

Microprocessors and Instruction Sets

80286 Microprocessor

Real-Address Mode 0004.
Protected Virtual Address Mode

80287 Math Coprocessor
Programming Interface
Hardware Interface

80386 Microprocessor 000000004,
Real Address Mode0.0...
Protected Virtual Address Mode

Virtual 8086 Mode0.........0.0.,
80386 Paging Mechanism

80387 Math Coprocessor004.
| 80387 To 80486 Math Coprocessor Compatibility

Programming Interface
Hardware Interface

80486 Microprocessor
Cache Control

Le |

i SS

5 oc a

Sr oc

a |

= 8 8 © © » we

os

Cr coc

[i i |
|
| Cache Paging Control
| Page Protection Feature

|
|

Co aa

New Alignment Check
New Instructions

80286 Microprocessor Instruction Set
Data Transfer
Arithmetic

Logic ... ee eee
String Manipulation
Control Transfer
Processor Control

Protection Control00.0.2.2..00.0...0..0.00.0..0.2..

80287 Math Coprocessor Instruction Set

Data Transfer0.20...0.00...0...0000 000004.

Comparison0.0..0 0000... et eg
Constants

Arithmetic00000000000 0000. ee en

Transcendental0.020...0..0.0.0..0.0 0000p cee

Processor Controi2..............0-004.
introduction to the 80386 Instruction Set

Code and Data Segment Descriptors

Prefixes0.00 000000000 eee,

Instruction Format

Encoding 0.00000. ey
Address Mode

a a

cs

a ay

Lr a |

a cc coco

So

Cr a oc oc od

bn a

es

Lr cc i

a

Le 7

© Copyright IBM Corp. 1990

Operand Length (w) Field0........0... 53
Segment Register (sreg) Field0..., 54
General Register (reg) Field2.2.... 54
Operation Direction (d) Field0...0... 55
Sign-Extend (s) Field0..00.00.. 55

Conditional Test (tttn) Field0...0..000000... 55
Control, Debug, or Test Register (eee) Field 56

80386 Microprocessor Instruction Set00... 57
Data Transfer0.0. 000000000000 eee 57

Segment Control0. 00... 00002 2p eee 60
Flag Control0.0..0. 0.000000 0000000004 61
Arithmetic0..0..0.0000 000000000, ee 62

Logic ©... ee 67
String Manipulation0...0...0..000.. 71

Repeated String Manipulation0.... 72
Bit Manipulation00..0.0 00.0. 0.0.00., 74
Control Transfer02..00200..0...0.2.00.. 75

Conditional Jumps0.... 000200. 76
Conditional ByteSet0...0.02..000.0.000.. 81
Interrupt Instructions0......0.......0.0..0.0. 83
Processor Control0...00.0..0.-0 000004 84
Processor Extension0....000.0 0004 85
Prefix Bytes00 2.000000 00 ee ee 85
Protection Control0..0. 0.000.000 000. ee 86

Introduction to the 80387 Instruction Set 89
80387 Usage of the Scale-Index-Base Byte 89

Instruction and Data Pointers0..0..... 89
New Instructions0...0 0.0.00... 0000. 92

80387 Math Coprocessor Instruction Set 93
Data Transfer 0.000.000. ce eee 93
Comparison0.0.0 00000000. eee ee 94

Constants0... 0.000000. ee eee 95
Arithmetic «2.0.0.0... .0.0 00000000 2 96
Transcendental0....0.00..00.0.0 0004. 98
Processor Control0....0.0....0004. 98

80486 Microprocessor Instruction Set0... 100

li Microprocessors and Instruction Sets — October 1990

Figures
O
W
O
N
O
A
P
O
N
 =a

80287 DataTypes0.....0.2...4.
80386 Addressing0..0000.
Paging Mechanism0.0.0 2.00000 eae
Data Type Classifications and Instructions
80387 DataTypes0.....000..,
Control RegisterO0..004.
80386 Compatible Operation
80486 Protection Operation0...
2-Bit Register Field0..,

3-Bit Register Field0,.

80287 Encoding Field Summary
80386 Code and Data Segment Descriptor Format

instruction Format0...........000004
80386 Instruction Set Encoding Field Summary

Effective Address (16-Bit and 32-Bit Address Modes) ;
Scale Factor (s-i-b Byte Present),
index Registers (s-i-b Byte Present),
Base Registers (s-i-b Byte Present)
Effective Address (32-Bit Address Mode — s-i-b Byte
Present) 0.0.0.0... 000 cee ee

Operand Length Field Encoding,
Segment Register Field Encoding

General Register Field Encoding,
Operand Direction Field Encoding

Sign-Extend Field Encoding
Conditional Test Field Encoding,
Control, Debug, and Test Register Field Encoding
80387 Encoding Field Summary
Instruction and Pointer Image (16-Bit Real Address Mode)

Instruction and Pointer Image (16-Bit Protected Mode) .
Instruction and Pointer Image (32-Bit Real Address Mode)
Instruction and Pointer Image (32-Bit Protected Mode)

© Copyright IBM Corp. 1990

Notes:

Iv. Microprocessors and Instruction Sets —- October 1990

80286 Microprocessor

The 80286 microprocessor subsystem has the foliowing:

24-bit address
16-bit data interface

Extensive instruction set, including string I/O
Hardware fixed-point multiply and divide
Two operational modes:
— 8086-compatible Real Address
— Protected Virtual Address.

¢ 16MB (MB equals 1,048,576 or 229 bytes) of physical address
space

¢ 1GB (GB equals 1,073,741,824 or 230 bytes) of virtual address
space.

Real-Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1MB. The system
microprocessor generates 20-bit physical addresses to address
memory.)

The segment portion of the pointer is interpreted as the upper 16 bits

of a 20-bit segment address; the lower 4 bits are always 0. Therefore,
segment addresses begin on multiples of 16 bytes.

Ail segments in the real-address mode are 64KB (KB equals 1024
bytes) and can be read, written, or executed. An exception or

interrupt can occur if data operands or instructions attempt to wrap
around the end of a segment (for example, a word with its low-order

byte at offset hex FFFF and its high-order byte at hex 0000). If, in the
real-address mode, the information contained in the segment does
not use the full 64KB, the unused end of the segment can be overlaid
by another segment to reduce physical memory requirements.

Protected Virtual Address Mode

The protected virtual address mode (hereafter called protected mode)

offers extended physical and virtual memory address space, memory
protection mechanisms, and new operations to support operating
systems and virtual memory.

The protected mode provides a virtual address space of 1GB for each
task mapped into a 16MB physical address space. The virtual

Microprocessors and Instructions Sets— October 1990 1

address space may be larger than the physical address space,
because any use of an address that does not map to a physical
memory location will cause a restartable exception.

Like the real-address mode, the protected mode uses 32-bit pointers,
consisting of 16-bit selector and offset components. The selector
specifies an index into a memory-resident table rather than the upper
16 bits of a real address. The 24-bit base address of the desired
segment is obtained from a table in memory. The 16-bit offset is
added to the segment base address to form the physical address.
The system microprocessor automatically refers to the tables
whenever a segment register is loaded with a selector. All
instructions that load a segment register refer to the table without
additional program support. Each entry in a table is 8-bytes wide.

80287 Math Coprocessor

The optional 80287 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The coprocessor works in parallel with the microprocessor. The
parallel operation decreases operating time by allowing the
coprocessor to do mathematical calculations while the
microprocessor continues to do other functions.

The coprocessor works with seven numeric data types, which are
divided into the following three classes:

¢ Binary integers (three types)
¢ Decimal integers (one type)
¢ Real numbers (three types).

Programming Interface

The coprocessor offers extended data types, registers, and
instructions to the microprocessor. The coprocessor has eight 80-bit
registers, which provide the equivalent capacity of forty 16-bit
registers. This register space allows constants and temporary results
to be held in registers during calculations, thus reducing memory
access, improving speed, and increasing bus availability. The
register space can be used as a stack or as a fixed register set.
When used as a stack, only the top two stack elements are operated
on.

2 Microprocessors and Instruction Sets — October 1990

The following figure shows representations of large and small

numbers in each data type.

Significant

Digits
Data Type Bits (Decimal) Approximate Range (Decimal)

Word Integer 16 4 -32,768 < x $ + 32,767

Short Integer 32 9 -2x 10° <x < +2x 10°

Long Integer 64 19 -9x10'® <x <¢ +9x10'®

Packed Decimal 80 18 -9.99 sx < +9..99 (18 digits)

Short Real * 32 6-7 8.43 x 10°97 <x < 3.37 x 10°8

Long Real * 64 15- 16 4.19 x 10°°°? <x < 1.67 x
19°08

Temporary Real ** 80 19 3.4x 10499? <x <1.2x
107992

* The short-real and ljong-real data types correspond to the single-precision and

doubie-precision data types.

** The temporary-real data type corresponds to the extended-precision data

Type.

Figure 1. 80287 Data Types

Hardware Interface

The coprocessor uses the same clock generator as the
microprocessor and operates in the asynchronous mode. The
coprocessor is wired so that it functions as an I/O device through I/O
port addresses hex OOF8, OOFA, and OOFC. The microprocessor sends

opcodes and operands through these I/O ports. It also receives and
stores results through the same I/O ports. The coprocessor ‘busy’
signal informs the microprocessor that it is executing; the
microprocessor Wait instruction forces the microprocessor to wait

until the coprocessor is finished executing.

The coprocessor detects six different exception conditions that can

occur during instruction execution:

Invalid operation
Denormal operand

Zero-divide

Overfiow
Underflow

Precision.

Microprocessors and Instruction Sets— October 1990 3

If the appropriate exception-mask bit within the coprocessor is not
set, the coprocessor activates the ‘error’ signal. The ‘error’ signal
generates a hardware interrupt (IRQ 13) causing the ‘busy’ signal to
be held in the busy state. The ‘busy’ signal may be cleared by an
8-bit 1/O Write command to address hex OOFO, with D7 through DO
equal to 0. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
Sets up its vector to point to a routine in ROM. The ROM routine
clears the ‘busy’ signal latch and then transfers control to the address
pointed to by the nonmaskable interrupt (NMI) vector. This maintains
code compatibility across the IBM Personal Computer and Personal
System/2 product lines. The NMI handler reads the coprocessor
Status to determine if the coprocessor generated the NMI. If it was
not generated by the coprocessor, control is passed to the original
NMI handler.

The coprocessor has two operating modes: real-address mode and
protected mode. They are similar to the two modes of the
microprocessor. The coprocessor is in the real-address mode if reset
by a power-on reset, system reset, or I/O write operation to port hex
OOF1. This mode is compatible with the 8087 Math Coprocessor used
in IBM Personal Computers. The coprocessor is placed in the
protected mode by executing the SETPM ESC instruction. It is placed
back in the real-address mode by an I/O write operation to port hex
OOF 1, with D7 through DO equal to 0.

Detailed information for the internal functions of the 80287 Math
Coprocessor is in the books listed in the Bibliography. Also see
“Compatibility” for more information.

80386 Microprocessor

The 80386 microprocessor subsystem has the following:

32-bit address

32-bit data interface
Extensive instruction set, including string I/O
Hardware fixed-point multiply and divide
Three operational modes:
— Real Address

— Protected Virtual Address
— Virtual 8086.

4 Microprocessors and Instruction Sets— October 1990

e 4GB of physical address space

¢ 8 general-purpose 32-bit registers
¢ 64TB (TB equais 1,099,511,627,776 or 24° bytes) of total

virtual-address space.

Real Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1MB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always 0. Therefore,

segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB and can be read,
written, or executed. An exception or interrupt can occur if data
operands or instructions attempt to wrap around the end of a segment
(for example, a word with its low-order byte at offset hex FFFF and its
high-order byte at hex 0000). If, in the real-address mode, the
information contained in the segment does not use the full 64KB, the
unused end of the segment can be overlaid by another segment to
reduce physical memory requirements.

Protected Virtual Address Mode

The protected virtual-address mode offers extended physical and
virtual memory address space, memory protection mechanisms, and
new operations to support operating systems and virtual memory.

The protected mode provides up to 64TB of virtual address space for

each task mapped into a 4GB physical address space.

From a programmer’s point of view, the main difference between the
real-address mode and protected mode is the increased address
space and the method of calculating the base address. The protected
mode uses 32- or 48-bit pointers, consisting of 16-bit selector and 16-

or 32-bit offset components. The selector specifies an index into one
of two memory-resident tables, the global descriptor table (GDT) or

the local descriptor table (LDT). These tables contain the 32-bit base
address of a given segment. The 32-bit effective offset is added to the
segment base address to form the physical address. The system
microprocessor automatically refers to the tables whenever a

segment register is loaded with a selector. All instructions that load

Microprocessors and Instruction Sets— October 1990 5

a segment register refer to the memory-resident tables without
additional program support. The memory-resident tables contain
8-byte values called descriptors.

The paging option provides an additional way of managing memory in
the very large segments of the 80386. Paging operates in the
protected mode only, beneath segmentation. The paging mechanism
translates the protected linear address (which comes from the
segmentation unit) into a physical address. When paging is not
enabled, the physical address is the same as the linear address. The
following figure shows the 80386 addressing mechanism.

32- or 48-Bit Pointer

Selector Offset Physical Memory
(16 Bits) | (16 or 32 Bits) 4G

Linear Physical
Address 80386 Address

: Paging
— Descriptor Mechanism »| Memory Operand

(Optional)

LDT or GODT

0

Figure 2. 80386 Addressing

Virtual 8086 Mode

The virtual-8086 mode ensures compatibility of programs written for
8086- and 8088-based systems by establishing a protected 8086
environment within the 80386 multitasking framework.

Since the address space of an 8086 is limited to 1MB, the logical
addresses generated by the virtual-8086 mode lie within the first 1MB
of the 80386 linear address space. To support multiple virtual-8086
tasks, paging can be used to give each virtual-8086 task a 1MB
address space anywhere in the 80386 physical address space.

On a task-by-task basis, the value of the virtual-8086 flag (VM86 flag
in the Flags register) determines whether the 80386 behaves as an
80386 or as an 8086. Some instructions, such as Clear interrupt Flag,

6 Microprocessors and Instruction Sets — October 1990

can disrupt all operations in a multitasking environment. The 80386
raises an exception when a virtual-8086 mode task attempts to

execute an i/O instruction, interrupt-related instruction, or other

sensitive instruction. Anytime an exception or interrupt occurs, the
80386 leaves the virtual 8086 mode, making the full resources of the
80386 available to an interrupt handler or exception handler. These
handlers can determine if the source of the exception was a

virtual-8086 mode task by inspecting the VM86 flag in the Flags image
on the stack. If the source is a virtual-8086 mode task, the handler
calls on a routine in the operating system to simulate an 8086
instruction and return to the virtual-8086 mode.'

80386 Paging Mechanism

The 80386 uses two levels of tables to translate the linear address
from the segmentation unit into a physical address. There are three
components to the paging mechanism:

e Page directory
Page tables

¢ Page frame (the page itself).

The figure on the following page shows how the two-level paging
mechanism works.

1 The routine in the operating system, called a virtual machine monitor, simulates a
limited number of 8086 instructions.

Microprocessors and Instruction Sets— October 1990 7

80386 _~

31 22 12 0 A_—

Directory | Table | Offset | AK
Linear
Address __

| 4K

4K
31 6 Address Physical

31 0 31 0 Page
CRO > ry
CRi Page 1 bh » Frame 4K CR2 Page Table Address
cr3 |ROOT > 7 Page Directo
Control Registers 9 y a,

0

Physical
Memory

Figure 3. Paging Mechanism

CR2 is the Page-Fault Linear-Address register. It holds the 32-bit
linear address that caused the last detected page fault.

CR3 is the Page Directory Physical Base Address register. It

contains the physical starting address of the page directory.

The page directory is 4KB and allows up to 1024 page-directory

entries. Each page-directory entry contains the address of the next
level of tables, the page tables, and information about the page
tables. The upper 10 bits of the linear address (A22 through A31) are
used as an index to select the correct page-directory entry.

Each page table is 4KB and holds up to 1024 page-table entries.
Page-table entries contain the starting address of the page frame and
Statistical information about the page. Address bits A12 through A21
are used as an index to select one of the 1024 page-table entries.
The upper 20 bits of the page-frame address (from the page-table

entry) are linked with the lower 12 bits of the linear address to form
the physical address. The page-frame address bits become the
most-significant bits; the linear-address bits become the
least-significant bits.

8 Microprocessors and Instruction Sets — October 1990

80387 Math Coprocessor

The optional 80387 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The 80387 effectively extends the 80386 register and instruction set
for existing data types and also adds several new data types. The
following figure shows the four data type classifications and the
instructions associated with each.

Classification Size instructions

Integer 16, 32, 64 Bits Load, Store, Compare, Add, Subtract,
Multiply, Divide

Packed BCD* 80 Bits Load, Store

Real 32, 64 Bits Load, Store, Compare, Add, Subtract,
Multiply, Divide

Temporary Real 80 Bits Add, Subtract, Multiply, Divide, Square
Root, Scale, Remainder, Integer Part,

Change Sign, Absolute Value, Extract
Exponent and Significand, Compare,

Examine, Test, Exchange Tangent,

Arctangent, 2*~1, Y*Logy (X+1),
Y"LoOg» (X), Load Constant (0.0, 77, etc.),

Sine, Cosine, Unordered Compare

* BCD = Binary-coded decimal

Figure 4. Data Type Classifications and Instructions

The 80386/80387 configuration fully conforms to the ANSI? and IEEE?
floating-point standard and are upward, object-code compatible from
80286/80287- and 8086/8087-based systems.

2 American National Standards Institute

3 Institute of Electrical and Electronics Engineers

Microprocessors and Instruction Sets — October 1990 9

| 80387 To 80486 Math Coprocessor Compatibility

| The 80387 floating-point coprocessor is integrated into the 80486
| microprocessor. Ail numeric 80387 instructions are fully compatible
| with the 80486 floating-point unit. The 80486 microprocessor supports
| the 80486 floating-point error reporting modes to ensure DOS
| compatibility with 80386/80387 systems.

| The coprocessor presence test will always show the presence of a
| coprocessor in the 80486.

| Programs for the 80386/80387 systems that explicitly reset the

| coprocessor by writing to hex 00F1 will no longer function because
| the coprocessor is an integral part of the microprocessor.

| Coprocessor reset or initialization must be accomplished through
| FINIT/FSAVE.

| For DOS compatibility, the numeric exception bit Control Register 0
| must be set to 0.

Programming Interface

The 80387 is not sensitive to the processing mode of the 80386. The
80387 functions the same whether the 80386 is executing in
real-address mode, protected mode, or virtual-8086 mode. All

memory access is handled by the 80386; the 80387 merely operates
on instructions and values passed to it by the 80386.

Ail communication between the 80386 and 80387 is transparent to
application programs. The 80386 automatically controls the 80387
whenever a numeric instruction is executed. All physical and virtual
memory is available for storage of instructions and operands of
programs that use the 80387. Ail memory address modes, including
use of displacement, base register, index register, and scaling are
available for addressing numeric operands.

The coprocessor has eight 80-bit registers. The total capacity of
these eight registers is equivalent to twenty 32-bit registers. This

register space allows constants and temporary results to be held in
registers during calculations, thus reducing memory access,

improving speed, and increasing bus availability. The register space

can be used as a stack or as a fixed register set. When it is used as a
stack, only the top two stack elements are operated on.

The following figure shows the seven data types supported by the
80387 Math Coprocessor.

10 Microprocessors and Instruction Sets— October 1990

Data Type Range Precision

Word Integer 104 16 Bits
Short Integer 109 32 Bits
Long Integer 1019 64 Bits
Packed BCD 1018 18 Digits (2 digits per byte)
Single Precision 10488 24 Bits
(Short Real)
Double Precision 19£508 53 Bits
(Long Real)
Extended Precision 19 £4992 64 Bits
(Temporary Real)

Figure 5. 80387 Data Types

Hardware Interface

The 80387 Math Coprocessor uses the same clock generator as the
80386 system microprocessor. The coprocessor is wired so that it
functions as an I/O device through I/O port addresses hex OOF8, 00FA,
and 0OFC. The system microprocessor sends opcodes and operands
through these I/O ports. The coprocessor ‘busy’ signal informs the
system microprocessor that it is executing an instruction; the system
microprocessor Wait instruction forces the system microprocessor to
wait until the coprocessor is finished executing the instruction.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

Invalid operation

Denormal operand
Zero-divide

Overflow
Underflow
Precision.

lf the appropriate exception mask bit within the coprocessor is not
set, the coprocessor activates the ‘error’ signal. The ‘error’ signal
generates a hardware interrupt (IRQ 13) causing the ‘busy’ signal to
be held in the busy state. The ‘busy’ signal can be cleared by an 8-bit
I/O Write command to address hex OOFO, with D7 through DO equal to
0. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the ‘busy’ signal latch and then transfers control to the address
pointed to by the (NMI) vector. This maintains code compatibility
across the IBM Personal Computer and Personal System/2 product
lines. The NMI handler reads the status of the coprocessor to

Microprocessors and Instruction Sets— October 1990 11

determine if the coprocessor generated the NMI. If it was not

generated by the coprocessor, control is passed to the original NMI
handler.

Detailed information about the internal functions of the 80387 Math

Coprocessor is in the books listed in the Bibliography. Also see
“Compatibility” for more information.

12 Microprocessors and Instruction Sets— October 1990

| 80486 Microprocessor

| The 80486 microprocessor subsystem has the following:

| 32-bit address
| 32-bit data interface
| Extensive instruction set, including string I/O

| Hardware fixed-point multiply and divide
Three operational modes:
— Real Address

| — Protected Virtual Address

|
|
|
|
|
|

— Virtual 8086

4GB of physical address space

8 general-purpose 32-bit registers

64TB of total virtual-address space

Internal 8KB, set-associative cache with controller
Internal 80387 coprocessor.

| The 80486 microprocessor is compatible with the 80386 in the
| following areas:

Real Address Mode

Protected Virtual Address Mode
Virtual 8086 Mode

80386 Paging Mechanism
All published 80386 instructions

|
|
|
|
|
| All published 80387 instructions.

| The complete 80387 Math Coprocessor instruction set and register set
| have been included in the 80486 as a floating-point unit. No I/O
| cycles are executed during floating-point instructions. The 80486
| microprocessor is 80386/80387 compatible except for resets to the
| floating-point unit. Software must use FINIT/FSAVE to reset the
| floating-point unit (math coprocessor). The instruction and data
| pointers are set to zero after FINIT/FSAVE.

| Cache Control

| The 80486 microprocessor contains an 8KB integrated cache for code
| and data. The cache is managed in two ways, and the operation of
| the cache has no effect on the operation of any program.

| The cache is managed by bit 30 — Cache Disable (CD) and bit 29 —
| Not Write Through (NW) in Control Register 0 (CRO):

Microprocessors and Instruction Sets— October 1990 13

Bit 30 Bit 29

cb NW Operating Mode

| 1 1 Cache fills disabled, write-through and invalidate
| disabled

| 1 0 Cache fills disabled, write-through and invalidate
| enabled

| 0 1 Reserved

| 0 Cache fills enabled, write-through and invalidate
| enabled (Normal operating mode)

|

| Figure 6. Control Register 0

| Cache Paging Control

| The page-write-through (PWT) bit and the page-cache-disabled (PCD)
| bit are two new bits defined in entries in both levels of the page table
| structure, the page-directory table and the page-table entry, and in
| Control Register 3.

| The PWT bit (bit 4) controls cache write policy. When this bit is set to
| 1, a write-through policy for the current 4KB page is defined. When
| this bit is set to 0, it allows the possibility of write-back policy. This

| bit is ignored internally because the 80486 microprocessor has a
| write-through-only cache. The PWT bit can be used to control the
| write policy of a second-level (external) cache.

| The PCD bit (bit 3),in conjunction with the KEN# (cache enabled) input
| signal and the cache-enable and write-transparent bits in Control
| Register 0 (CRO), controls the ability of cache. When this bit is set to

| 1, caching is disabled for the 4KB page regardiess of the KEN#,
| cache-enable bit, and write-through bit. These two bits are also
| driven external to the processor during memory access to manage a
| second-level cache, if one exists.

| The page-write-through and page-cache-disable bits for a bus cycle
| are obtained either from Control Register 3, the page-directory entry,

| or the page-table entry, depending on the type of cycle performed.

14 Microprocessors and Instruction Sets— October 1990

| Page Protection Feature

| The 80486 microprocessor has a new protection feature. The
| write-protect (WP) bit in CRO has been added to the 80486
| microprocessor to protect read-only pages from supervisor write
| accesses. The 80386 microprocessor allows a read-only page to be
| written from protection level 0, 1, or 2. When the WP bit is set to 0,
| the 80486 microprocessor is in the 80386-compatible mode. When the
| WP bit is set to 0, the supervisor write access to a read-only page
| (Read/Write is set to 0) causes a page fault (exception 14).

| The write-protect bit has a new feature. This feature involves the use
| of three new bits in CRO:

| © User/Supervisor — U/S
| © Read/Write — R/W
| @® Write/Protect — WP.

| The compatible protection feature is described by the following table.

|| us RiwW SS sOWP User Access Supervisor Access

|} oO 0 0 None Read/Write/Execute

|| oOo 1 0 None Read/Write/Execute

|} 1 0 0 Read/Execute Read/Write/Execute

|| 1 1 0 Read/Write/Execute Read/Write/Execute

| Figure 7. 80386 Compatible Operation

| The new protection feature is given by the following table.

|] urs R/w WP User Access Supervisor Access

|| Oo 0 1 None Read/Execute

|| oO 1 1 None Read/Write/Execute

|} 1 0 1 Read/Execute Read/Execute

|} 14 1 1 Read/Write/Execute Read/Write/Execute

| Figure 8. 80486 Protection Operation

Microprocessors and Instruction Sets— October 1990 15

| New Alignment Check

| The Flag register in the 80486 microprocessor contains a new bit not
| available in the 80386. The new bit, alignment check, is bit 18 of the
| Flag register and enables fault reporting on accesses to misaligned
| data (through interrupt 17 with an error code 0).

| When alignment check is set to 1, it enables fault reporting if memory
| reference is to a misaligned address. A misaligned address is a

| word access to an odd address, a doubleword access to an address
| not on a doubleword boundary, or an 8-byte reference to an address
| that is not on a 64-bit boundary.

| Alignment faults are generated only by a program running at

| privilege level 3. The alignment-check bit is ignored at privilege
| levels 0, 1, and 2.

| The alignment-check bit is conditioned by a new alignment mask bit,
| defined as bit 18 in Control Register 0. The alignment-mask bit
| controls whether the alignment-check bit in the Flag register can
| allow an alignment fault. When the alignment-mask bit is set to 0, the
| alignment-check bit is disabled and compatible with the 80386
| microprocessor. When the alignment-mask bit is set to 1, the
| alignment-check bit is enabled.

| New Instructions

| !n addition, the 80486 has six unique instructions that control cache
| operation:

| * Byte Swap (BSWAP)

e Compare and Exchange (CMPXCHG)
® tExchange-and-Add (XADD)
¢ Invalidate Data Cache (INVD)
e Invalidate TLBN Entry (INVLPG).
e

|
|
|
|
| Write-Back and Invalidate Data Cache (WBINVD).

16 Microprocessors and Instruction Sets— October 1990

80286 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory

| 1000100w mod reg r/m

Register/Memory to Register

| 1000101w | modregrim |

Immediate to Register/Memory

| 1100011w | modo00rm | data | dataitw=1 |

Immediate to Register

| 1011 wreg | data | dataifw=1 |

Memory to Accumulator

| 1010000w =| addr-low | _addr-high |

Accumulator to Memory

| 1010001w | addr-tow | addr-high |

Register/Memory to Segment Register

| 10001110 | mod 0 reg r/m |

Segment Register to Register/Memory

[10001100 | modoregrm |

Microprocessors and Instruction Sets— October 1990 17

PUSH = Push

Memory

| 41114111 | mod110r/w |

Register

| 01010reg |

Segment Register

| oo0regi10 =|

Immediate

| 01101080 | data dataifs=0 |

PUSHA = Push All

| 01100000 |

POP = Pop

Register/Memory

[10001111 | modoo0r/m |

Register

| 01011reg |

Segment Register

[| o00reg111 | reg#01 |

18 Microprocessors and Instruction Sets — October 1990

POPA = Pop All

| 01100001 —‘|

XCHG = Exchange

Register/Memory with Register

| 1000011w mod reg r/m

Register with Accumulator

| 10010reg |

IN = Input From

Fixed Port

|1110010w | port

Variable Port

| 1110110w |

OUT = Output To

Fixed Port

| 1110011w | port

Variable Port

| 1410111w |

XLAT = Translate Byte to AL

| 11010111 |

Microprocessors and Instruction Sets — October 1990 19

LEA = Load EA to Register

| 10001101 | mod reg r/m

LDS = Load Pointer to DS

} 11000101 — | modregr/m mod #11

LES = Load Pointer to ES

| 11000100 | mod regr/m mod #11

LAHF = Load AH with Flags

| 10011114 |

SAHF = Store AH with Flags

| 10011110 — |

PUSHF = Push Flags

| 10011100 |

POPF = Pop Flags

| 10011101 =|

20 Microprocessors and Instruction Sets— October 1990

Arithmetic

ADD = Add

Register/Memory with Register to Either

| 000000dw | _mod reg t/m |

immediate to Register/Memory

| 100000sw mod 000r/m | data | data ifsw = 01

Immediate to Accumulator

| o000010w | data | dataitw=1 |

ADC = Add with Carry

Register/Memory with Register to Either

| 000100dw | mod reg r/m !

Immediate to Register/Memory

| 100000sw =| mod010r/m —‘| data | data ifsw = 01

Immediate to Accumulator

| 0001010w | data | data itw = 1 |

INC = Increment

Register/Memory

| 1114114w | mod 0.00 r/m

Register

| 01000reg |

Microprocessors and Instruction Sets— October 1990 21

SUB = Subtract

Register/Memory with Register to Either

| 001010dw mod reg r/m
:

Immediate from Register/Memory

| 100000sw | mod1011r/m | data data ifsw = 01 |

Immediate from Accumulator

| 0010110w | data | data if w = 1 |

SBB = Subtract with Borrow

Register/Memory with Register to Either

| 000110dw | mod reg r/m
4

Immediate from Register/Memory

| 100000sw [| _modotirim | data | dataitsw=01 |

Immediate from Accumulator

| 0001110w ‘| data | dataitw=1 |

DEC = Decrement

Register/Memory

[t111111w [| modootr/m |

Register

| 01001reg |

22 Microprocessors and Instruction Sets — October 1990

CMP = Compare

Register/Memory with Register

| 0011101w | mod reg r/m |

Register with Register/Memory

| 0011100w | modregr/m

immediate with Register/Memory

100000sw | mod 111 1r/m | data data ifsw = 01

immediate with Accumulator

| 0011110w | data | dataitw=1 |

NEG = Change Sign

1 1111011w =| modd11r/m |

AAA = ASCII Adjust for Add

| 00110111 ~~ |

DAA = Decimal Adjust for Add

| 00100111 |

AAS = ASCIl Adjust for Subtract

| 001111411

DAS = Decimal Adjust for Subtract

| 00101111 — |

Microprocessors and Instruction Sets— October 1990 23

MUL = Multiply (Unsigned)

| 1111011w | mod100rm |

IMUL = Integer Multiply (Signed)

| 1411011w [| modt01rm |

lIMUL = Integer Immediate Multiply (Signed)

| 01101081 | mod reg r/m data | data ifs = 0

DIV = Divide (Unsigned)

| 1111011w | mod 110+r/m |

IDIV = Integer Divide (Signed)

| 4111011w | mod 111 4r/m |

AAM = ASCII Adjust for Multiply

|. 11010100 [| 00001010 __—‘'|

AAD = ASCII Adjust for Divide

| 11010101 | 00001010 _—=*dy

CBW = Convert Byte to Word

| 10011000 |

CWD = Convert Word to Doubleword

| 10011001 |

24 Microprocessors and Instruction Sets — October 1990

Logic

Shift/Rotate Instructions

Register/Memory by 1

| 1101000w | modTTTr/m |

Register/Memory by CL

|. 1101001w = | modTTTr/m |

Register/Memory by Count

| 1100000w | modTTTr/m | count

TTT instruction

000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

AND = And

Register/Memory and Register to Either

| 001000dw | mod reg r/m |

Immediate to Register/Memory

| 1000000w —_|_ mod 100 r/m | data | dataifw=1 |

immediate to Accumulator

| 0010010w | data | dataitw=1 |

Microprocessors and instruction Sets— October 1990 25

TEST = AND Function to Flags; No Result

Register/Memory and Register

| 1000010w | modregrim _|

Immediate Data and Register/Memory
 |.1111011w | modoo0r/m | data | data ifw=1

Immediate Data and Accumulator

| 1010100w | data | data ifw = 1

Or = Or

Register/Memory and Register to Either

| 000010dw | mod reg r/m |

immediate to Register/Memory

| 1000000w | modooir/m | data | data ifw = 1

immediate to Accumulator

} 0000110w =| data | data ifw = 1

XOR = Exclusive OR

Register/Memory and Register to Either

| 001100dw mod reg r/m

Immediate to Register/Memory

| 1000000w | mod110r/m ‘| data | data if w = 1
;

Immediate to Accumulator

| 0011010w ‘| data | data ifw =1
:

26 Microprocessors and Instruction Sets — October 1990

NOT = Invert Register/Memory

1 4411011w — | mod010r/m

String Manipulation

MOVS = Move Byte Word

| 1010010w |

CMPS B/W = Compare Byte/Word

| 1010011w |

SCAS = Scan Byte/Word

| 1010111Ww |

LODS = Load Byte/Word to AL/AX

| 1010110w |

STOS = Store Byte/Word from AL/AX

| 1010101w |

INS = Input Byte/Word from DX Port

| o110110w =|

OUTS = Output Byte/Word to DX Port

| o110111w |

Microprocessors and Instruction Sets — October 1990 27

REP/REPNE, REPZ/REPNZ = Repeat String

Repeat Move String

| it110011 | 1010010w |

Repeat Compare String (z/Not z)

| 11110012 | 1010011W ‘|

Repeat Scan String (z/Not z)

| 11110012 | 1010111w |

Repeat Load String

} 11110011 1 1010110w |

Repeat Store String

} 11110011 | 1010101w |

Repeat Input String

} 11110011 | 0110110w |

Repeat Output String

| 11110011 | 01101114w |

28 Microprocessors and Instruction Sets— October 1990

Control Transfer

CALL = Call

Direct within Segment

| 11101000 | disp-low | disp-high

Register/Memory Indirect within Segment

| 14194141 | mod010r/m |

Direct Intersegment

10011010 Segment Offset Segment

Selector

Indirect intersegment

) 14444441 | mod 011 r/m (mod # 11)

JMP = Unconditional Jump

Short/Long

} 11101011 | disp-low

Direct within Segment

| 11101001 | disp-low | disp-high

Register/Memory Indirect within Segment

| 4441141114 | mod100r/m — |

Direct intersegment

11101010 Segment Offset Segment

Selector

Microprocessors and Instruction Sets— October 1990 29

Indirect Intersegment

| 4494141911 | mod 10 1 r/m (mod # 11) |

RET = Return from Call

Within Segment

| 11000011 |

Within Segment Adding Immediate to SP

| 11000010 | data-tow | data-high |

Intersegment

| 11001011 |

Intersegment Adding Immediate to SP

| 11001010 — | data-low data-high

JE/JZ = Jump on Equal/Zero

|} 01110100 ~—‘| disp ‘|

JL/JNGE = Jump on Less/Not Greater, or Equal

}01111100 ~— | disp |

JLE/JNG = Jump on Less, or Equal/Not Greater

{01111110 | disp

JB/JNAE = Jump on Below/Not Above, or Equal

| 01110010 =| disp

30 Microprocessors and instruction Sets— October 1990

JBE/JNA = Jump on Below, or Equal/Not Above

| 01110110 | disp |

JP/JPE = Jump on Parity/Parity Even

| 01111010 | disp |

JO = Jump on Overflow

| 01110000 | disp

JS = Jump on Sign

| 01111000 | disp |

JNE/JNZ = Jump on Not Equal/Not Zero

| 01110101 | disp

JNL/JGE = Jump on Not Less/Greater, or Equal

| 01111101 =| disp |

JNLE/JG = Jump on Not Less, or Equal/Greater

) 01111111 ~— | disp

JNB/JAE = Jump on Not Below/Above, or Equal

1 011410011 | disp |

JNBE/JA = Jump on Not Below, or Equal/Above

|} 01110111 =| disp

Microprocessors and Instruction Sets— October 1990 31

JNP/JPO = Jump on Not Parity/Parity Odd

| 01111011 | disp |

JNO = Jump on Not Overflow

| 01110001 | disp |

JNS = Jump on Not Sign

| 01111001 | disp |

LOOP = Loop CX Times

| 11100010 | disp |

LOOPZ/LOOPE = Loop while Zero/Equal

| 11100001 | disp |

LOOPNZ/LOOPNE = Loop while Not Zero/Not Equal

| 11100000 | disp |

JCXZ = Jump on CX Zero

| 11100011 | disp |

ENTER = Enter Procedure

| 11001000 | data-tow data-high |

LEAVE = Leave Procedure

| 11001001 — |

32 Microprocessors and Instruction Sets — October 1990

INT = Interrupt

Type Specified

} 110011014 |

Type 3

| 11001100 |

INTO = Interrupt on Overflow

| 11001110

IRET = Interrupt Return

| 11001111 |

BOUND = Detect Value Out of Range

| 01100010 | mod reg r/m ‘|

Processor Control

CLC = Clear Carry

|} 11111000 |

CMC = Complement Carry

} 11110101 |

STC = Set Carry

| 11111001

Microprocessors and Instruction Sets — October 1990 33

CLD = Clear Direction

| 11111100 ~~ |

STD = Set Direction

| 14111101 |

CLi = Clear Interrupt

| 11111010 |

STi = Set Interrupt Enable Flag

| 11111011

HLT = Halt

| 11110100 ~~ |

WAIT = Wait

| 10011011 — |

LOCK = Bus Lock Prefix

| 11110000 =|

CTS = Clear Task Switched Flag

| 00001111 | 00000110 __—i|

ESC = Processor Extension Escape

| st011TTT | modttirim |

34 Microprocessors and Instruction Sets — October 1990

Protection Control

LGDT = Load Global Descriptor Table Register

} 000011114 | 00000001 | mod010r/m |

SGDT = Store Global Descriptor Table Register

) 00001111 | 00000001 | mododdr/m |

LIDT = Load Interrupt Descriptor Table Register

) 00001111 | 00000001 =} modO1trim |

SIDT = Store Interrupt Descriptor Table Register

{00001111 | 00000001 | modo01rim |

LLDT = Load Local Descriptor Table Register from Register/Memory

| 00001111 | 00000000 | mod010r/m

SLDT Store Local Descriptor Table Register from Register/Memory

| 00001111 | 00000000 | mod000r/m — |

LTR = Load Task Register from Register/Memory

[00001111 | 00000000 | moddtir/m |

STR = Store Task Register to Register/Memory

| 00001111 | 00000000 | modd01rim |

LMSW = Load Machine Status Word from Register/Memory

| 00001111 | 00000001 | mod110r/m |

Microprocessors and Instruction Sets— October 1990 35

SMSW = Store Machine Status Word

| 00001111 | 00000001 | mod100r/m |

LAR = Load Access Rights from Register/Memory

| 90001111 | 90000010 | modregrim |

LSL = Load Segment Limit from Register/Memory

 | 00001111 ~— | 00000011 | modregrm |

ARPL = Adjust Requested Privilege Level from Register/Memory

| 01100011 |_modregrim |

VERR = Verify Read Access; Register/Memory

 | 00001111 | 00000000 | modt00rim

VERW = Verify Write Access

| 00001111 | 00000000 mod101r/m |

The effective address (EA) of the memory operand is computed
according to the mod and r/m fields:

lf mod = 11, then r/m is treated as a reg field.
lf mod = 00, then disp = 0, disp-low and disp-high are absent.
lf mod = 01, then disp = disp-low sign-extended to 16 bits,
disp-high is absent.
If mod = 10, then disp = disp-high:disp-low.

If r/m = 000, then EA = (BX) + (SI) + DISP
If r/m = 001, then EA = (BX) + (DI) + DISP
If r/m = 010, then EA = (BP) + (SI) + DISP
lf r/m = 011, then EA = (BP) + (Dl) + DISP
lfr/m = 100, then EA = (SI) + DISP
lfr/m = 101, then EA = (Di) + DISP
lfr/m = 110, then EA = (BP) + DISP
lfr/m = 111, then EA = (BX) + DISP

36 Microprocessors and Instruction Sets— October 1990

The disp field follows the second byte of the instruction (before data if

required).

Note: An exception to the above statements occurs when mod = 00
and r/m= 110, in which case EA = disp-high; disp-low.

Segment Override Prefix

| 001regii0 |

The 2-bit and 3-bit reg fields are defined in the following figures.

Reg Segment Reg Segment
Register Register

00 ES 10 Ss

01 cs 11 DS

Figure 9. 2-Bit Register Field

Figure 10. 3-Bit Register Fieid

16-Bit (w = 1) 8-Bit (w = 0)

000 AX 000 AL

001 CX 001 CL

010 DX 010 DL

011 BX 0171 BL

100 SP 100 AH

101 BP 101 CH

110 SI 110 OH

111 Di 111 BH

The physical addresses of ali operands addressed by the BP register

are computed using the SS Segment register. The physical

addresses of the destination operands of the string primitive
operations (those addressed by the DI register) are computed using
the ES segment, which may not be overridden.

Microprocessors and Instruction Sets— October 1990 37

80287 Math Coprocessor Instruction Set

The following is an instruction-set summary for the 80287 Math
Coprocessor.

The following figure shows abbreviations used in the summary.

Field Description Bit Information

escape 80286 Extension Escape Bit Pattern = 11011
MF Memory Format 00 = 32-Bit Real

01 = 32-Bit Integer
10 = 64-Bit Real

11 = 16-Bit Integer
ST(0) Current Stack Top
ST(i) ith Register Below the Stack

Top
d Destination 0 = Destination is ST(0)

1 = Destination is ST(i)
P Pop 0 = No pop

1 = Pop ST(0)
R Reverse* 0 = Destination (op) source

1 = Source (op) destination
“When d=1, reverse the sense of R.

Figure 11. 80287 Encoding Field Summary

Data Transfer

FLD = Load

Integer/Real Memory to ST(0)

i escape MF 1 |

Long Integer Memory to ST(0)

| escape 111 | mod 101 r/m |

Temporary Real Memory to ST(0)

| escape 011 mod101r/m |

38 Microprocessors and Instruction Sets — October 1990

BCD Memory to ST(0)

| escape111 =| mod100r/m |

ST(i) to ST(0)
| escape 001 | 11000ST(i) |

FST = Store

ST(0) to Integer/Real Memory

| escape MF 1 | mod010r/m |

ST(0) to ST(i)

| escape 101 | 11010ST(i) |

FSTP = Store and Pop

ST(0) to Integer/Real Memory

| escape MF 1 il mod0111r/m |

ST(0) to Long Integer Memory

| escapet11 =| modtiir/m |

ST(0) to Temporary Rea! Memory

| escape 011 mod 11141/m |

Microprocessors and Instruction Sets— October 1990 39

ST(0) to BCD Memory

| escape 111 | mod110r/m |

ST(0) to ST(i)

| escape101 = | 110118T) ‘|

FXCH = Exchange ST(i) and ST(0)

| escape 00 1 | 11001sT) — |

Comparison

FCOM = Compare

Integer/Real Memory to ST(0)

| escape MF 0 | mod 010r/m |

ST(i) to ST(O)
| escape000 =| 110108) _—*||

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

| escape MF 0 mod 0115r/m |

ST(i) to ST(0)

| escape 000 | 11011ST(i) |

FCOMPP = Compare ST(1) to ST(0) and Pop Twice

| escape 110 | 11011001

40 Microprocessors and Instruction Sets— October 1990

FTST = Test ST(0)

| escape 001 | 11100100 |

FXAM = Examine ST(0)

| escape 001 | 11100101 |

Constants

FLDZ = Load + 0.0 Into ST(0)

| escape 001 | 11101110 |

FLD1 = Load + 1.0 into ST(0)

escape 001 | 11101000

FLDPI = Load 77 into ST(0)

| escape 00 1 | 11101011 |

FLDL2T = Load log, 10 Into ST(0)

escape 00 1 | 411101001 |

FLDL2E = Load log, e Into ST(0)

| escape 001 | 11101010 |

FLDLG2 = Load log,, 2 Into ST(0)

escape 001 | 11101100 |

FLOLN2 = Load log, 2 into ST(0)

escape 001 11101101 |

Microprocessors and Instruction Sets— October 1990 41

Arithmetic

FADD = Addition

Integer/Real Memory with ST(0)

| escape MF 0 | mod 000r/m

ST(i) and ST(0)
| escape dPO | 11000ST() |

FSUB = Subtraction

integer/Real Memory with ST(0)

escape MF 0 mod10Rr/m |

ST(i) and ST(0)

| escape dP 0 | 1110R r/m

FMUL = Multiplication

integer/Real Memory with ST(0)

| escape MF 0 | mod001r/m

ST(i) and ST(0)

| escape dP 0 | 11001fr/m |

FDIV = Division

Integer/Real Memory with ST(0)

| escape MF 0 | mod11Rr/m

ST(i) and ST(0)

escape dP 0 | 1111Rr/m

FSQRT = Square Root of ST(0)

| escape 00 1 11111010 |

FSCALE = Scale ST(0) by ST(1)

| escape 00 1 11111101 |

42 Microprocessors and Instruction Sets — October 1990

FPREM = Partial Remainder of ST(0) ~ ST(1)

| escape 00 1 11111000 |

FRNDINT = Round ST(0) to Integer

| escape 001 | 114111100 |

FXTRACT = Extract Components of ST(0)

escape 00 1 | 11110100 |

FABS = Absolute Value of ST(0)

| escape 00 1 | 11100001 |

FCHS = Change Sign of ST(0)

| escape 00 1 | 11100000 |

Transcendental

FPTAN = Partial Tangent of ST(0)

| escape 001 { 11110010 |

FPATAN = Partial Arctangent of ST(1) = ST(0)

| escape 00 1 | 11110011 |

F2XM1 = 281(0) -4

| escape 001 | 11110000 |

FYL2X = ST(1) x Log, (ST(0)]

| escape 001 | 11110001 |

FYL2XP1 = ST(1) x Log, [ST(0) + 1]

Microprocessors and Instruction Sets— October 1990 43

| escape 00 1 | 11111001

Processor Control

FINIT = Initialize NPX

| escape 011 | 14100011

FSETPM = Enter Protected Mode

| escape 011 | 11100100 |

FSTSW AX = Store Contro! Word

| escape 111 | 11100000 =|

FLDCW = Load Control Word

| escape 001 | mod101r/m |

FSTCW = Store Control Word

escape 001 | mod 111 1r/m |

FSTSW = Store Status Word

| escape 101 | mod 111 1r/m

FCLEX = Clear Exceptions

| escape 011 | 11100010

FSTENV = Store Environment

| escape 00 1 | mod 110r/m

44 Microprocessors and Instruction Sets — October 1990

FLDENV = Load Environment

| escape 00 1 | mod 100r/m

FSAVE = Save State

| escape 101 | mod 110r/m

FRSTOR = Restore State

escape 10 1 | mod 100r/m

FINCSTP = Increment Stack Pointer

| escape 001 | 11140111 |

FDECSTP = Decrement Stack Pointer

| escape 001 | 11110110

FFREE = Free ST(I)

| escape 101 | 11000ST(i)

FNOP = No Operation

| escape 001 | 11010000

Introduction to the 80386 Instruction Set

The 80386 instruction set is an extended version of the 8086 and

80286 instruction sets. The instruction sets have been extended in

two ways:

e The instructions have extensions that allow operations on 32-bit
operands, registers, and memory.

¢ A 32-bit addressing mode allows flexible selection of registers for

base and index as well as index scaling capabilities (x2, x4, x8)
for computing a 32-bit effective address. The 32-bit effective
address yields a 4GB address range.

Microprocessors and Instruction Sets— October 1990 45

Note: The effective address size must be less than 64KB in the

real-address or virtual-address modes to avoid an

exception.

Code and Data Segment Descriptors

Although the 80386 supports all 80286 Code and Data segment

descriptors, there are some differences in the format. The 80286
segment descriptors contain a 24-bit base address and a 16-bit limit
field, while the 80386 segment descriptors have a 32-bit base
address, a 20-bit limit field, a default bit, and a granularity bit.

31 oa 23 16115 08 | 07 OOl

Segment Base (SB) Bits 15-0 Segment Limit (SL) Bits 15-0

SB Bits 31-24 G| D/) 0; 0) SL 19-16] Access Rights Byte} SB Bits 23-16 4

Figure 12. 80386 Code and Data Segment Descriptor Format

Note: Bits 31 through 16 shown at offset 4 are set to 0 for all 80286
segment descriptors.

The default (D) bit of the code segment register is used to determine
whether the instruction is carried out as a 16-bit or 32-bit instruction.
Code segment descriptors are not used in either the real-address

mode or the virtual-8086 mode. When the system microprocessor is
operating in either of these modes, a D-bit value of 0 is assumed and
operations default to a 16-bit length compatible with 8086 and 80286
programs.

The granularity (G) bit is used to determine the granularity of the

segment length (1 = page granular, 0 = byte granular). If the value
of the 20 segment-limit bits is defined as N, a G-bit value of 1 defines
the segment size as follows:

Segment size = (N + 1) x 4KB

4KB represents the size of a page.

46 Microprocessors and Instruction Sets— October 1990

-
o
a

s
O

Prefixes

Two prefixes have been added to the instruction set. The Operand
Size prefix overrides the default selection of the operand size; the
Effective Address Size prefix overrides the effective address size.
The presence of either prefix toggles the default setting to its
opposite condition. For example:

¢ Ifthe operand size defaults to 32-bit data operations, the
presence of the Operand Size prefix sets it for 16-bit data
operations.

e If the effective address size is 16-bits, the presence of the

Effective Address Size prefix toggles the instruction to use 32-bit
effective address computations.

The prefixes are available in all 80386 modes, including the
real-address mode and the virtual-8086 mode. Since the default of

these modes is always 16 bits, the prefixes are used to specify 32-bit

operations. If needed, either or both of the prefixes may precede any
opcode bytes and affect only the instruction they precede.

Microprocessors and Instruction Sets— October 1990 47

Instruction Format

The instructions are presented in this format:

Opcode Mode Specifier Address Immediate Data

Displacement

Term Description

Opcode The opcode may be one or two bytes in length. Within

each byte, smaller encoding fields may be defined.

Mode Specifier Consists of the “mod r/m” byte and the

“scale-index-base” (s-i-b) byte.

The mod r/m byte specifies the address mode to be
used. Format: mod T T T r/m

The “s-i-b” byte is optional and can be used only in

32-bit address modes. It follows the mod r/m byte to

fully specify the manner in which the eftective

address is computed. Format: ss index base

Address Displacement Follows the “mod r/m” byte or “s-i-b” byte. It may be
8, 16, or 32 bits.

Immediate Data if specified, follows any displacement bytes and

becomes the last field of the instruction. It may be 8,
16, or 32 bits.

The term “8-bit data” indicates a fixed data length of 8
bits.

The term “8-, 16-, or 32-bit data” indicates a variable

data length. The length is determined by the w field
and the current operand size.

If w = 0, the data is always 8 bits.

If w = 1, the size is determined by the operand
size of the instruction.

Figure 13. Instruction Format

48 Microprocessors and Instruction Sets— October 1990

The instructions use a variety of fields to indicate register selection,
the addressing mode, and so on. The following figure is a summary
of the fields.

Field Name Description Bit Information

Ww Specifies if data is byte or 1
full size. (Full size is either
16 or 32 bits.)

d Specifies the direction of 1
data operation.

s Specifies if an immediate 1

data field must be

sign-extended.

reg General address specifier. 3

mod r/m Address mode specifier 2 for mod; 3 for r/m
(effective address can be a
general register).

$s Scale factor for scaled 2

index address mode.

index General register to be used 3
as an index register.

base General register to be used 3
as base register.

sreg2 Segment register specifier 2
for CS, SS, DS, and ES.

sreg3 Segment register specifier 3

for CS, SS, DS, ES, FS, and
GS.

tttn For conditional instructions; 4
specifies a condition

asserted or a condition
negated.

Figure 14. 80386 Instruction Set Encoding Field Summary

Microprocessors and Instruction Sets— October 1990 49

Encoding

This section defines the encoding of the fields used in the instruction
sets.

Address Mode

The first addressing byte is the “mod r/m” byte. The effective
address (EA) of the memory operand is computed according to the
mod and r/m fieids. The mod r/m byte can be interpreted as either a
16-bit or 32-bit addressing mode specifier. Interpretation of the byte
depends on the address components used to calculate the EA. The

following figure defines the encoding of 16-bit and 32-bit addressing
modes with the mod r/m byte.

mod r/m 16-Bit Mode 32-Bit Mode (No s-I-b byte)

00 000 DS:[BX + SI] DS:[EAX]
00 001 DS:[BX + DI] DS: [ECX]
00 010 SS:(BP + SI] DS: [EDX]
00 011 SS:[(BP + DI] DS:[EBX]
00 100 DS:(SIJ s-i-b present (see Figure 19 on

page 53)
00 101 DS:[Dt] DS:d32
00 110 dié DS:[ES!}
00 111 DS:[BX] DS: [EDI]

01 000 DS:[BX + SI + d8] DS:[EAX + d8]
01 001 DS:[BX + DI + d8] DS:([ECX + d8}
01010 SS:([BP + SI + d8] DS: [EDX + d8]}
01011 SS:[BP + Di + d8] DS:[EBX + d8]}
01 100 DS:[SI + d8] s-i-b present (see Figure 19 on

page 53)
01 101 DS:[Dl + d8] SS:[EBP + d8]
01 110 SS:[BP + d8] DS:[ES! + d8]
01111 DS:[BX + d8] DS:[ED! + d8]

10 000 DS:[BX + Si + d16] DS:[EAX + d32]
10 001 DS:[BX + Di + d16] DS:[ECX + d32]
10 010 SS:(BP + SI + d16] SS:[EDX + d32]
10 011 SS:([BP + DI + d16] DS:[EBX + d32]
10 100 DS:(SI + d16] s-i-b present (see Figure 19 on

page 53)
10 101 DS:(DI + d16] SS:[EBP + d32]
10 110 SS:[BP + d16] DS:[ESI + d32]
10 111 DS:[BX + d16] DS:[EDI + d32]

Figure 15. Effective Address (16-Bit and 32-Bit Address Modes)

The displacement follows the second byte of the instruction (before
data, if required).

50 Microprocessors and Instruction Sets— October 1990

The scale-index-base (s-i-b) byte can be specified as a second byte of
addressing information. The s-i-b byte is specified when using a
32-bit addressing mode and the mod r/m byte has the following
values:

e r/m = 100

¢ mod = 00, 01, or 10.

When the s-i-b byte is present, the 32-bit effective address is a
function of the mod, ss, index, and base fields. The following figures
show the scale factor, Index register selected, and base register
selected when the s-i-b byte is present.

ss Scale Factor

00 1

01 2

10 4

11 8

index index Register

000 EAX

001 ECX

010 EDX

011 EBX
100 No Index Register The ss field must equal 00 when the

index field is 100; if not, the effective

address is undefined.
101 EBP

110 ES!

111 EDI

Figure 17. Index Registers (s-i-b Byte Present)

Microprocessors and Instruction Sets— October 1990 51

base Base Register

110

111

EAX

ECX

EDX

EBX

ESP

EBP lf mod = 00, then EBP is not used to

form the EA; immediate 32-bit address

displacement follows the mode specifier

byte.
ESI

EDI

Figure 18. Base Registers (s-i-b Byte Present)

The scaled-index information is determined by multiplying the
contents of the Index register by the scale factor. The following
example shows the use of the 32-bit addressing mode with scaling
where:

¢ EAX is the base of ARRAY_A

¢ ECxX is the index of the desired element

e 2 is the scale factor.

52

; ARRAY_A is an array of words
MOV EAX, offset ARRAY A

MOV ECX, element_number

MOV BX, [EAX] [ECX*2]

Microprocessors and Instruction Sets — October 1990

The following figure defines the encoding of the 32-bit addressing
mode when the s-i-b byte is present.

Note: The mod field is from the mod r/m byte. The base field and
scaled-index information are from the s-i-b byte.

Mod Base 32-Bit Address Mode

00 000 DS:[EAX + (scaled index)]
00 001 DS:[ECX + (scaled index)]
00 010 DS:[EDX + (scaled index)]

00 011 DS:[EBX + (scaled index)]
00 100 SS:[ESP + (scaled index)]
00 101 DS:[d32 + (scaled index)]
00 110 DS:[ESI + (scaled index)]
00 111 DS:[EDI + (scaled index)]

01 000 DS:[EAX + (scaled index) + d8]

01001 DS:[ECX + (scaled index) + d8]

01010 DS:[EDX + (scaled index) + d8]

01011 DS:[EBX + (scaled index) + d8]

01 100 SS:[ESP + (scaled index) + d8}

01 101 SS:[EBP + (scaled index) + d8]
01110 DS:[ESI + (scaled index) + d8]

O1111 DS:[EDI + (scaled index) + d8]

10 000 DS:[EAX + (scaled index) + d32]
10 001 DS:[ECX + (scaled index) + d32]

10 010 DS:[EDX + (scaled index) + d32]

10 011 DS:[EBX + (scaled index) + d32]

10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]

10 110 DS:[ESI + (scaled index) + d32]

10 111 DS:[EDI + (scaled index) + d32]

Figure 19. Effective Address (32-Bit Address Mode — s-i-b Byte Present)

Operand Length (w) Field

For an instruction performing a data operation, the instruction is

executed as either a 32-bit or 16-bit operation. Within the constraints
of the operation size, the w field encodes the operand size as either
one byte or full operation.

w 16-Bit Data Operation 32-Bit Data Operation

0 8 Bits 8 Bits
1 16 Bits 32 Bits

Figure 20. Operand Length Field Encoding

Microprocessors and Instruction Sets— October 1990 53

Segment Register (sreg) Field

The 2-bit segment register field (sreg2) allows one of the four 80286
segment registers to be specified. The 3-bit segment register (sreg3)
allows the 80386 FS and GS segment registers to be specified.

sreg2 sreg3 Segment Register

00 000 ES

01 001 cS

10 010 Ss

11 011 DS

-- 100 FS

-- 101 GS

-- 110 Reserved

-- 111 Reserved

Figure 21. Segment Register Field Encoding

General Register (reg) Field

The general register is specified by the reg field, which may appear
in the primary opcode bytes as the reg field of the mod reg r/m byte,
or as the r/m field of the mod reg r/m byte when mod = 11.

reg 16-Bit 16-Bit 16-Bit 32-Bit 32-Bit 32-Bit

wiow w= w= wiow w=Q w=

000 AX AL AX EAX AL EAX

001 CX CL CX ECX CL ECX

010 DX DL DX EDX DL EDX

011 BX BL BX EBX BL EBX

100 SP AH SP ESP AH ESP

101 BP CH BP EBP CH EBP

110 SI DH Si ESI DH ESI

111 DI BH DI EDI BH EDI

Figure 22. General Register Field Encoding

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. For string primitive
operations (those addressed by the DI register), addresses of the
destination operands are computed using the ES segment, which may
not be overridden.

34 Microprocessors and Instruction Sets — October 1990

Operation Direction (d) Field

The operation direction (d) field is used in many two-operand
instructions to indicate which operand is the source and which is the

destination.

d Direction of Operation

0 Register/Memory <-- Register

The “reg” field indicates the source operand; “mod r/m” or “mod ss

index base” indicates the destination operand.

1 Register<-- Register/Memory

The “reg” field indicates the destination operand; “mod r/m” or “mod ss

index base” indicates the source operand.

Figure 23. Operand Direction Field Encoding

Sign-Extend (s) Field

The sign-extend (s) field appears primarily in instructions having
immediate data fields. The s field affects only 8-bit immediate data

being placed in a 16-bit or 32-bit destination.

s 8-Bit Immediate Data 16/32-Bit immediate Data

No effect on data No effect on data

1 Sign-extend 8-bit data to fill 16-bit or No effect on data

32-bit destination

Figure 24. Sign-Extend Field Encoding

Conditional Test (tttn) Field

For conditional instructions (conditional jumps and set-on condition),
the conditional test (tttn) field is encoded, with n indicating whether to

use the condition (n = 0) or its negation (n = 1), and ttt defining the
condition to test.

Microprocessors and Instruction Sets— October 1990 55

ttin Condition Mnemonic

0000 Overflow O

0001 No Overflow NO
0010 Below/Not Above or Equal B/NAE
0011 Not Below/Above or Equal NB/AE
0100 Equal/Zero E/Z

0101 Not Equal/Not Zero NE/NZ

0110 Below or Equal/Not Above BE/NA

0111 Not Below or Equal/Above NBE/A

1000 Sign S

1001 Not Sign NS

1010 Parity/Parity Even P/PE

1011 Not Parity/Parity Odd NP/PO
1100 Less Than/Not Greater or Equal L/NGE
1101 Not Less Than/Greater or Equal NL/GE
1110 Less Than or Equal/Not Greater Than LE/NG

1411 Not Less or Equal/Greater Than NLE/G

Figure 25. Conditional Test Field Encoding

Control, Debug, or Test Register (eee) Field

The following shows the encoding for toading and storing the Control,
Debug, and Test registers (eee).

eee Code Interpreted as Interpreted as Interpreted
Control Register Debug Register as

Test

Register

000 CRO DRO ---
001 --- DR1 ---
010 CR2 DR2 ---
011 CR3 DR3 ---
100 --- -—- ---
101 _— --- ---
110 _— DR6 TRE
11 --- DR7 TR7

Figure 26. Control, Debug, and Test Register Field Encoding

56 Microprocessors and Instruction Sets— October 1990

80386 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory

1000100WwW | mod reg r/m

Register/Memory to Register

| 1000101Ww mod reg r/m

Immediate to Register/Memory

| 1100011w | mod 000r/m | 8-, 16-, or 32-bit data

Immediate to Register (Short Form)

1011wreg | 8-, 16-, or 32-bit data

Memory to Accumulator (Short Form)

| 1010000w | full 16- or 32-bit displacement

Accumulator to Memory (Short Form)

| 1010001w | __ full 16- or 32-bit displacement |

Register/Memory to Segment Register

| 10001110 mod sreg3 r/m !

Segment Register to Register/Memory

| 10001100 | mod sreg3 r/m |

Microprocessors and Instruction Sets— October 1990 57

MOVSX = Move with Sign Extension

Register from Register/Memory

{00001111 =| 1011111w ~~ | modregrim

MOVZX = Move with Zero Extension

Register from Register/Memory

| 00001111 | 1011011w ~~ | modregrm _|

PUSH = Push

Register/Memory

|. 14111111 ~~ | mod140r/m

Register (Short Form)

| 01010 reg |

Segment Register (ES, CS, SS, or DS) Short Form

| 000sreg2110 |

Segment Register (FS or GS)

| 00001111 | 10sreg3000

Immediate

| 01101080 | 8-, 16-, or 32-bit data |

PUSHA = Push All

| 01100000 =|

98 Microprocessors and Instruction Sets — October 1990

POP = Pop

Register/Memory

| 10001111 =| mod000r/m

Register (Short Form)

| 01011 reg |

Segment Register (ES, SS, or DS) Short Form

| 000sreg2111 |

Segment Register (FS or GS)

| 00001111 | 10sreg3001

POPA = Pop All

|} 01100001 =|

XCHG = Exchange

Register/Memory with Register

| 1000011w =| modregr/m

Register with Accumulator (Short Form)

| 10010 reg |

IN = Input From:

Fixed Port

1 1110010w — | portnumber

Variable Port

| 1170110w = |

Microprocessors and Instruction Sets— October 1990 59

OUT = Output To:

Fixed Port

| 1110011w | port number

Variable Port

| 1110111w

LEA = Load EA to Register

| 10001101 | mod reg r/m |

Segment Control

LDS = Load Pointer to DS

| 11000101 | modregrim |

LES = Load Pointer to ES

| 11000100 | modregrim _|

LFS = Load Pointer to FS

| 00001111 =| 10110100 mod reg r/m

LGS = Load Pointer to GS

} 00001111 =| 10110101 modregrim |

LSS = Load Pointer to SS

| 00001111 | 10110010 mod reg r/m

60 Microprocessors and Instruction Sets— October 1990

Flag Control

CLC = Ciear Carry Flag

| 11111000 |

CLD = Clear Direction Flag

| 11111100 |

CLI = Clear Interrupt Enable Flag

| 11111010 |

CLTS = Clear Task Switched Flag

| 00001111 | 00000110 _— ‘|

CMC = Complement Carry Flag

| 11110101 |

LAHF Load AH Into Flag

} 10011111

POPF Pop Flags

| 10011101

PUSHF = Push Flags

| 10011100 |

Microprocessors and Instruction Sets— October 1990 61

SAHF = Store AH into Flags

| 10011110 |

STC = Set Carry Flag

| 11111001

STD = Set Direction Flag

| 114141101 |

STI = Set interrupt Enable Flag

| 11411011 |

Arithmetic

ADD = Add

Register to Register

| 000000dw | mod reg r/m |

Register to Memory

| 0000000w | modregr/m |

Memory to Register

| 0000001w | mod reg rim !

Immediate to Register/Memory

| 100000sw =| mod000r/m | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)

| 0000010w_— | 8-, 16-, or 32-bit data

62 Microprocessors and Instruction Sets— October 1990

ADC = Add with Carry

Register to Register

| 000100dw mod reg r/m |

Register to Memory

0001000w mod reg r/m |

Memory to Register

| 0001001WwW | mod reg r/m |

Immediate to Register/Memory

| 100000sw | mod010r/m | 8-, 16-, or 32-bit data |

immediate to Accumulator (Short Form)

1 0001010w =| 8-, 16-, or 32-bit data |

INC = increment

Register/Memory

| 1144111w = | mod000r/m |

Register (Short Form)

| 01000 reg |

Microprocessors and instruction Sets— October 1990 63

SUB = Subtract

Register from Register

| 001010dw | mod reg r/m |

Register from Memory

| 0010100w | modregrim |

Memory from Register

| 0010101w mod reg r/m |

Immediate from Register/Memory

| 100000sw =| mod101r/m | 8-, 16-, or 32-bit data

Immediate from Accumulator (Short Form)

| 0010110w | 8-, 16-, or 32-bit data |

SBB = Subtract with Borrow

Register from Register

| 000110dw | mod reg r/m |

Register from Memory

| 0001100w | modregr/m |

Memory from Register

| 0001101w | mod reg r/m |

immediate from Register/Memory

| 100000sw =| modo1trm | 8-, 16-, or 32-bit data

Immediate from Accumulator (Short Form)

| ooo1t10w | 8-, 16-, or 32-bit data |

64 Microprocessors and Instruction Sets— October 1990

DEC = Decrement

Register/Memory

| 1114111w | mod 0011r/m

Register (Short Form)

101001 reg |

CMP = Compare

Register with Register

| 001110dw —_|_ mod reg r/m |

Memory with Register

0011100w | mod reg r/m |

Register with Memory

| 0011101w mod reg r/m |

Immediate with Register/Memory

| 100000sw | mod 444 r/m | 8-, 16-, or 32-bit data

immediate with Accumulator (Short Form)

| 0011110w | 8-, 16-, or 32-bit data

NEG = Change Sign

1 1411011w = | mod0114/m |

AAA = ASCli Adjust for Add

00110111 |

Microprocessors and Instruction Sets— October 1990 65

AAS = ASCIll Adjust for Subtract

|} 00111111 |

DAA = Decimal Adjust for Add

| 00100111 = |

DAS = Decimal Adjust for Subtract

| 00101111 — |

MUL = Multiply (Unsigned)

Accumulator with Register/Memory

| 1141011w | mod 100 r/m |

IMUL = Integer Multiply (Signed)

Accumulator with Register/Memory

}.1111011w =| mod101r/m |

Register with Register/Memory

| 00001111 | 10101111 | modregrim |

Register/Memory with Immediate to Register

| 011010s1 | modregrim ‘| 8-, 16-, or 32-bit data

DIV = Divide (Unsigned)

Accumulator by Register/Memory

11111011w ~~ | mod110r/m_— |

IDIV = Integer Divide (Signed)

Accumulator by Register/Memory

| 1111014w | mod 1144 4r/m |

66 Microprocessors and Instruction Sets— October 1990

AAD = ASCII Adjust for Divide

| 11010101 | 00001010 |

AAM = ASCIil Adjust for Muitiply

| 11010100 | 00001010

CBW = Convert Byte to Word

| 10011000 |

CWD = Convert Word to Doubleword

} 10011001 |

Logic

Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1

| 1101000w | modTTTrm |

Register/Memory by CL

| 1101001w =| modTTTrim |

Register/Memory by Immediate Count

| 1100000w | modTTTr/m | S-bditdata

Microprocessors and Instruction Sets— October 1990 67

Shift/Rotate Instructions

Through Carry (RCL and RCR)

Register/Memory by 1

| 1101000w | mod TTT r/m |

Register/Memory by CL

| 1101001w | mod TTT r/m |

Register/Memory by Immediate Count

| 1100000w | mod TTT r/m | 8-bit data

TTT Instruction

000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
1114 SAR

SHLD = Shift Left Double

Register/Memory by Immediate

| 00001111 | 10100100 | mod reg r/m | 8-bit data

Register/Memory by CL

| 00001111 | 10100101 | mod reg r/m

68 Microprocessors and Instruction Sets— October 1990

SHRD = Shift Right Double

Register/Memory by Immediate

/ 00001111 | 10101100 | modregrim ‘| 8-bit data

Register/Memory by CL

) 00001111 | 10101101 | modregr/m |

AND = And

Register to Register

| 001000dw | mod reg r/m |

Register to Memory

| 0010000w | mod reg r/m |

Memory to Register

1 0010001w | modregrim |

Immediate to Register/Memory

| 100000sw | mod 100 r/m | 8-, 16-, or 32-bit data |

immediate to Accumulator (Short Form)

| oo10010w | 8-, 16-, or 32-bit data |

Microprocessors and Instruction Sets— October 1990 69

TEST = AND Function to Flags; No Result

Register/Memory and Register

|_1000010w | modregrim _—|

immediate Data and Register/Memory

}.1111011w = | modoo0r/m ‘| 8-, 16-, or 32-bit data

Immediate Data and Accumulator (Short Form)

| 1010100w | 8-, 16-, or 32-bit data

OR = Or

Register to Register

| 000010dw | modregrim _—|

Register to Memory

| 0000100w mod reg r/m |

Memory to Register

| 0000101w =| modregr/m |

Immediate to Register/Memory

|_100000sw | mod001rm | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)

| ooo0110w =| 8-, 16-, or 32-bit data |

70 Microprocessors and Instruction Sets — October 1990

XOR = Exclusive OR

Register to Register

| 001100dw | mod reg r/m

Register to Memory

| 0011000w | mod reg r/m |

Memory to Register

| 0011001w | mod reg r/m |

Immediate to Register/Memory

| 100000sw | mod 110r/m 8-, 16-, or 32-bit data |

Immediate to Accumulator (Short Form)

| 0011010w | 8-, 16-, or 32-bit data |

NOT = invert Register/Memory

1 14110114w | mod010r/m = |

String Manipulation

CMPS = Compare Byte Word

| 1010011w |

INS = Input Byte/Word from DX Port

| 0110110w |

Microprocessors and Instruction Sets— October 1990 71

LODS = Load Byte/Word to AL/AX/EAX

| 1010110w =|

MOVS = Move Byte Word

| 1010010w

OUTS = Output Byte/Word to DX Port

| 0110111w |

SCAS = Scan Byte Word

| 1010111w |

STOS = Store Byte/Word from AL/AX/EX

| 1010101w |

XLAT = Translate String

| 11010111 |

Repeated String Manipulation

Repeated by Count in CX or ECX

REPE CMPS = Compare String (Find Non-Match)

| 41110011 {| 1010011w_ |

72 Microprocessors and Instruction Sets — October 1990

REPNE CMPS = Compare String (Find Match)

|. 11110010 | 1010011w |

REP INS = Input String

|.11110010 | 0110110w |

REP LODS = Load String

|. 11110010 =| 1010110w |

REP MOVS = Move String

111110010 | 1010010w |

REP OUTS = Output String

|}. 11110010 =| o110111w |

REPE SCAS = Scan String (Find Non-AL/AX/EAX)

}. 11110011 =| 1010111w_— |

REPNE SCAS = Scan String (Find AL/AX/EAX)

}. 11110010 =| 1010111w |

REP STOS = Store String

{ 11110010 | 1010101w

Microprocessors and Instruction Sets — October 1990 73

Bit Manipulation

BSF = Scan Bit Forward

| 00001111 | 10111100 mod reg t/m

BSR = Scan Bit Reverse

| 00001111 | 10111101 mod reg r/m

BT = Test Bit

Register/Memory, immediate

} 00001111 =| 10111010 mod100r/m | &-bit data

Register/Memory, Register

| 00001111 | 10100011 mod reg r/m |

BTC = Test Bit and Complement

Register/Memory, Immediate

| ooo01111 =| 10111010 modi1ir/m | &bit data

Register/Memory, Register

| 00001111 | 10111011 modregrim |

BTR = Test Bit and Reset

Register/Memory, Immediate

| 00001111 =| 10111010 mod110r/m | &-bit data |

Register/Memory, Register

| 00001111 | 10110011 mod reg r/m |

74 Microprocessors and Instruction Sets— October 1990

BTS = Test Bit and Set

Register/Memory, Immediate

| 00001111 | 10111010 | mod 101 ¢/m | &-bit data

Register/Memory, Register

}00001111 | 10101011 — | modregrim

Control Transfer

CALL = Call

Direct within Segment

| 11101000 | full 16- or 32-bit displacement

Register/Memory Indirect within Segment

| 144449914 | mod 010r/m

Direct Intersegment

i 10011010 offset, selector

Indirect Interseqment

111111411 = | modotirm |

JMP =~ Unconditional Jump

Short

| 11101011 | 8-bit disp. |

Direct within Segment

| 11101001 full 16- or 32-bit displacement

Microprocessors and Instruction Sets — October 1990 75

Register/Memory Indirect within Segment

} 444441414 | mod 100 r/m |

Direct Intersegment

| 1 1101010 ii offset, selector |

indirect intersegment

) 14440119 | mod 1011/m |

RET = Return from Call

Within Segment

| 11000011 |

Within Segment Adding Immediate to SP

| 11000010 | 16-bit displacement

intersegment

| 11001011 |

Intersegment Adding Immediate to SP

| 11001010 | 16-bit displacement

Conditional Jumps

JO = Jump on Overflow

8-Bit Displacement

| 01110000 | 8-bit disp.

Full Displacement

| 00001111 | 10000000 | _ tull 16- or 32-bit displacement

76 Microprocessors and Instruction Sets— October 1990

JNO = Jump on Not Overflow

8-Bit Displacement

| 01110001 | Sbitdisp. |

Full Displacement

| 00001111 | 10000001 | _ full 16- or 32-bit displacement

JB/JNAE = Jump on Below/Not Above or Equal

8-Bit Displacement

| 01110010 | 8-bit disp. |

Full Displacement

| 00001111 | 10000010 | full 16- or 32-bit displacement

JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement

| 01410011 | 8-bit disp. |

Full Displacement

} 00001111 | 10000011 | full 16- or 32-bit displacement

JE/JZ = Jump on Equal/Zero

8-Bit Displacement

} 01110100 | &-bit disp. |

Full Displacement

| 00001111 | 10000100 full 16- or 32-bit displacement

Microprocessors and Instruction Sets— October 1990 77

JNE/JNZ = Jump on Not Equal/Not Zero

8-Bit Displacement

| 01110101 | 8-bit disp. |

Full Displacement

| 00001111 | 10000101 | full 16- or 32-bit displacement

JBE/JNA = Jump on Below or Equal/Not Above

8-Bit Displacement

| 01110110 | &bitdisp. |

Full Displacement

| 00001111 | 10000110 | _ full 16- or 32-bit displacement

JNBE/JA = Jump on Not Below or Equal/Above

8&-Bit Displacement

{01110141 — | &bitdisp.

Full Displacement

| 00001111 | 10000111 | full 16 or 32-bit displacement

JS = Jump on Sign

8-Bit Displacement

| 01111000 | &bitdisp. |

Full Displacement

| 000011114 | 10001000 | _ full 16- or 32-bit displacement

78 Microprocessors and Instruction Sets— October 1990

JNS = Jump on Not Sign

8-Bit Displacement

| 01111001 | &bitdisp. |

Full Displacement

} 00001111 | 10001001 | full 16- or 32-bit displacement

JP/JPE = Jump on Parity/Parity Even

8-Bit Displacement

{01111010 | &bit disp. |

Full Displacement

|} 00001111 | 10001010 | full 16 or 32-bit displacement

JNP/JPO = Jump on Not Parity/Parity Odd

8-Bit Displacement

| 01111011 =| 8bitdisp. |

Full Displacement

| 00001111 } 10001011 | _ full 16- or 32-bit displacement

JL/JNGE = Jump on Less/Not Greater or Equal

8-Bit Displacement

| 01111100 | Sbitdisp. |

Full Displacement

| 00001111 | 10001100 | full 16- or 32-bit displacement

Microprocessors and Instruction Sets— October 1990 79

JNL/JGE = Jump on Not Less/Greater or Equal

8-Bit Displacement

| 01111101 — | &-bitdisp. |

Full Displacement

| 00001111 =| 10001101 | full 16 or 32-bit displacement

JLE/JNG = Jump on Less or Equal/Not Greater

8-Bit Displacement

| 01111110 — | &-bitdisp. |

Full Displacement

| 00001111 =| 10001110 | _ full 16- oF 32-bit displacement

JNLE/JG = Jump on Not Less or Equal/Greater

8-Bit Displacement

| 01111111 — | &bitdisp. !

Full Displacement

| 00001111 | 10001111 | full 16- or 32-bit displacement

JCXZ = Jump on CX Zero

} 11100011 — | &bitdisp.

JECXZ = Jump on ECX Zero

| 111000114 | 8-bit disp.

Note: The operand size prefix differentiates JCXZ from JECXZ.

80 Microprocessors and Instruction Sets — October 1990

LOOP = Loop CX Times

| 11100010 | &-bitdisp.

LOOPZ/LOOPE = Loop with Zero/Equal

| 11100001 | 8>bitdisp. |

LOOPNZ/LOOPNE = Loop while Not Zero

| 11100000 | 8bitdisp.

Conditional Byte Set

SETO = Set Byte on Overflow

To Register/Memory

| 00001111 | 10010000 | mod 000r/m |

SETNO = Set Byte on Not Overflow

To Register/Memory

} 00001111 | 10010001 | mod 000r/m |

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory

| ooo01111 ~—| 10010010 | modo00rm |

SETNB = Set Byte on Not Below/Above or Equal

To Register/Memory

{00001111 | 10010011 | modoodrm |

SETE/SETZ = Set Byte on Equal/Zero

To Register/Memory

| 00001111 | 10010100 | modoodr/m

Microprocessors and Instruction Sets — October 1990 81

SETNE/SETNZ = Set Byte on Not Equal/Not Zero

To Register/Memory

} 00001111 | 10010101 | mod000r/m |

SETBE/SETNA = Set Byte on Below or Equal/Not Above

To Register/Memory

{00001111 | 10010110 | modo00rm |

SETNBE/SETA = Set Byte on Not Below or Equal/Above

To Register/Memory

| 00001111 | 10010111 | mod000r/m |

SETS = Set Byte on Sign

To Register/Memory

1 00001111 | 10011000 | mod 000r/m

SETNS = Set Byte on Not Sign

To Register/Memory

} 00001111 | 40011001 | modo00r/m

SETP/SETPE = Set Byte on Parity/Parity Even

To Register/Memory

} 00001111 1 10011010 | mod 000 r/m |

SETNP/SETPO = Set Byte on Not Parity/Parity Odd

To Register/Memory

|} 00001111 | 10011011 | mod 000r/m |

SETL/SETNGE = Set Byte on Less/Not Greater or Equal

To Register/Memory

| 00001111 | 10011100 | mod000r/m |

82 Microprocessors and Instruction Sets— October 1990

SETNL/SETGE = Set Byte on Not Less/Greater or Equal

To Register/Memory

| 00001111 {01111101 =| modoodrm |

SETLE/SETNG = Set Byte on Less or Equal/Not Greater

To Register/Memory

| coo01111 ~— | 10011110 =| modooorm |

SETNLE/SETG = Set Byte on Not Less or Equal/Greater

To Register/Memory

| ooo01111 ~={ 10011111 | modo00rm |

ENTER = Enter Procedure

| 11001000 — | 16-bit displacement | &bit level |

LEAVE = Leave Procedure

111001001 =|

interrupt Instructions

INT = Interrupt

Type Specified

| 11001101 | type

Type 3

| 11001100 =|

INTO = interrupt 4 If Overflow Flag Set

| 11001110 ~~ |

Microprocessors and Instruction Sets— October 1990 83

BOUND = interrupt 5 if Detect Value Out of Range

| 01100010 | mod reg r/m

{RET = Interrupt Return

| 11001111

Processor Control

HLT = Halt

| 41410100 |

MOV = Move to and from Control/Debug/Test Registers

CRO/CR2/CR3 from Register

| 00001111 | 00100010 | 11eeereg

Register from CRO-3

| 00001111 | 00100000 | 11 eee reg |

DRO-3, DR&-7 from Register

|} 00001111 | 00100011 | 11¢8ereg

Register from DRO-3, DR6-7

| 00001111 | 00100001 | 1 1 eee reg |

TR6-7 from Register

} 00001111 | 00100110 | 11e¢ereg |

Register from TR6-7

| 00001111 | 00100100 | 11¢eereg |

NOP = No Operation

| 10010000 |

84 Microprocessors and Instruction Sets— October 1990

WAIT = Wait until BUSY Pin is Negated

| 10011011 — |

Processor Extension

ESC = Processor Extension Escape

}41044TTT ~~ | modLLt rim |

Note: TTT and LLL bits are opcode information for the coprocessor.

Prefix Bytes

Address Size Prefix

| 01100411

Operand Size Prefix

| 01100110

LOCK = Bus Lock Prefix

| 11110000 !

Note: The use of LOCK is restricted to an exchange with memory, or
bit test and reset type of instruction.

Segment Override Prefix

cs

} 00101110 !

DS:

| 00111110 |

Microprocessors and Instruction Sets — October 1990 85

ES:

| 00100110 !

FS:

| 01100100 |

GS:

| 01100101 —|

SS:

| 00110110 |

Protection Control

ARPL = Adjust Requested Privilege Level from Register/Memory

} 01100011 — | modregr/m |

LAR = Load Access Rights from Register/Memory

| 00001111 | 00000010 | mod reg r/m |

LGDT = Load Global Descriptor Table Register

| 00001111 | 00000001 | modotorm |

LIDT = Load Interrupt Descriptor Table Register

| 00001111 =| 00000001 | modotirim |

LLDT = Load Local Descriptor Table Register to Register/Memory

00001111 | 00000000 | mod010¢/m

86 Microprocessors and Instruction Sets— October 1990

LMSW = Load Machine Status Word from Register/Memory

|. 00001111 ~—=| 00000001 | mod110r/m |

LSL = Load Segment Limit from Register/Memory

| 00001111 =| 00000011 — | modregr/m

LTR = Load Task Register from Register/Memory

| 00001111 | 00000000 | modo001r/m

SGDT = Store Global Descriptor Table Register

| 90001111 | 00000001 | modooor/m |

SIDT = Store Interrupt Descriptor Table Register

| 00001111 | 00000001 | mod 001r/m |

SLDT = Store Local Descriptor Table Register to Register/Memory

|.00001111 | 00000000 | modoodrm |

SMSW = Store Machine Status Word

} 00001111 | 00000001 — | mod100r/m

STR = Store Task Register to Register/Memory

| 00001111 =| o0000000 | modoo1rim

VERR = Verify Read Access; Register/Memory

| 00001111 | 00000000 | mod 100r/m

Microprocessors and Instruction Sets~— October 1990 87

VERW = Verify Write Access

| 00001111 | 00000000 mod101r/m |

88 Microprocessors and Instruction Sets — October 1990

Introduction to the 80387 Instruction Set

The 80387 instructions use many of the same fields defined earlier in

this section for the 80386 instructions. Additional fields used by the
80387 instructions are defined in the following figure.

Field Description Bit Information

escape 80386 Extension Escape Bit Pattern = 11011

MF Memory Format 00 = 32-bit Real

01 = 32-bit integer

10 = 64-bit Rea!

11 = 16-bit integer
ST(0) Current Stack Top

ST(i) ith register below the stack top

d Destination 0 = Destination is ST(0}

1 = Destination is ST{i)
P Pop 0 = No pop

1 = Pop ST(0}
R Reverse“ 0 = Destination (op) source

1 = Source (op) destination
* When d=1, reverse the sense of R.

Figure 27. 80387 Encoding Field Summary

Within the 80387 Instruction Set:

¢ Temporary (Extended) Real is 80-bit Real.
e Long Integer is a 64-bit integer.

80387 Usage of the Scale-Index-Base Byte

The “mod r/m” byte of an 80387 instruction can be followed by a
scale-index-base (s-i-b) byte having the same address mode
definition as in the 80386 instruction. The mod field in the 80387
instruction is never equal to 11.

Instruction and Data Pointers

The parallel operation of the 80386 and 80387 may allow errors

detected by the 80387 to be reported after the 80386 has executed the
ESC instruction that caused the error. The 80386/80387 provides two
pointer registers to identify the failing numeric instruction. The
pointer registers supply the address of the failing numeric instruction
and the address of its numeric memory operand when applicable.

Microprocessors and Instruction Sets — October 1990

Although the pointer registers are located in the 80386, they appear to
be located in the 80387 because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and FRSTOR. Whenever the
80386 decodes a new ESC instruction, it saves the address of the
instruction along with any prefix bytes that may be present, the
address of the operand (if present), and the opcode.

The instruction and data pointers appear in one of four available
formats:

16-bit Real Mode/Virtual 8086 Mode
32-bit Real Mode

16-bit Protected Mode
32-bit Protected Mode

The Real Mode formats are used whenever the 80386 is in the Real
Mode or Virtual 8086 Mode. The Protected Mode formats are used
when the 80386 is in the Protected Mode. The Operand Size Prefix

can also be used with the 80387 instructions. The operand size of the
80387 instruction determines whether the 16-bit or 32-bit format is
used.

Note: FSAVE and FRSTOR have an additional eight fields (10 bytes
per field) that contain the current contents of ST(0) through
ST(7). These fields follow the instruction and data pointer
image shown in the following figures.

The foilowing figures show the instruction and data pointer image
format used in the various address modes. The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used to transfer these
values between the 80386/80387 registers and memory.

Bits

45 a! 7 0! o
Control Word 0]

Status Word 2| 8

Tag Word 4 t

Instruction Pointer (IP) Bits 15-0 6

IP Bits 19-16 | 0 | Opcode Bits 10-0 8 :

Operand Pointer (OP) Bits 15-0 A| +
opBis19-16 |o]/0 0 0 00 00 0 0 0 0 Cc

Figure 28. Instruction and Pointer Image (16-Bit Real Address Mode)

$0 Microprocessors and Instruction Sets — October 1990

Bits

15 817 o|

‘e)

Control Word 0 }

Status Word 2| §

Tag Word 4 t

Instruction Pointer Offset 6 | i

CS Selector 8

Operand Offset A 8

Operand Selector C | °

Figure 29. Instruction and Pointer Image (16-Bit Protected Mode)

Bits

31 24 l23 16 115 817 | e)

Reserved Contro! Word 0 |

Reserved Status Word 4; 8

Reserved Tag Word 8 t

Reserved IP Bits 15-0 Cl i

0000 | IP Bits 31-16 | o| Opcode Bits 10-0 10 "

Reserved | _ Operand Pointer Bits 15-0 14] °
000 0| Operand Pointer Bits 31-16 lo 00000000000) 18)

Figure 30. Instruction and Pointer Image (32-Bit Real Address Mode)

Bits

31 24423 16 | 15 8| 7 o| oO

Reserved Control Word 0 |

Reserved Status Word 4| 8§

Reserved Tag Word 8 t

Instruction Pointer Offset Cy] i

Reserved | CS Selector 10 °

Data Operand Offset 14 8

Reserved | Operand Selector 18 | ;

Figure 31. Instruction and Pointer Image (32-Bit Protected Mode)

Microprocessors and Instruction Sets— October 1990 91

New Instructions

Several new instructions are included in the 80387 instruction set that

are not available to the 80287 or 8087 Math Coprocessors. The new
instructions are:

FUCOM (Unordered Compare Real)

FUCOMP (Unordered Compare Real and Pop)
FUCOMPP (Unordered Compare Real and Pop Twice)
FPREM1 (IEEE Partial Remainder)
FSINE (Sine)
FCOS (Cosine)

FSINCOS (Sine and Cosine).

92 Microprocessors and Instruction Sets — October 1990

80387 Math Coprocessor Instruction Set

The following is an instruction set summary for the 80387

coprocessor. in the following, the bit pattern for escape is 11011.

Data Transfer

FLD = Load

Integer/Real Memory to ST(0)

| escape MF 1 | mod 00O0r/m |

Long Integer Memory to ST(0)

| escape 111 | mod 101r/m

Temporary Real Memory to ST(0)

| escape 01 1 | mod 1011r/m |

BCD Memory to ST(0)

| escape 111 | mod 100r/m |

ST(i) to ST(0)

| escape 00 1 | 11000 ST(i) |

FST = Store

ST(0) to Integer/Real Memory

| escape MF 1 | modQ10r/m |

ST(0) to ST(i)
| escape101 | 11010ST(i) |

FSTP = Store and Pop

ST(0) to integer/Real Memory

escape MF 1 | mod011r/m |

ST(0) to Long Integer Memory

| escape 11 1 | mod 1111r/m |

Microprocessors and Instruction Sets— October 1990 93

ST(0) to Temporary Real Memory

a escape 011 | mod 111tr/m |

ST(0) to BCD Memory

[| escape 111 | mod110r/m |

ST(0) to ST(i)
| escape101 | 11011ST() |

FXCH = Exchange ST(i) and ST(0)

| escape 001 | 11001 ST(i) |

Comparison

FCOM = Compare

Integer/Real Memory to ST(0)

| escape MF 0 | mod 010r/m |

ST(i) to ST(0)
| escape 000 | 11010ST() |

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

| escape MF 0 | mod0Q11r/m

ST(i) to ST(0)
| escapeooo | 11011S8T) |

FCOMPP = Compare ST(1) to ST(0) and Pop Twice

| escape110 | 11011001 |

FUCOM = Unordered Compare Real

| escape 101 | 11100ST(i)

94 Microprocessors and Instruction Sets— October 1990

FUCOMP = Unordered Compare Real and Pop

| escape 101 | 11101 STi)

FUCOMPP = Unordered Compare Real and Pop Twice

| escape010 | 11101001 |

FTST = Test ST(0)

| escape 00 1 11100100

FXAM = Examine ST(0)

| escape 00 1 | 11100101

Constants

FLDZ = Load +0.0 Into ST(0)

escape 001 | 11101110 |

FLD1 = Load +-1.0 into ST(0)

escape 00 1 | 11101000 |

FLDP! = Load 77 into ST(0)

escape 00 1 | 11101011 |

FLDL2T = Load log, 10 Into ST(0)

escape 00 1 | 11101001 |

FLDL2E = Load log, e into ST(0)

escape 00 1 11101010 |

Microprocessors and Instruction Sets— October 1990 95

FLDLG2 = Load Iog,, 2 Into ST(0)

| escape 001 | 11101100 |

FLDLN2 = Load log, 2 into ST(0)

| escape 001 | 11101101 |

Arithmetic

FADD = Addition

Integer/Real Memory with ST(0)

| escapeMFO | mod000r/m |

ST(i) and ST(0)
| escape dP 0 | 11000sTI) |

FSUB = Subtraction

Integer/Real Memory with ST(0)

escape MF 0 | mod10Rr/m |

ST(i) and ST(0)

| escape d PO | 1110Re/m |

FMUL = Multiplication

integer/Real Memory with ST(0)

| escape MF 0 | mod001r/m |

ST{i) and ST(0)

| escape dP 0 | 11001 9fr/m |

FDIV = Division

Integer/Real Memory with ST(0)

escape MF 0 mod11Rr/m

96 Microprocessors and Instruction Sets — October 1990

ST(i) and ST(0)

| escaped PO 1 41441R¢/m

FSQRT = Square Root of ST(0)

| escape 001 |} 11111010 |

FSCALE = Scale ST(0) by ST(1)

| escape 001 i] 11111101 |

FPREM = Partial Remainder of ST(0) — ST(1)

| escape 001 11111000 |

FPREM1 = IEEE Partial Remainder

| escape 00 1 | i1140101 |

FRNDINT = Round ST(0) to Integer

| escape 00 1 | 111111700 |

FXTRACT = Extract Components of ST(0)

| escapeoo1 | 11110100 |

FABS = Absolute Value of ST(0)

| escape 00 1 | 11100001 |

FCHS = Change Sign of ST(0)

| escapeoo1 | 11100000 |

Microprocessors and Instruction Sets— October 1990 97

Transcendental

FPTAN = Partial Tangent of ST(0)

escape 001 | 11110010 |

FPATAN = Partial Arctangent of ST(1) + ST(0)

| escape 001 171110011 |

FSIN = Sine

| escape 00 1 | 11111110 |

FCOS = Cosine

| escape 001 | aitattid |

FSINCOS = Sine and Cosine

| escape 001 { 11411011 |

F2XM1 = 287(0) -4

| escape 001 | 11110000 |

FYL2X = ST(1) x Log, [ST(0)]

| escape 001 | 11110001 |

FYL2XP1 = ST(1) x Log, [ST(O) + 1]

| escapeoo1 | 11111001 |

Processor Control

FINIT = Initialize NPX

| escapeoti | 11100011

98 Microprocessors and Instruction Sets — October 1990

FSTSW AX = Store Control Word

| escape111 | 11100000 |

FLDCW = Load Control Word

| escape 00 1 | mod 1014 1r/m |

FSTCW = Store Control Word

| escape 00 1 | mod 111r/m |

FSTSW = Store Status Word

| escape 101 | mod11tr/m

FCLEX = Clear Exceptions

| escape 011 1 11100010

FSTENV = Store Environment

| escape 00 1 i mod 110r/m

FLDENV = Load Environment

escape 00 1 | mod 100r/m

FSAVE = Save State

| escape 101 | mod 110r/m |

FRSTOR = Restore State

| escape 10 1 mod 100r/m

Microprocessors and Instruction Sets— October 1990 99

FINCSTP = Increment Stack Pointer

| escape 00 1 } 44110111

FDECSTP = Decrement Stack Pointer

| escape 001 fo t1tt0110 |

FFREE = Free ST(I)

| _escape101 | 110008T() |

FNOP = No Operation

| escape 001 | 11010000 |

80486 Microprocessor Instruction Set

The 80486 microprocessor uses the same instruction set that the
80386 microprocessor and the 80387 Math Coprocessor. In addition,
the 80486 has six unique instructions that control cache operation:

Byte Swap (BSWAP)

Compare and Exchange (CMPXCHG)
Exchange-and-Add (XADD)
invalidate Data Cache (INVD)

Invalidate TLBN Entry (INVLPG)
Write-Back and Invalidate Data Cache (WBINVD).

BSWAP = Byte Swap

} 00001111 | 11001 reg |

CMPXCHG = Compare and Exchange

Register 1, Register 2

| 00001111 | 1011000w | 11 reg2regi |

Memory, Register 2

| 00001111 | 1011000w | mod reg2 mem |

100 Microprocessors and Instruction Sets — October 1990

XADD = Exchange and Add

Register 1, Register 2

| 00001111 | 1100000w | 11 reg2regi |

Memory, Register 2

} 00001111 | 1100000w | mod reg2mem |

INVD = invalidate Data Cache

| 00001111 | oo0001000 |

WBINVD = Write-Back and Invalidate Data Cache

|} 00001111 | 00001001 |

INVLPG = Invalidate TLB Entry

i 00001111 | 00000001 | mod 11 mem

Microprocessors and Instruction Sets— October 1990 101

Notes:

102 Microprocessors and instruction Sets— October 1990

