 140 mA 

V il Input LOW Voltage 0.8 V VCC= 5.0V 

V IH Input HIGH Voltage 2.0 V Vcc= 5.0V 

V IHR Reset Input HIGH Voltage 2.6 V Vcc= 5.0V 

VOL Output lOW Voltage 0.45 V 5mA 

V OH Output HIGH Voltage ClK 4 V -1 mA 

Other Outputs 2.4 V -1 mA 

VIHR-VllR RES Input Hysteresis 0.25 V Vcc= 5.0V 

A.C. CHARACTERISTICS FOR 8284 
Conditions: TA = O°C to 70·C; Vee = 5V ± 10% 

TIMING REQUIREMENTS 
Symbol Parameter Min Max Units Test Conditions 

TEHEl External Frequency High Time 13 ns 90% - 90% VIN 

TElEH External Frequency Low Time 13 ns 10% - 10% VIN 
----

TElEl EFI Period TEHEl + TElEH + d ns (Note 1) 

XTAl Frequency 12 25 MHz 
t---

TRtVCl ROYI. ROY2 Set·Up to ClK 35 ns 

TClR1X ROY1, ROY2 Hold to ClK 0 ns 

TA1VRtv AEN1, AEN2 Set·Up to ROY1, ROY2 15 ns 

TClA1X AEN1, AEN2 Hold to ClK 0 ns 

TYHEH CSYNC Set·Up to EFI 20 ns 

TEHYL CSYNC Hold to EFI 20 ns 

TYHYl CSYNC Width 2·TElEl ns 

TllHCl RES Set·Up to ClK 65 ns (Note 2) 

TCLllH RES Hold to ClK 20 ns (Note 2) 

TIMING RESPONSES 

Symbol Parameter Min Max Units Test Conditions 
--T-C'-lC-l---+--C-l-K-C-y-C-le--p-e-rio-d-------c------1-2-5 ----+------t---n-s---t---------------

-------!-----'--------------t-------------t-------t---- - -- ------------
TCHCl ClK High Time ('!JTClCl)+ 2.0 n5 Fig. 3 & Fig. 4 

------t-----=----------f---'-----------r-------t----------t-----::--c--c----
__ T_C_lC_H __ -+-__ C_l_K_lO_w_Ti_m_e _________ -+ __ --'--W_'T_ClC_l_)_-_15_.0 ___ r--____ t-_n_s __ t- Fig. 3 & Fig. 4 

TCH1CH2 
TCl2Cll 

ClK Rise or Fall Time 10 

--------!----------------t-----------f----
ns 1.0V to 3.5V 

TPHPl PClK High Time TClCl- 20 ns ______ + ___ --'C _________ +-________ +-____ --+ __________ . ________________ __ 
TPlPH PClK low Time TClCl - 20 ns 

------+----------------+-------- ----t------------- --- --------
TRYlCl Ready Inactive to ClK_(_S_ee_N_o_t_e_4)_--t-____ -s ________________ n_s __ _ __ Fi_g._5~_F_ig_.~_ 

TRYHCH Ready Active to ClK (See Note 3) ('!JTClCl)-15.0 ns Fig. 5 & Fig. 6 

TCLIl ClK to Reset Oelay 40 
------1-----------------+------- -------

TCLPH ClK to PClK High Oelay 22 ns 
-------+-------=------'------ t------------- ------ ---- ---------
__ T_C_LP_L __ -+ ___ C_L_K~t~o_P __ C_L_K_ Low Delay + __ 2_2 __ +-____ n_s__ __ _ _______________ _ 

ns 

_ -'--T:c,0:c,LC:c,H--'--_-+ __ 0=-S=--C=-:.:to'--C=cL::.cK'--H:.ci"'9:.:.h-=O:c,e:::la"-y ______ t--__ -_5 _____ ~ ___ 1_2_ ns 

__ T_O_L_C_L __ .L.-_O_S_C_tO_C_L __ Kc.. . ..:.lo'--w....c:.oc..elccay'----____ .L.-_____ 2 _____ ~ ___ 2_0 _______ n"- ______________ _ 

Notes: 1. /j = EFI rise (5 ns max) + EFI fall (5 ns max). 
2. Set up and hold only necessary to guarantee recognition at next clock. 
3. Applies only to T3 and TW states_ 
4. Applies only to T2 states. 
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8284 

NAME 110 n n. 
EFI I -J LJ \.. 

osc oJlJ\ .. 
ClK 

PCLK 0 

ROY ,2 I ---1,---

READyol=:ci ""~:: 
CSYNC I 

RES I _TYHYL_ 

_TClI'H_I_TI1HCl_ 

TEHYL 

\ 

RESET 0 I 
ALL TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED 

A.C. TEST CIRCUITS 

ClKr---------1 
r--:-:---1EFI ClK r-----1 

5 pF 

...r:::-1 X, 
FIe! 

24 MHzc:::J 

X, 

Fie 

CSYNC 

Figure 3. Clock High and Low Time Figure 4. Clock High and Low Time 
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Vee 

nm 
5 pF 

~ X, 
24 MHz c:::::] 

X, 

RDY2 
Fie 
AE1i12 

ClK 

READY 

OSC 

8284 

I--.,--;EFI 

Fie 
AEN1 

1----;RDY2 

CSYNC 

":" 

Figure 5. Ready to Clock 

CSYNC READY't------t 

Figure 6. Ready to Clock 

FROM OUTPUT 
UNDER TEST 

TEST 
POINT Vee 

r 
800~J 

LOAD 

ALL DIODES 1 N3064 
OR EOUIVALENT 

CL I (SEE NOTE 3) 

NOTES: 1. CL = 100 pF 
2. CL=30 pF 
3, CL INCLUDES PROBE AND JIG CAPACITANGE 
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M8284 
CLOCK GENERATOR AND DRIVER 

FOR 8086, 8088, 8089 PROCESSORS 

• Generates the System Clock for the 
8086, 8088 and 8089 

• Generates System Reset Output from 
Schmitt Trigger Input 

• Uses a Crystal or a TTL Signal for Fre· 
quency Source 

• Provides Local Ready and MULTIBUS™ 
Ready Synchronization 

• Single + 5V Power Supply 

• 18·Pin Package 

• Capable of Clock Synchronization with 
other 8284'5 

• Full Military Temperature Range 
-55° to + 125°C 

The MB2B4 is a bipolar clock generator/driver designed to provide clock signals for the BOB6, BOBB & BOB9 and 
peripherals. It also contains READY logic for operation with two MUL TIBUSTM systems and provides the processors 
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided. 

M8284 PIN CONFIGURATION M8284 BLOCK DIAGRAM 

PClK 

AENi 
RDYl 

READY 

RDY2 

AEN2 

ClK 

GND 

Vcc 

Xl 

X2 

TNK 

EFI 

Fie 

OSC 

RES 
RESET 

Xli 
X21 
TANK 
Fie 
EFI 
CSYNC 
RDYl I 
RDY21 

AENi I 
AEN21 
RES 
RESET 
OSC 
ClK 
PClK 
READY 

VCC 
GNO 

RES--~-=-=-~==~--------ILZ>---~ Q RESET 

X1 CK 

XTAl 
X, OSCIL· 1--1---------c>O----+------osc 

LATOR 

TANK 

Fie 

EF! 

CSYNC----------------------J~_+--.J 

RDY'=====l AEN1 

AEN2====~ RDY2 

M8284 PIN NAMES 

CONNECTIONS FOR CRYSTAL 

USED WITH OVERTONE CRYSTAL 
CLOCK SOURCE SELECT 
EXTERNAL CLOCK INPUT 
CLOCK SYNCHRONIZATION INPUT 

READY SIGNAL FROM TWO MULTI BUS'· SYSTEMS 

ADDRESS ENABLED QUALIFIERS FOR RDV1.2 

RESET INPUT 
SYNCHRONIZED RESET OUTPUT 
OSCillATOR OUTPUT 
MOS CLOCK FOR THE PROCESSOR 
TTL CLOCK FOR PERIPHERALS 
SYNCHRONIZED READY OUTPUT 
+5 VOLTS 
o VOLTS 
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18284 
CLOCK GENERATOR AND DRIVER 

FOR 8086, 8088, 8089 PROCESSORS 

• Generates the System Clock for the 
8086,8088 and 8089 

• Generates System Reset Output from 
Schmitt Trigger Input 

• Uses a Crystal or a TTL Signal for Fre· 
quency Source 

• Provides Local Ready and MULTIBUS™ 
Ready Synchronization 

• Single + 5V Power Supply • Capable of Clock Synchronization with 
other 8284's 

• 18·Pin Package 
• Industrial Temperature Range 

-40° to + 85°C 

The 18284 is a bipolar clock generator/driver designed to provide clock signals for the 8086, 8088 & 8089 and 
peripherals. It also contains READY logic for operation with two MULTIBUSTM systems and provides the processors 
required READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided. 

18284 PIN CONFIGURATION 18284 BLOCK DIAGRAM 

PCLK 

AEN1 
ROYl 

READY 

RDY2 

AEN2 

ClK 

GND 

RESET 

Xl 

VCC 

Xl 
x, I-----t-----i:>o-~-+---osc 

X2 TANK l-----CLK 

EFI 

FIG 

OSC 

RES 

RESET PCLK 

CSYNC-----------~_-+-_~ 

ROY1 =====1001\ 
'EN' po-----t-J 

'EN' ===jt>~<>-------f'"""\ RDY2 ---LJ 

18284 PIN NAMES 
Xl' 
X2I CONNECTIONS FOR CRYSTAL 

TANK USED WITH OVERTONE CRYSTAL 
FIG CLOCK SOURCE SElECT 
EFI EXTERNAL CLOCK INPUT 
CSYNC CLOCK SYNCHRONIZATION INPUT 
RDY1 I 
ROY2 I 

AEN11 
AEN2 I 

RES 

READY SIGNAL FROM TWO MULTIBUS™ SYSTEMS 

ADDRESS ENABLED aUALIFIERS FOR RDY1,2 

RESET INPUT 
RESET SYNCHRONIZED RESET OUTPUT 
OSC OSCillATOR OUTPUT 
ClK MOS CLOCK FOR THE PROCESSOR 
PCLK TTL CLOCK FOR PERIPHERALS 
READY SYNCHRONIZED READY OUTPUT 
Vee +5 VOLTS 

GND 0 VOLTS 
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8286/8287 
OCTAL BUS TRANSCEIVER 

• Data Bus Buffer Driver for MCS·8S™, 
MCS.80™, MCS.8S™, and MCS·48™ 
Families 

• High Output Drive Capability for 
Driving System Data Bus 

• Fully Parallel 8·Bit Transceivers 

• 3·State Outputs 

• 20·Pin Package with 0.3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs 
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met. 

PIN CONFIGURATIONS LOGIC DIAGRAMS 

8287 r--------, 
I I 

PIN NAMES 
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8286/8287 

PIN DEFINITIONS 
Pin Description 

T TRANSMIT (Input). T is an input control 
signal used to control the direction of the 
transceivers. When HIGH, it configures the 
transceiver's Bo-B7 as outputs with Ao-A7 
as inputs. T LOW configures AO-A? as the 
outputs with Bo-B7 serving as the inputs. 

OUTPUT ENABLE (Input). OE is an input 
control signal used to enable the appropri­
ate output driver (as selected by T) onto its 
respective bus. This signal is active LOW. 

LOCAL BUS DATA PINS (Input/Output). 
These pins serve to either present data to 
or accept data from the processor's local 
bus depending upon the state of the T pin. 

D.C. AND OPERATING CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS* 
Temperature Under Bias ................. O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. - 1.0V to + 5.5V 
Power Dissipation .......................... 1 Watt 

D.C. CHARACTERISTICS FOR 828618287 
Conditions: Vee = 5V ±5%, TA = D·C to 70·C 

Symbol Parameter 

Vc Input Clamp Voltage 

Icc Power Supply Current-8287 
-8286 

IF Forward Input Current 
-

IR Reverse Input Current 

VOL Output Low Voltage -B Outputs 
-A Outputs 

VOH Outpu1 High Voltage -B Outputs 
-A Outputs 

IOFF Output Off Current 
IOFF Output Off Current 

VIL Input Low Voltage -A Side 
-B Side 

V1H Input High Voltage 

CIN Input Capacitance 

BO-B7 
(8286) 

Bo-B7 
(8287) 

4: 

SYSTEM BUS DATAc'f'fN 
These pins serve to either '!Jr~€\nt 
or accept data from the sysiWmh 
pending upon the state of the T Pi~'~"'<j,u~ 

"0l!-/}$&-, 

OPERATIONAL DESCRIPTION 
The 8286 and 8287 transceivers are 8-bit transceivers 
with high impedance outputs. With T active HIGH and 
OE active LOW, data at the Ao-A7 pins is driven onto the 
Bo-B7 pins. With T inactive LOW and OE active LOW, 
data at the Bo-B7 pins is driven onto the Ao-A7 pins. No 
output low glitching will occur whenever the trans­
ceivers are entering or leaving the high impedance 
state. 

·COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Min Max Units Test Conditions 

-1 V le=-5 mA 

130 mA 
160 mA 

-0.2 mA VF = 0.45V 

50 flA VR=5.25V 

0.5 V IOL=32 mA 
0.5 V IOL= 10 mA 

2.4 V IOH=-5 mA 
2.4 V IOH=-1 mA 

IF VoFF = 0.45V 
IR VOFF = 5.25V 

0.8 V Vee = 5.0V, See Note 1 
0.9 V Vee= 5.0V, See Note 1 

2.0 V Vee= 5.0V, See Note 1 

F= 1 MHz 
12 pF VSIAS=2.5V, Vee=5V 

TA=25·C 

Note: 1. S Outputs - IOL ~ 32 rnA. IOH ~ -5 rnA. eL ~ 300 pF A Outputs - IOL ~ 10 rnA, IOH ~ -1 rnA, eL ~ 100 pF 
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8286/8287 

A.C. CHARACTERISTICS FOR 8286/8287 
Conditions: Vee = EN ± 5%, TA = O'C to 70'C 

Loading: B Outputs - 10L = 32 rnA, 10H = - 5 rnA, CL = 300 pF 
A Outputs I - 10 rnA I 1 rnA C - 100 pF - OL - , OH - - L - "\ 

Symbol Parameter Min Max Units Test Conditions'" 

TIVOV Input to Output Delay 
Inverting 25 ns (See Note 1) 
Non-Inverting 35 ns 

TEHTV Transmit/Receive Hold Time TEHOZ ns 

TTVEL Transmit/Receive Setup 30 ns 
-

TEHOZ Output Disable Time 25 ns 

TELOV Output Enable Time 10 50 ns 

Note: 1. See waveforms and test load circuit on following page. 

8286/8287 TIMING 

INPUTS ___________ ~--------------------------------------------------------------
I 

OUTPUTS 

I {~~ __ _ 

i·""·i--'--+-------~I' ""}"'~~,:O~-t' ~ __ ;- _ 
--- - TEHTV --- , _______ I TTVEL 

______ f~-
NOTE: 1, ALL TIMJNG MEASUREMENTS ARE MADE AT 1,5V UNLESS OTHERWISE NOTED, 
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8286/8287 

OUTPUT DELAY VS. CAPACITANCE 

50 50 

8281 

40 

10 

200 400 600 800 1000 200 400 600 800 1000 

OF LOAD pF lOAD 

TEST LOAD CIRCUITS 

1.5V 1.5V 2.14V 

~"O 66Q ~"" 
OUT OUT OUT 

1300 of r 300 pF 

3·STATE TO VOL 3·STATE TO VOL SWITCHING 

B OUTPUT A OUTPUT B OUTPUT 

1.SV 1.5V 2.28V 

180Q 900Q 114Q 

OUT OUT OUT 

3·STATE TO VOH 3·STATE TO VOH SWITCHING 

B OUTPUT A OUTPUT A OUTPUT 
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8288 
BUS CONTROLLER 

FOR 8086, 8088, 8089 PROCESSORS 

• Bipolar Drive Capability • 3·State Command Output Drivers 

• Provides Advanced Commands • Configurable for Use with an 110 Bus 

• Provides Wide Flexibility in System 
Configurations 

• Facilitates Interface to One or Two 
Multi·Master Busses 

The Intel'" 8288 Bus Controller is a 20-pin bipolar component for use with medium-to-Iarge 8086 processing systems_ 
The bus controller provides command and control timing generation as well as bipolar bus drive capability while 
optimizing system performance. 

A strapping option on the bus controller configures it for use with a multi-master system bus and separate 1/0 bus. 

{
SO-

8086 -
STATUS ~--

'2--

{

ClK-

CONTROL AEN-­
INPUT CEN--

108--

BLOCK DIAGRAM 

STATUS 
DECODER 

CONTROL 
LOGIC 

+5V 

COM· 
MAND 

SIGNAl. 
GENER­
ATOR 

CONTROL 
SIGNAL 
GENER· 

ATOR 

GND 

AMWC 

""iO'"RC 
lowe 
AIOWC 

INTA 

MULTIBUSTr.1 

COMMAND 
SIGNALS 

DTIA } ADDRESS LATCH, DATA 
DEN TRANSCEIVER, AND 
MCEIPDEN INTERRUPT CONTROL 

SIGNALS 
ALE . 
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lOB VCC 

ClK so 
51 52 

DTiii MCElPDEN 

ALE DEN 

AEN CEN 

MRDC INTA 

AMWC 10RC 

MWTC AIOWC 

GND 10WC 

FUNCTIONAL PIN-OUT 

PROCESSOR { 
STATUS 

CONTROL { 
INPUT 

GND VCC 

COMMAND 
BUS 



8288 

PIN DEFINITIONS Name 1/0 

Name 1/0 Function AiOWC "", 'J"j 
0 Advanced 1/0 Write Com~ 

Vee +5V supply. AIOWC issues an 1/0 Write'f 
mand earlier In the machine cycle 

GND Ground. give I/O devices an early indication 
SQ,s"S; Status Input Pins: These pins are the of a write Instruction. Its timing is 

status Input pins from the 8086, 8088 the same as a read command signal. 
or 8089 processors. The 8288 de· Ai5WC is active LOW. 
codes these Inputs to generate com· 

10WC 0 I/O Write Command: This command mand and control signals at the ap· 
proprlate time. When these pins are line instructs an I/O device to read 

not in use (passive) they are all HIGH. the data on the data bus. This signal 
(See chart under Command and Con- is active LOW. 
trol Logic.) iORC 0 I/O Read Command: This command 

CLK Clock: This is a clock signal from the line instructs an I/O device to drive 
8284 clock generator and serves to its data onto the data bus. This 
establish when command and con- signal is active LOW. 
trol signals are generated. 

ALE 0 Address Latch Enable: This signal AMWC 0 Advanced Memory Write Command: 
serves to strobe an address into the The AMWC issues a memory write 
address latches. This signal is active command earlier in the machine cy· 
HIGH and latching occurs on the fall· cle to give memory devices an early 
ing (HIGH to LOW) transition. ALE is indication of a write instruction. Its 
intended for use with transparent D timing is the same as a read com-
type latches. mand signal. AMWC is active LOW. 

DEN 0 Data Enable: This signal serves to MWi'C 0 Memory Wri.te Command: This com-enable data transceivers onto either 
the local or system data bus. This mand line Instructs the memory to 

record the data present on the data signal is active HIGH. 
bus. This signal is active LOW. 

DT/R 0 Data Transmit/Receive: This signal 
establishes the direction of data MR5C 0 Memory Read Command: This com-
flow through the transceivers. A mand line instructs the memory to 
HIGH on this line Indicates transmit drive Its data onto the data bus. This 
(write to I/O or memory) and a LOW signal is active LOW. 
indicates Receive (Read). 

iNi'A 0 Interrupt Acknowledge: This com-
AEN Address Enable: AEN enables com- mand line tells an Interrupting device 

mand outputs of the 8288 Bus Con- that its interrupt has been acknowl-
troller at least 105 ns after it be-

edged and that It should drive vector· 
comes active (LOW). AEN going Inac-

ing information onto the data bus. 
tive immediately 3·states the com-

This signal is active LOW. 
mand output drivers. AEN does not 
affect the I/O command lines if the MCElPDEN 0 This is a dual function pin. 
8288 Is In the I/O Bus mode (lOB tied MCE (lOB is tied LOW): Master Cas-
HIGH). cade Enable occurs during an inter-

CEN Command Enable: When this signal rupt sequence and serves to read a 
is LOW all 8288 ~and outputs Cascade Address from a master PIC 
and the DEN and PDEN control out- (Priority Interrupt Controller) onto 
puts are forced to their inactive the data bus. The MCE signal Is ac· 
state. When this signal is HIGH, tive HIGH. 
these same outputs are enabled. fi6EN (lOB Is tied HIGH): Peripheral 

lOB Input/Output Bus Mode: When the Data Enable enables the data bus 
lOB is strapped HIGH the 8288 func- transceiver for the 110 bus during 110 
tlons In the 110 Bus mode. When it is Instructions. It performs the same 
strapped LOW, the 8288 functions in function for the 110 bus that DEN per-
the System Bus mode. (See sections forms for the system bus. PDEN is 
on 110 Bus and System Bus modes). active LOW. 
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COMMAND AND CONTROL LOGIC 
The command logic decodes the three 8086, 8088 or 8089 
CPU status lines (So. 51, S2l to determine what command 
is to be issued. 

This chart shows the meaning of each status "word". 

s; s, So Processor State 8288Command 

0 0 0 Interrupt Acknowledge INTA 
0 0 1 Read I/O Port 10RC 
0 1 0 Write I/O Port i6WC,AIOWC 
0 1 1 Halt None 
1 0 0 Code Access MRi5C 
1 0 1 Read Memory MRDC 
1 0 Write Memory MWTC,AMW(5 
1 1 Passive None 

The command is issued in one of two ways dependent 
on the mode of the 8288 Bus Controller. 

I/O Bus Mode - The 8288 is in the I/O Bus mode if the 
lOB pin is strapped HIGH. In the I/O Bus mode all I/O 
command lines (IORC, 10WC, AIOWC, INTA) are always 
enabled (I.e., not dependent on ~). When an I/O com· 
mand is initiated by the processor, the 8288 immediately 
activates the command lines using PDEN and DT/R to 
control the I/O bus transceiver. The I/O command lines 
should not be used to control the system bus in this 
configuration because no arbitration is present. This 
mode allows one 8288 Bus Controller to handle two ex· 
ternal busses. No waiting is involved when the CPU 
wants to gain access to the I/O bus. Normal memory ac· 
cess requires a "Bus Ready" signal (AEN LOW) before it 
will proceed. It is advantageous to use the lOB mode if 
I/O or peripherals dedicated to one processor exist in a 
multi-processor system. 

System Bus Mode - The 8288 is in the System Bus mode 
if the lOB pin is strapped LOW. In this mode no command 
is Issued until 105 ns after the AEN Line Is activated 
(LOW). This mode assumes bus arbitration logic will In­
form the bus controller (on the AEN line) when the bus is 
free for use. Both memory and I/O commands walt for bus 
arbitration. This mode is used when only one bus exists. 
Here, both I/O and memory are shared by more than one 
processor. 

Command Outputs 
The advanced write commands are made available to in­
itiate write procedures early in the machine cycle. This 
signal can be used to prevent the processor from enter­
Ing an unnecessary wait state. 

The command outputs are: 

MROC - Memory Read Command 
MWTC - Memory Write Command 
iORC - 110 Read Command 
10WC - I/O Write Command 
AMWC - Advanced Memory Write Command 
AIOWC - Advanced I/O Write Command 
INTA - Interrupt Acknowledge 

8288 

INTA (Interrupt Acknowledge) a6t~,~ 
an interrupt cycle. Its purpose Is to" 
rupting device that its interrupt is being a 
and that it should place vectoring information 
data bus. 

Control Outputs 

The control outputs of the 8288 are Data Enable (DEN), 
Data Transmit/Receive (DT/Fi) and Master' Cascade 
Enable/Peripheral Data Enable (MCE/PDEN). The DEN 
signal determines when the external bus should be 
enabled onto the local bus and the DT/R determines the 
direction of data transfer. These two signals usually go 
to the chip select and direction pins of a transceiver. 

The MCE/PDEN pin changes function with the two 
modes of the 8288. When the 8288 is in the lOB mode 
(lOB HIGH) the ~ signal serves as a dedicated data 
enable signal for the I/O or Peripheral System bus. 

Interrupt Acknowledge and MCE 
The MCE signal is used during an interrupt acknowl­
edge cycle if the 8288 is in the System Bus mode (lOB 
LOW). During any interrupt sequence there are two inter­
rupt acknowledge cycles that occur back to back. Dur­
ing the first interrupt cycle no data or address transfers 
take place. Logic should be provided to mask off MCE 
during this cycle. Just before the second cycle begins 
the MCE signal gates a master Priority Interrupt Con­
troller's (PIC) cascade address onto the processor's 
local bus where ALE (Address Latch Enable) strobes it 
into the address latches. On the leading edge of the 
second interrupt cycle the addressed slave PIC gates an 
interrupt vector onto the system data bus where It is 
read by the processor. 

If the system contains only one PIC, the MCE signal is 
not used. In this case the second Interrupt Acknowledge 
signal gates the interrupt vector onto the processor bus. 

Address Latch Enable and Halt 

Address Latch Enable (ALE) occurs during each machine 
cycle and serves to strobe the current address into the 
address latches. ALE also serves to strobe the status (so. 
51, S2llnto a latch for halt state decoding. 

Command Enable 

The Command Enable (CEN) input acts as a command 
qualifier for the 8288. If the CEN pin is high the 8288 
functions normally. If the CEN pin is pulled LOW, all 
command lines are held in their Inactive state (not 
3-state). This feature can be used to Implement memory 
partitioning and to eliminate address conflicts between 
system bus devices and resident bus devices. 
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8288 

D.C. AND OPERATING CHARACTERISTICS 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias .............................. O'C to 70'C 
Storage Temperature ........................... -65'C to + 150'C 
All Output and Supply Voltages ...................... - 0.5V to + 7V 
All Input Voltages ................................ -1.0V to + 5.5V 
Power Dissipation ...................................... 1.5 Watt 

D.C. CHARACTERISTICS FOR THE 8288 
Conditions: Vcc=5V ±10%, TA=O·Cto70·C 

Symbol Parameter 

Vc Input Clamp Voltage 

ICC Power Supply CUrrent 

IF Forward Input CUrrent 

IR Reverse Input Current 

VOL Output Low Voltage-Command Outputs 
Control Outputs 

VOH Output High Voltage- Command Outputs 
Control Outputs 

Vil Input low Voltage 

VIH Input High Voltage 

10FF Output Off Current 

A.C. CHARACTERISTICS FOR THE 8288 
Conditions: Vcc=5V ±10%, TA=O·Cto 70·C 

TIMING REQUIREMENTS 

Symbol Parameter Min 

TClCl ClK Cycle Period 125 

TClCH ClK low Time 66 

TCHCl ClK High Time 40 

TSVCH Status Active Setup Time 65 

TCHSV Status Active Hold Time 10 

TSHCl Status Inactive Setup Time 55 

TClSH Status Inactive Hold Time 10 

TIMING RESPONSES 
Symbol Parameter 

TCVNV Control Active Delay 

TCVNX Control Inactive Delay 

TCllH, TClMCH ALE MCE Active Delay (from ClK) 

TSVlH, TSVMCH ALE MCE Active Delay (from Status) 

TCHll ALE Inactive Delay 

TCLML Command Active Delay 

TClMH Command Inactive Delay 

TCHDTL Direction Control Active Delay 

TCHDTH Direction Control Inactive Delay 

TAELCH Command Enable Time 

TAEHCZ Command Disable Time 

TAELCV Enable Delay Time 

TAEVNV iiENtoDEN 

TCEVNV CEN to DEN, PO EN 

TCELRH CEN to Command 

·COMMENT: Stresses above those listed under "Absolute Ma 
Ratings" may cause permanent damage to the device. This is a 5 

rating only and functional operation of the device at these or any other 
conditions above those Indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating can· 
dltlons for extended periods may affect device reliability. 

Min Max Unit Test Conditions 

-1 V IC- -5 mA 

230 mA 

-0.7 mA VF=0.45V 

50 ~A VR=VCC 

0.5 V IOl =32 mA 
0.5 V IOl=16 mA 

2.4 V IOH= -5 mA 
2.4 V 10H= -1 mA 

0.8 V 

2.0 V 

100 ~ VOFF = 0.4 to 5.25V 

Max Unit loading 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Min Max Unit loading 

5 45 ns 

10 45 ns 

15 ns 

15 ns 

.,~ } 15 ns 
10RC 

10 35 ns MWTC IOL=~mA 
10 35 ns 10WC 10H= -5 mA 

50 ns INTA CL=300 pF 

30 ns AMWC 

40 
AiOWC 

ns 

40 ns 

{ 
IOL=16 mA 

105 275 ns Other 10H= -1 mA 
20 ns CL=60 pF 

20 ns 

TCLML ns 
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8288 

8288 TIMING DIAGRAM 

STATE ~T4- ---- .-.-~ T 1 - T2----------- T3----- T4~ 

In 
---TCLCL~-

I--TCLCH-h /'\ V\ " 1\ J r\ / r-... / '\ 
CLK 

TCHSV- I- - TSVCH - TCHCL-

~r -TSHCL -- TCLS~ 
\ \ V 
1\ 1\ 

AD DR WRITE CD VALID DATA VALID 
ADDRESSIDATA 

TCLLH_ F F-i-SVLI\"'-TCHLL 

ALE ! ®¥ 
j 

- r-TCLMH 

\ V 
1\ J 

~ -TCLML ~ I--TCLML 

\ V 
1\ j 

~ I--TCVNV 

) V \ 
) J 1\ 

TCVNX- l-

) \ V 
) 

1\ j 

TCVNV- l-

DEN (WRITE ) V \ 
j 1\ 

~ !--TCVNX 

'\ V ) 

1\ j 
PDEN(WRITE 

TCHDTH- . -J::;.' ----
) J \ V 

1\ / ----
DTIR (READ 

- I- TCHDTL 

:f V@ \ TCHDTH- I--
/ 

MCE 

TCLMCH- r--- ~TSVMC-;- ~TCVNX 

...... 
1. ADDAESS/DATA BUS IS SHOWN ONLY FOR REFERENCE PURPOses. 
2. LEADING EDGE OJ: ALE AND MCE IS DETERMINED BY THE FAWNG EDGE OF eLK OA STATUS GOING ACTIVE, WHICHEVER OCCURS LAST. 
3. ALL TIMING MEASUREMENTS ARE MADE. AT 1,5V UNLESS SPECIFIED OTHERWISE. 
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DEN, PDEN QUALIFICATION TIMING 

CEN 

TAEVNV--

DEN 

8288 ADDRESS ENABLE (AEN) TIMING (3·STATE ENABLE/DISABLE) 

____ TAELCV~ 

1.SV 1.5V 

I TAElCH~1 'TAEHCZ 

I VOH 1--1 or 
¥Ir-~~\+-------,/'---~~--~ 

co~u,;:~6----------------,'/'1 /1\ / ,,--------' -1--------

.TCELRH-

I 
CEN----------------=TC~E~LR~H~--

\ 
1\ 

NOTE: CEN MUST BE LOW OR VALID PRIOR TO T2 TO PREVENT THE COMMAND FROM BEING GENERATED. 

TEST LOAD CIRCUITS 

OUT 

1.5V 

180Q 

1.5V 

J 33Q 

OUTi 

1300 pF 

3·STATE TO HIGH 3·STATE TO LOW 

3·STATE COMMAND OUTPUT 
TEST LOAD 
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2.14V 

J 52.7Q 

OUTi 

1300 pF 

COMMAND OUTPUT 
TEST LOAD 

2.28V 

I'14Q 

OUT~ 
I BOpF 

CONTROL OUTPUT 
TEST LOAD 



8289 
BUS ARBITER 

• Provides Multi-Master System Bus 
Protocol 

• Synchronizes 8086/8088 Processors 
With Multi-Master Bus 

• Provides Simple Interface With 
8288 Bus Controller 

• Four Operating Modes For Flexible 
System Configuration 

• Compatible with Intel Bus Standard 
MULTIBUS™ 

• Provides System Bus Arbitration For 
8089 lOP In Remote Mode 

The Intel 8289 Bus Arbiter is a 20-pin, 5-volt-only bipolar component for use with medium to large 8086/8088 multi­
master/multiprocessing systems. The 8289 provides system bus arbitration for systems with multiple bus masters, 
such as an 8086 CPU with 8089 lOP in its REMOTE mode, while providing bipolar buffering and drive capability. 

I lOCK 
ClK 

PROCESSOR CROlCK 
CONTROL RESB 

ANYROST 

lOB 

PIN DIAGRAM 

52 VCC 

lOB 51 

So 
RESB ClK 

BClK roCK 

INIT CRlm:K 

ANYROST 

BPRO AEN 

BPRN CBiiQ 

GND lIUSY 

Figure 2. Pin Diagram. 

BLOCK DIAGRAM 

MULTIBUS™ 
COMMAND 
SIGNALS 

AEN } SYSTEM 

L~=!;~~=~;;;;;;~l-- SIGNALS SYSB/RESB 

+5V 

Figure 1. Block Diagram. 

FUNCTIONAL PINOUT 

GND Vee 

{
So 

PROCESSOR _ 51 
STATUS _ 

-S2 

_ elK 8289 

CONTROLI _ CROlCK 
STRAPPING 

-INIT 

- i!CiJ( 
BRED 

BPRN 
IiJiRO 
BUlfy 

- CBiiQ 

MUlTiBUS 
INTERFACE 

OPTIONS - RESB 
- ANYRQST 
-lOB 

SYSB/lIESil } SYSTEM 
AEN SIGNALS 

Figure 3. Functional Pinout. 
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FUNCTIONAL DESCRIPTION 
The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface 8086/8088/8089 proces­
sors to a multi-master system bus (both the 8086 and 
8088 are configured in their max mode). The proc­
essor is unaware of the arbiter's existence and issues 
commands as though it has exclusive use of the system 
bus. If the processor does not have the use of the multi­
master system bus, the arbiter prevents the Bus Con­
troller (8288), the ·data transceivers and the address lat­
ches from accessing the system bus (e.g. all bus driver 
outputs are forced into the high impedance state). Since 
the command sequence was not issued by the 8288, the 
system bus will appear as "Not Ready" and the proc­
essor will enter wait states. The processor will remain in 
Wait until the Bus Arbiter acquires the use of the multi­
master system bus whereupon the arbiter will allow the 
bus controller, the data transceivers, and the address 
latches to access the system. Typically, once the com­
mand has been issued and a data transfer has taken 
place, a transfer acknowledge (XACK) is returned to the 
processor to indicate "READY" from the accessed slave 
device. The processor then completes its transfer cycle. 
Thus the arbiter serves to multiplex a processor (or bus 
master) onto a multi-master system bus and avoid con~ 
tention problems between bus masters. 

ARBITRATION BETWEEN BUS MASTERS 
In general, higher priority masters obtain the bus when a 
lower priority master completes its present transfer 
cycle. Lower priority bus masters obtain the bus when a 
higher priority master is not accessing the system bus. 
A strapping option (ANYRQSl) is provided to allow the 
arbiter to surrender the bus to a lower priority mast.er as 
though It were a master of higher priority. If there are no 
other bus masters requesting the bus, the arbiter main­
tains the bus so long as its processor has not entered 
the HALT State. The arbiter will not voluntarily surrender 
the system bus and has to be forced off by another 
master's bus request, the HALT State being the only ex-

ceptlon. Additional strapping 
modes of operation wherein the m 
bus is surrendered or requested under di 
conditions. 

PRIORITY RESOLVING TECHNIQUES 
Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides several resolv­
ing techniques. All the techniques are based on a priori­
ty concept that at a given time one bus master will have 
priority above all the rest. There are provisions for using 
parallel priority resolving techniques, serial priority 
resolving techniques, and rotating priority techniques. 

Parallel Priority Resolving 
The parallel priority resolving technique uses a separate 
bus request line (mlm) for each arbiter on the multi­
master system bus, see Figure 4. Each BREQ line enters 
into a priority encoder which generates the binary ad­
dress of the highest priority BREQ line which is active. 
The binary address is decoded by a decoder to select 
the corresponding BPRN (Bus Priority In) line to be 
returned to the highest priority requesting arbiter. The 
arbiter receiving priority (§i5Riij true) then allows its 
associated bus master onto the multi-master system 
bus as soon as it becomes available (Le., the bus is no 
longer busy). When One bus arbiter gains priority over 
another arbiter it cannot immediately seize the bus, it 
must wait until the present bus transaction is complete. 
Upon completing its transaction the present bus occu­
pant recognizes that it no longer has priority and sur­
renders the bus by releasing BUSY. BDSY is an active 
low "OR" tied signal line which goes to every bus arbiter 
on the system bus. When BUSY goes inactive (high), the 
arbiter which presently has bus priority (BPRN true) then 
seizes the bus and pulls BUSY low to keep other arbiters 
off of the bus. See waveform timing diagram, Figure 5. 

74148 
PRIORITY 
ENCODER 

74138 
3 TOB 

DECODER 

Figure 4. Parallel Priority Resolving Technique. 
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BCLK~ 

\ ( 
0~~~r-________ ~1 ______ ~---------------------------

) 

BUSY 

\ 
\ 
\ 
01 

\ 
\4) 0 

\'---------
CD HIGHER PRIORITY BUS ARBITER REQUESTS THE MUlTI·MASTER SYSTEM BUS. 

@) ATTAINS PRIORITY. 

® LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

@ HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PUllS BUSY DOWN. 

Figure 5. Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter. 

Note that all multi·master system bus transactions are 
synchronized to the bus clock (BCLK). This allows the 
parallel priority resolving circuitry or any other priority 
resolving scheme employed to settle. 

Serial Priority Resolving 
The serial priority resolving technique eliminates the 
need for the priority encoder-decoder arrangement by 
daisy·chaining the bus arbiters together, connecting the 
higher priority bus arbiter's BPRO (Bus Priority Out) out· 
put to the BPRN of the next lower priority. See Figure 6. 

Rotating Priority Resolving 
The rotating priority resolving technique is similar to 
that of the parallel priority resolving technique except 
that priority is dynamically re-assigned. The priority en· 
coder is replaced by a more complex circuit which roo 
tates priority between requesting arbiters thus allowing 
each arbiter an equal chance to use the multi·master 
system bus, over time. 

WHICH PRIORITY RESOLVING 
TECHNIQUE TO USE 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority 
resolving technique requires substantial external logic 
to implement while the serial technique uses no exter· 
nallogic but can accommodate only a limited number of 
bus arbiters before the daisy·chain propagation delay 

B-83 

exceeds the multi·master's system bus clock (BCLK). 
The parallel priority resolving technique is in general a 
good compromise between the other two techniques. It 
allows for many arbiters to be present on the bus while 
not requiring too much logic to implement. 

THE NUMBER OF ARBITERS THAT MAY BE DAISY CHAINED TOGETHER IN THE 
SERIAL PRIORITY RESOLVING SCHEME IS A FUNCTION OF BCLK AND THE PROPA· 
GATION DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz ONLY 3 ARBI· 
TER MAY BE DAISY·CHAINED. 

Figure 6. Serial Priority Resolving. 
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8289 MODES OF OPERATION 
There are two types of processors in the 8086 family. An 
Input/Output processor (the 8089 lOP) and the 8086/8088 
CPUs. Consequently, there are two basic operating 
modes in the 8289 bus arbiter. One, the lOB (I/O Peri­
pheral Bus) mode, permits the processor access to both 
an I/O Peripheral Bus and a multi·master system bus. 
The second, the RESB (Resident Bus mode), permits the 
processor to communicate over both a Resident Bus 
and a multi-master system bus. An I/O Peripheral Bus is 
a bus where all devices on that bus, including memory, 
are treated as I/O devices and are addressed by I/O com· 
mands. All memory commands are directed to another 
bus, the multi-master system bus. A Resident Bus can 
issue both memory and I/O commands, but it is a dis­
tinct and separate bus from the multi-master system 
bus. The distinction is that the Resident Bus has only 
one master, providing full availability and being 
dedicated to that one master. 

The lOB strapping option configures the 8289 Bus Ar· 
biter into the lOB mode and the strapping option RESB 
configures it into the RESB mode. It might be noted at 
this point that if both strapping options are strapped 
false, the arbiter interfaces the processor to a multi· 
master system bus only (see Figure 7). With both op­
tions strapped true, the arbiter interfaces the processor 

j}1f>'~,!'r,:iS;< r 
to a multi·master system bus, a Ff!lCSi):jl 
Bus, Y!,;//"hA 

In the lOB mode, the processor communi2~~ 
trois a host of peripherals over the Peripheral Bus,wfT' 
the I/O Processor needs to communicate with sysf'/§'!J&,,'i 
memory, it does so over the system memory bus. Figure'" 
8 shows a possible I/O Processor system configuration. 

The 8086 and 8088 processor can communicate with a 
Resident Bus and a multi·master system bus. Two bus 
controllers and only one Bus Arbiter would be needed in 
such a configuration as shown in Figure 9. In such a 
system configuration the processor would have access 
to memory and peripherals of both busses. Memory 
mapping techniques are applied to select which bus is 
to be accessed. The SY8B/RESB input on the arbiter 
serves to instruct the arbiter as to whether or not the 
system bus is to be accessed. The signal connected to 
SYSB/RESB also enables or disables commands from 
one of the bus controllers. 

A summary of the modes that the 8289 has, along with 
its response to its status lines inputs, is summarized in 
Table 1. 

*In some system configurations it is possible for a non-I/O Processor to 
have access to more than one Multi·Master System Bus, see 8289 
Application Note. 

Single 
Bus Mos!! 

Status Lines From lOB Mode RESB (Mode) Only lOB Mode RESB Mode lOB = High 

8086 or 8088 or 8089 

52 51 SO 
r;~0_n~IY~-r.~~~IO~B==_H~i9~h~R~ES~B~=~H~i~9h~~~~~~~IO~B~=_L_O_W __ RE_S~B_=~H~i;9h=-__ -}R~E=SB=LOW 

iOii = Low SYSBIAESii = High SYSBJRESB = Low SYSBJRESB = High SYSBJRESB = Low 

110 I ~ 0 

COMMANDS 

HALT 0 

MEM I ~ COMMANDS 

IDLE 

NOTES: 

1. x= Multi-Master System Bus is allowed to be Surrendered. 
2. V" = Multi·Master System Bus is Requested. 

Mode 

Single Bus 
Multi·Master Mode 

RESB Mode Only 

lOB Mode Only 

Pi 
Strap 

n 
ping 

10B= H 
RESB= 

10B= H 
RESB= 

-. 

igh 
Low 

igh 
High 

ow 10B= L 
RESB= Low 

-------------~-----

ow 

Multi·Master System Bus 
- --,---- - ----- ---_ .. _._---

Requested" • Surrendered" 

Whenever the processor's 
HLT+TI. CBRQ+ HPBRQt status lines go active 

--,------ --- --------_._---------
SYSB/RESB = High· (SYSB/RESB = Low + TI) • 
ACTIVE STATUS CBRQ + HLT + HPBRQ 

--------- - .. ----.--- --- ---

Memory Commands 
(I/O Status + TI) • CBRQ + 
HLT + HPBRQ 

---" ---

(Memory Command) • 
((I/O Status Commands) + 

lOB Mode RESB Mode 10B= L 
RESB= High (SYSB/RESB = High) 

SYSB/RESB = LOW)) • CBRQ 
+ HPBRQt + HLT 

NOTES: 

• LOCK prevents surrender of Bus to any other arbiter, CROLCK prevents surrender of Bus to any lower priority arbiter. 
··Except for HALT and Passive or IDLE Status. 

t HPBRO, Higher priority Bus request or BPRN = 1. 
1. lOB Active 'Low. 4. TI = Processor Idle Status 82, Si, SO = 111 
2. RESB Active High. 5. HLT= Processor Halt Status 52, Si, SIi=OII 
3, + is read as "OR" and. as "AND," 

Table 1. Summary of 8289 Modes, Requesting and Relinquishing the Multi·master system bus. 
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D, 
8284 ROY2 -::.l.. T 

CLOCK AEN2 .~ ___ -= 
READY ROY1 --_. 

8289 

-------,--.. ~---.---,--------,-,-----------_< XACK MUL nMASTER SYSTEM BUS 

8289 
BUS 

ARBITER 
-------------.--.~, 

-------~--~~-v CONTROL BUS 

READY t-

, 
---~--- elK ANYRQST 

lOB .--l---------vcc 
SO·52 AEN RESS -~ 

80S6 
CPU 

i 
PROCESSOR 

LOCAL BUS i 

elK -1 

AEN 
8288 -..J\ MULTI-MASTER _= __ ~_'-'> ~~S~~~ND 

~ BUS 

I, MULTl.MASTER 
TRANSCEIVER l/~------ _ .. ----------~~-.~~~-__________\ SYSTEM 

828618287 ---~~-~--~-~~--~---v' DATA 
BUS 

Figure 7. Typical Medium Complexity CPU System. 

MULTl.MASTER 
SYSTEM BUS 

XACK 11'0 BUSI / - --!. XACK MULTi-MASTER SYSTEM BUS 

READY 
CCK 

8EADY eLK--1 

ADO-AD15 SO 
52 

, TRANSCEIVER 
--" 8211618287 

V (2) 

8289 
BUS 

ARBITER 

SO-52 

VC~~:~ ANYROSTR~~~ 
"N 

~ MULTI-MASTER 
- lSYSTEM 

-V ~~~A 

Figure 8. Typical Medium Complexity lOB System. 
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XACK 
RESIOENT BUS 

0' 
DECODER 

8289 

o 
AEN2 AEN11>-----

8284 
CLOCK 

READY 

READY 

8086 
CPU 

RDY11------ ------ XACK MUL HMASTER SYSTEM BUS 

-----\ MULTI-MASTER SYSTEM 
/ COMMAND BUS 

RESIDENT ADDRESS!~ ,--~--,-----" 
BUS \---------1 

ADDA 
LATCH 

828218283 
(2 OR 3) 

MULTI-MASTER SYSTEM 
ADDRESS BUS 

RESIDENT DATA /'--------J\I "------AJ TR:2~~~;~~ER 
eos 

12' 

'BY ADDING ANOTHER 6289 ARBITER AND CONNECTING ITS AEN TO THE 8288 
WHOSE AEN IS PRESENTLY GROUNDED, THE PRoceSSOR COULD HAve ACCESS 
TO TWO MULTI·MASTER BUSES. 

MULTI·MASTER SYSTEM 
DATA BUS 

Figure 9. 8289 Bus Arbiter Shown in System· Resident Bus Configuration. 

B-86 

MULTI-MASTER 
SYSTEM BUS 



8289 

PIN DEFINITIONS 

Name 

Vee 
GND 

SO,51,S2 

ClK 

RESB 

ANYRQST 

I/O Function 

+ 5V supply ± 10% 

Ground 

STATUS INPUT PINS: These pins are 
the status input pins from an 8086, 
8088 or 8089 processor. The 8289 
decodes these pins to initiate bus re­
quest and surrender actions. (See 
Table 1) 

CLOCK: This is the clock from the 
8284 clock chip and serves to 
establish when bus arbiter actions are 
initiated. 
lOCK: lOCK is a processor generated 
signal which when activated (low) 
serves to prevent the arbiter from sur· 
rendering the multi-master system bus 
to any other bus arbiter, regardless of 
its priority. 

COMMON REQUEST lOCK: CRQlCK 
is an active low signal which serves to 
prevent the arbiter from surrendering 
the multi·master system bus to any 
other bus arbiter requesting the bus 
through the CBRQ input pin. 

RESB: RESIDENT BUS is a strapping 
option to configure the arbiter to 
operate in systems having both a 
multi-master system bus and a Resi· 
dent Bus. When it is strapped high the 
multi·master system bus is requested 
or surrendered as a function of the 
SYSB/RESB input pin. When it is 
strapped low the SYSB/RESB input 
is ignored. 

ANY REQUEST: ANYRQST is a strap­
ping option which permits the multi­
master system bus to be surrendered 
to a lower priority arbiter as though it 
were an arbiter of higher priority (i.e., 
when a lower priority arbiter requests 
the use of the multi-master system 
bus, the bus is surrendered as soon as 
it is possible). Strapping CBRQ low 
and ANYRQST high forces the 8289 ar­
biter to surrender the multi-master 
system bus after each transfer cycle. 
Note that when surrender occurs 
BREQ is driven false (high). 

10 BUS: lOB is a strapping option 
which configures the 8289 Arbiter to 
operate in systems having both an 10 
Bus (Peripheral Bus) and a multi­
master system bus. The arbiter reo 
quests and surrenders the use of the 
multi-master system bus as a function 
of the status line, S2. The multi-master 
system bus is permitted to be sur­
rendered while the processor is perfor-

C''>-h/, 
<',:;' 

Name I/O Function ,.,.,. 3".,. 
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ming 10 commands and is reques 
whenever the processor performs a 
memory command. Interrupt cycles 
are assumed as coming from the 
peripheral bus and are treated as 
would be an 10 command. 

AEN a ADDRESS ENABLE. AEN is the output 
of the 8289 Arbiter to the processor's 
address latches, to the 8288 Bus Con­
troller and 8284 Clock Generator. AEN 
serves to instruct the Bus Controller 
and address latches when to tri-state 
their output drivers. 

SYSB/RESB SYSTEM BUS/=R-=E-=S""'ID=-E=Nc="T BUS: 
SYSB/RESB is an input signal when 
the arbiter is configured in the S.R. 
Mode (RESB is strapped high) which 
serves to determine when the multi­
master system bus is requested and 
when the multi-master system bus sur­
rendering is permitted. The signal is in­
tended to originate from some form of 
address mapping circuitry such as a 
decoder or PROM attached to the resi­
dent address bus. Signal transitions 
and glitches are permitted on this pin 
from 01 of T 4 to 0 1 to T2 of the pro­
cessor cycle. During the period from 
01 of T2 to 01 of T4 only clean transi­
tions are permitted on this pin (no 
glitches). If a glitch does occur the ar­
biter may capture or miss it, and the 
multi-master system bus may be re­
quested or surrendered, depending 
upon the state of the glitch. The arbiter 
requests the multi-master system bus 
in the S.R. Mode when the state of the 
SYSB/RESB pin is high and permits 
the bus to be surrendered when this 
pin is low. 

I/O COMMON BUS REQUEST: CBRQ is an 
input signal which serves to instruct 
the arbiter if there are any other ar­
biters of lower priority requesting the 
use of the multi-master system bus. 

The CBRQ pins (open-collector output) 
of all the 8289 Bus Arbiters which are 
to surrender the multi-master system 
bus upon request are connected 
together. 

The Bus Arbiter running the current 
transfer cycle will not itself pull the 
CBRQ line low. Any other arbiter con­
nected to the CBRQ line can request 
the multi-master system bus. The ar­
biter presently running the current 
transfer cycle drops its BREQ signal 
and surrenders the bus whenever the 



PIN DEFINITIONS (Cont'd) 

Name ________ I/_O _____________ F_u_nc_t_io~n __________ _ 

proper surrender conditions exist. 
Strapping CBREQ low and ANYRQST 
high allows the multi-master system 
bus to be surrendered after each 
transfer cycle. See the pin definition of 
ANYRQST. 

INITIALIZE: 'iNTf is an active low multi­
master system bus input signal which 
is used to reset all the bus arbiters on 
the multi-master system bus. After in­
itialization, no arbiters have the use of 
the multi-master system bus. 

BUS CLOCK: BClK is the multi-master 
system bus clock to which all multi­
master system bus interface signals 
are synchronized. 

o BUS REQUEST: BREQ is an active low 
output signal in the parallel Priority 
Resolving Scheme which the arbiter 
activates to request the use of the 
multi-master system bus. 

BUS PRIORITY IN: BPRN is the active 
low signal returned to the arbiter to in­
struct it that it may acquire the multi­
master system bus on the next falling 

8289 

Name 
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1/0 
__ £>c/ f ,"" 

edge of BClK. BPRN indicates toe 
arbiter that it is the highest priority r 
questing arbiter presently on the bus. 
The loss of BPRN instructs the arbiter 
that it has loss priority to a higher 
priority arbiter. 

o BUS PRIORITY OUT: BPRO is an active 
low output signal which is used in the 
serial priority resolving scheme where 
BPRO is daisy chained to BPRN of the 
next lower priority arbiter. 

110 BUSY: BUSY is an active low open col­
lector multi-master system bus inter­
face signal which is used to instruct 
all the arbiters on the bus when the 
multi-master system bus is available. 
When the multi-master system bus is 
available the highest requesting ar­
biter (determined by BPRN) seizes the 
bus and pulls BUSY low to keep other 
arbiters off of the bus. When the ar­
biter is done with the bus it releases 
the BUSY signal permitting it to go 
high and thereby allowing another ar­
biter to acquire the multi-master 
system bus. 
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ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................ O'C to 70'C 
Storage Temperature. . . .... - 65 'C to + 150'C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages... . ...... -1.0V to + 5.5V 
Power Dissipation ......................... 1.5 Watt 

D.C. CHARACTERISTICS FOR THE 8289 

COMMENT: Stresses above those listed under 
Ratings" may cause permanent damage to the device. 
rating only and functional operation of the device at these 
conditions above those indicated in the operational sections 
specification is not implied. Exposure to absolute maximum rating 
dltions for extended periods may affect device reliability. 

Symbol Parameter Min. Max. Units Test Condition 

Ve Input Clamp Voltage - 1.0 V Vee=4.50V, le= -5 rnA 

IF Input Forward Current -0.5 rnA Vee=5.50V, V F =0.45V 

IR Reverse Input Leakage Current 60 I'A Vee = 5.50, V R = 5.50 

VOL Output Low Voltage 
BUSY,CBRQ 0.45 V IOl = 20 rnA, Cl = 250 pF 1) 
AEN 0.45 V IOl= 16 rnA, Cl= 100 pF 2) 
BPRO,BREQ 0.45 V 10l= 10 rnA, Cl= 60 pF 3) 

VOH Output High Voltage 
BUSY,CBRQ Open Collector 

All Other Outputs 2.4 V IOH= 400 I'A 

Icc Power Supply Current 165 rnA 

V1l Input Low Voltage .8 V 

V1H Input High Voltage 2.0 V 

Cin Status Input Capacitance 25 pF 

Cin (Others) Input Capacitance 12 pF 

TEST CIRCUITS: 

1) BUSY. CBRa 2) AEN 3) BPRO, BREO 

2.3V 2.3V 2.3V 

92.5Q 110Q 170Q 

1100PF 
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A.C. CHARACTERISTICS FOR THE 8289 

CONDITIONS: Vcc=5V ± 10%, TA=O·C to 70·C 

Timing Requirements 

Symbol Parameter 

TClCl ClK Cycle Period 

TClCH ClK low Time 

TCHCl ClK High Time 

TSVCH Status Active Setup 

TSHCl Status Inactive Setup 

THVCH Status Active Hold 

THVCl Status Inactive Hold 

TBYSBl BUSYNSetup to BClK~ 

TCBSBl CBRONSetup to BClK~ 

TBlBl BClK Cycle Time \ 

TBHCl BClK High Time 

TClll1 lOCK Inactive Hold 

TClll2 lOCK Active Setup 

TPNBl BPRN~tto BClK Setup Time 

TClSR1 SYSB/~ Setup 

TClSR2 SYSB/11Em:! Hold 

TIVIH Initialization Pulse Width 

Timing Responses 

Symbol Parameter 

TBlBRl BClK to BREO DelayH 

TBlPOH BClK to BPROH (See Note 1) 

TPNPO BPRNHto BPROHDelay 
(See Note 1) 

TBlBYl BClK to BUSY low 

TBlBYH BClK to BUSY Float (See Note 2) 

TClAEH ClK to AEN High 

TBlAEl BClK to AEN low 

TBlCBl BClK to CBRO low 

TBlCBH BClK to CBRO Float (See Note 2) 

It Denotes that spec applies to both transitions of the signal. 

Min. 

125 

65 

35 

65 

50 

10 

10 

20 

20 

100 

30 

20 

40 

15 

0 

20 

3 TBlBl+ 
3 TClCl 

Min. 

Max. Unit 

ns 

ns 

ns 

TClCl·10 ns 

TClCl·10 ns 

ns 

ns 

ns 

ns 

ns 

.65[TBlBlJ ns 

ns 

ns 

ns 

ns 

ns 

ns 

Max. Unit 

35 ns 

40 ns 

25 ns 

60 ns 

35 ns 

65 ns 

40 ns 

60 ns 

35 ns 

NOTE 1: BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRN. 
NOTE 2: Measured at .5V above GND. 

INITIALIZATION: (lNIT can be either pulsed or held low through power up) 

------~->-------f. OPERATION 

Vee AT sv ::t10%~ _ 

TNff 

r---TIVIH 
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8289 TIMING DIAGRAM 
STATE --T4---r--- T1------ T2-------T, 

r---TClCL CLK 

LOCK 
(SEE NOTE 1) 

SYSBIRESB 

ill 
(SEE NOTE 3) 

PROCESSOR ClK RELATED 

BUS ClK RELATED 

BCLKJ)J 
TBlBRl -~I 1-

BPRN #2 
(BPRO #1) 

1Il'11O #2 
(BPRN #3) 

CBRQ 

NOTES: 
1. lOCK ACTIVE CAN OCCUR DURING ANY T STATE, AS lONG AS THE RELATIONSHIPS 

SHOWN ABOVE WITH RESPECT TO THE CLK ARE MAINTAINED. LOCK INACTIVE HAS 
NO CRITICAL TIME AND CAN BE ASYNCHRONOUS. 
-CRQlCK HAS NO CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS INPUT 
SIGNAL 

2. GLITCHING OF SYSBIRESB PIN IS PERMITTED DURING THIS TIME. AFTERI2l2 OF T1, 
AND BEFORE 01 OF T4, ONLY CLEAN TRANSITIONS ARE ACCEPTED. 

3. AE"KI lEADING EDGE IS RELATED TO iJC[R", TRAILING EDGE TO ClK. THE TRAILING 
EDGE OF AEN OCCURS AFTER BUS PRIORITY IS LOST. 

ADDITIONAL NOTES: 
The signals related to ClK are typical processor signals, and do not relate to the depicted sequence of events of the 
signals referenced to BClK. The signals shown related to the BClK represent a hypothetical sequence of events for 
illustration. Assume 3 bus arbiters of priorities 1,2 and 3 configured in s,erial priority resolving scheme as shown in 
Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detects its processor wants the bus and 
puils low BREO#2. If BPRN#2 is high (as shown), arbiter #2 will pull low CBRO line. CBRO signals to the higher priority 
arbiter #1 that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when it makes 
the bus request rather than having to wait for another arbiter to release the bus through~.'· Arbiter#1 will relin­
quish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its BPRO#1 (tied to 
BPRN#2) and releasing BUSY_ Arbiter #2 now sees that it has priority from BPRN#2 being low and releases CBRO. As 
soon as BUSY signifies the bus is available (high), arbiter #2 pulis BUSY low on next falling edge of BClK_ Note that if 
arbiter #2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by 
lowering its BPRO #2 [TPNPO], 

""Note that even a higher priority arbiter which is acquiring the bus through BPAN will momentarily drop CBAQ until it has acquired the bus. 
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8237/8237·2 
HIGH PERFORMANCE 

PROGRAMMABLE DMA CONTROLLER 
Enable/Disable Control of Individual • High Performance: Transfers up to 1.6M 
DMA Requests Bytes/Second with 5 MHz 8237-2 

Four Independent DMA Channels • Directly Expandable to any Number of 
Channels 

Independent Autoinitialization of all 
Channels • End of Process Input for Terminating 

Transfer,s 
Memory-to-Memory Transfers 

• Software DMA Requests 
Memory Block Initialization 

• Independent Polarity Control for DREQ 
Address Increment or Decrement and DACK Signals 

The 8237 Multimode Direct Memory Access (DMA) Controller is a peripheral interface Circuit for microprocessor sys­
tems. It is designed to improve system performance by allowing external devices to directly transfer information to or 
from the system memory. Memory·to-memory transfer capability is also provided. The 8237 offers a wide variety of pro­
grammable control features to enhance data throughput and system optimization and to allow dynamic reconfigura­
tion under program control. 

The 8237 is designed to be used in conjunction with an external 8-bit address register such as the 8282. It contains 
four independent channels and may be expanded to any number of channels by cascading additional controller chips. 

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be 
individually programmed to Autoinitialize to its original condition following an End of Process (EOP). 

Each channel has a full 64K address and word count capability. 

The 8237-2 is a 5 MHz selected version of the standard 3 MHz 8237. 

BLOCK DIAGRAM 
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PIN DEFINITIONS 
Vee: + 5 volt supply 

Vss: Ground 

ClK (Clock, Input) 

This input controls the internal operations of the 8237 
and its rate of data transfers. The input may be driven at 
up to 3 MHz for the standard 8237 and up to 5 MHz for 
the 8237-2. 

CS (Chip Select, Input) 

Chip Select is an active low input used to select the 
8237 as an I/O device during the Idle cycle. This allows 
CPU communication on the data bus. 

RESET (Reset, Input) 

Reset is an asynchronous active high input which clears 
the Command, Status, Request and Temporary regis­
ters. It also clears the first/last flip/flop and sets the 
Mask register. Following a Reset the device is in the Idle 
cycle. 

READY (Ready, Input) 

Ready is an input used to extend the memory 
read and write pulses from the 8237 to accommodate 
slow memories or I/O peripheral devices. 

HlDA (Hold Acknowledge, Input) 

The active high Hold Acknowledge from the CPU Indi­
cates that control of the system buses have been relin­
quished. 

DREQO-DREQ3 (DMA Request, Input) 

The DMA Request lines are individual asynchronous 
channel request inputs used by peripheral circuits to 
obtain DMA service. In Fixed Priority, DREQO has the 
highest priority and DREQ3 has the lowest priority. A 
request is generated by activating the DREQ line of a 
channel. DACK will acknowledge the recognition of 
DREQ signal. Polarity of DREQ is programmable. Reset 
initializes these lines to active high. DREQ must be 
maintained until the corresponding DACK goes active. 

DBO-DB7 (Data Bus, Input/Output) 

The Data Bus lines are bidirectional three-state signals 
connected to the system data bus. The outputs are 
enabled in the Program Condition during the I/O Read to 
output the contents of an Address register, a Status 
register, the Temporary register or a Word Count 
register to the CPU. The outputs are disabled and the in­
puts are read during an I/O Write cycle when the CPU is 
programming the 8237 control registers. During DMA 
cycles the most significant 8 bits of the address are out­
put onto the data bus to be strobed into an external 
latch by ADSTB. In memory-to-memory operations, data 
from the memory comes into the 8237 on the data bus 
during the read-from-memory transfer. In the write-to­
memory transfer, the data bus outputs place the data in­
to the new memory location. 

lOR (1/0 Read, Input/Output) 

I/O Read is a bidirectional active low three-state line. In 
the Idle cycle, it is an input control signal used by the 
CPU to read the control registers. In the Active cycle, it 
is an output control signal used by the 8237 to access 
data from a peripheral during a DMA Write transfer. 

lOW (I/O Write, Input/Output) 

I/O Write is a bidirectional active low three-state line. In 
the Idle cycle, it is an input control signal used by the 
CPU to load information into the 8237. In the Active 
cycle, it is an output control signal used by the 8237 to 
load data to the peripheral during a DMA Read transfer. 

EOP (End of Process, Input/Output) 

EOP is an active low bidirectional signal. Information 
concerning the completion of DMA services is available 
at the bidirectional EOP pin. The 8237 allows an external 
signal to terminate an active DMA service. This is ac­
complished by pulling the EOP input low with an exter­
nal EOP signal. The 8237 also generates a pulse when 
the terminal count (TC) for any channel is reached. This 
generates an EOP signal which is output through the 
EOP Line. The reception of EOP, either internal or exter­
nal, will cause the 8237 to terminate the service, reset 
the request, and, if Autoinitialize is enabled, to write the 
base registers to the current registers of that channel. 
The mask bit and TC bit in the status word will be set for 
the currently active channel by EOP unless the channel 
is programmed for Autoinitialize. In that case, the mask 
bit remains clear. During memory-to-memory transfers, 
EOP will be output when the TC for channel 1 occurs. 
EOP should be tied high with a pull-up resistor if it is not 
used to prevent erroneous end of process inputs. 

AO-A3 (Address, Input/Output) 

The four least significant address lines are bidirectional 
three-state signals. In the Idle cycle they are inputs and 
are used by the 8237 to address the control register to 
be loaded or read. In the Active cycle they are outputs 
and provide the lower 4 bits of the output address. 

A4-A7 (Address, Output) 

The four most significant address lines are three-state 
outputs and provide 4 bits of address. These lines are 
enabled only during the DMA service. 
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HRQ (Hold Request, Output) 

This is the Hold Request to the CPU and is used to re­
quest control of the system bus. If the corresponding 
mask bit is clear, the presence of any valid DREQ 
causes the 8237 to issue the HRQ. After HRQ goes 
active at least one clock cycle (TCY) must 
occur before HLDA goes active. 

DACKO-DACK3 (DMA Acknowledge, Output) 

DMA Acknowledge is used to notify the individual 
peripherals when one has been granted a DMA cycle. 
The sense of these lines is programmable. Reset initial­
izes them to active low. 
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AEN (Address Enable, Output) 

This output enables the 8-bit latch containing the upper 
8 address bits onto the system address bus_ AEN can 
also be used to disable other system bus drivers during 
DMA transfers. AEN is active HIGH. 

ADSTB (Address Strobe, Output) 

The active high Address Strobe is used to strobe the up­
per address byte into an external latch. 

MEMR (Memory Read, Output) 

The Memory Read signal is an active low three-state out­
put used to access data from the selected memory loca­
tion during a DMA Read or a memory-lo-memory trans­
fer. 

MEMW (Memory Write, Output) 

The Memory Write signal is an active low three-state 
output used to write data to the selected memory loca­
tion during a DMA Write or a memory-to-memory trans· 
fer. 

FUNCTIONAL DESCRIPTION 
The 8237 block diagram includes the major logic blocks 
and all of the internal registers. The data interconnec­
tion paths are also shown. Not shown are the various 
control signals between the blocks. The 8237 contains 
344 bits of internal memory in the form of registers. 
Figure 2 lists these registers by name and shows the 
size of each. A detailed description of the registers and 
their functions can be found under Register Descrip­
tion. 

Name Size Number 

8ase Address Registers 16 bits 4 
Base Word Count Registers 16bits 4 
Current Address Registers 16bits 4 
Current Word Count Registers 16 bits 4 
Temporary Address Register 16 bits 1 
Temporary Word Count Register 16bits 1 
Status Register 8bits 1 
Command Register 8 bits 1 
Temporary Register 8 bits 1 
Mode Registers 6bits 4 
Mask Register 4 bits 1 
Request Register 4bits 1 

Figure 2_ 8237 Internal Registers 

The 8237 contains three basic blocks of control logic. 
The Timing Control block generates internal timing and 
external control signals for the 8237. The Program Com­
mand Control block decodes the various commands 
given to the 8237 by the microprocessor prior to servic­
ing a DMA Request. It also decodes the Mode Control 
word used to select the type of DMA during the servic­
ing. The Priority Encoder block resolves priority conten­
tion between DMA channels requesting service simul­
taneously. 

The Timing Control block derives internal timing from 
the clock input. In 8237 systems this input will usually 
be the +2 TTL clock from an 8224 or ClK from an 8085A. 
However, any appropriate system clock will suffice. 

DMA OPERATION 
The 8237 is designed to operate in two major cycles. 
These are called Idle and Active cycles. Each device 
cycle is made up of a number of states. The 8237 can 
assume seven separate states, each composed of one 
full clock period. State I (SI) is the inactive state. It is 
entered when the 8237 has no valid DMA requests pend­
ing. While in SI, the DMA controller is inactive but may 
be in the Program Condition, being programmed by the 
processor. State a (SO) is the first state of a DMA ser­
vice. The 8237 has requested a hold but the processor 
has not yet returned an acknowledge. An acknowledge 
from the CPU will signal that transfers may begin. SI, 
S2, S3 and S4 are the working states of the DMA service. 
If more time is needed to complete a transfer than is 
available with normal timing, wait states (SW) can be in­
serted between S2 or S3 and S4 by the use of the Ready 
line on the 8237. 

Memory-to-memory transfers require a read-from and a 
write-to-memory to complete each transfer. The states, 
which resemble the normal working states, use two 
digit numbers for identification. Eight states are re­
quired for a single transfer. The first four states (SII, 
S12, S13, S14) are used for the read-from-memory half 
and the last four states (S21, S22, S23, S24) for the write­
to-memory half of the transfer. 

IDLE CYCLE 

When no channel is requesting service, the 8237 will 
enter the Idle cycle and perform "SI" states. In this 
cycle the 8237 will sample the DREQ lines every clock 
cycle to determine if any channel is requesting a DMA 
service. The device will also sample CS, looking for an 
attempt by the microprocessor to write or read the inter­
nal registers of the 8237. When CS is low and HRQ is 
low, the 8237 enters the Program Condition. The CPU 
can now establish, change or inspect the internal defini­
tion of the part by reading from or writing to the internal 
regilOters. Address lines AO-A3 are inputs to the device 
and select which registers will be read or written. The 
lOR and lOW lines are used 10 select and time reads or 
writes. Due to the number and size of the internal regis­
ters, an internal flip-flop is used to generate an addi­
tional bit of address. This bit is used to determine the 
upper or lower byte of the 16-btl Address and Word 
Count registers. The flip-flop is reset by Master Clear or 
Reset. A separate software command can also reset this 
flip-flop. 
Special software commands can be executed by the 
8237 in the Program Condition. These commands are 
decoded as sets of addresses with the CS and lOW. The 
commands do not make use of the data bus. Instruc­
tions include Clear First/Last Flip-flop and Master Clear. 

ACTIVE CYCLE 

When the 8237 is in the Idle cycle and a channel re­
quests a DMA service, the device will output an HRQ to 
the microprocessor and enter the Active cycle. It is in 
this cycle that the DMA service will take place, in one of 
four modes: 

Single Transfer Mode - In Single Transfer mode the 
device is programmed to make one transfer only. The 
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word count will be decremented and the address decre· 
mented or incremented following each transfer. When 
the word count goes to zero, a Terminal Count (TC) will 
cause an Autoinitialize if the channel has been program· 
med to do so. 

DREQ must be held active until DACK becomes active in 
order to be recognized. If DREQ is held active through· 
out the single transfer, HRQ will go inactive and release 
the bus to the system. It will again go active and, upon 
receipt of a new HLDA, another single transfer will be 
performed. In 8080A/8085A systems this will ensure one 
full machine cycle execution between DMA transfers. 
Details of timing between the 8237 and other bus con· 
trol protocols will depend upon the characteristics of 
the microprocessor involved. 

Block Transfer Mode - In Block Transfer mode the 
device is activated by DREQ to continue making trans· 
fers during the service until a TC, caused by word count 
going to zero, or an external End of Process (EOP) is en· 
countered. DREQ need only be held active until DACK 
becomes active. Again, an Autoinitialization will occur 
at the end of the service if the channel has been pro· 
grammed for it. 

Demand Transfer Mode - I n Demand Transfer mode the 
device is programmed to continue making transfers un· 
til a TC or external EOP is encountered or until DREQ 
goes inactive. Thus transfers may continue until the 1/0 
device has exhausted its data capacity. After the 1/0 
device has had a chance to catch up, the DMA service is 
re·established by means of a DREQ. During the time 
between services when the microprocessor is allowed 
to operate, the Intermediate values of address and word 
count are stored in the 8237 Current Address and Cur· 
rent Word Count registers. Only an EOF can cause an 
Autoinitialize at the end of the service. EOP is generated 
either by TC or by an external signal. 

Cascade Mode - This mode is used to cascade more 
than one 8237 together for simple system expansion. 
The HRQ and HLDA signals from the additional 8237 
are connected to the DREQ and DACK signals of a chan· 
nel of the Initial 8237. This allows the DMA requests of 
the additional device to propagate through the priority 
network circuitry of the preceding device. The priority 
chain Is preserved and the new device must wait for its 
turn to acknowledge requests. Since the cascade chan· 
nel in the initial device is used only for prioritizing the 
additional device, it does not output any address or con· 
trol signals of its own. These would conflict with the 
outputs of the active channel in the added device. The 
823iwill respond to DREQ and DACK but all other out· 
puts except HRQ will be disabled. 

Figure 3 shows two additional devices cascaded into an 
initial device using two of the previous channels. This 
forms a two level DMA system. More 8237s could be 
added at the second level by using the remaining chan· 
nels of the first level. Additional devices can also be 
added by cascading into the channels of the second 
level devices, forming a third level. 

TRANSFER TYPES 

Each of the three active transfer modes can perform 
three different types of transfers. These are Read, Write 

and Verify. Write transfers move data from an 1/0 device 
to the memory by activating MEMW and lOR. Read 
transfers move data from memory to an 1/0 device by ac· 
tivating MEMR and lOW. Verify transfers are pseudo 
transfers. The 8237 operates as in Read or Write trans· 
fers generating addresses, and responding to EOP, etc. 
However, the memory and I/O control lines all remain 
inactive. 

MICROPROCESSOR 
1ST LEVEL 

!-- HRO DREQ 

'--- HLDA DACK 

8237 

DREQ 

DACK 

INITIAL DEVICE 

Figure 3. Cascaded 8237s 

---

--

2ND LEVEL 

8231 

HRO 

HlDA 

HRO 

HLDA 

8237 

ADDITIONAL 
DEVICES 

Memory·to·Memory - To perform block moves of data 
from one memroy address space to another with a mini· 
mum of program effort and time, the 8237 includes a 
memory·to·memory transfer feature. Programming a bit 
in the Command register selects channels 0 and 1 to 
operate as memory·to·memory transfer channels. The 
transfer is initiated by setting the software DREQ for 
channel O. The 8237 requests a DMA service in the nor· 
mal manner. After HLDA is true, the device, using eight· 
state transfers in Block Transfer mode, reads data from 
the memory. The channel 0 Current Address register is 
the source for the address used and is decremented or 
incremented in the normal manner. The data byte read 
from the memory is stored in the 8237 internal Tempo· 
rary register. Channel 1 then writes the data from the 
Temporary register to memory using the address in its 
Current Address register and incrementing or decre· 
menting it in the normal manner. The channel 1 Current 
Word Count is decremented. When the word count of 
channel 1 goes to zero, a TC is generated causing an 
EOP output, terminating the service. 
Channel 0 may be programmed to retain the same ad· 
dress for all transfers. This allows a single word to be 
written to a block of memory. 

The 8237 will respond to external EOP signals during 
memory·to·memory transfers. Data comparators in 
block search schemes may use this input to terminate 
the service when a match is found. The timing of 
memory·to·memory transfers is found in Diagram 4. 
Memory·to-memory operations can be detected as 
an active AEN with no DACK outputs. 
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Autoinitialize - By programming a bit In the Mode reg· 
ister, a channel may be set up as an Autoinitialize 
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channel. During Autoinitialize initialization, the original 
values of the Current Address and Current Word Count 
registers are automatically restored from the Base Ad· 
dress and Base Word Count registers of that channel 
following EOP. The base registers are loaded simultane· 
ously with the current registers by the microprocessor 
and remain unchanged throughout the DMA service. The 
mask bit is not set when the channel is in Autoinitialize. 
Following Autoinitialize the channel is ready to perform 
another service without CPU intervention. 

Priority - The 8237 has two types of priority encoding 
available as software selectable options. The first is 
Fixed Priority which fixes the channels in priority order 
based upon the descending value of their number. The 
channel with the lowest priority is 3 followed by 2, 1 and 
the highest priority channel, O. After the recognition of 
anyone channel for service, the other channels are pre· 
vented from interferring with that service until it is com· 
pleted. 

The second scheme is Rotating Priority. The last chan· 
nel to get service becomes the lowest priority channel 
with the others rotating accordingly. 

highest 

lowest 

1st 
Service 

2nd 
Service 

3rd 
Service 

o 2 -.- service \3 -...- service 
1......-service\. 3-..-request 0 

2 ,0 1 
3 1 2 

With Rotating Priority in a single chip DMA system, any 
device requesting service is guaranteed to be recog· 
nized after no more than three higher priority services 
have occurred. This prevents anyone channel from 
monopolizing the system. 

Compressed Timing - In order to achieve even greater 
throughput where system characteristics permit, the 
8237 can compress the transfer time to two clock 
cycles. From Timing Diagram 3 it can be seen that state 
S3 is used to extend the access time of the read pulse. 
By removing state S3, the read pulse width is made 
equal to the write pulse width and a transfer consists 
only of state S2 to change the address and state S4 to 
perform the read/write. S1 states will still occur when 
A8-A 15 need updating (see Address Generation). Tim· 
ing for compressed transfers is found in Diagram 6. 

Address Generation - In order to reduce pin count, the 
8237 multiplexes the eight higher order address bits on 
the data lines. State S1 is used to output the higher 
order address bits to an external latch from which they 
may be placed on the address bus. The falling edge of 
Address Strobe (ADSTB) is used to load these bits from 
the data lines to the latch. Address Enable (AEN) is used 
to enable the bits onto the address bus through a three· 
state enable. The lower order address bits are output by 
the 8237 directly. Lines AO-A7 should be connected to 
the address bus. Timing Diagram 3 shows the time rela· 
tionships between ClK, AEN, ADSTB, DBO-DB7 and 
AO-A? 

During Block and Demand Transfer mode services, 
which include multiple transfers, the addresses gener· 
ated will be sequential. For many transfers the data held 
in the external address latch will remain the same. This 
data need only change when a carry or borrow from A7 
to A8 takes place in the normal sequence of addresses. 
To save time and speed transfers, the 8237 executes S1 
states only when updating of A8-A15 in the latch is 
necessary. This means for long services, S1 states may 
occur only once every 256 transfers, a savings of 255 
clock cycles for each 256 transfers. 

REGISTER DESCRIPTION 

Current Address Register - Each channel has a 16·bit 
Current Address register. This register holds the value 
of the address used during DMA transfers. The address 
is automatically incremented or decremented after each 
transfer and the intermediate values of the address are 
stored in the Current Address register during the 
transfer. This register is written or read by the micro· 
processor in successive 8·bit bytes. It may also be reo 
initialized by an Autoinitialize back to its original value. 
Autoinitialize takes place only after an EOP. 

Current Word Register - Each channel has a 16·bit Cur· 
rent Word Count register. This register holds the num· 
ber of transfers to be performed. The word count is 
decremented after each transfer. The intermediate value 
of the word count is stored in the register during the 
transfer. When the value in the register goes to zero, a 
TC will be generated. This register is loaded or read in 
successive 8·bit bytes by the microprocessor in the Pro· 
gram Condition. Following the end of a DMA service it 
may also be reinitialized by an Autoinitialization back to 
its original value. Autoinitialize can occur only when an 
EOP occurs. 

Base Address and Base Word Count Registers - Each 
channel has a pair of Base Address and Base Word 
Count registers. These 16·bit registers store the original 
value of their associated current registers. During Auto· 
initialize these values are used to restore the current 
registers to their original values. The base registers are 
written simultaneously with their corresponding current 
register in 8·bit bytes in the Program Condition by the 
microprocessor. These registers cannot be read by the 
microprocessor. 

Command Register - This 8·bit register controls the 
operation of the 8237. It is programmed by the micro· 
processor in the Program Condition and is cleared by 
Reset. The following table lists the function of the com· 
mand bits. See Figure 6 for address coding. 

Mode Register - Each channel has a 6·bit Mode regis· 
ter associated with it. When the register is being written 
to by the microprocessor in the Program Condition, bits 
o and 1 determine which channel Mode register is to be 
written. 
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Request Register - The 8237 can respond to requests 
for DMA service which are initiated by software as well 
as by a DREQ. Each channel has a request bit associ· 
ated with it in the 4·bit Request register. These are non· 
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maskable and subject to prioritization by the Priority En­
coder network. Each register bit Is set or reset sepa· 
rately under software control or Is cleared upon genera· 
tlon of a TC or external EOP. The entire register is 
cleared by a Reset. To set or reset a bit, the software 
loads the proper form of the data word. See Figure 4 for 
address coding. 

Command Register 
7 8 5 4 3 2 1 0 _Bit Number 

I I I I I I I I I 
0 Memory·to-memory disable 
1 Memory.to.memory enable 

---1 0 Channel 0 address hold disable 
1 Channel 0 address hold enable 
X If bit 0=0 

0 Controller enable 
1 Controller disable 

0 Normal timing 
1 Compressed timing 
X If bit 0=1 

0 Fixed priority 
I Rotating priority 

J 
I ° 

Late write selection 
1 Extended write selection 
X If bit 3=1 

, DREO sense active high , DREO sense active low 

, 0 OACK sense active low 
I DACK sense active high 

Mode Register 

r-"":""'-r--,r--,::.,...:l.,..O-,~ Bit Number 

Channel 0 select 
Channell select 
Channel 2 select 
Channel 3 select 

00 Verify transfer 
01 Write transfer 

'----~ 10 Read transfer 
11 Illegal 
XX If bits 6 and 7= 11 

0 Autoinitialization disable 
1 Autoinitialization enable 

0 Address I ncrement select 
1 Address decrement select 

00 Demand mode select 
01 Single mode select 
10 Block mode select 
11 Cascade mode select 

Request Register 

,...:...,::...,=-r...:..,-=-.-=...,.:l.,..O:., ~Blt Number 

Don·t Care 

'--__ -I 0 Reset request bit 
1 Set request bit 
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Software reql,lests will be serviced only If the channel Is 
In Block mode. When Initiating a memory·to-memory 
transfer, the software request for channel 0 should be 
set. 

Mask Register - Each channel has associated with It a 
mask bit which can be set to disable the Incoming 
DREQ. Each mask bit is set when Its associated channel 
produces an ~ If the channel Is not programmed for 
Autoinitialize. Each bit of the 4·bit Mask register may 
also be set or cleared separately under software control. 
The entire register Is also set by a Reset. This disables 
all DMA requests until a clear Mask register Instruction 
allows them to occur. The Instruction to separately set 
or clear the mask bits is similar in form to that used with 
the Request register. See Figure 4 for Instruction ad· 
dressing. 

7 8 5 4 3 2 1 0 _ Bit Number 

Don't Care 
Select channel 0 mask bit 
Select channell mask bit 
Select channel 2 mask bit 
Select channel 3 mask bit 

'--__ -( 0 Clear mask bit 
1 Set mask bit 

All four bits of the Mask register may also be written 
with a single command. 

Register 

Command 
Mode 
Request 
Mask 
Mask 
Temporary 
Status 

o Clear channel 0 mask bit 
1 Set channel 0 mask bit 

o Clear channell mask bit 
1 Set channell mask bit 

Clear channel 2 mask bit 
1 Set channel 2 mask bit 

'-___ -{ 0 Clear channel 3 mask bit 
1 Set channel 3 mask bit 

Operation 
Signals 

CS lOR lOW A3 A2 A1 

Write 0 1 0 1 0 0 
Write 0 1 0 1 0 1 
Write 0 1 0 1 0 0 
Set/Reset 0 1 0 1 0 1 
Write 0 1 0 1 1 1 
Read 0 0 1 1 1 0 
Read 0 0 1 1 0 0 

Figure 4. Definition of Register Codes 

AD 

0 
1 
1 
0 
1 
1 
0 

Status Register - The Status register is available to 
be read out of the 8237 by the microprocessor. It con­
tains information about the status of the devices at this 
point. This information includes which channels have 
reached a terminal count and which channels have 
pending DMA requests. Bits 0-3 are set every time a TC 
is reached by that channel or an external EOP 
is applied. These bits are cleared upon Reset 
and on each Status Read. Bits 4-7 are set when­
ever their corresponding channel is requesting service. 
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Channel 0 has reached TC 
Channell has reached TC 
Channel 2 has reached TC 
Channel 3 has reached TC 

Channel 0 request 
Channell request 
Channel 2 request 
Channel 3 request 

Temporary Register - The Temporary register is used 
to hold data during memory-to-memory transfers_ Fol­
lowing the completion of the transfers, the last word 
moved can be read by the microprocessor in the Pro­
gram Condition_ The Temporary register always con­
tains the last byte transferred in the previous memory­
to-memory operation, unless cleared by a Reset. 

Software Commands - These are additional special 
software commands which can be executed in the Pro­
gram Condition. They do not depend on any specific bit 
pattern on the data bus. The two software commands 
are: 

Clear First/Last Flip-Flop: This command is executed 
prior to writing or reading new address or word count 
information to the 8237. This initializes the flip-flop to 
a known state so that subsequent accesses to regis­
ter contents by the microprocessor will address up­
per and lower bytes in the correct sequence. 

Channel Reglst.r Operation 
CS lOR 

0 Base and Current Address Write 0 1 
0 1 

Current Address Read 0 0 
0 0 

Base and Current Word Count Write 0 1 
0 1 

Current Wold Count Read 0 0 
0 0 

1 Base and Current Address Write 0 1 
0 1 

Current Address Read 0 0 
0 0 

Base and Current Word Count Write 0 1 
0 1 

Current Word Count Read 0 0 
0 0 

2 Base and Current Address Write 0 1 
0 1 

Current Address Read 0 0 
0 0 

Base and Current Word Count Write 0 1 
0 1 

Current Word Count Read 0 0 
0 0 

3 Base and Current Address Write 0 1 
0 1 

Current Address Read 0 0 
0 0 

Base and Current Word Count Write 0 1 
0 1 

Current Word Count Read 0 0 
0 0 

lOW 

0 
0 

1 
1 

0 
0 

1 
1 

0 
0 

1 
1 

0 
0 

1 
1 

0 
0 

1 
1 

0 
0 

1 
1 

0 
0 

1 
1 

0 
0 

I 
I 

Master Clear: This software instruction has the same 
effect as the hardware Reset. The Command, Status, 
Request, Temporary, and Internal First/Last Flip-Flop 
registers are cleared and the Mask register is set. The 
8237 will enter the Idle cycle. 

Figure 5 lists the address codes for the software com­
mands: 

Signals 

A3 A2 A 1 AO lOR lOW Operation 

Read Status Register 

Write Command Register 

Illegal 

Write Request Register 

Illegal 

Write Single Mask Register Bit 

Illegal 

Write Mode Register 

Illegal 

Clear Byte Pointer Flip I Flop 

Read Temporary Register 

Maater Clear 

Illegal 

Illegal 

Illegal 

Write All Mask Register Bits 

Figure 5. Software Command Codes 

Signals 
Intemal Flip-Flop Data Bus DBO-DB7 

A3 A2 Al AO 

0 0 0 0 0 AQ-A7 
0 0 0 0 1 AB-AI5 

0 0 0 0 0 AQ-A7 
0 0 0 0 1 A8-A15 

0 0 0 1 0 WO-W7 
0 0 0 1 1 W8-W15 

0 0 0 1 0 W)O-W7 
0 0 0 1 I W8-W15 

0 0 1 0 0 AO-A7 
0 0 1 0 1 AB-AI5 

0 0 1 0 0 AQ-A7 
0 0 1 0 1 AB-AI5 

0 0 1 1 0 WO-W7 
0 0 1 1 1 W8-W15 

0 0 1 1 0 WfJ-W7 
0 0 1 1 1 W8-W15 

0 1 0 0 0 AQ-A7 
0 1 0 0 1 A8-A15 

0 1 0 0 0 AO-A7 
0 1 0 0 1 AB-A15 

0 1 0 1 0 WQ-W7 
0 1 0 1 1 W8-W15 

0 1 0 1 0 W)Q-W7 
0 1 0 1 1 W8-W15 

0 1 1 0 0 AO-A7 
0 1 1 0 1 AB-A15 

0 1 1 0 0 AQ-A7 
0 1 1 0 1 AB-AI5 

0 1 1 1 0 WQ-W7 
0 1 1 1 1 WB-WI5 

0 1 1 1 0 WfJ-W7 
0 1 1 1 1 W8-W15 

Figure 6. Word Count and Address Register Command Codes 
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APPLICATION INFORMATION 

Figure 7 shows a convenient method for configuring a 
DMA system with the 8237 controller and an 8080AI 
8085A microprocessor system. The multimode DMA 
controller issues a HRQ to the processor whenever 
there is at least one valid DMA request from a 
peripheral device. When the processor replies with a 
HLDA signal, the 8237 takes control of the address bus, 
the data bus and the control bus. The address for the 

first transfer operation comes out in two bytes - the 
least significant 8 bits on the eight address outputs and 
the most significant 8 bits on the data bus. The contents 
of the data bus are then latched into the 8282 8-bit latch 
to complete the full 16 bits of the address bus. The 8282 
is a high speed, 8-bit, three-state latch in a 20-pin 
package. After the initial transfer takes place, the latch 
is updated only after a carry or borrow is generated In 
the least significant address byte. Four DMA channels 
are provided when one 8237 is used. 

ADDRESS BUS AO-A15 > 
~ .... ~ 

-y 

A8-A15 

I---
...... 

I 

OE 
8282 

r 
STB 

... 7- 8·BIT LATCH 

AO-A15 AEN AO-A3 A4-A7 CS ADSTB ~ ;>.. 
BUSEN 

A • 
HLDA HLDA 8237 DBO-

~ ~ DB7 

Ii 
, 

~ ~ y 
HOLD HRQ Ii; 

I~ 
15 

~ '" e l~ 
w " w '" .. 

" '" Q Q 

CPU ! I t t CLOCK 

RESET 

MEMR 

MEMW l~~"" iOR BUS 

lOW 

DBO-DB7 

"'" r--

""" ".. ". 

SYSTEM DATA BUS 

Figure 7 
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ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature under Bias ......... O·C to 70·C 

Storage Temperature ............. - 65·C to + 150·C 
Voltage on any Pin with 

Respect to Ground .................... - 0.5 to 7V 
Power Dissipation ......................... 1.5 Watt 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

D.C. CHARACTERISTICS 
TA=O·Cto 70·C, Vcc=5.0V ±5%, GND=OV 

Symbol Parameter Min. Typ'(1) Max. Unit Test Conditions 

2.4 V IOH= - 2OO IJA 
VOH Output HIGH Voltage 

3.3 V IOH = -100 IJA (HRQ Only) 

VOL Output LOW Voltage 0.4 V IOL=3.2 mA 

VIH Input HIGH Voltage 2.0 Vcc+ 0.5 V 

V IL Input LOW Voltage -0.5 0.8 V 

'll Input Load Current ±10 IJA VSS~VI~VCC 

ILO Output Leakage Current ±10 IJA Vcc~Vo~Vss + 0.40 

65 130 mA TA= +25·C 
Icc Vcc Supply Current 

75 150 mA TA=O·C 

Co Output Capacitance 4 8 pF 

C I Input Capacitance 8 15 pF Ic = 1.0 MHz, Inputs = OV 

CIO I/O Capacitance 10 18 pF 

Noles: 
1. Typical values are for T A:;;: 25°C, nominal supply voltage and nominal processing parameters. 

2. Input timing parameters assume transition times of 20 ns or less. Waveform measurement pOints for both input and output signals are 2.0V for HIGH 
and O.BV for LOW, unless otherwise noted. 

3. Output loading is 1 TIL gate plus 50 pF capacitance, unless otherwise noted. 
4. The net lOW or M'E'MiiV Pulse width for normal write will be TCY-l00 ns and for extended write will be 2TCY-100 ns. The net lOR or MEMR pulse 

width for normal read will be 2TCY-50 ns and for compressed read will be TCY-50 ns. 

5. TOQ is specified for two different output HIGH levels. TOQ1 is measured at 2.0V. TOQ2 is measured at 3.3V. The value forTOQ2 assumes an external 
3.3 kQ pull·up resistor connected from H RQ to V CC. 

6. OREQ should be held active until OACK is returned. 
7. OREQ and OACK signals may be active high or active low. Timing diagrams assume the active high mode. 
B. Output loading on the data bus is 1 TIL gate plus 100 pF capacitance. 
9. Successive read and/or write operations by the external processor to program or examine the controller must be timed to allow at least 600 ns forthe 

8237 and at least 400 ns for the 8237·2 as recovery time between active read or write pulses. 

10. Parameters are listed in alphabetical order. 

11. Pin 5 is an input that should always be at a logic high level. An internal pull·up resistor will establish a logic high when the pin is left floating. Aller· 
natively, pin 5 may be tied to VCC' 

A.C. TEST WAVEFORM 

2.4V---------_........ ,..-----------HIGH "1" X2.0V 

0.45V--------__ ....J. "'O:;.;.8:..:V __________ LOW "0" 

B-lOO 
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A.C. CHARACTERISTICS: DMA (MASTER) MODE 
TA=O·C to 70·C, Vcc=5.0V ±50/0, GND=OV 

8237 8237·2 
Unit Symbol Parameter 

Min. Max. Min. Max. 

TAEL AEN HIGH from CLK LOW (51) Delay Time 300 200 ns 

TAET AEN LOW from CLK HIGH (51) Delay Time 200 130 ns 

TAFAB ADR Active to Float Delay from CLK HIGH 150 90 ns 

TAFC READ or WRITE Float from CLK HIGH 150 120 ns 

TAFDB DB Active to Float Delay from CLK HIGH 250 170 ns 

TAHR ADR from READ HIGH Hold Time TCY-100 TCY-100 ns 

TAHS DB from ADSTB LOW Hold Time 50 30 ns 

TAHW ADR from WRITE HIGH Hold Time TCY-50 TCY-50 ns 

DACK Valid from CLK LOW Delay Time 250 170 ns 

TAK EOP HIGH from CLK HIGH Delay Time 250 170 ns 

EOP LOW to CLK HIGH Delay Time 250 100 ns 

TASM ADR Stable from CLK HIGH 250 170 ns 

TASS DB to ADSTB LOW Setup Time 100 100 ns 

TCH Clock High Time (Transitions <0;10 ns) 120 70 ns 

TCL Clock LOW Time (Transitions <0;10 ns) 150 50 ns 

TCY CLK Cycle Time 320 200 ns 

TDCL CLK HIGH to READ orWRITE LOW Delay (Note 4) 270 190 ns 

TDCTR READ HIGH from CLK HIGH (54) Delay Time 270 190 ns 
(Note 4) 

TDCTW WRITE HIGH from CLK HIGH (54) Delay Time 200 130 ns 
(Note 4) 

TDQ1 160 120 ns 

TDQ2 
HRQ Valid from CLK HIGH Delay Time (Note 5) 

250 120 ns 

TEPS EOP LOW from CLK LOW Setup Time 60 40 ns 

TEPW EOP Pulse Width 300 220 ns 

TFAAB ADR Float to Active Delay from CLK HIGH 250 170 ns 

TFAC READ or WRITE Active from CLK HIGH 200 150 ns 

TFADB DB Float to Active Delay from CLK HIGH 300 200 ns 

THS HCDA Valid to CLK HIGH Setup Time 100 75 ns 

TIDH Input Data from MEMR HIGH Hold Time 0 0 ns 

TIDS Input Data to MEMR HIGH Setup Time 250 170 ns 

TODH Output Data from MEMW HIGH Hold Time 20 10 ns 

TODV Output Data Valid to MEMW HIGH 200 130 ns 

TQS DREQ to CLK LOW (51, 54) Setup Time 0 0 ns 

TRH CLK to READY LOW Hold Time 20 20 ns 

TRS READY to CLK LOW Setup Time 100 75 ns 

TSTL ADSTB HIGH from CLK HIGH Delay Time 200 130 ns 

TSTT ADSTB LOW from CLK HIGH Delay Time 140 90 ns 
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A.C. CHARACTERISTICS: PERIPHERAL (SLAVE) MODE 
TA=0·Ct070·C, Vcc=5.0V ±5%, GND=OV 

8237 
Symbol Parameter 

Min. 

TAR ADR Valid or CS LOW to READ LOW 50 

TAW ADR Valid to WRITE HIGH Setup Time 200 

TCW CS LOW to WRITE HIGH Setup Time 200 

TOW Data Valid to WRITE HIGH Setup Time 200 

TRA ADR or CS Hold from READ HIGH 0 

TRDE Data Access from READ LOW (Note 8) 

TRDF DB Float Delay from READ HIGH 20 

TRSTO Power Supply HIGH to RESET LOW Setup Time 500 

TRSTS RESET to First IOWR 2TCY 

TRSTW RESET Pulse Width 300 

TRW READ Width 300 

TWA ADR from WRITE HIGH Hold Time 20 

TWC CS HIGH from WRITE HIGH Hold Time 20 

TWD Data from WRITE HIGH Hold Time 30 

TWWS Write Width 200 

TIMING DIAGRAM #1 - SLAVE MODE WRITE TIMING 

~ 
Tew 

-
I, TWWS ~ 

-TAW 

AO-A3 ~ ---1 INPUT VALID 

-TDW 

DBO-DB7 =::) INPUT VALID 

TIMING DIAGRAM #2 - SLAVE MODE READ TIMING 

8237·2 
Unit 

Max. Min. Max. 

50 ns 

160 ns 

160 ns 

160 ns 

0 ns 

200 140 ns 

100 0 70 ns 

500 j.!s 

2TCY ns 

300 ns 

200 ns 

0 ns 

0 ns 

10 ns 

160 ns 

-i 
I-Twe 

I 
_TWA 

-TWO 

K 

./ 

AO-A3 ~ ADDRESS MUST BE VALID ~ 

IOR_-~_"·"1t---1==-_-TRDE--=TRW~_ -t-t--':"3-
DBO-DB7 { DATA OUT VALID 
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TIMING DIAGRAM #3 - DMA TRANSFER TIMING 

eLK 

DREQ 

1-
HRC ______ ~~r--+~~~-+---+---r-r-r--~--~~~----------

HLDA 

.EN 

ADSTB 

-TAHW 

AO-A7 

DACK 

INTW 

EXT'ElfP 
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TIMING DIAGRAM #4 - MEMORY TO MEMORY TRANSFER TIMING 

ADSTB 

AO-A7 ADDRESS VALID 

DBO-DB7 OUT 

TOCV I---+--j.----I 

TIMING DIAGRAM #5 - READY TIMING 
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TIMING DIAGRAM #6 - COMPRESSED TRANSFER TIMING 

CLK 

AO-A7 

TDCL--i--I--I 

_ ~TRH 
- _ _ TRH 

READY _~TRSJ ',----,TRs J ~\'----
TIMING DIAGRAM #7 - RESET TIMING 

Vee ______ -J;frl~~~~~~~~~~~~~~~~~-T-R-S-TD--------------------_-_-_-_-_-_-_-_--=---------tI~I---------------

_________________ ~ I'========_T_RS_T_W~~_-_-_-_-_-_ 
RESET t 

lOR OR lOW 
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PROGRAMMABLE INTERRUPT CONTROLLER 

• 808618088 Compatible • Programmable Interrupt Modes 

• MCS-8018S™ Compatible • Individual Request Mask Capability 

• Eight-level Priority Controller • Single + SV Supply (No Clocks) 

• Expandable to 64 levels • 28·Pin Dual·ln·line Package 

The Intel'" 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is 
cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28·pin DIP, uses 
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input. 

The 8259A is designed to minimize the software and realtime overhead in handling multi-level priority interrupts. It has 
several modes, permitting optimization for a variety of system requirements. 

The 8259A is fully upward compatible with the Intel'" 8259. Software originally written for the 8259 will operate the 
8259A in all 8259 equivalent modes (MCS·80185, Non-Buffered, Edge Triggered). 

PIN CONFIGURATION 

cs vee 
WR "0 
AD INTA 

0, IR7 

D. IR6 

0. IR5 

0, IRO 

0, IR3 

0, IR2 

0, IRI 

D. IRO 

CASO INT 

CAS1 SPIEN 
GND CAS 2 

PIN NAMES 

°1- 0 0 DATA BUS (SI-DiRECTIONAl! 

RO READ INPUT 

WR WRITE INPUT 

A. COMMAND SELECT ADDRESS 

CS CHIP SELECT 

CAS2CASO CASCADE LINES 
~mil SLAVE PROGRAM IENABLE BUFFER 

INT INTERRUPT OUTPUT 
INTA INTERRUPT ACKNOWLEDGE INPUT 

IRO-IR7 INTERRUPT REQUeST INPUTS 

DATA 
BUS 

BUFFER 

cs---------' 

CAS 1 

CAS 2 

SPIEN---··-
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INTERRUPTS IN MICROCOMPUTER 
SYSTEMS 
Microcomputer system design requires that 110 devices 
such as keyboards, displays, sensors and other com­
ponents receive servicing in an efficient manner so that 
large amounts of the total system tasks can be assumed 
by the microcomputer with little or no effect on through­
put. 

The most common method of servicing such devices is 
the Polled approach. This is where the processor must 
test each device in sequence and in effect "ask" each 
one if it needs servicing. It is easy to see that a large por­
tion of the main program is looping through this con­
tinuous polling cycle and that such a method would 
have a serious, detrimental effect on system through­
put, thus limiting the tasks that could be assumed by 
the microcomputer and reducing the cost effectiveness 
of using such devices. 

A more desirable method would be one that would allow 
the microprocessor to be executing its main program 
and only stop to service peripheral devices when it is 
told to do so by the device itself. In effect, the method 
would provide an external asynchronous input that 
would inform the processor that it should complete 
whatever instruction that is currently being executed 
and fetch a new routine that will service the requesting 
device. Once this servicing is complete, however, the 
processor would resume exactly where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and thus 
more tasks could be assumed by the microcomputer to 
further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) functions 
as an overall manager in an Interrupt-Driven system 
environment. It accepts requests from the peripheral 
equipment, determines which of the incoming requests 
is of the highest importance (priority), ascertains 
whether the incoming request has a higher priority value 
than the level currently being serviced, and issues an 
interrupt to the CPU based on this determination. 

Each peripheral device or structure usually has a special 
program or "routine" that is associated with its specific 
functional or operational requirements; this is referred 
to as a "service routine". The PIC, after issuing an Inter­
rupt to the CPU, must somehow input information into 
the CPU that can "point" the Program Counter to the 
service routine associated with the requesting device. 
This "pOinter" is an address in a vectoring table and will 
often be referred to, in this document, as vectoring data. 

8259A BASIC FUNCTIONAL DESCRIPTION 
GENERAL 

The 8259A is a device specifically designed for use in 
real time, interrupt driven microcomputer systems. It 
manages eight levels or requests and has built-in fea­
tures for expandability to other 8259A's (up to 64 levels)_ 
It is programmed by the system's software as an 1/0 
peripheral. A selection of priority modes is available to 
the programmer so that the manner In which the re­
quests are processed by the 8259A can be configured to 

match his system requirements. The priority modes can 
be changed or reconfigured dynamically at any time dur­
ing the main program. This means that the complete 
interrupt structure can be defined as required, based on 
the total system environment. 

CPU 

Polled Method 

CPU .NT 

Interrupt Method 

CPU·DRIVEN 
MULTIPLEXOR 

--, , 
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INTERRUPT REQUEST REGISTER (IRR) AND 
IN-SERVICE REGISTER (lSR) 

The interrupts at the IR input lines are handled by two 
registers in cascade, the Interrupt Request Register 
(IRR) and the In-Service Register (ISR). The IRR is used 
to store all the interrupt levels which are requesting ser­
vice; and the ISR is used to store all the interrupt levels 
which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits set 
in the IRR. The highest priority is selected and strobed 
into the corresponding bit of the ISR during INTA pulse. 

INTERRUPT MASK REGISTER (lMR) 

The IMR stores the bits which mask the interrupt lines 
to be masked. The IMR operates on the IRR. Masking of 
a higher priority input will not affect the interrupt 
request lines of lower priority. 

INT (INTERRUPT) 

This output goes directly to the cru interrupt input. The 
VOH level.on this line is designed to be fully compatible 
with the 8080A, 8085A, 8086 and 8088. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses w;1I cause the 8259A to release vectoring 
information onto the data bus. The format of this data 
depends on the system mode ("PM) of the 8259A. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter· 
face the 8259A to the system Data Bus. Control words 
and status information are transferred through the Data 
Bus Buffer. 

READIWRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command 
Word (OCW) registers which store the various control 
formats for device operation. This function block also 
allows the status of the 8259A to be transferred onto the 
Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 8259A. No reading or 
writing of the chip will occur unless the device is 
selected. 

WR (WRITE) 

A LOW on this input enables the CPU to write control 
words (lCWs and OCWs) to the 8259A. 

RD (READ) 

A LOW on this input enables the 8259A to send the 
status of the Interrupt Request Register (IRR), In Service 
Register (ISR), the Interrupt Mask Register (IMR), or the 
Interrupt level onto the Data Bus. 

8259A Block Diagram 

8259A Block Diagram 

Ao 

This input signal is used in conjunction with WR and RD 
signals to write commands into the various command 
registers, as well as reading the various status registers 
of the Chip. This line can be tied directly to one of the ad­
dress lines. 
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THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of all 
8259A's used in the system. The associated three I/O 
pins (CASO-2) are outputs when the 8259A is used as a 
master and are inputs when the 8259A is used as a 
slave. As a master, the 8259A sends the ID of the inter· 
rupting slave device onto the CASO-2 lines. The slave 
thus selected will send its preprogrammed subroutine 
address onto the Data Bus during the next one or two 
consecutive INTA pulses. (See section "Cascading the 
8259A".) 

INTERRUPT SEQUENCE 

The powerful features of the 8259A in a microcomputer 
system are its programmability and the interrupt routine 
addressing capability. The latter allows direct or indirect 
jumping to the specific interrupt routine requested 
without any polling of the interrupting devices. The nor· 
mal sequence of events during an interrupt depends on 
the type of CPU being used. 

The events occur as follows in an MCS·80/85 system: 

1. One or more of the INTERRUPT REQUEST lines 
(IR7-0) are raised high, setting the corresponding IRR 
bit(s). 

2. The 8259A evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds with an 
INTA pulse. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set, and the corresponding 
IRR bit is reset. The 8259A will also release a CALL in· 
struction code (11001101) onto the 8·bit Data Bus 
through its 07-0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU group. 

6. These two INTA pulses allow the 8259A to release its 
preprogrammed subroutine address onto the Data 
Bus. The lower 8·bit address is released at the first 
INTA pulse and and the higher 8·bit address is reo 
leased at the second INTA pulse. 

7. This completes the 3·byte CALL instruction released 
by the 8259A. In the AEOI mode the ISR bit is reset at 
the end of the third INTA pulse. Otherwise, the ISR bit 
remains set until an appropriate EOI command is 
issued at the end of the interrupt sequence. 

The events occuring in an 8086/8088 system are 
the same until step 4. 

4. Upon receiving an INTA from the CPU group, the high· 
est priority ISR bit is set and the corresponding IRR 
bit is reset. The 8259A does not drive the Data Bus 
during this cycle. 

5. The 8086/8088 CPU will initiate a second 
INTA pulse. During this pulse, the 8259A releases an 
8-bit pointer onto the Data Bus where it is 
read by the CPU. 

6. This completes the interrupt cycle. In the AEOI mode 
the ISR bit is reset at the end of the second INTA 
pulse. Otherwise, the ISR bit remains set until an 
appropriate EOI command is issued at the end of the 
interrupt subroutine. 

If no interrupt request is present at step 4 of either 
sequence (i.e., the request was too short in duration) the 
8259A will issue an interrupt level 7. Both the vectoring 
bytes and the CAS lines will look like an interrupt level 7 
was requested. 

8259A Block Diagram 

I 
INTERRUPT 
REQUESTS 

8259A Interface to Standard System Bus 
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INTERRUPT SEQUENCE OUTPUTS 
MeS-SO/S5 MODE 

This sequence is timed by three INTA pulses. During the 
first iNfA pulse the CALL opcode is enabled onto the 
data bus. 

Content of First Interrupt 
Vector Byte 

D7 De D5 D4 D3 D2 D1 DO 

CALLCODE LI_1 ________ a _________________ a ____ 1-J1 

During the second iNTA pulse the lower address of the 
appropriate service routine is enabled onto the data bus. 
When Interval = 4 bits A5-A7 are programmed, while Aa-

A. are automatically inserted by the 8259A. When Inter­
val = 8 only A6 and A7 are programmed, while Aa-A5 are 
automatically inserted. 

IR 
D7 

7 A7 
6 A7 

5 A7 

• A7 
3 A7 
2 A7 
1 A7 
a A7 

IR 
D7 

7 A7 
6 A7 
5 A7 
4 A7 

3 A7 
2 A7 

1 A7 
a A7 

Content 01 Second Interrupt 
Vector Byte 

InlerYal-4 

De DS D4 D3 D2 

A6 AS 1 1 1 
A6 A5 1 1 a 
A6 A5 1 a 1 
A6 A5 1 a a 
A6 A5 a 1 1 
A6 A5 a 1 a 
AS A5 a a 1 
A6 A5 a a a 

Inlervll = 8 
De D5 D4 D3 D2 
AS 1 1 1 a 
A6 1 1 a a 
A6 1 a 1 a 
A6 1 a a a 
A6 a 1 1 a 
A6 a 1 a a 
A6 a a 1 a 
A6 a a a a 

D1 DO 

a a 
a a 
a a 
a a 
a a 
a a 
a a 
a a 

Dl DO 

a 0 

a a 
a 0 

a a 
0 a 
a a 
a a 
a a 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed as 
byte 2 of the initialization sequence (A8 - A 15), is 
enabled onto the bus. 

D7 D8 
A15 A14 

Content of Third Interrupt 
Vector Byte 

DS D4 D3 D2 

A13 I A12 I All Ala 

SOS6/S0SS Mode 

Dl DO 

A9 

8086/8088 mode is similar to MCS80/85 mode 
except that only two Interrupt Acknowledge cycles are 
issued by the processor and no CALL opcode is sent 
to the processor. The first interrupt acknowledge cycle 
is similar to that of MCS-80 1 85 systems in that the 
8259A uses it to internally freeze the state of the inter­
rupts for priority resolution and as a master it 
issues the interrupt code on the cascade lines at the 
end of the INTA pulse. On this first cycle it does not 
issue any data to the processor and leaves its data bus 
buffers disabled. On the second interrupt acknowledge 
cycle in 8086/8088 mode the master (or slave if so 
programmed) wi~1 send a byte of data to the processor 
with the acknowledged interrupt code composed 
as follows (note the state of the ADI mode control 
is ignored and A5-All are unused in 8086/8088 mode): 

D7 D6 D5 D4 D3 D2 D1 DO 

IR7 T7 T6 T5 T4 T3 1 1 1 

IR6 T7 T6 T5 T4 T3 1 1 0 

IR5 T7 T6 T5 T4 T3 1 0 1 

IR4 T7 T6 T5 T4 T3 1 0 0 

IR3 T7 T6 T5 T4 T3 0 1 1 

IR2 T7 T6 T5 T4 T3 0 1 0 

IRl T7 T6 T5 T4 T3 0 0 1 

IRO T7 T6 T5 T4 T3 0 0 0 
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PROGRAMMING THE 8259A 

The 8259A accepts two types of command words gen­
erated by the CPU: 

1. Initialization Command Words (JCWs): Before normal 
operation can begin, each 8259A in the system must 
be brought to a startin~int - by a sequence of 2 
to 4 bytes timed by WR pulses. This sequence 
is described in Figure 1. 

2. Operation Command Words (OCWs): These are the 
command words that are sent to the 8259A for var­
ious forms of operation, such as: 

• Interrupt Masking 
• End of Interrupt 
• Priority Rotation 
• Interrupt Status 

The OCWs can be written into the 8259A anytime after 
initialization. 

INITIALIZATION 

GENERAL 

Whenever a command is issued with AO=O and D4= I, 
this is interpreted as Initialization Command Word 1 
(lCW1). ICWI starts the initialization sequence during 
which the following automatically occur. 

a. The edge sense circuit is reset, which means that 
following initialization, an interrupt request (IR) input 
must make a low-to-high transition to generate an in­
terrupt. 

b. The Interrupt Mask Register is cleared. 
c. R7 input is assigned priority 7. 

d. The slave mode address is set to 7. 
e. Special Mask Mode is cleared and Status Read is 

set to IRR. 
f. If IC4=O, then all functions selected in ICW4 are set 

to zero. (Non-Buffered mode', no Auto-EOI, MCS-
80/85 system). 

'Note: Master J Slave in ICW4 is only used in the buffered mode. 

Ao D~ 0 3 RD WR CS INPUT OPERATION (READ) 

0 0 1 0 IRR, ISR or Interrupting Level_DATA BUS (Note 1) 
1 0 1 0 IMR ___ DATA BUS 

OUTPUT OPERATION (WRITE) 

0 0 0 1 0 0 DATA BUS -OCW2 
0 0 1 1 0 0 DATA BUS -OCW3 
0 1 X 1 0 0 DATA BUS--ICWI 
1 X X 1 0 0 DATA BUS--OCW1, ICW2, ICW3, ICW4 (Note 2) 

DISABLE FUNCTION 

X X X 1 1 0 DATA BUS - 3-STATE (NO OPERATION! 
X X X X X 1 DATA BUS - 3-STATE (NO OPERATION! 

Not'.: 1, Selection oIIAA, ISA or Interrupting Le\lel is based on the content 01 OCW3 written before the READ operation. 

2. On-chip sequencer logic queues these commands into proper sequence. 

!l259A Basic Operation 
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INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1,ICW2) 

A5-A.5: Page starting address of service routines. In an 
MCS 80/85 system, the 8 request levels will generate 
CALLs to 8 locations equally spaced in memory. These 
can be programmed to be spaced at intervals of 4 or 8 
memory locations, thus the 8 routines will occupy a 
page of 32 or 64 bytes, respectively. 

The address format is 2 bytes long (Ao-A.s). When the 
routine interval is 4, Ao-A4 are automatically inserted by 
the 8259A, while A5-A'5 are programmed externally. 
When the routine interval is 8, Ao-A5 are automatically 
inserted by the 8259A, while A6-A.5 are programmed 
externally. 

The 8-byte interval will maintain compatibility with cur­
rent software, while the 4-byte interval is best for a com­
pact jump table. 

In an MCS-86 system T7-T3 are inserted in the five 
most significant bits of the vectoring byte and the 
8259A sets the three least significant bits according to 
the interrupt level. A lO-A5 are ignored and ADI (Ad­
dress Interval) has no effect. 

L TIM: If LTIM = 1, then the 8259A will operate in the 
level interrupt mode. Edge detect logic on the 
interrupt inputs will be disabled. 

ADI: CALL address interval. ADI = 1 then Interval = 4; 
ADI = 0 then interval = 8. 

SNGL: Single. Means that this is the only 8259A in the 
system. If SNGL = 1 no ICW3 will be issued. 

IC4: If this bit is set - ICW4 has to be read. If ICW4 
is not needed, set IC4 = O. 

AO D7 De D5 D4 

I 0 A7 AI A5 

I 

L • A15/T7 A14/T6 A13/TS A12/T4 

INITIALIZATION COMMAND WORD 3 (ICW3) 

This word is read only when there is more than one 
8259A in the system and cascading is used, in which 
case SNGL = O. It will load the 8-bit slave register. The 
functions of this register are: 

a. In the master mode (either when SP = 1, or in buf­
fered mode when MIS = 1 in ICW4) a "1" is set for 
each slave in the system. The master then will re­
lease byte 1 of the call sequence (for MCS-80/85 
system) and will enable the corresponding slave to 
release bytes 2 and 3 (for 8086/8088 only 
byte 2) through the cascade lines. 

b. In the slave mode (either when SP = 0, or if BUF = 1 
and M / S = 0 in ICW4) bits 2-0 identify the slave. The 
slave compares its cascade input with these bits 
and if they are equal, bytes 2 and 3 of the call 
sequence (or just byte 2 for 8086/8088) 
are released by it on the Data Bus. 

INITIALIZATION COMMAND WORD 4 (ICW4) 

SFNM: If SFNM = 1 the special fully nested mode is 
programmed. 

BUF: If BUF = 1 the buffered mode is programmed. In 
buffered mode SP/EN becomes an enable output 
and the masterlslave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 means the 
8259A is programmed to be a master, MIS = 0 
means the 8259A is programmed to be a slave. If 
BUF = 0, MIS has no function. 

AEOI: If AEOI = 1 the automatic end of interrupt mode 
is programmed. 

IlPM: Microprocessor mode: "PM = 0 sets the 8259A 
for MCS-80/85 system operation, "PM = 1 sets 
the 8259A for MCS-86 system operation. 

D3 D2 D. DO 

LTIM ADI SNQl le4 fleW1 

All/T3 A.O A. AI I'CW2 

~--------------------.;:'.~ ... , .. 
I • 57 se 55 54 53 521102 51/101 SOliDO (leW3 

I 

r--------------------(-.::~ ~." 
I 1 5FNM aUF MIS AEOI ~PM (lew .. 

t 
I 

READY TO ACCEPT INTERRUPTS 

Figure 1. Initialization Sequence 
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ICWI 

ICW' 

leW3 jMASTER DEVICE) 

1 lew" NEEDED 
o ~ NO lew .. NEEDED 

1 = SINGLE 
o '" CASCADE MODE 

CALL A[,ORESS INTERVAL 
1 ~ INTERVAL OF" 
o ~ INTERVAL OF 8 

1 "" LEVEL TRIGGERED MODE 
o "" EDGE TRIGGERED MODE 

A7-A5 01 INTERRUPT 
VECTOR ADDRESS 

(MeS-BO 185 MODE ONLY) 

A 15 -Aa OF INTERRUPT 
VECTOR ADDRESS 

(MCsaD/55 MODE) 
T 7-T 3 OF INTERRUPT 
VECTOR ADDRESS 

(808618088 MODE) 

1 = IR INPUT HAS A SLAVE 
"--L-----'----'-----'----'----L--'-------I 0" IR INPUT OOES NOT HAVE 

A SLAVE 

ICW31SlAVE DEVICE I 

SLAVE 10111 

1 = 80861B088 MODE 
a = Mes-So! 85 MODE 

1 AUTO EOI 
o ~ NORMAL EOI 

EliEx .- NON BUFFERED MODE 
1 0 - BUFFERED MODE/SLAVE 
1 1 - BUFFERED MODE/MASTER 

1 = SPECIAL FULLY NESTED 

'----------1 0 = ~g~~PECIAL FULLY 
NESTED MODE 

NOTE 1· SLAVE 10 IS EQUAL TO THE CORRESPONDING MASTER IR INPUT. 

Initialization Command Word Format 
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OPERATION COMMAND WORDS (OCWs) 
After the Initialization Command Words (ICWs) are pro­
grammed into the 8259A, the chip Is ready to accept 
Interrupt requests at its input lines. However, during the 
8259A operation. a selection of algorithms can com­
mand the 8259A to operate in various modes through 
the Operation Command Words (OCWs). 

OPERATION CONTROL WORDS (OCWs) 

OCWI 

AO 07 De 05 04 03 02 01 DO 

GJ I M7 M6 M5 M4 M3 M2 MI MO I 

OCW2 

0 I A SL EOI 0 0 L2 L1 LO I 

OCW3 

0 I 0 ESMM SMM 0 P AA AIS I 

OPERATION CONTROL WORD 1 (OCW1) 

OCW1 sets and clears the mask bits in the interrupt 
Mask Register (IMR). M7 - Mo represent the eight mask 
bits. M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION. CONTROL WORD 2 (OCW2) 

R, SL, EOI ~ These three bits control the Rotate and 
End if Interrupt modes and combinations of the two. A 
chart of these combinations can be found on the Opera­
tion Command Word Format. 

L2, L" Lo - These bits determine the interrupt level 
acted upon when the SEOI bit is active. 

OPERATION CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit is 
set to 1 it enables the SMM bit to set or reset the Special 
Mask Mode. When ESMM = 0 the SMM bit becomes a 
"don't care". 

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1 
the 8259A will enter Special Mask Mode. If ESMM = 1 
and SMM = 0 the 8259A will revert to normal mask mode. 
When ESMM = 0, SMM has no effect. 
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1
0 " I sc I EO' I 0 i 0 I " I '. I '0 I 

l 
IR lEVEL TO BE 

ACTED UPON 

0 , 2 3 4 5 6 , 
0 , 0 , 0 , 0 , 
0 0 , , 0 0 , , 
0 0 0 0 , , , , 

) r 
rt 0-+ Non-specifiC EOI Command } t-;;- 0-;-, • Specific EOI Command 

END OF INTERRUPT 

f-i- fa, Rotate On Non-Specific EOI Command 

} r,-roo Rotate In Automatic EOI Mode (SET) AUTOMATIC ROTATION to r,o Rotate In Automatic EOI Mode (CLEAR) r,- r-;-, 'Rotate On Specific EOI Command } r,-c'o • Set Priority Command SPECIFIC ROTATION 

~~o No operation 
'lO-L2 are used 

QCW3 

I 0-1 - 1"""1 SM" I 0 I ' I ' I "" I "" 
IN' 

I 
l_ READ REGISTER COMMAND 

CARE 0 I , 0 , 
0 I 0 , , 

READ READ 

NO ACTION 
IR REG IS REG 
ON NE'i.T ON NEXT 
ROf>ULSE RDPULSE 

1 '" POLL COMMAND 

a =: NO POLL COMMAND 

SPECIAL MASK MODE 

0 I , 0 , 
0 I 0 , , 

RESET SET 
NO ACTION SPECIAL SPECIAL 

MASK MAS' 

Operation Command Word Format 
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INTERRUPT MASKS 

Each Interrupt Request input can be masked indivIdu­
ally by the Interrupt Mask Register (IMR) programmed 
through OCWI. Each bit in the IMR masks one interrupt 
channel if it is set (1). Bit 0 masks IRO, Bit 1 masks IRI 
and so forth. Masking an IR channel does not affect the 
other channels operation. 

SPECIAL MASK MODE 

Some applications may require an interrupt service 
routine to dynamically alter the system priority struc­
ture during its execution under software control. For 
example, the routine may wish to inhibit lower priority 
requests for a portion of its execution but enable some 
of them for another portion. 

The difficulty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did not 
reset its IS bit (i.e., while executing a service routine), 
the 8259A would have inhibited all lower priority 
requests with no easy way for the routine to enable 
them 

That is where the Special Mask Mode comes in. In the 
special Mask Mode, when a mask bit is set in OCW1, it 
inhibits further interrupts at that level and enables inter­
rupts from al/ other levels (lower as well as higher) that 
are not masked. 

Thus, any interrupts may be selectively enabled by 
loading the mask register. 

The special Mask Mode is set by OCW3 where: 
SMM = 1, SMM = 1, and cleared where SMM = 1, 
SMM = O. 

BUFFERED MODE 

When the 8259A Is used In a large system where bus 
driving buffers are required on the data bus and the cas­
cading mode is used, there exists the problem of enabl­
ing buffers. 

The buffered mode will structure the 8259A to send an 
enable signal on SPIEN to enable the buffers. In this 
mode, whenever the 8259A's data bus outputs are ena­
bled, the SPIEN output becomes active. 

This modification forces the use of software program­
ming to determine whether the 8259A is a master or a 
slave. Bit 3 in ICW4 programs the buffered mode, and bit 
2 in ICW4 determine.s whether it is a master or a slave. 

FULLY NESTED MODE 

This mode is entered after initialization unless another 
mode is programmed. The interrupt requests are 
ordered in priority form 0 through 7 (0 highest). When an 
interrupt is acknowledged the highest priority request is 
determined and its vector placed on the bus. Additional­
ly, a bit of the Interrupt Service register (ISO-7) is set. 
This bit remains set until the microprocessor issues an 
End of Interrupt (EOI) command immediately before 
returning from the service routine, or if AEOI (Automatic 
End of Interrupt) bit is set, until the trailing edge of the 
last INTA. While the IS bit is set, all further interrupts of 
the same or lower priority are inhibited, while higher 
levels will generate an interrupt (which will be 
acknowledged only if the microprocessor internal Inter­
rupt enable flip-flop has been re-enabled through soft­
ware). 

After the initialization sequence, IRO has the highest 
priority and IR7 the lowest. Priorities can be changed, 
as will be explained, by priority rotation. 

THE SPECIAL FULLY NESTED MODE 

This mode will be used in the case of a big system 
where cascading is used, and the priority has to be con­
served within each slave. In this case the special fully 
nested mode will be programmed to the master (using) 
ICW4). This mode is similar to the normal fully nested 
mode with the foliowing exceptions: 

a. When an interrupt request from a certain slave is in 
service this slave is not locked out from the master's 
priority logic and further interrupt requests from 
higher priority IR's within the slave will bf! recognized 
by the master and will initiate interrupts to the proc­
essor. (In the normal nested mode a slave is masked 
out when its request is in service and no higher 
requests from the same slave can be serviced.) 

b. When exiting the Interrupt Service routine the soft­
ware has to check whether the interrupt serviced was 
the only one from that slave. This is done by sending 
a non-specific End of Interrupt (EOI) command to the 
slave and then reading its In-Service register and 
checking for zero. If it is empty, a non-specific EOI 
can be sent to the master too. If not, no EOI should be 
sent. 
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POLL 
In this mode the microprocessor internal Interrupt 
Enable flip·flop is reset, disabling its interrupt input. 
Service to devices is achieved by programmer initiative 
using a Poll command. 

The Poll command is issued by setting P = "1" in OCW3. 
The 8259A treats the next RD pulse to the 8259A (i.e., 
RD = 0, CS = 0) as an interrupt acknowledge, sets the 
appropriate IS bit if there is a request, and reads the 
priority level. Interrupt is frozen from WR to RD. 

The word enabled onto the data bus during RC5 is: 

07 De 05 04 03 02 01 DO 
~ - ----------w-2---w-,---W-.ol 

WO-W2: Binary code of the highest priority level 
requesting service. 
Equal to a "1" if there is an interrupt. 

This mode is useful if there is a routine command comm­
mon to several levels so that the INTA sequence is not 
needed (saves ROM space). Another application is to 
use the poll command to expand the number of priority 
levels to more than 64. 

END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automatically 
following the trailing edge of the last in sequence INTA 
pulse (when AEOI bit in ICW1 is set) or by a command 
word that must be issued to the 8259A before returning 
from a service routine (EOI commllnd). An EOI command 
must be issued twice, once for themaster and once for 
the corresponding slave if slaves are in use. 

There are two forms of EOI command: Specific and Non· 
Specific. When the 8259A iR operated in modes which 
preserve the fully nested structure, it can determine 
which IS bit to reset on EOI. When a "lon·Specific EOI 
command is issued the 8259A will automatically reset 
the highest IS bit of those that are set, since in the 
nested mode the highest IS level was necessarily the 
last level acknowledged and serviced. 

However, when a mode is used which may disturb the 
fully nested structure, the 8259A may no longer be able 
to determine the last level acknowledged. In this case a 
Specific End of Interrupt (SEOI) must be issued which 
includes as part of the command the IS level to be reset. 
EOI is issued whenever EOI = 1, in OCW2, where LO-L2 
is the binary level of the IS bit to be reset. Note that 
although the Rotate command can be issued together 
with an EOI where EOI = 1, it is not necessarily tied to it. 

It should be noted that an IS bit that is masked by an 
IMR bit will not be cleared by a non·specific EOI if the 
8259A is in the Special Mask Mode. 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 in ICW4, then the 8259A will operate in AEOI 
mode continuously until reprogrammed by ICW4. In this 
mode the 8259A will automatically perform a non· 
specific EOI operation at the trailing edge of the last 
interrupt acknowledge pulse (third pulse in MCS·80185, 

second in MCS·86). Note that from a system standpoint, 
this mode should be used only when a nested multilevel 
interrupt structure is not required within a single 8259A. 

To achieve automatic rotation within AEOI, there 
is a special rotate flip·flop. It is set by OCW2 with 
R = 1, SL = 0. EOI = 0, and cleared with R = 0, 
SEOI = 0, EOI = 0. 

AUTOMATIC ROTATION 
(Equal Priority Devices) 

In some applications there are a number of interrupting 
devices of equal priority. In this mode a device, after 
being serviced, receives the lowest priority, so a device 
requesting an interrupt will have to wait, in the worst 
case until each of 7 other devices are serviced at Illost 
once. For example, if the priority and "in service" status 
is: 

Belore Rotete (IR4 the highest priority requiring service) 

157 lSI IS5 154 153 152 151 ISO 

"'s" Status 101,101,101010101 
Low •• 1 P~o~'y High ••• Prlo~'y 

Priority Statu! 1 716 1 5 1 4 1 3 1 2 1 ho 1 

After Rotate (IR4 was serviced, all other priorities 
rotated corresp(lndingly) 

157 lSI IS5 154 153 152 151 ISO 

"IS" Status 101'lololololiJiJ 

Priority Status 

High ... Prlo~'y Low ••• Prlo~'y 

I 2 1 1)0 1 7f1JD 4 I 3 1 

There are two ways to accomplish Automatic Rotation 
using OCW2, the Rotate on Non-Specific EOI Command 
(R = 1, SL = 0, EOI = 1 ) and the Rotate in 
Automatic EOI Mode which is set by (R = 1, SL = 0, 
EOI = 0) and cleared by (R = ° SL = 0, EOI = 0). 

SPECIFIC ROTATION 
(Specific Priority) 

The programmer can change priorities by programming 
the bottom priority and thus fixing all other priorities; 
i.e., if IR5 is programmed as the bottom priority device, 
then IR6 will have the highest one. 
The Set Priority command is issued in OCW2 where: 
R = 1, SEOI = 1; LO-L2 is the binary priority level code 
of the bottom priority device. 

Observe that in this mode internal status is updated by 
software control during OCW2. However, it is independ­
ent of the End of Interrupt (EOI) command (also exe­
cuted by OCW2). Priority changes can be executed dur­
ing an EOI command by using the Rotate on Specific 
EOI Command in OCW2 (R = 1, SL = 1, EOI = 1 and 
LO-L2 = IR level to receive bottom priority). 

B-l17 



8259A/8259A-2/8259A-8 

lTlM 81T 
0:;: EDGE 
1::: lEVEL 

TO OTH£" "uaAn CELLS 

EDGE 
SENSE 

eLA "" 

elA Q ISft lIT 

SET 

~LA~TE!CH:'-.-+-__ + ___ +_--+ __ -<~t-tt-t-:::;!:::::--ti sn IS" ''''DRITY 
RESOLVIER 

MGSaD/as J 1NTl~ 
MODE l 

I'IIl!'H 

{ INTAn ~~g~8088 __ 

FREEZE ~r-----

I~ 

NOTES 

REOUEST 
LATCH 

C a 

NON· 
MASKED .,a 

CONTROL 
LOGIC 

1. MAlTER CLEAR ACTIVE ONLY OURING ICW1 

2. fAEEZE/'S ACTIVE DURING iNTAl AND POLL SEQUENCES ONLY 

1 TRUTH TAllLE FOR D·LATCH 

OPEftATION 
FOLLOW 

HOLD 

Priority Cell - Simplified Logic Diagram 

LEVEL TRIGGERED MODE 

This mode is programmed using bit 3 in ICW1. 

If L TIM = '1,' an interrupt request will be recognized by a 
'high' level on IR Input, and there is no need for an edge 
detection. The interrupt request must be removed 
before the EOI command is issued or the CPU interrupt 
is enabled to prevent a second interrupt from occurring. 

The above figure shows a conceptual circuit to give the 
reader an understanding of the level sensitive and edge 
sensitive input circuitry of the 8259A. Be sure to note 
that the request latch is a transparent D type latch. 

READING THE 8259A STATUS 

The input status oj several internal registers can be 
read to update the user information on the system. 
The following registers can be read via OCW3 
(IRR and ISR or OCWI (lMR). 

Interrupt Request Register (lRR): 8-bit register which 
contains the levels requesting an interrupt to be 
acknowledged. The highest request level is reset from 
the IRR when an interrupt is acknowledged. (Not 
affected by IMR). 

In-Service Register (ISR): 8-bit register which contains 
the priority levels that are being serviced. The ISA is 
updated when an End 01 Interrupt command is issued. 

Interrupt Mask Register: 8-bit register which contains 
the interrupt request lines which are masked. 

The IRR can be read when, prior to the RD pulse, a 
Read Register Command is issued with OCW3 (RA = 1, 
RIS = 0). 

The ISR can be read when, prior to the RD pulse. 
a Read Register Command is issued with OCW3 (RR = 
1. RIS = 1). 

There is no need to write an OCW3 before every status 
read operation, as long as the status read corresponds 
with the previous one; i.e., the 8259A "remembers" 
whether the IAA or ISA has been previously selected by 
the OCW3. This is not true when poll is used. 

After initialization the 8259A is set to IAA. 

For reading the IMR, no OCW3 is needed. The output 
data bus will contain the IMR whenever RD is active and 
AO = 1 (OCW1). 

Polling overrides status read when P = I, RR = 1 in 
OCW3. 
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Mnemonic 

ICWI A 

ICWI B 

ICWI C 

ICWI 0 

ICWI E 

ICWI F 

ICWI G 

ICWI H 

ICWI 

ICWI 

ICWI K 

ICWI 

ICWI M 
ICWI N 

ICWI 0 

ICWI P 

ICW2 

ICW3 M 

ICW3 S 

ICW4 A 

ICW4 B 

ICW4 C 

ICW4 0 
ICW4 E 

ICW4 F 

ICW4 G 

ICW4 H 

ICW4 

ICW4 

ICW4 K 

ICW4 L 

ICW4 M 

ICW4 N 

ICW4 0 
ICW4 P 

ICW4 NA 

ICW4 NB 

ICW4 NC 

ICW4 NO 

ICW4 NE 

ICW4 NF 

ICW4 NG 

ICW4 NH 

ICW4 NI 

ICW4 NJ 

ICW4 NK 

ICW4 NL 

ICW4 NM 

ICW4 NN 

ICW4 NO 

ICW4 NP 

OCWI 

OCW2 E 

OCW2 SE 

OCW2 RE 

OCW2 RSE 
OCW2 R 

OCW2 CR 

OCW2 RS 

OCW3 P 

OCW3 RIS 

8259A/8259A-2/8259A-8 

SUMMARY OF 8259A INSTRUCTION SET 

o A7 A6 A5 1 0 

o A7 AS A5 1 0 
o A7 AS A5 o 0 
o A7 AS A5 1 1 0 0 

o A7 AS 0 o 0 0 

A7 AS 0 1 0 1 0 

A7 AS 0 o 0 0 0 

o A7 A6 o 0 0 

o A7 A6 A5 

A7 A6 A5 

A7 A6 A5 

o 
1 

o 0 

o A7 AS A5 1 1 0 

o A7 A6 0 o 0 
o A7 A6 0 1 0 

o A7 AS 0 o 0 
o A7 AS 0 o 0 

1 

o 
o 
o 
o 
o 
o 
o 
o 
o 

A15 At4 A13 A12 All Al0 AS AS 

S7 sa S5 S4 S3 S2 SI SO 

o 0 0 0 0 S2 SI SO 

o 0 0 0 0 0 0 0 

00000001 

0000000 

o 0 0 0 0 1 

o 0 0 0 0 

o 0 0 0 0 1 

o 0 0 0 0 

o 0 o 0 1 1 

o 0 o 0 o 0 
o 0 o 0 o 0 1 

o 0 o 0 o 0 

o 0 o 0 o 1 1 

o 0 o 0 o 0 

o 0 o 0 o 
o 0 o 0 
o 0 o 0 1 1 1 

o 

1 

o 
1 

o o 0 o 0 0 

o 0 0 

o 0 0 

o 
o 

o 0 0 

o 0 0 

o 0 0 

o 
o 0 

o 0 0 

o 
o 0 0 

o 0 0 

o 

o 0 0 

o 0 

o 1 

o 0 

o 1 

o 0 
o 1 1 

o 0 
o 0 l' 

o 0 
o 1 

o 
o 1 

o 
o 0 0 1 1 

M7 M6 M5 M4 M3 M2 Ml MO 

000009 0 
0100L2L1LO 

1 

o 

o Q 0 0 0 

1 OOL2L1LO 

o 0 0 0 0 0 

o 0 o 0 0 0 

o 0 o L2 Ll LO 

o 0 1 0 
o 0 o 0 o 

B-119 

I 
} 

} 

O ...... lIon Dncrlptlon 

Format = 4, single, edge triggered 

Format = 4, single, level triggered 

Byte 1 Initi.IlZlllon Format = 4, not single, edge triggered 

Format = 4, not. single, level trig{'ered 

No ICW4 Required Format = 8, single, edge triggered 

Format = 8, single, level triggered 

Formll = 8, not lingle, edge triggered 

Format = 8, not lingle, 1 ... 1 triggered 

Format = 4, lingle, edge triggered 

Format = 4, single, I •• el triggered 
Byte 1 Inltiallzellon Format. 4, not lingle, edge triggered 

Format = 4, not lingle, le •• 1 triggered 
ICW4 Required Format = 8, lingle, edge triggered 

Byte 2 initialization 

Format = 8, lingle, 1 ••• 1 triggered 

Format = 8, not single, edge Irlggered 

Format = 8, not lingle, I •• el triggered 

Byte 3 initialization - master 

Byte 3 initialization - slave 

No actio", redundant 
Non-buffered mode, no AEOI, 8086/8088 

Non-buffered mode, AEOI, MCS-80/85 

Non-buffered mode, AEOI, 8086/808B 

No action, redundant 

Non-buffered mode, no AEOI, B086/8088 

Non-buffered mode, AEOI, MCS-80 I B5 

Non-buffered mode, AEOI, B086/8088 

Buffered mode, slave, no AEOI, MCS-80/85 

Buffered mode, slave, no AEOI, BOB6/B088 

Buffered mode, slave, AEOI, MCS-80/85 

Buffered mode, slave, AEOI, 8086/8088 

Buffered mode, master, no AEOI, MCS-BO/85 

Buffered mode, master, no AEOI, 808618088 

Buffered mode, master, AEOI, MCS-BO/85 

Buffered mode, master AEOI, B086, 8088 

Fully nested mode, MCS-BO, non buffered, no AEOI 

ICW4 N6 through ICW4 NO are identical to 
ICW4 B through ICW4 0 with the addition 01 
Fully Nested Mode 

FUlly Nested Mode, MCS-SO/85, non-bullered, no AEOI 

ICW4 NF through ICW4 NP are idenlical to 
ICW4 F through ICW4 P with the addition 01 
Fully Nested Mode 

Load mask register, read mask register 

Non-specific EOI 

Specific EOI, LO-L2 code of IS FF to be reset 

Rotate on Non-Specific EOI 

Rotate on Specific EOI LO-L2 code of line 

Rotate in Auto.EOI (set) 

Rotate in Auto EOI (clear) 

Set Priority Command 

Poll mode 

Read IS .reglster 
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SUMMARY OF 8259A INSTRUCTION SET (Cont.) 

Ina ... Mnamonlc AO D7 De D5 D4 D3 D2 Dl DO 

46 OCW3 RR 0 0 0 0 0 0 1 

47 OCW3 SM 1 0 0 
46 OCW3 RSM 0 0 

Nol.: 1. In the master mode SP pin = 1, In slave mode SP = 0 

Clscldlng 

The 8259A can be easily interconnected in a system of 
one master with up to eight slaves to handle up to 64 
priority levels. 

A typical MCS-80/85 system is shown in Figure 2. The 
master controls, through the 3 line cascade bus, which 
one of the slaves will release the corresponding 
address. 

As shown in Figure 2, the slave interrupt outputs are 
connected to the master interrupt request inputs. When 
a slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave 

0 

0 

Operallon D.acrlpllon 

Read request register 

Set special mask modi 

Reset special mask mode 

to release the device routine address during bytes 2 
and 3 of INTA. (Byte 2 only for 8086/8088). 

The cascade bus lines are normally low and will contain 
the slave address code from the trailing edge of the first 
INTA pulse to the trailing edge of the third pulse. It is 
obvious that each 8259A in the system must follow a 
separate initialization sequence and can be pro­
grammed to work in a different mode. An EOI command 
must be issued twice: once for the master and once for 
the corresponding slave. An address decoder is required 
to activate the Chip Select (CS) input of each 8259A. 

The cascade lines of the Master 8259A are activated for 
any interrupt input, even if no slave is connected to that 
input. 

ADDRESS 8US (161 

\ 

\ 

-- - - - - ---
-- - - f-- ---
--I- - -- --- I-

1----' 
cs ... 00·7 tNTA INT 

CASe 

8259A 1-SLAVE A 
CAS 1 t-

CAS 2 1-
SPIEN7 6 5 4 3 2 1 0 

GL I I I I I 1 1 I 
76543210 l 

CONTROL BUS 

DATA BUS III 

f-- t-
t--t-
f-- f-- r----

CS Ao 00-7 INTA IN! 

CASO 

8259A 
SLAVE 8 CAS 1 

CAS 2 

SilIEN' 6 5 4 3 2 1 0 

G!O 1 1 111111 
16543210 

I 
INTERRU'T REQUESTS 

Figure 2. Clscldlng the 8259A 
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INT REa 

\ 

:;-
CS ... 00-7 INTA INT 

CASO 

8259A 
CASl MASTER 

CASZ 

SPIENM7 M6 M5 M. M3 M2 Ml MO 

I L L tIl I 1 1 .. I. 2 1 0 



8259A/8259A-2/8259A-8 

PIN FUNCTIONS 
NAME 1/0 PIN# FUNCTION 

Vcc I 28 +5v supply 

GNO 14 Ground 

CS Chip Select 
A low on this pin enables RO 
and WR communication be-
tween the CPU and the 8259A. 
INTA functions are independent 
ofCS. 

WR 2 Write: 
A low on this pin when CS is 
low, enables the 8259A to ac· 
cept command words from the 
CPU. 

Ri5 3 Read: 
A low on this pin when CS is low 
enables the 8259A to release 
status onto the data bus for the 
CPU. 

0 7-00 I/O 4-11 Bidirectional Data Bus: 
Control, status and interrupt-
vector information is trans-
ferred via this bus. 

CASo-CAS2 110 12,13,15 Cascade Lines: 
The CAS lines form a private 
8259A bus to control a multiple 
8259A structure. These pins 
are outputs for a master 8259A 
and inputs for a slave 8259A. 

SP/EN 110 16 Slave Program/Enable Buffer: 
This is a dual function pin. 
When in the Bufferad Mode it 
can be used as an output to 
control buffer transceivers 
(EN). When not in the buffered 
mode it is used as an input to 
designate a master (SP = 1) or 
slave (SP =0). 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias ... ,. - 40·C to 85·C 
Storage Temperature ............ -65·C to + 150·C 

Voltage On Any Pin 

With Respect to Ground. . . . . . . . . .. - 0.5V to + 7V 
Power Dissipation ......................... 1 Watt 

D.C. CHARACTERISTICS 

INT 0 17 Interrupt: 
This pin goes high whenever a 
valid interrupt request is as-
serted. 11 is used to interrupt 
the CPU, thus it is connected to 
the CPU's interrupt pin. 

IRo-IR7 18-25 Interrupt Requests: 
Asynchronous inputs. An inter-
rupt request can be generated 
by raising an IR input (low to 
high) and holding it high until it 
is acknowledged (Edge Trig-
gered Mode), or iust by a high 
level on an IR input (Level Trig· 
gered Mode). 

INTA 26 Interrupt Acknowledge: 
This pin is used to enable 
8259A interrupt-vector data 
onto the data bus. This is done 
by a sequence of interrupt ac· 
knowledge pulses issued by 
the CPU. 

Ao 27 AO Address Line: 
This pin acts in conjunction with 
the CS, WR, and Ri5 pins. It is 
used by the 8259A to decipher 
between various Command 
Words the CPU writes and sta· 
tus the CPU wishes to read. It 
is typically connected to the 
CPU AO address line (A 1 for 
8086/8088). 

·COMMENT 
Stresses above those listed under "Absolute Maximum Ratings" may 
cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions above 
those indicated in the operational sections of this specification Is not 
implied. 

T A = o·c to 70·C, Vce= 5V ± 10% (8259-A), Vee = 5V ± 10% (8259A) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -.5 V 

V IH Input High Voltage 2.0 Vcc + .5V V 

VOL Output Low Voltage .45 V IOL=2.2 mA 

VOH Output High Voltage 2.4 V IOH=-400j.tA 

VOH(INT) 
Interrupt Output High 3.5 C IOH= -100 j.tA 
Voltage 2.4 V IOH = - 400,.A 

III Input Load Current 10 j.tA VIN=VCC to OV 

ILOL Output Leakage Current -10 j.tA VouT =0.45V 

lec Vee Supply Current 85 mA 

ILiR IR Input Load Current 
-300 j.tA VIN=O 

10 j.tA VIN=VCC 
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8259A A.C. CHARACTERISTICS 
T..,=O·Cto70·C Vcc=5V±5%(8259A·8) VCC =5V±10%(8259A) 

TIMING REQUIREMENTS 

Symbol Parameter 
8259A·8 8259A 

Min. Max. Min. Max. 

TAHRL AD / CS Setup to RD / INTAj 50 0 

TRHAX AO / CS Hold after RD IINTA 1 5 0 

TRLRH RD Pulse Width 420 235 

TAHWL AO/CS Setup to WRj 50 0 

TWHAX AO/CS Hold after WRj 20 0 

TWLWH WR Pulse Width 400 290 

TDVWH Data Setup to WRj 300 240 

TWHDX Data Hold after WRj 40 0 

TJLJH Interrupt Request Width (Low) 100 100 

TCVIAL 
Cascade Setup to Second or Third 

55 55 
INTAj (Slave Only) 

TRHRL End of RD to Next Command 160 160 

TWHRL End of WR to Next Command 190 190 

Note: This is the low time required to clear the input latch In the edge triggered mode. 

TIMING RESPONSES 

Symbol Parameter 8259A·8 8259A 

Min. Max. Min. Max. 

TRLDV Data Valid from RDIINTAj 300 200 

TRHDZ Data Float after RD liNT A 1 10 200 100 

8259A·2 

Min. Max. 

0 

0 

160 

0 

0 

190 

160 

0 

100 

40 

160 

190 

8259A·2 

Min. Max. 

120 

85 

Units Test Conditions 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns See Note 1 

ns 

ns 

ns 

Units Test Conditions 

-
ns C of Data Bus = 

100 pF 

ns C of Data Bus 

TJHIH Interrupt Output Delay 400 350 300 ns 
Max text C = 100 pF 
Min. test C = 15 pF 

TlAHCV 
Cascade Valid from First INTAj 

565 565 360 ns C'NT = 100 pF 
(Master Only) 

TRLEL Enable Active from RD j or INTAj 160 125 100 ns CeAseADE = 100 pF 

TRHEH Enable Inactive from RDj or INTAj 325 150 d150 ns 

TAHDV Data Valid from Stable Address 350 200 200 ns 

TCVDV Cascade Valid to Valid Data 300 300 200 ns 

CAPACITANCE 
T..,= 25·C; VCC= GND= OV 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

C'N Input Capacitance 10 pF fe = 1 MHz 

Crlo I/O Capacitance 20 pF Unmeasured pins returned to V ss 

Input and Output Waveforms for A.C. Tests 

2.4 

___ JX:: > "" ~'N" < :: X 
0.45 '-----
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WRITE MODE 

Ci 

ADDRESS IUS 

82S9A/82S9A-2/82S9A-8 

---TWLWH 

\ 
- TAHWL -
} 

- TWHAX -
~ 

-TDVWH- -TWHDX 

DATA IUS 

READ/INTA MODE 

ADDRESS 

Ao 

IUS 

\ 

-
-
) 

) L 
TRLRH 

i 
\ I-- TRLEL - iJLTRHEH 

t--TAHRL - t--TRHAX 

K 

b, ... ·----------------9~_____'r-----
--TRLDY -~ TRHDZ --

!----TAHDY 

OTHER TIMING 
1IDIIIITl----___. 

!----TWHRL·---_I 

INTA SEQUENCE 

IR 

INT------..J 

INTA---------~ 

D8--------____ _ -- -0--
_TCVIAL 

CO.2-------------------r-------L1------~----~~--------------~-
-TlALCV------­

IlIOn. '-.... ....... __ ft MIGM 1M _,'w"", -... ...... """'IIIU. IIIIICI_-.-...,. ill c.c .. , ... IIIICt ... __ _. ... , ......... 
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8155/8156/8155-2/8156-2 

2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER 

• 256 Word x 8 Bits • 1 Programmable 6-Bit I/O Port 

• Single +5V Power Supply • Programmable 14-Bit Binary Counter/ 

• Completely Static Operation Timer 

• Internal Address Latch • Compatible with 8085A and 8088 CPU 

• 2 Programmable 8 Bit I/O Ports • Multiplexed Address and Data Bus 

• 40 Pin DIP 

The 8155 and 89156 are RAM and I/O chips to be used in the 8085A and 8088 microprocessor systems. The 
RAM portion is designed with 2048 static cells organized as 256 x 8. They have a maximum access time of 400 ns 
to permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use 
with the 8085A-2 and the full speed 5 MHz 8088 CPU. 

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status 
pins, thus allowing the other two ports to operate in handshake mode. 

A 14-bit programmable counter /timer is jalso included on chip to provide either a square wave or terminal count pulse 
for the CPU system depending on timer mode. 

PIN CONFIGURATION BLOCK DIAGRAM 

PC, Vee 

PC, PC, 

~ 
TIMER IN PC, 101M 

RESET PC. PAO- 7 

PCs PB, 
ADO- 7 256 X 8 

TIMER OUT PBs STATIC 

101M PBs RAM 

~ PB, * 
AD PB, 

PBo'7 
ALE 

WR PB, 

ALE PB, R5 

G 
AD. PB. W. 
AD, PA, pea - s 

RESET TIMER AD, PAs 

AD, PAs 

Lvcc ~+5V) AD, PA, 
TIMER elK 

ADs PA, 

ADs 
TIMER OUT Vss (OV) 

PA, 

AD, PA, 

Vss PA. 
': 8155/8155·2 = CE. 8156/8156·2 = CE 
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8185/8185-2 

1024 x 8-BIT STATIC RAM FOR MCS-85™ 

• Multiplexed Address and Data Bus • Low Standby Power Dissipation 

• Directly Compatible with 808SA 
and 8088 Microprocessors 

• Low Operating Power Dissipation 

• Single +SV Supply 

• High Density 18-Pin Package 

The Intel'" 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using 
N-channel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly 
to the 8085A and 8088 microprocessors to provide a maximum level of system integration. 

The low standby power dissipation minimizes system power requirements when the 8185 is disabled. 

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085A-2 and the full speed 
5 MHz 8088. 

PIN CONFIGURATION 

ADD Vee 

AD, RD 

AD, WR 

AD, ALE 

AD4 es 

ADs eE, 

AD, eE, 

AD, Ag 

Vss A, 

PIN NAMES 

ADO·AD7 
As, Ag 
es 
cr, 
eE, 
ALE 
RO 
WR 

ADDRESS/DATA LINES 
ADDRESS LINES 
CHIP SELECT 
CHIP ENABLE (101M) 
CHIP ENABLE 
ADDRESS LATCH ENABLE 
READ ENABLE 
WRITE ENABLE 
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BLOCK DIAGRAM 

cs----·I 
eE,----.J 
c~----.J 
fli)----.J 
WR---~-I 
ALE---~-I 

A,.Ag---~·1 

R!W 
LOGiC 

DATA 
BUS 

BUFFER 

ALE-----L ______ ~ 

1K x 8 
RAM 

MEMGRY 
ARRAY 



8355/8355-2 
16,384-BIT ROM WITH 1/0 

• 2048 Words x 8 Bits 

• Single + 5V Power Supply 

• Directly compatible with 8085A 
and 8088 Microprocessors 

• 2 General Purpose 8·Bit 110 Ports 

• Each 110 Port Line Individually 
Programmable as Input or Output 

• Multiplexed Address and Data Bus 

• Internal Address Latch 

• 40·Pin DIP 

The Intel@ 8355 is a ROM and I/O chip to be used in the 8085A and 8088 microprocessor systems. The ROM por­
tion is organized as 2048 words by 8 bits. It has a maximum acess time of 400 ns to permit use with no wait states in 
the 8085A CPU. 

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines and each I/O port line is 
individually programmable as input or output. 

The 8355-2 has a 300ns access time for compatibility with the 8085A-2 and full speed 5 MHz 8088 microprocessors. 

PIN CONFIGURATION BLOCK DIAGRAM 

Vee 

elK 

PB, 

N.C. (NOT CONNECTED) 5 PB, 

PB, 
ADO_ 7 

PB, 

G 
PORT A 

PB, 
As- lO PAO--7 

R1l PBo 

lOW PA, eE, B PA, CE1 ROM 

G 
PA, 

101M 
ALE PBO- 7 

PA, 
R1l 

PA, 
lOW 

PA, 
RESET 

PA, iOR 
AD, PAo 

A10 ~vee 1+5VI A, 

Vss Vss (OV) 
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8755A 18755A-2 

16,384-8IT EPROM WITH 1/0 

• 2048 Words x 8 Bits 

• Single + 5V Power Supply (Vee> 

• Directly Compatible with 8085A 
and 8088 Microprocessors 

• U.V. Erasable and Electrically 
Reprogrammable 

• Internal Address Latch 

• 2 General Purpose 8·Bit 1/0 Ports 

• Each 1/0 Port Line Individually 
Programmable as Input or Output 

• Multiplexed Address and, Data Bus 

• 40·Pin DIP 

The Intel'" 8755A is an erasable and electrically reprogram mabie ROM (EPROM) and 110 chip to be used in the 8085A 
and 8088 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum 
access time of 450 ns to permit use with no wait states in an 8085A CPU. 

The 1/0 portion consists of 2 general purpose 1/0 ports. Each 1/0 port has 8 port lines, and each 1/0 port line is 
individually programmable as input or output. 

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the full speed 5 
MHz 8088. 

PIN CONFIGURATION BLOCK DIAGRAM 

Vee 

PB, ClK 

PBs 

RESET PIIs 
READY 

Voo PB, 

PB, 

101M PB, 

PB, 

PlIo 

lOW PA, 

A"o_, 

G AS--10 PAO-7 

CE, 
2K x 8 

ALE PAs 

AD. PA, 

AD, PA, 

AD, 

101M EPROM 

G 
ALE 

PBO-7 
AD 

lOW 

AD, PA, RESET 

AD, PA, lOR 
AD, PAD 

AD. A,. 

AD, 

lis. 

PROG/CE, ~veel+5V) 
Voo Vss IOV) 
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Appendix B 
Device Specifications 
III~ .1 

• Standard Peripherals·· 

• For complete specifications refer to the 
Intel MCS-85 User's Manual. 

"For complete specifications refer to the 
Intel Peripheral Design Handbook. 

"'For complete specifications refer to the 1979 
Intel Component Data Catalog. 



8041 AJ8641 AJ8741 A 
UNIVERSAL PERIPHERAL INTERFACE 

8·BIT MICROCOMPUTER 

• 8·Bit CPU plus ROM, RAM, 110, Timer • Fully Compatible with MCS·48™, 
and Clock in a Single Package MCS.80™, MCS·85™, and MCS·86™ 

• One 8·Bit Status and Two Data Regis· 
Microprocessor Families 

ters for Asynchronous Slave·to·Master • Interchangeable ROM and EPROM 
Interface Versions 

DMA, Interrupt, or Polled Operation • 3.6 MHz 8741A·8 Available 
• 

Supported • Expandable I/O 

1024 x 8 ROM/EPROM, 64 x 8 RAM, • RAM Power· Down Capability • 
8·Bit Timer/Counter, 18 Programmable • Over 90 Instructions: 70% Single Byte 
110 Pins • Single 5V Supply 

The Intel'" 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8-bit 
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O 
ports, timer/counter, and clock in a single 40·pin package. Interface registers are included to enable the UPI device to 
function as a peripheral controller in MCS-48™, MCS-80™, MCS-85™, MCS-86™, and other 8-bit systems. 

The UPI_41A™ has 1 K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the 
program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A 
and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641A is a 
one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The 
substitution of 8641A's for 8041A's allows for very fast turnaround for initial code verification and evaluation results. 

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either in­
puts or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 
·,6 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or 
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041 A). 
single-step mode for debug (in the 8741A), and dual working register banks. 

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI inter­
face devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include key­
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral 
devices to microprocessor systems. 

PIN CONFIGURATION 

TESTQ 

XTAL1 

XTAL2 

Vss 

P" .10 
Voo 

[go. • 

:::::= 11 ' 
INTEAFACE W'II"-_ .. -­

C<-_ .. ~-
SYNC 
H-_ 

PROG 

""'--
CRYSTAL r XTAL1~_.--L 
~~o~:l XTAL2-.-l::J 
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~-_ ~~_J~ '" 
MEMO"' ~, 

'--~::::;;;;i;';:;:;;:-r' 

RESIDENT 
64_8 

RANDOM 
ACCESS 
MEMORY 
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8202 

DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to· • Provides Transparent Refresh Capability 
Control 2104A, 2117, or 2118 Dynamic 
Memories • Fully Compatible with Intel® 8080A, 

• Directly Addresses and Drives Up to 8085A and 8086 Microprocessors 
128K Bytes Without External Drivers 

• Decodes SOS5A Status for Advanced • Provides Address Multiplexing 
Read Capability and Strobes 

• Provides a Refresh Timer and a • Provides System Acknowledge and 
Refresh Counter Transfer Acknowledge Signals 

• Refresh Cycles May be Internally or 
Externally Requested • Internal or External Clock Capability 

The 8202 is a Dynamic RAM System Controller designed to provide all signals necessary to use 2104A, 2117, or 2118 
Dynamic RAMs in microcomputer systems. The 8202 provides multiplexed addresses and address strobes, as well as 
refresh/access arbitration. Refresh cycles can be started internally or externally. 

AH4 

AH3 

AH2 

AH, 

1:o. Ho 
ALo 

OUTO 

AL, 

OUT, 

AL2 

OUT2 

AL3 

OUT3 

AL4 

OUT4 

ALs 

OUTs 

ALslOP3 

OUTS 

VSS 

PIN CONFIGURATION 

vcc 
AHS 

AHS 

X,ICLK 

Xo'OP2 

TNK 

REFRQIALE 

PCS 

RDIS' 

WR 

SACK 

XACK 

WE 

CAS 

AAll3 

B,IOP, 

BO 

RAS2 

AAll, 

RASo 

AH06 

BO 

8,/OP, 

RD/S' 
WR 
PCS 

REFRQ/ALE 

XO/OP2 
X,/eLK 

TNK 

-----------
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inter 
8205 

HIGH SPEED 1 OUT OF 8 BINARY DECODER 

• I/O Port or Memory Selector 

• Simple Expansion - Enable Inputs 

• High Speed Schottky Bipolar 
Technology - 18ns Max. Delay 

• Directly Compatible with TTL Logic 
Circuits 

• Low Input Load Current - .25 mA 
max., 1/6 Standard TTL Input Load 

• Minimum Line Reflection - Low 
Voltage Diode Input Clamp 

• Outputs Sink 10 mA min. 
• 16-Pin Dual-In-Line Ceramic or 

Plastic Package 

The 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and mem­
ory components with active low chip select input. When the 8205 is enabled, one of its eight outputs goes 
"low", thus a single row of a memory system is selected. The 3 chip enable inputs on the 8205 allow easy 
system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive 
eight other decoders for arbitrary memory expansions. 

The Intel@8205 is packaged in a standard 16 pin dual-in-line package; and its performance is specified over 
the temperature range of O°C to + 75°C, ambient. The use of Schottky barrier diode clamped transistors to 
obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffu­
sion process. 

PIN CONFIGURATION LOGIC SYMBOL 

Ao 16 V·cc Ao 

Al 15 0;; Al 

A, 14 G,' A2 

E;' 4 13 0; 
8205 8205 

E;- 12 0; 

E3 6 11 0; E, 

0; 10 Os E2 

GRD 8 9 0 6 E3 

ADDRESS ENABLE OUTPUTS 

PIN NAMES Ao A, A, E, E, " 0 , ,. 3' 4' 5 ii 7 

L L L L L H L H H H H H H H 
H L L L L H H L H H H H H H 

ADDRESS INPUTS L H L L L H H H L H H H H H 

ENABLE INPUTS 
H H L L L H H H H L H H H H 
L L H L L H H H H H L H H H 

DECODED OUTPUTS H L H L L H H H H H H L H H 
L H H L L H H H H H H H L H 
H H H L L H H H H H H H H L 
X X X L L L H H H H H H H H 
X X X H L L H H H H H H H H 
X X X L H L H H H H H H H H 
X X X H H L H H H H H H H H 
X X X H L H H H H H H H H H 
X X X L H H H H H H H " H H 
X X X H H H H H H H H H H H 
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8251 A OO!CO%?}}fSao O~ry 

COMMUNICATION INTERFAtit::" PROGRAMMABLE 
• Synchronous and Asynchronous • Asynchronous Baud Rate - DC to '0 &'ZtrB 

Operation 19.2K Baud 

• Synchronous 5·8 Bit Characters; 
Internal or External Character Synchro· 
nization; Automatic Sync Insertion 

• Asynchronous 5·8 Bit Characters; 
Clock Rate-1, 16 or 64 Times Baud 
Rate; Break Character Generation; 1, 
11/2, or 2 Stop Bits; False Start Bit 
Detection; Automatic Break Detect 
and Handling. 

• Synchronous Baud Rate - DC to 64K 
Baud 

• Full Duplex, Double Buffered, Trans· 
mitter and Receiver 

• Error Detection - Parity, Overrun and 
Framing 

• Fully Compatible with 8080/8085 CPU 

• 28·Pin DIP Package 

• All Inputs and Outputs are TTL 
Compatible 

• Single + 5V Supply 

• Single TTL Clock 
The Intel'" 8251A is the enhanced version of the industry standard, Intel'" 8251 Universal Synchronous/Asynchronous 
Receiver/Transmitter (USART), designed for data communications with Intel's new high performance family of 
microprocessors such as the 8085. The 8251A is used as a peripheral device and is programmed by the CPU to operate 
using virtually any serial data transmission technique presently in use (including IBM "bi·sync"). The USART accepts 
data characters from the CPU in parallel format and then converts them into a continuous serial data stream for 
transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the 
CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has 
received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data 
transmission errors and control signals such as SYNDET, TxEMPTY. The chip is constructed using N·channel silicon 
gate technology. 

PIN CONFIGURATION 

0, 0, 

0, On 

R.D Vcr 

GND R.e 

0, DTR 

De RTS 

D, DSR 

D7 RESET 

he eLK 

We hD 

CS TKEMPTY 

c/o eTS 

RD SYNDET/BO 

R)(RDY T"RDY 

PIN NAMES 
0/ Do Data Bus (8 bltsi DSR Data Set Ready 

CID Control or Data IS 10 be Wrillen or Read DTR Data Terminal Ready 

SYNDET/SD Sync Detect! 
Break Detect 

RD Read Data Cornmand 

WR Write Data or Control Command 

RTS Request to Send Data 
CS Chip Enable 
eLK Clock Pulse (TTLI 

RESET Reset CTS Clear to Send Data 

hl Transmitter Clock T,' Transmitter Empty 

Vee +5 Volt Supply 

GND Ground 

TICD Transmitter Data 
FGC Receiver Clock 

RxD Receiver Data 

R"RDY Receiver Ready (has character for 80801 

T"RDY Transmitter Ready {ready for char from 80801 
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8253/8253·5 
PROGRAMMABLE INTERVAL TIMER 

• MCS_85™ Compatible 8253·5 • Count Binary or BCD 

• 3 Independent 16·Bit Counters 
• Single + 5V Supply 

• DC to 2 MHz 

• Programmable Counter Modes • 24·Pin Dual In· Line Package 

The Intell!l 8253 is a programmable counterltimer chip designed for use as an Intel microcomputer peripheral. It uses 
nMOS technology with a single +5V supply and is packaged In a 24-pin plastic DIP. 

It is organized as 3 Independent l6-bit counters, each with a count rate of up to 2 MHz. All modes of operation are soft­
ware programmable. 

PIN CONFIGURATION 

GATE 0 

GND 

°7"00 
elK N 

GATE N 

DUTN 

liD 

WR 

es 
A·A 

V 

GND 

OUT 1 L--__ .J 

PIN NAMES 
DATA BUS (8·BIT) 

COUNTER CLOCK INPUTS 

COUNTER GATE INPUTS 
COUNTER OUTPUTS 

READ COUNTER 

WRITE COMMAND OR DATA 

CHIP SELECT 

COUNTER SELECT 

+5 VOLTS 

GFtOUND 

Rii---q 
WR-

AO---~ 

A,---~ 

DATA 
BUS 

BUFFER 

READI 
WRITE 
lOGIC 

BLOCK DIAGRAM 

cs------' 
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inter 

8255A/8255A·5 
PROGRAMMABLE PERIPHERAL INTERFACE 

• MCS_85™ Compatible 8255A-5 

• 24 Programmable 1/0 Pins 

• Completely TTL Compatible 

• Fully Compatible with Intel® Micro­
processor Families 

• Improved Timing Characteristics 

• Direct Bit SetlReset Capability Easing 
Control Application Interface 

• 40-Pin Dual In-Line Package 

• Reduces System Package Count 

• Improved DC Driving Capability 

The Intel'" 8255A is a general purpose programmable 1/0 device designed for use with Intel'" microprocessors. It has 
241/0 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first 
mode (MODE 0), each group of 12 1/0 pins may be programmed in sets of 4 to be input or output. In MODE 1, the second 
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand· 
shaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking. 

PIN CONFIGURATION 8255A BLOCK DIAGRAM 

S~~:l~;S {-- +" 
-_GNO 1'0 

PA7-PAO 

PIN NAMES 

°7.:-DO OATA BUS (BI·DIRECTIONAL) 

RESET RESET INPUT 

CHIP SELECT 

AD REAO INPUT 

WR W"ITE INPUT 

AG,.' PORT ADDRESS 
'A1·PAG PORT A (BITI 

P111·P80 PORT B (BIT) 

PC7-PCO PORT C (BIT) 

Vee +5VDLTS 
GND 'VOLTS 
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inter 
8271/8271·6/8271·8 

PROGRAMMABLE FLOPPY DISK CONTROLLER 

• IBM 3740 Soft Sectored Format Compatible • Internal CRC Generation and Checking 

• Programmable Record Lengths • Programmable Step Rate, Settle· Time, Head 

Multl·Sector Capabill~y 
Load Time, Head Unload Index COllnt 

• 
Maintain Dual Drives with Minimum Software • Fully MCS·SOTM and MCS·SSTM Compatible • 
Overhead Expandable to 4 Drives 

Single + SV Supply • 
• Automatic ReadlWrite Head Positioning and 

Verification • 40·Pin Package 

The Intel"" 8271 Programmable Floppy Disk Controller (FDC) is an LSI component designed to interface one to 4 floppy 
disk drives to an 8-bit microcomputer system, Its powerful control functions minimize both hardware and software 
overhead normally associated with floppy disk controllers, 

PIN CONFIGURATION 

FAULT RESET/OPO Vee 

SELECT 0 LOW CURRENT 

4 MHz eLK LOAD HEAD 

RESET DIRECTION 

'R'EA'5"YT SEEK/STEP 

SELECT 1 WR ENBlE 

5ACi( iNi5"EX 
ORa ~ 

RD AEAOv"'O 
WR" ffiO 
INT EC5ij"NT UPI 

DSO WR DATA 

OBI FAULT 

DB2 ~ 
DB3 DATA WINDOW 

DB. PlO/55 

DBS cs 
DBS IN SYNC 

087 A, 

GND A, 

PIN NAMES 

ci~- DIG DATAIU5111D1RECflO,. ... LI 'LOllS PlOiSINGUSHOl 
~ DAtA WINDOW 
UNSI'O ... TA UNSE'ARAT!DDAfA 

F"UURUUIOPO 'AULTIIIIlTII)IITIQNALOU'PUT nurr fAULT 
Run C"IPRUET .ROAU ""."\'. COUNT/OPI COUNTIOI'TIOtoIAL ""'UT .... OM ... ACKNOWLEDGE !lin' 
~. DMARIClUUT WIIPROTECT WII!lEPROTIC' ... CPUIIEAOINflUT iiI!Itt INDEX .. CI'UWRITEINPUT WltnEENAIU 

IUIlIIfE' 
Al,O "tOllfUI.ELECT DIRECTION 
INIYNC IlIAO DATA Hd'fflC LOADMEAO .. LOWCUIIRENt 

ORa 

i5ACK 
INT 

Ali 
w-

RESET 

cs----.J 

CPU INTERFACE 
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inter 
8273 

PROGRAMMABLE HDLC/SDLC PROTOCOL 
CONTROLLER 

• HOLC/SOLC Compatible • Programmable NRZI Encode/Decode 

• Frame Level Commands • N·Blt Reception Capability 

• Full Duplex, Half Duplex, or Loop • Digital Phase Locked Loop Clock 
SOLC Operation Recovery 

• Up to 64K Baud Transfers • Minimum CPU Overhead 

• Two User Programmable Modem • Fully Compatible with 8080/8085 CPUs 
Control Ports 

• Automatic FCS (CRC) Generation and • Single + 5V Supply 

Checking • 40·Pin Package 

The Intell> 8273 Programmable HOLC/SOLC Protocol Controller is a dedicated device designed to support the ISO/C­
CITT's HOLC and IBM's SOLC communication line protocols. It is fully compatible with Intel's new high performance 
microcomputer systems such as the MCS-85™. A frame level command set is achieved by a unique microprogrammed 
dual processor chip architecture. The processing capability supported by the 8273 relieves the system CPU of the low 
level real-time tasks normally associated with controllers. 

PIN CONFIGURATION 

FLAG DET Vee 

Tx INT PB4 
elK PB3 

RESET PI!2 
TxDACK PB, 
TxDRa ATS 

RxDACK PA, 

RxDAQ PA, 

RD PA2 
WR eD 

Rx tNT rn 
DBO T,D 

DB' 'FXC 

DB, RiC 

DB3 R,D 

DB4 32xCLK 

DB5 cs 
DB. OPLL 

DB' A, 

GND Ao 

PIN NAMES 

OBO-OB7 DATA BUS (8 BITS) 
~ FLAG DETECT 
TxlNT 
elK 
RESET 
Tx DACK 
TxORQ 
ilii 
WR 
RxDACK 
RxORQ 
Rx INT 
Al>-A' 
liPIT 

TRANSMITTER INTERRUPT 
CLOCK INPUT 
RESET 
TRANSMITTER DMA ACKNOWLEDGE 
TRANSMITTER DMA REQUEST 
READ INPUT 
WRITE INPUT 
RECEIVER DMA ACKNOWLEDGE 
RECEIVER DMA REQUEST 
RECEIVER INTERRUPT 
COMMAND REGISTER SELECT ADDRESS 
DIGITAL PHASE LOCKED LOOP 

CS CHIP SELECT 
32xCLK 32 TIMES CLOCK 
Rx 0 RECEIVER DATA 
Rx C RECEIVER CLOCK 
Tx C TRANSMITTER CLOCK 
Tx 0 TRANSMITTER DATA 
rn CLEAR TO SEND 
CD CARRIER DETECT 
PA2-PA4 GP INPUT PORTS 

~-PB4 ~:g~~:~~6~~~~ 
Vee +5 VOLT SUPPLY 
GNO GROUND 

BLOCK DIAGRAM 

060_ 7 

hD 

TxC 

TKDRQ 
DPLi. 
32X elK 

R;5"A"C'K 
RTS 

PB'_4 

hiNT ffi 
RKINT co 

Rci PA2_4 
WR 

Ao 

A, 

RESET R,D 

R;C 

cs 
FLAG OET 

CPU INTERFACE MOOEM INTERFACE 
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8275 
PROGRAMMABLE CRT CONTROLLER 

Programmable Screen and Character • Fully MCS.80 ™ and MCS.85 ™ 
Format Compatible 

• 6 Independent Visual Field Attributes • Dual Row Buffers 
• 11 Visual Character Attributes Programmable DMA Burst Mode (Graphic Capability) • 
• Cursor Control (4 Types) • Single + 5V Supply 

• Light Pen Detection and Registers • 40·Pin Package 

The Intelll> 8275 Programmable CRT Controller is a single chip device. to interface CRT raster scan displays with 
Intelll> microcomputer systems. Its primary function is to refresh the display by buffering the information from main 
memory and keeping track of the display position of the screen. The flexibility designed into the 8275 will allow simple 
interface to almost any raster scan CRT display with a minimum of external hardware and software overhead. 

PIN CONFIGURATION 

LC3 vcc 
LC2 LAO 
LC, LA, 
LCO LTEN 

DRQ RVV 
DACK VSP 
HRTC GPA, 
VRTC GPAo 

RD HLGT 
WR IRQ 

LPEN CCLK 
DBa CCe 
DB, CCs 
DB2 CC4 
DB3 CC3 
DB4 CC2 
DBS CC, 
DBe CCo 
DB7 cr 
GND AO 

PIN NAMES 

DIIO , B1 DIRECTIONAL DATA BUS LCo_3 LINE COUNTER OUTPUll 
DRQ DMA REQUEST OUTPUT ..... , LINE ATTRIBUTE OUTPUTS 

"""" DMA ACKNOWLEDGE INPUT HRTe HORIZONTAL RETRACE OUTPUT 

IRQ INTERRUPT REQUEST OUTPUT VAle VERTICAL RETRACE OUTPUT 

III! READ STROBE INPUT HLGT HIGHlIQHT OUTPUT --
ii1I WRITE STROBE INPUT RVV REVERSE VIDEO OUTPUT 

AD REGISTER ADDRESS INPUT LTEN LIGHT ENABLE OUTPUT 
C$ CHIP SELECT INPUT V .. VIDEO SUPPRESS OUTPUT 

CCLK CHARACTER CLOCK INPUT GPAo 1 GENERAL. PURPOSE ATTRIBUTE OUTPUTS 

CCo_6 CHARACTER CODE OUTPUTS LPEN LIGHT PEN INPUT 

B-136 

OBo-7 

ORQ ___ -, 

DACK 

IRQ 

AD 

BLOCK DIAGRAM 

eeL. 

CCO-6 

LCO_3 

LAO_l 

HRTt 
VRle 
HLGT 
RW 
LTEN 
VS. 
GPAO_l 

LPEN 



inter 
8279/8279·5 

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE 

• MCS·85™ Compatible 8279·5 

• Simultaneous Keyboard Display 
Operations 

• Scanned Keyboard Mode 

• Scanned Sensor Mode 

• Strobed Input Entry Mode 

• 8·Character Keyboard FIFO 

• 2·Key Lockout or N·Key Rollover with 
Contact Debounce 

• Dual 8· or 16·Numerical Display 

• Single 16·Character Display 

• Right or Left Entry 16·Byte Display 
RAM 

• Mode Programmable from CPU 

• Programmable Scan Timing 

• Interrupt Output on Key Entry 

The Intel<!> 8279 is a general purpose programmable keyboard and display I/O interface device designed for use with 
Intel<!> microprocessors. The keyboard portion can provide a scanned interface to a 64-contact key matrix. The 
keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as the hall effect and 
ferrite variety. Key depressions can be 2·key lockout or N·key rollover. Keyboard entries are debounced and strobed in 
an 8-character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output 
line to the CPU. 

The display portion provides a scanned display interface for LED, incandescent, and other popular display 
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 
has 16X8 display RAM which can be organized into dual 16x4. The RAM can be loaded or interrogated by the CPU. Both 
right entry, calculator and left entry typewriter disPlay formats are possible. Bath read and write of the display RAM 
can be done with auto-increment of the display RAM address. 

PIN CONFIGURATION 

PIN NAMES 

Olio, DATA BUS (81 DIRECTIONALI 

I CLOCK INPUT 

_I RE~ET INP~ __ • __ ~~_. 

IW-_+-'C+'~~~M-'--'-----
wAiTeINiil.iT·----­
BUfFER ADDRESS 

INTERRUPT REQUESTOtiYPuT 
E:---t-""o r.;:SCAT.N;li~-·--

I RETURN LINES 

I SHIFT INPUT ._ -==~­
CONTROLfSTROBE INPUT 
OISl'LAV (A! OUTPUTS 

o OTsP'LAV"iBi-OUTPUTS­

O' BLANKOISPlAY OUTPUT 
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8291 
GPIB TALKER/LISTENER 

• Designed to Interface Microprocessors iI 1 - 8 MHz Clock Range 
(e.g., 8080, 8085, 8086, 8048) to an • 16 Registers (8 Read, 8 Write), 2 for 
IEEE Standard 488 Digital Interface Data Transfer, the Rest for Interface 
Bus Function Control, Status, etc. 

• Programmable Data Transfer Rate • Directly Interfaces to External Non-

• Complete Source and Acceptor Inverting Transceivers for Connection 
Handshake to the GPIB 

• Complete Talker and Listener • Provides Three Addressing Modes, 
Functions with Extended Addressing Allowing the Chip to be Addressed 

• Service Request, Parallel Poll, Device Either as a Major or a Minor Talker/ 

Clear, Device Trigger, Remote/Local Listener with Primary or Secondary 

Functions Addressing 

• Selectable Interrupts • DMA Handshake Provision Allows for 
Bus Transfers without CPU Intervention • On-Chip Primary and Secondary 

Address Recognition • Trigger Output Pin 

• Automatic Handling of Addressing and • On-Chip EOS (End of Sequence) 

Handshake Protocol Message Recognition Facilitates 

• Provision for Software Implementation 
Handling of Multi-Byte Transfers 

of Additional Features 

The 8291 GPIB Talker/Listener is a microprocessor-controlled chip designed to interface microprocessors (e.g., 8048, 
8080,8085,8086) to an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface 
functions except for the controller. 

PIN CONFIGURATION BLOCK DIAGRAM 

18291 

GPIB DATA 

INTERFACE 

FUNCTIONS I~===""", 

SH GPIB CONTROL JTO NON·INVERTING 
AH BUS TRANSCEIVERS 
TE 
LE 

~~ I 
pp T/R CONTROL 
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inter 
8292 

GPIB CONTROLLER 

FEATURES: 

• Complete IEEE Standard 488 Controller 
Function. 

• Interface Clear (IFC) Sending Capability 
Allows for Seizure of Control and/or 
Initialization of the Bus. 

• Responds to Service Requests (SRC). 

• Sends (REN), Allowing Instruments to 
Switch to Remote Control. 

• Complete Implementation of Transfer 
Control Protocol. 

• Synchronous Control Seizure Prevents 
the Destruction of any Data 
Transmission in Progress. 

• Connects with the 8291 to Form a 
Complete IEEE Standard 488 Interface 
Talker /Listener /Controller. 

The 8292 GPIB CONTROLLER is a microprocessor-controlled chip designed to connect with the 8291 
GPIB TALKER/LISTENER to implement the full IEEE Standard 488 controller function, including transfer 
control protocol. The 8292 is a pre-programmed UPI-41A:M 

PIN CONFIGURATION 

IFCR VCC 

Xl COUNT 

X2 REN 

RESET OAV 

NC IBFI 

Cs OBFI 

GND EOI 

RD SPI 

AO TCI 

WR CIC 

SYNC NC 

DO ATNO 

01 NC 

D2 CLTH 

03 NC 

04 NC 

D5 SYC 

De IFC 

07 p;'fNi 

VSS SRQ 
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8293 
GPIB TRANSCEIVER 

• Nine Open-collector or Three-state 
Line Drivers 

• 48 mA Sink Current Capability on 
Each Line Driver 

• Nine Schmitt-type Line Receivers 

• High Capacitance Load Drive 
Capability 

• Single 5V Power Supply 

• 28-Pin Package 

• Low Power HMOS Design 

• On-chip Decoder for Mode 
Configuration 

• Power Up/Power Down Protection to 
Prevent Disrupting the IEEE Bus 

• Connects with the 8291 and 8292 to 
Form an IEEE Standard 488 Interface 
Talker/Listener/Controller with no 
Additional Components 

• Only Two 8293's Required per GPIB 
Interface 

The Intel@ 8293 GPIB Transceiver is a high current, non-inverting buffer chip designed to interface the 8291 GPIB 
Talker/Listener or the 8292 GPIB Controller with the 8291 to the IEEE Standard 488-1978 Instrumentation Interface 
Bus. Each GPIB interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used as a general 
purpose bus driver. 

PIN CONFIGURATION 8291,8292, 8293 SYST~M DIAGRAM 

TR' Vee 

8257 ORO 829' 8292 
OPTB 

GPIB GPIB 
TALKERI 

LISTENER 
CONTROLLER 

DATA8 

BUS9 

DATA4 

DATA5 

BUS8 
TIR', 

GENERAL PURPOSE INTERFACE BUS 
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8294 
DATA ENCRYPTION UNIT 

• Certified by National Bureau of • 7·Bit User Output Port 
Standards 

• Single 5V :t 10% Power Supply 

• 80 Byte/Sec Data Conversion Rate 

• Peripheral to MCS·86™, MCg-85™, 
• 64·Bit Data Encryption Using 56· Bit MCS·80™ and MCS·48™ Processors 

Key 

• DMA Interface • Implements Federal Information 
Processing Data Encryption Standard 

• 3 Interrupt Outputs to Aid in Loading 
and Unloading Data • Encrypt and Decrypt Modes Available 

DESCRIPTION 

The Intel@ 8294 Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt 
64-bit blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. 
The DEU operates on 64-bit text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation 
is reversible: if the cipher word is operated upon, the original text word is produced. The algorithm itself is perma­
nently contained in the 8294; however, the 56-bit key is user-defined and may be changed at any time. 

The 56-bit key and 64-bit message data are transferred to and from the 8294 in 8-bit bytes by way of the system data 
bus. A DMA interface and three interrupt outputs are available to minimize software overhead associated with data 
transfer. Also, by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system 
conversion rates which are virtually any multiple of 80 bytes/second. The 8294 also has a 7-bit TTL compatible output 
port for user-specified functions. 

Because the 8294 implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer 
applications as well as other electronic banking and data handling applications where data must be encrypted. 

PIN 
CONFIGURATION 

Ne Vee 
X1 Ne 

DACK 
DRO 

SRO 
es OAV 

GND Ne 
P. 

AO P5 
ViR P4 

P3 

PO 
VDD 
Ne 

D5 ceMP 
D6 Ne 
D7 Ne 

GND 

PIN NAME 

07- 0 0 
RD,WR 
cs 
A, 
RESET 
X"X2 
SYNC 
DRQ,DACK 
SRQ,OAV,CCMP 
Ps'Po 
vcc,vOD,GND 
NC 

PIN NAMES 

FUNCTION 

DATA BUS 
READ,WRITE STROBES 
CHIP SELECT 
CONTROL/DATA SELECT 
RESET INPUT 
FREQUENCY REFERENCE INPUT 
HIGH FREQUENCY OUTPUT 
DMA REOUEST,DMA ACKNOWLEDGE 
INTERRUPT REQUEST OUTPUTS 
OUTPUT PORT LINES 
+ SV POWER,GND 
NO CONNECTION 

DATA 
BUS 

A, 

SRa 
QAV 

ceMP 

BLOCK DIAGRAM 

RESET~ SYNC 

X, 
X2 TIMING 

+5V-­
POWER-­

GND--

INTERNAL 
BUS 
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8295 
DOT MATRIX PRINTER CONTROLLER 

• Interfaces Dot Matrix Printers to 
MCS.48™, MCS.8018S™, MCS·86™ 
Systems 

• 40 Character Buffer On Chip 

• Serial or Parallel Communication with 
Host 

• DMA Transfer Capability 

• Programmable Character Density (10 or 
12 Chararctersllnch) 

• Programmable Print Intensity 

• Single or Double Width Printing 

• Programmable Multiple Line Feeds 

• 3 Tabulations 

• 2 General Purpose Outputs 

The Intel@ 8295 Dot Matrix Printer Controller provides an Interface for microprocessors to the LAC 7040 Series dot 
matrix impact printers. It may also be used as an Interface to other similar printers. 

The chip may be used in a serial or parallel communication mode with the host processor. In parallel mode, data 
transfers are based on polling, interrupts, or DMA. Furthermore, it provides internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character generator accommodating 64 ASCII characters. 

PIN 
CONFIGURATION 

PIN NAME 

IRQ/SEA 
81-87 
PFEED 
HOME, fOF 
STB 
GP1,GP2 
Vee. VOD, GND 

PIN NAMES 

FUNCTION 

DATA 8US 
READ, WRITE STROBES 
CHIP SELECT 
RESET INPUT 
FREQUENCY AEFERENCE INPUTS 
HIGH FREQUENCY OUTPUT 
MAIN, PAPER FEED MOTOR DAIVES 
DMA REQUEST, ACKNOWLEDGE 
SERIAL INPUT, CLEAR·TO·SEND 
INTERRUPT REQUEST, SERIAL GROUND 
SOLENOID DRIVE OUTPUTS 
PAPER FEED INPUT 
HOME, TOp·Of·FORM INPUTS 
SOLENOID STROBE OUTPUT 
GENERAL PURPOSE OUTPUTS 
+ 5V POWER, OND 
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inter 
2114A 

1024 X 4 BIT STATIC RAM 

2114AL-2 2114AL-3 2114AL-4 2114A-4 2114A-5 

I Max. Access Time (ns) 120 150 200 200 250 

I Max. Current (rnA) 40 40 40 70 70 

• HMOS Technology • Completely Static Memory - No Clock 

• Low Power, High Speed 
or Timing Strobe Required 

• Directly TTL Compatible: All Inputs 

• Identical Cycle and Access Times and Outputs 

• Common Data Input and Output USing • Single +5V Supply ±10% Three-State Outputs 

• High Density 18 Pin Package • 2114 Replacement 

The Intel 2ll4A is a 4096-bil static Random Access Memory organized as 1024 words by 4-bits using HMOS. a high performance 
MOS technology. It uses fully DC stable (static) circuitry throughout. in both the array and the decoding. therefore it requires no 
clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read 
out nondestructively and has the same polarity as the input data. Common input/output pins are provided. 

The 2l14A is designed for memory applications where the high performance and high reliability of HMOS. low cost. large bit 
storage. and simple interfacing are important design objectives. The 2ll4A is placed in an l8-pin package for the highest 
possible density. 

It is directly TTL compatible in all respects: inputs. outputs. and a single +5V supply. A separate Chip Select (CS) lead allows 
easy selection of an individual package when outputs are or-tied. 

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM 

A, 
~4~ @ 

"" 
Vee 

~Vcc 
A. ~ ~GND A4 

A5 A, A, I/O, 2': 
A ~ MEMORY ARRAY 

A4 

"" 
A, 5'1) ROW 

64 ROWS SELECT 

A, As 64 COLUMNS 
A, Ag 1/°2 @ 

A4 
A,-

A. I/O, @ 
A5 As 

A, 110, 
As 

1/03 

110, @ .., 1/03 A, 

CS 1/°4 As 1/°4 

GND WE A, 

WE es 

PIN NAMES 

AO-Ag ADDRESS INPUTS Vee POWER (+5VI WE~-L-.'" 0= PIN NUMBERS 

WE WR ITE ENABLE GND GROUND 

CS CHIP SELECT 

110,-1/04 DATA INPUT/DUTPUT 
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2142 
1024 X 4 BIT STATIC RAM 

2142-2 2142-3 2142 2142L2 2142L3 2142L 

I Max. Access Time (ns) 200 300 450 200 300 450 

I Max. Power Dissipation (mw) 525 525 525 370 370 370 

• High Density 20 Pin Package • No Clock or Timing Strobe Required 

• Access Time Selectlans From 200-450ns • Completely Static Memory 

• Identical Cycle and Access Times • Directly TTL Compatible: All Inputs 

• Low Operating Power Dissipation and Outputs 

.1mW/Bit Typical • Common Data Input and Output Using 

• Single +5V Supply Three-State Outputs 

The Intel@ 2142 is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits using N-channel Silicon­
Gate MOS technology. It uses fully DC stable (static) circuitry throughout - in both the array and the decoding - and 
therefore requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not 
required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are 
provided. 

The 2142 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing 
are important design objectives. It is directly TTL compatible in all respects: inputs, outputs, and a Single +5V supply. 

The 2142 is placed in a 20-pin package. Two Chip Selects (CS1 and CS2) are provided for easy and flexible selection of 
individual packages when outputs are OR-tied, An Output Disable is included for direct control of the output buffers. 

The 2142 is fabricated with Intel's N-channel Silicon-Gate technology - a technology providing excellent protection 
against contamination permitting the use of low cost plastic packaging. 

PIN CONFIGURATION LOGIC SYMBOL 

AS Vee AO 

AS A, A, I/O, 

A4 AS A, 

A3 A, A3 
1/02 

es, 00 A4 

AO liD, AS 

A, 1/02 AS 
1/03 

A, 1103 A, 

ES1 1/04 AS 1/04 

DND WE 

PIN NAMES 

Ao-Ag ADDRESS INPUTS 00 OUTPUT DISABLE 

WE WRITE ENABLE Vee POWER1+5V) 

CS;,CS2 CHIP SELECT GND GROUND 

I{O,- 1/04 OAT A INPUT/OUTPUT 

A3 
@) 

® 
A4---

AS 
® 

AS 
CD 
@) 

A, 

@) 
AS 

® "0,---
@ 

1102 

@ 
If 03 

@ 
110 4 

00 
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2148 
1024 X 4 BIT STATIC RAM 

2148·3 2148 2148·6 

Max. Access Time (ns) 55 70 85 

Max. Active Current (rnA) 125 125 125 

Max. Standby Current (rnA) 30 30 30 

• HMOS Technology • Automatic Power· Down 

• Completely Static Memory • High Density 18·Pin Package 
- No Clock or Timing Strobe • Directly TTL Compatible 
Required - All Inputs and Outputs 

• Equal Access and Cycle Times • Common Data Input and Output 

• Single +5V Supply • Three·State Output 

The Intel'" 2148 is a 4096·bit static Random Access Memory organized as 1024 words by 4 bits using HMOS, a high­
performance MOS technology. It uses a uniquely innovative design approach which provides the ease-of-use features 
associated with non-clocked static memories and the reduced standby power dissipation associated with clocked static 
memories. To the user this means low standby power dissipation without the need for clocks, address setup and hold 
times, nor reduced data rates due to cycle times that are longer than access times. 

es controls the power·down feature. In less than a cycle time after es goes high - disabling the 2148 - the part 
automatically reduces its power requirements and remains in this low power standby mode as long as es remains high. 
This device feature results in system power savings as great as 85% in larger systems, where the majority of devices are 
disabled. 

The 2148 is assembled in an 18-pin package configured with the industry standard 1 K x 4 pinout. It is directly TTL 
compatible in all respects: inputs, outputs, and a single +5V supply. The data is read out nondestructively and has the 
same polarity as the input data. 

PIN CONFIGURATION LOGIC SYMBOL 

'6 Vee - '0 

'5 '7 
- A, 

liD, t-
A, 

- A, 
A, 

- A3 

'3 A9 1I02r 
- " '0 liD, - A5 

A, 1102 
- A6 

11031--

A, 1103 
- A7 

cs 1104 
- A, 

1/041-

GND WE 
~ Ages WE 

Y Y 

PIN NAMES 

Ao-Ag ADDRESS INPUTS 
WE WRITE ENABLE 
Cs' CHIP SELECT 
1/01-1104 DATA INPUT/OUTPUT 

Vee POWER (+5V) 
GND GROUND 

TRUTH TABLE 

CS WE MODE 1/0 POWER 

H X NOT SELECTED HIGH·Z STANDBY 
L L WRITE DIN ACTIVE 
L H READ DOUT ACTIVE 

A7 

A, 
@ 

A, 
@ 

1/01 
@ 

1102 
@ 

1/03 
@ 

1104 
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Appendix B 
Device Specifications 

• EPROM Memories··· 

* For complete specifications refer to the 
Intel MCS-85 User's Manual. 

• *For complete specifications refer to the 
Intel Peripheral Design Handbook. 

** * For complete specifications refer to the 1979 
Intel Component Data Catalog. 



2716 
16K (2K)( 8) UV ERASABLE PROM 

• Fast Access Time 
350 ns Max. 2716·1 
390 ns Max. 2716·2 
450 ns Max. 2716 

- 650 ns Max. 2716·6 

• Single + 5V Power Supply 

• Low Power Dissipation 
525 mW Max. Active Power 

- 132 mW Max. Standby Power 

• Pin Compatible to Intel® 2732 EPROM 

• Simple Programming Requirements 
Single Location Programming 

- Programs with One 50 ms Pulse 

• Inputs and Outputs TTL Compatible 
during Read and Program 

• Completely Static 

The Intel® 2716 is a 16,384·bit ultraviolet erasable and electrically programmable read·only memory (EPROM). The 2716 
operates from a single 5·volt power supply, has a static standby mode, and features fast single address location program· 
mingo It makes designing with EPROMs faster, easier and more economical. 

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high performance 
+5V microprocessors such as Intel's 8085 and 8086. The 2716 is also the first EPROM with a static standby mode which 
reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the 
maximum standby power dissipation is only 132 mW, a 75% savings. 

The 2716 has the simplest and fastest method yet devised for programming EPROMs - single pulse TTL level programming. 
No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any 
time-either individually, sequentially or at random, with the 2716's single address location programming. Total programming 
time for all 16,384 bits is only 100 seconds. 

PIN CONFIGURATION 

2716 

'6' 

06 00 

0, a' 
GND 12 

t Refer to 2732 
data sheet for 
specifications 

PIN NAMES 

AO-.AlO ADDRESSES 

CE/PGM CHIP ENABLE/PROGRAM 

DE OUTPUT ENABLE 
0-0 OUTPUTS 
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MODE SELECTION 

~ 
CE/PGM DE Vpp Vee OUTPUTS 

(1S) (20) (21) (24) (9-11,13·17) 

MODE 

Read V'L V'L ., ., Dour 
Standby V'H Don't Care ., ., High Z 

Program Pulsed Vil to VIH V'H '2' ., D'N 
Program Verify 

Program Inhibit 

Vee 0---

AO-Al0 
ADDRESS 

INPUTS 

V'L V'L '2' ., 
V'L V'H '2' ., 

BLOCK DIAGRAM 

UATAOUTPUTS 

00 01 ----

DOUT 

High Z 
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2732 

32K (4K x 8) UV ERASABLE PROM 

• Fast Access Time: • Pin Compatible to Intel® 2716 EPROM 
450 ns Max. 2732 

- 550 ns Max. 2732·6 • Completely Static 

• Single +5V ± 5% Power Supply 

Output Enable for MCS-85™ and • Simple Programming Requirements • Single Location Programming 
MCS-86™ Compatibility - Programs with One 50ms Pulse 

• Low Power Dissipation: 
150mA Max. Active Current • Three-State Output for Direct Bus 
30mA Max. Standby Current Interface 

The Intel® 2732 is a 32,768-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2732 
operates from a single 5-volt power supply, has a standby mode, and features an output enable control. The total program­
ming time for all bits is three and a half minutes. All these features make designing with the 2732 in microcomputer systems 
faster, easier, and more economical. 

An important 2732 feature is the separate output control, Output Enable (OE), from the Chip Enable control (CE). The OE 
control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-30 describes the 
microprocessor system implementation of the OE and CE controls on Intel's 2716 and 2732 EPROMs. AP-30 is available 
from Intel's Literature Department. 

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maximum active 
current is 150mA, while the maximum standby current is only 30mA, an 80% savings. The standby mode is achieved by 
applying a TTL-high signal to the CE input. 

PIN CONFIGURATION 

A7 Vee 

A. As 

As Ag 

A. A11 . 

A3 OElVpp 

A, A,. 

A, CE 

Ao 0 7 

a. a. 
0, o. 
0, O. 

GND 0 3 

PIN NAMES 

Ao-A11 ADDRESSES 

CE CHIP ENABLE 

~ OUTPUT ENABLE 

°0 .07 OUTPUTS 
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MODE SELECTION 

~ MODE 

Read 

Standby 

Program 

Program Verify 

Program Inhibit 

Vee 0--­

GNOo---
Vppo---

OE 
CE-

-AO-A11 -
ADDRESS 

INPUTS = 

CE OE/Vpp Vcc OUTPUTS 
(18) (20) (24) 19·11,13·17) 

VIL VIL +5 DOUT 

VIH Don't Care +5 High Z 

VIL Vpp +5 DIN 

VIL VIL +5 DOUT 

VIH Vpp +5 High Z 

BLOCK DIAGRAM 

OE AND 1= ce LOGIC 

Y I.-
DECODER P-

F. 
X · DECODER · · r.:. 

DATA OUTPUTS 
00-07 

LLl t Ul! 
OUTPUT BUFFERS 

Y·GATING 

32,768·BIT 
CELL MATRIX 



2758 
8K (1K x 8) UV ERASABLE LOW POWER PROM 

• Single + 5V Power Supply • Fast Access Time: 450 ns Max. in 
Active and Standby Power Modes 

• Simple Programming Requirements 
- Single Location Programming • Inputs and Outputs TTL Compatible 
- Programs with One 50 ms Pulse during Read and Program 

• Low Power Dissipation • Completely Static 
525 mW Max. Active Power 
132 mW Max. Standby Power • Three·State Outputs for OR·Ties 

The Intel® 2758 is a 8192-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2758 
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program­
ming. It makes designing with EPROMs faster, easier and more economical. The total programming time for all 8192 bits 
is 50 seconds. 

The 2758 has a static standby mode which reduces the power dissipation without increasing access time. The maximum 
active power dissipation is 525 mW, while the maximum standby power dissipation is only 132 mW, a 75% savings. Power­
down is achieved by applying a TTL-high signal to the CE input. 

A 2758 system may be designed for total upwards compatibility with Intel's 16K 2716 EPROM (see Applications Note 
30). The 2758 maintains the simplest and fastest method yet devised for programming EPROMs - single pulse TTL­
level programming. There is no need for high voltage pulsing because all programming controls are handled by TTL 
signals. Program any location at any time - either individually, sequentially, or at random, with the single address 
location programming. 

PIN CONFIGURATION MODE SELECTION 

~ CE/PGM AR BE V,, Vee OUTPUTS 

1181 1191 (201 (211 (241 (9-11.13-17) 

MODE 

Vee A, 
A, 

A, V" A, DE 

Read V,L V,L V,L +5 +5 DOUT 

Standby V,H V,L 
Don't 

+5 +5 High Z 
Care 05 

Program Pulsed V Il to V IH V,L V'H +25 +5 D,N 

Program Verify V,L V,L V,L +25 +5 DOUT 

Program Inhibit V,L V,L V,H +25 +5 High Z 

PIN NAMES BLOCK DIAGRAM 

Ao---A9 ADDRESSES 

C"E/PGM CHIP ENABLE/PROGRAM 

OE OUTPUT ENABLE 

0 0, OUTPUTS 

AR 
SELECT REFERENCE 
INPUT LEVEL 
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inter MODEL 230 
INTELLEC SERIES II 

MICROCOMPUTER DEVELOPMENT SYSTEM 
Complete microcomputer development 
center for Intel MCS·86, MCS·80, MCS·85 
and MCS·48 microprocessor families 

LSI electronics board with CPU, RAM, 
ROM, I/O, and interrupt circuitry 

64K bytes RAM memory 

Self· test diagnostic capability 

Eight·level nested, maskable priority 
interrupt system 

Built·in interfaces for high speed paper 
tape reader/punch, printer, and universal 
PROM programmer 

Integral CRT with detachable upper/ 
lower case typewriter·style full ASCII 
keyboard 

Powerful ISIS·II Diskette Operating 
System software with relocating 
macroassembler, linker, and locater 

1 million bytes (expandable to 2.5M 
bytes) of diskette storage 

Supports PL/M and FORTRAN high level 
languages 

Standard MULTIBUS with multiprocessor 
and DMA capability 

Compatible with standard Inteliec/iSBC 
expansion modules 

Software compatible with previous 
Intellec systems 

The Model 230 Intellec Series II Microcomputer Development System is a complete center for the development of 
microcomputer-based products. It includes a CPU, 64K bytes of RAM, 4K bytes of ROM memory, a 2000-character CRT, 
a detachable full ASCII keyboard, and dual double density diskette drives providing over 1 million bytes of on-line data 
storage. Powerful ISIS-II Diskette Operating System software allows the Model 230 to be used quickly and efficiently 
for assembling and/or compiling and debugging programs for Intel's MCS-S6, MCS-SO, MCS-S5, or MCS-4S microproc­
essor families without the need for handling paper tape. ISIS-II performs all file handling operations, leaving the user 
free to concentrate on the details of his own application. When used in conjunction with an optional in-circuit 
emulator (ICE) module, the Model 230 provides all the hardware and software development tools necessary for the 
rapid development of a microcomputer-based product. 
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MODEL230 

FUNCTIONAL DESCRIPTION 

Hardware Components 

The Intellec Series II Model 230 is a packaged, highly 
integrated microcomputer development system consist­
ing of a CRT chassis with a 6-slot cardcage, power sup­
ply, fans, cables, and five printed circuit cards. A 
separate, full ASCII keyboard is connected with a cable. 
A second chassis contains two floppy disk drives capa­
ble of double-density operation along with a separate 
power supply, fans, and cables for connection to the 
main chassis. A block diagram of the Model 230 is 
shown in Figure 1. 

CPU Cards - The master CPU card contains its own 
microprocessor, memory, 1/0, interrupt and bus inter­
face circuitry fashioned from Intel's high technology LSI 
components. Known as the integrated processor board 
(IPB), it occupies the first slot in the cardcage. A second 
slave CPU card is responsible for all remaining 1/0 con­
trol including the CRT and keyboard interface. This card, 
mounted on the rear panel, also contains its own micro­
processor, RAM and ROM memory, and 1/0 interface 
logic, thus, in effect, creating a dual processor environ­
ment. Known as the 1/0 controller (IOC), the slave CPU 

card communicates with the IPB over an 8-bit bidirec­
tional data bus. 

Memory and Control Cards - In addition, 32K bytes of 
RAM (bringing the total to 64K bytes) is located on a 
separate card in the main cardcage. Fabricated from 
Intel's 16K RAMs, the board also contains all necessary 
address decoding and refresh logic. Two additional 
boards in the cardcage are used to control the two 
double-density floppy disk drives. 

Expansion - Two remaining slots in the cardcage are 
available for system expansion. Additional expansion of 
4 slots can be achieved through the addition of an Intel­
lec Series II expansion chassis. 

System Components 
The heart of the IPB is an Intel NMOS 8-bit microproces­
sor, the 8080A-2, running at 2.6 MHz. 32K bytes of RAM 
memory are provided on the board using Intel 16K 
RAMs. 4K of ROM is provided, preprogrammed with sys­
tem bootstrap "self-test" diagnostics and the Intellec 
Series II System Monitor. The eight-level vectored prior­
ity interrupt system allows interrupts to be individually 
masked. Using Intel's versatile 8259A interrupt con­
troller, the interrupt system may be user programmed to 
respond to individual needs. 

----------------~? 

Figure 1. Intellec Series II Model 230 Microcomputer Development System Block Diagram 
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MODEL 230 

Input/Output 
IPB Serial Channels - The I/O subsystem in the Model 
230 consists of two parts: the 10C card and two serial 
channels on the IPB itself. Each serial channel is RS232 
compatible and is capable of running asynchronously 
from 110 to 9600 baud or synchronously from 150 to 56K 
baud. Both may be connected to a user defined data set 
or terminal. One channel contains current loop 
adapters. Both channels are implemented using Intel's 
8251A USART. They can be programmatically selected 
to perform a variety of I/O functions. Baud rate selection 
is accomplished programmatically through an Intel 8253 
interval timer. The 8253 also serves as a real-time clock 
for the entire system. I/O activity through both serial 
channels is signaled to the system through a second 
8259 interrupt controller, operating in a polled mode 
nested to the primary 8259. 

IOC Interface - The remainder of system I/O activity 
takes place in the 10C. The 10C provides interface for 
the CRT, keyboard, and standard Intellec peripherals 
including printer, high speed paper tape reader/punch, 
and universal PROM programmer. The 10C contains its 
own independent microprocessor, also an 8080A-2. The 
CPU controls all I/O operations as well as supervising 
communications with the IPB. 8K bytes of ROM contain 
all I/O control firmware. 8K bytes of RAM are used for 
CRT screen refresh storage. These do not occupy space 
in Intellec Series II main memory since the 10C is a 
totally independent microcomputer subsystem. 

Integral CRT 
Display - The CRT is a 12-inch raster scan type monitor 
with a 50/60 Hz vertical scan rate and 15_5 kHz horizontal 
scan rate. Controls are provided for brightness and con­
trast adjustments. The interface to the CRT is provided 
through an Intel 8275 single chip programmable CRT 
controller. The master processor on the IPB transfers a 
character for display to the 10C, where it is stored in 
RAM. The CRT controller reads a line at a time into its 
line buffer through an Intel 8257 DMA controller and 
then feeds one character at a time to the character gen­
erator to produce the video signal. Timing for the CRT 
control is provided by an Intel 8253 interval timer. The 
screen display is formatted as 25 rows of 80 characters. 
The full set of ASCII characters are displayed, including 
lower case alphas. 

Keyboard - The keyboard interfaces directly to the 10C 
processor via an 8-bit data bus. The keyboard contains 
an Intel UPI-41 Universal Peripheral Interface, which 
scans the keyboard, encodes the characters, and buf­
fers the characters to provide N-key rollover. The key­
board itself is a high quality typewriter style keyboard 
containing the full ASCII character set. An upper/lower 
case switch allows the system to be used for document 
preparation. Cursor control keys are also provided. 

Peripheral Interface 
A UPI-41 Universal Peripheral Interface on the 10C board 
performs similar functions to the UPI-41 on the PIO 
board in the Model 210. It provides interface for other 
standard Intellec peripherals including a printer, high 
speed paper tape reader, high speed paper tape punch, 

and universal PROM programmer. Communication 
between the IPB and 10C is maintained over a separate 
8-bit bidirectional data bus. Connectors for the four 
devices named above, as well as the two serial chan­
nels, are mounted directly on the 10C itself. 

Control 
User control is maintained through a front panel, con­
sisting of a power switch and indicator, reset/boot 
switch, run/halt light, and eight interrupt switches and 
indicators. The front panel circuit board is attached 
directly to the IPB, allowing the eight interrupt switches 
to connect to the primary 8259A, as well as to the Intellec 
Series II bus. 

Diskette System 
The Intellec Series II double density diskette system 
provides direct access bulk storage, intelligent control­
ler, and two diskette drives. Each drive provides V2 mil­
lion bytes of storage with a data transfer rate of 500,000 
bits/second. The controller is implemented with Intel's 
powerful Series 3000 Bipolar Microcomputer Set. The 
controller provides an interface to the Intellec Series II 
system bus, as well as supporting up to four diskette 
drives. The diskette system records all data in soft sec­
tor format. The diskette system is capable of performing 
seven different operations: recalibrate, seek, format 
track, write data, write deleted data, read data, and verify 
CRC. 

Diskette Controller Boards - The diskette controller 
consists of two boards, the channel board and the inter­
face board. These two PC boards reside in the Intellec 
Series II system chassis and constitute the diskette 
control1er. The channel board receives, decodes and 
responds to channel commands from the 8080A-2 CPU 
in the Model 230. The interface board provides the 
diskette controller with a means of communication with 
the diskette drives and with the Intellec system bus. The 
interface board validates data during reads using a 
cyclic redundancy check (CRG) polynomial and gener­
ates CRC data during write operations. When the disk­
ette controller requires access to Intellec system mem­
ory, the interface board requests and maintains DMA 
master control of the system bus, and generates the 
appropriate memory command. The interface board also 
acknowledges I/O commands as required by the Intellec 
bus. In addition to supporting a second set of double 
density drives, the diskette controller may co-reside 
with the Intel single density controller to allow up to 2.5 
million bytes of on-line storage. 

MULTIBUS Capability 

All Intellec Series II models implement the industry 
standard MULTIBUS. MULTIBUS enables several bus 
masters, such as CPU and DMA devices, to share the 
bus and memory by operating at different priority levels. 
Resolution of bus exchanges is synchronized by a bus 
clock signal derived independently from processor 
clocks. Read/write transfers may take place at rates up 
to 5 MHz. The bus structure is suitable for use with any 
Intel microcomputer family. 
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MODEL230 

SPECIFICATIONS 

Host Processor (IPB) 
RAM - 64K (system monitor occupies 62K through 64K) 
ROM - 4K (2K in monitor, 2K in boot/diagnostic) 

Diskette System Capacity (Basic Two Drives) 

Unformatted 
Per Disk: 6.2 megabits 
Per Track: 82.0 kilobits 
Formatted 
Per Disk: 4.1 megabits 
Per Track: 53.2 kilobits 

Diskette Performance 
Diskette System Transfer Rate - 500 kilobits/sec 
Diskette System Access Time 
Track·to-Track: 10 ms 
Head Settling Time: 10 ms 
Average Random Positioning Time - 260 ms 
Rotational Speed - 360 rpm 
Average Rotational Latency - 83 ms 
Recording Mode - M2FM 

Physical Characteristics 
Width - 17.37 in. (44.12 cm) 
Height - 15.81 in. (40.16 cm) 
Depth - 19.13 in. (48.59 cm) 
Weight - 73 Ib (33 kg) 

Keyboard 
Width - 17.37 in. (44.12 cm) 
Height - 3.0 in. (7.62 cm) 
Depth - 9.0 in. (22.86 cm) 
Weight - 6 Ib (3 kg) 

Dual Drive Chassis 
Width - 16.88 in. (42.88 cm) 
Height - 12.08 in. (30.68 cm) 
Depth - 19.0 in. (48.26 cm) 
Weight - 64 Ib (29 kg) 

Electrical Characteristics 
DC Power Supply 

Volts Amps Typical 
Supplied Supplied System Requirements 

+ 5±5% 30 14,25 
+ 12±5% 2.5 0,2 
-12±5% 0.3 0,05 
-10±5% 1.5 15 
+1S±S% 1.5 1,3 
+24±5% 1.7 

• Not available on bus. 

ORDERING INFORMATION 
Part Number Description 
MDS-230 

MDS-231 

Intellec Series II Model 230 
microcomputer development system 
(110V/60 Hz) 

Intellec Series II Model 230 
microcomputer development system 
(220V/50 Hz) 

AC Requirements - 50/60 Hz, 115/230V AC 

Environmental Characteristics 
Operating Temperature - 0° to 35°C (95°F) 

Equipment Supplied 
Model 230 chassis 
Integrated processor board (IPB) 
110 controller board (lOC) 
32K RAM board 
CRT and keyboard 
Double density lIoppy disk controller (2 boards) 
Qual drive lIoppy disk chassis and cables 
2 floppy disk drives (512K byte capacity each) 
ROM-resident system monitor 

ISIS-II system diskette with MCS-80/MCS-85 
macroassembler 

Reference Manuals 
9800558 - A Guide to Microcomputer Development 
Systems (SUPPLIED) 

9800550 - Intellec Series II Installation and Service 
Guide (SUPPLIED) 

9800306 - ISIS-II System User's Guide (SUPPLIED) 

9800558 - Intellec Series II Hardware Reference Man­
ual (SUPPLIED) 

9800301 - 8080/8085 Assembly Language Program­
ming Manual (SUPPLIED) 

9800292 - ISIS-II 8080/8085 Assembler Operator's Man­
ual (SUPPLIED) 

9800605 - Intellec Series II Systems Monitor Source 
Listing (SUPPLIED) 

9800554 - Intellec Series II Schematic Drawings 
(SUPPLIED) 

Reference manuals are shipped with each product only 
if deSignated SUPPLIED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051 . 
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PL/M·86 high level programming Ian· 
guage 

ASM86 macro assembler for 8086/8088 
assembly language programming 

LINK86 and LOC86 linkage and 
relocation utilities 

CONV86 converter for conversion of 
8080/8085 assembly language source 
code to 8086/8088 assembly language· 
source code 

OH86 obJect·to·hexadecimal converter 

LlB86 library manager 

The 808618088 software development package provides a set of software development tools for the 8086 and the 8088 
microprocessors and ISsC 86112 single board computer. The package operates under the ISIS·II operating system on 
Intellec Microcomputer Development Systems-Model 800 or Series II-thus minimizing requirements for additional 
hardware or training for Intel Microcomputer Development System users. 

The package permits 808018085 users to efficiently convert existing programs into 808618088 object code from either 
8080/8085 assembly language source code or PLlM-80 source code. 

For the new Intel Microcomputer Development System user, the package operating on an Intellec Model 230 Micro· 
computer Development System provides total 8086/8088 software development capability. 
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PL/M·86 HIGH LEVEL PROGRAMMING LANGUAGE 

Sophisticated new complier design 
allows user to achieve maximum benefits 
of 808618088 capabilities 

Language Is upward compatible from 
PL/M·80, assuring MCS·80/8S deSign 
portability 

Supports 16·bit signed Integer and 32·bit 
floating point arithmetic 

Produces relocatable and linkable object 
code . 

Supports full extended addressing 
features of the 8086 and the 8088 
microprocessors 

Code optimization assures efficient code 
generation and minimum application 
memory utilization 

Like its counterpart for MCS-80/85 program development, PLlM-86 Is an advanced structured high level programming 
language. PLlM-86 is a new compiler created specifically for performing software development for the Intel 8086 and 
8088 Microprocessors. 

PLlM-86 has significant new capabilities over PLlM-80 that take advantage of the new facilities provided by the 8086 
and the 8088 microprocessors, yet the PLlM-86 language remains upward compatible from PL/M-80. 

With the exception of Interrupts, hardware flags, and time-critical code sequences, PLlM-80 programs may be recom­
piled under PLM-86 with little or no conversion required. PLlM-86, like PLlM-80, is easy to learn, facilitates rapid pro­
gram development, and reduces program maintenance costs. 

PLiM is a powerful, structured high level algorithml.c language In which program statements can naturally express the 
program algorithm. This frees the programmer to concentrate on the system Implementation without concern for bur­
densome details of assembly language programming (such as register allocatlon,meanlngs of assembler mnemonics, 
etc.). 

The PL/M-86 compiler effiCiently converts free-form PLiM language statements into equivalent 8086/8088 machine in­
structions. Substantially fewer PLiM statements are necessary for a given application than if it were programmed at 
the assembly language or machine code level. 

Since PLiM programs are implementation problem oriented and more compact, use of PLiM results in a high degree of 
engineering productivity during project development. This translates Into significant reductions in initial software 
development and follow-on maintenance costs for the user. 

FEATURES 

Major features of the Intel PLlM-86 compiler and pro­
gramming language include: 

• Supports Five Data Types 

- Byte: 8-bit unsigned number 
- Word: 16-bit unsigned number 

Integer: 16-bit signed number 
- Real: 32-bit floating pOint number 
- Pointer: 16-blt or 32-blt memory address indicator 

• Block Structured Language 

- Permits use of structured programming tech­
niques 

• Two Data Structuring Facilities 

- Array: Indexed list of same type data elements 
- Structure: Named collection of same or different 

type data elements 
- Combinations of Each: Arrays of structures or 

structures of arrays 

• Relocatable and Linkable Object Code 

- Permits PLlM-86 programs to be developed and 
debugged in small modules. These modules can 
be easily linked with other PLlM-86 or ASM86 ob­
ject modules and/or library routines to form a com­
plete application system. 

• Bullt·ln String Handling Facilities 

- Operates on byte strings or word strings 
- Six Functions: MOVE, COMPARE, TRANSLATE, 

SEARCH, SKIP, and SET 

• Automatic Support for 8086 Extended Addressing 

- Three compiler options offer a separate model of 
computation for programs up to 1-Megabyte In 
size 

- Language transparency for extended addressing 

• Support for ICE-86 Emulator and Symbolic Debugging 

- Debug option for Inclusion of symboi table in ob­
ject modules for In-Circuit Emulation with sym­
bolic debugging 
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• Numerous Complier Options 

A host of 26 compiler options including: 

• Conditional compilation 
• Included file or copy facility 
• Two levels of optimization 
• Intra-module and inter-module cross reference 
• Arbitrary placement of compiler and user files 

on any available combination of disk drives 

• Reentrant and Interrupt Procedures 

- May be specified as user options 

BENEFITS 

PLlM-86 is designed to be an efficient, cost-effective 
solution to the special requirements of 8086/8088 
Microcomputer Software Development, as illustrated by 
the following benefits of PL/M-86 use: 

• Reduced Learning Effort - PLlM-86 is easy to learn 
and to use, even for the novice programmer. 

• Earlier Project Completion - Critical projects are 
completed much earlier than otherwise possible 
because PLlM-86, a structured high-level language, in­
creases programmer productivity. 

• Lower Development Cost - Increases in programmer 
productivity translate immediately into lower soft­
ware development costs because less programming 
resources are required for a given programmed func­
tion. 

• Increased Reliability - PLlM-86 is designed to aid in 
the development of reliable software (PLlM-86 pro­
grams are simple statements of the program 
algorithm). This substantially reduces the risk of cost­
ly correction of errors in systems that have already 
reached full production status, as the more simply 
stated the program is, the more likely it is to perform 
its intended function. 

• Easler Enhancements and Maintenance - Programs 
written in PLiM tend to be self~documenting, thus 
easier to read and understand. This means it is easier 
to enhance and maintain PLiM programs as the 
system capabilities expand and future products are 
developed. 

• Simpler Project Development - The Intellec Develop­
ment Systems offer a cost-effective hardware base 

for the development of 8086 and 8088 designs. 
PLlM-86 and other elements of ISIS-II and the 80861 
8088 Software Development Package are all that Is 
needed for development of software for the 8086 and 
the 8088 microcomputers and iSBC 86/12 single board 
computer. This further reduces development time and 
costs because expensive (and remote) time sharing of 
large computers is not required. Present users of Intel 
Intellec Development Systems can begin to develop 
8086 and 8088 designs without expensive hardware 
reinvestment or costly retraining. 

SAMPLE PROGRAM 

STATISTICS: DO; 

I*The procedure in this module computes the mean and 
variance of an array of data, X, of length N + 1, according 
to the method of Kahan and Parlett (University of Cali­
fornia, Berkeley, Memo no. UCB/ERL M77/21.*1 

STAT: PROCEDURE(X$PTR,N,MEAN$PTR, 
VARIANCE$PTR) PUBLIC; 

DECLARE 
(X$PTR,MEAN$PTR,VARIANCE$PTR) 
POINTER,X BASED X$PTR (1) REAL, 
N INTEGER, 
MEAN BASED MEAN$PTR REAL, 
VARIANCE BASED VARIANCE$PTR REAL, 
(M,Q,DIFF) REAL, 
I INTEGER; 

M=X(O); 
M=O.O; 

DO 1=1 TO N; 
DIFF=X(I)- M; 
M = M + DIFF/FLOAT(I + 1); 
Q= Q+ DIFF*DIFF*FLOAT(I)/FLOAT(I + 1); 

END; 

MEAN=M; 
VARIANCE = Q/FLOAT(N); 

END STAT; 

END STATISTICS; 
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ASM86 MACRO ASSEMBLER 

Powerful and flexible text macro facility 
with three macro listing options to aid 
debugging 

Highly mnemonic and compact 
language, most mnemonics represent 
several distinct machine instructions 

"Strongly typed" assembler helps detect 
errors at assembly time 

Hlgh·level data structuring facilities 
such as "STRUCTUREs" and 
"RECORDs" 

Over 120 detailed and fully documented 
error messages 

Produces relocatable and linkable object 
code 

ASMas Is the "high-level" macro assembler for the 8086/8088 assembly language. ASM86 translates symbolic 
8066/8088 assembly language mnemonics into 8086/8088 machine code. 

AS Mas should be used where maximum code efficiency and hardware control is needed. The 808618088 assembly 
language includes approximately 100 instruction mnemonics. From these few mnemonics the assembler can generate 
over 3,800 d.lstinct machine Instructions. Therefore, the software development task is simplified, as th!! programmer 
need know only 100 mnemonics to generate all possible 8086/8088 machine instructions. ASM86 will generate the 
shortest machine Instruction possible given no forward referencing or given explicit information as to the 
characteristics of forward referenced symbols. 

ASM86 offers many features normally found only In hlgh·levellanguages. The 8086/8088 assembly language is strong­
ly typed. The assembler performs extensive checks on the usage of variables and labels. The assembler uses the at· 
tributes which are derived explicitly when a variable or label Is first defined, then makes sure that each use of the sym· 
bolln later Instructions conforms to the usage defined for that symbol. This means that many programming errors will 
be detected when the program is assembled, long before It is being debugged on hardware. 

FEATURES 

Major features of the Intel 8086/8088 assembler and 
assembly language include: . 

• Powerful and Flexible Text Macro Facility 
- Macro calls may appear anywhere 
- Allows user to define the syntax of each macro 

Bu IIt-i n functions 
• conditional assembly (IF-THEN-ELSE, WHILE) 
• repetition (REPEAn 
• string processing functions (MATCH) 
• support of assembly time I/O to console (IN, 

OUT) 
- Three Macro Listing Options include a GEN mode 

which provides a complete trace of all macro calls 
and expansions 

• High-Level Data Structuring Capability 

- STRUCTURES: Defined to be a template and then 
used to allocate storage. The familiar dot notation 
may be used to form instruction addresses with 
structure fields. 

- ARRAYS: Indexed list of same tyP!! data !!I!!ments. 
RECORDS: Allows bit-templates to b!! defln!!d and 
used as instruction operands andlor to allocate 
storage. 

• Fully Supports 808618088 Addressing Modes 

- Provides for compl!!x address expressions Involv­
ing base and indexing regist!!rs and (structure) 
field offsets. 

- Powerful EQU facility allows complicated expres­
sions to be named and the name can be used as a 
synonym for the expression throughout the 
mOdule. 

• Powerful STRING MANIPULATION INSTRUCTIONS 

- Permit direct transfers to or from memory or the 
accumulator. 

- Can be prefixed with a repeat operator for 
repetitive execution with a count·down and a con­
dition test. 

• Over 120 Detailed Error Me •• age. 

- Appear both In regular list file and error print file. 
- User documentation fully explains the occurrence 

of each error and sUggests a method to correct It. 
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• Generate. Relocatable and Linkable Object Code­
Fully Compatible with LINK88, LOC8S and LlB8S 

- Permits ASM86 programs to be developed and 
debugged in small modules. These modules can 
be easily linked with other ASM86 or PLlM-86 ob­
ject modules andlor library routines to form a com­
plete application system. 

• Support for ICE-86 Emulation and Symbolic Debug­
ging 

- Debug options for inclusion of symbol table in 
object modules for In-Circuit Emulation with sym­
bolic debugging. 

BENEFITS 

The 8086/8088 macro assembler allows the extensive 
capabilities of the 8086/8088 to be fully exploited. In any 
application, time and space critical routines can be 
effectively written in ASM86. The 8086/8088 assembler 
outputs relocatable and linkable object modules. These 
object modules may be easily combined with object 
modules written in PLlM-86-lntel's structured, high­
level programming language. ASM86 compliments 
PLM-86 as the programmer may choose to write each 
module In the language most appropriate to the task 
and then combine the modules into the complete appli­
cations program using the 8086/8088 relocation and 
linkage utilities. 

CONV86 

MCS·80/85 to MCS·86 ASSEMBLY LANGUAGE 
CONVERTER UTILITY PROGRAM 

Translates SOS01S0S5 Assembly 
Language Source Code to SOS61S0SS 
Assembly Language Source Code 

Provides a fast and accurate means to 
convert SOS01S0S5 programs to the SOS6 
and the SOSS, facilitating program 
portability 

Automatically generates proper ASM·S6 
directives to set up a "virtual SOSO" 
environment that Is compatible with 
PLM·86 

In support of Intel's commitment to software portability, CONV86 Is offered as a tool to move 8080/8085 programs to 
the 8086 and the 8088. A comprehensive manual, "MCS-86 Assembly Language Converter Operating Instructions for 
ISIS-II Users" (9800642), covers the entire conversion process. Detailed methodology of the conversion process is fully 
described therein. 

CONV86 will accept as input an error-free 8080/8085 assembly-language source file and optional controls, and produce 
as output, optional PRINT and OUTPUT files. 

The PRINT file Is a formatted copy of the 8080/8085 source and the 8086/8088 source file with embedded caution 
messages. 

The OUTPUT file Is an 8086/8088 source file. 

CONV86 issues a caution message when It detects a potential problem in the converted 8086/8088 code. 

A transliteration of the 8080/8085 programs occurs, with each 8080/8085 construct mapped to Its exact 808618088 
counterpart: 

-Registers 
-Condition flags 
-Instructions 
-Operands 
-Assembler directives 
-Assembler control lines 
-Macros 
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Because CONV86 is a transliteration process, there is the possibility of as much as a 15%-20% code expansion over 
the 8080/8085 code. For compactness and efficiency it is recommended that critical portions of programs be re-coded 
in 8086/8088 assembly language. 

Also, as a consequence of the tranSliteration, some manual editing may be required for converting instruction se­
quences dependent on: 

-instruction length, timing, or encoding 
-interrupt processing } mechanical editing procedures 
-PLIM parameter passing conventions for these are suggested in the converter manual. 

The accompanying diagram illustrates the flow of the conversion process. Initially, the abstract program may be repre­
sented in 8080/8085 or 808618086 assembly language to execute on that respective target machine. The conversion 
process is porting a source destined for thE! 8080/8085 to the 8086 or the 8088 via CONV86. 

SOURCE CODE ABSTRACT PROGRAM SOURCE CODE 
IN 8080/8085 ---- IN 8086/8088 

ASSEMBLY LANG ALGORITHM ASSEMBLY LANG 

II II 
ASSEMBLE ASSEMBLE 

FOR CONva6 . FOR 
808018085 8086/8088 

EXECUTE 1-------- EOUIVALENT 1-------- EXECUTe 
ON 1-------- FUNCTION ON 

8080/8085 1-------- 808618088 

PORTING 808018085 SOURCE CODe TO THE 808618088 
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LINK86 

Automatic combination of separately 
compiled or assembled 8086/8088 
programs into a relocatable module 
Automatic selection of required modules 
from specified libraries to satisfy 
symbolic references 
Extensive debug symbol manipulation, 
allowing line numbers, local symbols, 
and public symbols to be purged and 
listed selectively 

Automatic generation of a summary map 
giving results of the LlNK86 process 

Abbreviated control syntax 

Relocatable modules may be merged 
into a single module suitable for 
inclusion in a library 

Supports "incremental" linking 

Supports type checking of public and 
external symbols 

LlNK86 combines object modules specified in the LlNK86 input list into a single output mOdule. LlNK86 combines 
segments from the input modules according to the order in which the mOdules are listed. 

Support for incremental linking is provided since an output module produced by LlNK86 can be an input to another 
link. At each stage in the incremental linking process, unneeded public symbols may be purged. 

LlNK86 supports type checking of public and external symbols reporting an error if their types are not conSistent. 

LlNK86 will link any valid set of input modules without any controls. However, controls are available to control the out­
put of diagnostic information in the LlNK86 process and to control the content of the output module. 

LlNK86 allows the user to create a large program as the combination of several smaller, separately compiled modules. 
After development and debugging of these component modules the user can link them together, locate them using 
LOC86, and enter final testing with much of the work accomplished. 

LOC86 

Automatic and independent relocation 
of segments. Segments may be 
relocated to best match users memory 
configuration 

Extensive debug symbol manipulation, 
allowing line numbers, local symbols, 
and public symbols to be purged and 
listed selectively 

Automatic generation of a summary map 
giving starting address, segment 
addresses and lengths, and debug 
symbols and their addresses 

Extensive capability to manipulate the 
order and placement of segments in 
8086/8088 memory 

Abbreviated control syntax 

Relocatabllity allows the programmer to code programs or sections of programs without having to know the final ar­
rangement of the object code in memory. 

LOC86 converts relative addresses in an input module to absolute addresses. LOC86 orders the segments in the input 
module and assigns absolute addresses to the segments. The sequence in which the segments in the input module 
are assigned absolute addresses is determined by their order in the input module and the controls supplied with the 
command. 

LOC86 will relocate any valid input module without any controls. However, controls are available to control the output 
of diagnostic information in the LOC86 process, to control the content of the output module, or both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), read-only 
memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your program affects both 
cost and performance in your application. The relocation feature allows you to develop your program on the Intellec 
development system and then simply relocate the object code to suit your application. 
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Converts an 8086/8088 absOlute object 
module to symbolic hexadecimal format 

Facilitates preparing a file for later 
loading by a symbolic hexadecimal 
loader, such as the ISBC Monitor or 
Universal PROM Mapper 

OH86 

Converts an absolute module to a more 
readable format that can be displayed 
on a CRT or printed for debugging 

The OH86 command converts an 8086/8088 absolute object module to the hexadecimal format. This conversion may 
be necessary to format a module for later loading by a hexadecimal loader such as the iSSC 86/12 monitor or Universal 
Prom Mapper. The conversion may also be made to put the module In a more readable format that can be displayed or 
printed. 

The module to be converted must be In absolute format; the output from LOC86 is in absolute format. 

LlB86 is a library manager program 
which allows you to: 

Create specially formatted files to 
contain libraries of object modules 

Maintain these libraries by adding or 
deleting modules 

Print a listing of the modules and 
public symbols in a library file 

LlB86 

Libraries can be used as input to LlNK86 
which will automatically link modules 
from the library that satisfy external 
references in the modules being linked 

Abbreviated control syntax 

Libraries aid in the Job of building programs. The library manager program, L1S86, creates and maintains flies contain· 
ing object modules. The operation of L1S86 is controlled by commands to indicate which operation L1S86 is to per· 
form. The commands are: 

CREATE - creates an empty library file 
ADD - adds object modules to a library file 
DELETE - deletes modules from a library file 
LIST - lists the module directory of library files 
EXIT - terminates the L1S86 program and returns control to ISIS·II 
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ISIS·II t- PLlM·86 f--8- ~,~" .. " USER SDK·86 TEXT EDITOR SOURCE COMPILER OBJECT MODULE SYSTEM 

LINK86 
I- AND I- OH86 iSBC 86112 

LOC86 

ISIS·II r-- ASM66 
ASM66 RELOCATABLE ICE·66 UPM TEXT EDITOR SOURCE OBJECT MODULE 

ASM80/85 
CONVa6 SOURCE 
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SPECIFICATIONS 

Operating Environment 
Required Hardware 

InteHec Microcomputer Development System 

- MDS-800, MDS-888 
- Series II MDS-220 or MDS-230 
64K Bytes of RAM Memory 

Dual Diskette Drives 

- Single or Double· Density 

System Console 

- CRT or Hardcopy Interactive Device 

Optional Hardware 

Universal PROM Programmer 
Line Printer· 
ICE-86™. 

Required Software 

ISIS-II Diskette Operating System 

- Single or Double· Density 

·Recommended 

ORDERING INFORMATION 

Part Number Description 
MDS-311 808618088 Software Development 

Package 

Also available in the following development support 
packages: 

Part Number Description 
SP86A-KIT 

SP86B-KIT 

SP86A Support Package (for Intellec 
Model 800) 

Includes ICE-86 In-Circuit Emulator 
(MDS-86-ICE) and 808618088 Software 
Development Package (MDS-311) 

SP86B Support Package (for Series II) 

Includes ICE-86 In-Circuit Emulator 
(MDS-86-ICE), 808618088 Software 
Development Package (MDS-311), 
and Series II Expansion Chassis 
(MDS-201) 
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Documentation Package 

PlIM-86 Programming Manual (9800466) 
ISIS-II PlIM-86 Compiler Operator's Manual (9800478) 
MCS-86 User's Manual (9800722) 
MCS-86 Software Development Utilities Operating 

Instructions for ISIS-II Users (9800639) 
MCS-86 Macro Assembly Language Reference Manual 

(9800640) 
MCS-86 Macro Assembler Operating Instructions for 

ISIS-II Users (9800641) 
MCS-86 Assembly Language Converter Operating 

Instructions for ISIS-II Users (9800642) 
Universal PROM Programmer User's Manual 

(9800819A) 

Flexible Diskettes 

- Single and Double· Oensity 



inter 
8089 ASSEMBLER SUPPORT PACKAGE 

8089 1/0 processor program generation 
on the Intellec Microcomputer 
Development System. 

Relocatable object module compatible 
with the 8086 and 8088 Microprocessors. 

Supports 8089-based addressing modes 
with a structure facility that enables easy 
access to based data. 

Fully detailed set of error messages. 

Includes software development utilities 
to facilitate 8089 design. 

-LlNK86: Combines 8086 or 8088 object 
modules with 8089 object 
modules and resolves 
external references. 

-LOC86: Assigns absolute memory 
addresses to 8089 object 
modules. 

-OH86: Converts 8086/8088/8089 
object code to symbolic 
hexadecimal format. 

-UPM86: A PROM programming aid 
which has been updated to 
support PROM programming 
for 8086, 8088 and 8089 
applications. 

The 8089 Assembler Support Package extends Intellec microcomputer development system support to the 8089 ilO 
Processor. The assembler translates 8089 assembly language source instructions into appropriate machine opera­
tion codes. The 8089 Assembler Support Package allows the programmer to fully utilize the capabilities of the 80891/0 
Processor. 
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FUNCTIONAL DESCRIPTION 

The 8089 Assembler Support Package contains the 8089 
assembler (ASM89) as well as LlNK86 and LOC86-
relocation and linkage utilities, OH86-8086/8088/8089 
object code to hexadecimal converter, and UPM86-
PROM programming software updated to program object 
code in the 8086 formats. ASM89 translates symbolic 
8089 assembly language instructions into the appro­
priate machine operation codes. The ability to refer to 
program addresses with symbolic names eliminates the 
errors of hand tranSI.ation and makes it easier to modify 
programs when adding or deleting instructions. 

ASM89 provides relocatable object module compat­
ibility with the 8086 and 8088 microprocessors. This 
object module compatibility, along with the 8086/8088 
relocation and,linkage utilities, facilitates the designing 
of the 8089 into an 8086 or 8088 system. 

ASM89 fully supports the based addressing modes of 
the 8089. A structure facility in the assembler provides 
easy access to based data. The structure facility allows 
the user to define a template that enables accessing of 
based data symbolically. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 

Intellec Microcomputer Development System 

-MDS-8oo, MDS-888 

-Series II Models 220 or 230 

64K Bytes of RAM Memory 

Minimum One Diskette Drive 

-Single or Double" Density 

System Console 

-CRT or Hardcopy Interactive Device 

Optional Hardware 

Universal PROM Programmer" 
Line Printer" 

ORDERING INFORMATION: 

Part Number 
MDS-312 

Description 
8089 Assembler Support Package 

A sample assembly listing is shown in table 1. 

18)1-11 "" II$UMllU VII IUIU.LV OF MODULE COHSOL 
a.JEer MODULE "LUlD IN ,n,CONSOL o.~ 
USU'LU [nOICED IV UIIU CQNUl.$RC 

1 CONSOLE SEGMENT . 
3 , IHITULI~E U~$ ,U ~IIO e27f kUlllliIU (al!TROLLERS . 
5 CONTROL 
, ; aus POATS .... .U, 

11.2 

? PARU5' os I ,PARilMUn pon 
8 "lIUII, OS I 
, ST/IIT?5, OS I ; sro,TuSlCa""IiINO PUT 

" g ~u~~~:: PO:!S 3 lin 
'11' ".7 13 STAT?" os I ; ST~TUS!CO""/IIHD PORT 

I4CONTROj,. ENDS 

" .... 11311141 
.114 JUC U II 

U NOVI G/II.41II11 , SET POtT SASE RODItESS 
17 110"1' IGAI iUPS.. ; INITIAliZE 8275 
18 MOYaIICA1PItiI1I75,4FH 
19 MOVIIIGII] '1I/lA7S.I0311 :::~ :::~:::~ 

1111 Ilut II U 2B MD'I8IIGIilIPAIIA75.'AII 
11101 IUt II" 21 "01181 I Glil I P~I!A75. I illi 

" 1111 IUt u .. U MOYIIIC'" Sf1IITH,1 ; INITULIZE U7t 
"It 1114t 16 31 24 "OYIIIGAI STIIT7',UH .. 

26 COHSOLE ENDS 

" .. 
OEFHVIILllf TYPE .......... -_ .. 

, IIII m COHSOLf · IIII m COHUOL · .1'1 '" HULLII 

" IIU m HULLII , 1 .. 1 m PII.,.15 · I .. a '" SUT7S 

" II .. '" STnn 

Table 1. Sample 8089 Assembly Lisling 

Required Software 

ISIS-II Diskette Operating System 

-Single or Double" Density 

Documentation Package 
8089 Assembler User's Guide (9800938) 

8089 Assembler Pocket Reference (9800936) 

MCS-86 Software Development Utilities 
Operating Instructions for ISIS-II User's (9800639) 

MCS-86 Absolute Object File Formats (9800821) 

Universal PROM Programmer User's Manual (9800819) 

Flexible Diskettes 
-Single and Double" Density • Recommended 
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8086 IN·CIRCUIT EMULATOR 

Hardware in-circuit emulation 

Full symbolic debugging 

Breakpoints to halt emulation on a wide 
variety of conditions 

Comprehensive trace of program execu­
tion, both conditional and unconditional 

Disassembly of trace or memory from 
object code into assembler mnemonics 

2K bytes of high speed ICE-86 mapped 
memory 

Software debugging with or without user 
system 

Handles full 1 megabyte addressability of 
8086 

Compound commands 

Command macros 

lhe ICE-86 module provides In-Circuit Emulation for the 8086 microprocessor and the iSBC 86/12 Single Board Com­
puter. It Includes three circuit boards which reside In Intelle~ Microcomputer Development Systems. A cable and 
buffer box connect the Intellec system to the user system by replacing the user's 8086. Powerfullntellec debug func­
tions are thus extended into the user system. Using the ICE-86 module, the designer can execute prototype software 
in continuous or single-step mode and can substitute blocks of Intellec system memory for user equivalents. Break­
points allow the user to stop emulation on user-specified conditions, and the trace capability gives a detailed history 
of the program execution prior to the break. All user access to the prototype system software may be done symbolically 
by referring to the source program variables and labels. 
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INTEGRATED HARDWARE/SOFTWARE 
DEVELOPMENT 

The ICE-86 emulator allows hardware and software 
development to proceed interactively. This is more ef­
fective than the traditional method of independent hard­
ware and software development followed by system in­
tegration. With the ICE-86 module, prototype hardware 
can be added to the system as it is designed. Software 
and hardware testing occurs while the product is being 
developed. 

Conceptually, the ICE-86 emulator assists three stages 
of development: 

1. It can be operated without being connected to the 
user's system, so ICE-86 debugging capabilities can 
be used to facilitate program development before any 
of the user's hardware is available. 

2. Integration of software and hardware can begin when 
any functional element of the user system hardware 
is connected to the 8086 socket. Through ICE-86 
mapping capabilities, Intellec memory, ICE memory, 
or diskette memory can be substituted for missing 
prototype memory. Time-critical program mOdules 
are debugged before hardware implementation by us­
ing the 2K-bytes of high-speed ICE-resident memory. 
As each section of the user's hardware is completed, 
it is added to the prototype. Thus each section of the 
hardware and software is "system" tested as it 
becomes available. 

3. When the user's prototype is complete, it is tested 
with the final version of the user system software. 
The ICE-86 module is then used for real time emula­
tion of the 8086 to debug the system as a completed 
unit. 

Thus the ICE-86 module provides the user with the abil­
ity to debug a prototype or production system at any 
stage in its development without introducing 
extraneous hardware or software test tools. 

SYMBOLIC DEBUGGING 
Symbols and PLIM statement numbers may be 
substituted for numeric values in any of the ICE-86 com­
mands. This allows the user to make symbolic refer­
ences to 110 ports, memory addresses, and data in the 
user program. Thus the user need not remember the ad­
dresses of variables or program subroutines. 

Symbols can be used to reference variables, proce­
dures, program labels, and source statements. A vari­
able can be displayed or changed by referring to it by 
name rather than by its absolute location in memory. 
Using symbols for statement labels, program labels, and 
procedure names simplifies both tracing and breakpoint 
setting. Disassembly of a section of code from either 
trace or program memory into its assembly mnemonics 
is readily accomplished. 

Furthermore, each symbol may have associated with it 
one of the data types BYTE, WORD, INTEGER, 
SINTEGER (for short, 8-bit integer) or POINTER. Thus 
the user need not remember the type of a source pro­
gram variable when examining or modifying it. For 
example, the command "!VAR" displays the value in 
memory of variable VAR in a format appropriate to its 
type, while the command "!VAR= !VAFf+ 1" increments 
the value of the variable. 

The user symbol table generated along with the object 
file during a PUM-86 compilation or an ASM-86 
assembly is loaded into memory along with the user pro­
gram which is to be emulated. The user may add to this 
symbol table any additional symbolic values for memory 
addresses, constants, or variables that are found useful 
during system debugging. 

The ICE-86 module provides access through symbolic 
definition to all of the 8086 registers and flags. The 
READY, NMI, TEST, HOLD, RESET, INTR, and MN/MX 
pins of the 8086 can also be read. Symbolic references 
to key ICE-86 emulation information are also provided. 

PLUG INTO 
USER 
8088 SOCKET 

r------------- ------------------------ --, 1.-____ ., T·CABLE I 
I I I I 
I I I I 
I I I I 
I I IN~~~TEC I : 
I I I I 
I I I 
I I I I I L ____ .....l I 
L ______________________________ ....!N~L~CJ 

Figure 1. ICE-86 Block Diagram 
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A typical ICE-88 development configuration. It Is based on a Model 230 Development System, which also Includes a 
Double Density Diskette Operating System and a Model 201 Expansion Chassis (which holds the ICE·88 emulator). The 
ICE·88 module Is shown connected to a user prototype system, In this case an SDK·88. 

MACROS AND COMPOUND COMMANDS 
The ICE·86 module provides a programmable diagnostic 
facility which allows the user to tailor its operation us· 
ing macro commands and compound commands. 

A macro Is a set of ICE-B6 commands which is given a 
Single name. Thus, a sequence of commands which is 
executed frequently may be invoked Simply by typing in 
a single command. The user first defines the macro by 
entering the entire sequence of commands which he 
wants to execute. He then names the macro and stores 
it for future use. He executes the macro by typing its 
name and passing up to ten parameters to the com­
mands in the macro. Macros may be saved on a disk file 
for use in subsequent debugging sessions. 

Compound commands provide conditional execution of 
commands(lF), and execution of commands until a con­
dition is met or until they have been executed a 
specified number of times (COUNT, REPEAn. 

Compound commands and macros may be nested any 
number of times. 

MEMORY MAPPING 
Memory for the user system can be resident in the user 
system or "borrowed" from the Intellec System through 
ICE-86's mapping capability. 

The ICE-86 emulator allows the memory which is ad­
dressed by the BOB6 to be mapped in 1 K-byte blocks to: 

1. Physical memory in the user's system, 

2. Either of two 1 K-byte blocks of ICE-B6 high speed 
memory, 

3. Intellec memory, 
4. A random-access diskette file. 

The user can also designate a block of memory as non­
existent. The ICE·B6 module issues an error message 
when any such "guarded" memory is addressed by the 
user program. 

Command Description 

GO Initializes emulation and allows the 
user to spt;;cify the starting point 
and breakpoints. Example: 

GO FROM .START TILL .DELAY 
EXECUTED 

where START and DELAY are state-
ment labels. 

STEP Allows the user to single-step 
through the program. 

Table 1. Summary of ICE·86 Emulation Commands 

OPERATION MODES 
The ICE-86 software is a RAM-based program that pro­
vides the user with easy-to-use commands for initiating 
emulation, defining breakpoints, controlling trace data 
collection, and displaying and controlling system 
parameters. ICE-B6 commands are configured with a 
broad range of modifiers which provide the user with 
maximum flexibility in describing the operation to be 
performed. 

Emulation 
Emulation commands to the ICE-B6 emulator control the 
process of setting up, running and halting an emulation 
of the user's 8OB6. Breakpoints and tracepoints enable 
ICE·B6 to halt emulation and provide a detailed trace of 
execution in any part of the user's program. A summary 
of the emulation commands is shown in Table 1. 

Breakpoints - The ICE-B6 module has two breakpoint 
registers that allow the user to halt emulation when a 
specified condition is met. The breakpoint registers may 
be set up for execution or non-execution breaking. An 
execution breakpoint consists of a Single address 
which causes a break whenever the BOB6 executes from 
its queue an instruction byte which was obtained from 
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the address. A non-execution breakpoint causes an 
emulation break when a specified condition other than 
an instruction execution occurs. A non-execution break­
point condition, using one or both breakpoint registers, 
may be specified by anyone of or a combination of: 

1. A set of address values. Break on a set of address 
values has three valuable features: 

a. Break on a single address. 

b. The ability to set any number of breakpoints within 
a limited range (1024 bytes maximum) of memory. 

c. The ability to break in an unlimited rar,ge. Execu­
tion is halted on any memory access to an address 
greater than (or less than) any 20-bit breakpoint ad­
dress. 

2. A particular status of the 8086 bus (one or more of: 
memory or 110 read or write, instruction fetch, halt, or 
interrupt acknowledge). 

3. A set of data values (features comparable to break on 
a set of address values, explained in pOint one). 

4. A segment register (break occurs when the register is 
used in an effective address calculation). 

An external breakpoint match output for user access is 
provided on the buffer box. This allows synchronization 
of other test equipment when a break occurs. 

Tracepoints - The ICE-86 module has two tracepoint 
registers which establish match conditions to condi­
tionally start and stop trace collection. The trace infor­
mation is gathered at least twice per bus cycle, first 
when the address signals are valid and second when the 
data signals are valid. If the 8086 execution queue is 
otherwise active, additional frames of trace are col· 
lected. 

Each trace frame contains the 20 addressldata lines and 
detailed information on the status of the 8086. The trace 
memory can store 1,023 frames, or an average of about 
300 bus cycles, providing ample data for determining 
how the 8086 was reacting prior to emulation break. The 
trace memory contains the last 1,023 frames of trace 
data collected, even if this spans several separate 
emulations. The user has the option of displaying each 
frame of the trace data or displaying by instruction in ac· 
tual ASM-86 Assembler mnemonics. Unless the user 
chooses to disable trace, the trace information is 
always available after an emulation. 

Interrogation and Utility 
Interrogation and utility commands give the user con· 
venient access to detailed information about the user 
program and the state of the 8086 that is useful in 
debugging hardware and software. Changes can be 
made in both memory and the 8086 registers, flags, in· 
put pins, and I/O ports. Commands are also provided for 
various utility operations such as loading and saving 
program files, defining symbols and macros, displaying 
trace data, selling up the memory map, and returning 
control to ISIS-II. A summary of the basic interrogation 
and utility commands is shown in Table 2. 

Memory/Register Commands 

Display or change the contents of: 

• Memory 
• 8086 Registers 
• 8086 Status flags 
• 8086 Input pins 
• 8086 I/O ports 
• ICE·B6 Pseudo-Registers (e.g. emulation timer) 

Memory Mapping Commands 

Display, declare, set. or reset the ICE·86 memory mapping. 

Symbol Manipulation Commands 

Display any or all symbols, program modules, and program 
line numbers and their aSSOCiated values (locations in 
memory). 

Set the domain (choose the particular program module) for 
the line numbers. 

Define new symbols as they are needed in debugging. 

Remove any or all symbols, modules, and program 
statements. 

Change the value of any symbol. 

TYPE 

Assign or change the type of any symbol in the symbol table. 

ASM 

Disassemble user program memory into ASM·86 Assembler 
mnemonics. 

PRINT 

Display the specified portion of the trace memory. 

LOAD 

Fetch user symbol table and object code from the input file. 

SAVE 

Send user symbol table and object code to the output file. 

LIST 

Send a copy of all output (including prompts, input line 
echos, and error messages) to the chosen output device (e.g. 
disk, printer) as well as the console. 

EVALUATE 

Display the value of an expression in binary, octal, decimal, 
hexadecimal, and ASCII. 

SUFFIX/BASE 

Establish the default base for numeric values in input 
text/output display (binary, octal, decimal, or hexadecimal). 

CLOCK 

Select the internal (ICE·a6 provided, for stand·alone mode 
only) or an external (user·provided) system clock. 

RWTIMEOUT 

Allows the user to time out READ/WRITE command signals 
based on the time taken by the 8086 to access Intellec 
memory or diskette memory. 

ENABLEIDISABLE ROY 

Enable or disable logical AND of ICE·86 Ready with the user 
Ready signal for accessing Intellec memory, tCE memory, or 
diskette memory. 

Table 2. Summary of Basic ICE·S6 Interrogation and 
Utility Commands 
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DIFFERENCES BETWEEN ICE·86 
EMULATION AND THE 8086 
MICROPROCESSOR 

The ICE·86 module emulates the actual operation of the 
8086 microprocessor with the following exceptions: 

o The ICE·86 module will not respond to a user system 
NMI or RESET signal when it Is out of emulation. 

o Trap is ignored in single step mode and on the first in· 
struction step of an emulation. 

o The MIN/MAX line, which chooses the "minimum" or 
"maximum" configuration of the 8086, must not 
change dynamically in the user system. 

o In the "minimum" mode, the user HOLD signal must 
remain active until HLDA Is output by the ICE·86 
emulator. 

o The RO/GT lines in the "maximum" configuration are 
not supported. 

The speed of run emulation by the ICE·86 module 
depends on where the user has mapped his memory. As 
the user prototype progresses to include memory, 
emulation becomes real time. 

Memory 
Mapped To Estimated Speed 

User System 100% of real time*, up to 4 MHz 
clock 

ICE 2 wait states per 8086·controlled 
bus cycle 

Intellec Approximately 0.02% of real time 
at 4 MHz clock 

Diskette ** 

"100% of real time Is emulation at the user system clock rate with 
no walt states. 

""The emulation speed from diskette is comparable to Inteliec 
memory, but emulation must walt when a new page is accessed 
on the diskette. 

DC CHARACTERISTICS OF ICE·86 
USER CABLE 
1. Output Low Voltages [VoLlMax)= O.4y] 

IOL(Mln) 

ADO·AD15 8mA 
(24 mA @ 0.5V) 

8mA A16/S3·A19/S7, SHE/57, RD, 
LOCK, 050, 051, SO, 51, 52, 
WR, M/iO, DT/R, DEN, ALE, 
INTA 

(16 mA @ 0.5V) 

HLDA 

MATCHO OR MATCH1 (on 
buffer box) 

7mA 

16 mA 

2. Output High Voltages [YOH (Min) = 2.4VJ 
IOH(Mln) 

ADO·AD15 -2mA 

A16/S3·A19/S7, SHE/57, RD, -1 mA 
LOCK, 050, 051, SO, 51, 52, 
WR, M/iO, DT/R, DEN, ALE, 
INTA, HLDA 

MATCHO OR MATCH1 (on 
buffer box) - 0.8 mA 

3. Input Low Voltages [YIL(Max) = O.By] 

ADO·AD15 
NMI, CLK 
READY 
INTR, HOLD, TEST, RESET 
MN/MX (0.1I-'f to GND) 

4. Input High Voltages [VIH(Mln)= 2.0VJ 

ADO·AD15 
NMI, CLK 
READY 
INTR, HOLD, TEST, RESET 
MN/MX (0.1I-'F to GND) 

IlL (Max) 

-0.2 mA 
-0.4 mA 
-0.8 mA 
-1.4mA 
-3.3 mA 

IIH(Max) 

80l-'A 
20,..A 
40l-'A 

-0.4 mA 
-1.1 mA 

5. RO/GTO, RO/GT1 are pulled up to + 5V through a 5.6K 
ohm resistor. No current is taken from user circuit at 
Vee pin. 
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SPECIFICATIONS 

ICE·86 Operating Environment 
Required Hardware 
Intellec microcomputer development system with: 
1. Three. adjacent slots for the ICE-86 module (Series II 

requires Model 201 Expansion Chassis.) 
2. 64K bytes of Intellec memory. If user prototype pro­

gram memory is desired, additional memory above 
the basic 64K is required. 

System console 
Intellec dis~ette operating system 
ICE·86 module 

Required Software 
System monitor 
ISIS·II, version 3.4 or subsequent 
ICE·86 software 

Equipment Supplied 
Printed circuit boards (3) 
Interface cable and emulation buffer module 
Operator's manual 
ICE-86 software, diskette-based 

ORDERING INFORMATION 

Part. Number Description 
MDS·86-ICE 8086 CPU in-circuit emulator 

Emulation Clock 
User system clock up to 4 MHz or 2 MHz ICE-86 internal 
clock in stand-alone mode 

Physlc~1 Characteristics 
Printed Circuit Boards 
Width: 12.00 in (30.48 cm) 
Height: 6.75 in (17.15 cm) 
Depth: 0.50 in (1.27 cm) 
Packaged Weight: 9.00 Ib (4.10 kg) 

Elec.trical Characteristics 
DC Power 

Vcc = +5V +5% -1% 
Icc = 15A maximum; llA typical 
Voo = + 12V ±5% 
100 = 120 mA maximum; 80 mA typical 
Vss = -10V ± 5% or -12V ± 5% (optional) 
Iss = 15 mA maximum; 12 mA typical 

Environmental Characteristics 
Operating Temperature: O· to 40·C 
Operating Humidity: Up to 95% relative humidity with­
out condensation. 
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SINGLE BOARD COMPUTER 

808616 bit HMOS microprocessor 
central processor unit 

32K-bytes of dual-port read/write 
memory expandable on-board to 64K­
bytes with on-board refresh 

Sockets for up to 16K-bytes of read only 
memory expandable on-board to 32K­
bytes 

System memory expandable to 
1 megabyte 

24 programmable parallel 1/0 lines with 
sockets for interchangeable line drivers 
and terminators 

Programmable synchronous 1 
asynchronous RS232C compatible serial 
interface with software selectable baud 
rates 

Two programmable 16-bit BCD or binary 
timers/event counters 

9 levels of vectored interrupt control, 
expandable to 65 levels 

Auxiliary power bus and power fail 
interrupt control logic for read/write 
memory battery backup 

MULTIBUS interface for multimaster 
configurations and system expansion 

Compatible with iSBC 80 family single 
board computers, memory, digital and 
analog 110, and peripheral controller 
boards 

The iSBC 86/12A Single Board Computer is a member of Intel's complete line of OEM microcomputer systems which take 
full advantage of Intel's LSI technology to provide economical self-contained computer based solutions for OEM 
applications. The iSBC 86/12A board is a complete computer system on a single 6.75 x 12.00-inch printed circuit 
card. The CPU, system clock, read/write memory, nonvolatile read only memory, I/O ports and drivers, serial 
communications interface, priority interrupt logic and programmable timers, all reside on the board. Full MUL TIBUS 
interface logic is included to offer compatibility with the Intel OEM Microcomputer Systems family of Single Board 
Computers, expansion memory options, digital and analog I/O expansion boards and peripheral controllers. 
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FUNCTIONAL DESCRIPTION 

Central Processing Unit 
The central processor for the iSSC 86/12A board is Intel's 
8086, a powerful 16-bit HMOS device. The 225 sq. mil 
chip contains 29,000 transistors and has a clock rate of 
5MHz. The architecture includes four (4) 16-bit byte 
addressable data registers, two (2) 16-bit memory base 
pointer registers and two (2) 16-bit index registers, all 
accessed by a total of 24 operand addressing modes for 
complex data handling and very flexible memory 
addressing. 

Instruction Set - The 8086 instruction repertoire includes 
variable length instruction format (including double 
operand instructions), 8-bit and 16-bit signed and 
unsigned arithmetic operators for binary, SCD and 
unpacked ASCII data, and iterative word and byte string 
manipulation functions. The instruction set of the 8086 is 
a superset of the 8080Al8085A family and with available 
software tools, programs written for the 8080Al8085A can 
be easily converted and run on the 8086 processor. 

Architectural Features - A 6-byte instruction queue 
provides pre-fetching of sequential instructions and can 
reduce the 1.2!"sec minimum instruction cycle to 400 nsec 
for queued instructions. The stack oriented architecture 
facilitates nested subroutines and co-routines, reentrant 
code and powerful interrupt handling. The memory 

expansion capabilities offer a 1 megabyte addressing 
range. The dynamic relocation scheme allows ease in 
segmentation of pure procedure and data for efficient 
memory utilization. Four segment registers (code, stack, 
data, extra) contain program loaded offset values which 
are used to map 16-bit addresses to 20-bit addresses. 
Each register maps 64K-bytes at a time and activation of a 
specific register is controlled explicitly by program 
control and is also selected implicitly by specific functions 
and instructions. 

Bus Structure 
The iSSC 86/12A microcomputer has three buses: an 
internal bus for communicating with on-board memory 
and 110 options, the MUL TISUS system bus for referenc­
ing additional memory and 1/0 options, and the dual-port 
bus which allows access to RAM from the on-board CPU 
and the MUL TISUS system bus. Local (on-board) 
accesses do not require MUL TISUS communication, 
making the system bus available for use by other 
MUL TISUS masters (i.e. DMA devices and other single 
board computers transferring to additional system 
memory). This feature allows true parallel processing in a 
multiprocessor environment. In addition, the MUL TISUS 
interface can be used for system expansion through the 
use of other 8- and 16-bit iSSC computers, memory and 
1/0 expansion boards. 

Figure 1. ISBC 86/12A Single Board Computer Block Diagram 

B-l72 



iSBC 86/12ATM 

RAM Capabilities 
The iSBC 86/12A microcomputer contains 32K bytes of 
dynamic read/write memory using 16K-bit 2117 RAMs. In 
addition, the on-board RAM complement may be ex­
panded to 64K bytes with the iSBC 300 32K-byte RAM 
expansion module. Power for the on-board RAM and 
refresh circuitry may be optionally provided on an aux­
iliary power bus, and memory protect logic is included 
for RAM battery backup requirements. The iSBC 86/12A 
board contains a dual port controller which allows 
access to the on-board RAM (32K bytes or 64K bytes 
when the iSBC 300 module is included with the iSBC 
86/12A board) from the iSBC 86/12A CPU and from any 
other MULTI BUS master via the system bus. The dual 
port controller allows 8- and 16-bit accesses from the 
MUL TIBUS system bus, and the on-board CPU transfers 
data to RAM over a 16-bit data path. Priorities have been 
established such that memory refresh is guaranteed by 
the on-board refresh logic and that the on-board CPU 
has priority over MUL TIBUS system bus requests for 
access to RAM. The dual port controller includes in­
dependent addressing logic for RAM access from the 
on-board CPU and from the MULTIBUS system bus. The 
on-board CPU will always access RAM starting at loca­
tion OOOOOH' Address jumpers allow on-board RAM to be 
located starting on any 8K-byte boundary within a 1 
megabyte address range for accesses from the MUL TI­
BUS system bus. In conjunction with this feature, the 
iSBC 86/12A microcomputer has the ability to protect 
on-board memory from MUL TIBUS access to any contig­
uous 8K-byte segments (or 16K-byte segments with 
iSBC 300 module). These features allow multiprocessor 
systems to establish local memory for each processor 
and shared system (MULTIBUS) memory configurations 
where the total system memory size (including local on­
board memory) can exceed 1 megabyte without address­
ing conflicts. 

EPROM/ROM Capabilities 
Four sockets are provided for up to 16K-bytes of 
nonvolatile read only memory on the iSBC 86/12A 
board. EPROM/ROM may be added in 2K-byte incre­
ments up to a maximum of 4K-bytes by using Intel 2758 

electrically programmable ROMs (EPROMs); in 4K-byte 
increments up to 8K bytes by using Intel 2716 EPROMs 
or Intel 2316E masked ROMs; or in 8K-byte increments 
up to 16K bytes by using Intel 2732 EPROMs or 2332A 
ROMs. On-board EPROM/ROM is accessed via 16-bit 
data paths. On-board EPROM/ROM capacity may be ex­
panded to 32K bytes with the addition of the iSBC 340 
16K-byte EPROM expansion module. It provides an addi­
tional four sockets for Intel 2732 EPROMs or Intel 2332A 
ROMs. With user modification of the iSBC 86/12A's on­
board memory and MUL TIBUS address decode, Intel 
2758 and 2716 EPROMs or 2316E ROMs may be option­
ally supported. System memory size is easily expanded 
by the addition of MULTI BUS system bus compatible 
memory boards available in the iSBC product family. 

Parallel I/O Interface 
The iSBC 86/12A single board computer contains 24 
programmable parallel I/O lines implemented using the 
Intel 8255A Programmable Peripheral Interface. The 
system software is used to configure the I/O lines in any 
combination of unidirectional input/output and bidirec­
tional ports indicated in Table 1. Therefore, the I/O 
interface may be customized to meet specific peripheral 
requirements. In order to take full advantage of the large 
number of possible I/O configurations, sockets are 
provided for interchangeable I/O line drivers and 
terminators. Hence, the flexibility of the I/O interface is 
further enhanced by the capability of selecting the 
appropriate combination of optional line drivers and 
terminators to provide the required sink current, polarity, 
and drive/termination characteristics for each applica­
tion. The 24 programmable I/O lines and Signal ground 
lines are brought out to a 50-pin edge connector that 
mates with flat, woven, or round cable. 

Serial I/O 
A programmable communications interface using the 
Intel 8251A Universal Synchronous/Asynchronous 
Receiver/Transmitter (USART) is contained on the iSBC 
86/12A board. A software selectable baud rate generator 
provides the USART with all common communication 

Mode of Operation 

Unidirectional 

Port 
Lines 

Input Output Bidirectional Control 
(qty) 

Latched & Latched & 
Latched Latched 

Strobed Strobed 

1 8 X X X X X 

2 8 X X X X 

3 4 X X X1 

4 X X X1 

~O~~rt of port 3 must be used as a control port when either port 1 or port 2 are used as a latched and strobed input or a latched and strobed output 
port or port 1 is used as a bidirectional port. 

Table 1. Input/Output Port Modes of Operation 
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frequencies. The USART can be programmed by the 
system software to select the desired asynchronous or 
synchronous serial data transmission technique (includ­
ing IBM Bi-Sync). The mode of operation (i.e., synchro­
nous or asynchronous). data format, control character 
format, parity, and baud rate are all under program 
control. The 8251A provides full duplex, double buffered 
transmit and receive capability. Parity, overrun, and 
framing error detection are all incorporated in the 
USART. The RS232C compatible interface on each 
board, in conjunction with the USART, provides a direct 
interface to RS232C compatible terminals, cassettes, and 
asynchronous and synchronous modems. The RS232C 
command lines, serial data lines, and signal ground line 
are brought out to a 26 pin edge connector that mates with 
RS232C compatible flat or round cable. The iSBC 530 
Teletypewriter Adapter provides an optically isolated 
interface for those systems requiring a 20 mA current 
loop. The iSBC 530 unit may be used to interface the iSBC 
86/12A board to teletypewriters or other 20 mA current 
loop equipment. 

Programmable Timers 
The iSBC 86/12A board provides three independent, fully 
programmable 16-bit interval timers/event counters 
utilizing the Intel 8253 Programmable Interval Timer. 
Each counter is capable of operating in either BCD or 
binary modes. Two of these timers/counters are available 
to the systems designer to generate accurate time 
intervals under software control. Routing for the outputs 
and gate/trigger inputs of two of these counters is jumper 
selectable. The outputs may be independently routed to 
the 8259A Programmable Interrupt Controller and to the 
I/O line drivers associated with the 8255A Programmable 
Peripheral Interface, or may be routed as inputs to the 
8255A chip. The gate/trigger inputs may be routed to I/O 
terminators associated with the 8255A or as output 
connections from the 8255A. The third interval timer in 
the 8253 provides the programmable baud rate generator 
for the iSBC 86/12A board RS232C USART serial port. In 
utilizing the iSBC 86/12A board the systems deSigner 
simply configures, via software, each timer independently 
to meet system requirements. Whenever a given time 
delay or count is needed, software commands to the 
programmable timers/event counters select the desired 
function. Seven functions are available, as shown in 
Table 2. The contents of each counter may be read at any 
time during system operation with simple read operations 
for event counting applications, and special commands 
are included so that the contents can be read "on the fly". 

MUL TIBUS System Bus and 
Multimaster Capabilities 
The MUL TIBUS system bus features asynchronous data 
transfers for the accommodation of devices with v.arious 
transfer rates while maintaining maximum throughput. 
Twenty address lines and sixteen separate data lines 
eliminate the need for address/data multiplexing/demul­
tiplexing logic used in other systems, and allow for data 
transfer rates up to 5 megawords/sec. A failsafe timer is 
included in the iSBC 86/12A board which can be used to 
generate an interrupt if an addressed device does not 
respond within 6 msec. 

Function 

Interrupt on 
terminal count 

Programmable 
one-shot 

Rate 
generator 

Square-wave 
rate generator 

Software 
triggered 
strobe 

Hardware 
triggered 
strobe 

Event counter 

Operation 

When terminal count is reached, 
an interrupt request is generated. 
This function is extremely useful 
for generation of real-time clocks. 

Output goes low upon receipt of 
an external trigger edge or soft­
ware command and returns high 
when terminal count is reached. 
This function is retriggerable. 

Divide by N counter. The output 
will go low for one input clock 
cycle, and the period from one low 
going pulse to the next is N times 
the input clock period. 

Output will remain high until one­
half the count has been completed, 
and go low for the other half of 
the count. 

Output remains high until soft­
ware loads count (N). N counts af­
ter count is loaded, output goes 
low for one input clock period. 

Output goes low for one clock 
period N counts after rising edge 
counter trigger input. The counter 
is retriggerable. 

On a jumper selectable basis, the 
clock input becomes an input 
from the external system. CPU 
may read the number of events 
occurring after the counting "win­
dow" has been enabled or an 
interrupt may be generated after N 
events occur in the system. 

Table 2_ Programmable Timer Functions 

Multimaster Capabilities - The iSBC 86/12A board is a 
full computer on a single board with resources capable of 
supporting a great variety of OEM system requirements. 
For those applications requiring additional processing 
capacity and the benefits of multiprocessing (i.e., several 
CPUs and/or controllers logically sharing system tasks 
through communication over the system bus), the iSBC 
86/12A board provides full MULTIBUS arbitration control 
logic. This control logic allows up to three iSBC 86/12A 
boards or other bus masters, including iSBC 80 family 
MUL TIBUS compatible 8-bit single board computers, to 
share the system bus in serial (daisy chain) priority 
fashion and up to 16 masters to share the MUL TIBUS 
system bus with the addition of an external priority 
network. The MUL TIBUS arbitration logic operates 
synchronously with a MUL TIBUS clock (provided by the 
iSBC 86/12A board or optionally provided directly from 
the MUL TIBUS) while data is transferred via a handshake 
between the .master and slave modules. This allows 
different speed controllers to share resources on the same 
bus, and transfers via the bus proceed asynchronously. 
Thus, transfer speed is dependent on transmitting and 
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receiving devices only. This desigf'l prevents slow master 
modules from being handicapped in their attempts to gain 
control of the bus, but does not restrict the speed at which 
faster modules can transfer data via the same bus. The 
most obvious applications for the master-slave capabili­
ties of the bus are multiprocessor configurations, high 
speed peripheral control, but are by no means limited to 
these three. 

Interrupt Capablity 

The iSBC 86/12A board provides 9 vectored interrupt 
levels. The highest level is the NMI (Non-maskable 
Interrupt) line which is directly tied to the 8086CPU. This 
interrupt cannot be inhibited by software and is typically 
used for signalling catastrophic events (i.e., power 
failure). On servicing this interrupt, program control will 
be implicitly transferred through location 00008H. The 
Intel 8259A Programmable Interrupt Controller (PIC) 
provides vectoring for the next eight interrupt levels. As 
shown in Table 3, a selection of four priority processing 
modes is available to the systems designer for use in 
designing request processing configurations to match 
system requirements. Operating mode and priority 
assignments may be reconfigured dynamically via 
software at any time during system operation. The PIC 
accepts interrupt requests from the programmable 
parallel and serial I/O interfaces, the programmable 
timers, the system bus, or directly from peripheral 
equipment. The PIC then determines which of the 
incoming requests is of the highest priority, determines 
whether this request is of higher priority than the level 
currently being serviced, and, if appropriate, issues an 
interrupt to the CPU. Any combination of interrupt levels 
may be masked, via software, by storing a single byte in 
the interrupt mask register of the PIC. The PIC generates 
a unique memory address for each interrupt level. These 
addresses are equally spaced at 4 byte intervals. This 
32-byte block may begin at any 32-byte boundary in the 
lowest 1K-bytes of memory: and contains unique 
instruction pointers and code segment offset values (for 
expanded memory operation) for each interrupt level. 
After acknowledging an interrupt and obtaining a device 
identifier byte from the 8259A PIC, the CPU will store its 
status flags on the stack and execute an indirect CALL 
instruction through the vector location (derived from the 
device identifier) to the interrupt service routine. In 
systems requiring additional interrupt levels, slave 8259A 
PIC's may be interfaced via the MUL TIBUS system bus, 
to generate additional vector addresses, yielding a total 
of 65 unique interrupt levels. 

Interrupt Request Generation - Interrupt requests may 
originate from 17 sources. Two jumper selectable 
interrupt requests can be automatically generated by the 
programmable peripheral interface when a byte of 

"Note: The Ii rst 32 vector locations are reserved by Intel 
for dedicated vectors. Users who wish to maintain 
compatibility with present and future Intel products 
should, not use these locations for user-defined vector 
addresses. 

Mode Operation 

Fully nested Interrupt request line priorities 
fixed at 0 as highest, 7 as lowest. 

Auto-rotating Equal priority. Each level, after 
receiving service, becomes the 
lowest priority level until next in-
terrupt occurs. 

Specific System software assigns lowest 
priority priority level. Priority of all other 

levels based in sequence numeri-
cally on this assignment. 

Polled System software examines priori-
ty-encoded system interrupt status 
via interrupt status register. 

Table 3. Programmable Interrupt Modes 

information is ready to be transferred to the CPU (i.e., 
input buffer is full) or a byte of information has been 
transferred to a peripheral device (i.e., output buffer is 
empty). Two jumper selectable interrupt requests can be 
automatically generated by the USART when a character 
is ready to be transferred to the CPU (i.e., receive channel 
buffer is full, or a character is ready to be transmitted (i.e., 
transmit channel data buffer is empty). A jumper 
selectable request can be generated by each of the 
programmable timers. An additional interrupt request 
line may be jumpered directly from the parallel I/O driver 
terminator section. Eight prioritized interrupt request 
lines allow the iSBC 86/12A board to recognize and 
service interrupts originating from peripheral boards 
interfaced via the MUL TIBUS system bus. The MUL TI­
BUS fail safe timer also can be selected as an interrupt 
source. 

Power-Fail Control 

Control logic is also included to accept a power-fail 
interrupt in conjunction with the AC-Iow Signal from the 
iSBC 635 and iSBC 640 Power Supply or equivalent. 

Expansion Capabilities 

Memory and I/O capacity may be expanded and 
additional functions added using Intel MUL TlBUS 
compatible expansion boards. Memory may be expanded 
by adding user specified combinations of RAM boards, 
EPROM boards, or combination boards. Input/output 
capacity may be increased by adding digital I/O and 
analog I/O expansion boards. Mass storage capability 
may be achieved by adding Single or double density 
diskette controllers, or hard disk controllers. Modular 
expandable backplanes and cardcages are available to 
support multi board systems. 

Note: Certain system restrictions may be incurred by the 
inclusion of some of the iSBC 80 family options in an iSBC 
86/12A system. Consult the Intel OEM Microcomputer 
System Configuration Guide for specific data. 
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System Development Capabilities 

The development cycle of iSBC 86/12A products can be 
significantly reduced by using the Intellec® series 
microcomputer development systems. The Assembler, 
Locating Linker, Library Manager, Text Editor and system 
monitor are all supported by the ISIS-II disk based 
operating system. A minimum of 64K-bytes of RAM is 
needed in the Intellec system to support program 
development for the iSBC 86/12A board. To facilitate 
conversion of 8080A/8085A assembly language programs 
to un on the iSBC 86/12A board CONV-86 is available 
under the ISIS-II operating system. 

In-Circuit Emulator-ICE-86 in-circuit emulator provides 
the necessary link between the software development 
environment provided by the Intellec system and the 
"target" iSBC 86/12A execution system. In addition to 
providing the mechanism for loading executable code and 
data into the iSBC 86/12A board, ICE-86 in-circuit 
emulator provides a sophisticated command set to assist 
in debugging software and final integration of the user 

SPECIFICATIONS 

Word Size 
Instruction - 8, 16, 24, or 32 bits 
Data - 8,16 bits 

Cycle Time 
Basic Instruction Cycle 

Note: 

1.2l1 sec 
400 nsec (assumes 
instruction in the queue) 

Basic instruction cycle is defined as the fastest instruction time (Le., 
two clock cycles) 

Memory Capacity 
On-Board Read Only Memory - 16K bytes (sockets 
only); expandable to 32K bytes with iSBC 340 EPROMI 
ROM expansion module. 

On-Board RAM - 32K bytes; expandable to 64K bytes 
with iSBC 300 RAM expansion module. 

Off-Board ExpanSion - Up to 1 megabyte in user 
specified combinations of RAM, ROM, and EPROM. 
Note: 
Read only memory may be added in 2K, 4K, or 8K·byte increments. 

Memory Addressing 
On-Board EPROM/ROM - FFOOO-FFFFFH (using 2758 
EPROMs); FEOOO-FFFFFH (using 2716 EPROMs or 2316 
ROMs); FCOOO-FFFFFH (using 2732 EPROMs or 2332A 
ROMs); F8000-FFFFFH (with iSBC 340 EPROM option 
and four additional 2732 EPROMs). 

On-Board RAM - 32K bytes of dual port RAM. Option­
ally expandable to 64K bytes with iSBC 300 RAM option. 

CPU Access - 32K bytes: 00000-07FFFH; 64K bytes: 
OOOOO-OFFFFH· 

hardware and software. ICE-86 in-circuit emulator 
maximizes the use of available development resources by 
allowing Intellec resident resources (e.g., memory and 
peripherals) to be accessed by software running on the 
target iSBC 86/12A system. In addition, software can be 
executed without an iSBC 86/12A execution vehicle, in 2K 
bytes of RAM resident in the ICE-86 system itself. Sym­
bolic references to instruction and data locations can be 
made through ICE-86 in-circuit emulator to allow the user 
to reference memory locations with assigned names. 

PL/M-86 - Intel's high level programming language, 
PL/M-86, is also available as an Intellec Microcomputer 
Development System option. PL/M-86 provides the 
capability to program in a natural, algorithmic language 
and eliminates the need to manage register usage or 
allocate memory. PLlM-86 programs can be written in a 
much shorter time than assembly language programs for a 
given application. PLlM-86 includes byte and word, 
integer, pointer and floating point (32-bit) data types and 
also includes conditional compilation and macro features. 

MULTIBUS Access - Jumper selectable for any 8K-byte 
boundary, but not crossing a 128K-byte boundary. Ac­
cess for 8K, 16K, 24K or 32K (16K, 32K, 48K, 64K with 
iSBC 300 option) bytes may be selected for on-board 
CPU use only. 

1/0 Capacity 
Parallel - 24 programmable lines using one 8255A. 
Serial - 1 programmable line USing one 8251A. 

1/0 Addressing 
On-Board Programmable 110 

Port 
8255A 

1 I 2 I 3 I Control 

Address C81 CA I CC I CE 

USART 

Data I Control 

08 or I DA or 
DC DE 

Serial Communications Characteristics 
Synchronous - 5-8 bit characters; internal or exter­
nal character synchronization; automatic sync insertion. 

Asynchronous - 5-8 bit characters; break character 
generation; 1, 1 V2, or 2 stop bits; false start bit 
detection. 

Baud Rates 

Frequency (kHz) Baud Rate (Hz) 

(Software Selectable) Synchronous Asynchronpus 

+ 16 + 64 

153.6 - 9600 2400 
76.8 - 4800 1200 
38.4 38400 2400 600 
19.2 19200 1200 300 
9.6 9600 600 150 
4.8 4800 300 75 
2.4 2400 150 -
1.76 1760 110 -

Note: 
Frequency selected by 110 write of appropriate 16-bit frequency factor 
to baud rate register (8253 Timer 2). 
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Interrupts 
Addresses for 8259A Registers (Hex notation I/O ad· 
dress space) 

CO or C4 Write: Initialization Command Word 1 (ICW1) 
and Operation Control Words 2 and 3 
(OCW2 and OCW3) 

Read: Status and Poll Registers 

C2 or C6 Write: ICW2, ICW3, ICW4, OCWI (Mask 
Register) 

Read: OCWI (Mask Register) 

Note: 
Several registers have the same physical address; sequence of access 
and one data bit of control word determine which register will respond. 

Interrupt Levels - 8086 CPU includes a non-maskable 
Interrupt (NMI) and a maskable interrupt (INTR). NMI 
interrupt is provided for catastrophic events such as 
power failure. NMI vector address is 00008. INTR interrupt 
is driven by on-board 8259A PIC, which provides 8-bit 
identifier of interrupting device to CPU. CPU multiplies 
identifier by four to derive vector address. Jumpers select 
interrupts from 17 sources without necessity of external 
hardware. PIC may be programmed to accommodate 
edge-sensitive or level-sensitive inputs. 

Timers 
Register Addresses (Hex notation, I/O address space) 

DO Timer 0 
D2 Timer 1 
D4 Timer 2 
D6 Control register 

Note: 
Timer counts are loaded as two sequential output operations to same 
address 85 given. 

Input Frequencies 
Reference: 2.46 MHz ± 0.1 % (0.041I-'s period, nominal); 
1.23 MHz ±0.1% (0.81 I-'s period, nominal); or 153.60 
kHz ±0.1% (6.51I-'s period nominal). 

Note: 
Above frequencies are user selectable. 

Event Rate: 2.46 MHz max 

Output Frequencies/Timing Intervals 

Single Timer/Counter Dual Timer/Counter 

Function (Two Timers Cascaded) 

Min Max Min Max 

Real-time 1.63f1s 427.1 ms 3.26 S 466.50 min 
interrupt 

Programmable 1.63 ~s 427.1 ms 3.26 S 466.50 min 
one-shot 

Rate generator 2.342 Hz 613.5 kHz 0.000036 Hz 306.8 kHz 

Square-wave 2.342 Hz 613.5 kHz 0.000036 Hz 306.8 kHz 
rate generator 

Software 1.63 flS 427.1 ms 3.26 S 466.50 min 
triggered 
strobe 

Hardware 1.63 fls 427.1 ms 3.26 S 466.50 min 
triggered 
strobe 

Event - 2.46 MHz - -
counter 

Interfaces 
MULTIBUS - All signals TTL compatible 
Parallel I/O - All signals TTL compatible 
Interrupt Requests - All TTL compatible 
Timer - All signals TTL compatible 
Serial I/O - RS232C compatible, data set configuration 

System Clock (8086 CPU) 
5.00 MHz ± 0.1% 

Auxiliary Power 
An auxiliary power bus is provided to allow separate 
power to RAM for systems requiring battery backup of 
read/write memory. Selection of this auxiliary RAM 
power bus is made via jumpers on the board. 

Connectors 

Interface 
Pins Centers 

Mating Connectors 
(qty) (in.) 

Bus 86 0.156 VIKING 3KH43/9AMK12 

Parallel 110 50 0.1 3M 3415·000 

Serial 110 26 0.1 3M 3462·000 

Memory Protect 
An active low TTL compatible memory protect signal is 
brought out on the auxiliary connector which, when 
asserted, disables read/write access to RAM memory 
on the board. This input is provided for the protection 
of RAM contents during system power down sequences. 

Line Drivers and Terminators 
1/0 Drivers - The following line drivers are all compatible 
with the 110 driver sockets on the iSBC 86/12A board. 

Driver Characteristic Sink Current (mA) 

7438 I,OC 48 
7437 I 48 
7432 NI 16 
7426 I,OC 16 
7409 NI,OC 16 
7408 NI 16 
7403 I,OC 16 
7400 I 16 

Note: 
I ;;; inverting; NI = non-inverting; DC = open collector. 

Port 1 of the 8255A has 20 mA totem·pole bidirectional 
drivers and 1 kQterminators. 

I/O Terminators - 220Q/330Qdivider or 1 kQ piJllup 

220n/330n (Isac 901 OPTION) 

220Q 

+5V--------~~ __ ----~ 

1: 

1 K n (Isac 902 OPTION) 

1 kQ 
+5V--------~~ ____________ ___ 
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Bus Drivers 

Function Characteristic Sink Current (rnA) 

Data Trl-state 
Address Tri-state 
Commands Tri-state 

Physical Characteristics 
Width - 12.00 in. (30.48 cm) 
Height - 6.75 in. (17.15 cm) 
Depth - 0.70 in. (1.78 cm) 
Weight - 19 oz. (539 gm) 

Electrical Characteristics 
DC Power Requirements 

CUrrent Requirements 

Configu- VCC = + 5V VOO = + 12V VBB = -5V 
ration ±S% (max) ±5% (max) ±S% (max) 

Without 5.2A 350 mA -
EPROM' 

RAM Only3 390 mA 40 mA 1.0 mA 

With 
5.2A 450 mA -

iSSC 530. 

With4K 
EPROM5 5.5A 350 mA -
(using 2758) 

With8K 
ROM5 6.1A 350 mA -
(using 2316E) 

With 8K 
EPROM5 5.5A 350 mA -
(using 2716) 

With 16K 
ROM5 (using 5.4A 350 mA -
2732or2332A) 

Notes: 

50 
50 
32 

VAA = - 12V 
±S% (max) 

40 mA 

-
140 mA 

40 mA 

40 mA 

40 rnA 

40 rnA 

1. Does not include power for optional AOM/EPROM, 1/0 drivers, and 
1/0 terminators. 

2. Does not include power required for optional ROMIEPROM, 1/0 
drivers and 1/0 terminators. 

3. RAM chips powered via auxiliary power bus. 

4. Does not include power for optional ROM/EPROM, 1/0 drivers, and 
1/0 terminators. Power for iSBC 530 is supplied via serial port 
connector. 

S. Includes power required for four ROM/EPROM chips, and 110 
terminators installed for 161/0 lines; all terminator inputs low. 

ORDERING INFORMATION 

Part Number Description 
SBC 86/12A Single Board Computer 

with 32K bytes RAM 

Intel Corporation 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8088"" 
TWX: 910·338·0026 
TELEX: 34·6372 

Environmental Characteristics 
Operating Temperature - O°C to 55°C 
Relative Humidity - to 90% (without condensation) 

Reference Manual 
9803074-01 - iSBC 896/12A Single Board Computer 
Hardware Reference Manual (NOT SUPPLIED) 

Reference manuals are shipped with each product only if 
designated SUPPLIED (see above). Manuals may be 
ordered from any Intel Literature Department, 3065 
Bowers Avenue, Santa Clara, California 95051. 
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INTELLEC ,'- iSBC 86/12A INTERFACE 

AND E}{ECUTION PACKAGE 

Establishes communication between the 
iSBC 86/12A and the Intellec Develop· 
ment Systems to aid in MCS·86™ soU· 
ware development 

Allows full speed execution of MCS·86:rM 
programs 

Includes EPROM resident system monitor 
for iSBC 86/12A 

Allows Intellec ISIS·II files to be trans· 
ferred between iSBC 86/12A and Intellec 
Microcomputer Development System 

Offers "Virtual Terminal" capability which 
permits the Intellec console to access the 
iSBC 86/12A Monitor 

Provides powerful console commands for 
software debug 

Allows access to all iSBC 86/12A memory, 
registers, flags and 110 ports 

Includes all necessary hardware, soft· 
ware and documentation 

The iSBC 957 Intellec-iSBC 86/12A Interface and Execution Pa,ckage contains all the necessary hardware, software 
cables and documentation required to interface an iSBC 86/12A Single Board Computer to an Intellec Microcomputer 
Development System for software development and full speed ex,ecution. 
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FUNCTIONAL DESCRIPTION 

Overview 
The iSBC 957lntellec-iSBC 86/12A Interface and Execu­
tion Package extends the software development capa­
bilities of the Intellec Microcomputer Development Sys­
tems to the iSBC 86/12 and iSBC 86/12A Single Board 
Computers. It allows software modules developed 
under the Intellec resident ISIS-II Operating Systems to 
be down loaded to the iSBC 86/12A for full-speed execu­
tion and debug. In addition, the iSBC 957 allows seg­
ments of iSBC 86/12A memory to be saved on floppy 
disk files. Special communication software allows 
transparent access to the powerful debug commands in 
the iSBC 86/12A monitor from the Intellec console ter­
minal. 

Software Capabilities 
The software included in the iSBC 957 package consists 
of. the iSBC 86/12A monitor residing on four Intel 
EPROMs whkh are inserted into sockets on the iSBC 
86/12A board. A diskette is also included which contains 
the Intellec resident communications software that 
links the iSBC 86/12A with the Intellec Microcomputer 
Development System. The EPROM resident software 
creates em execution environment in which object mod­
ules may be loaded into the iSBC 86/12A memory, exe­
cuted <I,t full speed, modified if necessary and saved on 
the Intf~lIec system floppy disk. The monitor provides 
the ability to execute selected program segments with 
breahpoints or by single stepping, examine and modify 
registers and memory, perform port 110, move a block of 
memory, compare blocks of memory, search for a wordl 

PARALLEL - PARALLEL 110 
PORT 

PROM 
PORT 

LOAD GABLE ? ~~~ 

I~ " SERiALifO 
PORT 

iNTELLEC 
MDS BOO 
SYSTEM 

Al0 All A12 A13 
(SEE NOTE) 

TO RS232·C / 

C~0 "~~~~==) 
~ fo " iSBC530 

OEM RS232·C 
CABLE 

TTY 
PORT 

, TTY TTY ADAPTER 

CABLE 

Figure 1a. Intellec MDS·80rJ Series System Using RS232·C Compatible Terminal 

INTELLEC 
MDS80D 
SYSTEM 

Note: A10, A12, A13 -lnsertTe,rminator Pack (supplied) 
A11 - Insert Status Adapter Ass'y (supplied) 

CRT 
PORT 

PARALLEL 
LOAD CABLE 

/ 
iSBC 86112 

OR iSBC 86/12A 

~ TOITY ~J 
TERMINAL ~. c-i 
~~I 

OEM RS232·C 
CABLE 

Figure 1b. Intellec MDS·800 Series System with TTY Terminal 
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byte value, and perform hex arithmetic. In addition, the 
monitor provides for the recognition of interrupts via a 
user·defined table. The program on the diskette con­
tains communication software which passes appropri­
ate console commands to the iSBC 86/12A residen't 
monitor and also interfaces with the ISIS-II operating 
system to transfer files between the development sys­
tem diskettes and the iSBC 86/12A. 

System Interfacing 
The physical interface between the Intellec Microcom· 
puter Development System and the iSBC 86/12A is 
accomplished with cables supplied with the iSBC 957 
package. The cabling arrangement varies depending on 
whether the system is a member of the Intellec MDS-800 
family or one of the Intellec Series II family. 

Intellec MDS·800 Interface - In the case of the Intellec 
MDS-800 family, cables connect the serial I/O port of the 

INTELLEC 
SERIES II 

MODEl210 

iSBC 86/12A to the available serial port on the Intellec 
system (if the TIY port is used for the iSBC 86/12A inter­
face, the iSBC 530 TTY adapter is inserted into the line). 
(See Figure 1.) This serial port implements the commu­
nication link from the Intel lee console terminal to the 
iSBC 86/12A resident monitor via the Intellec based 
communication software and is used to pass com­
mands to the iSBC 86/12A. Additionally, a cable is run 
from the Universal PROM Programmer (UPP) port on the 
Intellec system to the parallel I/O port on the iSBC 
86/12A. The necessary terminators/line drivers and a 
status adapter assembly are also included to complete 
this parallel interface on the iSBC 86/12A. This inter­
connection is used for transferring the ISIS-II disk files 
between the development system and the iSBC 86/12A. 

Intellec Series II Interface - For Intellec Series II Devel­
opment Systems the connection between it and the 
iSBC 86/12A is accomplished with a single serial line in· 

SERIAL ;;/J 
~"'" j" -?O ~ - ~ RS232·C 

~ ~ CABLE 

RS232·C 
CABLE 

SERIAL 1/0 
PORT 

1-- iSBC 86/12 OR 
iSBC 86/12A 

Figure 2a. Intellec Series II Model 210 

INTELLEC SERIES II 
MODel 220, 230 

/
_.3: ~~!J" .- ~ OEM RS232·C 

CABLE 

Figure 2b. Intellec Series Models 220, 230 
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terconnecting the iSBC 86/12A serial port with an avail· 
able serial port on the Intellec system. All communica· 
tion including command and data transfer occurs over 
this serial line. Development systems based on the In· 
tellec Model 210 can use either one of. the two available 
serial ports. (See Figure 2a.) On Models 220 and 230, 
Serial Port 1 is specified. (See Figure 2b.) 

Intellec Environment 
An Intellec Microcomputer Development System to be 
used in conjunction with the iSBC 957 package and an 
iSBC 86/12A must have the following necessary func· 
tionality to support program development and storage: 

1. Intellec Development System with 64K bytes of RAM. 

2. Console CRT or TTY terminal. 

3. Intellec MDS·DDS Dual Double Density Diskette 
Drive and ISIS·II Operating System or Intellec MOS· 
2DS Dual Single Density Diskette Drive and ISIS·II 
Operating System. 

4. User·selected language translators. 

Note: The Intellee Series II Model 230 Microcomputer Development 
System and the Intel lee MDS-888 Microcomputer Development Center 

SPECIFICATIONS 

Hardware 
Cables 
(1) OEM RS232·C cable - Mates with serial 1/0 port on 

iSBC 86/12A 

(1) RS232·C port cable - Mates with RS232·C port on 
Intellec system 

(1) TTY port cable - Mates with TIY port on Intellec 
system 

(1) Parallel load cable - Mates with UPP port on In· 
tellec system and parallel 1/0 port on iSBC 86/12A 
(only used on Intellec MDS·800 series systems) 

All cables allow separation of Intellec system and iSBC 
86/12A of up to 6 feet. 

110 Drivers and Terminators 
(1) 743748 mA open collector drivers 
(4) iSBC 901 2200l330f! terminator packs 
(4) iSBC 902 1 kf! terminator packs 
Drivers and terminators needed when parallel load cable 
is required 

Interface Adapters 
(1) iSBC 530 TIY adapter - Used when serial 1/0 line 

connects with TTY port on Intellec system 
(1) Parallel port status adapter - Mounts on iSBC 

86/12A when parallel load cable is required 

Miscellaneous - Attachment screws for Intellec 
mounted connectors 

Software 
(4) EPROMs with iSBC 86/12A system monitor 
(1) Single density floppy diskette with iSBC 86/12A ISIS· 

II communication software 

contain all necessary hardware and operating system software to be 
used with the iSBC 957 package and the iSBC 86112A. 

Execution Environment 
A full capability iSBC 86/12A execution environment 
should include the following components for effective 
utilization: 

1. An iSBC 86/12A Single Board Computer. 

2. An iSBC 957 Intellec-iSBC 86/12A Interface and Exe· 
cution Package. 

3. An iSBC 655 or iSBC 660 System Chassis for power 
and MUL TIBUS expansion. 

4. One or more iSBC 032, 048, or 064 RAM boards for 
programs requiring more than 32K bytes of RAM. 

Note: The iSBC 86/12A cannot be mounted in the Intellee system and re­
quires a separate operating environment. 

Additional memory boards, analog and digital 1/0 
boards, and peripheral controllers can be included in the 
iSBC 660 System Chassis with the iSBC 86/12A to allow 
the execution environment to be equivalent to the ex· 
pected final product configuration. 

(1) Double density floppy diskette with iSBC 86/12A 
ISIS·II communication software 

System Monitor 
Addresses: RAM: 00000-00180H; ROM: FEOOO-FFFFH 

Commands 
_._----

Basic Commands 
... - .. ----.--... -~-----------__l 

N (Next) 

G (Go) 

S (Substitute) 

X (Examine) 

D (Display) 

M (Move) 

C (Compare) 

F (Find) 

H (Hex Arithmetic) 

I (Port Input) 

o (Port Output) 

R (Read Tape) 

Single stepped program execution 

Program start with optional breakpoints 

Examine and modify memory 

Examine and modify registers 

Display blocks of memory 

Moves (duplicates) blocks of memory 

Compare two blocks of memory 

Searches for byte/word value 

Performs hexadecimal add and subtract 

Reads an 110 port 

Writes to an 1/0 port 

Reads and loads paper tape object file 

~~~.~~~_e) ___ . ~~ites memory block to paper tape 

Intellee Mode Commands 

T (Transfer File) Wntes memory block to ISIS·1i file 

E (Exit) Return to ISIS (BaSIC Command Mode) 

L (Load F'le) J Loads ISIS·11 file to ISBC 86112A 

-_. __ .. _--

Transfer Rates 

Intellec MDS·800 Family 
Serial transfer: 110 baud 
Parallel transfer: 1 K byteslsec 

Intellec Series II Family 
Serial transfer: Determined by system console (up to 
9600 baud) 
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Reference Manuals 
9800645 - iSSC 86/12 Hardware Reference Manual 
9803074-01 - iSSC 86/12A Hardware Reference Manual 

, ' 

ORDERING INFORMATION 

Part Number Description 
SSC 957 Inteliec-iSSC 86/12A Interfacing and 

Execution Package 

9800743 - iSSC 957 Intellec-iSSC 86/12 Interface and 
Execution Package User's Guide 

9800640 - 8086 Assembly Language Manual 
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intel 
iSBC 300 32K·BYTE RAM EXPANSION MODULE 

iSBC 340 16K·BYTE EPROM/ROM EXPANSION MODULE 

On·board memory expansion for iSSC 
86/12A Single Soard Computer 

iSSC 300 module provides 32K bytes of 
dual port dynamic RAM and plugs directly 
into the iSSC 86/12A board 

iSSC 340 module provides sockets for up 
to 16K bytes of additional EPROM/ROM 
and plugs directly into the iSBC 86/12A 
board 

On·board memory expansion eliminates 
MULTIBUS system bus latency and 
increases system throughput 

Low power requirements 

Simple, reliable mechanical and electrical 
interconnection 

The iSSC 300 32K·byte RAM expansion module and the iSSC 340 16K·byte EPROM/ROM expansion module provide 
simple, low cost expansion of the memory complement available on the iSSC 86/12A single board computer. Each 
module utilized individually or together can double the iSSC 86/12A board's on·board RAM and EPROM memory 
capacity. The iSSC 300 32K·byte RAM expansion module and the iSSC 340 16K·byte EPROM/ROM expansion module 
options for the iSSC 86/12A board offer system designers a new level of flexibility in defining and implementing Intel@ 
single board computer systems. These options allow the systems designer to double the-memory complement of an 
iSSC 86/12A board with a minimum of system implications. Secause they expand the memory configuration on·board, 
they can be accessed as quickly as the existing iSSC 86/12A memory by eliminating the need for accessing the addi· 
tional memory via the MULTISUS system bus. With the iSSC 86/12A board mounted in the top slot of an iSSC 604 or 
iSSC 614 cardcage, sufficient clearance exists for mounting both the iSSC 300 and/or the iSSC 340 expansion module 
option(s). If the iSSC 86/12A board is inserted into some other slot, the combination of boards will physically (but not 
electrically) occupy two cardcage slots. Incremental power required by the options is minimal; for instance, only 305 
mW is needed for the iSSC 300 RAM expansion module. 
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FUNCTIONAL DESCRIPTION 

iSBC 300 32K-Byte Expansion Module 

The iSBC 300 board measures 7.75" by 2.35" and mounts 
above the RAM area on the iSBC 86/12A single board 
computer. It expands the iSBC 86/12A board's on-board 
dual port RAM capacity from 32K bytes to 64K bytes. 
The iSBC 300 module contains sixteen 16K-byte dynam­
ic RAM devices, sockets for the Intel'" 8202 Dynamic 
RAM Controller and memory interface latching. To in· 
stall the iSBC 300 module, the latches and controller 
from the iSBC 86/12A board are removed and inserted 
into the sockets on the iSBC 300 module. The add-on 
board is then mounted onto the iSBC 86/12A board. Pins 
extending from the controller's and latches' sockets 
mate with the devices' sockets underneath (see Figure 
1). Additional pins mate to supply power and other sig· 
nals to complete the electrical interface. The module is 
then secured at three additional points with nylon hard­
ware to insure the mechanical security of the assembly. 

To complete the installation, two socketed PROMs are 
replaced on the iSBC 86/12A board with those supplied 
with the iSBC 300 kit. These are the on-board memory 
and MUL TIBUS address decode PROMs which allow the 
iSBC 86/12A board logic to recognize its expanded 
on-board memory complement. 

DYNAMIC 
RAM CONTROLLER 
(FROM iSBC 86/12A) ---. iSBC 86/12A 

REPLACEMENT 
MEMORY ADDRESS 

DECODE PROMS 
(SUPPLIED WITH 

i$BC 300 OPTION) 

iSBC 340 16K-Byte Expansion Module 

The iSBC 340 module expands the iSBC 86/12A Single 
Board Computer's on-board EPROM capacity from 16K 
bytes to 32K bytes. It measures 3.3" by 2.8" and consists 
of a PC board with six 24-pin special sockets. Two of the 
sockets have extended pins which mate with two of the 
EPROM sockets on the iSBC 86!12A board. Two of the 
EPROMs which would have been inserted on the iSBC 
86/12A board are then reinserted in the iSBC 340 
module. Additional pins also mate for bringing chip 
selects for the remaining EPROM devices (see Figure 2). 
The mechanical interface is similar to that used on the 
iSBC 300 RAM module and consists of two additional 
mounting holes and the necessary mounting hardware. 

The iSBC 340 module supports Intel'" 2732 EPROM or 
2332A ROMs as supplied by Intel. One section of the 
iSBC 86/12A on-board memory and MULTIBUS address 
decode PROMs (the same decode PROMs mentioned 
for the iSBC 300 module) is already preprogrammed to 
support the iSBC 340 module with Intel'" 2732 
EPROMs. This section is selected through the EPROM 
configuration switches on the iSBC 86/12A board. The 
iSBC 340 board can optionally be configured by the user 
to support Intel'" 2758 or 2716 EPROMs or 2316E ROMs 
by programming new iSBC 86/12A decode PROMs to 
support these devices. Necessary documentation and 
PROM map listings are in the iSBC 86/12A Harware 
Reference Manual (order number 9803074-01). 

MEMORY LATCHES 
(FROM ;SBC 86/12A) 

NYLON MOUNTING HARDWARE 
(3 PLACES) 

(SUPPLIED WITH iSBC 300 OPTION) 

Figure 1. Installation of iSBC 300 RAM Expansion Module on iSBC 86/12A Single Board Computer 
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SPECIFICATIONS 

Word Size 
8 or 16 bits (16-bit data paths) 

Memory Size 
iSBC 300 Module - 32,768 bytes of RAM 
iSBC 340 Module - 16,384 bytes (max) of EPROM/ROM 

Access Time 
iSBC 300 Module - Read: 1 !,sec, write: 1.2 !,sec 
iSBC 340 Module - Standard EPROMs (450 nsec): 1 
!,sec, fast EPROMs (350 or 390 nsec): 800 nsec 

Interface 
The interface for the iSBC 300 and iSBC 340 module op· 
tions is designed only for Intel's iSBC 86/12A Single 
Board Computer. 

Memory Addressing 
On-board RAM 

CPU Access 
Isac 86/12A board only (32K bytes) - 00000-07FFFH. 
Isac 86/12A board + Isac 300 module (64K bytes) -
OOOOO-OFFFFH. 
MUL TlaUS Access - Jumper selectable for any 8K­
byte boundary, but not crossing a 128K-byte boundary. 

On-board EPROM/ROM 
Isac 86/12A board only (16K-bytes max.) - FFOOO­
FFFFFH (using 2758 EPROMs); FEOOO-FFFFFH (using 
2316E ROMs or 2716 EPROMs); and FCOOO-FFFFFH 
(using 2332A ROMs or 2732 EPROMs). 

iSBC 86/12A 

iSBC 340 
OPTION . 

NYLON HARDWARE 
(SUPPLIED WITH OPTION) 

~ 

~' 

Isac 86/12A board + Isac 340 module (32K-bytes 
max.) - FEOOO-FFFFFH (using 2758 EPROMs); FCOOO­
FFFFFH (using 2316E ROMs or 2716 EPROMs); F8000-
FFFFFH (using 2332A ROMs or 2732 EPROMs). 

On-board EPROM/ROM is not accessible via the 
MUL TIBUS interface. 

Auxiliary Power/Memory Protection 
The low power memory protection option included on 
the iSBC 86/12Aboards supports the iSBC 300 RAM 
module. 

"Local Only" Memory Protection 
The iSBC 86/12A Single Board Computer supports 
dedication of on-board RAM for on-board CPU access 
only in 8K, 16K, 24K, or 32K-byte segements. Installation 
of the iSBC 300 option allows protection of 16K, 32K, 48K, 
or 64K-byte segments. 

Physical Characteristics 

iSSC 300 iSSC 340 

Width 5.75" 3.3" 

Length 2.35" 2.8" 

Height of iSBe 86/12A .718 .718' 
plus mounted option 

Weight 13 oz. 5 oz. 

"Includes EPROM/ROM's 

All necessary mounting hardware (nylon, screws, 
spacers, nuts) are supplied with each kit. 

Figure 2. Installation of iSBC 340 EPROM/ROM Option on iSaC 86/12A Single Board Computer 
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Electrical Characteristics 

DC power requirements: 

Voltage iSBC 300 iSBC 340 

+5 ±5% 1 mA 120 mA' 

+12 ±5% 24 mA -

-12 ±5% 1 mA -

Note: 
1. Loaded with Intel 2732 EPROMs. 

ORDERING INFORMATION 

Description Part Number 
SBC 300 
SBC 340 

32K-byte RAM Expansion Module 
16K-byte EPROM Expansion Module 

Environmental Characteristics 
Operating Temperature - 0° to +55°C 
Relative Humidity - to 90% (without condensation) 

Reference Manuals 
All necessary documentation for the iSBC 300 module 
and iSBC 340 module is included in the iSBC 86/12A 
Hardware Reference Manual; order #9803074-01. (NOT 
SUPPLIED) 

Manuals may be ordered from any Intel sales representa­
tive distributor office or from Intel Literature Department, 
3065 Bowers Avenue, Santa Clara, CA 95051. 
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SDK·a6 
Mes·a6 SYSTEM DESIGN KIT 

Complete single board microcomputer 
system including CPU, memory, and I/O 

Easy to assemble kit form 

High performance 8086 16·bit CPU 

Interfaces directly with TTY or CRT 

Interactive LED display and keyboard 

Wire wrap area for custom interfaces 

Extensive system monitor software in 
ROM 

Comprehensive design library included 

The SDK-86 MCS-86 System Design Kit is a complete single board 8086 microcomputer system in kit form. It contains 
all necessary components to complete construction of the kit, including LED display, keyboard, resistors, caps, crys­
tal, and miscellaneous hardware. Included are preprogrammed ROMs containing a system monitor for general soft­
ware utilities and system diagnostics. The complete kit includes an 8-digit LED display and a mnemonic 24-key key­
board for direct insertion, examination, and execution of a user's program. In addition, it can be directly interfaced 
with a teletype terminal, CRT terminal, or the serial port of an Intellec system. The SDK-86 is a high performance proto 
type system with designed-in flexibility for simple interface to the user's application. 
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FUNCTIONAL DESCRIPTION 

The SDK-86 is a complete MCS-86 microcomputer sys­
tem on a single board, in kit form_ It contains all neces­
sary components to build a useful, functional system_ 
Such items as resistors, caps, and sockets are included: 
Assembly time varies from 4 to 10 hours, depending on 
the skill of the user. The SDK-86 functional block dia­
gram is shown in Figure 1_ 

8086 Processor 
The SDK-86 is designed around Intel's 8086 microproc­
essor. The Intel 8086 is a new generation, high perform­
ance microprocessor implemented in N-channel, deple­
tion load, silicon gate technology (HMOS), and pack­
aged in a 40-pin CerDIP package_ The processor 
features attributes ot both 8-bit and 16-bit micro­
processors in that it addresses memory as a sequence 
of 8-bit bytes, but has a 16-bit wide physical path to 
memory for high performance_ Additional features of 
the 8086 include the following: 

• Direct addressing capability to one megabyte of 
memory 

• Assembly language compatibility with 8080/8085 
• 14 word x 16-bit register set with symmetrical oper-

ations 

• 24 operand addressing modes 
• Bit, byte, word, and block operations 
• 8 and 16-byte signed and unsigned arithmetic in 

binary or decimal mode, including multiply and divide 
• 5 MHz clock rate 
• MULTIBUS compatible system interface 

A block diagram of the 8086 microprocessor is shown in 
Figure 2_ 

System Monitor 
A compact but powerful system monitor is supplied 
with the SDK-86 to provide general software utilities and 
system diagnostics_ It comes in preprogrammed read 
only memories (ROMs). 

Communications Interface 
The SDK-86 communicates with the outside world 
through either the on-board light emitting diode (LED)' 
display/keyboard combination or the user's TTY or CRT 
terminal (jumper selectable), or by means of a special 
mode in which an Intellec development system 
transports finished programs to and from the SDK-86. 
Memory may be easily expanded by simply soldering in 
additional devices in locations provided for this pur­
pose. A large area of the board (22 square inches) is laid 
out as general purpose wire-wrap for the user's custom 
interfaces. 

Assembly 
Only a tew simple tools are required for assembly: sol­
dering iron, cutters, screwdriver, etc. The SDK-86 
assembly manual contains step-by-step instructions for 
easy assembly with a minimum of mistakes. Once cor.­
struction is complete, the user connects his kit to a 
power supply and the SDK-86 is ready to go. The monitor 
starts immediately upon power-on or reset. 

Commands - Keyboard mode commands, serial port 
commands, and Intellec slave mode commands are 
summarized in Table 1, Table 2, and Table 3, respec· 
tively. The SDK·86 keyboard is shown in Figure 3: 

~========~~=====------------D 

Figure 1. SDK·86 System DeSign Kit Functional Block Diagram 
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Documentation 
In addition to detailed information on using the moni­
tors, the SDK-86 user's manual provides circuit dia­
grams, a monitor listing, and a description of how the 
system works. The complete design library for the 
SDK-86 is shown in Figure 4 and listed in the specifica­
tions section under Reference Manuals. 

EXECUTION UNIT 

REOISTER FILE 

DATA, 
POINTER, AND 
INDEX REOS 
(SWORDS) 

FLAGS 

BUS INTERFACE UNIT 

I A~~~~;~I~~E 1 

SEGMENT 
REOISTERS 

AND 
INSTRUCTION 

POINTER 
(5 WORDS) 

r-""::""-'--iHtlSr 
A,~ 

A,etS, 

3 DfIR,DEN,ALE 

HOLD 

a-BYTE 
INSTRUCTION 

QUEUE 

HLD'--,,--._ ... _ .. _-._~ 

elK RESET READY 

Figure 2_ 8086 Microprocessor Block Diagram 

+ 8 9 A 
IW/CS OW/OS /ISS 

REG 
4 5 6 

IB/SP OB/BP MV/SI 

0 1 2 
EB/AX ER/BX GO/CS 

Figure 3_ SDK-86 Keyboard 

B 
IES 

7 
EW/OI 

3 
STIDX 

Figure 4_ SDK-86 Design Library 

Command 

Reset 

Go 

Single step 

Substitute 
memory 

Examine 
register 

Block move 

Input or output 

Operation 

Starts monitor. 

Allows user to execute user 
program, and causes it to halt 
at predetermined program 
stop. Useful for debugging. 

Allows user to execute user 
program one instruction at a 
time. Usefui for debugging. 

Allows user to examine and 
modify memory locations in 
byte or word mode. 

Allows user to examine and 
modify 8086 register contents. 

Allows user to relocate pro­
gram and data portions in 
memory. 

Allows direct control of 
SDK-86 I/O facilities in byte or 
mode. 

Table 1. Keyboard Mode Commands 

Command Operation 

Dump memory Allows user to print or display 
large blocks of memory infor-
mation in hex format than 
amount visible on terminal's 
CRT display. 

Start/continue Allows user to display blocks 
display of memory information larger 

than amount visible on ter-
minal's CRT display. 

Punch/read Allows user to transmit fin-
paper tape ished programs into and out of 

SDK-86 via TIV paper tape 
punch. 

Table 2_ Serial Mode Commands 
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8086 INSTRUCTION SET. 

Table 4 contains a summary of processor instructions 
used for the 8086 microprocessor. 

Mnemonic and 
Description Instruction Code 

Data Transfer ",,,._, 
Reglsllr1memory lollrom register 

Immidtaitlor,glsl,rlmemory 

Imm,d.al'lo reglSllr 

71141210 71543210 71S4U1Q 711541210 

110001 Od _[mod reo rim I 
1100011 w moei 0 0 0 rim 

101 I w reg dala 

Memory 10 aeeumul'lof 10' 0000 w addr.low 

Accumulator 10 memory 1 0 1 0 0 0 1 'OIl addr-IOIr 

Rellisier/memory 10 segment ItglSI.r F.'~O~OjO:r':r' '[' to tm~'tdOt'~"::ttJ 
Segment rlll,st" 10 relister/memory IJ 000 1 100 Irn:ld 0 reo rim 

fllglster/memory 

Regl"er 
Segment reg,s'" 

fleglslef/memory 

Regisllr 

Segmentregls'I' 

XC!II=Elcllug.: 

Register/memory wllllfIllISI., 

AeglSter willi accumulator 

I.~I­
F'lIdpor1 

Vilflilbl.porl 

aUT· OUtput 

Filldport 

V'riableporl 

IUT-Translate by1.toAL 

LU=load EAto register 

LlI=lold pOlA,er to OS 

LEI-loadpotnllrloES 

WF-LoldAHwitl'lflags 

IAIIf=StoreAHlnlollllls 

'UIIIF"PushHIIIS 

PIIPf"Popllalls 

Arithmetic 

ADI=" 

',11' , " mod " 0 rim 

01010 rell 

000relll10 

, 000' , " modO 0 0 rim 

0' 0" rell 

OOO,ell"1 

1,0000' , 'III Imod fell rim 

110010 reg I 

1"'00'0'111 I 
11 I 10' lOw 1 

1110011 w 

1110111W 

11 0 1 0 1 I 1 

par' 

port 

1000110 I mod r!!ll 

11 000101 mod reg 

11000' 0 0 mod reg rim 

100" I 11 

10011 11 0 

10011 100 

, 0011 101 

dalallw" 

data Ilw·' 

addr·hlllh 

addr-hlgh 

RIg lmamoty 'IIIittl r~iSler to elthll ~O~O~O~O~O~O~' !:.pm~.~' ~'''i;:~'/mq-----,:-:--.-:-:,,"-:-'7.1 
Immedlale to regislerlmemory 1 0 000 0 s w mad 0 0 0 rim data dala " s:w~OI 

Immediale 10 accumulator 0 0 0 0 0 lOw dala dala " w·' 

ADC = ..... IUta",: 

RIg.lmemory wrlh relllS!1I 10 lither ~O~O~O~'~O~O r' :::.pm~.~' ~''':i;:~'/m;::!_-:=-_.-==:-;;;-, 
:::::::: :~:~;a::~ory F.;,.:,.:';;': ... : ... : .. ; ;;':-Fm;;;';;;dO;.'~,::",,;;;"m9_7.,,:;!,:;;~,ta;., •• =;,+--"'-""=-' ::..ih:.:.:..:-O:.:..J' 

111: ....... I\I1II: 

Rllli'terimemory 

RlIlII11r 

W.ASCliadjull fOr add 

W .. Dlclmaladjustforadd 

IUI· .. _ 

Reg./lIIIIIIotyandregist.tolrlhlr 

Immedilte Irom flllllllrimemory 

Immadillllromactumulltor 

II(C._ .. , 
Regllili/memory 

Refil'er 

1E.=ctrangesilln 

1111111 w modO 0 0 rim 

01000 rill 

00110111 

00100111 

001010 d 'III mod rID rim 

100000 I W modI 0 1 rim 

001011 0'111 dill 

,1',111. modO 01 rim 

0'1001 reg 

" , 10,,'111 modO " rim 

25 d~1a 
IIl:IIlallw=1 

dill ils:'III=OI 

Mnemonic and 
Description Instruction Code 

CI' - Celllplf.: 

Reglsterlmemoryand relllS'lr 

lmmelilal, wlttlleglster Imemory 

Immeehate wlttlaccumulator 

A.I·ASCUad,U$llorsubiracl 

DAI,Declmalad,ustlorsubtratl 

IUl·Multlply (unSlllnedl 

IIUL·lntelier multiply (SIlInedl 

"'I,ASCII adJuSI lor multiply 

OIV,Dlvldl(t,Jnslgnedj 

tlllV-lnteger dlYtde (sllInedj 

AAD,ASCII adJust 101 dlvtc!e 

CIW=Convert byte 10 word 

1114321D 7114UID 71143tl' 11141111 

001 I I Od w modr_~ rim 

1000005111 modi 1 I rim 

00' I I , 0 w da'i 

1001111111 

00 I 0 11 11 

1 1 1 101 I w mod' 0 0 rim 

I 1 , 1011 III modI 0 i rJm 

1101010000001010 

I 1 1 1011 W mod 110 rim 

1 1 1 101 I w mod' 1.1 rim 

11010101 00001010 

10011000 

CWI,Conver' word 10 doubll word 1001 1001 

Logic 
IOT'lnverT 1111011 w modO 1 0 rim 

SHL/SAL,Shllt 10glcaiJartthmelrcielt ,,0' 00 v III mod 10 ° rim 

SHI·Shll1loglcal flghl 1 10100 Y W modi 0 1 rim 

SA'=ShlltlrrthmeltCl1ghl 

IDL,Rolatetell 

IDI,Rotatefighl 

110100 Y W mod 111 rim 

, 10 I 0 ° v III modO 0 0 rim 

110 I 0 0 v w modO 0 I rim 

RCl-Rotatethrough carry l1ag lell , 10 I 0 0 v w modO 1 0 rim 

RCR·Rotatelhroullh carry "gtlt 110'OOyw modO" rim 

AID And: 

dala dalllflw=O! 

dlla II w-l 

Reglmemory and "lIlsterto IIIher 00' 0 0 0 d w mod reg 

Immediate to "glsterlmemOIY ~'~O~O~O~O!O~O ~.~m~'~d1!:lo~owt"mt4=::::l'i.!".!::+:J:"!!'''~''c!.!:]·'D 
Immedlale to accumulalor 0 0 I 0 0 lOw data dalll' w·l 

TEST· AntIllinCUlnlOlll."nl ... IUIr::":-:-:-::-::-:-:----r-:-_---,-, 

:~::~::::;t:r:n:n:e~::;::~~emory F.:~:~:~:';;':.,.:.,.: ;;.:+:§:~: o,;':~o,..;;;;;:9---:,,,.,,,---r---:,,",,..,",--• ..,_,,-, 

Immedhde data and accumuialor 

DR ~ Dr: 
Reglmemory and reglsler to eilher 

Immediate to register/memory 

Immedlatetoatcumulator 

JOII ~ helulh,. If: 

'0'0' 00 w dal. 

000010 d w mod reg rim 

1000000 w modO 0 1 rim 

000011 0 w dal. 

dllaifw-l 

"" dalailw-l 

dal1 11.~1 

Reg.lmemory and register to eitner FO~O";''''''''O'''O'''' ;;..+m;::.~' ,;"~',..'~/m9_--:"",---,_=="""" 

::::::::::: ::~t;:~:;:~ory Fi;",:':::':::'::':.,.:.,.: ;:.:fm;::.;:.d1~':.,:,::,.,,'~/m~_~,,~t:a~i:I:..._~, +-="::::":.::;'..:: • .:..:.,--' 

String Manipulation 
.,=Repeat 1111001z 

MOVS",MoV8 byte/word 1 0 1 0 0 1 0 w 
CMPS,., Compare byte/word 1 0 1 0 0 , 1 'III 

SCAS", Scan bytelword 1 0 , 0 , 1 1 W 

LOBS", Load byteJwd to AUAX , 0 1 0 1 1 0 'III 

STDS", Stor bytelwd Irm AUA 

Control Transfer 
CAlL-Cal', 

1" 0 1 0 0 0 dlSp·low Directwilllin segment 

Indirlct wlthtn segment 

Directlnterstgment 

",',111 modO 1 0 rim 

1 (1011 0 1 0 011111-10. 

SIll-low 

Indirl(tinlersegmenl 1,' , 11 " mod 01' rIm 

dlSp·hlgh 

ollset-hlgh 

seg-hlgh 

continued 
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Mnemonic and 
Description Instruction Code 

... , = 1IIIcIIII11lln1f"'Mp: 

DIrect wllhrn sigmeni 

Direclwlthlns~mlnl·sho'l 

Ind,rlctw,lI'unsegmenl 

Dilict mlersellmen! 

71141210 '110412'1' 111143110 

\' 1101001 I dllll-iow I dlsp-hlgh' I 
11101011 dlSII 

1111 I 11 t mod 1 00 rim 

11 101010 011511-10. ollset-h,gh 

sell-low 

IndiflCtmlerseoment 1,11 11111\mOd 1 0 1 

In = """'. Ire. CAll: 
Wlllllnsegment 11000011 

Within HI. ackhnllimmed 10 SP 11000010 data·low data-high 

data-low dala-hlgh :::;::::::, addlnllimmediale 10 SP F.:~:C::C::~:~:-:-:":'; t-----===--r----===-, 
Jf./oIl~Jump on equal/lifO 0 1 I 10 100 dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

.Il/J"~~u::~~n IessinOlllreattf 0 I , 1 1 1 0 0 

.IL1/I11~~::ronleSSOleqUallnot 0 I 1 1 1 110 

J"JIAl;~U:~lynbeIOW/nOllbove 0 1 I '0010 

"/JIIA~~~~~~~ below or equilll 0 1 , 1 0 1 1 0 

,w/oll'E=Jumpon partly/panlyeven 01111010 dlsp 

.Nt-Jump onovlrllow 01110000 dlsp 

.. 1=Jump on Stan 0 I 111000 dlSp 

dlsp 

dlsp ~:~~:::~~: :~ :::: ~~~~~r:!~::ro F.oO~:-:-: -:-: '=':.;-: :-00 :-: I--~~_-I 
or ,quill 

"IU/.tIG~~:~r on nollKs or equill! I 0 1 1 1 1 1 1 1 I 
""/JAl~~u~ea~n nOI below/ilbove 0 1 I , 0 0 1 1 

"IIE/".~~~~iI~~:t below or 0 1 1 1 0 1 I 1 

JI"oI"=Jump on nOI pilr/pilf odd 01111011 

"IO=Jumpon OOlOVlrllow 01110001 

NotlS 
Al '" 8-bit accumulator 
AX '" 16-bit accumulator 
CX '" Count register 
OS '" Data segment 
ES'" Extra segment 
Above/be/ow refers to unSigned value. 
Greater = more positive; 
le$s = less positive (more negative) signed values 
II d= 1 than "to" rag; II d=O than "from" feg 

dlsP 

dlill 

dlsp 

dlsp 

dlsp 

if w = 1 then word instruction; if w = 0 then byte instruction 

if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0·, disp-Iow and disp-high are absent 
it mod'" 01 then DlSP = disp-Iow sign-extended to 16-bits, disp-high is absent 
it mod = 10 then DISP = disp-high: disp-Iow 

il rim - 000 then EA - (BX) • (51) ·DI5P 
If rim -1101 then EA - (BX) • (01) .DI5P 
if rim· 010 thIn EA -(BP) • (51) • DI5P 
" rim - 011 thon EA - (BP) • (01) • DI5P 
if rim· 1110 then EA - (51) • DI5P 
if rim - tOl then EA -(01) • DI5P 
if rim - 110 then EA - (ep) • DI5P' 
it rim = 111 then EA = (BX) + DISP 
DISP follows 2nd byte of instruction (before data if re!luired) 

·except if mod" 00 and rim = 110 then EA = disp-high: disp-Iow 

Table 4. 8086 Instruction Set Summary 

SPECIFICATIONS 

Central Processor 
CPU - 8086-4 
Note 
May be operated at 2.5 MHz or 5 MHZ, jumper selectable, for use with 
8086. 

Memory 

ROM - 8K bytes 2316/2716 

RAM - 2K bytes (expandable to 4K bytes) 2142 

Mnemonic and 
Instruction Code Description 

116412'10 115412'10 
JIII=Jumpon nolSlan 101111 001 I dilP 
LOOP Loop CX limes "' 000' 0 dlsp 
lOGPULaePE=Loopwhlle ulo/eQuill "10000' dlsp 
LOO,IULOOPIIE·LooplllollilenOI 

" 100000 dlsp zero/equal 
JCll·Jumpon CX zero 111 00011 dlsp 

lIT Inllrrupl 
Typespecilled I" 0011 0' I .yp. 
Type 3 11 001100 

IIITO=lnlelluplon ovelllow 11 0011 10 

IIIET=lnllrrupllelurn 11001111 

PrIM;ISSO,Ca_ 
CLC'Clearcarry 111 1 1000 

CIII: Complement carry " 11 0 101 

STCSelcarry 111 11 001 

CLO·CleardlfectlQn 11 11 1 '00 

STD·5eldlfeellon 
CLI=Clearlnlerrupl 11 1 11 0 1 0 

ST!·Sellnlerrupl 11111011 

HLTHalt 11 11 0 1 0 0 

.A'T Wall 100 II 0 11 

ESC Escape Ho e~lernal deVice) 11 0' 'II II II mod 111111 rim 
lOCI Bus lock preh 11 11 0 0 0 0 

If s:w = 01 then 16 bits 01 immediate data form the operand. 
i! s:w = 11 then an imme(liate data byte is sign extended to 

form the t6-bIt operand 
if v = 0 then "count" = 1; if v = 0 then "count" '" (Cl) 
x=don'tcare 

I 

If v = 0 then "count" = 1; if v = 1 then "count" '" (Cl) register 
z is used for string pnmltlves for comparison With ZF FlAG. 

SEGMENT OVERRIDE PREFIX 

~fegll0 

REG is assigned according to the following table 

tl-all (. - I) 6-8111. -0) ~ 
000 AX 000 AL 110 ES 
001 CX DOt CL 01 C5 
010 OX 010 OL 10 S5 
Otl BX Otl BL tI OS 
tOO SP tOO AH 
tOt BP 101 CH 
tlO 51 tiD DH 
til 01 tit BH 

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to 
represent the file: 

FLAGS - X: X :XX: (OF): (OF): (I F): (TF)· (SF): (ZF): X: (AF): X ·(PF): X: (CF) 

Mnemonics (e") Intel, 1978 

Addressing 
ROM - FEOOO-FFFFF 
RAM - 0-7FF (800-FFF available with additional 
2142's) 

Note 
The wire·wrap area of the SDK-86 PC board may be used for additional 
custom memory expansion, 

Input/Output 
Parallel - 48 lines (two 8255A's) 
Serial - RS232 or current loop (8251 A) 

Baud Rate - selectable from 110 to 4800 baud 
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Interfaces 
Bus - All signals TTL compatible 
Parallel 110 - All signals TTL compatible 
Serial 110 - 20 mA currer,t loop TTY or RS232 
Note 
The user has access to all bus signals which enable him to design cus­
tom system expansions into tbe kit's wire-wrap area. 

Interrupts (256 ver.:tored) 
Maskable 
Non·maskable 
TRAP 

DMA 
Hold Request - Jumper selectable. TTL compatible 
input. 

Software 
System Moni'.or - Preprogrammed 2716 or 2316 ROMs 
Addresses -- FEOOO-FFFFF 
Monitor 110 - Keyboard/display or TTY or CRT (serial 
110) 

Physic:al Characteristics 
Width .- 13.5 in. (34.3 cm) 
Heighfj - 12 in. (30.5 cm) 
Depth - 1.75 in. (4.45 cm) 

Wei'ght - approx. 24 oz. (3.3 kg) 

ORDERING INFORMATION 

Part Number Description 
SDK·86 MCS·86 system design kit 

Electrical Characteristics 

DC Power Requirement 

(Power supply not included in kit) 

f--. Voltage._ 

VCC5V± 5% 

Current 

3.5A 

VTTY - 12V ± 10% 0.3A 

~ ______ L(,,-V.'..2..nY required ~nly if teletype is connected) 

Environmental Characteristics 

Operating Temperature - 0-50'C 

Reference Manuals 

9800697A - SDK·86 MCS·86 System Design Kit 
Assembly Manual 
9800722 - MCS·86 User's Manual 

9800640A - 8086 Assembly Language Programming 
Manual 
8086 Assembly Language Reference Card 

Reference manuals are shipped with each product only 
if designated SUPPLIED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051. 
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SDK-C86 

MCS-86'· SYSTEM DESIGN KIT 
SOFTWARE AND CABLE INTERFACE '''0 

INTELLEC® DEVELOPMENT SYSTEM 

• Provides the Software and Hardware 
Communications Link Between an 
Intellec® Development System and the 
SDK-86 

• Intellec® System Files can be Accessed 
and Down loaded to the SDK-86 
Resident Memory 

• Data in SDK-86 Memory can be 
Uploaded and Saved in Intellec® 
System Files 

• Enhances and Extends the Power and 
Usefulness of the SDK-86 

• Allows the SDK-86 to Become an 
Execution Vehicle for ISIS-II 
Developed 8086 Object Code Using 
the MDS-311 Software Cross 
Development Package 

• All SDK-86 Serial Port Mode 
Commands Become Available at 
Console of the Intellec® System 

The SDK-C86 product provides the software and hardware link for using the SDK-86 monitor in conjunction will', an 
Intellec® Development System while adding features of data transfer between SDK-86 memory and Intellec® System fil'es. 
The user may enter programs and data into the SDK-86 and then save them on a diskette. Also, programs and data may be 
created on the Intellec® System using the MDS-311 cross development software package, then loaded into the SDK-86 for 
testing and checkout. This provides a real time execution environment of the SDK-86 as a peripheral to the Intellec® 
System. 
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HARDWARE 

There are two·serial ports on the Intellec® System back 
panel. TTY and CRT. Assuming that one of the ports is 
used for the Intellec® console. the SDK-C86 cable can 
plug into the unused port. The SDK-86 is jumper 
selectable to accept either the CRT (RS232) orTTY (20mA 
current loop I signals. 

The edge connector on the SDK-86 has the MUL TIBUS'· 
form factor. No signals are connected to the fingers 
except the power supply traces. Therefore, the SDK-86 
can plug directly into the Intellec® motherboard to obtain 
power while using the SDK-C86 cable as the communi­
cation link. 

SOFTWARE 

Two programs must be invoked to operate in the SDK-86 
slave mode. One program runs on the SDK-86, and 
another runs in any ISIS-II environment that includes a 
diskette drive. 

The serial 1/0 monitor is installed on the SDK-86 and 
operates as though it was talking to a terminal. The 
software in the Intellec® allows the Intellec®, with a 
console device, to behave as if it were a terminal to the 
SDK-86. 

The SDK-C86 software program in the Intellec reads the 
console input device, then passes the character to the 
SDK-86 through the serial port. It also receives the 
characters from the SDK-86 and displays them at the 
console output device. Besides the basic transfer 
function, this program also recognizes and performs the 
Upload and Download functions. 

COMMAND MODES 

• Transparent: In this mode, the SDK-C86 software 
passes all characters through without any processing. 
All the commands of the SDK-86 monitor (except paper 
tape commands) are available and will function in 
exactly the same manner as if the terminal were 
attached directly to the serial port of the SDK-86. 

• Upload/Download: In this mode the SDK-C86 software, 
in the Intellec®, recognizes the mnemonic for Upload or 
Download from the terminal. It "translates" the 
Download command to an R (Read hexadecimal tape) 
command and the Upload command to a W (Write 
hexadecimal tape). The Rand W commands are then 
passed on to the SDK-86 monitor. Using these paper 
tape commands allows for a checksummed transfer of 
data between the Intellec® and the SDK-86 memory. 

COMMAND SUMMARY 

• Reset - starts the SDK-86 monitor. 

• Execute with Breakpoint IG I - Allows you to exe­
cute a user program and cause it to halt at a predeter­
mined program step - useful for debugging. 

• Single Step (N) - allows you to execute a user program 
one instruction at a time - useful for debugging. 

• Substitute Memory IS, SWI - allows you to examine 
and modify memory locations in byte or word mode. 

• Examine Register (X) - allows you to examine and 
modify the 8086's register contents. 

• Block Move (M) - allows you to relocate program and 
data portions in memory. 

• Input or Output (I, IW, 0, OW)- allows direct control of 
the SDK-86's 1/0 facilities in byte or word mode. 

• Display Memory (D) - allows you to print or display 
large blocks of memory information in HEX format. 

• Load (L) - allows you to load hex format object files 
into SDK-86 memory from an Intellec. 

• Transfer IT) - allows you to save contents of SDK-86 
memory in a hex format object file in the Intellec. 

PORTS CABLE SERIAL~ 

4~====:::::;:::::===="'" SERIAL 
~ ______ ~~ PORT 

CRTOR TTY 

INTELLEC® 
DEVELOPMENT 

SYSTEM 

G·,mm 
SDK-86/lntellec@ Slave Mode Configuration 
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3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

ALABAMA 
tHamilton/ Avnet Electronics 
4692 Commercial Drive N.W. 
Huntsville 35805 
Tel: (205) 837-7210 
Pioneer 
1207 Putman Drive NW 
Huntsville 35805 
Tel: (205) 837-9033 
TWX: 810-726-2197 

ARIZONA 
tHamiiton/ Avnet Electronics 
2615 South 21st Street 
Phoenix 85034 
Tel: (602) 275-7851 
tLiberty / Arizona 
8155 N. 24th Avenue 
Phoenix 85021 
Tel: (602) 249-2232 
TWX: 910-951-4282 

CALIFORNIA 
tAvnet Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754-6111 
Hamilton/ Avnet 
1175 Bordeaux Dr. 
Sunnyvale 94086 
Tel· (408) 743-3300 
TWX: 910-339-9332 
tHamiltonl Avnet Electronics 
8917 Complex Drive 
San Dieqo 92123 
Tel: (714) 279-2421 
TWX: 910-335-1216 
Hamilton/ Avnet 
10912 W. Washington Blvd, 
Culver City 90230 
Tel: (213) 558-2809 (2665) 
TWX: 910-340-6364 or 7073 
tHamilton Electro Sales 
10912 W. Washington Boulevard 
Culver City 90230 
Tel: (213) 558-2121 
tLiberty Electronics 
124 Maryland Street 
EI Segundo 90245 
Tel: (213) 322-3826 
TWX: 910-348-7140 or 7111 
tLiberty/San Diego 
9525 Chesapeake Dr. 
San Diego 92123 
Tel: (714) 565-9171 
TWX: 910-335-1590 
tElmar Electronics 
3000 Bowers Avenue 
Santa Clara 95052 
Tel: (408) 727-2500 
TWX: 910-338-0451 or 0296 
Hamilton/Avnet Electronics 
17312 Eastman Street 
Irvine 92714 
Tel: (714) 979-6864 

COLORADO 
tElmar/Denver 
6777 E. 50th Avenue 
Commerce City 80022 
Tel: (303) 287-9611 
TWX: 910-931-0510 
tHamilton/ Avnet Electronics 
5921 No. Broadway 
Denver 80216 
Tel: (303) 534-1212 
TWX: 910-931-0510 

CONNECTICUT 
tCramer /Connecticut 
P.O. Box 5003 
12 Beaumont Road 
Wallingford 06492 
Tel: (203) 265-7741 
TWX: 710-476-0162 
tHamilton/ Avnet Electronics 
643 Danbury Road 
Georpetown 06829 
Tel: (203762-0361 
tHarvey Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
TWX: 710-468-3373 

U.S. AND CANADIAN DISTRIBUTORS 

FLORIDA 
Arrow Electronics 
1001 N.W. 62nd Street 
Suite 108 
Ft. Lauderdale 33309 
Tel: (305) 776-7790 
Arrow Electronics 
115 Palm Bay Road, NW 
Suite 10. Bldg. 200 
Palm Bay 32905 
Tel: (305) 725-1480 
TWX: 510-959-6337 
tHamilton/ Avnet Electronics 
6800 Northwest 20th Ave. 
Ft. Lauderdale 33309 
Tel: (305) 971-2900 
TWX: 510-955-3097 
tpioneer 
6220 S. Orange Blossom Trail 
Suite 412 
Orlando 32809 
Tel: (305) 859-3600 
TWX: 810-850-0177 
Hamilton/Avnet 
3197 Tech. Drive N. 
St. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863-0374 

GEORGIA 
Arrow Electronics 
3406 Oak Cliff Road 
Doraville 30340 
Tel: (404) 455-4054 
TWX: 810-757-4213 
tHamilton/ Avnet Electronics 
6700 1-85 Access Road, #11 
Norcross 30071 
Tel: (404) 448-0800 

ILLINOIS 
Arrow Electronics 
492 Lunt Avenue 
P.O. Box 94248 
Schaumburg 60193 
Tel: (312) 593-8230 
TWX: 910-222-1807 
tHamliton/ Avnet Electronics 
3901 No. 25th Ave. 
Schiller Park 60176 
Tel: (312) 678-6310 
TWX: 910-227-0060 
Pioneer/Chicago 
1511 Carmen Drive 
Elk Grove 60006 
Tel: (312) 437-9680 
TWX: 910-222-1834 

INDIANA 
tPioneer/lndiana 
6408 Castleplace Drive 
Indianapolis 46250 
Tel: (317) 849-7300 
TWX: 810-260-1794 

KANSAS 
t Hami Iton/ Avnet Electronics 
9219 QUivira Road 
Overland Park 66215 
Tel: (913) 888-8900 

MARYLAND 
tHamilton Avnet 
P.O. Box 647. 
BWI Airport 
7235 Standard Drive 
Hanover 21076 
Tel: (301) 796-5684 
TWX: 710-862-1861 
tPioneer /Washington 
9100 Gaither Road 
Gaithersburg 20760 
Tel: (301) 948-0710 
TWX: 710-828-0545 

MASSACHUSETTS 
tCramer Electronics Inc. 
85 Wells Avenue 
Newton 02159 
Tel: (617) 969-7700 

August 1979 

MASSACHUSETTS (continued) 
tHamilton/Avnet Electronics 
100 East Commerce Way 
Woburn 01801 
Tel: (617) 273-7500 

MICHIGAN 
tArrow Electronics 
3921 Varsity Road 
Ann Arbor 48140 
Tel: (313) 971-8220 
TWX: 810-223-6020 
t Pioneer/Michigan 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
TWX: 810-242-3271 
tHamilton/Avnet Electronics 
32487 Schoolcraft Road 
Livonia 48150 
Tel: (313) 522-4700 
TWX: 810-242-8775 

MINNESOTA 
tlndustrial Components 
5280 West 74th Street 
Minneapolis 55435 
Tel: (612) 831-2666 
TWX: 910-576-3153 
Arrow Electronics 
5251 73rd Street 
Edina 55435 
Tel: (612) 835-7811 
TWX: 910-576-2726 
tHamilton/ Avnet Electronics 
7449 Cahill Road 
Edina 55435 
Tel: (612) 941-3801 
TWX: 910-576-2720 

MISSOURI 
tHamilton/ Avnet Electronics 
396 Brookes Drive 
Hazelwood 63042 
Tel: (314) 731-1144 
TWX: 910-762-0606 

NEW JERSEY 
Arrow/Philadelphia 
Pleasant Valley 
Moorestown 08057 
Tel: (201) 239-0800 
TWX: 710-897-0829 
Arrow Electronics 
285 Midland Avenue 
Saddlebrook 07662 
Tel: (201) 797-5800 
TWX: 710-988-2206 
Hamilton/Avnet 
10 Industrial 
Fairfield 07006 
Tel: (201) 575-3390 
TWX: 710-734-4338 
tHarvey Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 227-1262 
TWX: 710-734-4382 
tHamiiton/Avnet Electronics 
113 Gaither Drive 
East Gate Industrial Park 
Mt. Laurel 08057 
Tel: (609) 424-0100 
TWX: 710-897-1405 

NEW MEXICO 
tAlliance ElectroniCS Inc. 
11721 Central Ave. 
Albuquerque 87123 
Tel: (505) 292-3360 
TWX: 910-989-1151 
tHamilton/Avnet Electronics 
2524 Baylor Drive, S.E. 
Albuquerque 87119 
Tel: (505) 765-1500 

tMicrocomputer System Technical Demonstrator Centers 
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3065 Bowers Avonue U.S. AND CANADIAN DISTRIBUTORS 
Santa Clara. California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

NEW YORK 
Harvey Electronics 
P.O. Box 1208 
Blnghampton 13902 
Tel: (607) 748-8211 
TWX: 510-252-0893 
Arrow Electronics 
900 Broad Hollow Road 
Farmingdale 11735 
Tel: (516) 894-6800 
TWX: 510-224-6494 
tCramer/Aochester 
3000 South Winton Road 
Rochester 14623 
Tel: (716) 275-0300 
TWX: 910-338-0026 
tHamilton/Avnet Electronics 
167 Clay Road 
Rochester 14623 
Tel: (716) 442-7820 
TWX: 910-340-6364 
tCramer/Syracuse 
7705 Maltlage Drive 
Liverpool 13088 
Tel: (315) 652-1000 
TWX: 710-545-0230 
Arrow Electronics 
399 Conklin Street 
Farmingdale 11735 
Tel: (516) 694-6800 
TWX: 510-224-6494 
tHamilton/Avnet Electronics 
16 Corporate Circle 
E. Syracuse 13057 
Tel: (315) 437-2641 
tHamilton/Avnet Electronics 
70 State Street 
Westbury, L.I. 11590 
Tel: (516) 333-5413 
TWX: 510-252-0893 
tHarvey Electronics 
60 Crossways Park West 
Woodbury 11797 
Tel: (516) 921-8700 
TWX: 510-221-2184 

NORTH CAROLINA 
Pioneer/Carolina 
106 Industrial Ave. 
Greensboro 27406 
Tel: (919) 273-4441 
TWX: 510-925-1114 
tHamiiton/Avnet Electronics 
2803 Industrial Drive 
Raleigh 27609 
Tel: (919) 829-8030 
Arrow Electronics 
P.O. Box 989 
Kernersville 27284 
Tel: (919) 996-2039 
TWX: 510-922-4765 

OHIO 
Arrow Electronics 
3100 Plainfield Road 
Kettering 45432 
Tel: (513) 253-9176 
TWX: 810-459-1611 
Arrow Electronics 
6238 Cochran Rd. 
Solon 44139 
Tel: (216) 248-3990 
tHamilton/Avnet Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 433-0610 
TWX: 910-340-2531 
IPloneer /Dayton 
1900 Troy Street 
Dayton 45404 
Tel: (513) 236-9900 
TWX: 810-459-1622 
Arrow Electror:llcs 
10 Knollcrest Dr. 
Reading 44139 
Tel: (513) 761-5432 
TWX: 810-461-2870 
IPloneer/Cleveland 
4800 E. 1310t Street 
Cleveland 44105 
Tel: (216) 587-3800 
TWX: 810-422-2210 

OHIO (oaollnued) 
tHamiiton/ Avnet Electronics 
4588 Emory Industrial Parkway 
Warrensville Heights 44128 
Tel: (216) 831-3500 

OKLAHOMA 
tComponents Specialties, Inc. 
7920 E. 40th Street 
Tulsa 74145 
Tel: (918) 664-2820 
TWX: 910-845-2215 

OREGON 
tAlmac/Stroum ElectroniCS 
8022 S.W. Nimbos, Bldg. 7 
Beaverton 97005 
Tel: (503) 641-9070 

PENNSYLVANIA 
Pioneer/Pittsburgh 
560 Alpha Drive 
Pittsburgh 15238 
Tol: (412) 782-2300 
TWX: 710-795-3122 
Pioneer/Delaware Valley 
141 Gibraltar Road 
Horsham 19044 
Tel: (215) 674-4000 
TWX: 510-665-6778 

TENNESSEE 
Arrow ElectroniCS 
6900 Office Park Circle 
Knoxville 37919 
Tel: (615) 588-5836 

TEXAS 
Component Specialties Inc. 
8222 Jamestown Drive 
Suite 115 
Austin 78758 
Tel: (512) 837-8922 
TWX: 910-874-1320 
tHamjlton/Avnet Electronics 
4445 Sigma Road 
Dallas 75240 
Tel: (214) 661-8661 
TWX: 910-860-5371 
tHamilton/Avnet Electronics 
3939 Ann Arbor 
Houston 77063 
Tel: (713) 780-1771 
tComponent Specialties, Inc. 
10807 Shady Trail, Suite 101 
Dallas 75220 
Tel: (214) 357-6511 
TWX: 910-861-4999 
tComponent Specialties, Inc. 
8585 Commerce Park Drive, Suite 590 
Houston 77036 
Tel: (713) 771-7237 
TWX: 910-881-2422 
Arrow ElectroniCS 
13715 Gamma Road 
Dallas 75234 
Tel: (214) 661-9300 
TWX: 910-861-5495 

UTAH 
tHamilton/ Avnet Electronics 
1585 West 2100 South 
Salt Lake City, 84119 
Tel: (801) 972-2800 

WASHtNGTON 
tHamiiton/Avnet Electronics 
14212 N.E. 21st 
Bellevue 98005 
Tel: (206) 746-8750 
fAlmac/Stroum ElectroniCS 
5811 Sixth Ave. South 
Seattle 98108 
Tel: (206) 763-2300 
TWX: 910-444-2067 
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WASHINGTON (coollnued) 
tLiberty Electronics 
1750 132nd Avenue NE 
Bellevue 98005 
Tel: (206) 453-8300 
TWX: 910-443-2526 

WISCONSIN 
Arrow Electronics 
434 W. Rausson Avenue 
Oak Creek 53154 
Tel: (414) 764-6600 
TWX: 910-338-0026 
tHamilton/Avnet 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784-4510 
TWX: 910-262-1182 

CANADA 

ALBERTA 
tL. A. Varah Ltd. 
4742 14th Street N.E. 
Calgary T2E 6L7 
Tel: (403) 230-1235 
TWX: 018-258-97 

BRITISH COLUMBIA 
I L.A. Varah Ltd. 
2077 Alberta Street 
Vancouver V5Y 1 C4 
Tel: (604) 873-3211 
TWX: 610-929-1068 

Zentronics 
8325 Fraser Street 
Vancouver V5X 3X8 
Tel: (604) 325-3292 
TWX: 04-5077-89 

MANITOBA 
L. A. Varah 
1~1832 King Edward Street 
Winnipeg R2R ON1 
Tel: (204) 633-6190 
TWX: 07-55-365 

ONTARIO 
tL.A. Varah, Ltd. 
505 Kenora Avenue 
Hamilton L8E-3P2 
Tet: (416) 561-9311 
TWX: 061-8349 
tHamiiton/Avnet Electronics 
3688 Nashua Drive, Units G & H 
Mississauga L4V IM5 
Tel: (416) 677-7432 
TWX: 610-492-8860 
tHamilton/Avnet Electronics 
1735 Courtwood Cresco 
Ottawa K2C 3J2 
TeL (613) 226-1700 
tZentronlcs 
141 Catherine Street 
Ottawa, OntariO K2P lC3 
Tel: (613) 238-6411 
TWX: 053-3636 
tZentronics 
1355 Meyerside Drive 
Mississauga, Ontario L5T IC9 
Tel: (416) 676-9000 
Telex: 06~983-657 

QUEBEC 
tHamilton/Avnet Electronics 
2670 Paulus Street 
st. Laurent H4S 1 G2 
Tel: (514) 331-3731 
TWX: 610-421-3731 
Zentronics 
5010 Pare Street 
Montreal H4P 1 P3 
Tel: (514) 735-5361 
TWX: 05-827-535 

tMicrocomputer System Technical Demonstrator Centers 



3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

ALABAMA 
Intel Corp. 
3322 S. Parkway, Sle. 71 
Holiday Office Center 
Huntsville 35802 
Tel: (205) 883-2430 
Glen White Associates 
3502 9th Avenue 
Huntsville 35805 
Tel: (205) 533-5272 
tPen-Tech Associates, Inc. 
Holiday Office Center 
3322 S. Memorial Pkwy. 
Huntsville 35801 
Tel: (205) 533·0090 

ARIZONA 
Intel Corp. 
8650 N. 35th Avenue, Suite 101 
Phoenix 85021 
Tel: (802) 242-7205 

tBFA 
4426 North Saddle Bag Trail 
Scottsdale 85251 
Tel: (602) 994-5400 

CALIFORNIA 
Intel Corp. 
7670 Opportunity Rd. 
Suite 135 
San Diego 92111 
Tel: (714) 268-3563 
Intel Corp.-
1651 East 4th Streel 
Suite 105 
Santa Ana 92701 
Tel: (714) 835-9642 
TWX: 910-595-1114 
Intel Corp: 
15335 Morrison 
Suite 345 
Sherman Oaks 91403 
(213) 986-9510 
TWX: 910-495-2045 
Intel Corp: 
3375 Scott Blvd. 
Santa Clara 95051 
Tel: (408) 987-80B6 
TWX: 910-339-9l79 
TWX: 910-338-0255 
Earle Associates, Inc. 
4617 Ruffner Street 
Suite 202 
Son Diego 92111 
Tel: (714) 278-5441 
Mac-I 
2576 Shattuck Ave. 
Suite 4B 
Berkeley 94704 
Tel: (415) 843-7625 
Mac-I 
P.O. Box 1420 
Cupertino 95014 
Tel: (40B) 257-9880 
Mac-I 
P.O. Box B763 
Fountain Valley 92708 
Tel: (714) B39-3341 
Mac-I 
20121 Ventura Blvd., Suile 240E 
Woodland Hills 91364 
Tel: (213) 347-5900 

COLORADO 
Intel Corp.* 
6000 East Evans Ave. 
Bldg. 1, Suite 260 
Denver 80222 
Tel: (303) 758-8086 
TWX: 910-931-2289 
tWestek Data Products, Inc. 
27972 Meadow Drive 
P.O. Box 1355 
Evergreen 80439 
Tel: (303) 674-5255 
Westek Data Products, Inc. 
1322 Ar~pahoe 
Boulder 80302 
Tel: (303) 449-2620 

CONNECTICUT 
Intel Corp. 
Peacock Alley 
1 Padanaram Road, Suite 146 
Danbury 06810 
Tel: (203) 792.-8366 
TWX: 710-456-1199 

FLORIDA 
Intel Corp. 
1001 N.W. 62nd Street, Suite 406 
FI. Lauderdale 33309 
Tel: (305) 771-0600 
TWX: 510-956-9407 
Intel Corp. 
5151 Adanson Street, Sulle 203 
Orlando 32804 
Tel: (305) 628-2393 
TWX: 810-853-9219 
tpen-Tech Associates, Inc. 
201 S.E. 15th Terrace, Suite F 
Deerfield Beach 33441 
Tel: (305) 421-4989 

u.s. AND CANADIAN SALES OFFICES 

FLORIDA (conI.) 
tPen-Tech ASSOCiates, Inc. 
111 So. Maittand Ave .. Suite 202 
Maitland 32751 
Tel: (305) 645-3444 

GEORGIA 
tPen-Tech Associates, Inc. 
Sulle 305 C 
2101 Powers Ferry Road 
Allanta 30339 
Tel: (404) 955-0293 

ILLINOIS 
Intel Corp.· 
900 Jone Boulevard 
Suite 220 
Oakbrook 60521 
Tel: (312) 325-9510 
TWX: 910-651-5881 
First Rep Company 
9400-9420 W. Foster Avenue 
Chicago 60656 
Tel: (312) 992-0830 

INDIANA 
Electro Reps Inc. 
941 E. B6th Street, Suite 101 
Indlanapohs 46240 
Tel (317) 255-4147 
TWX: 810-341-3217 
Electro Reps Inc. 
3601 Hobson Rd. 
Suite 106 
Ft. Wayne 46815 
Tel: (219) 483-0518 

IOWA 
Technical Representatives, Inc. 
51. Andrews Building 
193051. Andrews Drive N.E. 
Cedar Rapids 52405 
Tel: (319) 393-5510 

KANSAS 
Intel Corp. 
9393 W. 110th 51., Ste. 265 
Overland Park 66210 
Tel: (913) 642-8080 
Technical Representatives. Inc. 
8245 Nieman Road, Suite ;;114 
Lenexa 66214 
Tel: (913) 888-0212, 3. & 4 
TWX: 910-749-6412 

KENTUCKV 
tLowry & Associates, Inc. 
3351 Commodore 
Lexington 40502 
Tel: (606) 269-6329 

MARYLAND 
Intel Corp." 
7257 Parkway Drive 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 
Glen White Associstes 
57 W. Timonium Road. Suite 307 
Timonium 21093 
Tel: (301) 252-6360 
tMesa Inc. 
11900 Parklawn Drive 
Rockville 20852 
Tel: Wash. (301) 861-8430 

8alto. (301) 792-0021 

MASSACHUSETTS 
Intel Corp." 
27lndustria\ Ave. 
Chelmsford 01824 
Tel: (617) 667-8126 
TWX: 710-343-6333 
tComputer Marketing, Inc. 
257 Crescent Street 
Waltham 02154 
Tel: (617) 894-7000 

MICHIGAN 
Intel Corp." 
26500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353-0920 
TWX: 910-420-1212 
TELEX: 2 31143 
j'Lowry & Associates, Inc. 
135W. North Street 
Suite 4 
Brighton 48116 
Tel: (313) 227-7067 

MINNESOTA 
Intel Corp. 
8200 Normandale Avenue 
5ulte422 
Bloomington 55437 
Tel: (612) 835-6722 
TWX: 910-576-2867 
tDytek North 
1821 University Ave. 
Room 163N 
St. Paul 55104 
Tei: (612) 645-5816 

MISSOURI 
Technical Representatives, Inc. 
320 Brookes Drive, Suite 104 
Hazelwood 63042 
Tef: (314) 731-5200 
TWX: 910-762-0618 

NEW JERSEY 
Intel Corp.· 
1 Metroplaza Office Bldg. 
505 Thornall SI. 
Edison 08817 
Tel: (201) 494-5040 
TWX: 710-480·6238 

NEW MEXICO 
BFA Corporation 
P.O. Box 1237 
Las Cruces B8001 
Tel. (505) 523-0601 
TWX: 910-983-0543 
BFA Corporation 
3705 Westerfield, N.E. 
Albuquerque 87111 
Tel: (505) 292-1212 
TWX: 910-989-1157 

NEW YORK 
Intel Corp.-
350 Vanderbilt Motor Pkwy. 
Suite 402 
Hauppauge 11787 
Tel: (516) 231-3300 
TWX: 510-227-6238 
Intel Corp. 
80 Washington 51. 
Poughkeepsie 12601 
Tel: (914) 473-2303 
TWX. 510-248-0060 
Intel Corp. 
2255 Lyell Avenue 
Lower Floor East Suite 
Rochester 14606 
Tel: (716) 328-7340 
TWX: 510-253-3841 
tMeasurement Technology, Inc. 
159 Northern Boulevard 
Great Neck 11021 
Tel: (516) 482-3500 
T-Squared 
4054 Newcourt Avenue 
Syracuse 13206 
Tel: (315)463-8592 
TWX: 710-541-0554 
T-Squared 
2 E. Main 
Victor 14564 
Tel: (718) 924-9101 
TWX: 510-254-8542 

NORTH CAROl.INA 
tPen-Tech Associates, Inc. 
1202 Eastchester Dr. 
HighpOint 27260 
Tel: (919) 883-9125 
Glen While Associates 
4021 Barrett Or. 
Suite 12 
Raleigh 27609 
Tel: (919) 787-7016 

OHIO 
Inlel Corp." 
8312 North Main Street 
Dayton 45415 
Tel: (513} 890-5350 
TWX: 810-450-2528 
Intel Corp.· 
Chagrin-Brainard Bldg. #201 
28001 Chagrin BlVd. 
Cleveland 44122 
Tel: (216} 464-2736 
Lowry & Associates, Inc. 
24200 Cha9rin Blvd. 
Suite 320 
Cleveland 44122 
Tel: (216) 464-8113 
tLowry & Associates, Inc. 
1524 Marsella Drive 
Dayton 45432 
Tel: (513) 429-9040 
tLowry & Associates, Inc. 
1050 Freeway Dr., N. 
SUite 209 
Columbus 43229 
Tel: (614) 436-2051 

OREGON 
Intel Corp. 
10700 S.W. Beaverton 
Hillsdale Highway 
Suite 324 
Beaverton 97005 
Tel: (503) 641-8086 
ES/Chase Company 
4095 SW 144th St. 
Beaverton 97005 
Tel: (503) 641-4111 

PENNSYLVANIA 
Intel Corp.* 
275 Commerce Or. 
200 Office Center 
Suite 300 
Fort Washington 19034 
Tel: (215) 542-9444 
TWX: 510-661-2077 
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PENNSYLVANIA (conI) 
t Lowry & Associates, Inc. 
Seven Parkway Center 
Suite 455 
Pittsburgh 15520 
Tel: (41<!) 922-5110 
tQ.E.D. Electronics 
300 N. York Road 
Hatboro 19040 
Tel: (215) 674-9600 

TENNESSEE 
Glen White Associates 
Rt. ;;12, Norwood S/D 
Jonesboro 37659 
Tel: (615) 477-8850 
Glen White Associates 
2523 Howard Road 
Germantown 38138 
Tel: (901) 754-0483 
Glen White Associates 
6446 Ridge Lake Road 
Hixon 37343 
Tel: (615) 842-7799 

TEXAS 
Inlel Corp." 
2925 L.B.J. Freeway 
Suite 175 
Dallas 75234 
Tel: (214) 241-9521 
TWX: 910-860-5487 
Intel Corp.· 
6776 S.W. Freeway 
Suite 550 
Houston 77074 
Tel: (713) 784-3400 
Mycrosystems Marketing Inc. 
13777 N. Central ExpresswAV 
Suite 405 
Daltas 75243 
Tel: (214) 238-7157 
TWX: 910-867-4763 
Mycrosystems Marketing Inc. 
6610 Harwin Avenue, Suite 125 
Houston 77036 
Tel: (713) 783·2900 
Mycrosystems Marketing Inc. 
Koger Executive Center 
SUite 207 
San Antonio 78228 
Tel' (512) 735-5073 

VIRGINIA 
Glen White Associates 
P.O. Box 1104 
Lynchburg 24505 
Tel: (804) 384-6920 
Glen White Associates 
Rt. ;1, Box 322 
Colonial Beach 22443 
Tel: (804) 224-4871 

WASHINGTON 
Intel Corp. 
Campus Office Park, Bldg. 3 
1603 116th Ave. N.E. 
Believue 98005 
Tel: (206) 453-8086 
E.S./Chase Co. 
P.O. Box B0903 
Seattle 98108 
Tel: (206} 762-4824 
TWX: 910-444-2298 

WISCONSIN 
Intel Corp. 
4369 S. Howell Ave. 
Milwaukee 53207 
Tel: (414) 747-0789 

CANADA 
Intel Semiconductor Corp.· 
Suite 233, Belt Mews 
39 Highway 7, Belts Corners 
Ottawa. Ontario K2H BR2 
Tel: (613} 829-9714 
TELEX: 053-4115 
Intel Semiconductor Corp. 
6205 Ai rport Rd. 
Bldg. B, Suite 205 
Mississauga. Ontario 
L4V lE3 
Tel: (416) 671-0611 
TELEX: 06983574 
Multilek. Inc.-
15 Grenfell Crescent 
Ottawa. Ontario K2G OG3 
Tel: (613) 226-2365 
TELEX: 053-4585 
Mullilek, Inc. 
Toronto 
Tel: (4l6) 245-4622 
Multilek, Inc. 
Montreal 
Tel: (514) 481-1350 

• Field application location 
'!'These representatives do nol offer Intel Components, 
only boards and systems. 



inter 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987-6080 

INTERNATIONAL SALES AND MARKETING OFFICES 
TWX: 910-338-0026 
TELEX: 34-6372 

EUROPEAN MARKETING OFFICES 

BELGIUM 
Intet Corporation, S,A." 
Rue du Moulin a Papier 51 
Bolte 1 
B-1160Brussels 
Tel: (02) 660 30 10 
TELEX: 24814 

DENMARK 
Intel Denmark A/S' 
Lyngbyvej 32 2nd Floor 
DK-2100 Copenhagen East 
Tel: (Ol) 16 2000 
TELEX: 19567 

ORIENT MARKETING OFFICE 

JAPAN 
Intel Japan K.K." 
flower Hill-Shlnmachi East Bldg, 
1-23-9, Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: (03) 426-9261 
TELEX: 781-28426 

HONG KONG 
Intel Trading Corporation 
99-105 Des Voeux Rd., Central 
laF, Ul'lit B 
Hong Kong 

ENGL.AND 
Intel Corporation (U.K.) Ltd," 
Broad/ield House 
4 Between Towns Road 
Cowley, Oxford OX4 3NB 
Tel: (08BS) 7714 31 
TELEX: 837203 
tr.tel Corporation (U.K.) Lid. 
S Hospital Street 
Nantwich. Cheshire CW5 5RE 
Tel: (0270) 62 65 60 
TELEX: 36620 
FINLAND 
Intel Sweden AS 
P.O.Box1? 
Senlnerikuje,3 
SF-00400 
Helsinki, Finland 
Tel: 358 a/55 85 31 
TELEX: 123332 

FRANCE 
InteICorporation,SAR.L." 
S Place de Ie Balance 
Sllie 223 
94528 Rungis Codex 
Tel: (Ol) 687 22 21 
TELEX: 270475 

GERMANY 
Intel Semiconductor GmbH· 
Seidlstrasse 27 
aoooMuenchen2 
Tel: (089) 55 81 41 
TELEX: 523177 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 

AUSTRALIA 
A.J.f. Systems & Components 
PTY. LTD. 
44 Prospect Rd. 
Prospect 
South Australia 5082 
Tel: 269-1244 
TELEX: 82635 
A.J.F. Systems & Components 
PTY. LTD. 
29 Devlin SI. 
Ryde, N.S,W, 
Tel: 807-6676 
TELEG: 24906 
A.J,f. Systems 5. Components 
PTY. LTD. 
3tO Queen St. Melbourne, 
Victoria 3000 
Tel: 678-702 
TELEX: 30270 
Warburton franki (Sydney) Pty. Ltd 
199 Parramatta Road 
Auburn. N,g,W. 2114 
Tel: 648-1711, 648-1381 
TELEX: WARFRAN AA 22265 
Warburton Franki Industries 
(Melbourne) Pty, Ltd. 
220 Park Street 
South Melbourne, Victoria 3205 
Tel: 699-4999 
TELEX: WARFRAN AA 31370 
Warburtol'l Franki. Pty, lid, 
322 Grange Road, Kidman Park 
South Australia 5025 
Tel: 356-7333 
TELEX: WARFAAN AA 92908 
Warburton Franki (Perth) Pty. lid. 
96-102 Belgravia SI., Belmont 
Western Australia 6104 
Tel: 356-7000 
TELEX: WAAFAAN AA 92908 
Warburton Frankl (Brisbane) Pty. Ltd. 
13 Chester St" Fortitude Valley 
Queensland 4006 
TELEX: WARFRAN AA 41052 
Warburton O'Donnell Limited 
Corporale Headquarters 
372 Easlern Valley Way 
Chalswood, Nel!' South Wales 2067 
Tel: 407-3261 
TELEX: AA 21299 

AUSTRIA 
Bacher Eleklronlsche Geraete GmbH 
Rotenmulgasse26 
A 1120 Vienna 
Tel: {0222} 836396 
TELEX: (OI) 1532 
Reklrsch Eleklronik Geraete GmbH 
liohtensteinstrasse 97 
Al090 Vienna 
Tel; (222) 347646 
TELEX: 74759 

BELGIUM 
Ineloo Belgium SA 
Avenue Val Duchesse, 3 
B-1160 Srussals 
Tel: (02) 660 00 12 
TELEX: 25441 

BRAZIL 
Icotron S.A, 
05110-Av, Mutinga 3650 
6 Ander 
Plrituba-Sao Paulo 
Tel: 261-0211 
TELEX: (OIl) 2221CO BR 

COLOMBIA 
Ipternational Computer Machines 
Diagonal 34, No, 5-62 
Apartado Aereo 27599 
Bogota 
Tal: 232-6635 
TELEX: 43439 

DENMARK 
Lyngso Komponent A/S 
Ostmllrken 4 
OK-2660 Soborg 
Tel: (01) 67 00 77 
TELEX: 22990 

DENMARK (cant) 
Scandinavian Semiconductor 
Supply A/S 
Nannasgade 18 
OK-2200 Copenhagen N 
Tel: (01) 83 50 90 
TELEX: 19037 

FINLAND 
01' FinlronicAB 
Loannrotinka!u35D 
SF00180 
HelSinki 18 
Tel: (80) 601155 
TELEX: 123107 

FRANCE 
Celdis 
53, Rue Chsrles Frerot 
94250 Genlilly 
Tel: 581,00.20/581.04,69 
TELEX: 200485 F 
Metrologie 
La Tour d'Asnitlres 
4, Avenue Laurent Cell' 
92606-Asniares 
Tel: 791 4444 
TELEX:611448 F 
Tekelec Airtronic' 
Cile des Bruyeres 
Rue Carle Vernet 
92310 Sevres 
Tel: (1) 027 75 35 
TELEX: 204552 
Tekelec Airtronlc 
69 Rue 6ataille 
69008 Lyon 
Tel: (78)-74-37-40 
Tekelec Airtronic 
12 Rue Gabriel Faure 
35000 Rennes 
Tel: (99)-50-62-35 
Tekelec AirlroniC 
Allee des liles 
13100 Ai~ en Pro~ence 
Tel: (91j-27-66-45 
Tekelec Alrtronic 
4 Rue Fischart 
87000 Strasbourg 
Tel: (88)-61-06-43 
Tekelec Airtronic 
281 Roule d'Espagne 
31076 Toulouse 
Tel: (61}-40-24-90/40-38-77 

GERMANY 
Allred Neye Enatechnik GmbH 
Schillerstrasse 14 
0-2085 Quickborn-Hamburg 
Tel: (04106) 6121 
TELEX: 02-13590 
Electronic 2000 Vertriebs GmbH 
Neumarkter Strasse 75 
0-8000 Muenchen 80 
Tel: {089} 434061 
TELEX: 522561 
Jarmyn GmbH 
Postfach 1180 
0-6271 Kamberg 
Tel: (06434) 231 
TELEX: 484426 
Kontron Eleklronlk Gmbh 
8reslauerstresse 2 
8057 Echting B 
0-8000 Munchen 
Tel: (89) 319.011 
TELEX: 522122 

HONG KONG 
Schmidt & Co, 
28/F Wing on Center 
Conneughl Road 
Hong Kong 
Tel: 5-455-644 
TELEX: 74766 Schmc Hx 

INDIA 
Micro Electronics Internatlonal 
10-2-289/114A 
Shantlnager 
Hyderabad 500026 
CABLE: MELECTRO-HYDERBAD 

GERMANY (cont) 
Inlel Semiconductor GmbH 
Abraham Lincoln Strasse30 
6200Wiesbaden 1 
Tel: (06121) 74855 
TELEX: 04186183 
Intel Semiconductor GmbH 
Wernerstrssse 87 
P,O. Bo~ 1460 
7012 Fellbach 
Tel: (0711)580082 
TELEX: 7254826 
Intel Semiconductor GmbH 
Hindenburgar Strassa 28/29 
3000 Hannover 
Tel: (0511) 852051 
TELEX: 923625 

ISRAEL 
Intel Semiconductor Ltd." 
P.O. Bo~ 2404 
Haifa 
Tel: 972/4524261 
TELEX: 92246511 

ITALY 
Intel Corporalion Iialia. s.p,a 
Corso Sempione 39 
1-20145 Milano 
Tel: 2/34,93287 
TELEX: 311271 

ISRAEL 
Eastronics Ltd." 
11 Rozanis Street 
P.O, Box 39300 
Tel-Aviv 61390 
Tel: 475151 
TELEX: 33638 

ITALY 
Eledra 3S S.P.A.' 
Viale Elvezia, 18 
20154 Milan, 
Tel: (02) 3493041 
TELEX: 332332 
Eledra 3S S,P,A." 
Via Paolo Gaidano, 141 0 
10137Tor;no 
TEL: (all) 30 97 097 -30 97 114 
TELEX: 210632 
Eledra 3SS,PA 
Via Zaccherini Atvisi 6 
40100 Bologna 
Tel. (051) 307781 
Eledra3S S.P.A.' 
Via Giuseppe Valmarana, 63 
00139 Rome, Italy 
Tel: (06) 81 27290 -8127 324 
TELEX: 612051 

JAPAN 
Tokyo Electron Labs. Inc, 
No,l Higashikala-Machi 
Midori-Ku. YOkohama 226 
Tel: (045) 471-8811 
TELEX: 781-4773 
Ryoyo ElectriC Corp 
Konwa Bldg 
1_12_22, Tsukiji. 1-Chome 
Chuo-Ku, Tokyo 104 
Tel: (03) 543·7711 
Nippon Micro Computer ~o. Ltd 
Mutsumi Bldg. 4-5-21 KO)lmachl 
Chiyoda-ku, Tokyo 102 
Tel: (03) 230·0041 
Asahi Electronics Co. Ltd. 
KMM Bldg. Room 407 
2-14-1 Asano, Kokura 
Kita-Ku, Kitokyushu City 802 
Tel: (093) 511-6471 
TELEX: AECKY 7126-16 

KOREA 
Koram DigitBI 
Room 411 Ahil Bld9. 
49-4 2-GA Hoehyun-Don9 
Chung-Ku Seoul 
Tel: 23-8123 
TELEX: HANSINT K23542 
Leewood International, Inc. 
C,P.O. Bo~ 4048 
112-25. Sokong-Dong 
Chun9-Ku, Seoul 100 
Tel: 28-5927 
CABLE: "LEEWOOD" Seoul 

NETHERLANDS 
Nether, Comp. Sys. BV 
Turfstekerstraat 63 
Aalsmeer 1431 GO 
Tel: (2977) 28855 
TELEX: 14622 
Kornig & Hartman 
Koperwerf 30 
2544 EN Den Haag 
Holland 
Tel: (70) 210,101 
TELEX: 31528 

NEW ZEALAND 
W. K. McLean Ltd 
103-5 Felton Mathew Avenue 
Glenn Innes, Auckland, 6 
Tal: 587-037 
TELEX: NZ2763 KOSFY 

NORWAY 
Nordisk Elaktronik (Norge) A/S 
MustadsVei 1 
N-DsIO' 
Tel: (02) 55 24 85 
TELEX: 18963 

PORTUGAL 
Dltram 
Componentes E Electronlca LOA 
A~, Miguel Bombarda, 133 
LllSboal 
Tel; (19) 545313 
TELEX: 14347 
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NETHERLANDS 
Intel Semiconductor Nederland a.v. 
Cometongebouw 
Westblaak 106 
3012 Km Rotterdam 
Tel: (10) 149122 
TELEX: 22283 

NORWAY 
Inlel Norway A/S 
P,O. Bo~ 158 
N-2040 
Klona, Norway 
Tel: 47 2/981068 
TELEX: 16018 

SWEDEN 
Inlel Swaden AB" 
Bo~ 20092 
Enlghelsvagen.5 
S-16120 Bromma 
Swaden 
Tel: (08) 98 53 90 
TELEX: 12261 

SWITZERLAND 
Intel Semiconductor AG 
Forchastrasse 95 
CH 8032 Zurich 
Tel: 00-31-1-55 4502 
TELEX: 557 89 ich ch 

SINGAPORE 
General Eng'neers Associates 
Blk 3.1003-1008. 10th Floor 
P,S.A, Multi-Storey Complex 
Telok Blangah/Pasir Panjan9 
Singapore 5 
Tel: 271-3163 
TELEX: AS23987 GENEACO 

SOUTH AFRICA 
Electronic Building Elements 
Pine Square 
18th Street 
Hazelwood, Pretoria 
Tel: (12) 789 221 
TELEX: 30181SA 

SPAIN 
Interlace" 
Ronda San Pedro 22 
Barcelona 10 
Tel: 3017851 
TELEX: 51508 IFCE E 
Interlace 
Av, Generaiis,mo 519 
E-Madrid 16 
Tel: 456 3151 
Interface 
Calle Bailen 9 
Appt. 7 
Bilbao 
Tel: 4/415-0893 
ITT SESA 
Miguel Angel 16 
Madrid 10 
Tel: 410 2354 
TELEX: 27707/27461 

SWEDEN 
Nordisk Electronik Ail 
Sandhamnsgatan 71 
S-102 54 Siockholm 
Tel: (08) 635040 
TELEX: 10547 

SWITZERLAND 
induslradeAG 
l3emsenstrasse 2 
Postcheck 80 - 21190 
CI-I'8021 Zurich 
Tel; (01) 60 2230 
TELEX: 56788 

TAIWAN 
Taiwan Aulomation Co.-
2nd Floor 
224 Nanking East Road 
Section 3 
Taipei 
Tel: 771-0949 
TELEX; 11942 TAIAUTO 

UNITED KINGDOM 
G.E,C, Semiconductors Ltd 
East Lane 
North Wamble~ 
Middlesex HA9 7PP 
Tel: (01) 904-9303/908-4111 
TELEX: 28817 
Jermyn Industries 
Vestry ESlata 
Sevenoaks, Kent 
Tel: (0732) 501.44 
TELEX: 95142 
Sintrom ElectroniCs Ltd.' 
Arkwright Road 2 
Readin9, Berkshire RG2 OLS 
Tel: (0734) 85464 
TELEX: 847395 
Rapid Recall, Ltd, 
6 Soho Mills Ind. Park 
Woburn Green 
Bucks, England 
Tel: (6285) 270.72 
TELEX: 849439 

VENEZUELA 
Componentes y Circuilos 

Electronlcos TTLCA C.A, 
Apartado 3223 
Caracas 101 
Tel: 239-0820 
TELEX: 21795 TELETIPOS 

• Field Appllcallon Location 
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INTEL CORPORATION , 3065 Bowers Avenue , Santa Clara, CA 95051 (408) 987-8080 
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